

Doctrine and GraphQL

Welcome to the documentation for
api-skeletons/zf-doctrine-graphql [https://github.com/API-Skeletons/zf-doctrine-graphql]

This repository uses Doctrine metadata to introspect your entities and builds
relationships dynamically covering your entire schema, if you wish, allowing
deep GraphQL queries on your data with a single entry point.

	About

	Installation
	zf-component-installer

	zf-doctrine-criteria configuration

	Use

	Schema Configuration
	Context

	useHydratorCache Context Option

	Supported Data Types

	Provided Tools

	Hydrator Configuration
	Generating a Skeleton Configuration

	Generated Configuration

	Strategies

	Many to Many Owning Side Relationships

	Documenting Entities

	Running Queries
	Filters

	Pagination

	Events
	Filtering Query Builders

	Resolve

	Resolve Post

	Override GraphQL Type

	Custom Mapping Types

	GraphiQL and Documentation

	Internals
	Hydrator Extract Tool

	Field Resolver

This is documentation for
zf-doctrine-graphql [https://github.com/API-Skeletons/zf-doctrine-graphql].
If you find this useful please add your ★ star to the project.

Authored by API Skeletons [https://apiskeletons.com]. All rights reserved.

About

Authored by Tom H Anderson <tom.h.anderson@gmail.com> of
API Skeletons [https://apiskeletons.com]
and a member of the Doctrine Core [https://www.doctrine-project.org/team/]
team specializing in Zend modules, this module is the fourth offering in the
space of Doctrine and GraphQL according to Packagist. Other implementations
have used strategies such as annotations or GraphQL types
which are only one entity deep and only support a single object manager.

This repository was created because using Hydrators to extract data from
entities is the correct way to configure the output from the entities. Then,
allowing mulitiple hydrator configurations allows you to create GraphQL
endpoints which are specific to a part of the data. For instance, you may want
to rot13() all email addresses for normal user GraphQL queries but return
them unencrypted for an admin user. With this library such data manipulation
is possible.

The hydrator factory for this repository was taken from
phpro/zf-doctrine-hydration-module [https://github.com/phpro/zf-doctrine-hydration-module]
and allows for customization of each field for each entity using Hydrator
Stratigies. It allows for Hydrator Filters to completely remove data from the
result. It allows for Hydrator Naming Strategies. With all of these hydrator
features this repository delivers superior data mutability for any case you
may have to serve it over GraphQL.

This repository allows for multiple object managers. Each hydrator
configuration section specifies a specific object manager.

This repository allows for multiple GraphQL Schemas. Served via different
RPC endpoints on your application or through a more complicated selection of
Schema based on input parameters, this repository is flexible enough for
any GraphQL needs.

Doctrine provides full navigation of a database schema when properly configured
and this repository leverages that flexibility to mirror the full database
schema navigation to provide GraphQL queries as complex as your data.

This is documentation for
zf-doctrine-graphql [https://github.com/API-Skeletons/zf-doctrine-graphql].
If you find this useful please add your ★ star to the project.

Authored by API Skeletons [https://apiskeletons.com]. All rights reserved.

Installation

Installation of this module uses composer. For composer documentation, please
refer to getcomposer.org [http://getcomposer.org/]

$ composer require api-skeletons/zf-doctrine-graphql

Once installed, add ZF\Doctrine\GraphQL to your list of modules inside
config/application.config.php or config/modules.config.php.

zf-component-installer

If you use zf-component-installer [https://github.com/zendframework/zf-component-installer],
that plugin will install zf-doctrine-graphql as a module for you.

zf-doctrine-criteria configuration

You must copy the config for zf-doctrine-criteria to your autoload directory:

$ cp vendor/api-skeletons/zf-doctrine-criteria/config/zf-doctrine-criteria.global.php.dist config/autoload/zf-doctrine-criteria.global.php

This is documentation for
zf-doctrine-graphql [https://github.com/API-Skeletons/zf-doctrine-graphql].
If you find this useful please add your ★ star to the project.

Authored by API Skeletons [https://apiskeletons.com]. All rights reserved.

Use

This example merges work from a factory into the example. Moving the
$container calls to a factory and injecting them into an RPC object will
yield a working example.:

use Exception;
use GraphQL\GraphQL;
use GraphQL\Type\Schema;
use GraphQL\Type\Definition\Type;
use GraphQL\Type\Definition\ObjectType;
use ZF\Doctrine\GraphQL\Type\Loader as TypeLoader;
use ZF\Doctrine\GraphQL\Filter\Loader as FilterLoader;
use ZF\Doctrine\GraphQL\Resolve\Loader as ResolveLoader;
use ZF\Doctrine\GraphQL\Context;

$typeLoader = $container->get(TypeLoader::class);
$filterLoader = $container->get(FilterLoader::class);
$resolveLoader = $container->get(ResolveLoader::class);

$input = $_POST;

// Context is used for configuration level variables and is optional
$context = (new Context())
 ->setLimit(1000)
 ->setHydratorSection('default')
 ->setUseHydratorCache(true)
 ;

$schema = new Schema([
 'query' => new ObjectType([
 'name' => 'query',
 'fields' => [
 'artist' => [
 'type' => Type::listOf($typeLoader(Entity\Artist::class, $context)),
 'args' => [
 'filter' => $filterLoader(Entity\Artist::class, $context),
],
 'resolve' => $resolveLoader(Entity\Artist::class, $context),
],
 'performance' => [
 'type' => Type::listOf($typeLoader(Entity\Performance::class, $context)),
 'args' => [
 'filter' => $filterLoader(Entity\Performance::class, $context),
],
 'resolve' => $resolveLoader(Entity\Performance::class, $context),
],
],
]),
]);

$query = $input['query'];
$variableValues = $input['variables'] ?? null;

try {
 // Context in the `executeQuery` is required. If you do not assign a specific context as shown
 // you still need to send a `new Context()` to `executeQuery`.
 $result = GraphQL::executeQuery($schema, $query, $rootValue = null, $context, $variableValues);
 $output = $result->toArray();
} catch (Exception $e) {
 $output = [
 'errors' => [[
 'exception' => $e->getMessage(),
]]
];
}

echo json_encode($output);

This is documentation for
zf-doctrine-graphql [https://github.com/API-Skeletons/zf-doctrine-graphql].
If you find this useful please add your ★ star to the project.

Authored by API Skeletons [https://apiskeletons.com]. All rights reserved.

Schema Configuration

Context

The Context object provided enables configuration of GraphQL through the
following options:

	limit - Set a maximum limit of each data section in a query

	hydratorSection - Which section within the hydrator configuration should
be used

	useHydratorCache - By default all hydrator operations are not cached.
Enabling this value will cache all the hydrator operation in anticipation
that the result may be reused.

Context is the configuration for each GraphQL entry point. This allows
unlimited configuration through multiple hydrator sections.

You must use the same context object for a Query as you assign to the Loader.
This may be done via different Schemas or different RPC endpoints.

useHydratorCache Context Option

The hydrator cache by defaults stores only the most recent hydrator extract
data in anticipation that the next call to the
FieldResolver [https://github.com/API-Skeletons/zf-doctrine-graphql/blob/master/src/Field/FieldResolver.php]
will be the same object and the cache can be used. If the same object is
not requesed for extraction then the cache is flushed and the new result
is cached.

For a query

{
 artist (filter: { id: 2 }) {
 performance {
 performanceDate
 }
 }
}

All performance dates for the artist 2 will be returned. Internally each
performance is extracted according to the hydrator filters and strategies
assigned to the hydrator section and entity. This may be many more fields
than just performanceDate. And since we are only interested in one value
setting useHydratorCache to false will flush the cache with each new object
so once a performanceDate is read and the next performance is sent to the
FieldResolver [https://github.com/API-Skeletons/zf-doctrine-graphql/blob/master/src/Field/FieldResolver.php]
the previous hydrator extract data is purged.

For a query

{
 performance (filter: { id:1 }) {
 performanceDate set1 set2 artist {
 name
 }
 set3
 }
}

useHydratorCache set to true will cause set3 to be pulled from the cache.
If it were set to false set3 would generate a new hydrator extract operation
on an entity which had already been extracted once before.

useHydratorCache set to false will fetch set1 and set2 from the single-entity
cache created by the performanceDate.

Supported Data Types

This module would like to support all datatypes representable in a GraphQL
response. At this time these data types are supported:

array - Arrays are handled as arrays of strings because Doctrine
 does not type the values of the array.
tinyint
smallint
integer
int
bigint
boolean
decimal
float
string
text
datetime

Dates are handled as ISO 8601 e.g. 2004-02-12T15:19:21+00:00

If you have need to support a datatype not listed here please create an
issue on the github project.

Provided Tools

There are three tools this library provides to help you build your
GraphQL Schema.

	TypeLoader - This tool creates a GraphQL type for a top-level entity and
all related entities beneath it. It also creates resolvers for related
collections using the
api-skeletons/zf-doctrine-criteria [https://github.com/API-Skeletons/zf-doctrine-criteria]
library.

	FilterLoader - This tool creates filters for all non-related fields
(collections) such as strings, integers, etc. These filters are built from
the zfcampus/zf-doctrine-querybuilder [https://github.com/zfcampus/zf-doctrine-querybuilder]
library.

	ResolveLoader - This tool builds the querybuilder object and queries the
database based on the FilterLoader filters.

Each of these tools takes a fully qualified entity name as a paramter
allowing you to create a top level GraphQL query field for any entity.

There is not a tool for mutations. Those are left to the developer to build.

This is documentation for
zf-doctrine-graphql [https://github.com/API-Skeletons/zf-doctrine-graphql].
If you find this useful please add your ★ star to the project.

Authored by API Skeletons [https://apiskeletons.com]. All rights reserved.

Hydrator Configuration

Even deveopers who have used Doctrine or an ORM a lot may not have experience
with hydrators. This section is to educate and help the developer understand
hydrators and how to use them in relation to Doctrine ORM and GraphQL.

A hydrator moves data into and out of an object as an array. The array may
contain scalar values, arrays, and closures. For instance, if you have an
entity with the fields:

id
name
description

a hydrator can create an array from your entity resulting in:

$array['id']
$array['name']
$array['description']

The Zend Framework documentaion on Hydrators [https://framework.zend.com/manual/2.4/en/modules/zend.stdlib.hydrator.html]
is a good read for background about coding hydrators from scratch.

The Doctrine Hydrator documentation [https://github.com/doctrine/DoctrineModule/blob/master/docs/hydrator.md]
is more complete and more pertinent to this repository. A notable section is
By Value and By Reference [https://github.com/doctrine/DoctrineModule/blob/master/docs/hydrator.md#by-value-and-by-reference]

Generating a Skeleton Configuration

This module uses hydrators to extract data from the Doctrine entities. You
can configure multiple sections of hydrators so one permissioned user may
receive different data than a different permission or one query to an entity
may return different fields than another query to the same entity.

Because creating hydrator configurations for every section for every entity
in your object manager(s) is tedious this module provides an auto-generating
configuration tool.

To generate configuration:

php public/index.php graphql:config-skeleton [--hydrator-sections=] [--object-manager=]

The hydrator-sections parameter is a comma delimited list of sections to
generate such as default,admin.

The object-manager parameter is optional and defaults to
doctrine.entitymanager.orm_default. For each object manager you want to
serve data with in your application create a configuration using this
tool. The tool outputs a configuration file. Write the file to your project
root location then move it to your config/autoload directory.

php public/index.php graphql:config-skeleton > zf-doctrine-graphql-orm_default.global.php
mv zf-doctrine-graphql-orm_default.global.php config/autoload

(Writing directly into the config/autoload directory is not recommended at
run time.)

Default hydrator strategies and filters are set for every association and field
in your ORM. Modify each hydrator configuration section with your hydrator
strategies and hydrator filters as needed.

Generated Configuration

Here is an example of a generated configuration:

'ZF\\Doctrine\\GraphQL\\Hydrator\\ZF_Doctrine_Audit_Entity_Revision' => [
 'default' => [
 'entity_class' => \ZF\Doctrine\Audit\Entity\Revision::class,
 'object_manager' => 'doctrine.entitymanager.orm_zf_doctrine_audit',
 'by_value' => true,
 'use_generated_hydrator' => true,
 'naming_strategy' => null,
 'hydrator' => null,
 'strategies' => [
 'id' => \ZF\Doctrine\GraphQL\Hydrator\Strategy\ToInteger::class,
 'comment' => \ZF\Doctrine\GraphQL\Hydrator\Strategy\FieldDefault::class,
 'connectionId' => \ZF\Doctrine\GraphQL\Hydrator\Strategy\ToInteger::class,
 'createdAt' => \ZF\Doctrine\GraphQL\Hydrator\Strategy\FieldDefault::class,
 'userEmail' => \ZF\Doctrine\GraphQL\Hydrator\Strategy\FieldDefault::class,
 'userId' => \ZF\Doctrine\GraphQL\Hydrator\Strategy\ToInteger::class,
 'userName' => \ZF\Doctrine\GraphQL\Hydrator\Strategy\FieldDefault::class,
 'revisionEntity' => \ZF\Doctrine\GraphQL\Hydrator\Strategy\AssociationDefault::class,
],
 'filters' => [
 'default' => [
 'condition' => 'and',
 'filter' => \ZF\Doctrine\GraphQL\Hydrator\Filter\FilterDefault::class,
],
],
 'documentation' => [
 '_entity' => '',
 'id' => '',
 'comment' => '',
 'connectionId' => '',
 'createdAt' => '',
 'userEmail' => '',
 'userId' => '',
 'userName' => '',
],
],
],

The entity_class is the fully qualified entity class name this
configuration section is for.

The object_manager is the service manager alias for the object manager
which manages the entity_class.

by_value is an important switch. When set to true the values for the
entity will be fetched using their getter methods such as getName() for a
name field. When set to false the entity will be Reflected and the
property value of the entity class will be extracte by reference. If your
entities are not extracting properly try toggling this value.

by_value set to false is useful when your entity does not have getter
methods such as a dynamically created entity.
API-Skeletons/zf-doctrine-audit [https://github.com/API-Skeletons/zf-doctrine-audit]
is a good example for this. The dynamically generated auditing entities do
not have getter methods but do have properties to contain the field values.
These can be extracted by reference.

use_generated_hydrator is usually set to true. Because GraphQL uses
hydrators for extraction only this value is not used. But if you want to
use the same configured hydrators to hydrate an entity please see the code
for its use.

hydrator allows complete overriding of the extract service. If set the
extract and hydrate services will be assigned to the specified hydrator.

naming_strategy is an instance of
ZendHydratorNamingStrategyNamingStrategyInterface and is a service
manager alias. You may only have one naming_strategy per hydrator
configuration. A naming strategy lets you rename fields.

strategies are quite important for extracting entities. These can change
the extracted value in whatever way you wish such as rot13() email addresses.
They can return an empty value but for that case it’s better to filter out the
field completely.

filters are toggle switches for fields. If you return false for a field
name it will remove the field from the extract result.

documentation section is for fields only. Relations are not documented
because that is not supported by GraphiQL. Use this section to document
each field and the entity. The reserved name _entity contains the
documentation for the entity.

Strategies

There are some hydrator stragegies included with this module. In GraphQL
types are very important and this module introspects your ORM metadata to
correctly type against GraphQL types. By default integer, float, and
boolean fields are automatically assigned to the correct hydrator strategy.

Many to Many Owning Side Relationships

{ artist { user { role { user { name } } } } }

This query would return all user names who share the same role permissions as
the user who created the artist. To prevent this the graphql:config-skeleton
command nullifies the owning side of many to many relations by default causing
an error when the query tries to go from role > user but not when it goes from
user > role becuase role is the owning side of the many to many relationship.
See
NullifyOwningAssociation [https://github.com/API-Skeletons/zf-doctrine-graphql/blob/master/src/Hydrator/Strategy/NullifyOwningAssociation.php]
for more information.

Documenting Entities

Introspection of entities is a core component to GraphQL. The introspection
allows you to document your types. Because entities are types there is a
section inside each hydrator configuration for documenting your entity and
fields through introspection.

'documentation' => [
 '_entity' => 'The Artist entity contains bands, groups, and individual performers.',
 'id' => 'Primary Key for the Artist',
 'abbreviation' => 'An abbreviation for the Artist',
 'createdAt' => 'DateTime the Artist record was created',
 'description' => 'A description of the Artist',
 'icon' => 'The Artist icon',
 'name' => 'The name of the performer.',
],

There is one special field, _entity which is the description for the entity
itself. The rest of the fields describe documentation for each field.

Documentation is specific to each hydrator section allowing you to describe
the same entity in different ways. The Documentation will be returned in
tools like GraphiQL [https://github.com/graphql/graphiql]

GraphiQL is the standard for browsing introspected GraphQL types.
zf-doctrine-graphql fully supports GraphiQL.

This is documentation for
zf-doctrine-graphql [https://github.com/API-Skeletons/zf-doctrine-graphql].
If you find this useful please add your ★ star to the project.

Authored by API Skeletons [https://apiskeletons.com]. All rights reserved.

Running Queries

This section is intended for the developer who needs to write queries against
an implementation of this repository.

Queries are not special to this repository. The format of queries are exactly
what GraphQL is spec’d out to be. For each implementation of GraphQL the
filtering of data is not defined. In order to build the filters for this
an underscore approach is used. fieldName_filter is the format for all
filters.

An example query:

Fetch at most 100 performances in CA for each artist with ‘Dead’ in their name.

$query = "{
 artist (filter: { name_contains: \"Dead\" }) {
 name
 performance (filter: { _limit: 100 state:\"CA\" }) {
 performanceDate venue
 }
 }
}";

Filters

For each field, which is not a reference to another entity, a colletion of
filters exist. Given an entity which contains a name field you may directly
filter the name using

filter: { name: "Grateful Dead" }

You may only use each field’s filter once per filter(). Should a child record
have the same name as a parent it will share the filter names but filters are
specific to the entity they filter upon.

Provided Filters:

fieldName_eq - Equals; same as name: value.
 DateTime not supported.
fieldName_neq - Not Equals
fieldName_gt - Greater Than
fieldName_lt - Less Than
fieldName_gte - Greater Than or Equal To
fieldName_lte - Less Than or Equal To
fieldName_in - Filter for values in an array
fieldName_notin - Filter for values not in an array
fieldName_between - Filter between `from` and `to` values. Good substitute for DateTime Equals.
fieldName_contains - Strings only. Similar to a Like query as `like '%value%'`
fieldName_startswith - Strings only. A like query from the beginning of the value `like 'value%'`
fieldName_endswith - Strings only. A like query from the end of the value `like '%value'`
fieldName_isnull - Takes a boolean. If TRUE return results where the field is null.
 If FALSE returns results where the field is not null.
 NOTE: acts as "isEmpty" for collection filters. A value of false will
 be handled as though it were null.
fieldName_sort - Sort the result by this field. Value is 'asc' or 'desc'
fieldName_distinct - Return a unique list of fieldName. Only one distinct fieldName allowed per filter.

The format for using these filters is:

filter: { name_endswith: "Dead" }

For isnull the parameter is a boolean

filter: { name_isnull: false }

For in and notin an array of values is expected

filter: { name_in: ["Phish", "Legion of Mary"] }

For the between filter two parameters are necessary. This is very useful for
date ranges and number queries.

filter: { year_between: { from: 1966 to: 1995 } }

To select a distinct list of years

{
 artist (filter: { id:2 }) {
 performance(filter: { year_distinct: true year_sort: "asc" }) {
 year
 }
 }
}

All filters are AND filters. For OR support use multiple aliases queries
and aggregate them. TODO: Add orx and andx support

Pagination

The filter supports _skip and _limit. There is a configuration
variable to set the max limit size and anything under this limit is
valid. To select a page of data set the _skip:10 _limit:10 and
increment _skip by the _limit for each request. These pagination
filters exist for filtering collections too.

This is documentation for
zf-doctrine-graphql [https://github.com/API-Skeletons/zf-doctrine-graphql].
If you find this useful please add your ★ star to the project.

Authored by API Skeletons [https://apiskeletons.com]. All rights reserved.

Events

All events are grouped under a common ZF\Doctrine\GraphQL\Event object.
In this repository the same event can be called in different places based on
context such as when building an EntityType and when building the filters for
an EntityType; both places need the same type override. That is why all events
are grouped.

Filtering Query Builders

Each top level entity to query uses a QueryBuilder object. This QueryBuilder
object should be modified to filter the data for the logged in user. This is
the security layer. QueryBuilders are built then triggered through an event.
Listen to this event and modify the passed QueryBuilder to apply your security.
The queryBuilder already has the entityClassName assigned to fetch with the
alias ‘row’.

use Zend\EventManager\Event as ZendEvent;
use ZF\Doctrine\GraphQL\Event;

$events = $container->get('SharedEventManager');

$events->attach(
 Event::class,
 Event::FILTER_QUERY_BUILDER,
 function(ZendEvent $event)
 {
 switch ($event->getParam('entityClassName')) {
 case 'Db\Entity\Performance':
 // Modify the queryBuilder for your needs
 $event->getParam('queryBuilder')
 ->andWhere('row.id = 1')
 ;
 break;
 default:
 break;
 }
 },
 100
);

Resolve

The Event::RESOLVE event includes the parameters
and allows you to override the whole ResolveLoader event. This allows
you to have custom parameters and act on them through the ResolveLoader
RESOLVE event.

Resolve Post

The Event::RESOLVE_POST event allows you to modify the values
returned from the ResolveLoader via an ArrayObject or replace the values.

Override GraphQL Type

The Event::MAP_FIELD_TYPE event allows you to override the GraphQL
type for any field. Imagine you have an array field on an entity and
the array field is multi-dimentional. Because this module handles arrays
as arrays of strings (because GraphQL needs to know exact subtypes of types)
it cannot handle a multi-dimentional array. A good solution is to turn the
value into JSON in a hydrator strategy and override the type to a String.

use Zend\EventManager\Event as ZendEvent;
use GraphQL\Type\Definition\Type;
use ZF\Doctrine\GraphQL\Event;

$events = $container->get('SharedEventManager');

$events->attach(
 Event::class,
 Event::MAP_FIELD_TYPE,
 function(ZendEvent $event)
 {
 $hydratorAlias = $event->getParam('hydratorAlias');
 $fieldName = $event->getParam('fieldName');

 if ($hydratorAlias == 'ZF\\Doctrine\\GraphQL\\Hydrator\\DbTest_Entity_Artist') {
 if ($fieldName === 'arrayField') {
 $event->stopPropagation();

 return Type::string();
 }
 }
 },
 100
);

This is documentation for
zf-doctrine-graphql [https://github.com/API-Skeletons/zf-doctrine-graphql].
If you find this useful please add your ★ star to the project.

Authored by API Skeletons [https://apiskeletons.com]. All rights reserved.

Custom Mapping Types

Doctrine allows
Custom Mapping Types [https://www.doctrine-project.org/projects/doctrine-orm/en/2.6/cookbook/custom-mapping-types.html]

You must create a custom GraphQL type for the field for handling serialization,
etc. See ZF\Doctrine\GraphQL\Type\DateTimeType for an example of a
custom GraphQL type.

Add the new custom GraphQL type to your configuration:

'zf-doctrine-graphql-type' => [
 'invokables' => [
 'datetime_microsecond'
 => Types\GraphQL\DateTimeMicrosecondType::class,
],
],

This is documentation for
zf-doctrine-graphql [https://github.com/API-Skeletons/zf-doctrine-graphql].
If you find this useful please add your ★ star to the project.

Authored by API Skeletons [https://apiskeletons.com]. All rights reserved.

GraphiQL and Documentation

Support for GraphiQL was added in v1.0.5 along with support for
introspection queries.

The documentation for each field is created with a DocumentationProvider.
Included with zf-doctrine-graphql is an ApigilityDocumentationProvider.
If you have need for another form of documentation provider please create
an issue on github. The more included providers the merrier.

This is documentation for
zf-doctrine-graphql [https://github.com/API-Skeletons/zf-doctrine-graphql].
If you find this useful please add your ★ star to the project.

Authored by API Skeletons [https://apiskeletons.com]. All rights reserved.

Internals

Hydrator Extract Tool

All hydrator extract operations are handled through the Hydrator Extract Tool.
This tool is engineered to be overridden thanks to a service manager alias.
Should you find the need to add custom caching to hydrator results this is
where to do it. To register a custom hydrator extract tool use

'aliases' => [
 'ZF\Doctrine\GraphQL\Hydrator\HydratorExtractTool' => CustomExtractTool::class,
],

Field Resolver

This standard part of GraphQL resolves individual fields and is where the
built in caching resides. This resolver uses the Hydrator Extract Tool and
returns one field value at a time. For high performance writing your own Field
Resolver is an option. To register a custom field resolver use
GraphQL::setDefaultFieldResolver($fieldResolver);

This is documentation for
zf-doctrine-graphql [https://github.com/API-Skeletons/zf-doctrine-graphql].
If you find this useful please add your ★ star to the project.

Authored by API Skeletons [https://apiskeletons.com]. All rights reserved.

Index

This is documentation for
zf-doctrine-graphql [https://github.com/API-Skeletons/zf-doctrine-graphql].
If you find this useful please add your ★ star to the project.

Authored by API Skeletons [https://apiskeletons.com]. All rights reserved.

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Doctrine and GraphQL

 		
 About

 		
 Installation

 		
 zf-component-installer

 		
 zf-doctrine-criteria configuration

 		
 Use

 		
 Schema Configuration

 		
 Context

 		
 useHydratorCache Context Option

 		
 Supported Data Types

 		
 Provided Tools

 		
 Hydrator Configuration

 		
 Generating a Skeleton Configuration

 		
 Generated Configuration

 		
 Strategies

 		
 Many to Many Owning Side Relationships

 		
 Documenting Entities

 		
 Running Queries

 		
 Filters

 		
 Pagination

 		
 Events

 		
 Filtering Query Builders

 		
 Resolve

 		
 Resolve Post

 		
 Override GraphQL Type

 		
 Custom Mapping Types

 		
 GraphiQL and Documentation

 		
 Internals

 		
 Hydrator Extract Tool

 		
 Field Resolver

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

