

zerial

[image: _images/zerial.png]
 [http://badge.fury.io/py/zerial][image: _images/zerial1.png]
 [https://travis-ci.org/jriddy/zerial]Zerial is the serialization tool that allows your model classes to be the
Zingle Zource of Truth™ for your project. Let your model classes take
whatever form or use whatever collection types they need, and just use metadata
to define how that text gets serialized. With support for variant record
types, you can even evolve your data models over time, and even create
versioned models if need be.

Zerial is built on top of the excellent attrs [http://www.attrs.org/en/stable/] library, which makes class
creation and definition in Python very easy and very obvious. This library
adds abritrarily recursive serialization and de-serialization of complex
data classes.

Zerial was inspired because complex applications in spaces where requirements
are hard to define up front call for a unique approach to modeling data. A
solution has to be flexible enough to accomodate a growing and changing
understanding of the underlying problem domain, while being rigorous enough
to encapsulate these changes to data modules. External schemas like ORM or
JSON Schema are both inflexible and instrinsically bound to specific data
exchange formats (SQL and JSON) that you may or may not want to actually use.
Implicit schemas, although sufficienty flexible, ultimately fail because they
break separation of concerns, requiring every bit of code that touches data
to understand how to create a validate an entire history of model versions
for that data type.

This project aims to allow components to structure their data in a way that is
convenient for people interacting with the code, provided that it can be
destructured into simple types. The combination of attrs [http://www.attrs.org/en/stable/]’ rich support for
defaults and value factories and zerial’s support of variant records, you can
evolve your data models over time, without breaking your client code or stored
serialized data.

Features

	Stucturing and destructuring of model classes

	Supports rich typing without any runtime dependency on stuff from the
typing module, which has deeply inconsistent runtime behavior

	Model fields can be simple types or other model classes

	Collection types can be represented as any kind of Python object, as long as
you can convert it to and from a list or dict with string keys.

	Variant records permit fields that accept multiple types of data, permitting
extensibility. Variants with default types allow this to be added at any
point in development (and even permits for versioned data models).

Todo/Roadmap

	Optional native support for numpy arrays

	Export of schema definition formats from record classes

	Debug tools for destructure/restructure failures

	Wrappers around attr.s and attr.ib to make defining models cleaner

	Better automated checking and testing tools for serializability

	More extensive documentation

Contents:

	Installation

	Usage

	zerial package
	Module contents

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2018-10-21)

Feedback

If you encounter any errors or problems with zerial, please let me know!
Open an Issue at the GitHub http://github.com/jriddy/zerial main repository.

Installation

At the command line either via easy_install or pip:

$ easy_install zerial
$ pip install zerial

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv zerial
$ pip install zerial

Usage

To use zerial in a project:

import zerial

zerial package

Module contents

	
class zerial.Sequence(item_type, restructure_factory=<class 'list'>, destructure_factory=<class 'list'>, apparent_type=NOTHING)

	Bases: zerial._base.Ztype, typing.Generic

Metadata type for a sequence of items.

Handles any version of N number of items of type T. Works for sets,
tuples, lists, and anything else that follows that interface.

	Attribute item_type

	The type of the object contained in this sequence.
Note that this can itself be another complex object or another Ztype,
so these data types can be arbitrarily nested.

	Attribute restructure_factory

	The callable that will convert a stored
sequence into a live data type. Basically, the function that can
rebuild your data into the collection type you want.

	Attribute destructure_factory

	The callable that will convert a live
sequence into storage data. Normally this will always be list,
unless your serialization format supports other sequence types.

	Attribute apparent_type

	To be deprecated

	
default_apparent_type()

	

	
destruct(inst, ztr)

	Unstructure inst into a mapping.

The Ztructurer doing the destructuring is passed for its options and to
permit further recursive descent if necessary.

Works with the Ztructurer to take apart more complex types.

	
restruct(data, ztr)

	Structure the mapping into the appropriate type.

The Ztructurer doing the rebuilding is passed for its options and to
permit recursive rebuilding if needed.

Works with Ztructurer to rebuild more complext types.

	
class zerial.Mapping(key_type: Type[K], val_type: Type[V], restructure_factory=<class 'dict'>, destructure_factory=<class 'dict'>, extract_pairs=operator.methodcaller('items'), apparent_type=typing.MutableMapping)

	Bases: zerial._base.Ztype, typing.Generic

Ztype wrapper for a simple mapping/dict

Since many serialization formats require that keys for mappings be strings,
we require that the key_type be convertible to-and-from string. This
limits us to pretty primitive types, like int and str.

	Attribute key_type

	The type of the keys of the mapping. Currently only
supports types that can do a straight-forward one-to-one convertion to
and from str.

	Attribute val_type

	The type of the values of the mapping. Can be any
type that will can be serialized, including other Ztype
objects, allowing arbirarily complex value types.

	Attribute restructure_factory

	The container type that will be used to
rebuild your data type upon being restructured. It will be called with
an iterable of key-value pairs. The default is dict, but if you want,
say, a collections.defaultdict to come out with a default
function of int, you could give this:

@zerial.record
@attr.s
class MyRecord:
 my_field = attr.ib(
 type=typing.Mapping[str, int],
 metadata=zerial.data(zerial.Mapping(
 str, int, partial(defaultdict, int)
)),
)

This will result in my_field being restructured ready for you to do
all the fun defaultdict stuff you’ve always wanted to do like
my_record.my_field[arbitrary_key] += 1, because zerial ensures
that it gets restructured that way.

	Attribute destructure_factory

	The container type that will be used to
take apart your data to destructure it. Can be useful if your mapping
is ordered, in which case you’d want to save it as a list to
preserve the order even in a serialized dict. This feature is
unstable and may be replaced by something more sophisticated in the
future.

	Attribute extract_pairs

	Function to extract item pairs from the object
created by destructure_factory. By default, this calls
.items() on the object it receives, but if you were to destructure
into a list, you’ll need to pass None here (which is converted
to the identity function lambda x: x) since a list of pairs is
already, well, a list of pairs. This feature is unstable and may be
replaced by something better in the future.

	
destruct(inst, ztr)

	Unstructure inst into a mapping.

The Ztructurer doing the destructuring is passed for its options and to
permit further recursive descent if necessary.

Works with the Ztructurer to take apart more complex types.

	
restruct(mapping, ztr)

	Structure the mapping into the appropriate type.

The Ztructurer doing the rebuilding is passed for its options and to
permit recursive rebuilding if needed.

Works with Ztructurer to rebuild more complext types.

	
class zerial.Variant(type_records, default=<object object>, name: str = NOTHING, enum: enum.Enum = NOTHING)

	Bases: zerial._base.Ztype

Variant that allows multiple types to occupy the same attribute slot.

This is an implementation of a sum type (called enums or variants,
depending on the source) for serialization. It allows multiple types to be
saved in the same slot, and deserialized intelligently into the correct
type. It accomplishes this by storing a name corresponding to the type
along with the type information.

	Attribute _type_records

	Iterable of types, or a mapping of names to
types. The types should be concrete types, in the sense that they can
instantiate a real object of their class from provided data. They are
treated as invariant. If you have multiple subclasses of a type, they
must all be specified here. The Variant has to be able to store
the type in the destructured data and consistently map it to the
desired runtime type in the restuctured model, so it needs a full
accounting of which types are available to it at definition time. If
passed a mapping, the keys are taken as the type names. If passed a
plain iterable, the type names are taken from the __name__
attribute of the class. Collisions are invalid, so if you have two
types with the same __name__, use a mapping to give them unique
names in this context.

	Attribute default

	Default type to use if no type information is found in
the destructured data. This permits previously non-variant field to
become variants without invalidating previously saved data.

	
NO_DEFAULT = <object object>

	

	
apparent_type

	Special type indicating an unconstrained type.

	Any is compatible with every type.

	Any assumed to have all methods.

	All values assumed to be instances of Any.

Note that all the above statements are true from the point of view of
static type checkers. At runtime, Any should not be used with instance
or class checks.

	
destruct(inst, ztr)

	Unstructure inst into a mapping.

The Ztructurer doing the destructuring is passed for its options and to
permit further recursive descent if necessary.

Works with the Ztructurer to take apart more complex types.

	
name

	

	
restruct(data, ztr)

	Structure the mapping into the appropriate type.

The Ztructurer doing the rebuilding is passed for its options and to
permit recursive rebuilding if needed.

Works with Ztructurer to rebuild more complext types.

	
types

	

	
class zerial.Serializer(to_outer: Callable[T, U], to_inner: Callable[U, T])

	Bases: zerial._base.Ztype, typing.Generic

When you just need a serializer that goes forward and back.

	Attribute to_outer

	Function that destructures the data.

	Attribute to_inner

	Function that restructures the data.

If the other metadata types fail, or there are obvious standard string
representations of your data type (like in dates), you can just use a
Serializer to take care of it for you:

import datetime

@zerial.record
@attr.s
class ImportantDate:
 name = attr.ib(type=str)
 date = attr.ib(
 type=datetime.date,
 metadata=zerial.data(zerial.Serializer(
 lambda d: d.isoformat(),
 lambda s: datetime.datetime.strptime(s, '%Y-%m-%d').date(),
)),
)

It doesn’t necessarily have to be a string either. If your mapping variant
is too complex for Mapping, then you could use this class as a
last resort for defining a method of destructuring it.

	
destruct(inst, _)

	Unstructure inst into a mapping.

The Ztructurer doing the destructuring is passed for its options and to
permit further recursive descent if necessary.

Works with the Ztructurer to take apart more complex types.

	
restruct(data, _)

	Structure the mapping into the appropriate type.

The Ztructurer doing the rebuilding is passed for its options and to
permit recursive rebuilding if needed.

Works with Ztructurer to rebuild more complext types.

	
class zerial.Ztructurer(dict_factory=<class 'dict'>, metachar: str = '%', permitted_passthrus: tuple = (<class 'bool'>, <class 'int'>, <class 'float'>, <class 'str'>), is_serializable_field=operator.attrgetter('init'), encoders=NOTHING, can_structure=<function has>)

	Bases: object

	
can_encode(type)

	

	
can_pass_thru(val)

	

	
can_structure(tobj)

	

	
destructure(inst, type=None)

	

	
get_encoder(type)

	

	
get_metakey(key)

	

	
record(cls)

	Decorator to indicate that a class is serializable

Currently does nothing special, but in the future it may be used to
add automated features, and could potentially become required to
serialize objects in certain contexts.

	
restructure(type, mapping)

	

	
zerial.zdata(ztype)

	

	
zerial.Zapping

	alias of zerial._data.Mapping

	
zerial.Zariant

	alias of zerial._data.Variant

	
zerial.Zequence

	alias of zerial._data.Sequence

	
zerial.Zerializer

	alias of zerial._data.Serializer

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/jriddy/zerial/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

zerial could always use more documentation, whether as part of the
official zerial docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/jriddy/zerial/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up zerial for
local development.

	Fork [https://github.com/jriddy/zerial/fork] the zerial repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/zerial.git

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass style and unit
tests, including testing other Python versions with tox:

$ tox

To get tox, just pip install it.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.5, and 3.6. Other versions
are planned by not yet fully supported.
Check https://travis-ci.org/jriddy/zerial
under pull requests for active pull requests or run the tox command and
make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test test/test_zerial.py

Credits

Development Lead

	Josh Reed <jriddy@gmail.com>

Contributors

None yet. Why not be the first?

History

0.1.0 (2018-10-21)

	First release on PyPI.

 Python Module Index

 z

 		 	

 		
 z	

 	
 	
 zerial	

Index

 A
 | C
 | D
 | G
 | M
 | N
 | R
 | S
 | T
 | V
 | Z

A

 	
 	apparent_type (zerial.Variant attribute)

C

 	
 	can_encode() (zerial.Ztructurer method)

 	
 	can_pass_thru() (zerial.Ztructurer method)

 	can_structure() (zerial.Ztructurer method)

D

 	
 	default_apparent_type() (zerial.Sequence method)

 	destruct() (zerial.Mapping method)

 	(zerial.Sequence method)

 	(zerial.Serializer method)

 	(zerial.Variant method)

 	
 	destructure() (zerial.Ztructurer method)

G

 	
 	get_encoder() (zerial.Ztructurer method)

 	
 	get_metakey() (zerial.Ztructurer method)

M

 	
 	Mapping (class in zerial)

N

 	
 	name (zerial.Variant attribute)

 	
 	NO_DEFAULT (zerial.Variant attribute)

R

 	
 	record() (zerial.Ztructurer method)

 	restruct() (zerial.Mapping method)

 	(zerial.Sequence method)

 	(zerial.Serializer method)

 	(zerial.Variant method)

 	
 	restructure() (zerial.Ztructurer method)

S

 	
 	Sequence (class in zerial)

 	
 	Serializer (class in zerial)

T

 	
 	types (zerial.Variant attribute)

V

 	
 	Variant (class in zerial)

Z

 	
 	Zapping (in module zerial)

 	Zariant (in module zerial)

 	zdata() (in module zerial)

 	
 	Zequence (in module zerial)

 	zerial (module)

 	Zerializer (in module zerial)

 	Ztructurer (class in zerial)

zerial

	zerial package
	Module contents

 _static/ajax-loader.gif

_images/zerial.png
pypi package 0.2.0

_images/zerial1.png
“build passing

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 zerial

 		
 Installation

 		
 Usage

 		
 zerial package

 		
 Module contents

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.0 (2018-10-21)

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

