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CHAPTER

ONE

INTRODUCTION

zfp is an open-source library for representing multidimensional numerical arrays in compressed form to reduce storage
and bandwidth requirements. zfp consists of four main components:

• An efficient number format for representing small, fixed-size blocks of real values. The zfp format usually
provides higher accuracy per bit stored than conventional number formats like IEEE 754 floating point.

• A set of classes that implement storage and manipulation of a multidimensional array data type. zfp arrays
support high-speed read and write random access to individual array elements and are a drop-in replacement for
std::vector and native C/C++ arrays. zfp arrays provide accessors like proxy pointers, iterators, and views.
zfp arrays allow specifying an exact memory footprint or an error tolerance.

• A C library for streaming compression of partial or whole arrays of integers or floating-point numbers,
e.g., for applications that read and write large data sets to and from disk. This library supports fast, parallel
(de)compression via OpenMP and CUDA.

• A command-line executable for compressing binary files of integer or floating-point arrays, e.g., as a substitute
for general-purpose compressors like gzip.

As a compressor, zfp is primarily lossy, meaning that the numerical values are usually only approximately represented,
though the user may specify error tolerances to limit the amount of loss. Fully lossless compression, where values are
represented exactly, is also supported.

zfp is primarily written in C and C++ but also includes Python and Fortran bindings. zfp is being developed at Lawrence
Livermore National Laboratory and is supported by the U.S. Department of Energy’s Exascale Computing Project. zfp
is a 2023 R&D 100 Award Winner.

1.1 Availability

zfp is freely available as open source on GitHub and is distributed under the terms of a permissive three-clause BSD
license. zfp may be installed using CMake or GNU Make. Installation from source code is recommended for users who
wish to configure the internals of zfp and select which components (e.g., programming models, language bindings) to
install.

zfp is also available through several package managers, including Conda (both C/C++ and Python packages are avail-
able), PIP, Spack, and MacPorts. Linux packages are available for several distributions and may be installed, for
example, using apt and yum.

1

https://www.llnl.gov
https://www.llnl.gov
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1.2 Application Support

zfp has been incorporated into several independently developed applications, plugins, and formats, such as

• Compressed file I/O in ADIOS.

• Compression codec in the BLOSC meta compressor.

• H5Z-ZFP plugin for HDF5®. zfp is also one of the select compressors shipped with HDF5 binaries.

• Compression functions for Intel® Integrated Performance Primitives.

• Compressed MPI messages in MVAPICH2-GDR.

• Compressed file I/O in OpenInventor™.

• Compression codec underlying the OpenZGY format.

• Compressed file I/O in TTK.

• Third-party module in VTK.

• Compression worklet in VTK-m.

• Compression codec in Zarr via numcodecs.

See this list for other software products that support zfp.

1.3 Usage

The typical user will interact with zfp via one or more of its components, specifically

• Via the C API when doing I/O in an application or otherwise performing data (de)compression online. High-
speed, parallel compression is supported via OpenMP and CUDA.

• Via zfp’s in-memory compressed-array classes when performing computations on very large arrays that demand
random access to array elements, e.g., in visualization, data analysis, or even in numerical simulation. These
classes can often substitute C/C++ arrays and STL vectors in applications with minimal code changes.

• Via the zfp command-line tool when compressing binary files offline.

• Via third-party I/O libraries or tools that support zfp.

1.4 Technology

zfp compresses d-dimensional (1D, 2D, 3D, and 4D) arrays of integer or floating-point values by partitioning the array
into cubical blocks of 4d values, i.e., 4, 16, 64, or 256 values for 1D, 2D, 3D, and 4D arrays, respectively. Each such
block is independently compressed to a fixed- or variable-length bit string, and these bit strings may be concatenated
into a single stream of bits.

zfp usually truncates each per-block bit string to a fixed number of bits to meet a storage budget or to some variable
length needed to meet a given error tolerance, as dictated by the compressibility of the data. The bit string representing
any given block may be truncated at any point and still yield a valid approximation. The early bits are most important;
later bits progressively refine the approximation, similar to how the last few bits in a floating-point number have less
significance than the first several bits. The trailing bits can usually be discarded (zeroed) with limited impact on
accuracy.

zfp was originally designed for floating-point arrays only but has been extended to also support integer data, and
could for instance be used to compress images and quantized volumetric data. To achieve high compression ratios,

2 Chapter 1. Introduction

https://adios2.readthedocs.io/en/latest/operators/CompressorZFP.html
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zfp generally uses lossy but optionally error-bounded compression. Bit-for-bit lossless compression is also possible
through one of zfp’s compression modes.

zfp works best for 2D-4D arrays that exhibit spatial correlation, such as continuous fields from physics simulations,
images, regularly sampled terrain surfaces, etc. Although zfp also provides support for 1D arrays, e.g., for audio signals
or even unstructured floating-point streams, the compression scheme has not been well optimized for this use case, and
compression ratio and quality may not be competitive with floating-point compressors designed specifically for 1D
streams.

In all use cases, it is important to know how to use zfp’s compression modes as well as what the limitations of zfp
are. Although it is not critical to understand the compression algorithm itself, having some familiarity with its major
components may help understand what to expect and how zfp’s parameters influence the result.

1.5 Resources

zfp is based on the algorithm described in the following paper:

Peter Lindstrom
“Fixed-Rate Compressed Floating-Point Arrays”
IEEE Transactions on Visualization and Computer Graphics
20(12):2674-2683, December 2014
doi:10.1109/TVCG.2014.2346458

zfp has evolved since the original publication; the algorithm implemented in the current version is described in:

James Diffenderfer, Alyson Fox, Jeffrey Hittinger, Geoffrey Sanders, Peter Lindstrom
“Error Analysis of ZFP Compression for Floating-Point Data”
SIAM Journal on Scientific Computing
41(3):A1867-A1898, 2019
doi:10.1137/18M1168832

For more information on zfp, please see the zfp website. For bug reports, please consult the GitHub issue tracker. For
questions, comments, and requests, please contact us.

1.5. Resources 3

https://www.researchgate.net/publication/264417607_Fixed-Rate_Compressed_Floating-Point_Arrays
http://doi.org/10.1109/TVCG.2014.2346458
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LICENSE

Copyright (c) 2014-2023, Lawrence Livermore National Security, LLC
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the disclaimer
below.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the disclaimer
(as noted below) in the documentation and/or other materials provided with the distribution.

3. Neither the name of the LLNS/LLNL nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, THE U.S. DEPARTMENT OF ENERGY OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

2.1 Notice

This work was produced under the auspices of the U.S. Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or Lawrence Livermore National Security, LLC.
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The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Gov-
ernment or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement
purposes.

6 Chapter 2. License
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THREE

INSTALLATION

zfp consists of four distinct parts: a compression library written in C, a set of C++ header files that implement com-
pressed arrays and corresponding C wrappers, optional Python and Fortran bindings, and a set of C and C++ examples
and utilities. The main compression codec is written in C and should conform to both the ISO C89 and C99 stan-
dards. The C++ array classes are implemented entirely in header files and can be included as is, but since they call the
compression library, applications must link with libzfp.

zfp is preferably built using CMake, although the core library can also be built using GNU make on Linux, macOS,
and MinGW.

zfp conforms to various language standards, including C89, C99, C++98, C++11, and C++14.

Note: zfp requires compiler support for 64-bit integers.

3.1 CMake Builds

To build zfp using CMake on Linux or macOS, start a Unix shell and type:

cd zfp-1.0.1
mkdir build
cd build
cmake ..
make

To also build the examples, replace the cmake line with:

cmake -DBUILD_EXAMPLES=ON ..

By default, CMake builds will attempt to locate and use OpenMP. To disable OpenMP, type:

cmake -DZFP_WITH_OPENMP=OFF ..

To build zfp using Visual Studio on Windows, start a DOS shell and type:

cd zfp-1.0.1
mkdir build
cd build
cmake ..
cmake --build . --config Release

7
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This builds zfp in release mode. Replace ‘Release’ with ‘Debug’ to build zfp in debug mode. See the instructions for
Linux on how to change the cmake line to also build the example programs.

3.2 GNU Builds

To build zfp using gcc without OpenMP, type:

cd zfp-1.0.1
gmake

This builds libzfp as a static library as well as the zfp command-line utility. To enable OpenMP parallel compression,
type:

gmake ZFP_WITH_OPENMP=1

Note: GNU builds expose only limited functionality of zfp. For instance, CUDA and Python support are not included.
For full functionality, build zfp using CMake.

3.3 Testing

To test that zfp is working properly, type:

ctest

or using GNU make:

gmake test

If the GNU build or regression tests fail, it is possible that some of the macros in the file Config have to be adjusted.
Also, the tests may fail due to minute differences in the computed floating-point fields being compressed, which will
be indicated by checksum errors. If most tests succeed and the failures result in byte sizes and error values reasonably
close to the expected values, then it is likely that the compressor is working correctly.

3.4 Build Targets

To specify which components to build, set the macros below to ON (CMake) or 1 (GNU make), e.g.,

cmake -DBUILD_UTILITIES=OFF -DBUILD_EXAMPLES=ON ..

or using GNU make

gmake BUILD_UTILITIES=0 BUILD_EXAMPLES=1

Regardless of the settings below, libzfp will always be built.

BUILD_ALL

Build all subdirectories; enable all options (except BUILD_SHARED_LIBS). Default: off.
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BUILD_CFP

Build libcfp for C bindings to the compressed-array classes. Default: off.

BUILD_ZFPY

Build zfPy for Python bindings to the C API.

CMake will attempt to automatically detect the Python installation to use. If CMake finds multiple Python
installations, it will use the newest one. To specify a specific Python installation to use, set PYTHON_LIBRARY
and PYTHON_INCLUDE_DIR on the cmake line:

cmake -DBUILD_ZFPY=ON -DPYTHON_LIBRARY=/path/to/lib/libpython2.7.so -DPYTHON_
→˓INCLUDE_DIR=/path/to/include/python2.7 ..

CMake default: off. GNU make default: off and ignored.

BUILD_ZFORP

Build libzFORp for Fortran bindings to the C API. Requires Fortran standard 2018 or later. GNU make users
may specify the Fortran compiler to use via

gmake BUILD_ZFORP=1 FC=/path/to/fortran-compiler

Default: off.

BUILD_UTILITIES

Build zfp command-line utility for compressing binary files. Default: on.

BUILD_EXAMPLES

Build code examples. Default: off.

BUILD_TESTING

Build testzfp tests. Default: on.

BUILD_TESTING_FULL

Build all unit tests. Default: off.

BUILD_SHARED_LIBS

Build shared objects (.so, .dylib, or .dll files). CMake default: on. GNU make default: off.

Note: On macOS, add OS=mac when building shared libraries with GNU make.

3.5 Configuration

The behavior of zfp can be configured at compile time via a set of macros in the same manner that build targets are
specified, e.g.,

cmake -DZFP_WITH_OPENMP=OFF ..

ZFP_INT64

ZFP_INT64_SUFFIX

ZFP_UINT64

3.5. Configuration 9
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ZFP_UINT64_SUFFIX

64-bit signed and unsigned integer types and their literal suffixes. Platforms on which long int is 32 bits
wide may require long long int as type and ll as suffix. These macros are relevant only when compiling
in C89 mode. When compiling in C99 mode, integer types are taken from stdint.h. Defaults: long int, l,
unsigned long int, and ul, respectively.

ZFP_WITH_OPENMP

CMake and GNU make macro for enabling or disabling OpenMP support. CMake builds will by default enable
OpenMP when available. Set this macro to 0 or OFF to disable OpenMP support. For GNU builds, OpenMP
is disabled by default. Set this macro to 1 or ON to enable OpenMP support. See also OMPFLAGS in Config
in case the compiler does not recognize -fopenmp. For example, Apple clang requires OMPFLAGS=-Xclang
-fopenmp, LDFLAGS=-lomp, and an installation of libomp. CMake default: on. GNU make default: off.

ZFP_WITH_CUDA

CMake macro for enabling or disabling CUDA support for GPU compression and decompression. When en-
abled, CUDA and a compatible host compiler must be installed. For a full list of compatible compilers, please
consult the NVIDIA documentation. If a CUDA installation is in the user’s path, it will be automatically found
by CMake. Alternatively, the CUDA binary directory can be specified using the CUDA_BIN_DIR environment
variable. CMake default: off. GNU make default: off and ignored.

ZFP_ROUNDING_MODE

Experimental feature. By default, zfp coefficients are truncated, not rounded, which can result in biased errors
(see FAQ #30). To counter this, two rounding modes are available: ZFP_ROUND_FIRST (round during compres-
sion; analogous to mid-tread quantization) and ZFP_ROUND_LAST (round during decompression; analogous to
mid-riser quantization). With ZFP_ROUND_LAST, the values returned on decompression are slightly modified
(and usually closer to the original values) without impacting the compressed data itself. This rounding mode
works with all compression modes. With ZFP_ROUND_FIRST, the values are modified before compression, thus
impacting the compressed stream. This rounding mode tends to be more effective at reducing bias, but is in-
voked only with fixed-precision and fixed-accuracy compression modes. Both of these rounding modes break
the regression tests since they alter the compressed or decompressed representation, but they may be used with
libraries built with the default rounding mode, ZFP_ROUND_NEVER, and versions of zfp that do not support a
rounding mode with no adverse effects. Note: ZFP_ROUNDING_MODE is currently supported only by the serial
and omp execution policies. Default: ZFP_ROUND_NEVER.

ZFP_WITH_TIGHT_ERROR

Experimental feature. When enabled, this feature takes advantage of the error reduction associated with proper
rounding; see ZFP_ROUNDING_MODE. The reduced error due to rounding allows the tolerance in fixed-accuracy
mode to be satisfied using fewer bits of compressed data. As a result, when enabled, the observed maximum
absolute error is closer to the tolerance and the compression ratio is increased. This feature requires the rounding
mode to be ZFP_ROUND_FIRST or ZFP_ROUND_LAST and is supported only by the serial and omp execution
policies. Default: undefined/off.

ZFP_WITH_DAZ

When enabled, blocks consisting solely of subnormal floating-point numbers (tiny numbers close to zero) are
treated as blocks of all zeros (DAZ = denormals-are-zero). The main purpose of this option is to avoid the
potential for floating-point overflow in the zfp implementation that may occur in step 2 of the lossy compression
algorithm when converting to zfp’s block-floating-point representation (see Issue #119). Such overflow tends
to be benign but loses all precision and usually results in “random” subnormals upon decompression. When
enabled, compressed streams may differ slightly but are decompressed correctly by libraries built without this
option. This option may break some regression tests. Note: ZFP_WITH_DAZ is currently ignored by all execution
policies other than serial and omp. Default: undefined/off.

ZFP_WITH_ALIGNED_ALLOC

Use aligned memory allocation in an attempt to align compressed blocks on hardware cache lines. Default:
undefined/off.
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ZFP_WITH_CACHE_TWOWAY

Use a two-way skew-associative rather than direct-mapped cache. This incurs some overhead that may be offset
by better cache utilization. Default: undefined/off.

ZFP_WITH_CACHE_FAST_HASH

Use a simpler hash function for cache line lookup. This is faster but may lead to more collisions. Default:
undefined/off.

ZFP_WITH_CACHE_PROFILE

Enable cache profiling to gather and print statistics on cache hit and miss rates. Default: undefined/off.

BIT_STREAM_WORD_TYPE

Unsigned integer type used for buffering bits. Wider types tend to give higher performance at the expense
of lower bit rate granularity. For portability of compressed files between little and big endian platforms,
BIT_STREAM_WORD_TYPE should be set to uint8. Default: uint64.

ZFP_BIT_STREAM_WORD_SIZE

CMake macro for indirectly setting BIT_STREAM_WORD_TYPE. Valid values are 8, 16, 32, 64. Default: 64.

BIT_STREAM_STRIDED

Enable support for strided bit streams that allow for non-contiguous memory layouts, e.g., to enable progressive
access. Default: undefined/off.

CFP_NAMESPACE

Macro for renaming the outermost cfp namespace, e.g., to avoid name clashes. Default: cfp.

PYTHON_LIBRARY

Path to the Python library, e.g., /usr/lib/libpython2.7.so. CMake default: undefined/off. GNU make
default: off and ignored.

PYTHON_INCLUDE_DIR

Path to the Python include directory, e.g., /usr/include/python2.7. CMake default: undefined/off. GNU
make default: off and ignored.

3.6 Dependencies

The core zfp library and compressed arrays require only a C89 and C++98 compiler. The optional components have
additional dependencies, as outlined in the sections below.

3.6.1 CMake

CMake builds require version 3.9 or later. CMake is available here.

3.6.2 OpenMP

OpenMP support requires OpenMP 2.0 or later.
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3.6.3 CUDA

CUDA support requires CUDA 7.0 or later, CMake, and a compatible host compiler (see ZFP_WITH_CUDA).

3.6.4 C/C++

The zfp C library and cfp C wrappers around the compressed-array classes conform to the C90 standard (ISO/IEC
9899:1990). The C++ classes conform to the C++98 standard (ISO/IEC 14882:1998).

3.6.5 Python

The optional Python bindings require CMake and the following minimum versions:

• Python: Python 2.7 & Python 3.5

• Cython: 0.22

• NumPy: 1.8.0

The necessary dependencies can be installed using pip and the zfp requirements.txt:

pip install -r $ZFP_ROOT/python/requirements.txt

3.6.6 Fortran

The optional Fortran bindings require a Fortran 2018 compiler.
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CHAPTER

FOUR

ALGORITHM

zfp uses two different algorithms to support lossy and lossless compression. These algorithms are described in detail
below.

4.1 Lossy Compression

The zfp lossy compression scheme is based on the idea of breaking a d-dimensional array into independent blocks of 4d

values each, e.g., 4× 4× 4 values in three dimensions. Each block is compressed/decompressed entirely independently
from all other blocks. In this sense, zfp is similar to current hardware texture compression schemes for image coding
implemented on graphics cards and mobile devices.

The lossy compression scheme implemented in this version of zfp has evolved from the method described in the original
paper, and can conceptually be thought of as consisting of eight sequential steps (in practice some steps are consolidated
or exist only for illustrative purposes):

1. The d-dimensional array is partitioned into blocks of dimensions 4d. If the array dimensions are not multiples
of four, then blocks near the boundary are padded to the next multiple of four. This padding is invisible to the
application.

2. The independent floating-point values in a block are converted to what is known as a block-floating-point repre-
sentation, which uses a single, common floating-point exponent for all 4d values. The effect of this conversion
is to turn each floating-point value into a 31- or 63-bit signed integer. If the values in the block are all zero or
are smaller in magnitude than the fixed-accuracy tolerance (see below), then only a single bit is stored with the
block to indicate that it is “empty” and expands to all zeros. Note that the block-floating-point conversion and
empty-block encoding are not performed if the input data is represented as integers rather than floating-point
numbers.

3. The integers are decorrelated using a custom, high-speed, near orthogonal transform similar to the discrete cosine
transform used in JPEG image coding. The transform exploits separability and is implemented efficiently in-
place using the lifting scheme, requiring only 2.5 d integer additions and 1.5 d bit shifts by one per integer in d
dimensions. If the data is “smooth,” then this transform will turn most integers into small signed values clustered
around zero.

4. The signed integer coefficients are reordered in a manner similar to JPEG zig-zag ordering so that statistically
they appear in a roughly monotonically decreasing order. Coefficients corresponding to low frequencies tend to
have larger magnitude and are listed first. In 3D, coefficients corresponding to frequencies i, j, k in the three
dimensions are ordered by i + j + k first and then by i2 + j2 + k2.

5. The two’s complement signed integers are converted to their negabinary (base negative two) representation using
one addition and one bit-wise exclusive or per integer. Because negabinary has no single dedicated sign bit,
these integers are subsequently treated as unsigned. Unlike sign-magnitude representations, the leftmost one-
bit in negabinary simultaneously encodes the sign and approximate magnitude of a number. Moreover, unlike
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two’s complement, numbers small in magnitude have many leading zeros in negabinary regardless of sign, which
facilitates encoding.

6. The bits that represent the list of 4d integers are transposed so that instead of being ordered by coefficient they
are ordered by bit plane, from most to least significant bit. Viewing each bit plane as an unsigned integer, with
the lowest bit corresponding to the lowest frequency coefficient, the anticipation is that the first several of these
transposed integers are small, because the coefficients are assumed to be ordered by magnitude.

7. The transform coefficients are compressed losslessly using embedded coding by exploiting the property that the
coefficients tend to have many leading zeros that need not be encoded explicitly. Each bit plane is encoded in
two parts, from lowest to highest bit. First, the n lowest bits are emitted verbatim, where n is the smallest number
such that the 4d − n highest bits in all previous bit planes are all zero. Initially, n = 0. Then, a variable-length
representation of the remaining 4d − n bits, x, is encoded. For such an integer x, a single bit is emitted to indicate
if x = 0, in which case we are done with the current bit plane. If not, then bits of x are emitted, starting from
the lowest bit, until a one-bit is emitted. This triggers another test whether this is the highest set bit of x, and
the result of this test is output as a single bit. If not, then the procedure repeats until all m of x’s value bits have
been output, where 2m-1 ≤ x < 2m. This can be thought of as a run-length encoding of the zeros of x, where the
run lengths are expressed in unary. The total number of value bits, n, in this bit plane is then incremented by m
before being passed to the next bit plane, which is encoded by first emitting its n lowest bits. The assumption
is that these bits correspond to n coefficients whose most significant bits have already been output, i.e., these n
bits are essentially random and not compressible. Following this, the remaining 4d − n bits of the bit plane are
run-length encoded as described above, which potentially results in n being increased.

As an example, x = 000001001101000 with m = 10 is encoded as 010011110110001, where the bits in boldface
indicate “group tests” that determine if the remainder of x (to the left) contains any one-bits. Again, this variable-
length code is generated and parsed from right to left.

8. The embedded coder emits one bit at a time, with each successive bit potentially improving the accuracy of the
approximation. The early bits are most important and have the greatest impact on accuracy, with the last few bits
providing very small changes. The resulting compressed bit stream can be truncated at any point and still allow
for a valid approximate reconstruction of the original block of values. The final step truncates the bit stream in
one of three ways: to a fixed number of bits (the fixed-rate mode); after some fixed number of bit planes have
been encoded (the fixed-precision mode); or until a lowest bit plane number has been encoded, as expressed in
relation to the common floating-point exponent within the block (the fixed-accuracy mode).

Various parameters are exposed for controlling the quality and compressed size of a block, and can be specified by the
user at a very fine granularity. These parameters are discussed here.

4.2 Lossless Compression

The reversible (lossless) compression algorithm shares most steps with the lossy algorithm. The main differences are
steps 2, 3, and 8, which are the only sources of error. Since step 2 may introduce loss in the conversion to zfp’s block-
floating-point representation, the reversible algorithm adds a test to see if this conversion is lossless. It does so by
converting the values back to the source format and testing the result for bitwise equality with the uncompressed data.
If this test passes, then a modified decorrelating transform is performed in step 3 that uses reversible integer subtraction
operations only. Finally, step 8 is modified so that no one-bits are truncated in the variable-length bit stream. However,
all least significant bit planes with all-zero bits are truncated, and the number of encoded bit planes is recorded in step
7. As with lossy compression, a floating-point block consisting of all (“positive”) zeros is represented as a single bit,
making it possible to efficiently encode sparse data.

If the block-floating-point transform is not lossless, then the reversible compression algorithm falls back on a simpler
scheme that reinterprets floating-point values as integers via type punning. This lossless conversion from floating-
point to integer data replaces step 2, and the algorithm proceeds from there with the modified step 3. Moreover, this
conversion ensures that special values like infinities, NaNs, and negative zero are preserved.

The lossless algorithm handles integer data also, for which step 2 is omitted.
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FIVE

COMPRESSION MODES

zfp accepts one or more parameters for specifying how the data is to be compressed to meet various constraints on
accuracy or size. At a high level, there are five different compression modes that are mutually exclusive: expert,
fixed-rate, fixed-precision, fixed-accuracy, and reversible mode. The user has to select one of these modes and its
corresponding parameters. In streaming I/O applications, the fixed-accuracy mode is preferred, as it provides the
highest quality (in the absolute error sense) per bit of compressed storage.

The zfp_stream struct encapsulates the compression parameters and other information about the compressed
stream. Its members should not be manipulated directly. Instead, use the access functions (see the C API sec-
tion) for setting and querying them. One can verify the active compression mode on a zfp_stream through
zfp_stream_compression_mode(). The members that govern the compression parameters are described below.

5.1 Expert Mode

The most general mode is the ‘expert mode,’ which takes four integer parameters. Although most users will not directly
select this mode, we discuss it first since the other modes can be expressed in terms of setting expert mode parameters.

The four parameters denote constraints that are applied to each block in the compression algorithm. Compression is
terminated as soon as one of these constraints is not met, which has the effect of truncating the compressed bit stream
that encodes the block. The four constraints are as follows:

uint zfp_stream.minbits
The minimum number of compressed bits used to represent a block. Usually this parameter equals one bit, unless
each and every block is to be stored using a fixed number of bits to facilitate random access, in which case it
should be set to the same value as zfp_stream.maxbits.

uint zfp_stream.maxbits
The maximum number of bits used to represent a block. This parameter sets a hard upper bound on compressed
block size and governs the rate in fixed-rate mode. It may also be used as an upper storage limit to guard against
buffer overruns in combination with the accuracy constraints given by zfp_stream.maxprec and zfp_stream.
minexp.

uint zfp_stream.maxprec
The maximum number of bit planes encoded. This parameter governs the number of most significant uncom-
pressed bits encoded per transform coefficient. It does not directly correspond to the number of uncompressed
mantissa bits for the floating-point or integer values being compressed, but is closely related. This is the pa-
rameter that specifies the precision in fixed-precision mode, and it provides a mechanism for controlling the
relative error. Note that this parameter selects how many bits planes to encode regardless of the magnitude of
the common floating-point exponent within the block.
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int zfp_stream.minexp
The smallest absolute bit plane number encoded (applies to floating-point data only; this parameter is ignored
for integer data). The place value of each transform coefficient bit depends on the common floating-point ex-
ponent, e, that scales the integer coefficients. If the most significant coefficient bit has place value 2e, then the
number of bit planes encoded is (one plus) the difference between e and zfp_stream.minexp. As an analogy,
consider representing currency in decimal. Setting zfp_stream.minexp to -2 would, if generalized to base
10, ensure that amounts are represented to cent accuracy, i.e., in units of 10-2 = $0.01. This parameter governs
the absolute error in fixed-accuracy mode. Note that to achieve a certain accuracy in the decompressed values,
the zfp_stream.minexp value has to be conservatively lowered since zfp’s inverse transform may magnify the
error (see also FAQs #20-22).

Care must be taken to allow all constraints to be met, as encoding terminates as soon as a single constraint is violated
(except zfp_stream.minbits, which is satisfied at the end of encoding by padding zeros).

Warning: For floating-point data, the zfp_stream.maxbits parameter must be large enough to allow the com-
mon block exponent and any control bits to be encoded. This implies maxbits ≥ 9 for single-precision data and
maxbits ≥ 12 for double-precision data. Choosing a smaller value is of no use as it would prevent any fraction
(value) bits from being encoded, resulting in an all-zero decompressed block. More importantly, such a constraint
will not be respected by zfp for performance reasons, which if not accounted for could potentially lead to buffer
overruns.

As mentioned above, other combinations of constraints can be used. For example, to ensure that the compressed stream
is not larger than the uncompressed one, or that it fits within the amount of memory allocated, one may in conjunction
with other constraints set

maxbits = 4^d * CHAR_BIT * sizeof(Type)

where Type is either float or double. The minbits parameter is useful only in fixed-rate mode; when minbits =
maxbits, zero-bits are padded to blocks that compress to fewer than maxbits bits.

The effects of the above four parameters are best explained in terms of the three main compression modes supported
by zfp, described below.

5.2 Fixed-Rate Mode

In fixed-rate mode, each d-dimensional compressed block of 4d values is stored using a fixed number of bits given by
the parameter zfp_stream.maxbits. This number of compressed bits per block is amortized over the 4d values to
give a rate in bits per value:

rate = maxbits / 4^d

This rate is specified in the zfp executable via the -r option, and programmatically via zfp_stream_set_rate(), as
a floating-point value. Fixed-rate mode can also be achieved via the expert mode interface by setting

minbits = maxbits = (1 << (2 * d)) * rate
maxprec = ZFP_MAX_PREC
minexp = ZFP_MIN_EXP

Note that each block stores a bit to indicate whether the block is empty, plus a common exponent. Hence zfp_stream.
maxbits must be at least 9 for single precision and 12 for double precision.

Fixed-rate mode is needed to support random access to blocks, and also is the mode used in the implementation of
zfp’s compressed arrays. Fixed-rate mode also ensures a predictable memory/storage footprint, but usually results in
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far worse accuracy per bit than the variable-rate fixed-precision and fixed-accuracy modes.

Note: Use fixed-rate mode only if you have to bound the compressed size or need read and write random access to
blocks.

5.3 Fixed-Precision Mode

In fixed-precision mode, the number of bits used to encode a block may vary, but the number of bit planes (i.e., the
precision) encoded for the transform coefficients is fixed. To achieve the desired precision, use option -p with the zfp
executable or call zfp_stream_set_precision(). In expert mode, fixed precision is achieved by specifying the
precision in zfp_stream.maxprec and fully relaxing the size constraints, i.e.,

minbits = ZFP_MIN_BITS
maxbits = ZFP_MAX_BITS
maxprec = precision
minexp = ZFP_MIN_EXP

Fixed-precision mode is preferable when relative rather than absolute errors matter.

5.4 Fixed-Accuracy Mode

In fixed-accuracy mode, all transform coefficient bit planes up to a minimum bit plane number are encoded. (The
actual minimum bit plane is not necessarily zfp_stream.minexp, but depends on the dimensionality, d, of the data.
The reason for this is that the inverse transform incurs range expansion, and the amount of expansion depends on the
number of dimensions.) Thus, zfp_stream.minexp should be interpreted as the base-2 logarithm of an absolute error
tolerance. In other words, given an uncompressed value, f, and a reconstructed value, g, the absolute difference | f −
g | is at most 2minexp. (Note that it is not possible to guarantee error tolerances smaller than machine epsilon relative
to the largest value within a block.) This error tolerance is not always tight (especially for 3D and 4D arrays), but can
conservatively be set so that even for worst-case inputs the error tolerance is respected. To achieve fixed accuracy to
within ‘tolerance’, use option -a with the zfp executable or call zfp_stream_set_accuracy(). The corresponding
expert mode parameters are:

minbits = ZFP_MIN_BITS
maxbits = ZFP_MAX_BITS
maxprec = ZFP_MAX_PREC
minexp = floor(log2(tolerance))

As in fixed-precision mode, the number of bits used per block is not fixed but is dictated by the data. Use tolerance
= 0 to achieve near-lossless compression (see Reversible Mode for guaranteed lossless compression). Fixed-accuracy
mode gives the highest quality (in terms of absolute error) for a given compression rate, and is preferable when random
access is not needed.

Note: Fixed-accuracy mode is available for floating-point (not integer) data only.
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5.5 Reversible Mode

As of zfp 0.5.5, reversible (lossless) compression is supported. As with the other compression modes, each block is
compressed and decompressed independently, but reversible mode uses a different compression algorithm that ensures
a bit-for-bit identical reconstruction of integer and floating-point data. For IEEE-754 floating-point data, reversible
mode preserves special values such as subnormals, infinities, NaNs, and positive and negative zero.

The expert mode parameters corresponding to reversible mode are:

minbits = ZFP_MIN_BITS
maxbits = ZFP_MAX_BITS
maxprec = ZFP_MAX_PREC
minexp < ZFP_MIN_EXP

Reversible mode is enabled via zfp_stream_set_reversible() and through the -R command-line option in the zfp
executable. It is supported by both the low- and high-level interfaces and by the serial and OpenMP execution policies,
but it is not yet implemented in CUDA.
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SIX

PARALLEL EXECUTION

As of zfp 0.5.3, parallel compression (but not decompression) is supported on multicore processors via OpenMP
threads. zfp 0.5.4 adds CUDA support for fixed-rate compression and decompression on the GPU.

Since zfp partitions arrays into small independent blocks, a large amount of data parallelism is inherent in the com-
pression scheme that can be exploited. In principle, concurrency is limited only by the number of blocks that make up
an array, though in practice each thread is responsible for compressing a chunk of several contiguous blocks.

Note: zfp parallel compression is confined to shared memory on a single compute node or GPU. No effort is made
to coordinate compression across distributed memory on networked compute nodes, although zfp’s fine-grained parti-
tioning of arrays should facilitate distributed parallel compression.

This section describes the zfp parallel compression algorithm and explains how to configure libzfp and enable parallel
compression at run time via its high-level C API .

Note: Parallel compression is not supported via the low-level API , which ignores all execution policy settings and
always executes in serial.

6.1 Execution Policies

zfp supports multiple execution policies, which dictate how (e.g., sequentially, in parallel) and where (e.g., on the CPU
or GPU) arrays are compressed. Currently three execution policies are available: serial, omp, and cuda. The default
mode is serial, which ensures sequential compression on a single thread. The omp and cuda execution policies allow
for data-parallel compression on multiple threads.

The execution policy is set by zfp_stream_set_execution() and pertains to a particular zfp_stream . Hence, each
stream (and array) may use a policy suitable for that stream. For instance, very small arrays are likely best compressed
in serial, while parallel compression is best reserved for very large arrays that can take the most advantage of concurrent
execution.

As outlined in FAQ #23, the final compressed stream is independent of execution policy.
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6.2 Execution Parameters

Each execution policy allows tailoring the execution via its associated execution parameters. Examples include number
of threads, chunk size, scheduling, etc. The serial and cuda policies have no parameters. The subsections below
discuss the omp parameters.

Whenever the execution policy is changed via zfp_stream_set_execution(), its parameters (if any) are initialized
to their defaults, overwriting any prior setting.

6.2.1 OpenMP Thread Count

By default, the number of threads to use is given by the current setting of the OpenMP internal control variable nthreads-
var. Unless the calling thread has explicitly requested a thread count via the OpenMP API, this control variable usually
defaults to the number of threads supported by the hardware (e.g., the number of available cores).

To set the number of requested threads to be used by zfp, which may differ from the thread count of encapsulating or
surrounding OpenMP parallel regions, call zfp_stream_set_omp_threads().

The user is advised to call the zfp API functions to modify OpenMP behavior rather than make direct OpenMP calls.
For instance, use zfp_stream_set_omp_threads() rather than omp_set_num_threads(). To indicate that the
current OpenMP settings should be used, for instance as determined by the global OpenMP environment variable
OMP_NUM_THREADS, pass a thread count of zero (the default setting) to zfp_stream_set_omp_threads().

Note that zfp does not modify nthreads-var or other control variables but uses a num_threads clause on the OpenMP
#pragma line. Hence, no OpenMP state is changed and any subsequent OpenMP code is not impacted by zfp’s parallel
compression.

6.2.2 OpenMP Chunk Size

The d-dimensional array is partitioned into chunks, with each chunk representing a contiguous sequence of blocks of 4d

array elements each. Chunks represent the unit of parallel work assigned to a thread. By default, the array is partitioned
so that each thread processes one chunk. However, the user may override this behavior by setting the chunk size (in
number of zfp blocks) via zfp_stream_set_omp_chunk_size(). See FAQ #25 for a discussion of chunk sizes and
parallel performance.

6.2.3 OpenMP Scheduling

zfp does not specify how to schedule chunk processing. The schedule used is given by the OpenMP def-sched-var
internal control variable. If load balance is poor, it may be improved by using smaller chunks, which may or may not
impact performance depending on the OpenMP schedule in use. Future versions of zfp may allow specifying how
threads are mapped to chunks, whether to use static or dynamic scheduling, etc.
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6.3 Fixed- vs. Variable-Rate Compression

Following partitioning into chunks, zfp assigns each chunk to a thread. If there are more chunks than threads supported,
chunks are processed in unspecified order.

In variable-rate mode, there is no way to predict the exact number of bits that each chunk compresses to. Therefore, zfp
allocates a temporary memory buffer for each chunk. Once all chunks have been compressed, they are concatenated
into a single bit stream in serial, after which the temporary buffers are deallocated.

In fixed-rate mode, the final location of each chunk’s bit stream is known ahead of time, and zfp may not have to allocate
temporary buffers. However, if the chunks are not aligned on word boundaries, then race conditions may occur. In
other words, for chunk size C, rate R, and word size W, the rate and chunk size must be such that C × 4d × R is a
multiple of W to avoid temporary buffers. Since W is a small power of two no larger than 64, this is usually an easy
requirement to satisfy.

When chunks are whole multiples of the word size, no temporary buffers are allocated and the threads write compressed
data directly to the target buffer. The CUDA implementation uses atomics to avoid race conditions, and therefore does
not need temporary buffers, regardless of chunk alignment.

6.4 Using OpenMP

In order to use OpenMP compression, zfp must be built with OpenMP support. If built with CMake, OpenMP support
is automatically enabled when available. To manually disable OpenMP support, see the ZFP_WITH_OPENMP macro.

To avoid compilation errors on systems with spotty OpenMP support (e.g., macOS), OpenMP is by default disabled in
GNU builds. To enable OpenMP, see GNU Builds and the ZFP_WITH_OPENMP macro.

6.5 Using CUDA

CUDA support is by default disabled. Enabling it requires an installation of CUDA and a compatible host compiler.
Furthermore, the ZFP_WITH_CUDA macro must be set and zfp must be built with CMake. See ZFP_WITH_CUDA for
further details.

6.5.1 Device Memory Management

The CUDA version of zfp supports both host and device memory. If device memory is allocated for fields or compressed
streams, this is automatically detected and handled in a consistent manner. For example, with compression, if host
memory pointers are provided for both the field and compressed stream, then device memory will transparently be
allocated and the uncompressed data will be copied to the GPU. Once compression completes, the compressed stream
is copied back to the host and device memory is deallocated. If both pointers are device pointers, then no copies are
made. Additionally, any combination of mixing host and device pointers is supported.
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6.5.2 CUDA Limitations

The CUDA implementation has a number of limitations:

• Only the fixed-rate mode mode is supported. Other modes will be supported in a future release.

• 4D arrays are not supported.

• Headers are not supported. Any header already present in the stream will be silently overwritten on compression.

• zfp must be built with a ZFP_BIT_STREAM_WORD_SIZE of 64 bits.

• Although strides are supported, fields must be contiguous when stored in host memory, i.e., with
no unused memory addresses between the minimum and maximum address spanned by the field (see
zfp_field_is_contiguous()). This requirement avoids having to copy and allocate more temporary mem-
ory than needed to hold the array if it were not strided. Note that the strides can still be arbitrary as long as they
serve only to permute the array elements. Moreover, this restriction applies only to the CUDA execution policy
and the case where the uncompressed field resides on the host.

We expect to address these limitations over time.

6.6 Setting the Execution Policy

Enabling parallel compression at run time is often as simple as calling zfp_stream_set_execution()

if (zfp_stream_set_execution(stream, zfp_exec_omp)) {
// use OpenMP parallel compression
...
zfpsize = zfp_compress(stream, field);

}

before calling zfp_compress(). Replacing zfp_exec_omp with zfp_exec_cuda enables CUDA execution. If
OpenMP or CUDA is disabled or not supported, then the return value of functions setting these execution policies
and parameters will indicate failure. Execution parameters are optional and may be set using the functions discussed
above.

The source code for the zfp command-line tool includes further examples on how to set the execution policy. To use
parallel compression and decompression in this tool, see the -x command-line option.

Note: As of zfp 0.5.4, the execution policy refers to both compression and decompression. The OpenMP implemen-
tation does not yet support decompression, and hence zfp_decompress() will fail if the execution policy is not reset
to zfp_exec_serial before calling the decompressor. Similarly, the CUDA implementation supports only fixed-rate
mode and will fail if other compression modes are specified.

The following table summarizes which execution policies are supported with which compression modes:
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(de)compression mode serial OpenMP CUDA
compression fixed rate ✓ ✓ ✓

fixed precision ✓ ✓
fixed accuracy ✓ ✓
reversible ✓ ✓

decompression fixed rate ✓ ✓
fixed precision ✓
fixed accuracy ✓
reversible ✓

zfp_compress() and zfp_decompress() both return zero if the current execution policy is not supported for the
requested compression mode.

6.7 Parallel Compression

Once the execution policy and parameters have been selected, compression is executed by calling zfp_compress()
from a single thread. This function in turn inspects the execution policy given by the zfp_stream argument and
dispatches the appropriate function for executing compression.

6.8 Parallel Decompression

Parallel decompression is in principle possible using the same strategy as used for compression. However, in zfp’s
variable-rate modes, the compressed blocks do not occupy fixed storage, and therefore the decompressor needs to be
instructed where each compressed block resides in the bit stream to enable parallel decompression. Because the zfp
bit stream does not currently store such information, variable-rate parallel decompression is not yet supported, though
plans are to make such functionality available in the near future.

The CUDA implementation supports fixed-rate decompression. OpenMP fixed-rate decompression has been imple-
mented and will be released in the near future.

Future versions of zfp will allow efficient encoding of block sizes and/or offsets to allow each thread to quickly locate
the blocks it is responsible for decompressing, which will allow for variable-rate compression and decompression. Such
capabilities are already present in the implementation of the zfp read-only arrays.
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SEVEN

HIGH-LEVEL C API

The libzfp C API provides functionality for sequentially compressing and decompressing whole integer and floating-
point arrays or single blocks. It is broken down into a high-level API and a low-level API . The high-level API handles
compression of entire arrays and supports a variety of back-ends (e.g., serial, OpenMP). The low-level API exists for
processing individual, possibly partial blocks as well as reduced-precision integer data less than 32 bits wide. Both C
APIs are declared in zfp.h.

The following sections are available:

• Macros

• Types

• Constants

• Functions

– Compressed Stream

– Compression Parameters

– Execution Policy

– Compression Configuration

– Array Metadata

– Compression and Decompression

7.1 Macros

ZFP_VERSION_MAJOR

ZFP_VERSION_MINOR

ZFP_VERSION_PATCH

ZFP_VERSION_TWEAK

Macros identifying the zfp library version (major.minor.patch.tweak). ZFP_VERSION_TWEAK is new as of zfp
1.0.0 and is used to mark intermediate develop versions (unofficial releases).
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ZFP_VERSION_DEVELOP

Macro signifying that the current version is an intermediate version that differs from the last official release. This
macro is undefined for official releases; when defined, its value equals 1. Note that this macro may be defined
even if the four version identifiers have not changed. Available as of zfp 1.0.0.

ZFP_VERSION

A single integer constructed from the four version identifiers. This integer can be gener-
ated by ZFP_MAKE_VERSION or ZFP_MAKE_FULLVERSION. Its value equals the global constant
zfp_library_version.

Note: Although ZFP_VERSION increases monotonically with release date and with the four version identifiers it
depends on, the mapping to ZFP_VERSION changed with the introduction of ZFP_VERSION_TWEAK in zfp 1.0.0.

Going forward, we recommend using ZFP_MAKE_VERSION or ZFP_MAKE_FULLVERSION in conditional code that de-
pends on ZFP_VERSION, e.g., #if ZFP_VERSION >= ZFP_MAKE_VERSION(1, 0, 0). Note that such constructions
should not be used with older versions of zfp, e.g., if (zfp_library_version == ZFP_MAKE_VERSION(0, 5,
5)) will not give the expected result with binary versions of libzfp before version 1.0.0.

ZFP_VERSION_STRING

ZFP_VERSION_STRING is a string literal composed of the four version identifiers. It is a component of
zfp_version_string.

ZFP_MAKE_VERSION(major, minor, patch)

ZFP_MAKE_VERSION_STRING(major, minor, patch)
Utility macros for constructing ZFP_VERSION and ZFP_VERSION_STRING , respectively. Available as of zfp
1.0.0, these macros may be used by applications to test for a certain zfp version number, e.g., #if ZFP_VERSION
>= ZFP_MAKE_VERSION(1, 0, 0).

ZFP_MAKE_FULLVERSION(major, minor, patch, tweak)

ZFP_MAKE_FULLVERSION_STRING(major, minor, patch, tweak)
Utility macros for constructing ZFP_VERSION and ZFP_VERSION_STRING , respectively. Includes tweak version
used by intermediate develop versions. Available as of zfp 1.0.0, these macros may be used by applications to
test for a certain zfp version number, e.g., #if ZFP_VERSION >= ZFP_MAKE_FULLVERSION(1, 0, 0, 2).

ZFP_CODEC

Macro identifying the version of the compression CODEC. See also zfp_codec_version.

ZFP_MIN_BITS

ZFP_MAX_BITS

ZFP_MAX_PREC
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ZFP_MIN_EXP

Default compression parameter settings that impose no constraints. The largest possible compressed block size,
corresponding to 4D blocks of doubles, is given by ZFP_MAX_BITS. See also zfp_stream .

ZFP_META_NULL

Null representation of the 52-bit encoding of field metadata. This value is returned by zfp_field_metadata()
when the field metadata cannot be encoded in 64 bits, such as when the array dimensions are too large (see
Limitations). In addition to signaling error, this value is guaranteed not to represent valid metadata.

The ZFP_HEADER bit mask specifies which portions of a header to output (if any). The constants below should be bitwise
ORed together. Use ZFP_HEADER_FULL to output all header information available. The compressor and decompressor
must agree on which parts of the header to read/write. See zfp_read_header() and zfp_write_header() for how
to read and write header information.

ZFP_HEADER_MAGIC

Magic constant that identifies the data as a zfp stream compressed using a particular CODEC version.

ZFP_HEADER_META

Array size and scalar type information stored in the zfp_field struct.

ZFP_HEADER_MODE

Compression mode and parameters stored in the zfp_stream struct.

ZFP_HEADER_FULL

Full header information (bitwise OR of all ZFP_HEADER constants).

ZFP_MAGIC_BITS

ZFP_META_BITS

ZFP_MODE_SHORT_BITS

ZFP_MODE_LONG_BITS

ZFP_HEADER_MAX_BITS

ZFP_MODE_SHORT_MAX

Number of bits used by each portion of the header. These macros are primarily informational and should not
be accessed by the user through the high-level API. For most common compression parameter settings, only
ZFP_MODE_SHORT_BITS bits of header information are stored to encode the mode (see zfp_stream_mode()).

The ZFP_DATA bit mask specifies which portions of array data structures to compute total storage size for. These
constants should be bitwise ORed together. Use ZFP_DATA_ALL to count all storage used.

ZFP_DATA_UNUSED

Allocated but unused data.

ZFP_DATA_PADDING

Padding for alignment purposes.
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ZFP_DATA_META

Class members and other fixed-size storage.

ZFP_DATA_MISC

Miscellaneous uncategorized storage.

ZFP_DATA_PAYLOAD

Compressed data encoding array elements.

ZFP_DATA_INDEX

Block index information.

ZFP_DATA_CACHE

Uncompressed cached data.

ZFP_DATA_HEADER

Header information.

ZFP_DATA_ALL

All storage (bitwise OR of all ZFP_DATA constants).

ZFP_ROUND_FIRST

ZFP_ROUND_NEVER

ZFP_ROUND_LAST

Available rounding modes for ZFP_ROUNDING_MODE, which specifies at build time how zfp performs rounding
in lossy compression mode.

7.2 Types

type zfp_stream
The zfp_stream struct encapsulates all information about the compressed stream for a single block or a collec-
tion of blocks that represent an array. See the section on compression modes for a description of the members of
this struct.

typedef struct {
uint minbits; // minimum number of bits to store per block
uint maxbits; // maximum number of bits to store per block
uint maxprec; // maximum number of bit planes to store
int minexp; // minimum floating point bit plane number to store
bitstream* stream; // compressed bit stream
zfp_execution exec; // execution policy and parameters

} zfp_stream;

type zfp_execution
The zfp_stream also stores information about how to execute compression, e.g., sequentially or in parallel.
The execution is determined by the policy and any policy-specific parameters such as number of threads.
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typedef struct {
zfp_exec_policy policy; // execution policy (serial, omp, cuda, ...)
void* params; // execution parameters

} zfp_execution;

Warning: As of zfp 1.0.0 zfp_execution replaces the former zfp_exec_paramswith a void* to the associated
zfp_exec_params type (e.g., zfp_exec_params_omp) to limit ABI-breaking changes due to future extensions to
zfp execution policies.

type zfp_exec_policy
Currently three execution policies are available: serial, OpenMP parallel, and CUDA parallel.

typedef enum {
zfp_exec_serial = 0, // serial execution (default)
zfp_exec_omp = 1, // OpenMP multi-threaded execution
zfp_exec_cuda = 2 // CUDA parallel execution

} zfp_exec_policy;

type zfp_exec_params_omp
Execution parameters for OpenMP parallel compression. These are initialized to default values. When nonzero,
they indicate the number of threads to request for parallel compression and the number of consecutive blocks to
assign to each thread.

typedef struct {
uint threads; // number of requested threads
uint chunk_size; // number of blocks per chunk

} zfp_exec_params_omp;

type zfp_mode
Enumerates the compression modes.

typedef enum {
zfp_mode_null = 0, // an invalid configuration of the 4 params
zfp_mode_expert = 1, // expert mode (4 params set manually)
zfp_mode_fixed_rate = 2, // fixed rate mode
zfp_mode_fixed_precision = 3, // fixed precision mode
zfp_mode_fixed_accuracy = 4, // fixed accuracy mode
zfp_mode_reversible = 5 // reversible (lossless) mode

} zfp_mode;

type zfp_config
Encapsulates compression mode and parameters (if any).
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typedef struct {
zfp_mode mode; // compression mode */
union {
double rate; // compressed bits/value (negative for word alignment)
uint precision; // uncompressed bits/value
double tolerance; // absolute error tolerance
struct {
uint minbits; // min number of compressed bits/block
uint maxbits; // max number of compressed bits/block
uint maxprec; // max number of uncompressed bits/value
int minexp; // min floating point bit plane number to store

} expert; // expert mode arguments
} arg; // arguments corresponding to compression mode

} zfp_config;

type zfp_type
Enumerates the scalar types supported by the compressor and describes the uncompressed array. The compressor
and decompressor must use the same zfp_type, e.g., one cannot compress doubles and decompress to floats or
integers.

typedef enum {
zfp_type_none = 0, // unspecified type
zfp_type_int32 = 1, // 32-bit signed integer
zfp_type_int64 = 2, // 64-bit signed integer
zfp_type_float = 3, // single precision floating point
zfp_type_double = 4 // double precision floating point

} zfp_type;

type zfp_field
The uncompressed array is described by the zfp_field struct, which encodes the array’s scalar type, dimen-
sions, and memory layout.

typedef struct {
zfp_type type; // scalar type (e.g., int32, double)
size_t nx, ny, nz, nw; // sizes (zero for unused dimensions)
ptrdiff_t sx, sy, sz, sw; // strides (zero for contiguous array a[nw][nz][ny][nx])
void* data; // pointer to array data

} zfp_field;

For example, a static multidimensional C array declared as

double array[n1][n2][n3][n4];

would be described by a zfp_field with members

type = zfp_type_double;
nx = n4; ny = n3; nz = n2; nw = n1;
sx = 1; sy = n4; sz = n3 * n4; sw = n2 * n3 * n4;
data = &array[0][0][0][0];
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The strides, when nonzero, specify how the array is laid out in memory. Strides can be used in case multiple fields
are stored interleaved via “array of struct” (AoS) rather than “struct of array” (SoA) storage, or if the dimensions
should be transposed during (de)compression. Strides may even be negative, allowing one or more dimensions
to be traversed in reverse order. Given 4D array indices (x, y, z, w), the corresponding array element is stored at

data[x * sx + y * sy + z * sz + w * sw]

where data is a pointer to the first array element.

Warning: The zfp_field struct was modified in zfp 1.0.0 to use size_t and ptrdiff_t for array dimensions
and strides, respectively, to support 64-bit addressing of very large arrays (previously, uint and int were used).
This ABI incompatible change may require rebuilding applications that use zfp and may in some cases also require
code changes to handle pointers to size_t instead of pointers to uint (see zfp_field_size(), for instance).

Warning: It is paramount that the field dimensions, nx, ny, nz, and nw, and strides, sx, sy, sz, and sw, be correctly
mapped to how the uncompressed array is laid out in memory. Although compression will still succeed if array
dimensions are accidentally transposed, compression ratio and/or accuracy may suffer greatly. Since the leftmost
index, x, is assumed to vary fastest, zfp can be thought of as assuming Fortran ordering. For C ordered arrays, the
user should transpose the dimensions or specify strides to properly describe the memory layout. See this FAQ for
further details.

type zfp_bool
zfp_bool is new as of zfp 1.0.0. Although merely an alias for int, this type serves to document that a return
value or function parameter should be treated as Boolean. Two enumerated constants are available:

enum {
zfp_false = 0,
zfp_true = !zfp_false

};

The reason why zfp_bool is not an enumerated type itself is that in C++ this would require
an explicit cast between the bool type resulting from logical expressions, e.g., zfp_bool done =
static_cast<zfp_bool>(queue.empty() && work == 0). Such casts from bool to a non-enumerated
int are not necessary.

The zfp 1.0.0 API has changed to use zfp_bool in place of int where appropriate; this change should not affect
existing code.

7.3 Constants

const uint zfp_codec_version
The version of the compression CODEC implemented by this version of the zfp library. The library can de-
compress files generated by the same CODEC only. To ensure that the zfp.h header matches the binary library
linked to, zfp_codec_version should match ZFP_CODEC.

const uint zfp_library_version
The library version. The binary library and headers are compatible if zfp_library_version matches
ZFP_VERSION.
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const char *const zfp_version_string
A constant string representing the zfp library version and release date. One can search for this string in executables
and libraries that link to libzfp when built as a static library.

7.4 Functions

size_t zfp_type_size(zfp_type type)
Return byte size of the given scalar type, e.g., zfp_type_size(zfp_type_float) = 4.

7.4.1 Compressed Stream

zfp_stream *zfp_stream_open(bitstream *stream)

Allocate compressed stream and associate it with bit stream for reading and writing bits to/from memory. stream
may be NULL and attached later via zfp_stream_set_bit_stream().

void zfp_stream_close(zfp_stream *stream)

Close and deallocate compressed stream. This does not affect the attached bit stream.

void zfp_stream_rewind(zfp_stream *stream)

Rewind bit stream to beginning for compression or decompression.

bitstream *zfp_stream_bit_stream(const zfp_stream *stream)

Return bit stream associated with compressed stream (see zfp_stream_set_bit_stream()).

void zfp_stream_set_bit_stream(zfp_stream *stream, bitstream *bs)
Associate bit stream with compressed stream.

size_t zfp_stream_compressed_size(const zfp_stream *stream)

Number of bytes of compressed storage. This function returns the current byte offset within the bit stream from
the beginning of the bit stream memory buffer. To ensure all buffered compressed data has been output call
zfp_stream_flush() first.

size_t zfp_stream_maximum_size(const zfp_stream *stream, const zfp_field *field)
Conservative estimate of the compressed byte size for the compression parameters stored in stream and the array
whose scalar type and dimensions are given by field. This function may be used to determine how large a memory
buffer to allocate to safely hold the entire compressed array. The buffer may then be resized (using realloc())
after the actual number of bytes is known, as returned by zfp_compress().
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7.4.2 Compression Parameters

zfp_mode zfp_stream_compression_mode(const zfp_stream *stream)

Return compression mode associated with compression parameters. Return zfp_mode_nullwhen compression
parameters are invalid.

void zfp_stream_set_reversible(zfp_stream *stream)

Enable reversible (lossless) compression.

double zfp_stream_rate(const zfp_stream *stream, uint dims)
Return rate in compressed bits per value if stream is in fixed-rate mode (see zfp_stream_set_rate()), else
zero. dims is the dimensionality of the compressed data.

double zfp_stream_set_rate(zfp_stream *stream, double rate, zfp_type type, uint dims, zfp_bool align)
Set rate for fixed-rate mode in compressed bits per value. The target scalar type and array dimensionality are
needed to correctly translate the rate to the number of bits per block. The Boolean align should be zfp_true
if word alignment is needed, e.g., to support random access writes of blocks for zfp’s compressed arrays. Such
alignment may further constrain the rate. The closest supported rate is returned, which may differ from the
requested rate.

uint zfp_stream_precision(const zfp_stream *stream)

Return precision in uncompressed bits per value if stream is in fixed-precision mode (see
zfp_stream_set_precision()), else zero.

uint zfp_stream_set_precision(zfp_stream *stream, uint precision)
Set precision for fixed-precision mode. The precision specifies how many uncompressed bits per value to store,
and indirectly governs the relative error. The actual precision is returned, e.g., in case the desired precision is out
of range. To preserve a certain floating-point mantissa or integer precision in the decompressed data, see FAQ
#21.

double zfp_stream_accuracy(const zfp_stream *stream)

Return accuracy as an absolute error tolerance if stream is in fixed-accuracy mode (see
zfp_stream_set_accuracy()), else zero.

double zfp_stream_set_accuracy(zfp_stream *stream, double tolerance)
Set absolute error tolerance for fixed-accuracy mode. The tolerance ensures that values in the decompressed
array differ from the input array by no more than this tolerance (in all but exceptional circumstances; see FAQ
#17). This compression mode should be used only with floating-point (not integer) data.
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uint64 zfp_stream_mode(const zfp_stream *stream)

Return compact encoding of compression parameters. If the return value is no larger than
ZFP_MODE_SHORT_MAX , then the least significant ZFP_MODE_SHORT_BITS (12 in the current version)
suffice to encode the parameters. Otherwise all 64 bits are needed, and the low ZFP_MODE_SHORT_BITS bits
will be all ones. Thus, this variable-length encoding can be used to economically encode and decode the
compression parameters, which is especially important if the parameters are to vary spatially over small regions.
Such spatially adaptive coding would have to be implemented via the low-level API .

zfp_mode zfp_stream_set_mode(zfp_stream *stream, uint64 mode)
Set all compression parameters from compact integer representation. See zfp_stream_mode() for how to
encode the parameters. Return the mode associated with the newly-set compression parameters. If the decoded
compression parameters are invalid, they are not set and the function returns zfp_mode_null.

void zfp_stream_params(const zfp_stream *stream, uint *minbits, uint *maxbits, uint *maxprec, int *minexp)
Query compression parameters. For any parameter not needed, pass NULL for the corresponding pointer.

zfp_bool zfp_stream_set_params(zfp_stream *stream, uint minbits, uint maxbits, uint maxprec, int minexp)
Set all compression parameters directly. See the section on expert mode for a discussion of the parameters. The
return value is zfp_true upon success.

7.4.3 Execution Policy

zfp_exec_policy zfp_stream_execution(const zfp_stream *stream)

Return current execution policy.

uint zfp_stream_omp_threads(const zfp_stream *stream)

Return number of OpenMP threads to request for compression. See zfp_stream_set_omp_threads().

uint zfp_stream_omp_chunk_size(const zfp_stream *stream)

Return number of blocks to compress together per OpenMP thread. See
zfp_stream_set_omp_chunk_size().

zfp_bool zfp_stream_set_execution(zfp_stream *stream, zfp_exec_policy policy)
Set execution policy. If different from the previous policy, initialize the execution parameters to their default
values. zfp_true is returned if the execution policy is supported.

zfp_bool zfp_stream_set_omp_threads(zfp_stream *stream, uint threads)
Set the number of OpenMP threads to use during compression. If threads is zero, then the number of threads
is given by the value of the OpenMP nthreads-var internal control variable when zfp_compress() is called
(usually the maximum number available). This function also sets the execution policy to OpenMP. Upon success,
zfp_true is returned.

zfp_bool zfp_stream_set_omp_chunk_size(zfp_stream *stream, uint chunk_size)
Set the number of consecutive blocks to compress together per OpenMP thread. If zero, use one chunk per thread.
This function also sets the execution policy to OpenMP. Upon success, zfp_true is returned.
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7.4.4 Compression Configuration

These functions encode a desired compression mode and associated parameters (if any) in a single struct, e.g., for
configuring zfp’s read-only array classes.

zfp_config zfp_config_none()
Unspecified configuration.

zfp_config zfp_config_rate(double rate, zfp_bool align)
Fixed-rate mode using rate compressed bits per value. When align is true, word alignment is enforced to further
constrain the rate (see zfp_stream_set_rate()).

zfp_config zfp_config_precision(uint precision)
Fixed-precision mode using precision uncompressed bits per value (see also zfp_stream_set_precision()).

zfp_config zfp_config_accuracy(double tolerance)
Fixed-accuracy mode with absolute error no larger than tolerance (see also zfp_stream_set_accuracy()).

zfp_config zfp_config_reversible()
Reversible (lossless) mode (see also zfp_stream_set_reversible()).

zfp_config zfp_config_expert(uint minbits, uint maxbits, uint maxprec, int minexp)
Expert mode with given parameters (see also zfp_stream_set_params()).

7.4.5 Array Metadata

zfp_field *zfp_field_alloc()
Allocates and returns a default initialized zfp_field struct. The caller must free this struct using
zfp_field_free().

zfp_field *zfp_field_1d(void *pointer, zfp_type type, size_t nx)
Allocate and return a field struct that describes an existing 1D array, a[nx], of nx uncompressed scalars of given
type stored at pointer, which may be NULL and specified later.

zfp_field *zfp_field_2d(void *pointer, zfp_type type, size_t nx, size_t ny)
Allocate and return a field struct that describes an existing 2D array, a[ny][nx], of nx × ny uncompressed
scalars of given type stored at pointer, which may be NULL and specified later.
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zfp_field *zfp_field_3d(void *pointer, zfp_type type, size_t nx, size_t ny, size_t nz)
Allocate and return a field struct that describes an existing 3D array, a[nz][ny][nx], of nx × ny × nz uncom-
pressed scalars of given type stored at pointer, which may be NULL and specified later.

zfp_field *zfp_field_4d(void *pointer, zfp_type type, size_t nx, size_t ny, size_t nz, size_t nw)
Allocate and return a field struct that describes an existing 4D array, a[nw][nz][ny][nx], of nx × ny × nz ×
nw uncompressed scalars of given type stored at pointer, which may be NULL and specified later.

void zfp_field_free(zfp_field *field)
Free zfp_field struct previously allocated by one of the functions above.

void *zfp_field_pointer(const zfp_field *field)
Return pointer to the first scalar in the field with index x = y = z = w = 0.

void *zfp_field_begin(const zfp_field *field)
Return pointer to the lowest memory address occupied by the field. Equals zfp_field_pointer() if all strides
are positive. Available since zfp 1.0.0.

zfp_type zfp_field_type(const zfp_field *field)
Return array scalar type.

uint zfp_field_precision(const zfp_field *field)
Return scalar precision in number of bits, e.g., 32 for zfp_type_float.

uint zfp_field_dimensionality(const zfp_field *field)
Return array dimensionality (1, 2, 3, or 4).

size_t zfp_field_size(const zfp_field *field, size_t *size)
Return total number of scalars stored in the array, e.g., nx × ny × nz for a 3D array. If size is not NULL, then
store the number of scalars for each dimension, e.g., size[0] = nx; size[1] = ny; size[2] = nz for a
3D array.

size_t zfp_field_size_bytes(const zfp_field *field)
Return number of bytes spanned by the field payload data. This includes gaps in memory in case the field layout,
as given by the strides, is not contiguous (see zfp_field_is_contiguous()). Available since zfp 1.0.0.
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size_t zfp_field_blocks(const zfp_field *field)
Return total number of d-dimensional blocks (whether partial or whole) spanning the array. Each whole block
consists of 4d scalars. Available since zfp 1.0.0.

zfp_bool zfp_field_stride(const zfp_field *field, ptrdiff_t *stride)
Return zfp_false if the array is stored contiguously as a[nx], a[ny][nx], a[nz][ny][nx], or
a[nw][nz][ny][nx] depending on dimensionality. Return zfp_true if the array is strided and laid out dif-
ferently in memory. If stride is not NULL, then store the stride for each dimension, e.g., stride[0] = sx;
stride[1] = sy; stride[2] = sz; for a 3D array. See zfp_field for more information on strides.
Return false if the array is stored contiguously (the default) as a[nx], a[ny][nx], a[nz][ny][nx], or
a[nw][nz][ny][nx] depending on dimensionality. Return true if nonzero strides have been specified.

zfp_bool zfp_field_is_contiguous(const zfp_field *field)
Return true if the field occupies a contiguous portion of memory. Note that the field layout may be contiguous
even if a raster order traversal does not visit memory in a monotonically increasing or decreasing order, e.g., if
the layout is simply a permutation of the default layout. Available since zfp 1.0.0.

uint64 zfp_field_metadata(const zfp_field *field)
Return 52-bit compact encoding of the scalar type and array dimensions. This function returns ZFP_META_NULL
on failure, e.g., if the array dimensions are too large to be encoded in 52 bits.

void zfp_field_set_pointer(zfp_field *field, void *pointer)
Set pointer to first scalar in the array.

zfp_type zfp_field_set_type(zfp_field *field, zfp_type type)
Set array scalar type.

void zfp_field_set_size_1d(zfp_field *field, size_t nx)
Specify dimensions of 1D array a[nx].

void zfp_field_set_size_2d(zfp_field *field, size_t nx, size_t ny)
Specify dimensions of 2D array a[ny][nx].

void zfp_field_set_size_3d(zfp_field *field, size_t nx, size_t ny, size_t nz)
Specify dimensions of 3D array a[nz][ny][nx].

void zfp_field_set_size_4d(zfp_field *field, size_t nx, size_t ny, size_t nz, size_t nw)
Specify dimensions of 4D array a[nw][nz][ny][nx].
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void zfp_field_set_stride_1d(zfp_field *field, ptrdiff_t sx)
Specify stride for 1D array: sx = &a[1] - &a[0].

void zfp_field_set_stride_2d(zfp_field *field, ptrdiff_t sx, ptrdiff_t sy)
Specify strides for 2D array: sx = &a[0][1] - &a[0][0]; sy = &a[1][0] - &a[0][0].

void zfp_field_set_stride_3d(zfp_field *field, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)
Specify strides for 3D array: sx = &a[0][0][1] - &a[0][0][0]; sy = &a[0][1][0] - &a[0][0][0];
sz = &a[1][0][0] - &a[0][0][0].

void zfp_field_set_stride_4d(zfp_field *field, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz, ptrdiff_t sw)
Specify strides for 4D array: sx = &a[0][0][0][1] - &a[0][0][0][0]; sy = &a[0][0][1][0]
- &a[0][0][0][0]; sz = &a[0][1][0][0] - &a[0][0][0][0]; sw = &a[1][0][0][0] -
&a[0][0][0][0].

zfp_bool zfp_field_set_metadata(zfp_field *field, uint64 meta)
Specify array scalar type and dimensions from compact 52-bit representation. Return zfp_true upon success.
See zfp_field_metadata() for how to encode meta.

7.4.6 Compression and Decompression

size_t zfp_compress(zfp_stream *stream, const zfp_field *field)
Compress the whole array described by field using parameters given by stream. Then flush the stream to emit
any buffered bits and align the stream on a word boundary. The resulting byte offset within the bit stream is
returned, which equals the total number of bytes of compressed storage if the stream was rewound before the
zfp_compress() call. Zero is returned if compression failed.

size_t zfp_decompress(zfp_stream *stream, zfp_field *field)
Decompress from stream to array described by field and align the stream on the next word boundary. Upon
success, the nonzero return value is the same as would be returned by a corresponding zfp_compress() call,
i.e., the current byte offset or the number of compressed bytes consumed. Zero is returned if decompression
failed.

size_t zfp_write_header(zfp_stream *stream, const zfp_field *field, uint mask)
Write an optional variable-length header to the stream that encodes compression parameters, array metadata, etc.
The header information written is determined by the bit mask (see macros). Unlike in zfp_compress(), no
word alignment is enforced. See the limitations section for limits on the maximum array size supported by the
header. The return value is the number of bits written, or zero upon failure.

size_t zfp_read_header(zfp_stream *stream, zfp_field *field, uint mask)
Read header if one was previously written using zfp_write_header(). The stream and field data structures
are populated with the information stored in the header, as specified by the bit mask (see macros). The caller
must ensure that mask agrees between header read and write calls. The return value is the number of bits read,
or zero upon failure.
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CHAPTER

EIGHT

LOW-LEVEL C API

The libzfp low-level C API provides functionality for compressing individual d-dimensional blocks of up to 4d values.
If a block is not complete, i.e., contains fewer than 4d values, then zfp’s partial block support should be favored over
padding the block with, say, zeros or other fill values. The blocks (de)compressed need not be contiguous and can be
gathered from or scattered to a larger array by setting appropriate strides. As of zfp 1.0.0, templated C++ wrappers are
also available to simplify calling the low-level API from C++. The C API is declared in zfp.h; the C++ wrappers are
found in zfp.hpp.

Note: Because the unit of parallel work in zfp is a block, and because the low-level API operates on individual blocks,
this API supports only the the serial execution policy. Any other execution policy set in zfp_stream is silently ignored.
For parallel execution, see the high-level API .

The following topics are available:

• Stream Manipulation

• Encoder

– 1D Data

– 2D Data

– 3D Data

– 4D Data

• Decoder

– 1D Data

– 2D Data

– 3D Data

– 4D Data

• Utility Functions

• C++ Wrappers
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8.1 Stream Manipulation

size_t zfp_stream_flush(zfp_stream *stream)

Flush bit stream to write out any buffered bits. This function must be must be called after the last encode call.
The bit stream is aligned on a stream word boundary following this call. The number of zero-bits written, if any,
is returned.

size_t zfp_stream_align(zfp_stream *stream)

Align bit stream on next word boundary. This function is analogous to zfp_stream_flush(), but for decoding.
That is, wherever the encoder flushes the stream, the decoder should align it to ensure synchronization between
encoder and decoder. The number of bits skipped, if any, is returned.

8.2 Encoder

A function is available for encoding whole or partial blocks of each scalar type and dimensionality. These functions
return the number of bits of compressed storage for the block being encoded, or zero upon failure.

8.2.1 1D Data

size_t zfp_encode_block_int32_1(zfp_stream *stream, const int32 *block)

size_t zfp_encode_block_int64_1(zfp_stream *stream, const int64 *block)

size_t zfp_encode_block_float_1(zfp_stream *stream, const float *block)

size_t zfp_encode_block_double_1(zfp_stream *stream, const double *block)
Encode 1D contiguous block of 4 values.

size_t zfp_encode_block_strided_int32_1(zfp_stream *stream, const int32 *p, ptrdiff_t sx)

size_t zfp_encode_block_strided_int64_1(zfp_stream *stream, const int64 *p, ptrdiff_t sx)

size_t zfp_encode_block_strided_float_1(zfp_stream *stream, const float *p, ptrdiff_t sx)

size_t zfp_encode_block_strided_double_1(zfp_stream *stream, const double *p, ptrdiff_t sx)
Encode 1D complete block from strided array with stride sx.

size_t zfp_encode_partial_block_strided_int32_1(zfp_stream *stream, const int32 *p, size_t nx, ptrdiff_t
sx)

size_t zfp_encode_partial_block_strided_int64_1(zfp_stream *stream, const int64 *p, size_t nx, ptrdiff_t
sx)

size_t zfp_encode_partial_block_strided_float_1(zfp_stream *stream, const float *p, size_t nx, ptrdiff_t
sx)

size_t zfp_encode_partial_block_strided_double_1(zfp_stream *stream, const double *p, size_t nx,
ptrdiff_t sx)

Encode 1D partial block of size nx from strided array with stride sx.
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8.2.2 2D Data

size_t zfp_encode_block_int32_2(zfp_stream *stream, const int32 *block)

size_t zfp_encode_block_int64_2(zfp_stream *stream, const int64 *block)

size_t zfp_encode_block_float_2(zfp_stream *stream, const float *block)

size_t zfp_encode_block_double_2(zfp_stream *stream, const double *block)
Encode 2D contiguous block of 4 × 4 values.

size_t zfp_encode_block_strided_int32_2(zfp_stream *stream, const int32 *p, ptrdiff_t sx, ptrdiff_t sy)

size_t zfp_encode_block_strided_int64_2(zfp_stream *stream, const int64 *p, ptrdiff_t sx, ptrdiff_t sy)

size_t zfp_encode_block_strided_float_2(zfp_stream *stream, const float *p, ptrdiff_t sx, ptrdiff_t sy)

size_t zfp_encode_block_strided_double_2(zfp_stream *stream, const double *p, ptrdiff_t sx, ptrdiff_t sy)
Encode 2D complete block from strided array with strides sx and sy.

size_t zfp_encode_partial_block_strided_int32_2(zfp_stream *stream, const int32 *p, size_t nx, size_t ny,
ptrdiff_t sx, ptrdiff_t sy)

size_t zfp_encode_partial_block_strided_int64_2(zfp_stream *stream, const int64 *p, size_t nx, size_t ny,
ptrdiff_t sx, ptrdiff_t sy)

size_t zfp_encode_partial_block_strided_float_2(zfp_stream *stream, const float *p, size_t nx, size_t ny,
ptrdiff_t sx, ptrdiff_t sy)

size_t zfp_encode_partial_block_strided_double_2(zfp_stream *stream, const double *p, size_t nx, size_t
ny, ptrdiff_t sx, ptrdiff_t sy)

Encode 2D partial block of size nx × ny from strided array with strides sx and sy.

8.2.3 3D Data

size_t zfp_encode_block_int32_3(zfp_stream *stream, const int32 *block)

size_t zfp_encode_block_int64_3(zfp_stream *stream, const int64 *block)

size_t zfp_encode_block_float_3(zfp_stream *stream, const float *block)

size_t zfp_encode_block_double_3(zfp_stream *stream, const double *block)
Encode 3D contiguous block of 4 × 4 × 4 values.

size_t zfp_encode_block_strided_int32_3(zfp_stream *stream, const int32 *p, ptrdiff_t sx, ptrdiff_t sy,
ptrdiff_t sz)

size_t zfp_encode_block_strided_int64_3(zfp_stream *stream, const int64 *p, ptrdiff_t sx, ptrdiff_t sy,
ptrdiff_t sz)
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size_t zfp_encode_block_strided_float_3(zfp_stream *stream, const float *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t
sz)

size_t zfp_encode_block_strided_double_3(zfp_stream *stream, const double *p, ptrdiff_t sx, ptrdiff_t sy,
ptrdiff_t sz)

Encode 3D complete block from strided array with strides sx, sy, and sz.

size_t zfp_encode_partial_block_strided_int32_3(zfp_stream *stream, const int32 *p, size_t nx, size_t ny,
size_t nz, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

size_t zfp_encode_partial_block_strided_int64_3(zfp_stream *stream, const int64 *p, size_t nx, size_t ny,
size_t nz, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

size_t zfp_encode_partial_block_strided_float_3(zfp_stream *stream, const float *p, size_t nx, size_t ny,
size_t nz, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

size_t zfp_encode_partial_block_strided_double_3(zfp_stream *stream, const double *p, size_t nx, size_t
ny, size_t nz, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

Encode 3D partial block of size nx × ny × nz from strided array with strides sx, sy, and sz.

8.2.4 4D Data

size_t zfp_encode_block_int32_4(zfp_stream *stream, const int32 *block)

size_t zfp_encode_block_int64_4(zfp_stream *stream, const int64 *block)

size_t zfp_encode_block_float_4(zfp_stream *stream, const float *block)

size_t zfp_encode_block_double_4(zfp_stream *stream, const double *block)
Encode 4D contiguous block of 4 × 4 × 4 × 4 values.

size_t zfp_encode_block_strided_int32_4(zfp_stream *stream, const int32 *p, ptrdiff_t sx, ptrdiff_t sy,
ptrdiff_t sz, ptrdiff_t sw)

size_t zfp_encode_block_strided_int64_4(zfp_stream *stream, const int64 *p, ptrdiff_t sx, ptrdiff_t sy,
ptrdiff_t sz, ptrdiff_t sw)

size_t zfp_encode_block_strided_float_4(zfp_stream *stream, const float *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t
sz, ptrdiff_t sw)

size_t zfp_encode_block_strided_double_4(zfp_stream *stream, const double *p, ptrdiff_t sx, ptrdiff_t sy,
ptrdiff_t sz, ptrdiff_t sw)

Encode 4D complete block from strided array with strides sx, sy, sz, and sw.

size_t zfp_encode_partial_block_strided_int32_4(zfp_stream *stream, const int32 *p, size_t nx, size_t ny,
size_t nz, size_t nw, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz,
ptrdiff_t sw)
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size_t zfp_encode_partial_block_strided_int64_4(zfp_stream *stream, const int64 *p, size_t nx, size_t ny,
size_t nz, size_t nw, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz,
ptrdiff_t sw)

size_t zfp_encode_partial_block_strided_float_4(zfp_stream *stream, const float *p, size_t nx, size_t ny,
size_t nz, size_t nw, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz,
ptrdiff_t sw)

size_t zfp_encode_partial_block_strided_double_4(zfp_stream *stream, const double *p, size_t nx, size_t
ny, size_t nz, size_t nw, ptrdiff_t sx, ptrdiff_t sy,
ptrdiff_t sz, ptrdiff_t sw)

Encode 4D partial block of size nx × ny × nz × nw from strided array with strides sx, sy, sz, and sw.

8.3 Decoder

Each function below decompresses a single block and returns the number of bits of compressed storage consumed. See
corresponding encoder functions above for further details.

8.3.1 1D Data

size_t zfp_decode_block_int32_1(zfp_stream *stream, int32 *block)

size_t zfp_decode_block_int64_1(zfp_stream *stream, int64 *block)

size_t zfp_decode_block_float_1(zfp_stream *stream, float *block)

size_t zfp_decode_block_double_1(zfp_stream *stream, double *block)
Decode 1D contiguous block of 4 values.

size_t zfp_decode_block_strided_int32_1(zfp_stream *stream, int32 *p, ptrdiff_t sx)

size_t zfp_decode_block_strided_int64_1(zfp_stream *stream, int64 *p, ptrdiff_t sx)

size_t zfp_decode_block_strided_float_1(zfp_stream *stream, float *p, ptrdiff_t sx)

size_t zfp_decode_block_strided_double_1(zfp_stream *stream, double *p, ptrdiff_t sx)
Decode 1D complete block to strided array with stride sx.

size_t zfp_decode_partial_block_strided_int32_1(zfp_stream *stream, int32 *p, size_t nx, ptrdiff_t sx)

size_t zfp_decode_partial_block_strided_int64_1(zfp_stream *stream, int64 *p, size_t nx, ptrdiff_t sx)

size_t zfp_decode_partial_block_strided_float_1(zfp_stream *stream, float *p, size_t nx, ptrdiff_t sx)

size_t zfp_decode_partial_block_strided_double_1(zfp_stream *stream, double *p, size_t nx, ptrdiff_t sx)
Decode 1D partial block of size nx to strided array with stride sx.
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8.3.2 2D Data

size_t zfp_decode_block_int32_2(zfp_stream *stream, int32 *block)

size_t zfp_decode_block_int64_2(zfp_stream *stream, int64 *block)

size_t zfp_decode_block_float_2(zfp_stream *stream, float *block)

size_t zfp_decode_block_double_2(zfp_stream *stream, double *block)
Decode 2D contiguous block of 4 × 4 values.

size_t zfp_decode_block_strided_int32_2(zfp_stream *stream, int32 *p, ptrdiff_t sx, ptrdiff_t sy)

size_t zfp_decode_block_strided_int64_2(zfp_stream *stream, int64 *p, ptrdiff_t sx, ptrdiff_t sy)

size_t zfp_decode_block_strided_float_2(zfp_stream *stream, float *p, ptrdiff_t sx, ptrdiff_t sy)

size_t zfp_decode_block_strided_double_2(zfp_stream *stream, double *p, ptrdiff_t sx, ptrdiff_t sy)
Decode 2D complete block to strided array with strides sx and sy.

size_t zfp_decode_partial_block_strided_int32_2(zfp_stream *stream, int32 *p, size_t nx, size_t ny,
ptrdiff_t sx, ptrdiff_t sy)

size_t zfp_decode_partial_block_strided_int64_2(zfp_stream *stream, int64 *p, size_t nx, size_t ny,
ptrdiff_t sx, ptrdiff_t sy)

size_t zfp_decode_partial_block_strided_float_2(zfp_stream *stream, float *p, size_t nx, size_t ny,
ptrdiff_t sx, ptrdiff_t sy)

size_t zfp_decode_partial_block_strided_double_2(zfp_stream *stream, double *p, size_t nx, size_t ny,
ptrdiff_t sx, ptrdiff_t sy)

Decode 2D partial block of size nx × ny to strided array with strides sx and sy.

8.3.3 3D Data

size_t zfp_decode_block_int32_3(zfp_stream *stream, int32 *block)

size_t zfp_decode_block_int64_3(zfp_stream *stream, int64 *block)

size_t zfp_decode_block_float_3(zfp_stream *stream, float *block)

size_t zfp_decode_block_double_3(zfp_stream *stream, double *block)
Decode 3D contiguous block of 4 × 4 × 4 values.

size_t zfp_decode_block_strided_int32_3(zfp_stream *stream, int32 *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

size_t zfp_decode_block_strided_int64_3(zfp_stream *stream, int64 *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

size_t zfp_decode_block_strided_float_3(zfp_stream *stream, float *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)
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size_t zfp_decode_block_strided_double_3(zfp_stream *stream, double *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t
sz)

Decode 3D complete block to strided array with strides sx, sy, and sz.

size_t zfp_decode_partial_block_strided_int32_3(zfp_stream *stream, int32 *p, size_t nx, size_t ny, size_t
nz, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

size_t zfp_decode_partial_block_strided_int64_3(zfp_stream *stream, int64 *p, size_t nx, size_t ny, size_t
nz, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

size_t zfp_decode_partial_block_strided_float_3(zfp_stream *stream, float *p, size_t nx, size_t ny, size_t
nz, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

size_t zfp_decode_partial_block_strided_double_3(zfp_stream *stream, double *p, size_t nx, size_t ny,
size_t nz, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

Decode 3D partial block of size nx × ny × nz to strided array with strides sx, sy, and sz.

8.3.4 4D Data

size_t zfp_decode_block_int32_4(zfp_stream *stream, int32 *block)

size_t zfp_decode_block_int64_4(zfp_stream *stream, int64 *block)

size_t zfp_decode_block_float_4(zfp_stream *stream, float *block)

size_t zfp_decode_block_double_4(zfp_stream *stream, double *block)
Decode 4D contiguous block of 4 × 4 × 4 × 4 values.

size_t zfp_decode_block_strided_int32_4(zfp_stream *stream, int32 *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz,
ptrdiff_t sw)

size_t zfp_decode_block_strided_int64_4(zfp_stream *stream, int64 *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz,
ptrdiff_t sw)

size_t zfp_decode_block_strided_float_4(zfp_stream *stream, float *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz,
ptrdiff_t sw)

size_t zfp_decode_block_strided_double_4(zfp_stream *stream, double *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t
sz, ptrdiff_t sw)

Decode 4D complete block to strided array with strides sx, sy, sz, and sw.

size_t zfp_decode_partial_block_strided_int32_4(zfp_stream *stream, int32 *p, size_t nx, size_t ny, size_t
nz, size_t nw, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz,
ptrdiff_t sw)

size_t zfp_decode_partial_block_strided_int64_4(zfp_stream *stream, int64 *p, size_t nx, size_t ny, size_t
nz, size_t nw, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz,
ptrdiff_t sw)
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size_t zfp_decode_partial_block_strided_float_4(zfp_stream *stream, float *p, size_t nx, size_t ny, size_t
nz, size_t nw, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz,
ptrdiff_t sw)

size_t zfp_decode_partial_block_strided_double_4(zfp_stream *stream, double *p, size_t nx, size_t ny,
size_t nz, size_t nw, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t
sz, ptrdiff_t sw)

Decode 4D partial block of size nx × ny × nz × nw to strided array with strides sx, sy, sz, and sw.

8.4 Utility Functions

These functions convert 8- and 16-bit signed and unsigned integer data to (by promoting) and from (by demoting)
32-bit integers that can be (de)compressed by zfp’s int32 functions. These conversion functions are preferred over
simple casting since they eliminate the redundant leading zeros that would otherwise have to be compressed, and they
apply the appropriate bias for unsigned integer data.

void zfp_promote_int8_to_int32(int32 *oblock, const int8 *iblock, uint dims)

void zfp_promote_uint8_to_int32(int32 *oblock, const uint8 *iblock, uint dims)

void zfp_promote_int16_to_int32(int32 *oblock, const int16 *iblock, uint dims)

void zfp_promote_uint16_to_int32(int32 *oblock, const uint16 *iblock, uint dims)
Convert dims-dimensional contiguous block to 32-bit integer type. Use dims = 0 to promote a single value.

void zfp_demote_int32_to_int8(int8 *oblock, const int32 *iblock, uint dims)

void zfp_demote_int32_to_uint8(uint8 *oblock, const int32 *iblock, uint dims)

void zfp_demote_int32_to_int16(int16 *oblock, const int32 *iblock, uint dims)

void zfp_demote_int32_to_uint16(uint16 *oblock, const int32 *iblock, uint dims)
Convert dims-dimensional contiguous block from 32-bit integer type. Use dims = 0 to demote a single value.

8.5 C++ Wrappers

To facilitate calling the low-level API from C++, a number of wrappers are available (as of zfp 1.0.0) that are templated
on scalar type and dimensionality. Each function of the form zfp_function_type_dims, where type denotes scalar
type and dims denotes dimensionality, has a corresponding C++ wrapper zfp::function<type, dims>. For exam-
ple, the C function zfp_encode_block_float_2() has a C++ wrapper zfp::encode_block<float, 2>(). Often
dims can be inferred from the parameters of overloaded functions, in which case it is omitted as template parameter.
The C++ wrappers are defined in zfp.hpp.
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8.5.1 Encoder

template<typename Scalar, uint dims>
size_t encode_block(zfp_stream *stream, const Scalar *block)

Encode contiguous block of dimensionality dims.

template<typename Scalar>
size_t encode_block_strided(zfp_stream *stream, const Scalar *p, ptrdiff_t sx)

template<typename Scalar>
size_t encode_block_strided(zfp_stream *stream, const Scalar *p, ptrdiff_t sx, ptrdiff_t sy)

template<typename Scalar>
size_t encode_block_strided(zfp_stream *stream, const Scalar *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

template<typename Scalar>
size_t encode_block_strided(zfp_stream *stream, const Scalar *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz, ptrdiff_t

sw)
Encode complete block from strided array with strides sx, sy, sz, and sw.

template<typename Scalar>
size_t encode_partial_block_strided(zfp_stream *stream, const Scalar *p, size_t nx, ptrdiff_t sx)

template<typename Scalar>
size_t encode_partial_block_strided(zfp_stream *stream, const Scalar *p, size_t nx, size_t ny, ptrdiff_t sx,

ptrdiff_t sy)

template<typename Scalar>
size_t encode_partial_block_strided(zfp_stream *stream, const Scalar *p, size_t nx, size_t ny, size_t nz,

ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

template<typename Scalar>
size_t encode_partial_block_strided(zfp_stream *stream, const Scalar *p, size_t nx, size_t ny, size_t nz,

size_t nw, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz, ptrdiff_t sw)
Encode partial block of size nx × ny × nz × nw from strided array with strides sx, sy, sz, and sw.

8.5.2 Decoder

template<typename Scalar, uint dims>
size_t decode_block(zfp_stream *stream, Scalar *block)

Decode contiguous block of dimensionality dims.

template<typename Scalar>
size_t decode_block_strided(zfp_stream *stream, Scalar *p, ptrdiff_t sx)

template<typename Scalar>
size_t decode_block_strided(zfp_stream *stream, Scalar *p, ptrdiff_t sx, ptrdiff_t sy)

template<typename Scalar>
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size_t decode_block_strided(zfp_stream *stream, Scalar *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz)

template<typename Scalar>
size_t decode_block_strided(zfp_stream *stream, Scalar *p, ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz, ptrdiff_t sw)

Decode complete block to strided array with strides sx, sy, sz, and sw.

template<typename Scalar>
size_t decode_partial_block_strided(zfp_stream *stream, Scalar *p, size_t nx, ptrdiff_t sx)

template<typename Scalar>
size_t decode_partial_block_strided(zfp_stream *stream, Scalar *p, size_t nx, size_t ny, ptrdiff_t sx, ptrdiff_t

sy)

template<typename Scalar>
size_t decode_partial_block_strided(zfp_stream *stream, Scalar *p, size_t nx, size_t ny, size_t nz, ptrdiff_t

sx, ptrdiff_t sy, ptrdiff_t sz)

template<typename Scalar>
size_t decode_partial_block_strided(zfp_stream *stream, Scalar *p, size_t nx, size_t ny, size_t nz, size_t nw,

ptrdiff_t sx, ptrdiff_t sy, ptrdiff_t sz, ptrdiff_t sw)
Decode partial block of size nx × ny × nz × nw to strided array with strides sx, sy, sz, and sw.
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CHAPTER

NINE

BIT STREAM API

zfp relies on low-level functions for bit stream I/O, e.g., for reading/writing single bits or groups of bits. zfp’s bit
streams support random access (with some caveats) and, optionally, strided access. The functions read from and write
to main memory allocated by the user. Buffer overruns are for performance reasons not guarded against.

From an implementation standpoint, bit streams are read from and written to memory in increments of words of bits.
The constant power-of-two word size is configured at compile time, and is limited to 8, 16, 32, or 64 bits.

The bit stream API is publicly exposed and may be used to write additional information such as metadata into the zfp
compressed stream and to manipulate whole or partial bit streams. Moreover, we envision releasing the bit stream
functions as a separate library in the future that may be used, for example, in other compressors.

Stream readers and writers are synchronized by making corresponding calls. For each write call, there is a correspond-
ing read call. This ensures that reader and writer agree on the position within the stream and the number of bits buffered,
if any. The API below reflects this duality.

A bit stream is either in read or write mode, or either, if rewound to the beginning. When in read mode, only read calls
should be made, and similarly for write mode.

9.1 Strided Streams

Bit streams may be strided by sequentially reading/writing a few words at a time and then skipping over some user-
specified number of words. This allows, for instance, zfp to interleave the first few bits of all compressed blocks in
order to support progressive access. To enable strided access, which does carry a small performance penalty, the macro
BIT_STREAM_STRIDED must be defined during compilation.

Strides are specified in terms of a block size—a power-of-two number of contiguous words—and a delta, which specifies
how many words to advance the stream by to get to the next contiguous block. These bit stream blocks are entirely
independent of the 4d blocks used for compression in zfp. Setting delta to zero ensures a non-strided, sequential layout.

9.2 Macros

Two compile-time macros are used to influence the behavior: BIT_STREAM_WORD_TYPE and BIT_STREAM_STRIDED.
These are documented in the installation section.
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9.3 Types

type bitstream_word
Bits are buffered and read/written in units of words. By default, the bit stream word type is 64 bits, but may be set
to 8, 16, or 32 bits by setting the macro BIT_STREAM_WORD_TYPE to uint8, uint16, or uint32, respectively.
Larger words tend to give higher throughput, while 8-bit words are needed to ensure endian independence (see
FAQ #11).

Note: To avoid potential name clashes, this type was renamed in zfp 1.0.0 from the shorter and more ambiguous type
name word.

type bitstream_offset
Type holding the offset, measured in number of bits, into the bit stream where the next bit will be read
or written. This type allows referencing bits in streams at least 264 bits long. Note that it is possible
that sizeof(bitstream_offset) > sizeof(size_t) since a stream may be as long as sizeof(size_t) *
CHAR_BIT bits.

type bitstream_size
Alias for bitstream_offset that signifies the bit length of a stream or substream rather than an offset into it.

type bitstream_count
Type sufficient to count the number of bits read or written in functions like stream_read_bits() and
stream_write_bits(). sizeof(bitstream_count) <= sizeof(bitstream_size).

type bitstream
The bit stream struct maintains all the state associated with a bit stream. This struct is passed to all bit stream
functions. Its members should not be accessed directly.

struct bitstream {
bitstream_count bits; // number of buffered bits (0 <= bits < word size)
bitstream_word buffer; // incoming/outgoing bits (buffer < 2^bits)
bitstream_word* ptr; // pointer to next word to be read/written
bitstream_word* begin; // beginning of stream
bitstream_word* end; // end of stream (not enforced)
size_t mask; // one less the block size in number of words (if BIT_

→˓STREAM_STRIDED)
ptrdiff_t delta; // number of words between consecutive blocks (if BIT_

→˓STREAM_STRIDED)
};
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9.4 Constants

const size_t stream_word_bits
The number of bits in a word. The size of a flushed bit stream will be a multiple of this number of bits. See
BIT_STREAM_WORD_TYPE and stream_alignment().

9.5 Functions

bitstream *stream_open(void *buffer, size_t bytes)
Allocate a bitstream struct and associate it with the memory buffer allocated by the caller.

void stream_close(bitstream *stream)

Close the bit stream and deallocate stream.

bitstream *stream_clone(const bitstream *stream)

Create a copy of stream that points to the same memory buffer.

bitstream_count stream_alignment()
Word size in bits. This is a functional form of the constant stream_word_bits and returns the same value.
Available since zfp 1.0.0.

void *stream_data(const bitstream *stream)

Return pointer to the beginning of bit stream stream.

size_t stream_size(const bitstream *stream)

Return position of stream pointer in number of bytes, which equals the end of stream if no seeks have been made.
Note that additional bits may be buffered and not reported unless the stream has been flushed.

size_t stream_capacity(const bitstream *stream)

Return byte size of memory buffer associated with stream specified in stream_open().

uint stream_read_bit(bitstream *stream)

Read a single bit from stream.

uint stream_write_bit(bitstream *stream, uint bit)
Write single bit to stream. bit must be one of 0 or 1. The value of bit is returned.
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uint64 stream_read_bits(bitstream *stream, bitstream_count n)
Read and return 0 ≤ n ≤ 64 bits from stream.

uint64 stream_write_bits(bitstream *stream, uint64 value, bitstream_count n)
Write 0 ≤ n ≤ 64 low bits of value to stream. Return any remaining bits from value, i.e., value >> n.

bitstream_offset stream_rtell(const bitstream *stream)

Return bit offset to next bit to be read.

bitstream_offset stream_wtell(const bitstream *stream)

Return bit offset to next bit to be written.

void stream_rewind(bitstream *stream)

Rewind stream to beginning of memory buffer. Following this call, the stream may either be read or written.

void stream_rseek(bitstream *stream, bitstream_offset offset)
Position stream for reading at given bit offset. This places the stream in read mode.

void stream_wseek(bitstream *stream, bitstream_offset offset)
Position stream for writing at given bit offset. This places the stream in write mode.

void stream_skip(bitstream *stream, bitstream_count n)
Skip over the next n bits, i.e., without reading them.

void stream_pad(bitstream *stream, bitstream_count n)
Append n zero-bits to stream.

bitstream_count stream_align(bitstream *stream)

Align stream on next word boundary by skipping bits, i.e., without reading them. No skipping is done if the
stream is already word aligned. Return the number of skipped bits, if any.

bitstream_count stream_flush(bitstream *stream)

Write out any remaining buffered bits. When one or more bits are buffered, append zero-bits to the stream to
align it on a word boundary. Return the number of bits of padding, if any.
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void stream_copy(bitstream *dst, bitstream *src, bitstream_size n)
Copy n bits from src to dst, advancing both bit streams.

size_t stream_stride_block(const bitstream *stream)

Return stream block size in number of words. The block size is always one word unless strided streams are
enabled. See Strided Streams for more information.

ptrdiff_t stream_stride_delta(const bitstream *stream)

Return stream delta in number of words between blocks. See Strided Streams for more information.

int stream_set_stride(bitstream *stream, size_t block, ptrdiff_t delta)
Set block size, block, in number of words and spacing, delta, in number of blocks for strided access. Return
nonzero upon success. Requires BIT_STREAM_STRIDED.
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CHAPTER

TEN

PYTHON BINDINGS

zfp 0.5.5 adds zfPy: Python bindings that allow compressing and decompressing NumPy integer and floating-point
arrays. The zfPy implementation is based on Cython and requires both NumPy and Cython to be installed. Currently,
zfPy supports only serial execution.

The zfPy API is limited to two functions, for compression and decompression, which are described below.

10.1 Compression

zfpy.compress_numpy(arr, tolerance=-1, rate=-1, precision=-1, write_header=True)
Compress NumPy array, arr, and return a compressed byte stream. The non-expert compression mode is selected
by setting one of tolerance, rate, or precision. If none of these arguments is specified, then reversible mode
is used. By default, a header that encodes array shape and scalar type as well as compression parameters is
prepended, which can be omitted by setting write_header to False. If this function fails for any reason, an
exception is thrown.

zfPy compression currently requires a NumPy array (ndarray) populated with the data to be compressed. The array
metadata (i.e., shape, strides, and scalar type) are used to automatically populate the zfp_field structure passed to
zfp_compress(). By default, all that is required to be passed to the compression function is the NumPy array; this
will result in a stream that includes a header and is losslessly compressed using the reversible mode. For example:

import zfpy
import numpy as np

my_array = np.arange(1, 20)
compressed_data = zfpy.compress_numpy(my_array)
decompressed_array = zfpy.decompress_numpy(compressed_data)

# confirm lossless compression/decompression
np.testing.assert_array_equal(my_array, decompressed_array)

Using the fixed-accuracy, fixed-rate, or fixed-precision modes simply requires setting one of the tolerance, rate, or
precision arguments, respectively. For example:

compressed_data = zfpy.compress_numpy(my_array, tolerance=1e-3)
decompressed_array = zfpy.decompress_numpy(compressed_data)

# Note the change from "equal" to "allclose" due to the lossy compression
np.testing.assert_allclose(my_array, decompressed_array, atol=1e-3)
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Since NumPy arrays are C-ordered by default (i.e., the rightmost index varies fastest) and zfp_compress() as-
sumes Fortran ordering (i.e., the leftmost index varies fastest), compress_numpy() automatically reverses the or-
der of dimensions and strides in order to improve the expected memory access pattern during compression. The
decompress_numpy() function also reverses the order of dimensions and strides, and therefore decompression will
restore the shape of the original array. Note, however, that the zfp stream does not encode the memory layout of the
original NumPy array, and therefore layout information like strides, contiguity, and C vs. Fortran order may not be pre-
served. Nevertheless, zfPy correctly compresses NumPy arrays with any memory layout, including Fortran ordering
and non-contiguous storage.

Byte streams produced by compress_numpy() can be decompressed by the zfp command-line tool. In general, they
cannot be deserialized as compressed arrays, however.

Note: decompress_numpy() requires a header to decompress properly, so do not set write_header = False during
compression if you intend to decompress the stream with zfPy.

10.2 Decompression

zfpy.decompress_numpy(compressed_data)
Decompress a byte stream, compressed_data, produced by compress_numpy() (with header enabled) and return
the decompressed NumPy array. This function throws on exception upon error.

decompress_numpy() consumes a compressed stream that includes a header and produces a NumPy array with
metadata populated based on the contents of the header. Stride information is not stored in the zfp header, so
decompress_numpy() assumes that the array was compressed with the first (leftmost) dimension varying fastest (typ-
ically referred to as Fortran-ordering). The returned NumPy array is in C-ordering (the default for NumPy arrays), so
the shape of the returned array is reversed from the shape information stored in the embedded header. For example, if
the header declares the array to be of shape (nx, ny, nz) = (2, 4, 8), then the returned NumPy array will have a shape of
(8, 4, 2). Since the compress_numpy() function also reverses the order of dimensions, arrays both compressed and
decompressed with zfPy will have compatible shape.

Note: Decompressing a stream without a header requires using the internal _decompress() Python function (or the
C API).

zfpy._decompress(compressed_data, ztype, shape, out=None, tolerance=-1, rate=-1, precision=-1)
Decompress a headerless compressed stream (if a header is present in the stream, it will be incorrectly interpreted
as compressed data). ztype specifies the array scalar type while shape specifies the array dimensions; both must
be known by the caller. The compression mode is selected by specifying one (or none) of tolerance, rate, and
precision, as in compress_numpy(), and also must be known by the caller. If out = None, a new NumPy array
is allocated. Otherwise, out specifies the NumPy array or memory buffer to decompress into. Regardless, the
decompressed NumPy array is returned unless an error occurs, in which case an exception is thrown.

In _decompress(), ztype is one of the zfp supported scalar types (see zfp_type), which are available in zfPy as

type_int32 = zfp_type_int32
type_int64 = zfp_type_int64
type_float = zfp_type_float
type_double = zfp_type_double

These can be manually specified (e.g., zfpy.type_int32) or generated from a NumPy dtype (e.g., zfpy.
dtype_to_ztype(array.dtype)).
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If out is specified, the data is decompressed into the out buffer. out can be a NumPy array or a pointer to memory
large enough to hold the decompressed data. Regardless of the type of out and whether it is provided, _decompress()
always returns a NumPy array. If out is not provided, then the array is allocated for the user. If out is provided, then
the returned NumPy array is just a pointer to or wrapper around the user-supplied out. If out is a NumPy array, then its
shape and scalar type must match the required arguments shape and ztype. To avoid this constraint check, use out =
ndarray.data rather than out = ndarray when calling _decompress().

Warning: _decompress() is an “experimental” function currently used internally for testing. It does allow
decompression of streams without headers, but providing too small of an output buffer or incorrectly specifying the
shape or strides can result in segmentation faults. Use with care.

10.2. Decompression 57



zfp Documentation, Release 1.0.1

58 Chapter 10. Python Bindings



CHAPTER

ELEVEN

FORTRAN BINDINGS

zfp 0.5.5 adds zFORp: a Fortran API providing wrappers around the high-level C API . Wrappers for compressed-array
classes will arrive in a future release. The zFORp implementation is based on the standard iso_c_binding module
available since Fortran 2003. The use of ptrdiff_t in the zfp 1.0.0 C API, however, requires the corresponding
c_ptrdiff_t available only since Fortran 2018.

Every high-level C API function can be called from a Fortran wrapper function. C structs are wrapped as Fortran
derived types, each containing a single C pointer to the C struct in memory. The wrapper functions accept and return
these Fortran types, so users should never need to touch the C pointers. In addition to the high-level C API, two essential
functions from the bit stream API for opening and closing bit streams are available.

See example code tests/fortran/testFortran.f (on the GitHub develop branch) for how the Fortran API is used
to compress and decompress data.

Note: zfp 1.0.0 simplifies the zFORp module name from zforp_module to zfp. This will likely require changing
associated use statements within existing code when updating from prior versions of zFORp.

Furthermore, as outlined above, the zfp 1.0.0 API requires a Fortran 2018 compiler.

11.1 Types

type zFORp_bitstream

Type fields

• % object [c_ptr] :: A C pointer to the instance of bitstream

type zFORp_stream

Type fields

• % object [c_ptr] :: A C pointer to the instance of zfp_stream

type zFORp_field

Type fields

• % object [c_ptr] :: A C pointer to the instance of zfp_field
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11.2 Constants

11.2.1 Enumerations

integer zFORp_type_none

integer zFORp_type_int32

integer zFORp_type_int64

integer zFORp_type_float

integer zFORp_type_double

Enums wrapping zfp_type

integer zFORp_mode_null

integer zFORp_mode_expert

integer zFORp_mode_fixed_rate

integer zFORp_mode_fixed_precision

integer zFORp_mode_fixed_accuracy

integer zFORp_mode_reversible

Enums wrapping zfp_mode

integer zFORp_exec_serial

integer zFORp_exec_omp

integer zFORp_exec_cuda

Enums wrapping zfp_exec_policy

11.2.2 Non-Enum Constants

integer zFORp_version_major

Wraps ZFP_VERSION_MAJOR

integer zFORp_version_minor

Wraps ZFP_VERSION_MINOR

integer zFORp_version_patch

Wraps ZFP_VERSION_PATCH
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integer zFORp_version_tweak

Wraps ZFP_VERSION_TWEAK

integer zFORp_codec_version

Wraps zfp_codec_version

integer zFORp_library_version

Wraps zfp_library_version

character(len=36) zFORp_version_string

Wraps zfp_version_string

integer zFORp_min_bits

Wraps ZFP_MIN_BITS

integer zFORp_max_bits

Wraps ZFP_MAX_BITS

integer zFORp_max_prec

Wraps ZFP_MAX_PREC

integer zFORp_min_exp

Wraps ZFP_MIN_EXP

integer zFORp_header_magic

Wraps ZFP_HEADER_MAGIC

integer zFORp_header_meta

Wraps ZFP_HEADER_META

integer zFORp_header_mode

Wraps ZFP_HEADER_MODE

integer zFORp_header_full

Wraps ZFP_HEADER_FULL
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integer zFORp_meta_null

Wraps ZFP_META_NULL

integer zFORp_magic_bits

Wraps ZFP_MAGIC_BITS

integer zFORp_meta_bits

Wraps ZFP_META_BITS

integer zFORp_mode_short_bits

Wraps ZFP_MODE_SHORT_BITS

integer zFORp_mode_long_bits

Wraps ZFP_MODE_LONG_BITS

integer zFORp_header_max_bits

Wraps ZFP_HEADER_MAX_BITS

integer zFORp_mode_short_max

Wraps ZFP_MODE_SHORT_MAX

11.3 Functions and Subroutines

Each of the functions included here wraps a corresponding C function. Please consult the C documentation for detailed
descriptions of the functions, their parameters, and their return values.

11.3.1 Bit Stream

function zFORp_bitstream_stream_open(buffer, bytes)
Wrapper for stream_open()

Parameters

• buffer [c_ptr,in] :: Memory buffer

• bytes [integer (kind=8),in] :: Buffer size in bytes

Return
bs [zFORp_bitstream] :: Bit stream

subroutine zFORp_bitstream_stream_close(bs)
Wrapper for stream_close()

Parameters
bs [zFORp_bitstream,inout] :: Bit stream
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11.3.2 Utility Functions

function zFORp_type_size(scalar_type)
Wrapper for zfp_type_size()

Parameters
scalar_type [integer,in] :: zFORp_type enum

Return
type_size [integer (kind=8)] :: Size of described zfp_type, in bytes, from C-language perspec-
tive

11.3.3 Compressed Stream

function zFORp_stream_open(bs)
Wrapper for zfp_stream_open()

Parameters
bs [zFORp_bitstream,in] :: Bit stream

Return
stream [zFORp_stream] :: Newly allocated compressed stream

subroutine zFORp_stream_close(stream)

Wrapper for zfp_stream_close()

Parameters
stream [zFORp_stream,inout] :: Compressed stream

function zFORp_stream_bit_stream(stream)

Wrapper for zfp_stream_bit_stream()

Parameters
stream [zFORp_stream,in] :: Compressed stream

Return
bs [zFORp_bitstream] :: Bit stream

function zFORp_stream_compression_mode(stream)

Wrapper for zfp_stream_compression_mode()

Parameters
stream [zFORp_stream,in] :: Compressed stream

Return
mode [integer] :: zFORp_mode enum
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function zFORp_stream_rate(stream, dims)
Wrapper for zfp_stream_rate()

Parameters

• stream [zFORp_stream,in] :: Compressed stream

• dims [integer,in] :: Number of dimensions

Return
rate_result [real (kind=8)] :: Rate in compressed bits/scalar

function zFORp_stream_precision(stream)

Wrapper for zfp_stream_precision()

Parameters
stream [zFORp_stream,in] :: Compressed stream

Return
prec_result [integer] :: Precision in uncompressed bits/scalar

function zFORp_stream_accuracy(stream)

Wrapper for zfp_stream_accuracy()

Parameters
stream [zFORp_stream,in] :: Compressed stream

Return
tol_result [real (kind=8)] :: Absolute error tolerance

function zFORp_stream_mode(stream)

Wrapper for zfp_stream_mode()

Parameters
stream [zFORp_stream,in] :: Compressed stream

Return
mode [integer (kind=8)] :: 64-bit encoded mode

subroutine zFORp_stream_params(stream, minbits, maxbits, maxprec, minexp)
Wrapper for zfp_stream_params()

Parameters

• stream [zFORp_stream,in] :: Compressed stream

• minbits [integer,inout] :: Minimum number of bits per block

• maxbits [integer,inout] :: Maximum number of bits per block

• maxprec [integer,inout] :: Maximum precision

• minexp [integer,inout] :: Minimum bit plane number encoded

64 Chapter 11. Fortran Bindings



zfp Documentation, Release 1.0.1

function zFORp_stream_compressed_size(stream)

Wrapper for zfp_stream_compressed_size()

Parameters
stream [zFORp_stream,in] :: Compressed stream

Return
compressed_size [integer (kind=8)] :: Compressed size in bytes

function zFORp_stream_maximum_size(stream, field)
Wrapper for zfp_stream_maximum_size()

Parameters

• stream [zFORp_stream,in] :: Compressed stream

• field [zFORp_field,in] :: Field metadata

Return
max_size [integer (kind=8)] :: Maximum possible compressed size in bytes

subroutine zFORp_stream_rewind(stream)

Wrapper for zfp_stream_rewind()

Parameters
stream [zFORp_stream,in] :: Compressed stream

subroutine zFORp_stream_set_bit_stream(stream, bs)
Wrapper for zfp_stream_set_bit_stream()

Parameters

• stream [zFORp_stream,in] :: Compressed stream

• bs [zFORp_bitstream,in] :: Bit stream

11.3.4 Compression Parameters

subroutine zFORp_stream_set_reversible(stream)

Wrapper for zfp_stream_set_reversible()

Parameters
stream [zFORp_stream,in] :: Compressed stream

function zFORp_stream_set_rate(stream, rate, scalar_type, dims, align)
Wrapper for zfp_stream_set_rate()

Parameters

• stream [zFORp_stream,in] :: Compressed stream

• rate [real,in] :: Desired rate

• scalar_type [integer,in] :: zFORp_type enum
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• dims [integer,in] :: Number of dimensions

• align [integer,in] :: Align blocks on words for write random access?

Return
rate_result [real (kind=8)] :: Actual set rate in bits/scalar

function zFORp_stream_set_precision(stream, prec)
Wrapper for zfp_stream_set_precision()

Parameters

• stream [zFORp_stream,in] :: Compressed stream

• prec [integer,in] :: Desired precision

Return
prec_result [integer] :: Actual set precision

function zFORp_stream_set_accuracy(stream, tolerance)
Wrapper for zfp_stream_set_accuracy()

Parameters

• stream [zFORp_stream,in] :: Compressed stream

• tolerance [real (kind=8),in] :: Desired error tolerance

Return
tol_result [real (kind=8)] :: Actual set tolerance

function zFORp_stream_set_mode(stream, mode)
Wrapper for zfp_stream_set_mode()

Parameters

• stream [zFORp_stream,in] :: Compressed stream

• mode [integer (kind=8),in] :: Compact encoding of compression parameters

Return
mode_result [integer] :: Newly set zFORp_mode enum

function zFORp_stream_set_params(stream, minbits, maxbits, maxprec, minexp)
Wrapper for zfp_stream_set_params()

Parameters

• stream [zFORp_stream,in] :: Compressed stream

• minbits [integer,in] :: Minimum number of bits per block

• maxbits [integer,in] :: Maximum number of bits per block

• maxprec [integer,in] :: Maximum precision

• minexp [integer,in] :: Minimum bit plane number encoded

Return
is_success [integer] :: Indicate whether parameters were successfully set (1) or not (0)
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11.3.5 Execution Policy

function zFORp_stream_execution(stream)

Wrapper for zfp_stream_execution()

Parameters
stream [zFORp_stream,in] :: Compressed stream

Return
execution_policy [integer] :: zFORp_exec enum indicating active execution policy

function zFORp_stream_omp_threads(stream)

Wrapper for zfp_stream_omp_threads()

Parameters
stream [zFORp_stream,in] :: Compressed stream

Return
thread_count [integer] :: Number of OpenMP threads to use upon execution

function zFORp_stream_omp_chunk_size(stream)

Wrapper for zfp_stream_omp_chunk_size()

Parameters
stream [zFORp_stream,in] :: Compressed stream

Return
chunk_size_blocks [integer (kind=8)] :: Specified chunk size, in blocks

function zFORp_stream_set_execution(stream, execution_policy)
Wrapper for zfp_stream_set_execution()

Parameters

• stream [zFORp_stream,in] :: Compressed stream

• execution_policy [integer,in] :: zFORp_exec enum indicating desired execution policy

Return
is_success [integer] :: Indicate whether execution policy was successfully set (1) or not (0)

function zFORp_stream_set_omp_threads(stream, thread_count)
Wrapper for zfp_stream_set_omp_threads()

Parameters

• stream [zFORp_stream,in] :: Compressed stream

• thread_count [integer,in] :: Desired number of OpenMP threads

Return
is_success [integer] :: Indicate whether number of threads was successfully set (1) or not (0)
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function zFORp_stream_set_omp_chunk_size(stream, chunk_size)
Wrapper for zfp_stream_set_omp_chunk_size()

Parameters

• stream [zFORp_stream,in] :: Compressed stream

• chunk_size [integer,in] :: Desired chunk size, in blocks

Return
is_success [integer] :: Indicate whether chunk size was successfully set (1) or not (0)

11.3.6 Array Metadata

function zFORp_field_alloc()

Wrapper for zfp_field_alloc()

Return
field [zFORp_field] :: Newly allocated field

function zFORp_field_1d(uncompressed_ptr, scalar_type, nx)
Wrapper for zfp_field_1d()

Parameters

• uncompressed_ptr [c_ptr,in] :: Pointer to uncompressed data

• scalar_type [integer,in] :: zFORp_type enum describing uncompressed scalar type

• nx [integer,in] :: Number of array elements

Return
field [zFORp_field] :: Newly allocated field

function zFORp_field_2d(uncompressed_ptr, scalar_type, nx, ny)
Wrapper for zfp_field_2d()

Parameters

• uncompressed_ptr [c_ptr,in] :: Pointer to uncompressed data

• scalar_type [integer,in] :: zFORp_type enum describing uncompressed scalar type

• nx [integer,in] :: Number of array elements in x dimension

• ny [integer,in] :: Number of array elements in y dimension

Return
field [zFORp_field] :: Newly allocated field

function zFORp_field_3d(uncompressed_ptr, scalar_type, nx, ny, nz)
Wrapper for zfp_field_3d()

Parameters

• uncompressed_ptr [c_ptr,in] :: Pointer to uncompressed data
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• scalar_type [integer,in] :: zFORp_type enum describing uncompressed scalar type

• nx [integer,in] :: Number of array elements in x dimension

• ny [integer,in] :: Number of array elements in y dimension

• nz [integer,in] :: Number of array elements in z dimension

Return
field [zFORp_field] :: Newly allocated field

function zFORp_field_4d(uncompressed_ptr, scalar_type, nx, ny, nz, nw)
Wrapper for zfp_field_4d()

Parameters

• uncompressed_ptr [c_ptr,in] :: Pointer to uncompressed data

• scalar_type [integer,in] :: zFORp_type enum describing uncompressed scalar type

• nx [integer,in] :: Number of array elements in x dimension

• ny [integer,in] :: Number of array elements in y dimension

• nz [integer,in] :: Number of array elements in z dimension

• nw [integer,in] :: Number of array elements in w dimension

Return
field [zFORp_field] :: Newly allocated field

subroutine zFORp_field_free(field)
Wrapper for zfp_field_free()

Parameters
field [zFORp_field,inout] :: Field metadata

function zFORp_field_pointer(field)
Wrapper for zfp_field_pointer()

Parameters
field [zFORp_field,in] :: Field metadata

Return
arr_ptr [c_ptr] :: Pointer to raw (uncompressed/decompressed) array

function zFORp_field_begin(field)
Wrapper for zfp_field_begin()

Parameters
field [zFORp_field,in] :: Field metadata

Return
begin_ptr [c_ptr] :: Pointer to lowest memory address spanned by field
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function zFORp_field_type(field)
Wrapper for zfp_field_type()

Parameters
field [zFORp_field,in] :: Field metadata

Return
scalar_type [integer] :: zFORp_type enum describing uncompressed scalar type

function zFORp_field_precision(field)
Wrapper for zfp_field_precision()

Parameters
field [zFORp_field,in] :: Field metadata

Return
prec [integer] :: Scalar type precision in number of bits

function zFORp_field_dimensionality(field)
Wrapper for zfp_field_dimensionality()

Parameters
field [zFORp_field,in] :: Field metadata

Return
dims [integer] :: Dimensionality of array

function zFORp_field_size(field, size_arr)
Wrapper for zfp_field_size()

Parameters

• field [zFORp_field,in] :: Field metadata

• size_arr [integer,dimension(4),target,inout] :: Integer array to write field dimensions into

Return
total_size [integer (kind=8)] :: Total number of array elements

function zFORp_field_size_bytes(field)
Wrapper for zfp_field_size_bytes()

Parameters
field [zFORp_field,in] :: Field metadata

Return
byte_size [integer (kind=8)] :: Number of bytes spanned by field data including gaps (if any)
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function zFORp_field_blocks(field)
Wrapper for zfp_field_blocks()

Parameters
field [zFORp_field,in] :: Field metadata

Return
blocks [integer (kind=8)] :: Total number of blocks spanned by field

function zFORp_field_stride(field, stride_arr)
Wrapper for zfp_field_stride()

Parameters

• field [zFORp_field,in] :: Field metadata

• stride_arr [integer,dimension(4),target,inout] :: Integer array to write strides into

Return
is_strided [integer] :: Indicate whether field is strided (1) or not (0)

function zFORp_field_is_contiguous(field)
Wrapper for zfp_field_is_contiguous()

Parameters
field [zFORp_field,in] :: Field metadata

Return
is_contiguous [integer] :: Indicate whether field is contiguous (1) or not (0)

function zFORp_field_metadata(field)
Wrapper for zfp_field_metadata()

Parameters
field [zFORp_field,in] :: Field metadata

Return
encoded_metadata [integer (kind=8)] :: Compact encoding of metadata

subroutine zFORp_field_set_pointer(field, arr_ptr)
Wrapper for zfp_field_set_pointer()

Parameters

• field [zFORp_field,in] :: Field metadata

• arr_ptr [c_ptr,in] :: Pointer to beginning of uncompressed array
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function zFORp_field_set_type(field, scalar_type)
Wrapper for zfp_field_set_type()

Parameters

• field [zFORp_field,in] :: Field metadata

• scalar_type [integer] :: zFORp_type enum indicating desired scalar type

Return
type_result [integer] :: zFORp_type enum indicating actual scalar type

subroutine zFORp_field_set_size_1d(field, nx)
Wrapper for zfp_field_set_size_1d()

Parameters

• field [zFORp_field,in] :: Field metadata

• nx [integer,in] :: Number of array elements

subroutine zFORp_field_set_size_2d(field, nx, ny)
Wrapper for zfp_field_set_size_2d()

Parameters

• field [zFORp_field,in] :: Field metadata

• nx [integer,in] :: Number of array elements in x dimension

• ny [integer,in] :: Number of array elements in y dimension

subroutine zFORp_field_set_size_3d(field, nx, ny, nz)
Wrapper for zfp_field_set_size_3d()

Parameters

• field [zFORp_field,in] :: Field metadata

• nx [integer,in] :: Number of array elements in x dimension

• ny [integer,in] :: Number of array elements in y dimension

• nz [integer,in] :: Number of array elements in z dimension

subroutine zFORp_field_set_size_4d(field, nx, ny, nz, nw)
Wrapper for zfp_field_set_size_4d()

Parameters

• field [zFORp_field,in] :: Field metadata

• nx [integer,in] :: Number of array elements in x dimension

• ny [integer,in] :: Number of array elements in y dimension

• nz [integer,in] :: Number of array elements in z dimension
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• nw [integer,in] :: Number of array elements in w dimension

subroutine zFORp_field_set_stride_1d(field, sx)
Wrapper for zfp_field_set_stride_1d()

Parameters

• field [zFORp_field,in] :: Field metadata

• sx [integer,in] :: Stride in number of scalars

subroutine zFORp_field_set_stride_2d(field, sx, sy)
Wrapper for zfp_field_set_stride_2d()

Parameters

• field [zFORp_field,in] :: Field metadata

• sx [integer,in] :: Stride in x dimension

• sy [integer,in] :: Stride in y dimension

subroutine zFORp_field_set_stride_3d(field, sx, sy, sz)
Wrapper for zfp_field_set_stride_3d()

Parameters

• field [zFORp_field,in] :: Field metadata

• sx [integer,in] :: Stride in x dimension

• sy [integer,in] :: Stride in y dimension

• sz [integer,in] :: Stride in z dimension

subroutine zFORp_field_set_stride_4d(field, sx, sy, sz, sw)
Wrapper for zfp_field_set_stride_4d()

Parameters

• field [zFORp_field,in] :: Field metadata

• sx [integer,in] :: Stride in x dimension

• sy [integer,in] :: Stride in y dimension

• sz [integer,in] :: Stride in z dimension

• sw [integer,in] :: Stride in w dimension
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function zFORp_field_set_metadata(field, encoded_metadata)
Wrapper for zfp_field_set_metadata()

Parameters

• field [zFORp_field,in] :: Field metadata

• encoded_metadata [integer (kind=8),in] :: Compact encoding of metadata

Return
is_success [integer] :: Indicate whether metadata was successfully set (1) or not (0)

11.3.7 Compression and Decompression

function zFORp_compress(stream, field)
Wrapper for zfp_compress()

Parameters

• stream [zFORp_stream,in] :: Compressed stream

• field [zFORp_field,in] :: Field metadata

Return
bitstream_offset_bytes [integer (kind=8)] :: Bit stream offset after compression, in bytes, or
zero on failure

function zFORp_decompress(stream, field)
Wrapper for zfp_decompress()

Parameters

• stream [zFORp_stream,in] :: Compressed stream

• field [zFORp_field,in] :: Field metadata

Return
bitstream_offset_bytes [integer (kind=8)] :: Bit stream offset after decompression, in bytes, or
zero on failure

function zFORp_write_header(stream, field, mask)
Wrapper for zfp_write_header()

Parameters

• stream [zFORp_stream,in] :: Compressed stream

• field [zFORp_field,in] :: Field metadata

• mask [integer,in] :: Bit mask indicating which parts of header to write

Return
num_bits_written [integer (kind=8)] :: Number of header bits written or zero on failure
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function zFORp_read_header(stream, field, mask)
Wrapper for zfp_read_header()

Parameters

• stream [zFORp_stream,in] :: Compressed stream

• field [zFORp_field,in] :: Field metadata

• mask [integer,in] :: Bit mask indicating which parts of header to read

Return
num_bits_read [integer (kind=8)] :: Number of header bits read or zero on failure
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CHAPTER

TWELVE

COMPRESSED-ARRAY C++ CLASSES

zfp’s compressed arrays are C++ classes, plus C wrappers around these classes, that implement random-accessible
single- and multi-dimensional floating-point arrays. Since its first release, zfp provides fixed-rate arrays, zfp::array,
that support both read and write access to individual array elements. As of 1.0.0, zfp also supports read-only arrays,
zfp::const_array, for data that is static or is updated only infrequently. The read-only arrays support all of zfp’s
compression modes including variable-rate and lossless compression.

For fixed-rate arrays, the storage size, specified in number of bits per array element, is set by the user. Such arbitrary
storage is achieved via zfp’s lossy fixed-rate compression mode, by partitioning each d-dimensional array into blocks
of 4d values and compressing each block to a fixed number of bits. The more smoothly the array values vary along each
dimension, the more accurately zfp can represent them. In other words, these arrays are not suitable for representing
data where adjacent elements are not correlated. Rather, the expectation is that the array represents a regularly sampled
and predominantly continuous function, such as a temperature field in a physics simulation.

The rate, measured in number of bits per array element, can be specified in fractions of a bit (but see FAQs #12 and #18
for limitations). zfp supports 1D, 2D, 3D, and (as of version 1.0.0) 4D arrays. For higher-dimensional arrays, consider
using an array of zfp arrays. Note that array dimensions need not be multiples of four; zfp transparently handles partial
blocks on array boundaries.

Read-only arrays allow setting compression mode and parameters on construction, and can optionally be initialized
with uncompressed data. These arrays do not allow updating individual array elements, though the contents of the
whole array may be updated by re-compressing and overwriting the array. This may be useful in applications that
decompress the whole array, perform a computation that updates its contents (e.g., a stencil operation that advances
the solution of a PDE), and then compress to memory the updated array.

The C++ templated array classes are implemented entirely as header files that call the zfp C library to perform com-
pression and decompression. These arrays cache decompressed blocks to reduce the number of compression and de-
compression calls. Whenever an array value is read, the corresponding block is first looked up in the cache, and if found
the uncompressed value is returned. Otherwise the block is first decompressed and stored in the cache. Whenever an
array element is written (whether actually modified or not), a “dirty bit” is set with its cached block to indicate that the
block must be compressed back to persistent storage when evicted from the cache.

This section documents the public interface to the array classes, including base classes and member accessor classes
like proxy references/pointers, iterators, and views.

The following sections are available:

• Read-Write Fixed-Rate Arrays

• Read-Only Variable-Rate Arrays

• Caching

• Serialization

• References

• Pointers
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• Iterators

• Views

• Codec

• Index

12.1 Read-Write Fixed-Rate Arrays

There are eight array classes for 1D, 2D, 3D, and 4D read-write arrays, each of which can represent single- or double-
precision values. Although these arrays store values in a form different from conventional single- and double-precision
floating point, the user interacts with the arrays via floats and doubles.

The array classes can often serve as direct substitutes for C/C++ single- and multi-dimensional floating-point arrays
and STL vectors, but have the benefit of allowing fine control over storage size. All classes below belong to the zfp
namespace.

Note: Much of the compressed-array API was modified in zfp 1.0.0 to support 64-bit indexing of very large arrays.
In particular, array dimensions and indices now use the size_t type instead of uint and strides use the ptrdiff_t
type instead of int.

12.1.1 Base Class

class array
Virtual base class for common array functionality.

zfp_type array::scalar_type() const
Return the underlying scalar type (zfp_type) of the array.

uint array::dimensionality() const
Return the dimensionality (aka. rank) of the array: 1, 2, 3, or 4.

array::header array::get_header() const
Deprecated function as of zfp 1.0.0. See the Header section on how to construct a header.

static array *array::construct(const header &h, const void *buffer = 0, size_t buffer_size_bytes = 0)
Construct a compressed-array object whose scalar type, dimensions, and rate are given by the header h. Return
a base class pointer upon success. The optional buffer points to compressed data that, when passed, is copied
into the array. If buffer is absent, the array is default initialized with all zeroes. The optional buffer_size_bytes
parameter specifies the buffer length in bytes. When passed, a comparison is made to ensure that the buffer size
is at least as large as the size implied by the header. If this function fails for any reason, an exception is thrown.
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12.1.2 Common Methods

The following methods are common to 1D, 2D, 3D, and 4D arrays, but are implemented in the array class specific to
each dimensionality rather than in the base class.

size_t array::size() const
Total number of elements in array, e.g., nx × ny × nz for 3D arrays.

double array::rate() const
Return rate in bits per value.

double array::set_rate(double rate)
Set desired compression rate in bits per value. Return the closest rate supported. See FAQ #12 and FAQ #18 for
discussions of the rate granularity. This method destroys the previous contents of the array.

size_t array::size_bytes(uint mask = ZFP_DATA_ALL) const
Return storage size of components of array data structure indicated by mask. The mask is constructed via bitwise
OR of predefined constants. Available as of zfp 1.0.0.

size_t array::compressed_size() const
Return number of bytes of storage for the compressed data. This amount does not include the small overhead
of other class members or the size of the cache. Rather, it reflects the size of the memory buffer returned by
compressed_data().

void *array::compressed_data() const
Return pointer to compressed data for read or write access. The size of the buffer is given by
compressed_size().

Note: As of zfp 1.0.0, the return value is void* rather than uchar* to simplify pointer conversion and to dispel any
misconception that the compressed data needs only uchar alignment. Compressed streams are always word aligned
(see stream_word_bits and BIT_STREAM_WORD_TYPE).

size_t array::cache_size() const
Return the cache size in number of bytes.

void array::set_cache_size(size_t bytes)
Set minimum cache size in bytes. The actual size is always a power of two bytes and consists of at least one
block. If bytes is zero, then a default cache size is used, which requires the array dimensions to be known.
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void array::clear_cache() const
Empty cache without compressing modified cached blocks, i.e., discard any cached updates to the array.

virtual void array::flush_cache() const
Flush cache by compressing all modified cached blocks back to persistent storage and emptying the cache. This
method should be called before writing the compressed representation of the array to disk, for instance.

void array::get(Scalar *p) const
Decompress entire array and store at p, for which sufficient storage must have been allocated. The uncompressed
array is assumed to be contiguous (with default strides) and stored in the usual “row-major” order, i.e., with x
varying faster than y, y varying faster than z, etc.

void array::set(const Scalar *p)
Initialize array by copying and compressing data stored at p. The uncompressed data is assumed to be stored as
in the get() method. If p = 0, then the array is zero-initialized.

const_reference array::operator[](size_t index) const
Return const reference to scalar stored at given flat index (inspector). For a 3D array, index = x + nx * (y
+ ny * z).

Note: As of zfp 1.0.0, the return value is no longer Scalar but is a const reference to the corresponding array element
(conceptually equivalent to const Scalar&). This API change was necessary to allow obtaining a const pointer to
the element when the array itself is const qualified, e.g., const_pointer p = &a[index];.

reference array::operator[](size_t index)
Return proxy reference to scalar stored at given flat index (mutator). For a 3D array, index = x + nx * (y +
ny * z).

iterator array::begin()
Return random-access mutable iterator to beginning of array.

iterator array::end()
Return random-access mutable iterator to end of array. As with STL iterators, the end points to a virtual element
just past the last valid array element.

const_iterator array::begin() const

const_iterator array::cbegin() const
Return random-access const iterator to beginning of array.

80 Chapter 12. Compressed-Array C++ Classes



zfp Documentation, Release 1.0.1

const_iterator array::end() const

const_iterator array::cend() const
Return random-access const iterator to end of array.

Note: Const references, pointers, and iterators are available as of zfp 1.0.0.

12.1.3 1D, 2D, 3D, and 4D Arrays

Below are classes and methods specific to each array dimensionality and template scalar type (float or double).
Since the classes and methods share obvious similarities regardless of dimensionality, only one generic description for
all dimensionalities is provided.

Note: In the class declarations below, the class template for the scalar type is omitted for readability, e.g., class
array1 is used as shorthand for template <typename Scalar> class array1. Wherever the type Scalar ap-
pears, it refers to this template argument.

class array1 : public array

class array2 : public array

class array3 : public array

class array4 : public array
This is a 1D, 2D, 3D, or 4D array that inherits basic functionality from the generic array base class. The
template argument, Scalar, specifies the floating type returned for array elements. The suffixes f and d can also
be appended to each class to indicate float or double type, e.g., array1f is a synonym for array1<float>.

class arrayANY : public array
Fictitious class used to refer to any one of array1, array2, array3, and array4. This class is not part of the
zfp API.

array1::array1()

array2::array2()

array3::array3()

array4::array4()

Default constructor. Creates an empty array whose size and rate are both zero.

Note: The default constructor is useful when the array size or rate is not known at time of construction. Before the array
can become usable, however, it must be resized and its rate must be set via array::set_rate(). These two tasks can
be performed in either order. Furthermore, the desired cache size should be set using array::set_cache_size(),
as the default constructor creates a cache that holds only one zfp block, i.e., the minimum possible.

array1::array1(size_t n, double rate, const Scalar *p = 0, size_t cache_size = 0)
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array2::array2(size_t nx, size_t ny, double rate, const Scalar *p = 0, size_t cache_size = 0)

array3::array3(size_t nx, size_t ny, size_t nz, double rate, const Scalar *p = 0, size_t cache_size = 0)

array4::array4(size_t nx, size_t ny, size_t nz, size_t nw, double rate, const Scalar *p = 0, size_t cache_size = 0)
Constructor of array with dimensions n (1D), nx × ny (2D), nx × ny × nz (3D), or nx × ny × nz × nw (4D)
using rate bits per value, at least cache_size bytes of cache, and optionally initialized from flat, uncompressed
array p. If cache_size is zero, a default cache size suitable for the array dimensions is chosen.

array1::array1(const array::header &h, const void *buffer = 0, size_t buffer_size_bytes = 0)

array2::array2(const array::header &h, const void *buffer = 0, size_t buffer_size_bytes = 0)

array3::array3(const array::header &h, const void *buffer = 0, size_t buffer_size_bytes = 0)

array4::array4(const array::header &h, const void *buffer = 0, size_t buffer_size_bytes = 0)
Constructor from previously serialized compressed array. The header, h, contains array metadata, while the
optional buffer points to the compressed data that is to be copied to the array. The optional buffer_size_bytes
parameter specifies the buffer length. If the constructor fails, an exception is thrown. See array::construct()
for further details on the buffer and buffer_size_bytes parameters.

array1::array1(const array1 &a)

array2::array2(const array2 &a)

array3::array3(const array3 &a)

array4::array4(const array4 &a)
Copy constructor. Performs a deep copy.

virtual array1::~array1()

virtual array2::~array2()

virtual array3::~array3()

virtual array4::~array4()
Virtual destructor (allows for inheriting from zfp arrays).

array1 &array1::operator=(const array1 &a)

array2 &array2::operator=(const array2 &a)

array3 &array3::operator=(const array3 &a)

array4 &array4::operator=(const array4 &a)
Assignment operator. Performs a deep copy.

size_t array2::size_x() const
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size_t array2::size_y() const

size_t array3::size_x() const

size_t array3::size_y() const

size_t array3::size_z() const

size_t array4::size_x() const

size_t array4::size_y() const

size_t array4::size_z() const

size_t array4::size_w() const
Return array dimensions.

void array1::resize(size_t n, bool clear = true)

void array2::resize(size_t nx, size_t ny, bool clear = true)

void array3::resize(size_t nx, size_t ny, size_t nz, bool clear = true)

void array4::resize(size_t nx, size_t ny, size_t nz, size_t nw, bool clear = true)
Resize the array (all previously stored data will be lost). If clear is true, then the array elements are all initialized
to zero.

Note: It is often desirable (though not a requirement) to also set the cache size when resizing an array, e.g., in
proportion to the array size; see array::set_cache_size(). This is particularly important when the array is default
constructed, which initializes the cache size to the minimum possible of only one zfp block.

const_reference array1::operator()(size_t i) const

const_reference array2::operator()(size_t i, size_t j) const

const_reference array3::operator()(size_t i, size_t j, size_t k) const

const_reference array4::operator()(size_t i, size_t j, size_t k, size_t l) const
Return const reference to element stored at multi-dimensional index given by i, j, k, and l (inspector).

Note: As of zfp 1.0.0, the return value is no longer Scalar but is a const reference to the corresponding array element
(essentially equivalent to const Scalar&). This API change was necessary to allow obtaining a const pointer to the
element when the array itself is const qualified, e.g., const_pointer p = &a(i, j, k);.

reference array1::operator()(size_t i)

reference array2::operator()(size_t i, size_t j)

reference array3::operator()(size_t i, size_t j, size_t k)

reference array4::operator()(size_t i, size_t j, size_t k, size_t l)
Return proxy reference to scalar stored at multi-dimensional index given by i, j, k, and l (mutator).
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12.2 Read-Only Variable-Rate Arrays

Read-only arrays are preferable in applications that store static data, e.g., constant tables or simulation output, or data
that is updated only periodically as a whole, such as when advancing the solution of a partial differential equation.
Because such updates have to be applied to the whole array, one may choose to tile large arrays into smaller zfp arrays
to support finer granularity updates. Read-only arrays have the benefit of supporting all of zfp’s compression modes,
most of which provide higher accuracy per bit stored than fixed-rate mode.

The read-only arrays share an API with the read-write fixed-rate arrays, with only a few differences:

• All methods other than those that specify array-wide settings, such as compression mode and parameters, array
dimensions, and array contents, are const qualified. There are, thus, no methods for obtaining a writeable
reference, pointer, or iterator. Consequently, one may not initialize such arrays one element at a time. Rather,
the user initializes the whole array by passing a pointer to uncompressed data.

• Whereas the constructors for fixed-rate arrays accept a rate parameter, the read-only arrays allow specifying any
compression mode and corresponding parameters (if any) via a zfp_config object.

• Additional methods are available for setting and querying compression mode and parameters after construction.

• Read-only arrays are templated on a block index class that encodes the bit offset to each block of data. Multiple
index classes are available that trade compactness and speed of access. The default hybrid4 index represents
64-bit offsets using only 24 bits of amortized storage per block. An “implicit” index is available for fixed-rate
read-only arrays, which computes rather than stores offsets to equal-sized blocks.

Note: Whereas variable-rate compression almost always improves accuracy per bit of compressed data over fixed rate,
one should also weigh the storage and compute overhead associated with the block index needed for variable-rate stor-
age. The actual storage overhead can be determined by passing ZFP_DATA_INDEX to const_array::size_bytes().
This overhead tends to be small for 3D and 4D arrays.

Array initialization may be done at construction time, by passing a pointer to uncompressed data, or via the method
const_array::set(), which overwrites the contents of the whole array. This method may be called more than once
to update (i.e., re-initialize) the array.

Read-only arrays support a subset of references, pointers, iterators, and views; in particular those with a const_ prefix.

Currently, not all capabilities of read-write arrays are available for read-only arrays. For example, (de)serialization and
construction from a view have not yet been implemented, and there are no C bindings.

Read-only arrays derive from the array base class. Additional methods are documented below.

class const_array1 : public array

class const_array2 : public array

class const_array3 : public array

class const_array4 : public array
1D, 2D, 3D, or 4D read-only array that inherits basic functionality from the generic array base class. The
template argument, Scalar, specifies the floating type returned for array elements. The suffixes f and d
can also be appended to each class to indicate float or double type, e.g., const_array1f is a synonym for
const_array1<float>.

class const_array : public array
Fictitious class used to denote one of the 1D, 2D, 3D, and 4D read-only array classes. This pseudo base class
serves only to document the API shared among the four arrays.
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const_array1::const_array1()

const_array2::const_array2()

const_array3::const_array3()

const_array4::const_array4()

Default constructor. Creates an empty array whose size is zero and whose compression mode is unspecified.
The array’s cache size is initialized to the minimum possible, which can have performance implications; see this
note.

const_array1::const_array1(size_t n, const zfp_config &config, const Scalar *p = 0, size_t cache_size = 0)

const_array2::const_array2(size_t nx, size_t ny, const zfp_config &config, const Scalar *p = 0, size_t
cache_size = 0)

const_array3::const_array3(size_t nx, size_t ny, size_t nz, const zfp_config &config, const Scalar *p = 0,
size_t cache_size = 0)

const_array4::const_array4(size_t nx, size_t ny, size_t nz, size_t nw, const zfp_config &config, const Scalar
*p = 0, size_t cache_size = 0)

Constructor of array with dimensions n (1D), nx × ny (2D), nx × ny × nz (3D), or nx × ny × nz × nw (4D). The
compression mode and parameters are given by config (see configuration). The array uses at least cache_size
bytes of cache, and is optionally initialized from flat, uncompressed array p. If cache_size is zero, a default cache
size suitable for the array dimensions is chosen.

const_array1::const_array1(const const_array1 &a)

const_array2::const_array2(const const_array2 &a)

const_array3::const_array3(const const_array3 &a)

const_array4::const_array4(const const_array4 &a)
Copy constructor. Performs a deep copy.

virtual const_array1::~const_array1()

virtual const_array2::~const_array2()

virtual const_array3::~const_array3()

virtual const_array4::~const_array4()
Virtual destructor (allows for inheritance).

const_array1 &const_array1::operator=(const const_array1 &a)

const_array2 &const_array2::operator=(const const_array2 &a)
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const_array3 &const_array3::operator=(const const_array3 &a)

const_array4 &const_array4::operator=(const const_array4 &a)
Assignment operator. Performs a deep copy.

size_t const_array::size() const
Total number of elements in array, e.g., nx × ny × nz for 3D arrays.

size_t const_array2::size_x() const

size_t const_array2::size_y() const

size_t const_array3::size_x() const

size_t const_array3::size_y() const

size_t const_array3::size_z() const

size_t const_array4::size_x() const

size_t const_array4::size_y() const

size_t const_array4::size_z() const

size_t const_array4::size_w() const
Return array dimensions.

void const_array1::resize(size_t n, bool clear = true)

void const_array2::resize(size_t nx, size_t ny, bool clear = true)

void const_array3::resize(size_t nx, size_t ny, size_t nz, bool clear = true)

void const_array4::resize(size_t nx, size_t ny, size_t nz, size_t nw, bool clear = true)
Resize the array (all previously stored data will be lost). If clear is true, then the array elements are all initialized
to zero. See also this note.

zfp_mode const_array::mode() const
Currently selected compression mode. If not yet specified, zfp_mode_null is returned.

double const_array::rate() const
Return rate in compressed bits per value when fixed-rate mode is enabled, else zero.

uint const_array::precision() const
Return precision in uncompressed bits per value when fixed-precision mode is enabled, else zero.
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double const_array::accuracy() const
Return accuracy as absolute error tolerance when fixed-accuracy mode is enabled, else zero.

void const_array::params(uint *minbits, uint *maxbits, uint *maxprec, int *minexp) const
Expert mode compression parameters (available for all compression modes). Pointers may be null if the corre-
sponding parameter is not requested.

double const_array::set_reversible()
Enable reversible mode. This method destroys the previous contents of the array.

double const_array::set_rate(double rate)
Set desired rate in compressed bits per value (enables fixed-rate mode). This method destroys the previous
contents of the array. See also array::set_rate().

Note: Whereas the read-write fixed-rate arrays (zfp::array) require that block storage is word aligned, the read-
only arrays (zfp::const_array) are not subject to such restrictions and therefore support finer rate granularity. For
a d-dimensional const_array, the rate granularity is 4-d bits/value, e.g., a quarter bit/value for 1D arrays.

uint const_array::set_precision(uint precision)
Set desired precision in uncompressed bits per value (enables fixed-precision mode). This method destroys the
previous contents of the array.

double const_array::set_accuracy(double tolerance)
Set desired accuracy as absolute error tolerance (enables fixed-accuracy mode). This method destroys the previ-
ous contents of the array.

bool const_array::set_params(uint minbits, uint maxbits, uint maxprec, int minexp)
Set expert mode parameters. This method destroys the previous contents of the array. Return whether the codec
supports the combination of parameters.

void const_array::set_config(const zfp_config &config)
Set compression mode and parameters given by config (see configuration). This is a more general method for
setting compression parameters such as rate, precision, accuracy, and expert mode parameters.

size_t const_array::size_bytes(uint mask = ZFP_DATA_ALL) const
Return storage size of components of array data structure indicated by mask. The mask is constructed via bitwise
OR of predefined constants.
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size_t const_array::compressed_size() const
Return number of bytes of storage for the compressed data. This amount does not include the small overhead
of other class members or the size of the cache. Rather, it reflects the size of the memory buffer returned by
compressed_data().

void *const_array::compressed_data() const
Return pointer to compressed data for read or write access. The size of the buffer is given by
compressed_size().

size_t const_array::cache_size() const
Return the cache size in number of bytes.

void const_array::set_cache_size(size_t bytes)
Set minimum cache size in bytes. The actual size is always a power of two bytes and consists of at least one
block. If bytes is zero, then a default cache size is used, which requires the array dimensions to be known.

void const_array::clear_cache() const
Empty cache.

void const_array::get(Scalar *p) const
Decompress entire array and store at p, for which sufficient storage must have been allocated. The uncompressed
array is assumed to be contiguous (with default strides) and stored in the usual “row-major” order, i.e., with x
varying faster than y, y varying faster than z, etc.

void const_array::set(const Scalar *p, bool compact = true)
Initialize array by copying and compressing floating-point data stored at p. If p = 0, then the array is zero-
initialized. The uncompressed data is assumed to be stored as in the get()method. Since the size of compressed
data may not be known a priori, this method conservatively allocates enough space to hold it. If compact is true,
any unused storage for compressed data is freed after initialization.

const_reference const_array1::operator()(size_t i) const

const_reference const_array2::operator()(size_t i, size_t j) const

const_reference const_array3::operator()(size_t i, size_t j, size_t k) const

const_reference const_array4::operator()(size_t i, size_t j, size_t k, size_t l) const
Return const reference to element stored at multi-dimensional index given by i, j, k, and l (inspector).
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const_reference const_array::operator[](size_t index) const
Return const reference to scalar stored at given flat index (inspector). For a 3D array, index = x + nx * (y
+ ny * z).

const_iterator const_array::begin() const

const_iterator const_array::cbegin() const
Return random-access const iterator to beginning of array.

const_iterator end() const

const_iterator cend() const
Return random-access const iterator to end of array.

12.3 Caching

As mentioned above, the array classes maintain a software write-back cache of at least one uncompressed block. When
a block in this cache is evicted (e.g., due to a conflict), it is compressed back to permanent storage only if it was modified
while stored in the cache.

The size cache to use is specified by the user and is an important parameter that needs careful consideration in order
to balance the extra memory usage, performance, and quality (recall that data loss is incurred only when a block is
evicted from the cache and compressed). Although the best choice varies from one application to another, we suggest
allocating at least two “layers” of blocks, e.g., 2 × (nx / 4) × (ny / 4) blocks for 3D arrays, for applications that stream
through the array and perform stencil computations such as gathering data from neighboring elements. This allows
limiting the cache misses to compulsory ones. If the cache_size parameter provided to the constructor is set to zero
bytes, then a default cache size of at least

√
n blocks is used, where n is the total number of blocks contained in the

array.

The cache size can be set during construction, or can be set at a later time via array::set_cache_size(). Note
that if cache_size = 0, then the array dimensions must have already been specified for the default size to be computed
correctly. When the cache is resized, it is first flushed if not already empty. The cache can also be flushed explic-
itly if desired by calling array::flush_cache(). To empty the cache without compressing any cached data, call
array::clear_cache(). To query the byte size of the cache, use array::cache_size().

By default, a direct-mapped cache is used with a hash function that maps block indices to cache lines. A faster but more
collision prone hash can be enabled by defining the preprocessor macro ZFP_WITH_CACHE_FAST_HASH . A two-way
skew-associative cache is enabled by defining the preprocessor macro ZFP_WITH_CACHE_TWOWAY .

12.4 Serialization

zfp’s read-write compressed arrays can be serialized to sequential, contiguous storage and later recovered back into
an object, e.g., to support I/O of compressed-array objects. Two pieces of information are needed to describe a zfp
array: the raw compressed data, obtained via array::compressed_data() and array::compressed_size(), and
a header that describes the array scalar type, dimensions, and rate. The user may concatenate the header and compressed
data to form a fixed-rate byte stream that can be read by the zfp command-line tool. When serializing the array, the
user should first call array::flush_cache() before accessing the raw compressed data.

There are two primary ways to construct a compressed-array object from compressed data: via array-specific construc-
tors and via a generic factory function:
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• When the array scalar type (i.e., float or double) and dimensionality (i.e., 1D, 2D, 3D, or 4D) are already
known, the corresponding array constructor may be used. If the scalar type and dimensionality stored in the
header do not match the array class, then an exception is thrown.

• zfp provides a factory function that can be used when the serialized array type is unknown but described
in the header. This function returns a pointer to the abstract base class, array, which the caller should
dynamically cast to the corresponding derived array, e.g., by examining array::scalar_type() and
array::dimensionality().

The (static) factory function is made available by including zfp/factory.hpp. This header must be included
after first including the header files associated with the compressed arrays, i.e., zfp/array1.hpp, zfp/array2.
hpp, zfp/array3.hpp, and zfp/array4.hpp. Only those arrays whose header files are included can be con-
structed by the factory function. This design decouples the array classes so that they may be included indepen-
dently, for example, to reduce compilation time.

Both types of deserialization functions accept an array::header, an optional buffer holding compressed data, and
an optional buffer size. If this buffer is provided, then a separate copy of the compressed data it holds is made, which
is used to initialize the array. If the optional buffer size is also provided, then these functions throw an exception if
the size is not at least as large as is expected from the metadata stored in the header. This safeguard is implemented
to avoid accessing memory beyond the end of the buffer. If no buffer is provided, then all array elements are default
initialized to zero. The array may later be initialized by directly reading/copying data into the space pointed to by
array::compressed_data() and calling array::clear_cache() (in either order).

Below is a simple example of serialization of a 3D compressed array of doubles (error checking has been omitted for
clarity):

zfp::array3d a(nx, ny, nz, rate);
...
a.flush_cache();
zfp::array::header h(a);
fwrite(h.data(), h.size_bytes(), 1, file);
fwrite(a.compressed_data(), a.compressed_size(), 1, file);

We may then deserialize this array using the factory function. The following example reads the compressed data directly
into the array without making a copy:

zfp::array::header h;
fread(h.data(), h.size_bytes(), 1, file);
zfp::array* p = zfp::array::construct(h);
fread(p->compressed_data(), p->compressed_size(), 1, file);
assert(p->dimensionality() == 3 && p->scalar_type() == zfp_type_double);
zfp::array3d& a = *dynamic_cast<zfp::array3d*>(p);

When the array is no longer in use, call delete p; to deallocate it.

Note: The array serialization API changed significantly in zfp 1.0.0. The array::get_header() function is now
deprecated and has been replaced with a header constructor that takes an array as parameter. Exceptions are now part
of the main zfp namespace rather than nested within the array header. The header is no longer a simple POD data
structure but should be queried for its data pointer and size.
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12.4.1 Header

Short 12-byte headers are used to describe array metadata and compression parameters when serializing a compressed
array. This header is the same as supported by the zfp_read_header() and zfp_write_header() functions, using
ZFP_HEADER_FULL to indicate that complete metadata is to be stored in the header. The header is also compatible with
the zfp command-line tool. Processing of the header may result in an exception being thrown.

Note: Compressed-array headers use zfp’s most concise representation of only 96 bits. Such short headers support
compressed blocks up to 2048 bits long. This implies that the highest rate for 3D arrays is 2048/43 = 32 bits/value;
the highest rate for 4D arrays is only 2048/44 = 8 bits/value. 3D and 4D arrays whose rate exceeds these limits cannot
be serialized and result in an exception being thrown. 1D and 2D arrays support rates up to 512 and 128 bits/value,
respectively, which both are large enough to represent all usable rates.

class array::header
The header stores information such as scalar type, array dimensions, and compression parameters such as rate.
Compressed-array headers are always 96 bits long.

header::header()

Default constructor for header.

header::header(const array &a)
Construct header for compressed-array a. Throws an exception upon failure.

header::header(const void *buffer, size_t bytes = 0)
Deserialize header from memory buffer given by buffer of optional size bytes. This memory buffer is obtained
from an existing header during serialization via header::data() and header::size_bytes(). The construc-
tor throws an exception upon failure.

zfp_type header::scalar_type() const
Scalar type associated with array (see array::scalar_type()).

uint header::dimensionality() const
Dimensionality associated with array (see array::dimensionality()).

size_t header::size_x() const

size_t header::size_y() const

size_t header::size_z() const

size_t header::size_w() const
Array dimensions. Unused dimensions have a size of zero.

12.4. Serialization 91



zfp Documentation, Release 1.0.1

double header::rate() const
Rate in bits per value (see array::rate());

virtual const void *header::data() const = 0
Return pointer to header data.

virtual size_t header::size_bytes(uint mask = ZFP_DATA_HEADER) const = 0
When mask = ZFP_DATA_HEADER , return header payload size in bytes pointed to by header::data(). Only
those bytes are needed to (de)serialize a header. The header object stores additional (redundant) metadata whose
size can be queried via ZFP_DATA_META .

12.4.2 Exceptions

class exception : public std::runtime_error
Compressed arrays may throw this exception upon serialization, when constructing a header via its construc-
tor, or deserialization, when constructing a compressed array via its constructor or factory function. The
exception::what() method returns a std::string error message that indicates the cause of the exception.
Most error messages changed in zfp 1.0.0.

12.5 References

class array1::const_reference

class array2::const_reference

class array3::const_reference

class array4::const_reference

class array1::reference : public array1::const_reference

class array2::reference : public array2::const_reference

class array3::reference : public array3::const_reference

class array4::reference : public array4::const_reference

Array indexing operators must return lvalue references that alias array elements and serve as vehicles for assigning
values to those elements. Unfortunately, zfp cannot simply return a standard C++ reference (e.g., float&) to an un-
compressed array element since the element in question may exist only in compressed form or as a transient cached
entry that may be invalidated (evicted) at any point.

To address this, zfp provides proxies for references and pointers that act much like regular references and pointers,
but which refer to elements by array and index rather than by memory address. When assigning to an array element
through such a proxy reference or pointer, the corresponding element is decompressed to cache (if not already cached)
and immediately updated.

zfp references may be freely passed to other functions and they remain valid during the lifetime of the corresponding
array element. One may also take the address of a reference, which yields a proxy pointer. When a reference appears
as an rvalue in an expression, it is implicitly converted to a value.
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zfp 1.0.0 adds const qualified versions of references, pointers, and iterators to support const correctness and potential
performance improvements when only read access is needed. As with STL containers, the corresponding types are
prefixed by const_, e.g., const_reference. The mutable versions of these classes inherit the read-only API from
the corresponding const versions.

Only references into read-write arrays are discussed here; the read-only arrays support the same const_reference
API.

Note: Do not confuse const_reference and const reference. The former is a reference to an immutable array
element, while the latter means that the proxy reference object itself is immutable.

References define a single type:

type reference::value_type

type const_reference::value_type
Scalar type associated with referenced array elements.

The following operators are defined for zfp references. They act on the referenced array element in the same manner
as operators defined for conventional C++ references. References are obtained via array inspectors and mutators.

value_type reference::operator value_type() const

value_type const_reference::operator value_type() const
Conversion operator for dereferencing the reference. Return the value of the referenced array element.

pointer reference::operator&() const

const_pointer const_reference::operator&() const
Return (const) pointer to the referenced array element.

reference reference::operator=(const reference &ref)
Assignment (copy) operator. The referenced element, elem, is assigned the value stored at the element referenced
by ref. Return *this.

reference reference::operator=(Scalar val)

reference reference::operator+=(Scalar val)

reference reference::operator-=(Scalar val)

reference reference::operator*=(Scalar val)

reference reference::operator/=(Scalar val)
Assignment and compound assignment operators. For a given operator op, update the referenced element, elem,
via elem op val. Return *this.
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12.6 Pointers

class array1::const_pointer

class array2::const_pointer

class array3::const_pointer

class array4::const_pointer

class array1::pointer : public array1::const_pointer

class array2::pointer : public array2::const_pointer

class array3::pointer : public array3::const_pointer

class array4::pointer : public array4::const_pointer

Similar to references, zfp supports proxy pointers (also known as fancy pointers) to individual array elements. From
the user’s perspective, such pointers behave much like regular pointers to uncompressed data, e.g., instead of

float a[ny][nx]; // uncompressed 2D array of floats
float* p = &a[0][0]; // point to first array element
p[nx] = 1; // set a[1][0] = 1
*++p = 2; // set a[0][1] = 2

one would write

zfp::array2<float> a(nx, ny, rate); // compressed 2D array of floats
zfp::array2<float>::pointer p = &a(0, 0); // point to first array element
p[nx] = 1; // set a(0, 1) = 1
*++p = 2; // set a(1, 0) = 2

However, even though zfp’s proxy pointers point to individual scalars, they are associated with the array that those
scalars are stored in, including the array’s dimensionality. Pointers into arrays of different dimensionality have incom-
patible type. Moreover, pointers to elements in different arrays are incompatible. For example, one cannot take the
difference between pointers into two different arrays.

Unlike zfp’s proxy references, its proxy pointers support traversing arrays using conventional pointer arithmetic. In
particular, unlike the iterators below, zfp’s pointers are oblivious to the fact that the compressed arrays are parti-
tioned into blocks, and the pointers traverse arrays element by element as though the arrays were flattened to one-
dimensional arrays. That is, if p points to the first element of a 3D array a(nx, ny, nz), then a(i, j, k) ==
p[i + nx * (j + ny * k)]. In other words, pointer indexing follows the same order as flat array indexing (see
array::operator[]()).

A pointer remains valid during the lifetime of the array into which it points. Like conventional pointers, proxy pointers
can be passed to other functions and manipulated there, for instance, by passing the pointer by reference via pointer&.

As of zfp 1.0.0, const qualified pointers const_pointer are available, and conceptually are equivalent to const
Scalar*. Pointers are available for read-only arrays also.

The following operators are defined for proxy pointers. Below p refers to the pointer being acted upon.

pointer pointer::operator=(const pointer &q)

const_pointer const_pointer::operator=(const const_pointer &q)
Assignment operator. Assigns q to p.
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reference pointer::operator*() const

const_reference const_pointer::operator*() const
Dereference operator. Return proxy (const) reference to the value pointed to by p.

reference pointer::operator[](ptrdiff_t d) const

const_reference const_pointer::operator[](ptrdiff_t d) const
Offset dereference operator. Return proxy (const) reference to the value stored at p[d].

pointer pointer::operator+(ptrdiff_t d) const

const_pointer const_pointer::operator+(ptrdiff_t d) const
Return a copy of the pointer incremented by d.

pointer pointer::operator-(ptrdiff_t d) const

const_pointer const_pointer::operator-(ptrdiff_t d) const
Return a copy of the pointer decremented by d.

ptrdiff_t pointer::operator-(const pointer &q) const

ptrdiff_t const_pointer::operator-(const const_pointer &q) const
Return difference p - q. Defined only for pointers within the same array.

bool pointer::operator==(const pointer &q) const

bool const_pointer::operator==(const const_pointer &q) const
Return true if p and q point to the same array element.

bool pointer::operator!=(const pointer &q) const

bool const_pointer::operator!=(const const_pointer &q) const
Return true if p and q do not point to the same array element. This operator returns false if p and q do not point
into the same array.

bool pointer::operator<=(const pointer &q) const

bool pointer::operator>=(const pointer &q) const

bool pointer::operator<(const pointer &q) const

bool pointer::operator>(const pointer &q) const

bool const_pointer::operator<=(const const_pointer &q) const
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bool const_pointer::operator>=(const const_pointer &q) const

bool const_pointer::operator<(const const_pointer &q) const

bool const_pointer::operator>(const const_pointer &q) const
Return true if the two pointers satisfy the given relationship. These operators return false if p and q do not point
into the same array.

pointer &pointer::operator++()

const_pointer &const_pointer::operator++()

Prefix increment pointer, i.e., ++p. Return reference to the incremented pointer.

pointer &pointer::operator--()

const_pointer &const_pointer::operator--()

Prefix decrement pointer, i.e., --p. Return reference to the decremented pointer.

pointer pointer::operator++(int)

const_pointer const_pointer::operator++(int)
Postfix increment pointer, i.e., p++. Return a copy of the pointer before it was incremented.

pointer pointer::operator--(int)

const_pointer const_pointer::operator--(int)
Postfix decrement pointer, i.e., p--. Return a copy of the pointer before it was decremented.

pointer pointer::operator+=(ptrdiff_t d)

const_pointer const_pointer::operator+=(ptrdiff_t d)
Increment pointer by d. Return a copy of the incremented pointer.

pointer pointer::operator-=(ptrdiff_t d)

const_pointer const_pointer::operator-=(ptrdiff_t d)
Decrement pointer by d. Return a copy of the decremented pointer.
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12.7 Iterators

class array1::const_iterator

class array2::const_iterator

class array3::const_iterator

class array4::const_iterator

class array1::iterator : public array1::const_iterator

class array2::iterator : public array2::const_iterator

class array3::iterator : public array3::const_iterator

class array4::iterator : public array4::const_iterator

Iterators provide a mechanism for traversing a possibly multi-dimensional array—or a view of a subset of an ar-
ray—without having to track array indices or bounds. They are also the preferred mechanism, compared to nested
index loops, for initializing arrays, because they sequentially visit the array one block at a time. This allows all ele-
ments of a block to be initialized together and ensures that the block is not compressed to memory before it has been
fully initialized, which might otherwise result in poor compression and, consequently, larger compression errors than
when the entire block is initialized as a whole. Note that the iterator traversal order differs in this respect from traversal
by pointers.

Blocks are visited in raster order similarly to how individual array elements are indexed, that is, first by x, then by y,
then by z, etc. Within each block, elements are visited in the same raster order. All 4d values in a block are visited
before moving on to the next block (see Fig. 12.1).

As of zfp 1.0.0, all iterators provided by zfp are random access iterators (previously, multi-dimensional array iterators
were only forward iterators). zfp iterators are STL compliant and can be used in STL algorithms that support random
access iterators.

zfp 1.0.0 adds const qualified versions of iterators, given by the const_iterator class. Such iterators are available
also for read-only arrays.

Per STL mandate, the iterators define several types:

type iterator::value_type
The scalar type associated with the array that the iterator points into.

type iterator::difference_type
Difference between two iterators in number of array elements.

type iterator::reference
The reference type associated with the iterator’s parent array class.

type iterator::pointer
The pointer type associated with the iterator’s parent array class.
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type iterator::iterator_category
Type of iterator: std::random_access_iterator_tag.

For const iterators, the following additional types are defined:

type const_iterator::const_reference
The immutable reference type associated with the iterator’s container class.

type const_iterator::const_pointer
The immutable pointer type associated with the iterator’s container class.

The following operations are defined on iterators:

iterator iterator::operator=(const iterator &it)

const_iterator const_iterator::operator=(const const_iterator &it)
Assignment (copy) operator. Make the iterator point to the same element as it.

reference iterator::operator*() const

const_reference const_iterator::operator*() const
Dereference operator. Return (const) reference to the value pointed to by the iterator.

reference iterator::operator[](difference_type d) const

const_reference const_iterator::operator[](difference_type d) const
Offset dereference operator. Return (const) reference to the value d elements relative to the current element in the
iteration sequence (d may be negative). This operator executes in constant time regardless of array dimensionality
but is more costly than sequential iteration via iterator::operator++().

iterator iterator::operator+(difference_type d) const

const_iterator const_iterator::operator+(difference_type d) const
Return a new iterator that has been incremented by d.

iterator iterator::operator-(difference_type d) const

const_iterator const_iterator::operator-(difference_type d) const
Return a new iterator that has been decremented by d.

difference_type iterator::operator-(const iterator &it) const

difference_type const_iterator::operator-(const const_iterator &it) const
Return difference between this iterator and it in number of elements. The difference p − q between two iterators,
p and q, is negative if p < q. The iterators must refer to elements in the same array.

bool iterator::operator==(const iterator &it) const
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bool const_iterator::operator==(const const_iterator &it) const
Return true if the two iterators point to the same element.

bool iterator::operator!=(const iterator &it) const

bool const_iterator::operator!=(const const_iterator &it) const
Return true if the two iterators do not point to the same element.

bool iterator::operator<=(const iterator &it) const

bool iterator::operator>=(const iterator &it) const

bool iterator::operator<(const iterator &it) const

bool iterator::operator>(const iterator &it) const

bool const_iterator::operator<=(const const_iterator &it) const

bool const_iterator::operator>=(const const_iterator &it) const

bool const_iterator::operator<(const const_iterator &it) const

bool const_iterator::operator>(const const_iterator &it) const
Return true if the two iterators satisfy the given relationship. For two iterators, p and q, within the same array, p
< q if and only if q can be reached by incrementing p one or more times.

iterator &iterator::operator++()

const_iterator &const_iterator::operator++()

Prefix increment (++it). Return a reference to the incremented iterator.

iterator iterator::operator++(int)

const_iterator const_iterator::operator++(int)
Postfix increment (it++). Return the value of the iterator before being incremented.

iterator &iterator::operator--()

const_iterator &const_iterator::operator--()

Prefix decrement (--it). Return a reference to the decremented iterator.

iterator iterator::operator--(int)

const_iterator const_iterator::operator--(int)
Postfix decrement (it--). Return the value of the iterator before being decremented.
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iterator iterator::operator+=(difference_type d)

const_iterator const_iterator::operator+=(difference_type d)
Increment iterator d times. Return value of incremented iterator. Although ++it and it += 1 are semantically
equivalent, the former is more efficient for multidimensional arrays.

iterator iterator::operator-=(difference_type d)

const_iterator const_iterator::operator-=(difference_type d)
Decrement iterator d times. Return value of decremented iterator. Although --it and it -= 1 are semantically
equivalent, the former is more efficient for multidimensional arrays.

size_t iterator::i() const

size_t iterator::j() const

size_t iterator::k() const

size_t iterator::l() const

size_t const_iterator::i() const

size_t const_iterator::j() const

size_t const_iterator::k() const

size_t const_iterator::l() const
Return array index or local view index of element pointed to by the iterator. iterator::i() is defined for all
arrays. iterator::j() is defined only for 2D, 3D, and 4D arrays. iterator::k() is defined only for 3D and
4D arrays. iterator::l() is defined only for 4D arrays.

12.8 Views

zfp 0.5.4 adds array views. Much like how references allow indirect access to single array elements, views provide
indirect access to whole arrays, or more generally to rectangular subsets of arrays. A view of an array does not allocate
any storage for the array elements. Rather, the view accesses shared storage managed by the underlying array. This
allows for multiple entries into an array without the need for expensive deep copies. In a sense, views can be thought
of as shallow copies of arrays.

When a view exposes a whole array array<type>, it provides similar functionality to a C++ reference array<type>&
or pointer array<type>* to the array. However, views are more general in that they also allow restricting access to a
user-specified subset of the array, and unlike pointers also provide for the same syntax when accessing the array, e.g.,
array_view(i, j) instead of (*array_ptr)(i, j).

zfp’s nested views further provide for multidimensional array access analogous to the C/C++ nested array syntax
array[i][j]. Finally, zfp’s private views can be used to ensure thread-safe access to its compressed arrays.

Access to array elements through a view is via inspectors and mutators that return a const_reference or reference,
respectively (see References). As of zfp 1.0.0, it is also possible to obtain pointers to array elements through views
and to iterate over them. View pointers and iterators allow referencing only the elements visible through the view, e.g.,
a rectangular subset of an array (see Fig. 12.1). Those elements are indexed as if the view were a contiguous array,
and pointer arithmetic assumes that the possibly smaller view and not the underlying array is flattened. Private views
maintain their own cache and therefore implement their own proxy references, pointers, and iterators.
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Fig. 12.1: An 11 × 9 element view of a 2D array of dimensions 16 × 12. The numbered elements indicate the order
in which the view is traversed using pointers and iterators. We have view(10, 7) == (&view(0, 0))[87] ==
view.begin()[97] == view.end()[-2].

With the zfp 1.0.0 release of read-only arrays, such arrays also support the two kinds of immutable views (const_view
and private_const_view). The documentation below applies to views into read-only arrays as well.

Note: Like iterators and proxy references and pointers, a view is valid only during the lifetime of the array that it
references. No reference counting is done to keep the array alive. It is up to the user to ensure that the referenced
array object is valid when accessed through a view.

There are several types of views distinguished by these attributes:

• Read-only vs. read-write access.

• Shared vs. private access.

• Flat vs. nested indexing.

Each of these attributes is discussed in detail below in these sections:

• Immutable view

• Mutable view

• Flat view

• Nested view

• Slicing

• Private immutable view

• Private mutable view
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12.8.1 Immutable view

The most basic view is the immutable const_view, which supports read-only access to the array elements it references.
This view serves primarily as a base class for more specialized views. Its constructors allow establishing access to a
whole array or to a rectangular subset of an array. Note that like references, pointers, and iterators, views are types
nested within the arrays that they reference.

class array1::const_view

class array2::const_view

class array3::const_view

class array4::const_view
Immutable view into 1D, 2D, 3D, and 4D array.

array1::const_view::const_view(array1 *array)

array2::const_view::const_view(array2 *array)

array3::const_view::const_view(array3 *array)

array4::const_view::const_view(array4 *array)
Constructor for read-only access to a whole array. As already mentioned, these views are valid only during the
lifetime of the underlying array object.

array1::const_view::const_view(array1 *array, size_t x, size_t nx)

array2::const_view::const_view(array2 *array, size_t x, size_t y, size_t nx, size_t ny)

array3::const_view::const_view(array3 *array, size_t x, size_t y, size_t z, size_t nx, size_t ny, size_t nz)

array4::const_view::const_view(array4 *array, size_t x, size_t y, size_t z, size_t w, size_t nx, size_t ny, size_t
nz, size_t nw)

Constructors for read-only access to a rectangular subset of an array. The subset is specified by an offset, e.g., (x,
y, z) for a 3D array, and dimensions, e.g., (nx, ny, nz) for a 3D array. The rectangle must fit within the surrounding
array.

size_t array1::const_view::global_x(size_t i) const

size_t array2::const_view::global_x(size_t i) const

size_t array2::const_view::global_y(size_t j) const

size_t array3::const_view::global_x(size_t i) const

size_t array3::const_view::global_y(size_t j) const

size_t array3::const_view::global_z(size_t k) const

size_t array4::const_view::global_x(size_t i) const

size_t array4::const_view::global_y(size_t j) const
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size_t array4::const_view::global_z(size_t k) const

size_t array4::const_view::global_w(size_t l) const
Return global array index associated with local view index. For instance, if a 1D view has been constructed with
offset x, then global_x(i) returns x + i.

size_t array1::const_view::size_x() const

size_t array2::const_view::size_x() const

size_t array2::const_view::size_y() const

size_t array3::const_view::size_x() const

size_t array3::const_view::size_y() const

size_t array3::const_view::size_z() const

size_t array4::const_view::size_x() const

size_t array4::const_view::size_y() const

size_t array4::const_view::size_z() const

size_t array4::const_view::size_w() const
Return dimensions of view.

const_reference array1::const_view::operator()(size_t i) const

const_reference array2::const_view::operator()(size_t i, size_t j) const

const_reference array3::const_view::operator()(size_t i, size_t j, size_t k) const

const_reference array4::const_view::operator()(size_t i, size_t j, size_t k, size_t l) const
Return reference to scalar stored at multi-dimensional index given by x + i, y + j, z + k, and w + l, where x, y, z,
and w specify the offset into the array.

const_reference array1::const_view::operator[](size_t index) const
Alternative inspector for 1D arrays identical to array1::const_view::operator()().

array1::const_view::const_iterator array1::const_view::begin() const

array2::const_view::const_iterator array2::const_view::begin() const

array3::const_view::const_iterator array3::const_view::begin() const

array4::const_view::const_iterator array4::const_view::begin() const

array1::const_view::const_iterator array1::const_view::cbegin() const

array2::const_view::const_iterator array2::const_view::cbegin() const
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array3::const_view::const_iterator array3::const_view::cbegin() const

array4::const_view::const_iterator array4::const_view::cbegin() const
Random-access const iterator to first element of view.

array1::const_view::const_iterator array1::const_view::end() const

array2::const_view::const_iterator array2::const_view::end() const

array3::const_view::const_iterator array3::const_view::end() const

array4::const_view::const_iterator array4::const_view::end() const

array1::const_view::const_iterator array1::const_view::cend() const

array2::const_view::const_iterator array2::const_view::cend() const

array3::const_view::const_iterator array3::const_view::cend() const

array4::const_view::const_iterator array4::const_view::cend() const
Random-access const iterator to end of view.

There are a number of common methods inherited from a base class, preview, further up the class hierarchy.

double arrayANY::const_view::rate() const
Return rate in bits per value. Same as array::rate().

size_t arrayANY::const_view::size() const
Total number of elements in view, e.g., nx × ny × nz for 3D views.

With the above definitions, the following example shows how a 2D view is constructed and accessed:

zfp::array2d a(200, 100, rate); // define 200x100 array of doubles
zfp::array2d::const_view v(&a, 10, 5, 20, 20); // v is a 20x20 view into array a
assert(v(2, 1) == a(12, 6)); // v(2, 1) == a(10 + 2, 5 + 1) == a(12, 6)
assert(v.size() == 400); // 20x20 == 400

12.8.2 Mutable view

The basic mutable view derives from the const_view but adds operators for write-access. Its constructors are similar
to those for the const_view.

class array1::view : public array1::const_view

class array2::view : public array2::const_view

class array3::view : public array3::const_view

class array4::view : public array4::const_view
Mutable view into 1D, 2D, 3D, and 4D array.

array1::view::view(array1 *array)
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array2::view::view(array2 *array)

array3::view::view(array3 *array)

array4::view::view(array4 *array)

array1::view::view(array1 *array, size_t x, size_t nx)

array2::view::view(array2 *array, size_t x, size_t y, size_t nx, size_t ny)

array3::view::view(array3 *array, size_t x, size_t y, size_t z, size_t nx, size_t ny, size_t nz)

array4::view::view(array4 *array, size_t x, size_t y, size_t z, size_t w, size_t nx, size_t ny, size_t nz, size_t nw)
Whole-array and sub-array mutable view constructors. See const_view constructors for details.

reference array1::view::operator()(size_t i)

reference array2::view::operator()(size_t i, size_t j)

reference array3::view::operator()(size_t i, size_t j, size_t k)

reference array4::view::operator()(size_t i, size_t j, size_t k, size_t l)
These operators, whose arguments have the same meaning as in the array accessors, return proxy references to
individual array elements for write access.

12.8.3 Flat view

The views discussed so far require multidimensional indexing, e.g., (i, j, k) for 3D views. Some applications prefer one-
dimensional linear indexing, which is provided by the specialized flat view. For example, in a 3D view with dimensions
(nx, ny, nz), a multidimensional index (i, j, k) corresponds to the flat view index

index = i + nx * (j + ny * k)

This is true regardless of the view offset (x, y, z).

The flat view derives from the mutable view and adds operator[] for flat indexing. This operator is essentially equiv-
alent to array::operator[]() defined for 2D, 3D, and 4D arrays. Flat views also provide functions for converting
between multidimensional and flat indices.

Flat views are available only for 2D, 3D, and 4D arrays. The basic mutable view, array1::view, for 1D arrays can
be thought of as either a flat or a nested view.

class array2::flat_view : public array2::view

class array3::flat_view : public array3::view

class array4::flat_view : public array4::view
Flat, mutable views for 2D, 3D, and 4D arrays.

array2::flat_view::flat_view(array2 *array)

array3::flat_view::flat_view(array3 *array)

array4::flat_view::flat_view(array4 *array)
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array2::flat_view::flat_view(array2 *array, size_t x, size_t y, size_t nx, size_t ny)

array3::flat_view::flat_view(array3 *array, size_t x, size_t y, size_t z, size_t nx, size_t ny, size_t nz)

array4::flat_view::flat_view(array4 *array, size_t x, size_t y, size_t z, size_t w, size_t nx, size_t ny, size_t
nz, size_t nw)

Whole-array and sub-array flat view constructors. See const_view constructors for details.

size_t array2::flat_view::index(size_t i, size_t j) const

size_t array3::flat_view::index(size_t i, size_t j, size_t k) const

size_t array4::flat_view::index(size_t i, size_t j, size_t k, size_t l) const
Return flat index associated with multidimensional index.

void array2::flat_view::ij(size_t &i, size_t &j, size_t index) const

void array3::flat_view::ijk(size_t &i, size_t &j, size_t &k, size_t index) const

void array4::flat_view::ijkl(size_t &i, size_t &j, size_t &k, size_t &l, size_t index) const
Convert flat index to multidimensional index.

const_reference array2::flat_view::operator[](size_t index) const

const_reference array3::flat_view::operator[](size_t index) const

const_reference array4::flat_view::operator[](size_t index) const
Return array element associated with given flat index.

reference array2::flat_view::operator[](size_t index)

reference array3::flat_view::operator[](size_t index)

reference array4::flat_view::operator[](size_t index)
Return reference to array element associated with given flat index.

12.8.4 Nested view

C and C++ support nested arrays (arrays of arrays), e.g., double a[10][20][30], which are usually accessed via
nested indexing a[i][j][k]. Here a is a 3D array, a[i] is a 2D array, and a[i][j] is a 1D array. This 3D array can
also be accessed via flat indexing, e.g.,

a[i][j][k] == (&a[0][0][0])[600 * i + 30 * j + k]

Nested views provide a mechanism to access array elements through nested indexing and to extract lower-dimensional
“slices” of multidimensional arrays. Nested views are mutable.

Nested views are associated with a dimensionality. For instance, if v is a 3D nested view of a 3D array, then v[i] is a 2D
nested view (of a 3D array), v[i][j] is a 1D nested view (of a 3D array), and v[i][j][k] is a (reference to a) scalar
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array element. Note that the order of indices is reversed when using nested indexing compared to multidimensional
indexing, e.g., v(i, j, k) == v[k][j][i].

Whereas operator[] on an array object accesses an element through flat indexing, the same array can be accessed
through a nested view to in effect provide nested array indexing:

zfp::array3d a(30, 20, 10, rate); // define 30x20x10 3D array
assert(a[32] == a(2, 1, 0)); // OK: flat and multidimensional indexing
assert(a[32] == a[0][1][2]); // ERROR: a does not support nested indexing
zfp::array3d::nested_view v(&a); // define a nested view of a
assert(a[32] == v[0][1][2]); // OK: v supports nested indexing
zfp::array2d b(v[5]); // define and deep copy 30x20 2D slice of a
assert(a(2, 1, 5) == b(2, 1)); // OK: multidimensional indexing

class array2::nested_view1
View of a 1D slice of a 2D array.

class array2::nested_view2
2D view of a 2D (sub)array.

class array3::nested_view1
View of a 1D slice of a 3D array.

class array3::nested_view2
View of a 2D slice of a 3D array.

class array3::nested_view3
3D view of a 3D (sub)array.

class array4::nested_view1
View of a 1D slice of a 4D array.

class array4::nested_view2
View of a 2D slice of a 4D array.

class array4::nested_view3
View of a 3D slice of a 4D array.

class array4::nested_view4
4D view of a 4D (sub)array.
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array2::nested_view2::nested_view2(array2 *array)

array3::nested_view3::nested_view3(array3 *array)

array4::nested_view4::nested_view4(array4 *array)

array2::nested_view2::nested_view2(array2 *array, size_t x, size_t y, size_t nx, size_t ny)

array3::nested_view3::nested_view3(array3 *array, size_t x, size_t y, size_t z, size_t nx, size_t ny, size_t nz)

array4::nested_view4::nested_view4(array4 *array, size_t x, size_t y, size_t z, size_t w, size_t nx, size_t ny,
size_t nz, size_t nw)

Whole-array and sub-array nested view constructors. See const_view constructors for details. Lower-dimensional
view constructors are not accessible to the user but are invoked when accessing views via nested indexing.

size_t array2::nested_view1::size_x() const

size_t array2::nested_view2::size_x() const

size_t array2::nested_view2::size_y() const

size_t array3::nested_view1::size_x() const

size_t array3::nested_view2::size_x() const

size_t array3::nested_view2::size_y() const

size_t array3::nested_view3::size_x() const

size_t array3::nested_view3::size_y() const

size_t array3::nested_view3::size_z() const

size_t array4::nested_view1::size_x() const

size_t array4::nested_view2::size_x() const

size_t array4::nested_view2::size_y() const

size_t array4::nested_view3::size_x() const

size_t array4::nested_view3::size_y() const

size_t array4::nested_view3::size_z() const

size_t array4::nested_view4::size_x() const

size_t array4::nested_view4::size_y() const

size_t array4::nested_view4::size_z() const

size_t array4::nested_view4::size_w() const
View dimensions.

108 Chapter 12. Compressed-Array C++ Classes



zfp Documentation, Release 1.0.1

array4::nested_view3 array4::nested_view4::operator[](size_t index) const
Return view to a 3D slice of 4D array.

array3::nested_view2 array3::nested_view3::operator[](size_t index) const

array4::nested_view2 array4::nested_view3::operator[](size_t index) const
Return view to a 2D slice of a 3D or 4D array.

array2::nested_view1 array2::nested_view2::operator[](size_t index) const

array3::nested_view1 array3::nested_view2::operator[](size_t index) const

array4::nested_view1 array4::nested_view2::operator[](size_t index) const
Return view to a 1D slice of a 2D, 3D, or 4D array.

const_reference array2::nested_view1::operator[](size_t index) const

const_reference array3::nested_view1::operator[](size_t index) const

const_reference array4::nested_view1::operator[](size_t index) const
Return scalar element of a 2D, 3D, or 4D array.

reference array2::nested_view1::operator[](size_t index)

reference array3::nested_view1::operator[](size_t index)

reference array4::nested_view1::operator[](size_t index)
Return reference to a scalar element of a 2D, 3D, or 4D array.

const_reference array2::nested_view1::operator()(size_t i) const

const_reference array2::nested_view2::operator()(size_t i, size_t j) const

const_reference array3::nested_view1::operator()(size_t i) const

const_reference array3::nested_view2::operator()(size_t i, size_t j) const

const_reference array3::nested_view3::operator()(size_t i, size_t j, size_t k) const

const_reference array4::nested_view1::operator()(size_t i) const

const_reference array4::nested_view2::operator()(size_t i, size_t j) const

const_reference array4::nested_view3::operator()(size_t i, size_t j, size_t k) const

const_reference array4::nested_view4::operator()(size_t i, size_t j, size_t k, size_t l) const
Return const reference to a scalar element of a 2D, 3D, or 4D array.
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reference array2::nested_view1::operator()(size_t i)

reference array2::nested_view2::operator()(size_t i, size_t j)

reference array3::nested_view1::operator()(size_t i)

reference array3::nested_view2::operator()(size_t i, size_t j)

reference array3::nested_view3::operator()(size_t i, size_t j, size_t k)

reference array4::nested_view1::operator()(size_t i)

reference array4::nested_view2::operator()(size_t i, size_t j)

reference array4::nested_view3::operator()(size_t i, size_t j, size_t k)

reference array4::nested_view4::operator()(size_t i, size_t j, size_t k, size_t l)
Return reference to a scalar element of a 2D, 3D, or 4D array.

12.8.5 Slicing

Arrays can be constructed as deep copies of slices of higher-dimensional arrays, as the code example above shows (i.e.,
zfp::array2d b(v[5]);). Unlike views, which have reference semantics, such array slicing has value semantics.
In this example, 2D array b is initialized as a (deep) copy of a slice of 3D array a via nested view v. Subsequent
modifications of b have no effect on a.

Slicing is implemented as array constructors templated on views. Upon initialization, elements are copied one at a
time from the view via multidimensional indexing, e.g., v(i, j, k). Note that view and array dimensionalities must
match, but aside from this an array may be constructed from any view.

Slicing needs not change the dimensionality, but can be used to copy an equidimensional subset of one array to another
array, as in this example:

zfp::array3d a(30, 20, 10, rate);
zfp::array3d::const_view v(&a, 1, 2, 3, 4, 5, 6);
zfp::array3d b(v);
assert(b(0, 0, 0) == a(1, 2, 3));
assert(b.size_x() == 4);
assert(b.size_y() == 5);
assert(b.size_z() == 6);

Slicing adds the following templated array constructors.

template<class View>
array1::array1(const View &v)

template<class View>
array2::array2(const View &v)

template<class View>
array3::array3(const View &v)

template<class View>
array4::array4(const View &v)

Construct array from a view via a deep copy. The view, v, must support multidimensional indexing. The rate
for the constructed array is initialized to the rate of the array associated with the view. Note that the actual rate
may differ if the constructed array is a lower-dimensional slice of a higher-dimensional array due to lower rate
granularity (see FAQ #12). The cache size of the constructed array is set to the default size.
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12.8.6 Private immutable view

zfp’s compressed arrays are in general not thread-safe. The main reason for this is that each array maintains its own
cache of uncompressed blocks. Race conditions on the cache would occur unless it were locked upon each and every
array access, which would have a prohibitive performance cost.

To ensure thread-safe access, zfp provides private mutable and immutable views of arrays that maintain their own
private caches. The private_const_view immutable view provides read-only access to the underlying array. It is
similar to a const_view in this sense, but differs in that it maintains its own private cache rather than sharing the cache
owned by the array. Multiple threads may thus access the same array in parallel through their own private views.

Note: Thread safety is ensured only for OpenMP threads, and the zfp views must be compiled by an OpenMP compliant
compiler. As the zfp compressed-array class implementation is defined in headers, the application code using zfp must
also be compiled with OpenMP enabled if multithreaded access to zfp arrays is desired.

Note: Private views do not guarantee cache coherence. If, for example, the array is modified, then already cached
data in a private view is not automatically updated. It is up to the user to ensure cache coherence by flushing (com-
pressing modified blocks) or clearing (emptying) caches when appropriate.

The cache associated with a private view can be manipulated in the same way an array’s cache can. For instance, the
user may set the cache size on a per-view basis.

Unlike with private mutable views, private immutable views may freely access any element in the array visible through
the view, i.e., multiple threads may read the same array element simultaneously. For an example of how to use private
views for both read and write multithreaded access, see the diffusion code example.

Private views support only multidimensional indexing, i.e., they are neither flat nor nested.

class array1::private_const_view

class array2::private_const_view

class array3::private_const_view

class array4::private_const_view
Immutable views of 1D, 2D, 3D, and 4D arrays with private caches.

array1::private_const_view::private_const_view(array1 *array)

array2::private_const_view::private_const_view(array2 *array)

array3::private_const_view::private_const_view(array3 *array)

array4::private_const_view::private_const_view(array4 *array)

array1::private_const_view::private_const_view(array1 *array, size_t x, size_t nx)

array2::private_const_view::private_const_view(array2 *array, size_t x, size_t y, size_t nx, size_t ny)

array3::private_const_view::private_const_view(array3 *array, size_t x, size_t y, size_t z, size_t nx,
size_t ny, size_t nz)
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array4::private_const_view::private_const_view(array4 *array, size_t x, size_t y, size_t z, size_t w,
size_t nx, size_t ny, size_t nz, size_t nw)

Whole-array and sub-array private immutable view constructors. See const_view constructors for details.

size_t array1::private_const_view::size_x() const

size_t array2::private_const_view::size_x() const

size_t array2::private_const_view::size_y() const

size_t array3::private_const_view::size_x() const

size_t array3::private_const_view::size_y() const

size_t array3::private_const_view::size_z() const

size_t array4::private_const_view::size_x() const

size_t array4::private_const_view::size_y() const

size_t array4::private_const_view::size_z() const

size_t array4::private_const_view::size_w() const
View dimensions.

const_reference array1::private_const_view::operator()(size_t i) const

const_reference array2::private_const_view::operator()(size_t i, size_t j) const

const_reference array3::private_const_view::operator()(size_t i, size_t j, size_t k) const

const_reference array4::private_const_view::operator()(size_t i, size_t j, size_t k, size_t l) const
Return const reference to scalar element of a 1D, 2D, 3D, or 4D array.

The following functions are common among all dimensionalities:

size_t arrayANY::private_const_view::cache_size() const

void arrayANY::private_const_view::set_cache_size(size_t csize)

void arrayANY::private_const_view::clear_cache() const
Cache manipulation. See Caching for details.

12.8.7 Private mutable view

The mutable private_view supports both read and write access and is backed by a private cache. Because block
compression, as needed to support write access, is not an atomic operation, mutable views and multithreading imply
potential race conditions on the compressed blocks stored by an array. Although locking the array or individual blocks
upon compression would be a potential solution, this would either serialize compression, thus hurting performance, or
add a possibly large memory overhead by maintaining a lock with each block.

Note: To avoid multiple threads simultaneously compressing the same block, private mutable views of an array
must reference disjoint, block-aligned subarrays for thread-safe access. Each block of 4d array elements must be
associated with at most one private mutable view, and therefore these views must reference non-overlapping rectangular
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subsets that are aligned on block boundaries, except possibly for partial blocks on the array boundary. (Expert users
may alternatively ensure serialization of block compression calls and cache coherence in other ways, in which case
overlapping private views may be permitted.)

Aside from this requirement, the user may partition the array into disjoint views in whatever manner is suitable for
the application. The private_view API supplies a very basic partitioner to facilitate this task, but may not result in
optimal partitions or good load balance.

When multithreaded write access is desired, any direct accesses to the array itself (i.e., not through a view) could invoke
compression. Even a read access may trigger compression if a modified block is evicted from the cache. Hence, such
direct array accesses should be confined to serial code sections when private views are used.

As with private immutable views, cache coherence is not enforced. Although this is less of an issue for private mutable
views due to the requirement that views may not overlap, each private mutable view overlaps an index space with the
underlying array whose cache is not automatically synchronized with the view’s private cache. See the diffusion for an
example of how to enforce cache coherence with mutable and immutable private views.

The private_view class inherits all public functions from private_const_view.

class array1::private_view : public array1::private_const_view

class array2::private_view : public array2::private_const_view

class array3::private_view : public array3::private_const_view

class array4::private_view : public array4::private_const_view
Mutable views of 1D, 2D, 3D, and 4D arrays with private caches.

class array1::private_view::view_reference

class array2::private_view::view_reference

class array3::private_view::view_reference

class array4::private_view::view_reference
Proxy references to array elements specialized for mutable private views.

array1::private_view::private_view(array1 *array)

array2::private_view::private_view(array2 *array)

array3::private_view::private_view(array3 *array)

array4::private_view::private_view(array4 *array)

array1::private_view::private_view(array1 *array, size_t x, size_t nx)

array2::private_view::private_view(array2 *array, size_t x, size_t y, size_t nx, size_t ny)

array3::private_view::private_view(array3 *array, size_t x, size_t y, size_t z, size_t nx, size_t ny, size_t nz)

array4::private_view::private_view(array4 *array, size_t x, size_t y, size_t z, size_t w, size_t nx, size_t ny,
size_t nz, size_t nw)

Whole-array and sub-array private mutable view constructors. See const_view constructors for details.
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array1::private_view::view_reference array1::private_view::operator()(size_t i) const

array2::private_view::view_reference array2::private_view::operator()(size_t i, size_t j) const

array3::private_view::view_reference array3::private_view::operator()(size_t i, size_t j, size_t k) const

array4::private_view::view_reference array4::private_view::operator()(size_t i, size_t j, size_t k, size_t l)
const

Return reference to a scalar element of a 1D, 2D, 3D, or 4D array.

The following functions are common among all dimensionalities:

void arrayANY::private_view::partition(size_t index, size_t count)
Partition the current view into count roughly equal-size pieces along the view’s longest dimension and modify
the view’s extents to match the piece indexed by index, with 0 ≤ index < count. These functions may be called
multiple times, e.g., to recursively partition along different dimensions. The partitioner does not generate new
views; it merely modifies the current values of the view’s offsets and dimensions. Note that this may result in
empty views whose dimensions are zero, e.g., if there are more pieces than blocks along a dimension.

void arrayANY::private_view::flush_cache() const
Flush cache by compressing any modified blocks and emptying the cache.

12.9 Codec

zfp arrays are partitioned into independent blocks that are compressed and decompressed using a codec (en-
coder/decoder). This codec defaults to the zfp compression scheme, but can in principle be any compression scheme or
number representation that represents d-dimensional blocks of 4d values. The zfp::array and zfp::const_array
classes take such a codec class as an optional template parameter.

This section documents the API that prospective codecs must support to interface with the zfp compressed-array classes.
Any one codec supports a specific scalar type (e.g., float or double), denoted Scalar below, and data dimensionality
(1D, 2D, 3D, or 4D). If the codec does not support a certain compression mode, it should throw an exception when the
user attempts to invoke that mode. Codecs reside in the zfp::codec namespace, e.g., zfp::codec::zfp3<Scalar>
is the default codec for 3D arrays.

As of zfp 1.0.0, there is in addition to the default zfp codec a “generic” codec that allows storing data in zfp arrays in
“uncompressed” form using any scalar type (specified as a template parameter). This “internal” scalar type may differ
from the “external” scalar type exposed to the user through the zfp::array API. For instance, the internal type may
be float while the external type is double, which provides for 2:1 fixed-rate “compression” using IEEE 754 floating
point.

class codec
Fictitious class encapsulating the codec API. This may be thought of as a base class for the classes below spe-
cialized on dimensionality.

class codec1

class codec2

class codec3
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class codec4
Fictitious classes encapsulating the codec API specialized for a given data dimensionality (1D, 2D, 3D, or 4D).

codec &codec::operator=(const codec &c)
Assignment operator. Performs a deep copy. This method is invoked when performing a deep copy of an array.

size_t codec::buffer_size(const zfp_field *field) const
Maximum buffer size needed to encode the field of given scalar type and dimensions (see
zfp_stream_maximum_size()). The size should be based on the current compression mode and parameters.
This method is called to determine how large a buffer to allocate and pass to codec::open().

void codec::open(void *data, size_t size)
Open codec for (de)compression to/from buffer pointed to by data of size bytes. The caller is responsible for
allocating and deallocating this buffer, whose size is given by codec::buffer_size().

void codec::close()
Close codec for (de)compression.

zfp_mode codec::mode() const
Currently selected compression mode. See zfp_mode.

double codec::rate() const
Rate in compressed bits/value when fixed-rate mode is selected. See zfp_stream_rate().

uint codec::precision() const
Precision in uncompressed bits/value when fixed-precision mode is selected. See zfp_stream_precision().

double codec::accuracy() const
Accuracy as absolute error tolerance when fixed-accuracy mode is selected. See zfp_stream_accuracy().

void codec::params(uint *minbits, uint *maxbits, uint *maxprec, int *minexp) const
Compression parameters for any compression mode. These pointer parameters may be null if only a subset of
parameters is requested. See zfp_stream_params().

void codec::set_reversible()
Enable reversible mode.
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double codec::set_rate(double rate, bool align)
Set desired rate in number of compressed bits/value. When align = true, blocks are word aligned, as needed for
random access writes. Return the closest rate supported. See zfp_stream_set_rate().

uint codec::set_precision(uint precision)
Set precision in number of uncompressed bits/value. Return the actual precision selected. See
zfp_stream_set_precision().

double codec::set_accuracy(double tolerance)
Set accuracy as absolute error tolerance. Return the closest tolerance supported. See
zfp_stream_set_accuracy().

bool codec::set_params(uint minbits, uint maxbits, uint maxprec, int minexp)
Set expert mode parameters. Return true on success. See zfp_stream_set_params().

bool codec::set_thread_safety(bool safety)
Enable or disable thread safety. This function is called whenever zfp is built with OpenMP support and when
the number of mutable or immutable private views of an array changes. When two or more private views of
an array are accessed by separate threads, multiple blocks may be compressed or decompressed simultaneously.
The codec then has to take care that there are no race conditions on the data structures (e.g., bitstream) used
for (de)compression.

size_t codec::size_bytes(uint mask = ZFP_DATA_ALL) const
Return storage size of components of codec data structure indicated by mask. The mask is constructed via bitwise
OR of predefined constants.

static size_t codec::alignment()
Memory alignment in number of bytes required by codec.

static const zfp_type codec::type;
Scalar type compressed by codec.

size_t codec::encode_block(bitstream_offset offset, const Scalar *block) const
Encode contiguous block of 4d scalars and store at specified bit offset within compressed-data buffer. Return the
number of bits of compressed storage for the block, excluding any necessary padding. This method must flush
any buffered compressed data without counting any padding (e.g., for byte alignment) in the compressed size
(unless the codec requires alignment of the bit offsets).
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size_t codec::decode_block(bitstream_offset offset, Scalar *block) const
Decode contiguous block of 4d scalars from specified bit offset within compressed-data buffer (see
codec::encode_block()). Return number of bits of compressed data decoded, excluding any padding bits,
i.e., the same value reported in encoding.

size_t codec1::encode_block(bitstream_offset offset, uint shape, const Scalar *block) const

size_t codec2::encode_block(bitstream_offset offset, uint shape, const Scalar *block) const

size_t codec3::encode_block(bitstream_offset offset, uint shape, const Scalar *block) const

size_t codec4::encode_block(bitstream_offset offset, uint shape, const Scalar *block) const
Encode contiguous block of data of given shape and store at specified bit offset within compressed-data buffer.
Return the number of bits of compressed storage for the block (see also codec::encode_block()).

The shape is a (2 × d)-bit encoding of the size of the d-dimensional block. For each successive pair of bits s of
shape, the block size in the corresponding dimension is n = 4 - s, where 0 ≤ s ≤ 3. Thus, shape = 0 implies a full
block of 4d values. The size of the fastest varying dimension is specified in the least significant bits of shape.

size_t codec1::decode_block(bitstream_offset offset, uint shape, Scalar *block) const

size_t codec2::decode_block(bitstream_offset offset, uint shape, Scalar *block) const

size_t codec3::decode_block(bitstream_offset offset, uint shape, Scalar *block) const

size_t codec4::decode_block(bitstream_offset offset, uint shape, Scalar *block) const
Decode contiguous block of data of given shape from specified bit offset within compressed-data buffer (see also
codec1::encode_block()). Return number of bits of compressed data decoded, excluding any padding bits,
i.e., the same value reported in encoding.

size_t codec1::encode_block_strided(bitstream_offset offset, uint shape, const Scalar *p, ptrdiff_t sx) const

size_t codec2::encode_block_strided(bitstream_offset offset, uint shape, const Scalar *p, ptrdiff_t sx, ptrdiff_t
sy) const

size_t codec3::encode_block_strided(bitstream_offset offset, uint shape, const Scalar *p, ptrdiff_t sx, ptrdiff_t
sy, ptrdiff_t sz) const

size_t codec4::encode_block_strided(bitstream_offset offset, uint shape, const Scalar *p, ptrdiff_t sx, ptrdiff_t
sy, ptrdiff_t sz, ptrdiff_t sw) const

Encode block of data stored at p with strides sx, sy, sz, and sw. See zfp_field for information on strided storage.
The shape, offset, and return value are as in codec1::encode_block().

size_t codec1::decode_block_strided(bitstream_offset offset, uint shape, Scalar *p, ptrdiff_t sx) const

size_t codec2::decode_block_strided(bitstream_offset offset, uint shape, Scalar *p, ptrdiff_t sx, ptrdiff_t sy)
const

size_t codec3::decode_block_strided(bitstream_offset offset, uint shape, Scalar *p, ptrdiff_t sx, ptrdiff_t sy,
ptrdiff_t sz) const
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size_t codec4::decode_block_strided(bitstream_offset offset, uint shape, Scalar *p, ptrdiff_t sx, ptrdiff_t sy,
ptrdiff_t sz, ptrdiff_t sw) const

Decode block to strided storage pointed to by p with strides sx, sy, sz, and sw. See zfp_field for information
on strided storage. The shape, offset, and return value are as in codec1::decode_block().

12.10 Index

To support random access, zfp arrays must know where each block is stored in memory. For fixed-rate arrays, the
number of compressed bits per block is constant, and the bit offset to each block can be quickly computed. For variable-
rate arrays, the compressed block size is data dependent, and additional information must be stored to index the blocks.
Toward this end, zfp arrays make use of an index class that reports the offset and size (in number of bits) of each block.
The zfp::array and zfp::const_array classes take such an index class as a template parameter. This index class
is new as of zfp 1.0.0, which introduced variable-rate arrays.

Because zfp is designed primarily for very large arrays, the bit offset may exceed 32 bits. A straightforward implemen-
tation stores the bit offset to each block as a 64-bit integer, with the block size given by the difference of consecutive
offsets. However, this overhead of 64 bits/block may exceed the payload compressed data for low-dimensional arrays
or in applications like visualization that may store less than one bit per value (amortized). It is therefore important to
consider more compact representations of the block index.

zfp provides multiple index classes in the zfp::index namespace that balance storage size, range of representable
block offsets and sizes, and speed of access:

• implicit: Used for fixed-rate storage where only the fixed number of bits per block is kept. This is the default
index for fixed-rate arrays.

• verbatim: This and subsequent classes support variable-rate storage. A full 64-bit offset is stored per block.

• hybrid4: Four consecutive offsets are encoded together. The top 32 bits of a 44-bit base offset are stored, with
the 12 least significant bits of this base set to zero. Four unsigned 16-bit deltas from the base offset complete
the representation. The default for variable-rate arrays, this index offers a good tradeoff between storage, offset
range, and speed.

• hybrid8: Eight consecutive offsets are encoded together as two 64-bit words that store the offset to the first
block (the base offset) and the sizes of the first seven blocks, from which the eight offsets are derived as a prefix
sum. One 64-bit word holds the 8 least significant bits of the base offset and block sizes. The other word holds
another 2 (d - 1) bits for the seven block sizes plus the top 78 - 14 d bits of the base offset, where 1 ≤ d ≤ 4 is
the data dimensionality.

Properties of these index classes are summarized in Table 12.1.

Table 12.1: Properties of index classes. Storage is measured in amortized
bits/block; offset and size denote supported ranges in number of bits.

index class variable rate storage offset size speed
implicit 0 64 64 high
verbatim ✓ 64 64 64 high
hybrid4 ✓ 24 44 16 medium
hybrid8 ✓ 16 86 - 14 d 6 + 2 d low

This section documents the API that prospective block indices must support to interface with the zfp compressed-array
classes.

class index
Fictitious class encapsulating the index API.
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index::index(size_t blocks)
Construct index supporting the given number of blocks.

size_t index::size_bytes(uint mask = ZFP_DATA_ALL) const

bitstream_size index::range() const
Range of bit offsets spanned by index. This equals the total number of bits of compressed-array data.

size_t index::block_size(size_t block_index) const
Size of compressed block in number of bits.

bitstream_offset index::block_offset(size_t block_index) const
Bit offset to compressed block data.

void resize(size_t blocks)
Resize index to accommodate requested number of blocks. Any stored index data is destroyed.

void clear()
Clear all data stored by index.

void flush()
Flush any buffered index data. This method is called after all blocks have been compressed, e.g., in
array::set().

void set_block_size(size_t size)
Set a fixed compressed block size in number of bits for all blocks. This method is called when fixed-rate mode
is selected.

void set_block_size(size_t block_index, size_t size)
Set compressed block size in number of bits for a single block. For variable-rate arrays, the zero-based
block_index is guaranteed to increase sequentially between calls. This method throws an exception if the in-
dex cannot support the block size or offset. The user may wish to restrict the block size, e.g., by setting maxbits
in expert mode, to guard against such overflow.

static bool has_variable_rate()
Return true if index supports variable-sized blocks.
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CHAPTER

THIRTEEN

COMPRESSED-ARRAY C BINDINGS

zfp 0.5.4 adds cfp: C language bindings for compressed arrays via wrappers around the C++ classes. zfp 1.0.0 modifies
its API (see below).

The C API has been designed to facilitate working with compressed arrays without the benefits of C++ operator over-
loading and self-aware objects, which greatly simplify the syntax. Whereas one possible design considered is to map
each C++ method to a C function with a prefix, such as zfp_array3d_get(a, i, j, k) in place of a(i, j, k)
for accessing an element of a 3D array of doubles, such code would quickly become unwieldy when part of longer
expressions.

Instead, cfp uses the notion of nested C namespaces that are structs of function pointers, such as cfp.array3d. Al-
though this may seem no more concise than a design based on prefixes, the user may alias these namespaces (somewhat
similar to C++ using namespace declarations) using far shorter names via C macros or local variables. For instance:

const cfp_array3d_api _ = cfp.array3d; // _ is a namespace alias
cfp_array3d a = _.ctor(nx, ny, nz, rate, 0, 0);
double value = _.get(a, i, j, k);
_.set(a, i, j, k, value + 1);

which is a substitute for the C++ code

zfp::array3d a(nx, ny, nz, rate, 0, 0);
double value = a(i, j, k);
a(i, j, k) = value + 1;

Because the underlying C++ array objects have no corresponding C representation, and because C objects are not
self aware (they have no implicit this pointer), the C interface interacts with compressed arrays through array object
pointers, wrapped in structs, that cfp converts to pointers to the corresponding C++ objects. As a consequence, cfp
compressed arrays must be allocated on the heap and must be explicitly freed via designated destructor functions to
avoid memory leaks (this is not necessary for references, pointers, and iterators, which have their own C representation).
The C++ constructors are mapped to C by allocating objects via C++ new. Moreover, the C API requires passing an
array self pointer (wrapped within a cfp array struct) in order to manipulate the array.

As with the C++ classes, array elements can be accessed via multidimensional array indexing, e.g., get(array, i,
j), and via flat, linear indexing, e.g., get_flat(array, i + nx * j).

Note: The cfp API changed in zfp 1.0.0 by wrapping array self pointers in structs to align the interface more closely
with the C++ API and to avoid confusion when discussing arrays (now cfp.array rather than cfp.array*) and point-
ers to arrays (now cfp.array* rather than cfp.array**). Furthermore, zfp 1.0.0 adds support for proxy references,
proxy pointers, and iterators that also wrap C++ classes. Manipulating those indirectly via pointers (like the old cfp
arrays) would require additional user effort to destroy dynamically allocated lightweight objects and would also reduce
code readability, e.g., cfp_ptr1d* (whose corresponding C++ type is zfp::array1d::pointer*) reads more natu-
rally as a raw pointer to a proxy pointer than an indirectly referenced proxy pointer object that the user must remember
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to implicitly dereference.

The following sections are available:

• Arrays

• Serialization

• References

• Pointers

• Iterators

13.1 Arrays

cfp implements eight array types for 1D, 2D, 3D, and 4D arrays of floats and doubles. These array types share
many functions that have the same signature. To reduce redundancy in the documentation, we define fictitious types
cfp_arrayf and cfp_arrayd for N-dimensional (1≤N ≤ 4) arrays of floats or doubles, cfp_array1, cfp_array2,
cfp_array3, and cfp_array4 for 1D, 2D, 3D, and 4D arrays of either floats or doubles, and cfp_array for arrays
of any dimensionality and type. We also make use of corresponding namespaces, e.g., cfp.array1 refers to the API
common to one-dimensional arrays of floats or doubles. These types and namespaces are not actually part of the cfp
API.

Note: The cfp array API makes use of const qualifiers for struct parameters (passed by value) merely to indi-
cate when the corresponding object is not modified, e.g., const cfp_array1f self. This construction serves to
document functions that are analogous to const qualified C++ member functions.

Note: Support for 4D arrays was added to cfp in version 1.0.0.

type cfp_array1f

type cfp_array1d

type cfp_array2f

type cfp_array2d

type cfp_array3f

type cfp_array3d

type cfp_array4f

type cfp_array4d
Opaque types for 1D, 2D, 3D, and 4D compressed arrays of floats and doubles.

type cfp_array1

type cfp_array2

type cfp_array3

122 Chapter 13. Compressed-Array C Bindings



zfp Documentation, Release 1.0.1

type cfp_array4
Fictitious types denoting 1D, 2D, 3D, and 4D arrays of any scalar type.

type cfp_arrayf

type cfp_arrayd
Fictitious types denoting any-dimensional arrays of floats and doubles.

type cfp_array
Fictitious type denoting array of any dimensionality and scalar type.

struct cfp

struct array1f

struct array1d

struct array2f

struct array2d

struct array3f

struct array3d

struct array4f

struct array4d

struct header

Nested C “namespaces” for encapsulating the cfp API. The outer cfp namespace may be redefined at compile-
time via the macro CFP_NAMESPACE, e.g., to avoid symbol clashes. The inner namespaces hold function pointers
to the cfp wrappers documented below.

cfp_array1f cfp.array1f.ctor(size_t nx, double rate, const float *p, size_t cache_size)

cfp_array1d cfp.array1d.ctor(size_t nx, double rate, const double *p, size_t cache_size)

cfp_array2f cfp.array2f.ctor(size_t nx, size_t ny, double rate, const float *p, size_t cache_size)

cfp_array2d cfp.array2d.ctor(size_t nx, size_t ny, double rate, const double *p, size_t cache_size)

cfp_array3f cfp.array3f.ctor(size_t nx, size_t ny, size_t nz, double rate, const float *p, size_t cache_size)

cfp_array3d cfp.array3d.ctor(size_t nx, size_t ny, size_t nz, double rate, const double *p, size_t cache_size)

cfp_array4f cfp.array4f.ctor(size_t nx, size_t ny, size_t nz, size_t nw, double rate, const float *p, size_t
cache_size)
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cfp_array4d cfp.array4d.ctor(size_t nx, size_t ny, size_t nz, size_t nw, double rate, const double *p, size_t
cache_size)

Array constructors. If p is not NULL, then the array is initialized from uncompressed storage; otherwise the array
is zero initialized. cache_size is the minimum size cache (in bytes) to use. If cache_size is zero, a default size is
chosen.

cfp_array cfp.array.ctor_default()
Default constructor. Allocate an empty array that later can be resized and whose rate and cache size can be set
by cfp.array.set_rate() and cfp.array.set_cache_size().

cfp_array cfp.array.ctor_copy(const cfp_array src)
Copy constructor.

cfp_array cfp.array.ctor_header(const cfp_header h, const void *buffer, size_t buffer_size_bytes);
Constructor from metadata given by the header h and optionally initialized with compressed data from buffer of
size buffer_size_bytes. See corresponding C++ constructor.

void cfp.array.dtor(cfp_array self)
Destructor. The destructor not only deallocates any compressed data owned by the array, but also frees memory
for itself, invalidating the self object upon return. Note that the user must explicitly call the destructor to avoid
memory leaks.

void cfp.array.deep_copy(cfp_array self, const cfp_array src)
Perform a deep copy of src analogous to the C++ assignment operator.

float cfp.array1f.get(const cfp_array1f self, size_t i)

float cfp.array2f.get(const cfp_array2f self, size_t i, size_t j)

float cfp.array3f.get(const cfp_array3f self, size_t i, size_t j, size_t k)

float cfp.array4f.get(const cfp_array4f self, size_t i, size_t j, size_t k, size_t l)

double cfp.array1d.get(const cfp_array1d self, size_t i)

double cfp.array2d.get(const cfp_array2d self, size_t i, size_t j)

double cfp.array3d.get(const cfp_array3d self, size_t i, size_t j, size_t k)

double cfp.array4d.get(const cfp_array4d self, size_t i, size_t j, size_t k, size_t l)
Array inspectors via multidimensional indexing.

void cfp.array1f.set(const cfp_array1f self, size_t i, float val)
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void cfp.array2f.set(const cfp_array2f self, size_t i, size_t j, float val)

void cfp.array3f.set(const cfp_array3f self, size_t i, size_t j, size_t k, float val)

void cfp.array4f.set(const cfp_array4f self, size_t i, size_t j, size_t k, size_t l, float val)

void cfp.array1d.set(const cfp_array1d self, size_t i, double val)

void cfp.array2d.set(const cfp_array2d self, size_t i, size_t j, double val)

void cfp.array3d.set(const cfp_array3d self, size_t i, size_t j, size_t k, double val)

void cfp.array4d.set(const cfp_array4d self, size_t i, size_t j, size_t k, size_t l, double val)
Array mutators for assigning values to array elements via multidimensional indexing.

float cfp.arrayf.get_flat(const cfp_arrayf self, size_t index)

double cfp.arrayd.get_flat(const cfp_arrayd self, size_t index)
Flat index array inspectors; see array::operator[]().

void cfp.arrayf.set_flat(cfp_arrayf self, size_t index, float val)

void cfp.arrayd.set_flat(cfp_arrayd self, size_t index, double val)
Flat index array mutators; set array element with flat index to val.

void cfp.arrayf.get_array(const cfp_arrayf self, float *p)

void cfp.arrayd.get_array(const cfp_arrayd self, double *p)
Decompress entire array; see array::get().

void cfp.arrayf.set_array(cfp_arrayf self, const float *p)

void cfp.arrayd.set_array(cfp_arrayd self, const double *p)
Initialize entire array; see array::set().

size_t cfp.array2.size_x(const cfp_array2 self)

size_t cfp.array2.size_y(const cfp_array2 self)

size_t cfp.array3.size_x(const cfp_array3 self)

size_t cfp.array3.size_y(const cfp_array3 self)

size_t cfp.array3.size_z(const cfp_array3 self)

size_t cfp.array4.size_x(const cfp_array4 self)

size_t cfp.array4.size_y(const cfp_array4 self)

size_t cfp.array4.size_z(const cfp_array4 self)
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size_t cfp.array4.size_w(const cfp_array4 self)
Array dimensions.

size_t cfp.array.size(const cfp_array self)
See array::size().

void cfp.array1.resize(cfp_array1 self, size_t n, zfp_bool clear)

void cfp.array2.resize(cfp_array2 self, size_t nx, size_t ny, zfp_bool clear)

void cfp.array3.resize(cfp_array3 self, size_t nx, size_t ny, size_t nz, zfp_bool clear)

void cfp.array4.resize(cfp_array4 self, size_t nx, size_t ny, size_t nz, size_t nw, zfp_bool clear)
Resize array.

double cfp.array.rate(const cfp_array self)
See array::rate().

double cfp.array.set_rate(cfp_array self, double rate)
See array::set_rate().

size_t cfp.array.cache_size(const cfp_array self)
See array::cache_size().

void cfp.array.set_cache_size(cfp_array self, size_t cache_size)
See array::set_cache_size().

void cfp.array.clear_cache(const cfp_array self)
See array::clear_cache().

void cfp.array.flush_cache(const cfp_array self)
See array::flush_cache().

size_t cfp.array.size_bytes(const cfp_array self, uint mask)
See array::size_bytes().

size_t cfp.array.compressed_size(const cfp_array self)
See array::compressed_size().
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void *cfp.array.compressed_data(const cfp_array self)
See array::compressed_data().

cfp_ref1 cfp.array1.ref(cfp_array1 self, size_t i)

cfp_ref2 cfp.array2.ref(cfp_array2 self, size_t i, size_t j)

cfp_ref3 cfp.array3.ref(cfp_array3 self, size_t i, size_t j, size_t k)

cfp_ref4 cfp.array4.ref(cfp_array4 self, size_t i, size_t j, size_t k, size_t l)
Reference constructor via multidimensional indexing.

cfp_ref cfp.array.ref_flat(cfp_array self, size_t i)
Reference constructor via flat indexing.

cfp_ptr1 cfp.array1.ptr(cfp_array1 self, size_t i)

cfp_ptr2 cfp.array2.ptr(cfp_array2 self, size_t i, size_t j)

cfp_ptr3 cfp.array3.ptr(cfp_array3 self, size_t i, size_t j, size_t k)

cfp_ptr4 cfp.array4.ptr(cfp_array4 self, size_t i, size_t j, size_t k, size_t l)
Obtain pointer to array element via multidimensional indexing.

cfp_ptr cfp.array.ptr_flat(cfp_array self, size_t i)
Obtain pointer to array element via flat indexing.

cfp_iter cfp.array.begin(cfp_array self)
Return iterator to beginning of array; see array::begin().

cfp_iter cfp.array.end(cfp_array self)
Return iterator to end of array; see array::end().

13.2 Serialization

zfp 1.0.0 adds cfp array serialization. Like zfp’s C++ arrays, cfp arrays can be serialized and deserialized to and from
sequential storage. As with the C++ arrays, (de)serialization is done with the assistance of a header class, cfp_header.
Currently, cfp provides no factory function—the caller must either know which type of array (dimensionality and scalar
type) to construct at compile-time or obtain this information at run-time from a header constructed from a memory
buffer.
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13.2.1 Header

cfp_header is a wrapper around array::header. Although the header type is shared among all array types, the
header API is accessed through the associated array type whose metadata the header describes. For example, cfp.
array3f.header.ctor(const cfp_array3f a) constructs a header for a cfp_array3f . The header is dynami-
cally allocated and must be explicitly destructed via cfp.array.header.dtor().

type cfp_header
Wrapper around array::header.

cfp_header cfp.array.header.ctor(const cfp_array a);
Construct a header that describes the metadata of an existing array a.

cfp_header cfp.array.header.ctor_buffer(const void *data, size_t size)
Construct a header from header data buffer of given byte size.

void cfp.array.header.dtor(cfp_header self);
Destructor. Deallocates all data associated with the header. The user must call the destructor to avoid memory
leaks.

zfp_type cfp.array.header.scalar_type(const cfp_header self);
Scalar type associated with array. See header::scalar_type().

uint cfp.array.header.dimensionality(const cfp_header self);
Dimensionality associated with array. See header::dimensionality().

size_t cfp.array.header.size_x(const cfp_header self);

size_t cfp.array.header.size_y(const cfp_header self);

size_t cfp.array.header.size_z(const cfp_header self);

size_t cfp.array.header.size_w(const cfp_header self);
Array dimensions. Unused dimensions have a size of zero.

double cfp.array.header.rate(const cfp_header self);
Rate in bits/value. See header::rate().

const void *cfp.array.header.data(const cfp_header self);
Pointer to header data buffer needed for serializing the header. See header::data().

size_t cfp.array.header.size_bytes(const cfp_header self, uint mask);
When mask = ZFP_DATA_HEADER , byte size of header data buffer needed for serializing the header. See
header::size_bytes().
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13.3 Array Accessors

zfp 1.0.0 adds cfp support for proxy references and pointers to individual array elements, as well as iterators for travers-
ing arrays. These are analogues to the corresponding C++ classes. As with arrays, fictitious types and namespaces are
used to shorten the documentation.

Note: Unlike the case of arrays, for which the surrounding struct stores a pointer to the underlying array object to
allow modifications of the array, the cfp proxy reference, proxy pointer, and iterator objects are all passed by value, and
hence none of the functions below modify the self argument. To increment a pointer, for instance, one should call p
= cfp.array.pointer.inc(p). Note that while the references, pointers, and iterators are not themselves modified,
the array elements that they reference can be modified.

13.4 References

cfp proxy references wrap the C++ reference classes. References are constructed via cfp.array.ref(), cfp.array.
pointer.ref(), and cfp.array.iterator.ref() (as well as associated ref_flat and ref_at calls).

Note: cfp references exist primarily to provide parity with zfp references. As references do not exist in C, the preferred
way of accessing arrays is via proxy pointers, iterators, or index-based array accessors.

cfp references do provide the same guarantees as C++ references, functioning as aliases to initialized members of the
cfp wrapped zfp array. This is with the caveat that they are only accessed via cfp API calls (use of the = C assignment
operator to shallow copy a cfp_ref is also allowed in this case).

type cfp_ref1f

type cfp_ref2f

type cfp_ref3f

type cfp_ref4f

type cfp_ref1d

type cfp_ref2d

type cfp_ref3d

type cfp_ref4d
Opaque types for proxy references to 1D, 2D, 3D, and 4D compressed float or double array elements.

type cfp_ref1

type cfp_ref2

type cfp_ref3

type cfp_ref4
Fictitious types denoting references into 1D, 2D, 3D, and 4D arrays of any scalar type.
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type cfp_reff

type cfp_refd
Fictitious types denoting references into float or double arrays of any dimensionality.

type cfp_ref
Fictitious type denoting reference into array of any dimensionality and scalar type.

float cfp.arrayf.reference.get(const cfp_reff self)

double cfp.arrayd.reference.get(const cfp_refd self)
Retrieve value referenced by self.

void cfp.arrayf.reference.set(cfp_reff self, float val)

void cfp.arrayd.reference.set(cfp_refd self, double val)
Update value referenced by self ; see reference::operator=().

cfp_ptr cfp.array.reference.ptr(cfp_ref self)
Obtain proxy pointer to value referenced by self ; see reference::operator&().

void cfp.array.reference.copy(cfp_ref self, const cfp_ref src)
Copy value referenced by src to value referenced by self ; see reference::operator=(). This performs a deep
copy. This is in contrast to self = src, which performs only a shallow copy.

13.5 Pointers

cfp proxy pointers wrap the C++ pointer classes. Pointers are constructed via cfp.array.ptr() and cfp.array.
reference.ptr() (and associated ptr_flat and ptr_at calls). All pointers are passed by value and are themselves
not modified by these functions.

Note: As with array::pointer, cfp_ptr indexing is based on element-wise ordering and is unaware of zfp blocks.
This may result in a suboptimal access pattern if sequentially accessing array members. To take advantage of zfp block
traversal optimization, see iterators.

type cfp_ptr1f

type cfp_ptr2f

type cfp_ptr3f

type cfp_ptr4f

type cfp_ptr1d
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type cfp_ptr2d

type cfp_ptr3d

type cfp_ptr4d
Opaque types for proxy pointers to 1D, 2D, 3D, and 4D compressed float or double array elements.

type cfp_ptr1

type cfp_ptr2

type cfp_ptr3

type cfp_ptr4
Fictitious types denoting pointers into 1D, 2D, 3D, and 4D arrays of any scalar type.

type cfp_ptrf

type cfp_ptrd
Fictitious types denoting pointers into float or double arrays of any dimensionality.

type cfp_ptr
Fictitious type denoting pointer into array of any dimensionality and scalar type.

float cfp.arrayf.pointer.get(const cfp_ptrf self)

double cfp.arrayd.pointer.get(const cfp_ptrd self)
Dereference operator; *self. See pointer::operator*().

float cfp.arrayf.pointer.get_at(const cfp_ptrf self, ptrdiff_t d)

double cfp.arrayd.pointer.get_at(const cfp_ptrd self, ptrdiff_t d)
Offset dereference operator; self[d]. See pointer::operator[]().

void cfp.arrayf.pointer.set(cfp_ptrf self, float val)

void cfp.arrayd.pointer.set(cfp_ptrd self, double val)
Dereference operator with assignment; *self = val. See pointer::operator*().

void cfp.arrayf.pointer.set_at(cfp_ptrf self, ptrdiff_t d, float val)

void cfp.arrayd.pointer.set_at(cfp_ptrd self, ptrdiff_t d, double val)
Offset dereference operator with assignment; self[d] = val. See pointer::operator[]().
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cfp_ref cfp.array.pointer.ref(cfp_ptr self)
Get proxy reference to element stored at *self. See pointer::operator*().

cfp_ref cfp.array.pointer.ref_at(cfp_ptr self, ptrdiff_t d)
Get proxy reference to element stored at self[d]. See pointer::operator[]().

zfp_bool cfp.array.pointer.lt(const cfp_ptr lhs, const cfp_ptr rhs)

zfp_bool cfp.array.pointer.gt(const cfp_ptr lhs, const cfp_ptr rhs)

zfp_bool cfp.array.pointer.leq(const cfp_ptr lhs, const cfp_ptr rhs)

zfp_bool cfp.array.pointer.geq(const cfp_ptr lhs, const cfp_ptr rhs)
Return true if the two pointers satisfy the given relationship; lhs < rhs, lhs > rhs, lhs <= rhs, lhs >=
rhs.

zfp_bool cfp.array.pointer.eq(const cfp_ptr lhs, const cfp_ptr rhs)
Compare two proxy pointers for equality; lhs == rhs. The pointers must be to elements with the same index
within the same array to satisfy equality. See pointer::operator==().

int cfp.array.pointer.neq(const cfp_ptr lhs, const cfp_ptr rhs)
Compare two proxy pointers for inequality; lhs != rhs. The pointers are not equal if they point to different
arrays or to elements with different index within the same array. See pointer::operator!=().

ptrdiff_t cfp.array.pointer.distance(const cfp_ptr first, const cfp_ptr last)
Return the difference between two proxy pointers in number of linear array elements; last - first. See
pointer::operator-().

cfp_ptr cfp.array.pointer.next(const cfp_ptr p, ptrdiff_t d)
Return the result of incrementing pointer by d elements; p + d. See pointer::operator+().

cfp_ptr cfp.array.pointer.prev(const cfp_ptr p, ptrdiff_t d)
Return the result of decrementing pointer by d elements; p - d. See pointer::operator-().

cfp_ptr cfp.array.pointer.inc(const cfp_ptr p)
Return the result of incrementing pointer by one element; p + 1. See pointer::operator++().

cfp_ptr cfp.array.pointer.dec(const cfp_ptr p)
Return the result of decrementing pointer by one element; p - 1. See pointer::operator--().
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13.6 Iterators

cfp random-access iterators wrap the C++ iterator classes. All iterators are passed by value and are themselves not
modified by these functions. Iterators are constructed similar to C++ iterators via cfp.array.begin() and cfp.
array.end(). Iterator usage maps closely to equivalent C++ iterator syntax. For example, to set an array to all ones:

// _ and _iter are namespace aliases
const cfp_array3d_api _ = cfp.array3d;
const cfp_iter3d_api _iter = _.iterator;

cfp_array3d a = _.ctor(nx, ny, nz, rate, 0, 0);
cfp_iter3d it;

for (it = _.begin(a); _iter.neq(it, _.end(a)); it = _iter.inc(it))
_iter.set(it, 1.0);

type cfp_iter1f

type cfp_iter2f

type cfp_iter3f

type cfp_iter4f

type cfp_iter1d

type cfp_iter2d

type cfp_iter3d

type cfp_iter4d
Opaque types for block iterators over 1D, 2D, 3D, and 4D compressed float or double array elements.

type cfp_iter1

type cfp_iter2

type cfp_iter3

type cfp_iter4
Fictitious types denoting iterators over 1D, 2D, 3D, and 4D arrays of any scalar type.

type cfp_iterf

type cfp_iterd
Fictitious types denoting iterators over float or double arrays of any dimensionality.

type cfp_iter
Fictitious type denoting iterator over array of any dimensionality and scalar type.
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float cfp.arrayf.iterator.get(const cfp_iterf self)

double cfp.arrayd.iterator.get(const cfp_iterd self)
Return element referenced by iterator; *self. See iterator::operator*().

float cfp.array1f.iterator.get_at(const cfp_iter1f self, ptrdiff_t d)

double cfp.array1d.iterator.get_at(const cfp_iter1d self, ptrdiff_t d)
Return element d elements (may be negative) from iterator; self[d]. See iterator::operator[]().

void cfp.arrayf.iterator.set(cfp_iterf self, float val)

void cfp.arrayd.iterator.set(cfp_iterd self, double val)
Update element referenced by iterator; *self = val. See iterator::operator*().

void cfp.array1f.iterator.set_at(cfp_iter1 self, ptrdiff_t d, float val)

void cfp.array1d.iterator.set_at(cfp_iter1 self, ptrdiff_t d, double val)
Update element d elements (may be negative) from iterator; self[d] = val. See iterator::operator[]().

cfp_ref cfp.array.iterator.ref(cfp_iter self)
Return reference to element referenced by iterator; *self. See iterator::operator*().

cfp_ref cfp.array.iterator.ref_at(cfp_iter self, ptrdiff_t d)
Return reference to an element offset d elements (may be negative) from iterator; self[d]. See
iterator::operator[]().

cfp_ptr cfp.array.iterator.ptr(cfp_iter self)
Return pointer to element referenced by iterator; &*self.

cfp_ptr cfp.array.iterator.ptr_at(cfp_iter self, ptrdiff_t d)
Return pointer to element offset d elements (may be negative) from iterator; &self[d].

size_t cfp.array.iterator.i(const cfp_iter self)

size_t cfp.array.iterator.j(const cfp_iter self)

size_t cfp.array.iterator.k(const cfp_iter self)

size_t cfp.array.iterator.l(const cfp_iter self)
Return i, j, k, and l component of array element referenced by iterator; see iterator::i(), iterator::j(),
iterator::k(), and iterator::l().
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zfp_bool cfp.array.iterator.lt(const cfp_iter lhs, const cfp_iter rhs)

zfp_bool cfp.array.iterator.gt(const cfp_iter lhs, const cfp_iter rhs)

zfp_bool cfp.array.iterator.leq(const cfp_iter lhs, const cfp_iter rhs)

zfp_bool cfp.array.iterator.geq(const cfp_iter lhs, const cfp_iter rhs)
Return true if the two iterators satisfy the given relationship; lhs < rhs, lhs > rhs, lhs <= rhs, lhs >=
rhs.

zfp_bool cfp.array.iterator.eq(const cfp_iter lhs, const cfp_iter rhs)
Return whether two iterators are equal; lhs == rhs. See iterator::operator==().

zfp_bool cfp.array.iterator.neq(const cfp_iter lhs, const cfp_iter rhs)
Return whether two iterators are not equal; lhs != rhs. See iterator::operator!=().

ptrdiff_t cfp.array.iterator.distance(const cfp_iter first, const cfp_iter last)
Return the difference between two iterators; last - first. See iterator::operator-().

cfp_iter cfp.array.iterator.next(const cfp_iter it, ptrdiff_t d)
Return the result of advancing iterator by d elements; it + d. See iterator::operator+().

cfp_iter cfp.array.iterator.prev(const cfp_iter it, ptrdiff_t d)
Return the result of decrementing iterator by d elements; it - d. See iterator::operator-().

cfp_iter cfp.array.iterator.inc(const cfp_iter it)
Return the result of incrementing iterator by one element; it + 1. See iterator::operator++().

cfp_iter cfp.array.iterator.dec(const cfp_iter it)
Return the result of decrementing iterator by one element; it - 1. See iterator::operator--().
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CHAPTER

FOURTEEN

TUTORIAL

This tutorial provides examples that illustrate how to use the zfp library and compressed arrays, and includes code
snippets that show the order of declarations and function calls needed to use the compressor.

This tutorial is divided into three parts: the high-level libzfp library; the low-level compression codecs; and the
compressed array classes (in that order). Users interested only in the compressed arrays, which do not directly expose
anything related to compression other than compression rate control, may safely skip the next two sections.

All code examples below are for 3D arrays of doubles, but it should be clear how to modify the function calls for single
precision and for 1D, 2D, or 4D arrays.

14.1 High-Level C Interface

Users concerned only with storing their floating-point data compressed may use zfp as a black box that maps a possibly
non-contiguous floating-point array to a compressed bit stream. The intent of libzfp is to provide both a high- and
low-level interface to the compressor that can be called from both C and C++ (and possibly other languages). libzfp
supports strided access, e.g., for compressing vector fields one scalar at a time, or for compressing arrays of structs.

Consider compressing the 3D C/C++ array

// define an uncompressed array
double a[nz][ny][nx];

where nx, ny, and nz can be any positive dimensions.

Note: In multidimensional arrays, the order in which dimensions are specified is important. In zfp, the memory layout
convention is such that x varies faster than y, which varies faster than z, and hence x should map to the innermost
(rightmost) array dimension in a C array and to the leftmost dimension in a Fortran array. Getting the order of dimen-
sions right is crucial for good compression and accuracy. See the discussion of dimensions and strides and FAQ #0 for
further information.

To invoke the libzfp compressor, the dimensions and type must first be specified in a zfp_field parameter object
that encapsulates the type, size, and memory layout of the array:

// allocate metadata for the 3D array a[nz][ny][nx]
uint dims = 3;
zfp_type type = zfp_type_double;
zfp_field* field = zfp_field_3d(&a[0][0][0], type, nx, ny, nz);

For single-precision data, use zfp_type_float. As of version 0.5.1, the high-level API also supports integer arrays
(zfp_type_int32 and zfp_type_int64). See FAQs #8 and #9 regarding integer compression.
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Functions similar to zfp_field_3d() exist for declaring 1D, 2D, and 4D arrays. If the dimensionality of the array
is unknown at this point, then a generic zfp_field_alloc() call can be made to just allocate a zfp_field struct,
which can be filled in later using the set functions. If the array is non-contiguous, then zfp_field_set_stride_3d()
should be called.

The zfp_field parameter object holds information about the uncompressed array. To specify the compressed array,
a zfp_stream object must be allocated:

// allocate metadata for a compressed stream
zfp_stream* zfp = zfp_stream_open(NULL);

We may now specify the rate, precision, or accuracy (see Compression Modes for more details on the meaning of these
parameters):

// set compression mode and parameters
zfp_stream_set_rate(zfp, rate, type, dims, zfp_false);
zfp_stream_set_precision(zfp, precision);
zfp_stream_set_accuracy(zfp, tolerance);

Note that only one of these three functions should be called. The return value from these functions gives the actual rate,
precision, or tolerance, and may differ slightly from the argument passed due to constraints imposed by the compressor,
e.g., each block must be stored using a whole number of bits at least as large as the number of bits in the floating-point
exponent; the precision cannot exceed the number of bits in a floating-point value (i.e., 32 for single and 64 for double
precision); and the tolerance must be a (possibly negative) power of two.

The compression parameters have now been specified, but before compression can occur a buffer large enough to hold
the compressed bit stream must be allocated. Another utility function exists for estimating how many bytes are needed:

// allocate buffer for compressed data
size_t bufsize = zfp_stream_maximum_size(zfp, field);
void* buffer = malloc(bufsize);

Note that zfp_stream_maximum_size() returns the smallest buffer size necessary to safely compress the data—the
actual compressed size may be smaller. If the members of zfp and field are for whatever reason not initialized
correctly, then zfp_stream_maximum_size() returns 0.

Before compression can commence, we must associate the allocated buffer with a bit stream used by the compressor
to read and write bits:

// associate bit stream with allocated buffer
bitstream* stream = stream_open(buffer, bufsize);
zfp_stream_set_bit_stream(zfp, stream);

Compression can be accelerated via OpenMP multithreading (since zfp 0.5.3) and CUDA (since zfp 0.5.4). To enable
OpenMP parallel compression, call:

if (!zfp_stream_set_execution(zfp, zfp_exec_omp)) {
// OpenMP not available; handle error

}

See the section Parallel Execution for further details on how to configure zfp and its run-time parameters for parallel
compression.

Finally, the array is compressed as follows:

// compress entire array
size_t size = zfp_compress(zfp, field);
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If the stream was rewound before calling zfp_compress(), the return value is the actual number of bytes of compressed
storage, and as already mentioned, size≤ bufsize. If size = 0, then the compressor failed. Since zfp 0.5.0, the compressor
does not rewind the bit stream before compressing, which allows multiple fields to be compressed one after the other.
The return value from zfp_compress() is always the total number of bytes of compressed storage so far relative to
the memory location pointed to by buffer.

To decompress the data, the field and compression parameters must be initialized with the same values as used for com-
pression, either via the same sequence of function calls as above or by recording these fields and setting them directly.
Metadata such as array dimensions and compression parameters are by default not stored in the compressed stream. It
is up to the caller to store this information, either separate from the compressed data, or via the zfp_write_header()
and zfp_read_header() calls, which should precede the corresponding zfp_compress() and zfp_decompress()
calls, respectively. These calls allow the user to specify what information to store in the header, including a ‘magic’
format identifier, the field type and dimensions, and the compression parameters (see the ZFP_HEADER macros).

In addition to this initialization, the bit stream has to be rewound to the beginning (before reading the header and
decompressing the data):

// rewind compressed stream and decompress array
zfp_stream_rewind(zfp);
size_t size = zfp_decompress(zfp, field);

The return value is zero if the decompressor failed.

14.1.1 Simple Example

Tying it all together, the code example below (see also the simple program) shows how to compress a 3D array double
array[nz][ny][nx]:

// input: (void* array, size_t nx, size_t ny, size_t nz, double tolerance)

// initialize metadata for the 3D array a[nz][ny][nx]
zfp_type type = zfp_type_double; // array scalar type
zfp_field* field = zfp_field_3d(array, type, nx, ny, nz); // array metadata

// initialize metadata for a compressed stream
zfp_stream* zfp = zfp_stream_open(NULL); // compressed stream and␣
→˓parameters
zfp_stream_set_accuracy(zfp, tolerance); // set tolerance for fixed-
→˓accuracy mode
// zfp_stream_set_precision(zfp, precision); // alternative: fixed-
→˓precision mode
// zfp_stream_set_rate(zfp, rate, type, 3, zfp_false); // alternative: fixed-rate mode

// allocate buffer for compressed data
size_t bufsize = zfp_stream_maximum_size(zfp, field); // capacity of compressed␣
→˓buffer (conservative)
void* buffer = malloc(bufsize); // storage for compressed␣
→˓stream

// associate bit stream with allocated buffer
bitstream* stream = stream_open(buffer, bufsize); // bit stream to compress to
zfp_stream_set_bit_stream(zfp, stream); // associate with compressed␣
→˓stream
zfp_stream_rewind(zfp); // rewind stream to beginning

(continues on next page)
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(continued from previous page)

// compress array
size_t zfpsize = zfp_compress(zfp, field); // return value is byte size␣
→˓of compressed stream

14.2 Low-Level C Interface

For applications that wish to compress or decompress portions of an array on demand, a low-level interface is available.
Since this API is useful primarily for supporting random access, the user also needs to manipulate the bit stream, e.g.,
to position the bit pointer to where data is to be read or written. Please be advised that the bit stream functions have
been optimized for speed and do not check for buffer overruns or other types of programmer error.

Like the high-level API, the low-level API also makes use of the zfp_stream parameter object (see previous section) to
specify compression parameters and storage, but does not encapsulate array metadata in a zfp_field object. Functions
exist for encoding and decoding complete or partial blocks, with or without strided access. In non-strided mode, the
uncompressed block to be encoded or decoded is assumed to be stored contiguously. For example,

// compress a single contiguous block
double block[4 * 4 * 4] = { /* some set of values */ };
size_t bits = zfp_encode_block_double_3(zfp, block);

The return value is the number of bits of compressed storage for the block. For fixed-rate streams, if random write
access is desired, then the stream should also be flushed after each block is encoded:

// flush any buffered bits
zfp_stream_flush(zfp);

This flushing should be done only after the last block has been compressed in fixed-precision and fixed-accuracy mode,
or when random access is not needed in fixed-rate mode.

The block above could also have been compressed as follows using strides:

// compress a single contiguous block using strides
double block[4][4][4] = { /* some set of values */ };
ptrdiff_t sx = &block[0][0][1] - &block[0][0][0]; // x stride = 1
ptrdiff_t sy = &block[0][1][0] - &block[0][0][0]; // y stride = 4
ptrdiff_t sz = &block[1][0][0] - &block[0][0][0]; // z stride = 16
size_t bits = zfp_encode_block_strided_double_3(zfp, &block[0][0][0], sx, sy, sz);

The strides are measured in number of array elements, not in bytes.

For partial blocks, e.g., near the boundaries of arrays whose dimensions are not multiples of four, there are correspond-
ing functions that accept parameters nx, ny, and nz to specify the actual block dimensions, with 1 ≤ nx, ny, nz ≤ 4.
Corresponding functions exist for decompression. Such partial blocks typically do not compress as well as full blocks
and should be avoided if possible.

To position a bit stream for reading (decompression), use

// position the stream at given bit offset for reading
stream_rseek(stream, offset);

where the offset is measured in number of bits from the beginning of the stream. For writing (compression), a corre-
sponding call exists:
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// position the stream at given bit offset for writing
stream_wseek(stream, offset);

Note that it is possible to decompress fewer bits than are stored with a compressed block to quickly obtain an approxima-
tion. This is done by setting zfp->maxbits to fewer bits than used during compression. For example, to decompress
only the first 256 bits of each block:

// modify decompression parameters to decode 256 bits per block
uint maxbits;
uint maxprec;
int minexp;
zfp_stream_params(zfp, NULL, &maxbits, &maxprec, &minexp);
assert(maxbits >= 256);
zfp_stream_set_params(zfp, 256, 256, maxprec, minexp);

This feature may be combined with progressive decompression, as discussed further in FAQ #13.

14.3 Compressed C++ Arrays

The zfp compressed-array API has been designed to facilitate integration with existing applications. After initial array
declaration, a zfp array can often be used in place of a regular C/C++ array or STL vector, e.g., using flat indexing via
a[index], nested indexing a[k][j][i] (via nested views), or using multidimensional indexing via a(i), a(i, j),
a(i, j, k), or a(i, j, k, l). There are, however, some important differences. For instance, applications that
rely on addresses or references to array elements may have to be modified to use special proxy classes that implement
pointers and references; see Limitations.

zfp’s compressed arrays do not support special floating-point values like infinities and NaNs, although subnormal
numbers are handled correctly. Similarly, because the compressor assumes that the array values vary smoothly, using
finite but large values like HUGE_VAL in place of infinities is not advised, as this will introduce large errors in smaller
values within the same block. Future extensions will provide support for a bit mask to mark the presence of non-values.

The zfp C++ classes are implemented entirely as header files and make extensive use of C++ templates to reduce code
redundancy. These classes are wrapped in the zfp namespace.

Currently, there are eight array classes for 1D, 2D, 3D, and 4D arrays, each of which can represent single- or double-
precision values. Although these arrays store values in a form different from conventional single- and double-precision
floating point, the user interacts with the arrays via floats and doubles.

The description below is for 3D arrays of doubles—the necessary changes for other array types should be obvious. To
declare and zero initialize an array, use

// declare nx * ny * nz array of compressed doubles
zfp::array3<double> a(nx, ny, nz, rate);

This declaration is conceptually equivalent to

double a[nz][ny][nx] = { 0.0 };

or using STL vectors

std::vector<double> a(nx * ny * nz, 0.0);

but with the user specifying the amount of storage used via the rate parameter. (A predefined type array3d also exists,
while the suffix ‘f’ is used for floats.)
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Note: In multidimensional arrays, the order in which dimensions are specified is important. In zfp, the memory layout
convention is such that x varies faster than y, which varies faster than z, and hence x should map to the innermost
(rightmost) array dimension in a C array and to the leftmost dimension in a Fortran array. Getting the order of dimen-
sions right is crucial for good compression and accuracy. See the discussion of dimensions and strides and FAQ #0 for
further information.

Note that the array dimensions can be arbitrary and need not be multiples of four (see above for a discussion of incom-
plete blocks). The rate argument specifies how many bits per value (amortized) to store in the compressed representa-
tion. By default, the block size is restricted to a multiple of 64 bits, and therefore the rate argument can be specified in
increments of 64 / 4d bits in d dimensions, i.e.

1D arrays: 16-bit granularity
2D arrays: 4-bit granularity
3D arrays: 1-bit granularity
4D arrays: 1/4-bit granularity

For finer granularity, the BIT_STREAM_WORD_TYPE macro needs to be set to a type narrower than 64 bits during com-
pilation of libzfp, e.g., if set to uint8 the rate granularity becomes 8 / 4d bits in d dimensions, or

1D arrays: 2-bit granularity
2D arrays: 1/2-bit granularity
3D arrays: 1/8-bit granularity
4D arrays: 1/32-bit granularity

Note that finer granularity usually implies slightly lower performance. Also note that because the arrays are stored
compressed, their effective precision is likely to be higher than the user-specified rate.

The array can also optionally be initialized from an existing contiguous floating-point array stored at pointer with an x
stride of 1, y stride of nx, and z stride of nx × ny:

// declare and initialize 3D array of doubles
zfp::array3d a(nx, ny, nz, rate, pointer, cache_size);

The optional cache_size argument specifies the minimum number of bytes to allocate for the cache of uncompressed
blocks (see Caching below for more details).

As of zfp 0.5.3, entire arrays may be copied via the copy constructor or assignment operator:

zfp::array3d b(a); // declare array b to be a copy of array a
zfp::array3d c; // declare empty array c
c = a; // copy a to c

Copies are deep and have value (not reference) semantics. In the above example, separate storage for b and c is allocated,
and subsequent modifications to b and c will not modify a.

If not already initialized, a function array::set() can be used to copy uncompressed data to the compressed array:

const double* pointer; // pointer to uncompressed, initialized data
a.set(pointer); // initialize compressed array with floating-point data

Similarly, an array::get() function exists for retrieving uncompressed data:

double* pointer; // pointer to where to write uncompressed data
a.get(pointer); // decompress and store the array at pointer
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The compressed representation of an array can also be queried or initialized directly without having to convert to/from
its floating-point representation:

size_t bytes = compressed_size(); // number of bytes of compressed storage
void* compressed_data(); // pointer to compressed data

The array can through this pointer be initialized from offline compressed storage, but only after its dimensions
and rate have been specified (see above). For this to work properly, the cache must first be emptied via an
array::clear_cache() call (see below).

Through operator overloading, the array can be accessed in one of two ways. For read accesses, use

double value = a[index]; // fetch value with given flat array index
double value = a(i, j, k); // fetch value with 3D index (i, j, k)

These access the same value if and only if index = i + nx * (j + ny * k). Note that 0 ≤ i < nx, 0 ≤ j < ny, and
0 ≤ k < nz, and i varies faster than j, which varies faster than k.

zfp 0.5.4 adds views to arrays, which among other things can be used to perform nested indexing:

zfp::array3d::nested_view v(&a);
double value = v[k][j][i];

A view is a shallow copy of an array or a subset of an array.

Array values may be written and updated using the usual set of C++ assignment and compound assignment operators.
For example:

a[index] = value; // set value at flat array index
a(i, j, k) += value; // increment value with 3D index (i, j, k)

Whereas one might expect these operators to return a (non-const) reference to an array element, this would allow seating
a reference to a value that currently is cached but is transient, which could be unsafe. Moreover, this would preclude
detecting when an array element is modified. Therefore, the return type of both operators [] and () is a proxy reference
class, similar to std::vector<bool>::reference from the STL library. Because read accesses to a mutable object
cannot call the const-qualified accessor, a proxy reference may be returned even for read calls. For example, in

a[i] = a[i + 1];

the array a clearly must be mutable to allow assignment to a[i], and therefore the read access a[i + 1] returns type
array::reference. The value associated with the read access is obtained via an implicit conversion.

When the array is const qualified, the operators [] and () are inspectors that return a proxy const reference that
implicitly converts to a value. If used as arguments in printf or other functions that take a variable number of
arguments, implicit conversion is not done and the reference has to be explicitly cast to value, e.g., printf("%f",
(double)a[i]);.

Array dimensions nx, ny, nz, and nw can be queried using these functions:

size_t size(); // total number of elements nx * ny * nz * nw
size_t size_x(); // nx
size_t size_y(); // ny
size_t size_z(); // nz
size_t size_w(); // nw

The array dimensions can also be changed dynamically, e.g., if not known at time of construction, using
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void resize(size_t nx, size_t ny, size_t nz, size_t nw, bool clear = true);

When clear = true, the array is explicitly zeroed. In either case, all previous contents of the array are lost. If nx = ny =
nz = 0, all storage is freed.

Finally, the rate supported by the array may be queried via

double rate(); // number of compressed bits per value

and changed using

void set_rate(rate); // change rate

This also destroys prior contents.

As of zfp 0.5.2, iterators and proxy objects for pointers and references are supported. Note that the decompressed value
of an array element exists only intermittently, when the decompressed value is cached. It would not be safe to return
a double& reference or double* pointer to the cached but transient value since it may be evicted from the cache at
any point, thus invalidating the reference or pointer. Instead, zfp provides proxy objects for references and pointers that
guarantee persistent access by referencing elements by array object and index. These classes perform decompression
on demand, much like how Boolean vector references are implemented in the STL.

As of zfp 1.0.0, all iterators for 1D-4D arrays support random access. Iterators ensure that array values are visited one
block at a time, and are the preferred way of looping over array elements. Such block-by-block access is especially useful
when performing write accesses since then complete blocks are updated one at a time, thus reducing the likelihood of
a partially updated block being evicted from the cache and compressed, perhaps with some values in the block being
uninitialized. Here is an example of initializing a 3D array:

for (zfp::array3d::iterator it = a.begin(); it != a.end(); it++) {
size_t i = it.i();
size_t j = it.j();
size_t k = it.k();
a(i, j, k) = some_function(i, j, k);

}

Pointers to array elements are available via a special pointer class. Such pointers may be a useful way of passing
(flattened) zfp arrays to functions that expect uncompressed arrays, e.g., by using the pointer type as template argument.
For example:

template <typename double_ptr>
void sum(double_ptr p, size_t count)
{
double s = 0;
for (size_t i = 0; i < count; i++)
s += p[i];

return s;
}

Then the following are equivalent:

// sum of STL vector elements (double_ptr == double*)
std::vector<double> vec(nx * ny * nz, 0.0);
double vecsum = sum(&vec[0], nx * ny * nz);

// sum of zfp array elements (double_ptr == zfp::array3d::pointer)
(continues on next page)
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zfp::array3<double> array(nx, ny, nz, rate);
double zfpsum = sum(&array[0], nx * ny * nz);

As another example,

for (zfp::array1d::pointer p = &a[0]; p - &a[0] < a.size(); p++)
*p = 0.0;

initializes a 1D array to all-zeros. Pointers visit arrays in standard row-major order, i.e.

&a(i, j, k) == &a[0] + i + nx * (j + ny * k)
== &a[i + nx * (j + ny * k)]

where &a(i, j, k) and &a[0] are both of type array3d::pointer. Thus, iterators and pointers do not visit arrays
in the same order, except for the special case of 1D arrays. Like iterators, pointers support random access for arrays of
all dimensions and behave very much like float* and double* built-in pointers.

Proxy objects for array element references have been supported since the first release of zfp, and may for instance be
used in place of double&. Iterators and pointers are implemented in terms of references.

The following table shows the equivalent zfp type to standard types when working with 1D arrays:

double& zfp::array1d::reference
double* zfp::array1d::pointer
std::vector<double>::iterator zfp::array1d::iterator
const double& zfp::array1d::const_reference
const double* zfp::array1d::const_pointer
std::vector<double>::const_iterator zfp::array1d::const_iterator

14.3.1 Caching

As mentioned above, the array class maintains a software write-back cache of at least one uncompressed block. When a
block in this cache is evicted (e.g., due to a conflict), it is compressed back to permanent storage only if it was modified
while stored in the cache.

The size cache to use is specified by the user and is an important parameter that needs careful consideration in order
to balance the extra memory usage, performance, and accuracy (recall that data loss is incurred only when a block is
evicted from the cache and compressed). Although the best choice varies from one application to another, we suggest
allocating at least two layers of blocks (2 × (nx / 4) × (ny / 4) blocks) for applications that stream through the array
and perform stencil computations such as gathering data from neighboring elements. This allows limiting the cache
misses to compulsory ones. If the cache_size parameter is set to zero bytes, then a default size of

√
n blocks (rounded

up to the next integer power of two) is used, where n is the total number of blocks in the array.

The cache size can be set during construction, or can be set at a later time via

void set_cache_size(bytes); // change cache size

Note that if bytes = 0, then the array dimensions must have already been specified for the default size to be computed
correctly. When the cache is resized, it is first flushed if not already empty. The cache can also be flushed explicitly if
desired by calling

void flush_cache(); // empty cache by first compressing any modified blocks

To empty the cache without compressing any cached data, call
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void clear_cache(); // empty cache without compression

To query the byte size of the cache, use

size_t cache_size(); // actual cache size in bytes
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FILE COMPRESSOR

This section describes a simple, file-based zfp compression tool that is part of the zfp distribution named zfp. Other,
third-party, file-based compression options are discussed in the Application Support section.

The zfp executable in the bin directory is primarily intended for evaluating the rate-distortion (compression ratio and
quality) provided by the compressor, but since version 0.5.0 also allows reading and writing compressed data sets. zfp
takes as input a raw, binary array of floats, doubles, or integers in native byte order and optionally outputs a compressed
or reconstructed array obtained after lossy compression followed by decompression. Various statistics on compression
ratio and error are also displayed.

The uncompressed input and output files should be a flattened, contiguous sequence of scalars without any header
information, generated for instance by

double* data = new double[nx * ny * nz];
// populate data
FILE* file = fopen("data.bin", "wb");
fwrite(data, sizeof(*data), nx * ny * nz, file);
fclose(file);

zfp requires a set of command-line options, the most important being the -i option that specifies that the input is
uncompressed. When present, -i tells zfp to read an uncompressed input file and compress it to memory. If desired,
the compressed stream can be written to an output file using -z. When -i is absent, on the other hand, -z names
the compressed input (not output) file, which is then decompressed. In either case, -o can be used to output the
reconstructed array resulting from lossy compression and decompression.

So, to compress a file, use -i file.in -z file.zfp. To later decompress the file, use -z file.zfp -o file.
out. A single dash “-” can be used in place of a file name to denote standard input or output.

When reading uncompressed input, the scalar type must be specified using -f (float) or -d (double), or using -t for
integer-valued data. In addition, the array dimensions must be specified using -1 (for 1D arrays), -2 (for 2D arrays),
-3 (for 3D arrays), or -4 (for 4D arrays). For multidimensional arrays, x varies faster than y, which in turn varies faster
than z, and so on. That is, a 4D input file corresponding to a flattened C array a[nw][nz][ny][nx] is specified as -4
nx ny nz nw.

Note: Note that -2 nx ny is not equivalent to -3 nx ny 1, even though the same number of values are compressed.
One invokes the 2D codec, while the other uses the 3D codec, which in this example has to pad the input to an nx
× ny × 4 array since arrays are partitioned into blocks of dimensions 4d. Such padding usually negatively impacts
compression.

In addition to ensuring correct dimensionality, the order of dimensions also matters. For instance, -2 nx ny is not
equivalent to -2 ny nx, i.e., with the dimensions transposed.

Note: In multidimensional arrays, the order in which dimensions are specified is important. In zfp, the memory layout
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convention is such that x varies faster than y, which varies faster than z, and hence x should map to the innermost
(rightmost) array dimension in a C array and to the leftmost dimension in a Fortran array. Getting the order of dimen-
sions right is crucial for good compression and accuracy. See the discussion of dimensions and strides and FAQ #0 for
further information.

Using -h , the array dimensions and type are stored in a header of the compressed stream so that they do not have to
be specified on the command line during decompression. The header also stores compression parameters, which are
described below. The compressor and decompressor must agree on whether headers are used, and it is up to the user
to enforce this.

zfp accepts several options for specifying how the data is to be compressed. The most general of these, the -c option,
takes four constraint parameters that together can be used to achieve various effects. These constraints are:

minbits: the minimum number of bits used to represent a block
maxbits: the maximum number of bits used to represent a block
maxprec: the maximum number of bit planes encoded
minexp: the smallest bit plane number encoded

These parameters are discussed in detail in the section on compression modes. Options -r, -p, and -a provide a
simpler interface to setting all of the above parameters by invoking fixed-rate (-r), -precision (-p), and -accuracy (-a)
mode. Reversible mode for lossless compression is specified using -R .

15.1 Usage

Below is a description of each command-line option accepted by zfp.

15.1.1 General options

-h

Read/write array and compression parameters from/to compressed header.

-q

Quiet mode; suppress diagnostic output.

-s

Evaluate and print the following error statistics:

• rmse: The root mean square error.

• nrmse: The root mean square error normalized to the range.

• maxe: The maximum absolute pointwise error.

• psnr: The peak signal to noise ratio in decibels.

148 Chapter 15. File Compressor



zfp Documentation, Release 1.0.1

15.1.2 Input and output

-i <path>

Name of uncompressed binary input file. Use “-” for standard input.

-o <path>

Name of decompressed binary output file. Use “-” for standard output. May be used with either -i, -z, or both.

-z <path>

Name of compressed input (without -i) or output file (with -i). Use “-” for standard input or output.

When -i is specified, data is read from the corresponding uncompressed file, compressed, and written to the com-
pressed file specified by -z (when present). Without -i, compressed data is read from the file specified by -z and
decompressed. In either case, the reconstructed data can be written to the file specified by -o.

15.1.3 Array type and dimensions

-f

Single precision (float type). Shorthand for -t f32.

-d

Double precision (double type). Shorthand for -t f64.

-t <type>

Specify scalar type as one of i32, i64, f32, f64 for 32- or 64-bit integer or floating scalar type.

-1 <nx>

Dimensions of 1D C array a[nx].

-2 <nx> <ny>

Dimensions of 2D C array a[ny][nx].

-3 <nx> <ny> <nz>

Dimensions of 3D C array a[nz][ny][nx].

-4 <nx> <ny> <nz> <nw>

Dimensions of 4D C array a[nw][nz][ny][nx].

When -i is used, the scalar type and array dimensions must be specified. One of -f , -d , or -t specifies the input
scalar type. -1, -2, -3, or -4 specifies the array dimensions. The same parameters must be given when decompressing
data (without -i), unless a header was stored using -h during compression.

15.1.4 Compression parameters

One of the following compression modes must be selected.

-r <rate>

Specify fixed rate in terms of number of compressed bits per integer or floating-point value.

-p <precision>

Specify fixed precision in terms of number of uncompressed bits per value.

-a <tolerance>

Specify fixed accuracy in terms of absolute error tolerance.
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-R

Reversible (lossless) mode.

-c <minbits> <maxbits> <maxprec> <minexp>

Specify expert mode parameters.

When -i is used, the compression parameters must be specified. The same parameters must be given when decom-
pressing data (without -i), unless a header was stored using -h when compressing. See the section on compression
modes for a discussion of these parameters.

15.1.5 Execution parameters

-x <policy>

Specify execution policy and parameters. The default policy is -x serial for sequential execution. To enable
OpenMP parallel compression, use the omp policy. Without parameters, -x omp selects OpenMP with default
settings, which typically implies maximum concurrency available. Use -x omp=threads to request a specific
number of threads (see also zfp_stream_set_omp_threads()). A thread count of zero is ignored and results
in the default number of threads. Use -x omp=threads,chunk_size to specify the chunk size in number of
blocks (see also zfp_stream_set_omp_chunk_size()). A chunk size of zero is ignored and results in the
default size. Use -x cuda to for parallel CUDA compression and decompression.

As of 0.5.4, the execution policy applies to both compression and decompression. If the execution policy is not sup-
ported for decompression, then zfp will attempt to fall back on serial decompression. This is done only when both
compression and decompression are performed as part of a single execution, e.g., when specifying both -i and -o.

15.1.6 Examples

• -i file : read uncompressed file and compress to memory

• -z file : read compressed file and decompress to memory

• -i ifile -z zfile : read uncompressed ifile, write compressed zfile

• -z zfile -o ofile : read compressed zfile, write decompressed ofile

• -i ifile -o ofile : read ifile, compress, decompress, write ofile

• -i file -s : read uncompressed file, compress to memory, print stats

• -i - -o - -s : read stdin, compress, decompress, write stdout, print stats

• -f -3 100 100 100 -r 16 : 2x fixed-rate compression of 100 × 100 × 100 floats

• -d -1 1000000 -r 32 : 2x fixed-rate compression of 1,000,000 doubles

• -d -2 1000 1000 -p 32 : 32-bit precision compression of 1000 × 1000 doubles

• -d -1 1000000 -a 1e-9 : compression of 1,000,000 doubles with < 10-9 max error

• -d -1 1000000 -c 64 64 0 -1074 : 4x fixed-rate compression of 1,000,000 doubles

• -x omp=16,256 : parallel compression with 16 threads, 256-block chunks
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CODE EXAMPLES

The examples directory includes ten programs that make use of the compressor.

16.1 Simple Compressor

The simple program is a minimal example that shows how to call the compressor and decompressor on a double-
precision 3D array. Without the -d option, it will compress the array and write the compressed stream to standard
output. With the -d option, it will instead read the compressed stream from standard input and decompress the array:

simple > compressed.zfp
simple -d < compressed.zfp

For a more elaborate use of the compressor, see the zfp utility.

16.2 Compressed-Array C++ Classes

The array program shows how to declare, write to, and read from zfp’s compressed-array C++ objects (in this case, 2D
double-precision arrays), which is essentially as straightforward as working with STL vectors. This example initializes
a 2D array with a linear ramp of 12 × 8 = 96 values using only four bits of storage per value, which using uncom-
pressed storage would not be enough to distinguish more than 16 different values. For more advanced compressed-array
features, see the tutorial.

16.3 Diffusion Solver

The diffusion example is a simple forward Euler solver for the heat equation on a 2D regular grid, and is intended to
show how to declare and work with zfp’s compressed arrays, as well as give an idea of how changing the compression
parameters and cache size affects the error in the solution and solution time. The usage is:

diffusion [options]
-a <tolerance> : absolute error tolerance (requires -c)
-b <blocks> : cache size in number of 4x4 blocks
-c : use read-only arrays (needed for -a, -p, -R)
-d : use double-precision tiled arrays
-f : use single-precision tiled arrays
-h : use half-precision tiled arrays
-i : traverse arrays using iterators instead of integer indices
-j : use OpenMP parallel execution (requires -r)

(continues on next page)
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(continued from previous page)

-n <nx> <ny> : grid dimensions
-p <precision> : precision in uncompressed bits/value (requires -c)
-r <rate> : rate in compressed bits/value
-R : reversible mode (requires -c)
-t <nt> : number of time steps

Here rate specifies the exact number of compressed bits to store per double-precision floating-point value; nx and ny
specify the grid size (default = 128 × 128); nt specifies the number of time steps to take (the default is to run until
time t = 1); and blocks is the number of uncompressed blocks to cache (default = nx / 2). The -i option enables array
traversal via iterators instead of indices.

The -j option enables OpenMP parallel execution, which makes use of both mutable and immutable private views for
thread-safe array access. Note that this example has not been optimized for parallel performance, but rather serves to
show how to work with zfp’s compressed arrays in a multithreaded setting.

This example also illustrates how read-only arrays (-c) may be used in conjunction with fixed-rate (-r), fixed-precision
(-p), fixed-accuracy (-a), or reversible (-R) mode.

The output lists for each time step the current rate of the state array and in parentheses any additional storage, e.g.,
for the block cache and index data structures, both in bits per array element. Running diffusion with the following
arguments:

diffusion -r 8
diffusion -r 12
diffusion -r 16
diffusion -r 24
diffusion

should result in this final output:

sum=0.995170 error=4.044954e-07
sum=0.998151 error=1.237837e-07
sum=0.998345 error=1.212734e-07
sum=0.998346 error=1.212716e-07
sum=0.998346 error=1.212716e-07

For speed and quality comparison, the solver solves the same problem using uncompressed double-precision row-
major arrays when compression parameters are omitted. If one of -h, -f, -d is specified, uncompressed tiled arrays
are used. These arrays are based on the zfp array classes but make use of the generic codec, which stores blocks as
uncompressed scalars of the specified type (half, float, or double) while utilizing a double-precision block cache
(like zfp’s compressed arrays).

The diffusionC program is the same example written entirely in C using the cfp wrappers around the C++ compressed
array classes.
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16.4 Speed Benchmark

The speed program takes two optional parameters:

speed [rate] [blocks]

It measures the throughput of compression and decompression of 3D double-precision data (in megabytes of uncom-
pressed data per second). By default, a rate of 1 bit/value and two million blocks are processed.

16.5 PGM Image Compression

The pgm program illustrates how zfp can be used to compress grayscale images in the pgm format. The usage is:

pgm <param> <input.pgm >output.pgm

If param is positive, it is interpreted as the rate in bits per pixel, which ensures that each block of 4 × 4 pixels is
compressed to a fixed number of bits, as in texture compression codecs. If param is negative, then fixed-precision
mode is used with precision -param, which tends to give higher quality for the same rate. This use of zfp is not
intended to compete with existing texture and image compression formats, but exists merely to demonstrate how to
compress 8-bit integer data with zfp. See FAQs #20 and #21 for information on the effects of setting the precision.

16.6 PPM Image Compression

The ppm program is analogous to the pgm example, but has been designed for compressing color images in the ppm
format. Rather than compressing RGB channels independently, ppm exploits common strategies for color image com-
pression such as color channel decorrelation and chroma subsampling.

The usage is essentially the same as for pgm:

ppm <param> <input.ppm >output.ppm

where a positive param specifies the rate in bits per pixel; when negative, it specifies the precision (number of bit planes
to encode) in fixed-precision mode.

16.7 In-place Compression

The inplace example shows how one might use zfp to perform in-place compression and decompression when mem-
ory is at a premium. Here the floating-point array is overwritten with compressed data, which is later decompressed
back in place. This example also shows how to make use of some of the low-level features of zfp, such as its low-level,
block-based compression API and bit stream functions that perform seeks on the bit stream. The program takes one
optional argument:

inplace [tolerance]

which specifies the fixed-accuracy absolute tolerance to use during compression. Please see FAQ #19 for more on the
limitations of in-place compression.
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16.8 Iterators

The iterator example illustrates how to use zfp’s compressed-array iterators and pointers for traversing arrays. For
instance, it gives an example of sorting a 1D compressed array using std::sort(). This example takes no command-
line options.

The iteratorC example illustrates the equivalent cfp iterator operations. It closely follows the usage shown in the
iterator example with some minor differences. It likewise takes no command-line options.
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REGRESSION TESTS

The testzfp program performs basic regression testing by exercising a small but important subset of libzfp and the
compressed-array classes. It serves as a sanity check that zfp has been built properly. These tests assume the default
compiler settings, i.e., with none of the settings in Config or CMakeLists.txt modified. By default, small, synthetic
floating-point arrays are used in the test. To test larger arrays, use the large command-line option. When large arrays
are used, the (de)compression throughput is also measured and reported in number of uncompressed bytes per second.

More extensive unit and functional tests are available on the zfp GitHub develop branch in the tests directory.
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FAQ

The following is a list of answers to frequently asked questions. For questions not answered here or elsewhere in the
documentation, please e-mail us.

Questions answered in this FAQ:

0. Do zfp arrays use C or Fortran order?

1. Can zfp compress vector fields?

2. Should I declare a 2D array as zfp::array1d a(nx * ny, rate)?

3. How can I initialize a zfp compressed array from disk?

4. Can I use zfp to represent dense linear algebra matrices?

5. Can zfp compress logically regular but geometrically irregular data?

6. Does zfp handle infinities, NaNs,and subnormal floating-point numbers?

7. Can zfp handle data with some missing values?

8. Can I use zfp to store integer data?

9. Can I compress 32-bit integers using zfp?

10. Why does zfp corrupt memory if my allocated buffer is too small?

11. Are zfp compressed streams portable across platforms?

12. How can I achieve finer rate granularity?

13. Can I generate progressive zfp streams?

14. How do I initialize the decompressor?

15. Must I use the same parameters during compression and decompression?

16. Do strides have to match during compression and decompression?

17. Why does zfp sometimes not respect my error tolerance?

18. Why is the actual rate sometimes not what I requested?

19. Can zfp perform compression in place?

20. Can zfp bound the point-wise relative error?

21. Does zfp support lossless compression?

22. Why is my actual, measured error so much smaller than the tolerance?

23. Are parallel compressed streams identical to serial streams?

24. Are zfp arrays and other data structures thread-safe?
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25. Why does parallel compression performance not match my expectations?

26. Why are compressed arrays so slow?

27. Do compressed arrays use reference counting?

28. How large a buffer is needed for compressed storage?

29. How can I print array values?

30. What is known about zfp compression errors?

Q0: Do zfp arrays use C or Fortran order?

This is such an important question that we added it as question zero to our FAQ, but do not let this C’ism fool you.

A: zfp compressed-array classes and uncompressed fields assume that the leftmost index varies fastest, which often is
referred to as Fortran order. By convention, zfp uses x (or i) to refer to the leftmost index, then y (or j), and so on.

Warning: It is critical that the order of dimensions is specified correctly to achieve good compression and accuracy.
If the order of dimensions is transposed, zfp will still compress the data, but with no indication that the order was
wrong. Compression ratio and/or accuracy will likely suffer significantly, however. Please see this section for
further discussion.

In C order, the rightmost index varies fastest (e.g., x in arr[z][y][x]), meaning that if we increment the rightmost
index we move to the next consecutive address in memory. If an uncompressed array, arr, is stored in C order, we
would for compatibility with zfp let x be the rightmost index in arr but the leftmost index in the compressed zfp array,
zarr, e.g.,:

const size_t nx = 5;
const size_t ny = 3;
const size_t nz = 2;
float arr[nz][ny][nx] = { ... };
zfp::array3<float> zarr(nx, ny, nz, rate, &a[0][0][0]);

Then arr[z][y][x] and zarr(x, y, z) refer to the same element, as do (&arr[0][0][0])[sx * x + sy * y
+ sz * z] and zarr[sx * x + sy * y + sz * z], where

ptrdiff_t sx = &arr[0][0][1] - &arr[0][0][0]; // sx = 1
ptrdiff_t sy = &arr[0][1][0] - &arr[0][0][0]; // sy = nx = 5
ptrdiff_t sz = &arr[1][0][0] - &arr[0][0][0]; // sz = nx * ny = 15

Here sx, sy, and sz are the strides along the three dimensions, with sx < sy < sz.

Of course, C vs. Fortran ordering matters only for multidimensional arrays and when the array dimensions (nx, ny, nz)
are not all equal.

Note that zfp fields also support strides, which can be used to represent more general layouts than C and Fortran order,
including non-contiguous storage, reversed dimensions via negative strides, and other advanced layouts. With the
default strides, however, it is correct to think of zfp as using Fortran order.

For uncompressed data stored in C order, one easily translates to zfp Fortran order by reversing the order of dimensions
or by specifying appropriate strides. We further note that zfp provides nested views of arrays that support C indexing
syntax, e.g., view[z][y][x] corresponds to arr(x, y, z).

Note: The zfp NumPy interface uses the strides of the NumPy array to infer the correct layout. Although NumPy
arrays use C order by default, zfp handles such arrays correctly regardless of their memory layout. The actual order of
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dimensions for compressed storage are, however, reversed so that NumPy arrays in C order are traversed sequentially
during compression.

Why does zfp use Fortran order when C is today a far more common language? This choice is somewhat arbitrary yet
has strong proponents in either camp, similar to the preference between little and big endian byte order. We believe
that a single 2D array storing an (x, y) image is most naturally extended to a sequence of nt time-varying images by
appending (not prepending) a time dimension t as (x, y, t). This is the convention used in mathematics, e.g., we use (x, y)
coordinates in 2D and (x, y, z) coordinates in 3D. Using Fortran order, each time slice, t, is still a 2D contiguous image,
while C order (arr[x][y][t]) would suggest that appending the t dimension now gives us nx 2D arrays indexed by
(y, t), even though without the t dimension the images would be indexed by (x, y).

Q1: Can zfp compress vector fields?

I have a 2D vector field

double velocity[ny][nx][2];

of dimensions nx × ny. Can I use a 3D zfp array to store this as:

array3d velocity(2, nx, ny, rate);

A: Although this could be done, zfp assumes that consecutive values are related. The two velocity components (vx, vy)
are almost assuredly independent and would not be correlated. This will severely hurt the compression rate or quality.
Instead, consider storing vx and vy as two separate 2D scalar arrays:

array2d vx(nx, ny, rate);
array2d vy(nx, ny, rate);

or as

array2d velocity[2] = {array2d(nx, ny, rate), array2d(nx, ny, rate)};

Q2: Should I declare a 2D array as zfp::array1d a(nx * ny, rate)?

I have a 2D scalar field of dimensions nx × ny that I allocate as

double* a = new double[nx * ny];

and index as

a[x + nx * y]

Should I use a corresponding zfp array

array1d a(nx * ny, rate);

to store my data in compressed form?

A: Although this is certainly possible, if the scalar field exhibits coherence in both spatial dimensions, then far better
results can be achieved by using a 2D array:

array2d a(nx, ny, rate);
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Although both compressed arrays can be indexed as above, the 2D array can exploit smoothness in both dimensions
and improve the quality dramatically for the same rate.

Since zfp 0.5.2, proxy pointers are also available that act much like the flat double*.

Q3: How can I initialize a zfp compressed array from disk?

I have a large, uncompressed, 3D data set:

double a[nz][ny][nx];

stored on disk that I would like to read into a compressed array. This data set will not fit in memory uncompressed.
What is the best way of doing this?

A: Using a zfp array:

array3d a(nx, ny, nz, rate);

the most straightforward (but perhaps not best) way is to read one floating-point value at a time and copy it into the
array:

for (size_t z = 0; z < nz; z++)
for (size_t y = 0; y < ny; y++)
for (size_t x = 0; x < nx; x++) {

double f;
if (fread(&f, sizeof(f), 1, file) == 1)
a(x, y, z) = f;

else {
// handle I/O error

}
}

Note, however, that if the array cache is not large enough, then this may compress blocks before they have been com-
pletely filled. Therefore it is recommended that the cache holds at least one complete layer of blocks, i.e., (nx / 4) ×
(ny / 4) blocks in the example above.

To avoid inadvertent evictions of partially initialized blocks, it is better to buffer four layers of nx × ny values each at
a time, when practical, and to completely initialize one block after another, which is facilitated using zfp’s iterators:

double* buffer = new double[nx * ny * 4];
int zmin = -4;
for (zfp::array3d::iterator it = a.begin(); it != a.end(); it++) {
int x = it.i();
int y = it.j();
int z = it.k();
if (z > zmin + 3) {
// read another layer of blocks
if (fread(buffer, sizeof(*buffer), nx * ny * 4, file) != nx * ny * 4) {

// handle I/O error
}
zmin += 4;

}
a(x, y, z) = buffer[x + nx * (y + ny * (z - zmin))];

}
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Iterators have been available since zfp 0.5.2.

Q4: Can I use zfp to represent dense linear algebra matrices?

A: Yes, but your mileage may vary. Dense matrices, unlike smooth scalar fields, rarely exhibit correlation between
adjacent rows and columns. Thus, the quality or compression ratio may suffer.

Q5: Can zfp compress logically regular but geometrically irregular data?

My data is logically structured but irregularly sampled, e.g., it is rectilinear, curvilinear, or Lagrangian, or uses an
irregular spacing of quadrature points. Can I still use zfp to compress it?

A: Yes, as long as the data is (or can be) represented as a logical multidimensional array, though your mileage may
vary. zfp has been designed for uniformly sampled data, and compression will in general suffer the more irregular the
sampling is.

Q6: Does zfp handle infinities, NaNs,and subnormal floating-point numbers?

A: Yes, but only in reversible mode.

zfp’s lossy compression modes currently support only finite floating-point values. If a block contains a NaN or an infin-
ity, undefined behavior is invoked due to the C math function frexp() being undefined for non-numbers. Subnormal
numbers are, however, handled correctly.

Q7: Can zfp handle data with some missing values?

My data has some missing values that are flagged by very large numbers, e.g. 1e30. Is that OK?

A: Although all finite numbers are “correctly” handled, such large sentinel values are likely to pollute nearby values,
because all values within a block are expressed with respect to a common largest exponent. The presence of very
large values may result in complete loss of precision of nearby, valid numbers. Currently no solution to this prob-
lem is available, but future versions of zfp will likely support a bit mask to tag values that should be excluded from
compression.

Q8: Can I use zfp to store integer data?

Can I use zfp to store integer data such as 8-bit quantized images or 16-bit digital elevation models?

A: Yes (as of version 0.4.0), but the data has to be promoted to 32-bit signed integers first. This should be done one
block at a time using an appropriate zfp_promote_*_to_int32 function call (see Utility Functions). Future versions
of zfp may provide a high-level interface that automatically performs promotion and demotion.

Note that the promotion functions shift the low-precision integers into the most significant bits of 31-bit (not 32-bit)
integers and also convert unsigned to signed integers. Do use these functions rather than simply casting 8-bit integers to
32 bits to avoid wasting compressed bits to encode leading zeros. Moreover, in fixed-precision mode, set the precision
relative to the precision of the (unpromoted) source data.

As of version 0.5.1, integer data is supported both by the low-level API and high-level calls zfp_compress() and
zfp_decompress().

Q9: Can I compress 32-bit integers using zfp?

I have some 32-bit integer data. Can I compress it using zfp’s 32-bit integer support?
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A: Yes, this can safely be done in reversible mode.

In other (lossy) modes, the answer depends. zfp compression of 32-bit and 64-bit integers requires that each integer f
have magnitude |f | < 230 and |f | < 262, respectively. To handle signed integers that span the entire range −231 ≤ x <
231, or unsigned integers 0 ≤ x < 232, the data has to be promoted to 64 bits first.

As with floating-point data, the integers should ideally represent a quantized continuous function rather than, say,
categorical data or set of indices. Depending on compression settings and data range, the integers may or may not be
losslessly compressed. If fixed-precision mode is used, the integers may be stored at less precision than requested. See
Q21 for more details on precision and lossless compression.

Q10: Why does zfp corrupt memory if my allocated buffer is too small?

Why does zfp corrupt memory rather than return an error code if not enough memory is allocated for the compressed
data?

A: This is for performance reasons. zfp was primarily designed for fast random access to fixed-rate compressed arrays,
where checking for buffer overruns is unnecessary. Adding a test for every compressed byte output would significantly
compromise performance.

One way around this problem (when not in fixed-rate mode) is to use the maxbits parameter in conjunction with
the maximum precision or maximum absolute error parameters to limit the size of compressed blocks. Finally, the
function zfp_stream_maximum_size() returns a conservative buffer size that is guaranteed to be large enough to
hold the compressed data and the optional header.

Q11: Are zfp compressed streams portable across platforms?

Are zfp compressed streams portable across platforms? Are there, for example, endianness issues?

A: Yes, zfp can write portable compressed streams. To ensure portability across different endian platforms, the bit
stream must however be written in increments of single bytes on big endian processors (e.g., PowerPC, SPARC), which
is achieved by compiling zfp with an 8-bit (single-byte) word size:

-DBIT_STREAM_WORD_TYPE=uint8

See BIT_STREAM_WORD_TYPE. Note that on little endian processors (e.g., Intel x86-64 and AMD64), the word size
does not affect the bit stream produced, and thus the default word size may be used. By default, zfp uses a word size
of 64 bits, which results in the coarsest rate granularity but fastest (de)compression. If cross-platform portability is not
needed, then the maximum word size is recommended (but see also Q12).

When using 8-bit words, zfp produces a compressed stream that is byte order independent, i.e., the exact same com-
pressed sequence of bytes is generated on little and big endian platforms. When decompressing such streams, floating-
point and integer values are recovered in the native byte order of the machine performing decompression. The decom-
pressed values can be used immediately without the need for byte swapping and without having to worry about the byte
order of the computer that generated the compressed stream.

Finally, zfp assumes that the floating-point format conforms to IEEE 754. Issues may arise on architectures that do not
support IEEE floating point.

Q12: How can I achieve finer rate granularity?

A: For d-dimensional data, zfp supports a rate granularity of 1 / 4d bits, i.e., the rate can be specified in increments
of a fraction of a bit. Such fine rate selection is always available for sequential compression (e.g., when calling
zfp_compress()).

Unlike in sequential compression, zfp’s read-write compressed-array classes require random-access writes, which are
supported only at the granularity of whole words. By default, a word is 64 bits, which gives a rate granularity of 64
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/ 4d in d dimensions, i.e., 16 bits in 1D, 4 bits in 2D, 1 bit in 3D, and 0.25 bits in 4D. Read-only compressed arrays
support the same fine granularity as sequential compression.

To achieve finer granularity, build zfp with a smaller (but as large as possible) stream word size, e.g.:

-DBIT_STREAM_WORD_TYPE=uint8

gives the finest possible granularity, but at the expense of (de)compression speed. See BIT_STREAM_WORD_TYPE.

Q13: Can I generate progressive zfp streams?

A: Yes, but it requires some coding effort. There is currently no high-level support for progressive zfp streams. To
implement progressive fixed-rate streams, the fixed-length bit streams should be interleaved among the blocks that
make up an array. For instance, if a 3D array uses 1024 bits per block, then those 1024 bits could be broken down into,
say, 16 pieces of 64 bits each, resulting in 16 discrete quality settings. By storing the blocks interleaved such that the
first 64 bits of all blocks are contiguous, followed by the next 64 bits of all blocks, etc., one can achieve progressive
decompression by setting the zfp_stream.maxbits parameter (see zfp_stream_set_params()) to the number of
bits per block received so far.

To enable interleaving of blocks, zfp must first be compiled with:

-DBIT_STREAM_STRIDED

to enable strided bit stream access. In the example above, if the stream word size is 64 bits and there are n blocks, then:

stream_set_stride(stream, m, n);

implies that after every m 64-bit words have been decoded, the bit stream is advanced by m × n words to the next set
of m 64-bit words associated with the block.

Q14: How do I initialize the decompressor?

A: The zfp_stream and zfp_field objects usually need to be initialized with the same values as they had during
compression (but see Q15 for exceptions). These objects hold the compression mode and parameters, and field data
like the scalar type and dimensions. By default, these parameters are not stored with the compressed stream (the
“codestream”) and prior to zfp 0.5.0 had to be maintained separately by the application.

Since version 0.5.0, functions exist for reading and writing a 12- to 19-byte header that encodes compression and field
parameters. For applications that wish to embed only the compression parameters, e.g., when the field dimensions are
already known, there are separate functions that encode and decode this information independently.

Q15: Must I use the same parameters during compression and decompression?

A: Not necessarily. When decompressing one block at a time, it is possible to use more tightly constrained
zfp_stream parameters during decompression than were used during compression. For instance, one may use a
smaller zfp_stream.maxbits, smaller zfp_stream.maxprec, or larger zfp_stream.minexp during decompres-
sion to process fewer compressed bits than are stored, and to decompress the array more quickly at a lower precision.
This may be useful in situations where the precision and accuracy requirements are not known a priori, thus forcing
conservative settings during compression, or when the compressed stream is used for multiple purposes. For instance,
visualization usually has less stringent precision requirements than quantitative data analysis. This feature of decom-
pressing to a lower precision is particularly useful when the stream is stored progressively (see Q13).

Note that one may not use less constrained parameters during decompression, e.g., one cannot ask for more than
zfp_stream.maxprec bits of precision when decompressing. Furthermore, the parameters must agree between com-
pression and decompression when calling the high-level API function zfp_decompress().
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Currently float arrays have a different compressed representation from compressed double arrays due to differences in
exponent width. It is not possible to compress a double array and then decompress (demote) the result to floats, for
instance. Future versions of the zfp codec may use a unified representation that does allow this.

Q16: Do strides have to match during compression and decompression?

A: No. For instance, a 2D vector field:

float in[ny][nx][2];

could be compressed as two scalar fields with strides sx = 2, sy = 2 × nx, and with pointers &in[0][0][0] and
&in[0][0][1] to the first value of each scalar field. These two scalar fields can later be decompressed as non-
interleaved fields:

float out[2][ny][nx];

using strides sx = 1, sy = nx and pointers &out[0][0][0] and &out[1][0][0].

Q17: Why does zfp sometimes not respect my error tolerance?

A: First, zfp does not support fixed-accuracy mode for integer data and will ignore any tolerance requested via
zfp_stream_set_accuracy() or associated expert mode parameter settings. So this FAQ pertains to floating-point
data only.

The short answer is that, given finite precision, the zfp and IEEE floating-point number systems represent distinct sub-
sets of the reals (or, in case of zfp, blocks of reals). Although these subsets have significant overlap, they are not equal.
Consequently, there are some combinations of floating-point values that zfp cannot represent exactly; conversely, there
are some zfp blocks that cannot be represented exactly as IEEE floating point. If the user-specified tolerance is smaller
than the difference between the IEEE floating-point representation to be compressed and its closest zfp representation,
then the tolerance necessarily will be violated (except in reversible mode). In practice, absolute tolerances have to be
extremely small relative to the numbers being compressed for this issue to occur, however.

Note that this issue is not particular to zfp but occurs in the conversion between any two number systems of equal
precision; we may just as well fault IEEE floating point for not being able to represent all zfp blocks accurately enough!
By analogy, not all 32-bit integers can be represented exactly in 32-bit floating point. The integer 123456789 is one
example; the closest float is 123456792. And, obviously, not all floats (e.g., 0.5) can be represented exactly as integers.

To further demonstrate this point, let us consider a concrete example. zfp does not store each floating-point scalar value
independently but represents a group of values (4, 16, 64, or 256 values, depending on dimensionality) as linear com-
binations like averages by evaluating arithmetic expressions. Just like in uncompressed IEEE floating-point arithmetic,
both representation error and roundoff error in the least significant bit(s) often occur.

To illustrate this, consider compressing the following 1D array of four floats

float f[4] = { 1, 1e-1, 1e-2, 1e-3 };

using the zfp command-line tool:

zfp -f -1 4 -a 0 -i input.dat -o output.dat

In spite of an error tolerance of zero, the reconstructed values are:

float g[4] = { 1, 1e-1, 9.999998e-03, 9.999946e-04 };
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with a (computed) maximum error of 5.472e-9. Because f[3] = 1e-3 can only be approximately represented in radix-2
floating-point, the actual error is even smaller: 5.424e-9. This reconstruction error is primarily due to zfp’s block-
floating-point representation, which expresses the four values in a block relative to a single, common binary exponent.
Such exponent alignment occurs also in regular IEEE floating-point operations like addition. For instance,

float x = (f[0] + f[3]) - 1;

should of course result in x = f[3] = 1e-3, but due to exponent alignment a few of the least significant bits of f[3]
are lost in the rounded result of the addition, giving x = 1.0000467e-3 and a roundoff error of 4.668e-8. Similarly,

float sum = f[0] + f[1] + f[2] + f[3];

should return sum = 1.111, but is computed as 1.1110000610. Moreover, the value 1.111 cannot even be represented
exactly in (radix-2) floating-point; the closest float is 1.1109999. Thus the computed error

float error = sum - 1.111f;

which itself has some roundoff error, is 1.192e-7.

Phew! Note how the error introduced by zfp (5.472e-9) is in fact one to two orders of magnitude smaller than the
roundoff errors (4.668e-8 and 1.192e-7) introduced by IEEE floating point in these computations. This lower error
is in part due to zfp’s use of 30-bit significands compared to IEEE’s 24-bit single-precision significands. Note that
data sets with a large dynamic range, e.g., where adjacent values differ a lot in magnitude, are more susceptible to
representation errors.

The moral of the story is that error tolerances smaller than machine epsilon (relative to the data range) cannot always
be satisfied by zfp. Nor are such tolerances necessarily meaningful for representing floating-point data that originated
in floating-point arithmetic expressions, since accumulated roundoff errors are likely to swamp compression errors.
Because such roundoff errors occur frequently in floating-point arithmetic, insisting on lossless compression on the
grounds of accuracy is tenuous at best.

Q18: Why is the actual rate sometimes not what I requested?

A: In principle, zfp allows specifying the size of a compressed block in increments of single bits, thus allowing very
fine-grained tuning of the bit rate. There are, however, cases when the desired rate does not exactly agree with the
effective rate, and users are encouraged to check the return value of zfp_stream_set_rate(), which gives the actual
rate.

There are several reasons why the requested rate may not be honored. First, the rate is specified in bits/value, while zfp
always represents a block of 4d values in d dimensions, i.e., using N = 4d × rate bits. N must be an integer number of
bits, which constrains the actual rate to be a multiple of 1 / 4d. The actual rate is computed by rounding 4d times the
desired rate.

Second, if the array dimensions are not multiples of four, then zfp pads the dimensions to the next higher multiple of
four. Thus, the total number of bits for a 2D array of dimensions nx × ny is computed in terms of the number of blocks
bx × by:

bitsize = (4 * bx) * (4 * by) * rate

where nx ≤ 4 × bx < nx + 4 and ny ≤ 4 × by < ny + 4. When amortizing bitsize over the nx × ny values, a slightly
higher rate than requested may result.

Third, to support updating compressed blocks, as is needed by zfp’s compressed array classes, the user may request
write random access to the fixed-rate stream. To support this, each block must be aligned on a stream word boundary
(see Q12), and therefore the rate when write random access is requested must be a multiple of wordsize / 4d bits. By
default wordsize = 64 bits. Even when write random access is not requested, the compressed stream is written in units
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of wordsize. Hence, once the stream is flushed, either by a zfp_compress() or zfp_stream_flush() call, to output
any buffered bits, its size will be a multiple of wordsize bits.

Fourth, for floating-point data, each block must hold at least the common exponent and one additional bit, which places
a lower bound on the rate.

Finally, the user may optionally include a header with each array. Although the header is small, it must be accounted
for in the rate. The function zfp_stream_maximum_size() conservatively includes space for a header, for instance.

Aside from these caveats, zfp is guaranteed to meet the exact rate specified.

Q19: Can zfp perform compression in place?

A: Because the compressed data tends to be far smaller than the uncompressed data, it is natural to ask if the compressed
stream can overwrite the uncompressed array to avoid having to allocate separate storage for the compressed stream.
zfp does allow for the possibility of such in-place compression, but with several caveats and restrictions:

1. A bitstream must be created whose buffer points to the beginning of uncompressed (and to be compressed)
storage.

2. The array must be compressed using zfp’s low-level API. In particular, the data must already be partitioned and
organized into contiguous blocks so that all values of a block can be pulled out once and then replaced with the
corresponding shorter compressed representation.

3. No one compressed block can occupy more space than its corresponding uncompressed block so that the not-
yet compressed data is not overwritten. This is usually easily accomplished in fixed-rate mode, although the
expert interface also allows guarding against this in all modes using the zfp_stream.maxbits parameter. This
parameter should be set to maxbits = 4^d * sizeof(type) * 8, where d is the array dimensionality (1, 2,
3, or 4) and where type is the scalar type of the uncompressed data.

4. No header information may be stored in the compressed stream.

In-place decompression can also be achieved, but in addition to the above constraints requires even more care:

1. The data must be decompressed in reverse block order, so that the last block is decompressed first to the
end of the block array. This requires the user to maintain a pointer to uncompressed storage and to seek via
stream_rseek() to the proper location in the compressed stream where the block is stored.

2. The space allocated to the compressed stream must be large enough to also hold the uncompressed data.

An example is provided that shows how in-place compression can be done.

Q20: Can zfp bound the point-wise relative error?

A: Yes, but with some caveats. First, we define the relative error in a value f approximated by g as |f - g| / |f |, which
converges to |log(f / g)| = |log(f ) - log(g)| as g approaches f, where log(f ) denotes the natural logarithm of f. Below, we
discuss three strategies for relative error control that may be applicable depending on the properties of the underlying
floating-point data.

If all floating-point values to be compressed are normalized, i.e., with no nonzero subnormal values smaller in mag-
nitude than 2-126 ≈ 10-38 (for floats) or 2-1022 ≈ 10-308 (for doubles), then the relative error can be bounded using
zfp’s expert mode settings by invoking reversible mode. This is achieved by truncating (zeroing) some number of least
significant bits of all floating-point values and then losslessly compressing the result. The q least significant bits of
n-bit floating-point numbers (n = 32 for floats and n = 64 for doubles) are truncated by zfp by specifying a maximum
precision of p = n − q. The resulting point-wise relative error is then at most 2q - 23 (for floats) or 2q - 52 (for doubles).
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Note: For large enough q, floating-point exponent bits will be discarded, in which case the bound no longer holds, but
then the relative error is already above 100%. Also, as mentioned, the bound does not hold for subnormals; however,
such values are likely too small for relative errors to be meaningful.

To bound the relative error, set the expert mode parameters to:

minbits = 0
maxbits = 0
maxprec = p
minexp = ZFP_MIN_EXP - 1 = -1075

For example, using the zfp command-line tool, set the parameters using -c 0 0 p -1075.

Note that while the above approach respects the error bound when the above conditions are met, it uses zfp for a purpose
it was not designed for, and the compression ratio may not be competitive with those obtained using compressors
designed to bound the relative error.

Other forms of relative error control can be achieved using zfp’s lossy compression modes. In fixed-accuracy mode,
the absolute error |f - g| is bounded by a user-specified error tolerance. For a field whose values are all positive (or
all negative), we may pre-transform values by taking the natural logarithm, replacing each value f with log(f ) before
compression, and then exponentiating values after decompression. This ensures that |log(f ) - log(g)| = |log(f / g)| is
bounded. (Note, however, that many implementations of the math library make no guarantees on the accuracy of the
logarithm function.) For fields whose values are signed, an approximate bound can be achieved by using log(f ) ≈
asinh(f / 2), where asinh is the inverse of the hyperbolic sine function, which is defined for both positive and negative
numbers. One benefit of this approach is that it de-emphasizes the importance of relative errors for small values that
straddle zero, where relative errors rarely make sense, e.g., because of round-off and other errors already present in the
data.

Finally, in fixed-precision mode, the precision of zfp transform coefficients is fixed, resulting in an error that is no more
than a constant factor of the largest (in magnitude) value, fmax, within the same zfp block. This can be thought of as a
weaker version of relative error, where the error is measured relative to values in a local neighborhood.

In fixed-precision mode, zfp cannot bound the point-wise relative error due to its use of a block-floating-point represen-
tation, in which all values within a block are represented in relation to a single common exponent. For a high enough
dynamic range within a block, there may simply not be enough precision available to guard against loss. For instance,
a block containing the values 20 = 1 and 2-n would require a precision of n + 3 bits to represent losslessly, and zfp uses
at most 64-bit integers to represent values. Thus, if n ≥ 62, then 2-n is replaced with 0, which is a 100% relative error.
Note that such loss also occurs when, for instance, 20 and 2-n are added using floating-point arithmetic (see also Q17).

As alluded to, it is possible to bound the error relative to the largest value, fmax, within a block, which if the magnitude
of values does not change too rapidly may serve as a reasonable proxy for point-wise relative errors.

One might then ask if using zfp’s fixed-precision mode with p bits of precision ensures that the block-wise relative error
is at most 2-p × fmax. This is, unfortunately, not the case, because the requested precision, p, is ensured only for the
transform coefficients. During the inverse transform of these quantized coefficients the quantization error may amplify.
That being said, it is possible to derive a bound on the error in terms of p that would allow choosing an appropriate
precision. Such a bound is derived below.

Let

emax = floor(log2(fmax))

be the largest base-2 exponent within a block. For transform coefficient precision, p, one can show that the maximum
absolute error, err, is bounded by:
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err <= k(d) * (2^emax / 2^p) <= k(d) * (fmax / 2^p)

Here k(d) is a constant that depends on the data dimensionality d:

k(d) = 20 * (15/4)^(d-1)

so that in 1D, 2D, 3D, and 4D we have:

k(1) = 20
k(2) = 125
k(3) = 1125/4
k(4) = 16876/16

Thus, to guarantee n bits of accuracy in the decompressed data, we need to choose a higher precision, p, for the transform
coefficients:

p(n, d) = n + ceil(log2(k(d))) = n + 2 * d + 3

so that

p(n, 1) = n + 5
p(n, 2) = n + 7
p(n, 3) = n + 9
p(n, 4) = n + 11

This p value should be used in the call to zfp_stream_set_precision().

Note, again, that some values in the block may have leading zeros when expressed relative to 2emax, and these leading
zeros are counted toward the n-bit precision. Using decimal to illustrate this, suppose we used 4-digit precision for a
1D block containing these four values:

-1.41421e+1 ~ -1.414e+1 = -1414 * (10^1 / 1000)
+2.71828e-1 ~ +0.027e+1 = +27 * (10^1 / 1000)
+3.14159e-6 ~ +0.000e+1 = 0 * (10^1 / 1000)
+1.00000e+0 ~ +0.100e+1 = +100 * (10^1 / 1000)

with the values in the middle column aligned to the common base-10 exponent +1, and with the values on the right
expressed as scaled integers. These are all represented using four digits of precision, but some of those digits are
leading zeros.

Q21: Does zfp support lossless compression?

A: Yes. As of zfp 0.5.5, bit-for-bit lossless compression is supported via the reversible compression mode. This mode
supports both integer and floating-point data.

In addition, it is sometimes possible to ensure lossless compression using zfp’s fixed-precision and fixed-accuracy
modes. For integer data, zfp can with few exceptions ensure lossless compression in fixed-precision mode. For a given
n-bit integer type (n = 32 or n = 64), consider compressing p-bit signed integer data, with the sign bit counting toward
the precision. In other words, there are exactly 2p possible signed integers. If the integers are unsigned, then subtract
2p-1 first so that they range from −2p-1 to 2p-1 - 1.

Lossless integer compression in fixed-precision mode is achieved by first promoting the p-bit integers to n - 1 bits (see
Q8) such that all integer values fall in [−230, +230), when n = 32, or in [−262, +262), when n = 64. In other words,
the p-bit integers first need to be shifted left by n - p - 1 bits. After promotion, the data should be compressed in zfp’s
fixed-precision mode using:
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q = p + 4 * d + 1

bits of precision to ensure no loss, where d is the data dimensionality (1 ≤ d ≤ 4). Consequently, the p-bit data can be
losslessly compressed as long as p ≤ n - 4 × d - 1. The table below lists the maximum precision p that can be losslessly
compressed using 32- and 64-bit integer types.

d n=32 n=64
1 27 59
2 23 55
3 19 51
4 15 47

Although lossless compression is possible as long as the precision constraint is met, the precision needed to guarantee
no loss is generally much higher than the precision intrinsic in the uncompressed data. Therefore, we recommend using
the reversible mode when lossless compression is desired.

The minimum precision, q, given above is often larger than what is necessary in practice. There are worst-case inputs
that do require such large q values, but they are quite rare.

The reason for expanded precision, i.e., why q > p, is that zfp’s decorrelating transform computes averages of integers,
and this transform is applied d times in d dimensions. Each average of two p-bit numbers requires p + 1 bits to avoid
loss, and each transform can be thought of involving up to four such averaging operations.

For floating-point data, fully lossless compression with zfp usually requires reversible mode, as the other compression
modes are unlikely to guarantee bit-for-bit exact reconstructions. However, if the dynamic range is low or varies slowly
such that values within a 4d block have the same or similar exponent, then the precision gained by discarding the 8 or 11
bits of the common floating-point exponents can offset the precision lost in the decorrelating transform. For instance,
if all values in a block have the same exponent, then lossless compression is obtained using q = 26 + 4 × d ≤ 32 bits of
precision for single-precision data and q = 55 + 4 × d ≤ 64 bits of precision for double-precision data. Of course, the
constraint imposed by the available integer precision n implies that lossless compression of such data is possible only
in 1D for single-precision data and only in 1D and 2D for double-precision data. Finally, to preserve special values
such as negative zero, plus and minus infinity, and NaNs, reversible mode is needed.

Q22: Why is my actual, measured error so much smaller than the tolerance?

A: For two reasons. The way zfp bounds the absolute error in fixed-accuracy mode is by keeping all transform co-
efficient bits whose place value exceeds the tolerance while discarding the less significant bits. Each such bit has
a place value that is a power of two, and therefore the tolerance must first be rounded down to the next smaller
power of two, which itself will introduce some slack. This possibly lower, effective tolerance is returned by the
zfp_stream_set_accuracy() call.

Second, the quantized coefficients are then put through an inverse transform. This linear transform will combine signed
quantization errors that, in the worst case, may cause them to add up and increase the error, even though the average
(RMS) error remains the same, i.e., some errors cancel while others compound. For d-dimensional data, d such inverse
transforms are applied, with the possibility of errors cascading across transforms. To account for the worst possible
case, zfp has to conservatively lower its internal error tolerance further, once for each of the d transform passes.

Unless the data is highly oscillatory or noisy, the error is not likely to be magnified much, leaving an observed error
in the decompressed data that is much lower than the prescribed tolerance. In practice, the observed maximum error
tends to be about 4-8 times lower than the error tolerance for 3D data, while the difference is smaller for 2D and 1D
data.

We recommend experimenting with tolerances and evaluating what error levels are appropriate for each application,
e.g., by starting with a low, conservative tolerance and successively doubling it. The distribution of errors produced
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by zfp is approximately Gaussian (see Q30), so even if the maximum error may seem large at an individual grid point,
most errors tend to be much smaller and tightly clustered around zero.

Q23: Are parallel compressed streams identical to serial streams?

A: Yes, it matters not what execution policy is used; the final compressed stream produced by zfp_compress()
depends only on the uncompressed data and compression settings.

To support future parallel decompression, in particular variable-rate streams, it will be necessary to also store an index
of where (at what bit offset) each compressed block is stored in the stream. Extensions to the current zfp format are
being considered to support parallel decompression.

Regardless, the execution policy and parameters such as number of threads do not need to be the same for compression
and decompression.

Q24: Are zfp’s compressed arrays and other data structures thread-safe?

A: Yes, compressed arrays can be made thread-safe; no, data structures like zfp_stream and bitstream are not
necessarily thread-safe. As of zfp 0.5.4, thread-safe read and write access to compressed arrays via OpenMP threads is
provided through the use of private views, although these come with certain restrictions and requirements such as the
need for the user to enforce cache coherence. Please see the documentation on views for further details.

As far as C objects, zfp’s parallel OpenMP compressor assigns one zfp_stream per thread, each of which uses its
own private bitstream . Users who wish to make parallel calls to zfp’s low-level functions are advised to consult the
source files ompcompress.c and parallel.c.

Finally, the zfp API is thread-safe as long as multiple threads do not simultaneously call API functions and pass the
same zfp_stream or bitstream object.

Q25: Why does parallel compression performance not match my expectations?

A: zfp partitions arrays into chunks and assigns each chunk to an OpenMP thread. A chunk is a sequence of consecutive
d-dimensional blocks, each composed of 4d values. If there are fewer chunks than threads, then full processor utilization
will not be achieved.

The number of chunks is by default set to the number of threads, but can be modified by the user via
zfp_stream_set_omp_chunk_size(). One reason for using more chunks than threads is to provide for better load
balance. If compression ratios vary significantly across the array, then threads that process easy-to-compress blocks
may finish well ahead of threads in charge of difficult-to-compress blocks. By breaking chunks into smaller units,
OpenMP is given the opportunity to balance the load better (though the effect of using smaller chunks depends on
OpenMP thread scheduling). If chunks are too small, however, then the overhead of allocating and initializing chunks
and assigning threads to them may dominate. Experimentation with chunk size may improve performance, though
chunks ought to be at least several hundred blocks each.

In variable-rate mode, compressed chunk sizes are not known ahead of time. Therefore the compressed chunks must
be concatenated into a single stream following compression. This task is performed sequentially on a single thread,
and will inevitably limit parallel efficiency.

Other reasons for poor parallel performance include compressing arrays that are too small to offset the overhead of
thread creation and synchronization. Arrays should ideally consist of thousands of blocks to offset the overhead of
setting up parallel compression.

Q26: Why are compressed arrays so slow?
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A: This is likely due to the use of a very small cache. Prior to zfp 0.5.5, all arrays used two ‘layers’ of blocks as default
cache size, which is reasonable for 2D and higher-dimensional arrays (as long as they are not too ‘skinny’). In 1D,
however, this implies that the cache holds only two blocks, which is likely to cause excessive thrashing.

As of version 0.5.5, the default cache size is roughly proportional to the square root of the total number of array elements,
regardless of array dimensionality. While this tends to reduce thrashing, we suggest experimenting with larger cache
sizes of at least a few kilobytes to ensure acceptable performance.

Note that compressed arrays constructed with the default constructor will have an initial cache size of only one block.
Therefore, users should call array::set_cache_size() after resizing such arrays to ensure a large enough cache.

Depending on factors such as rate, cache size, array access pattern, array access primitive (e.g., indices vs. iterators),
and arithmetic intensity, we usually observe an application slow-down of 1-10x when switching from uncompressed to
compressed arrays.

Q27: Do compressed arrays use reference counting?

A: It is possible to reference compressed-array elements via proxy references and pointers, through iterators, and
through views. Such indirect references are valid only during the lifetime of the underlying array. No reference counting
and garbage collection is used to keep the array alive if there are external references to it. Such references become invalid
once the array is destructed, and dereferencing them will likely lead to segmentation faults.

Q28: How large a buffer is needed for compressed storage?

A: zfp_compress() requires that memory has already been allocated to hold the compressed data. But often the com-
pressed size is data dependent and not known a priori. The function zfp_stream_maximum_size() returns a buffer
size that is guaranteed to be large enough. This function, which should be called after setting the desired compression
mode and parameters, computes the largest possible compressed data size based on the current compression settings
and array size. Note that by the pigeonhole principle, any (lossless) compressor must expand at least one input, so this
buffer size may be larger than the size of the uncompressed input data. zfp_compress() returns the actual number of
bytes of compressed storage.

When compressing individual blocks using the low-level API , it is useful to know the maximum number of bits that a
compressed block can occupy. In addition to the ZFP_MAX_BITS macro, the following table lists the maximum block
size (in bits) for each scalar type, whether reversible mode is used, and block dimensionality.

type rev. 1D 2D 3D 4D
int32 131 527 2111 8447

✓ 136 532 2116 8452
float 140 536 2120 8456

✓ 146 542 2126 8462
int64 259 1039 4159 16639

✓ 265 1045 4165 16645
double 271 1051 4171 16651

✓ 278 1058 4178 16658

Q29: How can I print array values?

Consider the following seemingly reasonable piece of code:
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#include <cstdio>
#include "zfp/array1.hpp"

int main()
{
zfp::array1<double> a(100, 16.0);
printf("%f\n", a[0]); // does not compile
return 0;

}

The compiler will complain about a[0] being a non-POD object. This is because a[0] is a proxy reference object
rather than a double. To make this work, a[0] must be explicitly converted to double, e.g., using a cast:

printf("%f\n", (double)a[0]);

For similar reasons, one may not use scanf to initialize the value of a[0] because &a[0] is a proxy pointer object,
not a double*. Rather, one must use a temporary variable, e.g.

double t;
scanf("%lf", &t);
a[0] = t;

Note that using iostream, expressions like

std::cout << a[0] << std::endl;

do work, but

std::cin >> a[0];

does not.

Q30: What is known about zfp compression errors?

A: Significant effort has been spent on characterizing compression errors resulting from zfp, as detailed in the following
publications:

• P. Lindstrom, “Error Distributions of Lossy Floating-Point Compressors,” JSM 2017 Proceedings.

• J. Diffenderfer, A. Fox, J. Hittinger, G. Sanders, P. Lindstrom, “Error Analysis of ZFP Compression for Floating-
Point Data,” SIAM Journal on Scientific Computing, 2019.

• D. Hammerling, A. Baker, A. Pinard, P. Lindstrom, “A Collaborative Effort to Improve Lossy Compression
Methods for Climate Data,” 5th International Workshop on Data Analysis and Reduction for Big Scientific Data,
2019.

• A. Fox, J. Diffenderfer, J. Hittinger, G. Sanders, P. Lindstrom. “Stability Analysis of Inline ZFP Compression
for Floating-Point Data in Iterative Methods,” SIAM Journal on Scientific Computing, 2020.

In short, zfp compression errors are roughly normally distributed as a consequence of the central limit theorem, and
can be bounded. Because the error distribution is normal and because the worst-case error is often much larger than
errors observed in practice, it is common that measured errors are far smaller than the absolute error tolerance specified
in fixed-accuracy mode (see Q22).

It is known that zfp errors can be slightly biased and correlated (see Fig. 18.1 and the third paper above). Recent work
has been done to combat such issues by supporting optional rounding modes.
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Fig. 18.1: zfp errors are normally distributed. This figure illustrates the agreement between theoretical (lines) and
observed (dots) error distributions (X, Y, Z, W ) for 1D blocks. Without proper rounding (left), errors are biased and
depend on the relative location within a zfp block, resulting in errors not centered on zero. With proper rounding
(right), errors are both smaller and unbiased.
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CHAPTER

NINETEEN

TROUBLESHOOTING

This section is intended for troubleshooting problems with zfp, in case any arise, and primarily focuses on how to
correctly make use of zfp. If the decompressed data looks nothing like the original data, or if the compression ratios
obtained seem not so impressive, then it is very likely that array dimensions or compression parameters have not been
set correctly, in which case this troubleshooting guide could help.

The problems addressed in this section include:

1. Is the data dimensionality correct?

2. Do the compressor and decompressor agree on the dimensionality?

3. Have the “smooth” dimensions been identified?

4. Are the array dimensions correct?

5. Are the array dimensions large enough?

6. Is the data logically structured?

7. Is the data set embedded in a regular grid?

8. Have fill values, NaNs, and infinities been removed?

9. Is the byte order correct?

10. Is the floating-point precision correct?

11. Is the integer precision correct?

12. Is the data provided to the zfp executable a raw binary array?

13. Has the appropriate compression mode been set?

P1: Is the data dimensionality correct?

This is one of the most common problems. First, make sure that zfp is given the correct dimensionality of the data.
For instance, an audio stream is a 1D array, an image is a 2D array, and a volume grid is a 3D array, and a time-varying
volume is a 4D array. Sometimes a data set is a discrete collection of lower-dimensional objects. For instance, a stack
of unrelated images (of the same size) could be represented in C as a 3D array:

imstack[count][ny][nx]

but since in this case the images are unrelated, no correlation would be expected along the third dimension—the under-
lying dimensionality of the data is here two. In this case, the images could be compressed one at a time, or they could
be compressed together by treating the array dimensions as:

imstack[count * ny][nx]
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Note that zfp partitions d-dimensional arrays into blocks of 4d values. If ny above is not a multiple of four, then some
blocks of 4 × 4 pixels will contain pixels from different images, which could hurt compression and/or quality. Still,
this way of creating a single image by stacking multiple images is far preferable over linearizing each image into a 1D
signal, and then compressing the images as:

imstack[count][ny * nx]

This loses the correlation along the y dimension and further introduces discontinuities unless nx is a multiple of four.

Similarly to the example above, a 2D vector field

vfield[ny][nx][2]

could be declared as a 3D array, but the x- and y-components of the 2D vectors are likely entirely unrelated. In this
case, each component needs to be compressed independently, either by rearranging the data as two scalar fields:

vfield[2][ny][nx]

or by using strides (see also FAQ #1). Note that in all these cases zfp will still compress the data, but if the dimensionality
is not correct then the compression ratio will suffer.

P2: Do the compressor and decompressor agree on the dimensionality?

Consider compressing a 3D array:

double a[1][1][100]

with nx = 100, ny = 1, nz = 1, then decompressing the result to a 1D array:

double b[100]

with nx = 100. Although the arrays a and b occupy the same amount of memory and are in C laid out similarly, these
arrays are not equivalent to zfp because their dimensionalities differ. zfp uses different CODECs to (de)compress 1D,
2D, 3D, and 4D arrays, and the 1D decompressor expects a compressed bit stream that corresponds to a 1D array.

What happens in practice in this case is that the array a is compressed using zfp’s 3D CODEC, which first pads the
array to

double padded[4][4][100]

When this array is correctly decompressed using the 3D CODEC, the padded values are generated but discarded. zfp’s
1D decompressor, on the other hand, expects 100 values, not 100 × 4 × 4 = 1600 values, and therefore likely returns
garbage.

P3: Have the “smooth” dimensions been identified?

Closely related to P1 above, some fields simply do not vary smoothly along all dimensions, and zfp can do a good job
compressing only those dimensions that exhibit some coherence. For instance, consider a table of stock prices indexed
by date and stock:

price[stocks][dates]

One could be tempted to compress this as a 2D array, but there is likely little to no correlation in prices between different
stocks. Each such time series should be compressed independently as a 1D signal.
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What about time-varying images like a video sequence? In this case, it is likely that there is correlation over time, and
that the value of a single pixel varies smoothly in time. It is also likely that each image exhibits smoothness along its
two spatial dimensions. So this can be treated as a single, 3D data set.

How about time-varying volumes, such as

field[nt][nz][ny][nx]

As of version 0.5.4, zfp supports compression of 4D arrays. Since all dimensions in this example are likely to be
correlated, the 4D array can be compressed directly. Alternatively, the data could be organized by the three “smoothest”
dimensions and compressed as a 3D array. Given the organization above, the array could be treated as 3D:

field[nt * nz][ny][nx]

Again, do not compress this as a 3D array with the innermost dimensions unfolded:

field[nt][nz][ny * nx]

P4: Are the array dimensions correct?

This is another common problem that seems obvious, but often the dimensions are accidentally transposed. Assuming
that the smooth dimensions have been identified, it is important that the dimensions are listed in the correct order. For
instance, if the data (in C notation) is organized as:

field[d1][d2][d3]

then the data is organized in memory (or on disk) with the d3 dimension varying fastest, and hence nx = d3, ny = d2,
nz = d1 using the zfp naming conventions for the dimensions, e.g., the zfp executable should be invoked with:

zfp -3 d3 d2 d1

in this case. Things will go horribly wrong if zfp in this case is called with nx = d1, ny = d2, nz = d3. The entire data
set will still compress and decompress, but compression ratio and quality will likely suffer greatly. See this FAQ for
more details.

P5: Are the array dimensions large enough?

zfp partitions d-dimensional data sets into blocks of 4d values, e.g., in 3D a block consists of 4 × 4 × 4 values. If the
dimensions are not multiples of four, then zfp will “pad” the array to the next larger multiple of four. Such padding can
hurt compression. In particular, if one or more of the array dimensions are small, then the overhead of such padding
could be significant.

Consider compressing a collection of 1000 small 3D arrays:

field[1000][5][14][2]

zfp would first logically pad this to a larger array:

field[1000][8][16][4]

which is (8 × 16 × 4) / (5 × 14 × 2) ~ 3.66 times larger. Although such padding often compresses well, this still
represents a significant overhead.

If a large array has been partitioned into smaller pieces, it may be best to reassemble the larger array. Or, when possible,
ensure that the sub-arrays have dimensions that are multiples of four.
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P6: Is the data logically structured?

zfp was designed for logically structured data, i.e., Cartesian grids. It works much like an image compressor does,
which assumes that the data set is a structured array of pixels, and it assumes that values vary reasonably smoothly on
average, just like natural images tend to contain large regions of uniform color or smooth color gradients, like a blue
sky, smoothly varying skin tones of a human’s face, etc. Many data sets are not represented on a regular grid. For
instance, an array of particle xyz positions:

points[count][3]

is a 2D array, but does not vary smoothly in either dimension. Furthermore, such unstructured data sets need not be
organized in any particular order; the particles could be listed in any arbitrary order. One could attempt to sort the
particles, for example by the x coordinate, to promote smoothness, but this would still leave the other two dimensions
non-smooth.

Sometimes the underlying dimensions are not even known, and only the total number of floating-point values is known.
For example, suppose we only knew that the data set contained n = count × 3 values. One might be tempted to compress
this using zfp’s 1-dimensional compressor, but once again this would not work well. Such abuse of zfp is much akin
to trying to compress an image using an audio compressor like mp3, or like compressing an n-sample piece of music
as an n-by-one sized image using an image compressor like JPEG. The results would likely not be very good.

Some data sets are logically structured but geometrically irregular. Examples include fields stored on Lagrangian
meshes that have been warped, or on spectral element grids, which use a non-uniform grid spacing. zfp assumes that the
data has been regularly sampled in each dimension, and the more the geometry of the sampling deviates from uniform,
the worse compression gets. Note that rectilinear grids with different but uniform grid spacing in each dimension are
fine. If your application uses very non-uniform sampling, then resampling onto a uniform grid (if possible) may be
advisable.

Other data sets are “block structured” and consist of piecewise structured grids that are “glued” together. Rather than
treating such data as unstructured 1D streams, consider partitioning the data set into independent (possibly overlapping)
regular grids.

P7: Is the data set embedded in a regular grid?

Some applications represent irregular geometry on a Cartesian grid, and leave portions of the domain unspecified.
Consider, for instance, sampling the density of the Earth onto a Cartesian grid. Here the density for grid points outside
the Earth is unspecified.

In this case, zfp does best by initializing the “background field” to all zeros. In zfp’s fixed-accuracy mode, any “empty”
block that consists of all zeros is represented using a single bit, and therefore the overhead of representing empty space
can be kept low.

P8: Have fill values, NaNs, and infinities been removed?

It is common to signal unspecified values using what is commonly called a “fill value,” which is a special constant
value that tends to be far out of range of normal values. For instance, in climate modeling the ocean temperature over
land is meaningless, and it is common to use a very large temperature value such as 1e30 to signal that the temperature
is undefined for such grid points.

Very large fill values do not play well with zfp, because they both introduce artificial discontinuities and pollute nearby
values by expressing them all with respect to the common largest exponent within their block. Assuming a fill value of
1e30, the value pi in the same block would be represented as:
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0.00000000000000000000000000000314159... * 1e30

Given finite precision, the small fraction would likely be replaced with zero, resulting in complete loss of the actual
value being stored.

Other applications use NaNs (special not-a-number values) or infinities as fill values. These are even more problematic,
because they do not have a defined exponent. zfp relies on the C function frexp() to compute the exponent of the
largest (in magnitude) value within a block, but produces unspecified behavior if that value is not finite.

zfp currently has no independent mechanism for handling fill values. Ideally such special values would be signalled
separately, e.g., using a bit mask, and then replaced with zeros to ensure that they both compress well and do not pollute
actual data.

P9: Is the byte order correct?

zfp generally works with the native byte order (e.g., little or big endian) of the machine it is compiled on. One needs
only be concerned with byte order when reading raw, binary data into the zfp executable, when exchanging compressed
files across platforms, and when varying the bit stream word size on big endian machines (not common). For instance,
to compress a binary double-precision floating-point file stored in big endian byte order on a little endian machine, byte
swapping must first be done. For example, on Linux and macOS, 8-byte doubles can be byte swapped using:

objcopy -I binary -O binary --reverse-bytes=8 big.bin little.bin

See also FAQ #11 for more discussion of byte order.

P10: Is the floating-point precision correct?

Another obvious problem: Please make sure that zfp is told whether the data to compress is an array of single- (32-bit)
or double-precision (64-bit) values, e.g., by specifying the -f or -d options to the zfp executable or by passing the
appropriate zfp_type to the C functions.

P11: Is the integer precision correct?

zfp currently supports compression of 31- or 63-bit signed integers. Shorter integers (e.g., bytes, shorts) can be com-
pressed but must first be promoted to one of the longer types. This should always be done using zfp’s functions for
promotion and demotion, which both perform bit shifting and biasing to handle both signed and unsigned types. It is
not sufficient to simply cast short integers to longer integers. See also FAQs #8 and #9.

P12: Is the data provided to the zfp executable a raw binary array?

zfp expects that the input file is a raw binary array of integers or floating-point values in the IEEE format, e.g., written
to file using fwrite(). Do not hand zfp a text file containing ASCII floating-point numbers. Strip the file of any
header information. Languages like Fortran tend to store with the array its size. No such metadata may be embedded
in the file.

P13: Has the appropriate compression mode been set?

zfp provides three different lossy modes of compression that trade storage and accuracy, plus one lossless mode. In
fixed-rate mode, the user specifies the exact number of bits (often in increments of a fraction of a bit) of compressed
storage per value (but see FAQ #18 for caveats). From the user’s perspective, this seems a very desirable feature, since
it provides for a direct mechanism for specifying how much storage to use. However, there is often a large quality
penalty associated with the fixed-rate mode, because each block of 4d values is allocated the same number of bits.
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In practice, the information content over the data set varies significantly, which means that easy-to-compress regions
are assigned too many bits, while too few bits are available to faithfully represent the more challenging-to-compress
regions. Although one of the unique features of zfp, its fixed-rate mode should primarily be used only when random
access to the data is needed.

zfp also provides a fixed-precision mode, where the user specifies how many uncompressed significant bits to use to
represent the floating-point fraction. This precision may not be exactly what people might normally think of. For
instance, the C float type is commonly referred to as 32-bit precision. However, the sign bit and exponent account
for nine of those bits and do not contribute to the number of significant bits of precision. Furthermore, for normal
numbers, IEEE uses a hidden implicit one bit, so most float values actually have 24 bits of precision. Furthermore, zfp
uses a block-floating-point representation with a single exponent per block, which may cause some small values to have
several leading zero bits and therefore less precision than requested. Thus, the effective precision returned by zfp in its
fixed-precision mode may in fact vary. In practice, the precision requested is only an upper bound, though typically at
least one value within a block has the requested precision.

zfp supports a fixed-accuracy mode, which except in rare circumstances (see FAQ #17) ensures that the absolute error is
bounded, i.e., the difference between any decompressed and original value is at most the tolerance specified by the user
(but usually several times smaller). Whenever possible, we recommend using this compression mode, which depending
on how easy the data is to compress results in the smallest compressed stream that respects the error tolerance.

As of zfp 0.5.5, reversible (lossless) compression is available. The amount of lossless reduction of floating-point data is
usually quite limited, however, especially for double-precision data. Unless a bit-for-bit exact reconstruction is needed,
we strongly advocate the use of lossy compression.

Finally, there is also an expert mode that allows the user to combine the constraints of fixed rate, precision, and accuracy.
See the section on compression modes for more details.
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TWENTY

LIMITATIONS

zfp has evolved over the years from a research prototype to a production quality library. However, the API and even the
compression codec are still undergoing changes as new important features are added.

Below is a list of known limitations of the current version of zfp. See the section on Future Directions for a discussion
of planned features that will address some of these limitations.

• Special floating-point values like infinity and NaN are supported in reversible mode but not in zfp’s lossy com-
pression modes. Subnormal floating-point numbers are, however, correctly handled. There is an implicit as-
sumption that floating point conforms to IEEE-754, though extensions to other floating-point formats should be
possible with minor effort.

• The optional zfp header supports arrays with at most 248 elements. The zfp header limits each dimension to 248/d

elements in a d-dimensional array, i.e., 248, 224, 216, and 212 for 1D through 4D arrays, respectively. Note that
this limitation applies only to the header; array dimensions are otherwise limited only by the size supported by
size_t.

• The compressed-array classes have additional size restrictions. The cache supports at most 2p-1 - 1 blocks, where
p is the number of bits in a uint (usually p = 32). Consequently, the number of elements in a d-dimensional
compressed array is at most 4d × (2p-1 - 1), or about 8 billion elements for 1D arrays.

• Conventional pointers and references to individual array elements are not available. That is, constructions like
double* ptr = &a[i]; are not possible when a is a zfp array. However, as of zfp 0.5.2, proxy pointers are
available that act much like pointers to uncompressed data. Similarly, operators [] and () do not return regular
C++ references. Instead, a proxy reference class is used (similar to how STL bit vectors are implemented). These
proxy references and pointers can, however, safely be passed to functions and used where regular references and
pointers can.

• The read-only array classes do not yet support (de)serialization.

• zfp can potentially provide higher precision than conventional float and double arrays, but the interface currently
does not expose this. For example, such added precision could be useful in finite difference computations, where
catastrophic cancellation can be an issue when insufficient precision is available.

• Only single and double precision floating types are supported. Generalizations to IEEE half and quad precision
would be useful. For instance, compressed 64-bit-per-value storage of 128-bit quad-precision numbers could
greatly improve the accuracy of double-precision floating-point computations using the same amount of storage.
The zfp compressed-array classes do not yet support integer scalar types.

• Complex-valued arrays are not directly supported. Real and imaginary components must be stored as separate
arrays, which may result in lost opportunities for compression, e.g., if the complex magnitude is constant and
only the phase varies.

• Version 0.5.3 adds support for OpenMP compression. However, OpenMP decompression is not yet supported.

• Version 0.5.4 adds support for CUDA compression and decompression. However, only the fixed-rate compres-
sion mode is so far supported. The CUDA implementation is further subject to additional limitations.
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• The cfp C wrappers for zfp’s compressed arrays support only a subset of the C++ API. zfp 1.0.0 adds support
for proxy references, pointers, and iterators, but views and read-only arrays are not yet supported. Furthermore,
cfp works only with the zfp codec.

• The Python and Fortran bindings do not yet support zfp’s compressed-array classes. Moreover, only a select
subset of the high-level API is available via Python.
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TWENTYONE

FUTURE DIRECTIONS

zfp is actively being developed and plans have been made to add a number of important features, including:

• Tagging of missing values. zfp currently assumes that arrays are dense, i.e., each array element stores a valid
numerical value. In many science applications this is not the case. For instance, in climate modeling, ocean
temperature is not defined over land. In other applications, the domain is not rectangular but irregular and
embedded in a rectangular array. Such examples of sparse arrays demand a mechanism to tag values as missing
or indeterminate. Current solutions often rely on tagging missing values as NaNs or special, often very large
sentinel values outside the normal range, which can lead to poor compression and complete loss of accuracy in
nearby valid values. See FAQ #7.

• Support for NaNs and infinities. Similar to missing values, some applications store special IEEE floating-point
values that are supported by zfp only in reversible mode. In fact, for all lossy compression modes, the presence of
such values will currently result in undefined behavior and loss of data for all values within a block that contains
non-finite values.

• Support for more general data types. zfp currently does not directly support half and quad precision floating
point. Nor is there support for 8- and 16-bit integers. With the emergence of new number representations like
posits and bfloat16, we envision the need for a more general interface and a single unified zfp representation
that would allow for conversion between zfp and any number representation. We are working on developing an
uncompressed interchange format that acts like an intermediary between zfp and other number formats. This
format decouples the zfp compression pipeline from the external number type and allows new number formats
to be supported via user-defined conversion functions to and from the common interchange format.

• Progressive decompression. Streaming large data sets from remote storage for visualization can be time con-
suming, even when the data is compressed. Progressive streaming allows the data to be reconstructed at reduced
precision over the entire domain, with quality increasing progressively as more data arrives. The low-level bit
stream interface already supports progressive access by interleaving bits across blocks (see FAQ #13), but zfp
lacks a high-level API for generating and accessing progressive streams.

• Parallel compression. zfp’s data partitioning into blocks invites opportunities for data parallelism on multi-
threaded platforms by dividing the blocks among threads. An OpenMP implementation of parallel compression
is available that produces compressed streams that are identical to serially compressed streams. However, parallel
decompression is not yet supported. zfp also supports compression and decompression on the GPU via CUDA.
However, only fixed-rate mode is so far supported.

• Variable-rate arrays. zfp currently offers only fixed-rate compressed arrays with random-access write support;
zfp 1.0.0 further provides read-only variable-rate arrays. Fixed-rate arrays waste bits in smooth regions with little
information content while too few bits may be allocated to accurately preserve sharp features such as shocks and
material interfaces, which tend to drive the physics in numerical simulations. A candidate solution has been
developed for variable-rate arrays that support read-write random access with modest storage overhead. We
expect to release this capability in the near future.

• Array operations. zfp’s compressed arrays currently support basic indexing and initialization, but lack array-
wise operations such as arithmetic, reductions, etc. Some such operations can exploit the higher precision (than
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IEEE-754) supported by zfp, as well as accelerated blockwise computations that need not fully decompress and
convert the zfp representation to IEEE-754.

• Language bindings. The main compression codec is written in C89 to facilitate calls from other languages.
zfp’s compressed arrays, on the other hand, are written in C++. zfp 0.5.4 and 0.5.5 add C wrappers around
compressed arrays and Fortran and Python bindings to the high-level C API. Work is planned to provide additional
language bindings for C, C++, Fortran, and Python to expose the majority of zfp’s capabilities through all of these
programming languages.

Please contact us with requests for features not listed above.
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RELEASE NOTES

23.1 1.0.1 (2023-12-15)

This patch release primarily addresses minor bug fixes and is needed to update the zfpy Python wheels.

Added

• A new build macro, BUILD_TESTING_FULL, specifies that all unit tests be built; BUILD_TESTING produces a
smaller subset of tests. Full tests and documentation are now included in releases.

Fixed

• #169: libm dependency is not always correctly detected.

• #171: ptrdiff_t is not always imported in Cython.

• #176: cfp API is not exposed via CMake configuration file.

• #177: Full test suite is not included in release.

• #181: rpath is not set correctly in executables.

• #204: Array strides are not passed by value in zFORp.

• #220: Errors reported with scikit-build when building zfpy.

23.2 1.0.0 (2022-08-01)

This release is not ABI compatible with prior releases due to numerous changes to function signatures and data struc-
tures like zfp_field. However, few of the API changes, other than to the cfp C API for compressed arrays, should
impact existing code. Note that numerous header files have been renamed or moved relative to prior versions.

Added

• zfp::const_array: read-only variable-rate array that supports fixed-precision, fixed-accuracy, and reversible
modes.

• Compressed-array classes for 4D data.

• const versions of array references, pointers, and iterators.

• A more complete API for pointers and iterators.

• cfp support for proxy references and pointers, iterators, and (de)serialization.

• Support for pointers and iterators into array views.
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• zfp::array::size_bytes() allows querying the size of different components of an array object (e.g., payload,
cache, index, metadata, . . . ).

• Templated C++ wrappers around the low-level C API.

• A generic codec for storing blocks of uncompressed scalars in zfp’s C++ arrays.

• Additional functions for querying zfp_field and zfp_stream structs.

• zfp_config: struct that encapsulates compression mode and parameters.

• Rounding modes for reducing bias in compression errors.

• New examples: array, iteratorC, and ppm.

Changed

• Headers from array/, cfp/include/, and include/ have been renamed and reorganized into a common
include/ directory.

– The libzfp API is now confined to zfp.h, zfp.hpp, and zfp.mod for C, C++, and Fortran bindings,
respectively. These all appear in the top-level include/ directory upon installation.

– C++ headers now use a .hpp suffix; C headers use a .h suffix.

– C++ headers like array/zfparray.h have been renamed zfp/array.hpp.

– C headers like cfp/include/cfparrays.h have been renamed zfp/array.h.

• size_t and ptrdiff_t replace uint and int for array sizes and strides in the array classes and C/Fortran APIs.

• zfp_bool replaces int as Boolean type in the C API.

• bitstream_offset and bitstream_size replace size_t to ensure support for 64-bit offsets into and lengths
of bit streams. Consequently, the bitstream API has changed accordingly.

• All array and view iterators are now random-access iterators.

• Array inspectors now return const_reference rather than a scalar type like float to allow obtaining a
const_pointer to an element of an immutable array.

• zfp::array::compressed_data() now returns void* instead of uchar*.

• The array (de)serialization API has been revised, resulting in new zfp::array::header and zfp::exception
classes with new exception messages.

• The array codec class is now responsible for all details regarding compression.

• The compressed-array C++ implementation has been completely refactored to make it more modular, extensible,
and reusable across array types.

• Array block shapes are now computed on the fly rather than stored.

• The cfp C API now wraps array objects in structs.

• The zfPy Python API now supports the more general memoryview over bytes objects for decompression.

• The zFORp Fortran module name is now zfp instead of zforp_module.

• Some command-line options for the diffusion example have changed.

• CMake 3.9 or later is now required for CMake builds.

Removed

• zfp::array::get_header() has been replaced with a zfp::array::header constructor that accepts an
array object.

• ZFP_VERSION_RELEASE is no longer defined (use ZFP_VERSION_PATCH).
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Fixed

• #66: make install overwrites googletest.

• #84: Incorrect order of parameters in CUDA memset().

• #86: C++ compiler warns when __STDC_VERSION__ is undefined.

• #87: CXXFLAGS is misspelled in cfp/src/Makefile.

• #98: zfp_stream_maximum_size() underestimates size in reversible mode.

• #99: Incorrect private_view reads due to missing writeback.

• #109: Unused CPython array is incompatible with PyPy.

• #112: PGI compiler bug causes issues with memory alignment.

• #119: All-subnormal blocks may cause floating-point overflow.

• #121: CUDA bit offsets are limited to 32 bits.

• #122: make install does not install zfp command-line utility.

• #125: OpenMP bit offsets are limited to 32 bits.

• #126: make install does not install Fortran module.

• #127: Reversible mode reports incorrect compressed block size.

• #150: cmocka tests do not build on macOS.

• #154: Thread safety is broken in private_view and private_const_view.

• ZFP_MAX_BITS is off by one.

• diffusionC, iteratorC are not being built with gmake.

23.3 0.5.5 (2019-05-05)

Added

• Support for reversible (lossless) compression of floating-point and integer data.

• Methods for serializing and deserializing zfp’s compressed arrays.

• Python bindings for compressing NumPy arrays.

• Fortran bindings to zfp’s high-level C API.

Changed

• The default compressed-array cache size is now a function of the total number of array elements, irrespective of
array shape.

Fixed

• Incorrect handling of execution policy in zfp utility.

• Incorrect handling of decompression via header in zfp utility.

• Incorrect cleanup of device memory in CUDA decompress.

• Missing tests for failing mallocs.

• CMake does not install CFP when built.

23.3. 0.5.5 (2019-05-05) 189



zfp Documentation, Release 1.0.1

• zfp_write_header() and zfp_field_metadata() succeed even if array dimensions are too large to fit in
header.

23.4 0.5.4 (2018-10-01)

Added

• Support for CUDA fixed-rate compression and decompression.

• Views into compressed arrays for thread safety, nested array indexing, slicing, and array subsetting.

• C language bindings for compressed arrays.

• Support for compressing and decompressing 4D data.

Changed

• Execution policy now applies to both compression and decompression.

• Compressed array accessors now return Scalar type instead of const Scalar& to avoid stale references to
evicted cache lines.

Fixed

• Incorrect handling of negative strides.

• Incorrect handling of arrays with more than 232 elements in zfp command-line tool.

• bitstream is not C++ compatible.

• Minimum cache size request is not respected.

23.5 0.5.3 (2018-03-28)

Added

• Support for OpenMP multithreaded compression (but not decompression).

• Options for OpenMP execution in zfp command-line tool.

• Compressed-array support for copy construction and assignment via deep copies.

• Virtual destructors to enable inheritance from zfp arrays.

Changed

• zfp_decompress() now returns the number of compressed bytes processed so far, i.e., the same value returned
by zfp_compress().
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23.6 0.5.2 (2017-09-28)

Added

• Iterators and proxy objects for pointers and references.

• Example illustrating how to use iterators and pointers.

Changed

• Diffusion example now optionally uses iterators.

• Moved internal headers under array to array/zfp.

• Modified 64-bit integer typedefs to avoid the C89 non-compliant long long and allow for user-supplied types
and literal suffixes.

• Renamed compile-time macros that did not have a ZFP prefix.

• Rewrote documentation in reStructuredText and added complete documentation of all public functions, classes,
types, and macros.

Fixed

• Issue with setting stream word type via CMake.

23.7 0.5.1 (2017-03-28)

This release primarily fixes a few minor issues but also includes changes in anticipation of a large number of planned
future additions to the library. No changes have been made to the compressed format, which is backwards compatible
with version 0.5.0.

Added

• High-level API support for integer types.

• Example that illustrates in-place compression.

• Support for CMake builds.

• Documentation that discusses common issues with using zfp.

Changed

• Separated library version from CODEC version and added version string.

• Corrected inconsistent naming of BIT_STREAM macros in code and documentation.

• Renamed some of the header bit mask macros.

• stream_skip() and stream_flush() now return the number of bits skipped or output.

• Renamed stream_block() and stream_delta() to make it clear that they refer to strided streams. Added
missing definition of stream_stride_block().

• Changed int and uint types in places to use ptrdiff_t and size_t where appropriate.

• Changed API for zfp_set_precision() and zfp_set_accuracy() to not require the scalar type.

• Added missing static keyword in decode_block().

• Changed testzfp to allow specifying which tests to perform on the command line.
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• Modified directory structure.

Fixed

• Bug that prevented defining uninitialized arrays.

• Incorrect computation of array sizes in zfp_field_size().

• Minor issues that prevented code from compiling on Windows.

• Issue with fixed-accuracy headers that caused unnecessary storage.

23.8 0.5.0 (2016-02-29)

This version introduces backwards incompatible changes to the CODEC.

Added

• Modified CODEC to more efficiently encode blocks whose values are all zero or are smaller in magnitude than
the absolute error tolerance. This allows representing “empty” blocks using only one bit each.

• Added functions for compactly encoding the compression parameters and field meta data, e.g., for producing
self-contained compressed streams. Also added functions for reading and writing a header containing these
parameters.

Changed

• Changed behavior of zfp_compress() and zfp_decompress() to not automatically rewind the bit stream.
This makes it easier to concatenate multiple compressed bit streams, e.g., when compressing vector fields or
multiple scalars together.

• Changed the zfp example program interface to allow reading and writing compressed streams, optionally with a
header. The zfp tool can now be used to compress and decompress files as a stand alone utility.

23.9 0.4.1 (2015-12-28)

Added

• Added simple.c as a minimal example of how to call the compressor.

Changed

• Changed compilation of diffusion example to output two executables: one with and one without compression.

Fixed

• Bug that caused segmentation fault when compressing 3D arrays whose dimensions are not multiples of four.
Specifically, arrays of dimensions nx × ny × nz, with ny not a multiple of four, were not handled correctly.

• Modified examples/fields.h to ensure standard compliance. Previously, C99 support was needed to handle
the hex float constants, which are not supported in C++98.
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23.10 0.4.0 (2015-12-05)

This version contains substantial changes to the compression algorithm that improve PSNR by about 6 dB and speed
by a factor of 2-3. These changes are not backward compatible with previous versions of zfp.

Added

• Support for 31-bit and 63-bit integer data, as well as shorter integer types.

• New examples for evaluating the throughput of the (de)compressor and for compressing grayscale images in the
pgm format.

• Frequently asked questions.

Changed

• Rewrote compression codec entirely in C to make linking and calling easier from other programming languages,
and to expose the low-level interface through C instead of C++. This necessitated significant changes to the API
as well.

• Minor changes to the C++ compressed array API, as well as major implementation changes to support the C
library. The namespace and public types are now all in lower case.

Removed

• Support for general fixed-point decorrelating transforms.

23.11 0.3.2 (2015-12-03)

Fixed

• Bug in Array::get() that caused the wrong cached block to be looked up, thus occasionally copying incorrect
values back to parts of the array.

23.12 0.3.1 (2015-05-06)

Fixed

• Rare bug caused by exponent underflow in blocks with no normal and some subnormal numbers.

23.13 0.3.0 (2015-03-03)

This version modifies the default decorrelating transform to one that uses only additions and bit shifts. This new trans-
form, in addition to being faster, also has some theoretical optimality properties and tends to improve rate distortion.
This change is not backwards compatible.

Added

• Compile-time support for parameterized transforms, e.g., to support other popular transforms like DCT, HCT,
and Walsh-Hadamard.
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• Floating-point traits to reduce the number of template parameters. It is now possible to declare a 3D array as
Array3<float>, for example.

• Functions for setting the array scalar type and dimensions.

• testzfp for regression testing.

Changed

• Made forward transform range preserving: (-1, 1) is mapped to (-1, 1). Consequently Q1.62 fixed point can be
used throughout.

• Changed the order in which bits are emitted within each bit plane to be more intelligent. Group tests are now
deferred until they are needed, i.e., just before the value bits for the group being tested. This improves the quality
of fixed-rate encodings, but has no impact on compressed size.

• Made several optimizations to improve performance.

• Consolidated several header files.

23.14 0.2.1 (2014-12-12)

Added

• Win64 support via Microsoft Visual Studio compiler.

• Documentation of the expected output for the diffusion example.

Changed

• Made several minor changes to suppress compiler warnings.

Fixed

• Broken support for IBM’s xlc compiler.

23.15 0.2.0 (2014-12-02)

The compression interface from zfpcompress was relocated to a separate library, called libzfp, and modified to be
callable from C. This API now uses a parameter object (zfp_params) to specify array type and dimensions as well as
compression parameters.

Added

• Several utility functions were added to simplify libzfp usage:

– Functions for setting the rate, precision, and accuracy. Corresponding functions were also added to the
Codec class.

– A function for estimating the buffer size needed for compression.

• The Array class functionality was expanded:

– Support for accessing the compressed bit stream stored with an array, e.g., for offline compressed storage
and for initializing an already compressed array.

– Functions for dynamically specifying the cache size.
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– The default cache is now direct-mapped instead of two-way associative.

Fixed

• Corrected the value of the lowest possible bit plane to account for both the smallest exponent and the number of
bits in the significand.

• Corrected inconsistent use of rate and precision. The rate refers to the number of compressed bits per floating-
point value, while the precision refers to the number of uncompressed bits. The Array API was changed accord-
ingly.

23.16 0.1.0 (2014-11-12)

Initial beta release.
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