

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	zamboni 0.9 documentation

Welcome to Zamboni’s documentation!

Zamboni is one of the codebases for https://marketplace.firefox.com/

The source lives at https://github.com/mozilla/zamboni

Installation

Before you install zamboni, we strongly recommend you start with the
Marketplace Documentation [https://marketplace.readthedocs.org] which illustrates how the Marketplace is comprised
of multiple components, one of which is zamboni.

What are you waiting for?! Install Zamboni!

Want to know about how development at Mozilla works, including style guides?
Mozilla Bootcamp

Contents

	Install Zamboni
	Installing Zamboni

	Optional installs

	Celery

	Elasticsearch

	Packaging in Zamboni

	Trouble-shooting the development installation

	Hacking
	Testing

	Testing emails

	Contributing

	Push From Master

	Access Control Lists
	ACL versus Django Permissions

	How permissions work

	Fake App Data

	Logging
	Configuration

	Using Loggers

	Services

	Translations
	gettext in JavaScript

	Model fields

	How it works behind the scenes

How to build these docs

To simply build the docs:

make docs

If you’re working on the docs, use make loop to keep your built pages
up-to-date:

cd docs && make loop

 Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	zamboni 0.9 documentation

Install Zamboni

	Installing Zamboni
	Need help?

	On OS X

	On Ubuntu

	Services

	Environment settings

	Database Migrations

	Loading Test Apps

	Optional installs
	MySQL

	Memcached

	RabbitMQ and Celery

	Node.js

	Stylus CSS

	Celery
	Installation

	Celery Tasks

	During Development

	Elasticsearch
	Installation

	Settings

	Launching and Setting Up

	Querying Elasticsearch in Django

	Testing with Elasticsearch

	Troubleshooting

	Packaging in Zamboni
	Installing through pip

	Adding new packages

	Trouble-shooting the development installation
	M2Crypto installation

	Pillow

	Image processing isn’t working

	ES is timing out

 Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	zamboni 0.9 documentation

 	Install Zamboni

Installing Zamboni

We’re going to use all the hottest tools to set up a nice environment. Skip
steps at your own peril. Here we go!

Need help?

Come talk to us on irc://irc.mozilla.org/marketplace if you have questions,
issues, or compliments.

1. Installing dependencies

On OS X

The best solution for installing UNIX tools on OS X is Homebrew [http://brew.sh/].

The following packages will get you set for zamboni:

brew install python libxml2 mysql openssl swig304 jpeg pngcrush redis

On Ubuntu

The following command will install the required development files on Ubuntu or,
if you’re running a recent version, you can install them automatically:

sudo aptitude install python-dev python-virtualenv libxml2-dev libxslt1-dev libmysqlclient-dev libssl-dev swig openssl curl pngcrush redis-server

Services

Zamboni has three dependencies you must install and have running:

	MySQL should require no configuration.

	Redis should require no configuration.

	Seee elasticsearch for setup and configuration.

2. Grab the source

Grab zamboni from github with:

git clone --recursive git://github.com/mozilla/zamboni.git
cd zamboni

zamboni.git is all the source code. updating is detailed later on.

If at any point you realize you forgot to clone with the recursive
flag, you can fix that by running:

git submodule update --init --recursive

3. Setup a virtualenv

virtualenv [http://pypi.python.org/pypi/virtualenv] is a tool to create
isolated Python environments. This will let you put all of Zamboni’s
dependencies in a single directory rather than your global Python directory.
For ultimate convenience, we’ll also use virtualenvwrapper [http://www.doughellmann.com/docs/virtualenvwrapper/]
which adds commands to your shell.

Since each shell setup is different, you can install everything you need
and configure your shell using the virtualenv-burrito [https://github.com/brainsik/virtualenv-burrito]. Type this:

curl -sL https://raw.githubusercontent.com/brainsik/virtualenv-burrito/master/virtualenv-burrito.sh | $SHELL

Open a new shell to test it out. You should have the workon and
mkvirtualenv commands.

4. Getting Packages

Now we’re ready to go, so create an environment for zamboni:

mkvirtualenv zamboni

That creates a clean environment named zamboni using Python 2.7. You can get
out of the environment by restarting your shell or calling deactivate.

To get back into the zamboni environment later, type:

workon zamboni # requires virtualenvwrapper

Note

Zamboni requires at least Python 2.7.0, production is using
Python 2.7.5.

Note

If you want to use a different Python binary, pass the name (if it is
on your path) or the full path to mkvirtualenv with --python:

mkvirtualenv --python=/usr/local/bin/python2.7 zamboni

Note

If you are using an older version of virtualenv that defaults to
using system packages you might need to pass --no-site-packages:

mkvirtualenv --no-site-packages zamboni

First make sure you have a recent `pip`_ for security reasons.
From inside your activated virtualenv, install the required python packages:

make update_deps

Issues at this point? See Trouble-shooting the development installation.

5. Settings

Most of zamboni is already configured in mkt.settings.py, but there’s one thing
you’ll need to configure locally, the database. The easiest way to do that
is by setting an environment variable (see next section).

Optionally you can create a local settings file and place anything custom
into settings_local.py.

Any file that looks like settings_local* is for local use only; it will be
ignored by git.

Environment settings

Out of the box, zamboni should work without any need for settings changes.
Some settings are configurable from the environment. See the
marketplace docs [http://marketplace.readthedocs.org/en/latest/topics/setup.html] for information on the environment variables and how
they affect zamboni.

6. Setting up a Mysql Database

Django provides commands to create the database and tables needed, and load essential data:

./manage.py migrate
./manage.py loaddata init

Database Migrations

Each incremental change we add to the database is done with Django migrations.
To keep your local DB fresh and up to date, run migrations like this:

./manage.py migrate

Loading Test Apps

Fake apps and feed collections can be created by running:

./manage.py generate_feed

Specific example applications can be loaded by running:

./manage.py generate_apps_from_spec data/apps/test_apps.json

See Fake App Data for details of the JSON format.

If you just want a certain number of public apps in various categories to be
created, run:

./manage.py generate_apps N

where N is the number of apps you want created in your database.

7. Check it works

If you’ve gotten the system requirements, downloaded zamboni,
set up your virtualenv with the compiled packages, and
configured your settings and database, you’re good to go:

./manage.py runserver

Hit:

http://localhost:2600/services/monitor

This will report any errors or issues in your installation.

8. Create an admin user

Chances are that for development, you’ll want an admin account.

After logging in, run this management command:

./manage.py addusertogroup <your email> 1

9. Setting up the pages

To set up the assets for the developer hub, reviewer tools, or admin pages:

npm install
python manage.py compress_assets

For local development, it would also be good to set:

TEMPLATE_DEBUG = True

Post installation

To keep your zamboni up to date with the latest changes in source files,
requrirements and database migrations run:

make full_update

Advanced Installation

In production we use things like memcached, rabbitmq + celery and Stylus.
Learn more about installing these on the Optional installs page.

Note

Although we make an effort to keep advanced items as optional installs
you might need to install some components in order to run tests or start
up the development server.

 Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	zamboni 0.9 documentation

 	Install Zamboni

Optional installs

MySQL

On your dev machine, MySQL probably needs some tweaks. Locate your my.cnf (or
create one) then, at the very least, make UTF8 the default encoding:

[mysqld]
character-set-server=utf8

Here are some other helpful settings:

[mysqld]
default-storage-engine=innodb
character-set-server=utf8
skip-sync-frm=OFF
innodb_file_per_table

On Mac OS X with homebrew, put my.cnf in /usr/local/Cellar/mysql/5.5.15/my.cnf then restart like:

launchctl unload -w ~/Library/LaunchAgents/com.mysql.mysqld.plist
launchctl load -w ~/Library/LaunchAgents/com.mysql.mysqld.plist

Note

some of the options above were renamed between MySQL versions

Here are more tips for optimizing MySQL [http://bonesmoses.org/2011/02/28/mysql-isnt-yoursql/] on your dev machine.

Memcached

By default zamboni uses an in memory cache. To install memcached
libmemcached-dev on Ubuntu and libmemcached on OS X. Alter your
local settings file to use:

CACHES = {
 'default': {
 'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',
 'LOCATION': ['localhost:11211'],
 'TIMEOUT': 500,
 }
}

RabbitMQ and Celery

By default zamboni automatically processes jobs without needing Celery.

See the Celery page for installation instructions. The
example settings set CELERY_ALWAYS_EAGER = True.
If you’re setting up RabbitMQ and want to use celery worker you will need to
alter your local settings file to set this up.

See Celery for more instructions.

Node.js

Node.js [http://nodejs.org/] is needed for Stylus and LESS, which in turn
are needed to precompile the CSS files.

If you want to serve the CSS files from another domain than the webserver, you
will need to precompile them. Otherwise you can have them compiled on the fly,
using javascript in your browser, if you set LESS_PREPROCESS = False in
your local settings.

First, we need to install node and npm:

brew install node
curl http://npmjs.org/install.sh | sh

Optionally make the local scripts available on your path if you don’t already
have this in your profile:

export PATH="./node_modules/.bin/:${PATH}"

	Not working?

	
	If you’re having trouble installing node, try
http://shapeshed.com/journal/setting-up-nodejs-and-npm-on-mac-osx/. You
need brew, which we used earlier.

	If you’re having trouble with npm, check out the README on
https://github.com/isaacs/npm

Stylus CSS

Learn about Stylus at http://learnboost.github.com/stylus/

cd zamboni
npm install

In your settings_local.py (or settings_local_mkt.py) ensure you are
pointing to the correct executable for stylus:

STYLUS_BIN = path('node_modules/stylus/bin/stylus')

 Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	zamboni 0.9 documentation

 	Install Zamboni

Celery

Celery [http://celeryproject.org/] is a task queue powered by RabbitMQ. You
can use it for anything that doesn’t need to complete in the current
request-response cycle. Or use it wherever Les tells you to use it [http://decafbad.com/blog/2008/07/04/queue-everything-and-delight-everyone].

For example, each addon has a current_version cached property. This query
on initial run causes strain on our database. We can create a denormalized
database field called current_version on the addons table.

We’ll need to populate regularly so it has fairly up-to-date data. We can do
this in a process outside the request-response cycle. This is where Celery
comes in.

Installation

RabbitMQ

Celery depends on RabbitMQ. If you use homebrew you can install this:

brew install rabbitmq

Setting up rabbitmq involves some configuration. You may want to define the
following

On a Mac, you can find this in System Preferences > Sharing
export HOSTNAME='<laptop name>.local'

Then run the following commands:

Set your host up so it's semi-permanent
sudo scutil --set HostName $HOSTNAME

Update your hosts by either:
1) Manually editing /etc/hosts
2) `echo 127.0.0.1 $HOSTNAME >> /etc/hosts`

RabbitMQ insists on writing to /var
sudo rabbitmq-server -detached

Setup rabitty things (sudo is required to read the cookie file)
sudo rabbitmqctl add_user zamboni zamboni
sudo rabbitmqctl add_vhost zamboni
sudo rabbitmqctl set_permissions -p zamboni zamboni ".*" ".*" ".*"

Back in safe and happy django-land you should be able to run:

./manage.py celery worker -Q priority,devhub,images,limited $OPTIONS

Celery understands python and any tasks that you have defined in your app are
now runnable asynchronously.

Celery Tasks

Any python function can be set as a celery task. For example, let’s say we want
to update our current_version but we don’t care how quickly it happens, just
that it happens. We can define it like so:

@task(rate_limit='2/m')
def _update_addons_current_version(data, **kw):
 task_log.debug("[%s@%s] Updating addons current_versions." %
 (len(data), _update_addons_current_version.rate_limit))
 for pk in data:
 try:
 addon = Webapp.objects.get(pk=pk)
 addon.update_version()
 except Webapp.DoesNotExist:
 task_log.debug("Missing addon: %d" % pk)

@task is a decorator for Celery to find our tasks. We can specify a
rate_limit like 2/m which means celery worker will only run
this command 2 times a minute at most. This keeps write-heavy tasks from
killing your database.

If we run this command like so:

from celery.task.sets import TaskSet

all_pks = Webapp.objects.all().values_list('pk', flat=True)
ts = [_update_addons_current_version.subtask(args=[pks])
 for pks in mkt.site.utils.chunked(all_pks, 300)]
TaskSet(ts).apply_async()

All the Webapps with ids in pks will (eventually) have their
current_versions updated.

Cron Jobs

This is all good, but let’s automate this. In Zamboni we can create cron
jobs like so:

@cronjobs.register
def update_addons_current_version():
 """Update the current_version field of the addons."""
 d = Webapp.objects.valid().values_list('id', flat=True)

 with establish_connection() as conn:
 for chunk in chunked(d, 1000):
 print chunk
 _update_addons_current_version.apply_async(args=[chunk],
 connection=conn)

This job will hit all the addons and run the task we defined in small batches
of 1000.

We’ll need to add this to both the prod and preview crontabs so that
they can be run in production.

Better than Cron

Of course, cron is old school. We want to do better than cron, or at least not
rely on brute force tactics.

For a surgical strike, we can call _update_addons_current_version any time
we add a new version to that addon. Celery will execute it at the prescribed
rate, and your data will be updated ... eventually.

During Development

celery worker only knows about code as it was defined at instantiation time.
If you change your @task function, you’ll need to HUP the process.

However, if you’ve got the @task running perfectly you can tweak all the
code, including cron jobs that call it without need of restart.

 Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	zamboni 0.9 documentation

 	Install Zamboni

Elasticsearch

Elasticsearch is a search server. Documents (key-values) get stored,
configurable queries come in, Elasticsearch scores these documents, and returns
the most relevant hits.

Installation

You can download the Elasticsearch code and run elasticsearch directly
from this folder. This makes it easy to upgrade or test new versions as
needed. Optionally you can install Elasticsearch using your preferred
system package manager.

We are currently using Elasticsearch version 1.6.2. You can install by
doing the following:

curl -O https://download.elasticsearch.org/elasticsearch/elasticsearch/elasticsearch-1.6.2.tar.gz
tar -xvzf elasticsearch-1.6.2.tar.gz
cd elasticsearch-1.6.2

For running Marketplace you must install the
ICU Analysis Plugin [http://www.elasticsearch.org/guide/reference/index-modules/analysis/icu-plugin/]:

./bin/plugin -install elasticsearch/elasticsearch-analysis-icu/2.6.0

For more about the ICU plugin, see the
ICU Github Page [https://github.com/elasticsearch/elasticsearch-analysis-icu].

Settings

cluster.name: wooyeah

Don't try to cluster with other machines during local development.
Remove the following 3 lines to enable default clustering.
network.host: localhost
discovery.zen.ping.multicast.enabled: false
discovery.zen.ping.unicast.hosts: ["localhost"]

script.disable_dynamic: false

path:
 logs: /usr/local/var/log
 data: /usr/local/var/data

We use a custom analyzer for indexing add-on names since they’re a little
different from normal text.

To get the same results as our servers, configure Elasticsearch by copying the
scripts/elasticsearch/elasticsearch.yml [http://github.com/mozilla/zamboni/tree/master/scripts/elasticsearch/elasticsearch.yml] (available in the
scripts/elasticsearch/ folder of your install) to your system.

For example, copy it to the local directory so it’s nearby when you launch
Elasticsearch:

cp /path/to/zamboni/scripts/elasticsearch/elasticsearch.yml .

If you don’t do this your results will be slightly different, but you probably
won’t notice.

Launching and Setting Up

Launch the Elasticsearch service:

./bin/elasticsearch -Des.config=elasticsearch.yml

Zamboni has commands that sets up mappings and indexes for you. Setting up
the mappings is analagous to defining the structure of a table, indexing
is analagous to storing rows.

It is worth noting that the index is maintained incrementally through
post_save and post_delete hooks.

Use this to create the apps index and index apps:

./manage.py reindex --index=apps

Or you could use the makefile target (using the settings_local.py file):

make reindex

If you need to use another settings file and add arguments:

make SETTINGS=settings_other ARGS='--force' reindex

Querying Elasticsearch in Django

We use Elasticsearch DSL [https://github.com/elasticsearch/elasticsearch-dsl-py],
a Python library that gives us a search API to elasticsearch.

On Marketplace, apps use mkt/webapps/indexers:WebappIndexer as its
interface to Elasticsearch:

query_results = WebappIndexer.search().query(...).filter(...).execute()

Testing with Elasticsearch

All test cases using Elasticsearch should inherit from mkt.site.tests.ESTestCase.
All such tests will be skipped by the test runner unless:

RUN_ES_TESTS = True

This is done as a performance optimization to keep the run time of the test
suite down, unless necessary.

Troubleshooting

I got a CircularReference error on .search() - check that a whole object is
not being passed into the filters, but rather just a field’s value.

I indexed something into Elasticsearch, but my query returns nothing - check
whether the query contains upper-case letters or hyphens. If so, try
lowercasing your query filter. For hyphens, set the field’s mapping to not be
analyzed:

'my_field': {'type': 'string', 'index': 'not_analyzed'}

 Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	zamboni 0.9 documentation

 	Install Zamboni

Packaging in Zamboni

There are two ways of getting packages for zamboni. The first is to install
everything using pip. We have our packages separated into three files:

	requirements/compiled.txt [http://github.com/mozilla/zamboni/tree/master/requirements/compiled.txt]

	All packages that require (or go faster with) compilation. These can’t be
distributed cross-platform, so they need to be installed through your
system’s package manager or pip.

	requirements/prod.txt [http://github.com/mozilla/zamboni/tree/master/requirements/prod.txt]

	The minimal set of packages you need to run zamboni in production. You
also need to get requirements/compiled.txt.

	requirements/dev.txt [http://github.com/mozilla/zamboni/tree/master/requirements/dev.txt]

	All the packages needed for running tests and development servers. This
automatically includes requirements/prod.txt.

Installing through pip

You can get a development environment with

pip install --no-deps -r requirements/dev.txt

Adding new packages

Note: this is deprecated, all packages should be added in requirements.

The vendor repo was seeded with

pip install --no-install --build=vendor/packages --src=vendor/src -I -r requirements/dev.txt

Then I added everything in /packages and set up submodules in /src (see
below). We’ll be keeping this up to date through Hudson, but if you add new
packages you should seed them yourself.

If we wanted to add a new dependency called cheeseballs to zamboni, you
would add it to requirements/prod.txt or requirements/dev.txt and then
do

pip install --no-install --build=vendor/packages --src=vendor/src -I cheeseballs

Then you need to update vendor/zamboni.pth. Python uses .pth files to
dynamically add directories to sys.path
(docs [http://docs.python.org/library/site.html]).

I created zamboni.pth with this:

find packages src -type d -depth 1 > zamboni.pth

html5lib and selenium are troublesome, so they need to be sourced with
packages/html5lib/src and packages/selenium/src. Hopefully you won’t
hit any snags like that.

Adding submodules

Note: this is deprecated, all packages should be added in requirements.

for f in src/*
 pushd $f >/dev/null && REPO=$(git config remote.origin.url) && popd > /dev/null && git submodule add $REPO $f

Holy readability batman!

 Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	zamboni 0.9 documentation

 	Install Zamboni

Trouble-shooting the development installation

M2Crypto installation

If you are on a Linux box and get a compilation error while installing M2Crypto
like the following:

SWIG/_m2crypto_wrap.c:6116:1: error: unknown type name ‘STACK’

... snip a very long output of errors around STACK...

SWIG/_m2crypto_wrap.c:23497:20: error: expected expression before ‘)’ token

 result = (STACK *)pkcs7_get0_signers(arg1,arg2,arg3);

 ^

error: command 'gcc' failed with exit status 1

It may be because of a few reasons [http://blog.rectalogic.com/2013/11/installing-m2crypto-in-python.html]:

	comment the line starting with M2Crypto in requirements/compiled.txt

	install the patched package from the Debian repositories (replace
x86_64-linux-gnu by i386-linux-gnu if you’re on a 32bits platform):

DEB_HOST_MULTIARCH=x86_64-linux-gnu pip install -I --exists-action=w "git+git://anonscm.debian.org/collab-maint/m2crypto.git@debian/0.21.1-3#egg=M2Crypto"
pip install --no-deps -r requirements/dev.txt

	revert your changes to requirements/compiled.txt:

git checkout requirements/compiled.txt

Pillow

As of Mac OS X Mavericks, you might see this error when pip builds Pillow:

clang: error: unknown argument: '-mno-fused-madd' [-Wunused-command-line-argument-hard-error-in-future]

clang: note: this will be a hard error (cannot be downgraded to a warning) in the future

error: command 'cc' failed with exit status 1

You can solve this by setting these environment variables in your shell
before running pip install ...:

export CFLAGS=-Qunused-arguments
export CPPFLAGS=-Qunused-arguments
pip install ...

More info: http://stackoverflow.com/questions/22334776/installing-pillow-pil-on-mavericks/22365032

Image processing isn’t working

If adding images to apps or extensions doesn’t seem to work then there’s a
couple of settings you should check.

Checking your PIL installation (Ubuntu)

When you run you should see at least JPEG and ZLIB are supported

If that’s the case you should see this in the output of pip install -I PIL:

--
*** TKINTER support not available
--- JPEG support available
--- ZLIB (PNG/ZIP) support available
*** FREETYPE2 support not available
*** LITTLECMS support not available
--

If you don’t then this suggests PIL can’t find your image libraries:

To fix this double-check you have the necessary development libraries
installed first (e.g: sudo apt-get install libjpeg-dev zlib1g-dev)

Now run the following for 32bit:

sudo ln -s /usr/lib/i386-linux-gnu/libz.so /usr/lib
sudo ln -s /usr/lib/i386-linux-gnu/libjpeg.so /usr/lib

Or this if your running 64bit:

sudo ln -s /usr/lib/x86_64-linux-gnu/libz.so /usr/lib
sudo ln -s /usr/lib/x86_64-linux-gnu/libjpeg.so /usr/lib

Note

If you don’t know what arch you are running run uname -m if the
output is x86_64 then it’s 64-bit, otherwise it’s 32bit
e.g. i686

Now re-install PIL:

pip install -I PIL

And you should see the necessary image libraries are now working with
PIL correctly.

ES is timing out

This can be caused by number_of_replicas not being set to 0 for the local indexes.

To check the settings run:

curl -s localhost:9200/_cluster/state\?pretty | fgrep number_of_replicas -B 5

If you see any that aren’t 0 do the following:

Set ES_DEFAULT_NUM_REPLICAS to 0 in your local settings.

To set them to zero immediately run:

curl -XPUT localhost:9200/_settings -d '{ "index" : { "number_of_replicas" : 0 } }'

 Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	zamboni 0.9 documentation

Hacking

	Testing
	Running Tests

	Writing Tests

	Why Tests Fail

	Localization Tests

	Testing emails
	Sending actual email

	Contributing
	The Perfect Git Configuration

	Push From Master
	Local Branches

 Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	zamboni 0.9 documentation

 	Hacking

Testing

We’re using a mix of Django’s Unit Testing [http://docs.djangoproject.com/en/dev/topics/testing] and nose.

Running Tests

To run the whole shebang use:

python manage.py test

There are a lot of options you can pass to adjust the output. Read the docs [http://docs.djangoproject.com/en/dev/topics/testing#id1]
for the full set, but some common ones are:

	-P to prevent nose adding the lib directory to the path.

	--noinput tells Django not to ask about creating or destroying test
databases.

	--logging-clear-handlers tells nose that you don’t want to see any
logging output. Without this, our debug logging will spew all over your
console during test runs. This can be useful for debugging, but it’s not that
great most of the time. See the docs for more stuff you can do with
nose and logging [http://somethingaboutorange.com/mrl/projects/nose/0.11.1/plugins/logcapture.html#module-nose.plugins.logcapture].

Our continuous integration server adds some additional flags for other features
(for example, coverage statistics). To see what those commands are check out
the .travis.yml [http://github.com/mozilla/zamboni/tree/master/.travis.yml] file.

There are a few useful makefile targets that you can use:

Run all the tests:

make test

If you need to rebuild the database:

make test_force_db

To fail and stop running tests on the first failure:

make tdd

If you wish to add arguments, or run a specific test, overload the variables
(check the Makefile for more information):

make SETTINGS=settings_mkt ARGS='--verbosity 2 zamboni.mkt.site.tests.test_url_prefix:MiddlewareTest.test_get_app' test

Those targets include some useful options, like the --with-id which allows
you to re-run only the tests failed from the previous run:

make test_failed

Database Setup

If you want to re-use your database instead of making a new one every time you
run tests, set the environment variable REUSE_DB.

REUSE_DB=1 python manage.py test

Writing Tests

We support two types of automated tests right now and there are some details
below but remember, if you’re confused look at existing tests for examples.

Unit/Functional Tests

Most tests are in this category. Our test classes extend
django.test.TestCase [http://docs.djangoproject.com/en/dev/topics/testing/#django.test.TestCase] and follow the standard rules for unit tests.
We’re using JSON fixtures for the data.

External calls

Connecting to remote services in tests is not recommended, developers should
mock_ out those calls instead.

To enforce this we run Jenkins with the nose-blockage [https://github.com/andymckay/nose-blockage] plugin, that
will raise errors if you have an HTTP calls in your tests apart from calls to
the domains 127.0.0.1 and localhost.

Why Tests Fail

Tests usually fail for one of two reasons: The code has changed or the data has
changed. An third reason is time. Some tests have time-dependent data
usually in the fixtues. For example, some featured items have expiration dates.

We can usually save our future-selves time by setting these expirations far in
the future.

Localization Tests

If you want test that your localization works then you can add in locales
in the test directory. For an example see devhub/tests/locale. These locales
are not in the normal path so should not show up unless you add them to the
LOCALE_PATH. If you change the .po files for these test locales, you will
need to recompile the .mo files manually, for example:

msgfmt --check-format -o django.mo django.po

 Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	zamboni 0.9 documentation

 	Hacking

Testing emails

By default in a non-production enviroment the setting REAL_EMAIL is set to
False, which prevents emails from being sent to addresses during testing with
live data. The contents of the emails are saved in the database instead and
can be read with the Fake email admin tool at /admin/mail.

Sending actual email

In some circumstance you want to still recieve some emails, even when
REAL_EMAIL is False. To allow addresses to receive emails, rather
than be redirected to /admin/mail, use mkt.zadmin.models.set_config to
set the real_email_allowed_regex key to a comma separated list of valid
emails in regex format:

from mkt.zadmin.models import set_config
set_config('real_email_allowed_regex', '.+@mozilla\.com$,you@who\.ca$')

 Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	zamboni 0.9 documentation

 	Hacking

Contributing

The easiest way to let us know about your awesome work is to send a pull
request on github or in IRC. Point us to a branch with your new code and we’ll
go from there. You can attach a patch to a bug if you’re more comfortable that
way.

Please read the style.

The Perfect Git Configuration

We’re going to talk about two git repositories:

	origin will be the main zamboni repo at http://github.com/mozilla/zamboni.

	mine will be your fork at http://github.com/:user/zamboni.

There should be something like this in your .git/config already:

[remote "origin"]
 url = git://github.com/mozilla/zamboni.git
 fetch = +refs/heads/*:refs/remotes/origin/*

Now we’ll set up your master to pull directly from the upstream zamboni:

[branch "master"]
 remote = origin
 merge = master
 rebase = true

This can also be done through the git config command (e.g.
git config branch.master.remote origin) but editing .git/config is
often easier.

After you’ve forked the repository on github, tell git about your new repo:

git remote add -f mine git@github.com:user/zamboni.git

Make sure to replace user with your name.

Working on a Branch

Let’s work on a bug in a branch called my-bug:

git checkout -b my-bug master

Now we’re switched to a new branch that was copied from master. We like to
work on feature branches, but the master is still moving along. How do we keep
up?

git fetch origin && git rebase origin/master

If you want to keep the master branch up to date, do it this way:

git checkout master && git pull && git checkout @{-1} && git rebase master

That updated master and then switched back to update our branch.

Publishing your Branch

The syntax is git push <repository> <branch>. Here’s how to push the
my-bug branch to your clone:

git push mine my-bug

 Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	zamboni 0.9 documentation

 	Hacking

Push From Master

We deploy from the master [http://github.com/mozilla/zamboni/tree/master] branch once a week. If you commit something to master
that needs additional QA time, be sure to use a waffle [https://github.com/jsocol/django-waffle] feature flag.

Local Branches

Most new code is developed in local one-off branches, usually encompassing one
or two patches to fix a bug. Upstream doesn’t care how you do local
development, but we don’t want to see a merge commit every time you merge a
single patch from a branch. Merge commits make for a noisy history, which is
not fun to look at and can make it difficult to cherry-pick hotfixes to a
release branch. We do like to see merge commits when you’re committing a set
of related patches from a feature branch. The rule of thumb is to rebase and
use fast-forward merge for single patches or a branch of unrelated bug fixes,
but to use a merge commit if you have multiple commits that form a cohesive unit.

Here are some tips on Using topic branches and interactive rebasing effectively [http://blog.mozilla.com/webdev/2011/11/21/git-using-topic-branches-and-interactive-rebasing-effectively/].

 Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	zamboni 0.9 documentation

Access Control Lists

ACL versus Django Permissions

Currently we use the is_superuser [http://docs.djangoproject.com/en/dev/topics/auth/#django.contrib.auth.models.User.is_superuser]
flag in the User [http://docs.djangoproject.com/en/dev/topics/auth/#django.contrib.auth.models.User] model to indicate that a
user can access the admin site.

Outside of that we use the GroupUser to define what
access groups a user is a part of. We store this in request.groups.

How permissions work

Permissions that you can use as filters can be either explicit or general.

For example Admin:EditAddons means only someone with that permission will
validate.

If you simply require that a user has some permission in the Admin group
you can use Admin:%. The % means “any.”

Similarly a user might be in a group that has explicit or general permissions.
They may have Admin:EditAddons which means they can see things with that
same permission, or things that require Admin:%.

If a user has a wildcard, they will have more permissions. For example,
Admin:* means they have permission to see anything that begins with
Admin:.

The notion of a superuser has a permission of *:* and therefore they can
see everything.

 Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	zamboni 0.9 documentation

Fake App Data

The generate_apps_from_spec command-line tool loads a JSON file containing an
array of fake app objects. The fields that can be specified in these objects
are:

	type

	Required. One of “hosted”, “web”, or “privileged”, to specify a hosted app,
unprivileged packaged app, or privileged packaged app.

	status

	Required. A string representing the app status, as listed in
mkt.constants.base.STATUS_CHOICES_API.

	name

	The display name for the app.

	num_ratings

	Number of user ratings to create for this app.

	num_previews

	Number of screenshots to create for this app.

	preview_files

	List of paths (relative to the JSON file) of preview images.

	video_files

	List of paths (relative to the JSON file) of preview videos in webm format.

	num_locales

	Number of locales to localize this app’s name in (max 5).

	versions

	An array of objects with optional version-specific fields: “status”,
“type”, and “permissions”. Additional versions with these fields are
created, oldest first.

	permissions

	An array of app permissions, to be placed in the manifest.

	manifest_file

	Path (relative to the JSON file) of a manifest to create this app from.

	description

	Description text for the app.

	categories

	A list of category names to create the app in.

	developer_name

	Display name for the app author.

	developer_email

	An email address for the app author.

	device_types

	A list of devices the app is available on: one or more of “desktop”, “mobile”, “tablet”, and “firefoxos”.

	premium_type

	Payment status for the app. One of “free”, “premium”, “premium-inapp”, “free-inapp”, or “other”.

	price

	The price (in dollars) for the app.

	privacy_policy

	Privacy policy text.

	rereview

	Boolean indicating whether to place app in rereview queue.

	special_regions

	An object with region names as keys, and status strings as values. Adds app to special
region with given status.

 Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	zamboni 0.9 documentation

Logging

Logging is fun. We all want to be lumberjacks. My muscle-memory wants to put
print statements everywhere, but it’s better to use log.debug instead.
Plus, django-debug-toolbar can hijack the logger and show all the log
statements generated during the last request. When DEBUG = True, all logs
will be printed to the development console where you started the server. In
production, we’re piping everything into syslog.

Configuration

The root logger is set up from log_settings.py in the base of zamboni’s
tree. It sets up sensible defaults, but you can twiddle with these settings:

	LOG_LEVEL

	This setting is required, and defaults to loggging.DEBUG, which will let
just about anything pass through. To reconfigure, import logging in your
settings file and pick a different level:

import logging
LOG_LEVEL = logging.WARN

	HAS_SYSLOG

	Set this to False if you don’t want logging sent to syslog when
DEBUG is False.

	LOGGING

	See PEP 391 and log_settings.py for formatting help. Each section of LOGGING
will get merged into the corresponding section of log_settings.py.
Handlers and log levels are set up automatically based on LOG_LEVEL and DEBUG
unless you set them here. Messages will not propagate through a logger unless
propagate: True is set.

LOGGING = {
 'loggers': {
 'foobar': {'handlers': ['null']},
 },
}

If you want to add more to this in settings_local.py, do something like
this:

LOGGING['loggers'].update({
 'z.paypal': {
 'level': logging.DEBUG,
 },
 'z.elasticsearch': {
 'handlers': ['null'],
 },
})

Using Loggers

The logging package uses global objects to make the same logging
configuration available to all code loaded in the interpreter. Loggers are
created in a pseudo-namespace structure, so app-level loggers can inherit
settings from a root logger. zamboni’s root namespace is just "z", in the
interest of brevity. In the foobar package, we create a logger that inherits
the configuration by naming it "z.foobar":

import commonware.log

log = commonware.log.getLogger('z.foobar')

log.debug("I'm in the foobar package.")

Logs can be nested as much as you want. Maintaining log namespaces is useful
because we can turn up the logging output for a particular section of zamboni
without becoming overwhelmed with logging from all other parts.

commonware.log vs. logging

commonware.log.getLogger should be used inside the request cycle. It
returns a LoggingAdapter that inserts the current user’s IP address into
the log message.

Complete logging docs: http://docs.python.org/library/logging.html

 Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 next |

 	
 previous |

 	zamboni 0.9 documentation

Services

Services contain a couple of scripts that are run as seperate wsgi instances on
the services. Usually they are hosted on seperate domains. They are stand alone
wsgi scripts. The goal is to avoid a whole pile of Django imports, middleware,
sessions and so on that we really don’t need.

To run the scripts you’ll want a wsgi server. You can do this using
gunicorn [http://gunicorn.org/], for example:

pip install gunicorn

Then you can do:

cd services
gunicorn --log-level=DEBUG -c wsgi/receiptverify.py -b 127.0.0.1:9000 --debug verify:application

To test:

curl -d "this is a bogus receipt" http://127.0.0.1:9000/verify/123

 Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	
 previous |

 	zamboni 0.9 documentation

Translations

gettext in JavaScript

We have gettext in JavaScript! Just mark your strings with gettext() or
ngettext(). There isn’t an _ alias right now, since underscore.js has
that. If we end up with a lot of JS translations, we can fix that. Check it
out:

cd locale
./extract-po.py -d javascript
pybabel init -l en_US -d . -i javascript.pot -D javascript
perl -pi -e 's/fuzzy//' en_US/LC_MESSAGES/javascript.po
pybabel compile -d . -D javascript
open http://0:8000/en-US/jsi18n/

Model fields

The translations app defines a Translation
model, but for the most part, you shouldn’t have to use that directly. When you
want to create a foreign key to the translations table, use
translations.fields.TranslatedField. This subclasses Django’s
django.db.models.ForeignKey [http://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey] to make it work with our special handling
of translation rows.

A minimal model with translations in zamboni would look like this:

from django.db import models

import mkt.site.models
import mkt.translations

class MyModel(mkt.site.models.ModelBase):
 description = translations.fieldsTranslatedField()

models.signals.pre_save.connect(translations.fields.save_signal,
 sender=MyModel,
 dispatch_uid='mymodel_translations')

How it works behind the scenes

As mentioned above, a TranslatedField is actually a ForeignKey to the
translations table. However, to support multiple languages, we use a
special feature of MySQL allowing you to have a ForeignKey pointing to
multiple rows.

When querying

Our base manager has a _with_translations() method that is automatically
called when you instanciate a queryset. It does 2 things:

	Stick an extra lang=lang in the query to prevent query caching from returning
objects in the wrong language

	Call translations.transformers.get_trans() which does the black magic.

get_trans() is called, and calls in turn translations.transformer.build_query()
and builds a custom SQL query. This query is the heart of the magic. For each
field, it setups a join on the translations table, trying to find a translation
in the current language (using translation.get_language()) and then in the
language returned by get_fallback() on the instance (for addons, that’s
default_locale; if the get_fallback() method doesn’t exist, it will
use settings.LANGUAGE_CODE, which should be en-US in zamboni).

Only those 2 languages are considered, and a double join + IF / ELSE is
done every time, for each field.

This query is then ran on the slave (get_trans() gets a cursor using
connections[multidb.get_slave()]) to fetch the translations, and some
Translation objects are instantiated from the results and set on the
instance(s) of the original query.

To complete the mechanism, TranslationDescriptor.__get__ returns the
Translation, and Translations.__unicode__ returns the translated string
as you’d expect, making the whole thing transparent.

When setting

Everytime you set a translated field to a string value, TranslationDescriptor
__set__ method is called. It determines which method to call (because you
can also assign a dict with multiple translations in multiple languages at the
same time). In this case, it calls translation_from_string() method, still
on the “hidden” TranslationDescriptor instance. The current language is
passed at this point, using translation_utils.get_language().

From there, translation_from_string() figures out whether it’s a new
translation of a field we had no translation for, a new translation of a
field we already had but in a new language, or an update to an existing
translation.

It instantiates a new Translation object with the correct values if
necessary, or just updates the correct one. It then places that object in a
queue of Translation instances to be saved later.

When you eventually call obj.save(), the pre_save signal is sent. If
you followed the example above, that means translations.fields.save_signal
is then called, and it unqueues all Translation objects and saves them. It’s
important to do this on pre_save to prevent foreign key constraint errors.

When deleting

Deleting all translations for a field is done using delete_translation().
It sets the field to NULL and then deletes all the attached translations.

Deleting a specific translation (like a translation in spanish, but keeping
the english one intact) is implemented but not recommended at the moment.
The reason why is twofold:

	MySQL doesn’t let you delete something that still has a FK pointing to it,
even if there are other rows that match the FK. When you call delete()
on a translation, if it was the last translation for that field, we set the
FK to NULL and delete the translation normally. However, if there were
any other translations, instead we temporarily disable the constraints to
let you delete just the one you want.

	Remember how fetching works? If you deleted a translation that is part of
the fallback, then when you fetch that object, depending on your locale
you’ll get an empty string for that field, even if there are Translation
objects in other languages available!

For additional discussion on this topic, see https://bugzilla.mozilla.org/show_bug.cgi?id=902435

Additional tricks

In addition to the above, apps/translations/__init__.py monkeypatches
Django to bypass errors thrown because we have a ForeignKey pointing to
multiple rows.

Also, you might be interested in translations.query.order_by_translation.
Like the name suggests, it allows you to order a QuerySet by a translated
field, honoring the current and fallback locales like it’s done when querying.

 Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 routing table |

 	zamboni 0.9 documentation

 HTTP Routing Table

 /api

 			

 		
 /api	

 	
 	
 GET /api/v1/reviewers/canned-responses/	

 	
 	
 GET /api/v1/reviewers/canned-responses/(int:id)/	

 	
 	
 GET /api/v1/reviewers/scores/	

 	
 	
 GET /api/v1/reviewers/scores/(int:id)/	

 	
 	
 GET /api/v2/account/installed/mine/	

 	
 	
 GET /api/v2/account/operators/	

 	
 	
 GET /api/v2/account/permissions/mine/	

 	
 	
 GET /api/v2/account/settings/mine/	

 	
 	
 GET /api/v2/account/shelves/	

 	
 	
 GET /api/v2/apps/(int:id)|(string:slug)/privacy/	

 	
 	
 GET /api/v2/apps/app/	

 	
 	
 GET /api/v2/apps/app/(int:id)/payments/	

 	
 	
 GET /api/v2/apps/app/(int:id)/payments/debug/	

 	
 	
 GET /api/v2/apps/app/(int:id)|(string:slug)/	

 	
 	
 GET /api/v2/apps/app/(int:id|string:app_slug)/content_ratings	

 	
 	
 GET /api/v2/apps/category/	

 	
 	
 GET /api/v2/apps/category/(string:slug)/	

 	
 	
 GET /api/v2/apps/features/	

 	
 	
 GET /api/v2/apps/rating/	

 	
 	
 GET /api/v2/apps/rating/(int:id)/	

 	
 	
 GET /api/v2/apps/search/	

 	
 	
 GET /api/v2/apps/search/?tag=featured-game	

 	
 	
 GET /api/v2/apps/search/?tag=featured-game-[adventure, action, puzzle, strategy]	

 	
 	
 GET /api/v2/apps/versions/(int:id)/	

 	
 	
 GET /api/v2/comm/app/(int:id|string:slug)/	

 	
 	
 GET /api/v2/comm/thread/	

 	
 	
 GET /api/v2/comm/thread/(int:id)/	

 	
 	
 GET /api/v2/comm/thread/(int:thread_id)/note/	

 	
 	
 GET /api/v2/comm/thread/(int:thread_id)/note/(int:id)/	

 	
 	
 GET /api/v2/extensions/extension/	

 	
 	
 GET /api/v2/extensions/extension/(int:id)|(string:slug)/	

 	
 	
 GET /api/v2/extensions/extension/(int:id)|(string:slug)/versions/	

 	
 	
 GET /api/v2/extensions/extension/(int:id)|(string:slug)/versions/(int:version_id)/	

 	
 	
 GET /api/v2/extensions/queue/	

 	
 	
 GET /api/v2/extensions/search/	

 	
 	
 GET /api/v2/extensions/validation/(string:id)/	

 	
 	
 GET /api/v2/feed/apps/	

 	
 	
 GET /api/v2/feed/apps/(int:id)/	

 	
 	
 GET /api/v2/feed/apps/(int:id|string:slug)/image/	

 	
 	
 GET /api/v2/feed/brands/	

 	
 	
 GET /api/v2/feed/brands/(int:id)/	

 	
 	
 GET /api/v2/feed/collections/	

 	
 	
 GET /api/v2/feed/collections/(int:id)/	

 	
 	
 GET /api/v2/feed/elements/search?q=(str:q)	

 	
 	

 Index

 Navigation

 	
 index

 	
 routing table |

 	zamboni 0.9 documentation

Index

 Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

api/topics/transactions.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

Transactions

This endpoint is for getting more details about a Solitude transaction.

Transaction

Note

Requires authentication and the RevenueStats:View permission.

		
GET /api/v2/transactions/(string: transaction_id)/

		Gets information about the transaction.

Request

Empty

Response

{
 "id": "abcdef-abcd",
 "app_id": 123,
 "amount_USD": "1.99",
 "type": 'purchase'
}

		Parameters:		
		id (string) – The Solitude transaction ID.

		app_id (integer) – The ID of the app.

		amount_USD (string) – The amount of the transaction in USD.

		type – The transaction type. One of: ‘Chargeback, ‘Other’, ‘Purchase’, ‘Refund’, ‘Voluntary’.

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

api/topics/overview.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

Overview

This describes the details of the requests and responses you can
expect from the Firefox Marketplace API.

Requests

All requests should be made with the header:

Content-type: application/json

If you access the URLs in this document in a browser, then prepend
?format=json on to the request.

Verbs

This follows the order of the django-tastypie [https://github.com/toastdriven/django-tastypie] REST verbs.

		GET gets an individual resource or listing.

		POST creates a resource.

		PUT replaces a resource, so this alters all the data on an existing
resource.

		PATCH alters some parts of an existing resource.

		DELETE deletes an object.

A GET that accesses a standard listing object, also accepts the parameters
in the query string for filtering the result set down.

A POST, PUT and PATCH accept parameters as either:

		a JSON document in the body of the request, if so the Content-Type must be
set to applicationjson or

		form urlencoded values in the body of the request, if so the Content-Type
must be set to application/x-www-form-urlencoded

If you are unable to make the correct kind of request, you send a request using
any verb with the header X-HTTP-METHOD-OVERRIDE containing the verb you
would like to use.

Versions

This API is versioned and the version is indicated in the URL, for example:

/api/v2/...

		Version
		Status
		Notes

		v1
		Stable
		

		v2
		Development
		For feed

		Deprecated this API has been deprecated and will be removed at some point
in the future. Clients using this API should upgrade to a stable version.

		Development this API is subject to change and should not be relied upon
until made stable.

		Stable this API is stable and will not change unless there is a security
or privacy issue.

The current policy for how long deprecated APIs will exist has not been
defined, but it would include time for any clients to upgrade before versions
are turned off.

If you are using a deprecated version of the API then you will get
a HTTP header in the response:

API-Status: Deprecated

We will also return the version of the API we think you are using in HTTP
header:

API-Version: 1

Modifying Results

In order to return the most relevant results for the client, the API attempts
to detect and filter responses by region and language. Additionally, it is
possible to globally restrict responses by device type and carrier.

The API will report which filters are implemented via the URL-encoded
API-Filter header in responses:

API-Filter: lang=en-US&device=®ion=us&carrier=

In some cases, such as that where the API consumer is actually a proxy for the
end user, it may be appropriate to manually set one or more of these parameters.

Carrier

Responses may be modified to include results relevent to a specific carrier by
passing the carrier querystring parameter. This must be set to a slug
representing an item from the list of carriers [https://github.com/mozilla/zamboni/blob/master/mkt/constants/carriers.py].

Region

Responses may be modified to include results relevent to a specific region by
passing the region querystring parameter. This must be set to a slug
representing an item from the list of regions [https://github.com/mozilla/zamboni/blob/master/mkt/constants/regions.py].

Language

Responses may be filtered to only include results for a specific language. This
is done by inspecting the value of the Accept-Language header on the request.
This value may be overriden via the lang querystring parameter. This may be
set to any of the valid RFC 3060 languages [http://tools.ietf.org/html/rfc3066].

Device

Responses may be filtered to only include results relevant for one or more types
of devices.

		gaia - return results relevant to Gaia [https://developer.mozilla.org/en-US/docs/Mozilla/Firefox_OS/Platform/Gaia].

		mobile - return results relevant to mobile devices.

		tablet - return results relevant to tablets.

The API-Filter header will represent this as a representation of a list in a
queryset:

API-Filter: device=mobile&device=gaia

You may override these values with separate querystring values for each device
type:

gaia=true&mobile=true&tablet=false

Responses

Because the responses can be quite long, rather than show the full result, we
link to examples of the results. All responses are in JSON. The client must
send either no HTTP Accept header, or a value of applicationjson. Any
other value will result in 400 status code.

Data errors

If there is an error in your data, a 400 status code will be returned. There
can be multiple errors per field. Example:

{
 "error_message": {
 "manifest": ["This field is required."]
 }
}

Rate limiting

Select API endpoints are rate-limited. When an application exceeds the rate
limit for a given endpoint, the API will return an HTTP 429 response.

Other errors

The appropriate HTTP status code will be returned, with the error in JSON.

Listings

When the API returns a list of objects, it will generally return a response in
the same manner every time. There are a few exceptions for specialised API’s
and these are noted.

A listing API will return a two elements, meta and objects. Rather than include
this output in all the API docs, we will link to these documents or the
relevant object.

Listing response meta

This is information about the object listing so that the client can paginate
through the listing with. For example:

{
 "meta": {
 "limit": 3,
 "next": "/api/v2/apps/category/?limit=3&offset=6",
 "offset": 3,
 "previous": "/api/v2/apps/category/?limit=3&offset=0",
 "total_count": 16
 }
}

The properties in that meta object are:

		limit: the number of records requested. The maximum value allowed is 50.

		offset: where in the result set the listing started.

		next: the URL for the next page in the pagination.

		previous: the URL for the previous page in the pagination.

		total_count: the total number of records.

Listing query params

The following query params can be passed through to any listing page to access
a different page.

		limit: the number of records to return. The default is 25, and the maximum
allowed value is 50.

		offset: where in the result set the listing should start (so if your limit
is 25, to get the second page of result, you’d need to use offset=25).

Listing response objects

This is a list of the objects returned by the listing. The contents of the
objects depends upon the listing in question. For example:

{
 "objects": [{
 "name": "Music",
 "slug": "music"
 }, {
 "name": "News",
 "slug": "news"
 }, {
 "name": "Productivity",
 "slug": "productivity"
 }]
}

All objects in the database will have at least two fields:

		id: the unique id of that object.

		resource_uri: the URL of that object for more detailed information.

Translations

Fields that can be translated by users (typically name, description) have a
special behaviour. The default is to return them as an object, with languages
as keys and translations as values:

"name": {
 "en-US": "Games",
 "fr": "Jeux",
 "kn": "ಆಟಗಳು"
}

However, for performance sake, if you pass the lang parameter to
a GET request, then only the most relevant translation (the specified
language or the fallback, depending on whether a translation is available)
will be returned as a string.

"name": "Games"

This behaviour also applies to POST, PATCH and PUT requests: you can
either submit a object containing several translations, or just a string. If
only a string is supplied, it will only be used to translate the field in the
current language.

Cross Origin

All APIs are available with Cross-Origin Resource Sharing [https://developer.mozilla.org/en-US/docs/HTTP/Access_control_CORS] unless otherwise
specified.

Timestamps

Timestamps use the %Y-%m-%dT%H:%M:%S format (Python’s strftime notation [http://docs.python.org/2/library/time.html#time.strftime]),
using the America/Los_Angeles time zone [https://en.wikipedia.org/wiki/America/Los_Angeles].

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

api/topics/comm.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

Communication

API for communication between reviewers and developers

Note

Under development.

App

		
GET /api/v2/comm/app/(int:id|string:slug)/

		
Note

Requires authentication.

Returns all threads for the app.

Request

Takes an app slug.

The standard Listing query params.

Response

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not allowed to access this app.

		404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – app not found.

		Parameters:		
		meta (object) – Listing response meta.

		objects (array) – A listing of
threads.

?serializer=simple

If you pass simple as a value to the serializer GET parameter, the
deserialized threads will consist only of the thread ID and the version
number for the app it is representing.

Example:

{
 "objects": [
 {
 "id": 12345,
 "version": {
 "id": 444,
 "version": "1.2"
 }
 },
 {
 "id": 12348,
 "version": {
 "id": 474,
 "version": "1.3"
 }
 }
],
}

Thread

		
GET /api/v2/comm/thread/

		
Note

Requires authentication.

Returns a list of threads in which the user is involved in.

Request

The standard Listing query params.

Response

		Parameters:		
		meta (object) – Listing response meta.

		objects (array) – A listing of
threads.

		
GET /api/v2/comm/thread/(int: id)/

		
Note

Requires authentication.

View a thread object.

Response

A thread object, see below for example.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not allowed to access this object.

		404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – not found.

Example:

{
 "app": {
 "app_slug": "app-3",
 "id": 5,
 "name": "Test App (kinkajou3969)",
 "review_url": "/reviewers/apps/review/test-app-kinkajou3969/",
 "thumbnail_url": "/tmp/uploads/previews/thumbs/0/37.png?modified=1362762723",
 "url": "/app/test-app-kinkajou3969/"
 },
 "created": "2013-06-14T11:54:24",
 "id": 2,
 "modified": "2013-06-24T22:01:37",
 "notes_count": 47,
 "version": {
 "id": 45,
 "version": "1.6",
 "deleted": false
 }
}

Notes on the response.

		Parameters:		
		version.version (string) – Version number noted from the app manifest.

		version.deleted (boolean) – whether the version of the app of the note is
out-of-date.

		
POST /api/v2/comm/thread/

		
Note

Requires authentication.

Create a thread from a new note for a version of an app.

Request

		Parameters:		
		app (int|string) – id or slug of the app to filter the threads by.

		version (string) – version number for the thread’s version (e.g. 1.2).

		note_type (int) – a note type label.

		body (string) – contents of the note.

Response

A note object.

Note

		
GET /api/v2/comm/thread/(int: thread_id)/note/

		
Note

Requires authentication.

Returns the list of notes that a thread contains.

Request

The standard Listing query params.

For ordering params, see List ordering params.

In addition to above, there is another query param:

		Parameters:		
		show_read (boolean) – Filter notes by read status. Pass true to list read notes and false for unread notes.

Response

		Parameters:		
		meta – Listing response meta.

		objects – A listing of notes.

		
GET /api/v2/comm/thread/(int: thread_id)/note/(int: id)/

		
Note

Requires authentication.

View a note.

Request

The standard Listing query params.

Response

A note object, see below for example.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not allowed to access this object.

		404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – thread or note not found.

{
 "attachments": [{
 "id": 1,
 "created": "2013-06-14T11:54:48",
 "display_name": "Screenshot of my app.",
 "url": "http://marketplace.cdn.mozilla.net/someImage.jpg",
 }],
 "author": 1,
 "author_meta": {
 "name": "Admin"
 },
 "body": "hi there",
 "created": "2013-06-14T11:54:48",
 "id": 2,
 "note_type": 0,
 "thread": 2,
}

Notes on the response.

		Parameters:		
		attachments (array) – files attached to the note (often images).

		note_type (int) – type of action taken with the note.

Only “No Action”, “Reviewer Comment”, and “Developer Comment” note types
can be created through the Note API. Further, one must be a reviewer to
make a “Reviewer Comment”. And one must be a developer of an app to make
a “Developer Comment” on an app’s thread.

All note types are listed in the code [https://github.com/mozilla/zamboni/blob/master/mkt/constants/comm.py]

		
POST /api/v2/comm/thread/(int: thread_id)/note/

		
Note

Requires authentication.

Create a note on a thread.

Request

		Parameters:		
		author (int) – the id of the author.

		thread (int) – the id of the thread to post to.

		note_type (int) – the type of note to create. See supported types.

		body (string) – the comment text to be attached with the note.

Response

		Param:		A note.

		Status:		201 successfully created.

		Status:		400 bad request.

		Status:		404 thread not found.

List ordering params

Order results by created or modified times, by using ordering param.

		created - Earliest created notes first.

		-created - Latest created notes first.

		modified - Earliest modified notes first.

		-modified - Latest modified notes first.

Attachment

		
POST /api/v2/comm/note/(int: note_id)/attachment

		
Note

Requires authentication and the user to be the author of the note.

Create attachment(s) on a note.

Request

The request must be sent and encoded with the multipart/form-data Content-Type.

		Parameters:		
		form-0-attachment (multipart/form-data encoded file stream) – the first attachment file encoded with multipart/form-data.

		form-0-description (string) – description of the first attachment.

		form-N-attachment (multipart/form-data encoded file stream) – If sending multiple attachments, replace N with the number of the n-th attachment.

		form-N-description (string) – description of the n-th attachment.

Response

		Param:		The note the attachment was attached to.

		Status:		201 successfully created.

		Status:		400 bad request (e.g. no attachments, more than 10 attachments).

		Status:		403 permission denied if user isn’t the author of the note.

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

api/topics/apps.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

Apps

App Submission

App Submissions for Marketplace is now closed.

App

Note

The name, description, homepage, release_notes, support_email
and support_url fields are user-translated fields and have a dynamic type
depending on the query. See translations.

		
GET /api/v2/apps/app/

		
Note

Requires authentication.

Returns a list of apps you have developed.

Request

The standard Listing query params.

Response

		Parameters:		
		meta (object) – Listing response meta.

		objects (array) – A listing of apps.

		
GET /api/v2/apps/app/(int: id)|(string: slug)/

		
Note

Does not require authentication if your app is public.

Response

An app object, see below for an example.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not allowed to access this object.

		404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – not found.

		451 Unavailable For Legal Reasons [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.52] – resource unavailable for legal reasons.

Example:

{
 "app_type": "hosted",
 "author": "MKT Team",
 "categories": [
 "games"
],
 "content_ratings": {
 "body": "esrb",
 "rating": "13",
 "descriptors_text": ["Frightening Content", "Crime"],
 "descriptors": ["has_esrb_scary", "has_esrb_crime"],
 "interactives_text": ["Users Interact", "Shares Location"]
 "interactives": ["has_users_interact", "has_shares_location"]
 },
 "created": "2013-09-17T13:19:16",
 "current_version": "1.1",
 "default_locale": "en-US",
 "description": {
 "en-US": "Description in english",
 "fr": "Description en français"
 },
 "device_types": [
 "firefoxos"
],
 "feature_compatibility": true,
 "file_size": 8675,
 "homepage": {
 "en-US": "http://www.example.com/"
 },
 "icons": {
 "32": "/tmp/uploads/addon_icons/0/24-32.png?modified=1362762723",
 "48": "/tmp/uploads/addon_icons/0/24-48.png?modified=1362762723",
 "64": "/tmp/uploads/addon_icons/0/24-64.png?modified=1362762723",
 "128": "/tmp/uploads/addon_icons/0/24-128.png?modified=1362762723"
 },
 "id": 24,
 "is_disabled": false,
 "is_packaged": false,
 "last_updated": "2013-09-17T13:19:16",
 "manifest_url": "http://zrnktefoptje.test-manifest.herokuapp.com/manifest.webapp",
 "name": {
 "en-US": "Test app",
 },
 "package_path": null,
 "payment_account": null,
 "payment_required": false,
 "premium_type": "free",
 "previews": [
 {
 "filetype": "image/png",
 "id": "37",
 "image_url": "/tmp/uploads/previews/full/0/37.png?modified=1362762723",
 "resource_uri": "/api/v2/apps/preview/37/",
 "thumbnail_url": "/tmp/uploads/previews/thumbs/0/37.png?modified=1362762723"
 }
],
 "price": null,
 "price_locale": null,
 "privacy_policy": "/api/v2/apps/app/24/privacy/",
 "promo_imgs": {
 "320": "/tmp/img/uploads/webapp_promo_imgs/0/31-320.png?modified=1362762723",
 "640": "/tmp/img/uploads/webapp_promo_imgs/0/31-640.png?modified=1362762723",
 },
 "public_stats": false,
 "ratings": {
 "average": 0.0,
 "count": 0
 },
 "regions": [
 {
 "adolescent": true,
 "mcc": 310,
 "name": "United States",
 "slug": "us"
 },
 {
 "adolescent": true,
 "mcc": null,
 "name": "Rest of World",
 "slug": "restofworld"
 }
],
 "release_notes": null,
 "resource_uri": "/api/v2/apps/app/24/",
 "slug": "test-app-zrnktefoptje",
 "status": 4,
 "support_email": {
 "en-US": "author@example.com"
 },
 "support_url": {
 "en-US": "http://www.example.com/support/"
 },
 "supported_locales": [
 "en-US",
 "es",
 "it"
],
 "upsell": false,
 "upsold": null,
 "user": {
 "developed": false,
 "installed": false,
 "purchased": false
 },
 "versions": {
 "1.0": "/api/v2/apps/versions/7012/",
 "1.1": "/api/v2/apps/versions/7930/"
 }
}

Notes on the response.

		Parameters:		
		app_type (string) – A string representing the app type. Can be hosted,
packaged or privileged.

		author (string) – A string representing the app author.

		categories (array) – An array of strings representing the slugs of the
categories the app belongs to.

		content_ratings (object) – International Age Rating Coalition (IARC) content
ratings data. It has three parts, ratings, descriptors, and
interactive_elements. If a region is detected, only a subset
of data will be returned.

		content_ratings.body (string) – The rating body that assigned the content
rating. It is based off of the region of the request. It can be
‘classind’, ‘esrb’, ‘generic’, ‘pegi’, or ‘usk.

		content_ratings.rating – The content rating (usually an age).

		content_ratings.descriptors_text (array) – IARC content descriptors, flags about
the app that might affect its suitability for younger-aged users.

		content_ratings.descriptors (array) – IARC content descriptors in
normalized slug form.

		content_ratings.interactives_text (array) – IARC interactive elements,
aspects about the app relating to whether the app shares info or
interacts with external elements.

		content_ratings.interactives (array) – IARC interactive elements in
normalized slug form

		created (string) – The date the app was added to the Marketplace, in ISO 8601
format.

		current_version (string) – The version number corresponding to the app’s
latest public version.

		default_locale (string) – The app’s default locale, copied from the manifest.

		description (string|object) – The app’s description.

		device_types (array) –
		An array of strings representing the devices the app

		is marked as compatible with. Currently available devices names are

desktop, android-mobile, android-tablet, firefoxos,
firefoxos-tv.

		feature_compatibility (boolean|null) – Boolean indicating whether the app’s current
version is compatible with the
feature profile signature passed to the
API request. If no profile signature was passed or if the backend is
unable to determine compatibility, null is returned.

		file_size (int) – Size of the app’s current version in bytes.

		homepage (string|object) – The app’s homepage.

		icons (object) – An object containing information about the app icons. The
keys represent icon sizes, the values the corresponding URLs.

		id (int) – The app ID.

		is_disabled (boolean) – Boolean indicating whether the app is disabled or not.

		is_packaged (boolean) – Boolean indicating whether the app is packaged or not.

		last_updated (string) – The date the app was last updated in the Marketplace,
in ISO 8601 format.

		manifest_url – URL for the app manifest. If the app is not an hosted
app, this will be a minimal manifest generated by the Marketplace.

		name (string|object) – The app name.

		package_path (string) – URL for the app package of the latest public version. If the app is not a packaged app, this will be null.

		payment_account – The path to the payment account
being used for this app, or none if not applicable.
NOTE: This will always point to the Bango account or else it will
be None. In other words, it will not tell you all the payment
providers that this app supports.

		payment_required (boolean) – A payment is required for this app. It
could be that payment_required is true, but price is null.
In this case, the app cannot be bought.

		premium_type (string) – One of free, premium, free-inapp,
premium-inapp. If premium or premium-inapp the app should
be bought, check the price field to determine if it can.

		previews (array) – List containing the preview images for the app.

		previews.filetype (string) – The mimetype for the preview.

		previews.id (int) – The ID of the preview.

		previews.image_url (string) – the absolute URL for the preview image.

		previews.thumbnail_url – the absolute URL for the thumbnail of the preview image.

		price (string|null) – If it is a paid app this will be a string representing
the price in the currency calculated for the request. If 0.00 then
no payment is required, but the app requires a receipt. If null, a
price cannot be calculated for the region and cannot be bought.
Example: 1.00

		price_locale (string|null) – If it is a paid app this will be a string representing
the price with the currency formatted using the currency symbol and
the locale representations of numbers. If 0.00 then no payment is
required, but the app requires a receipt. If null, a price cannot
be calculated for the region and cannot be bought.
Example: “1,00 $US”. For more information on this
see payment tiers.

		privacy_policy (string) – The path to the privacy policy resource.

		promo_imgs (object) – An object containing information about app promo images.
The keys represent image sizes, the values the corresponding URLs.

		ratings (object) – An object holding basic information about the app ratings.

		ratings.average (float) – The average rating.

		ratings.count (int) – The number of ratings.

		regions (array) – An list of objects containing informations about each
region the app is available in.

		regions.adolescent (boolean) – an adolescent region has a sufficient
volume of data to calculate ratings and rankings independent of
worldwide data.

		regions.mcc (int|null) – represents the region’s ITU mobile
country code [http://en.wikipedia.org/wiki/List_of_mobile_country_codes].

		regions.name (string) – The region name.

		regions.slug (string) – The region slug.

		release_notes (string|object|null) – the release notes for the current version.

		resource_uri (string) – The canonical URI for this resource.

		slug (string) – The app slug

		status (int) – The app status. See the status table.

		support_email (string|object) – The email the app developer set for support requests.

		support_url (string|object) – The URL the app developer set for support requests.

		supported_locales – The list of locales (as strings) supported by the
app, according to what was set by the developer in the manifest.

		supported_locales – array

		upsell – The path to the premium app resource that this free app is
upselling to, or null if not applicable.

		upsold – The path to the free app resource that
this premium app is an upsell for, or null if not applicable.

		user (object) – an object representing information specific to this
user for the app. If the user is anonymous this object will not
be present.

		user.developed (boolean) – true if the user is a developer of the app.

		user.installed (boolean) – true if the user installed the app (this
might differ from the device).

		user.purchased (boolean) – true if the user has purchased the app from
the marketplace.

		versions (object) – Object representing the versions attached to this app. The
keys represent version numbers, the values the corresponding URLs.

The possible values for app status are:

		value
		status

		0
		Incomplete

		2
		Pending approval

		4
		Fully Reviewed

		5
		Disabled by Mozilla

		11
		Deleted

		12
		Rejected

		13
		Approved but waiting

		15
		Blocked

		
GET /api/v2/apps/(int: id)|(string: slug)/privacy/

		Response

		Parameters:		
		privacy_policy (string) – The text of the app’s privacy policy.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not allowed to access this object.

		404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – not found.

		451 Unavailable For Legal Reasons [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.52] – resource unavailable for legal reasons.

		
DELETE /api/v2/apps/app/(int: id)/

		
Note

Requires authentication.

Response

		Status Codes:		
		204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – successfully deleted.

		
POST /api/v2/apps/app/

		See Creating an app

		
PUT /api/v2/apps/app/(int: id)/

		See Creating an app

Updating an App Icon

Note

Requires authentication and a successfully created app.

		
PUT /api/v2/apps/app/(int:id|string:app_slug)/icon/

		Request

		Parameters:		
		file (object) – a dictionary containing the appropriate file data in the upload field.

		file.type (string) – the content type.

		file.name (string) – the file name.

		file.data (string) – the base 64 encoded data.

Response

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully updated the icon.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – error processing the form.

Versions

		
GET /api/v2/apps/versions/(int: id)/

		Retrieves data for a specific version of an application.

Response

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – not found.

Example:

{
 "app": "/api/v2/apps/app/7/",
 "developer_name": "Cee's Vans",
 "features": [
 "apps",
 "push"
],
 "is_current_version": true,
 "release_notes": "New and improved!",
 "version": "1.1"
}

		Parameters:		
		id (int) – the version id

		is_current_version (boolean) – indicates whether this is the most recent
public version of the application.

		features (array) – each item represents a
device feature required to run the application.

		release_notes (string|object|null) – the release notes for that version.

		
PATCH /api/v2/apps/versions/(int: id)/

		Update data for a specific version of an application.

Note

Requires authentication.

Request

Example:

{
 "developer_name": "Cee's Vans",
 "features": [
 "apps",
 "mp3",
 "push"
]
}

		Parameters:		
		features (array) – each item represents a
device feature required to run the application.
Features not present are assumed not to be required.

Response

Returns the updated JSON representation

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – sucessfully altered.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not allowed to modify this version’s app.

		404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – not found.

Payments

Note

Requires authentication and a successfully created app.

		
GET /api/v2/apps/app/(int: id)/payments/

		Gets information about the payments of an app, including the payment
account.

Response

		Parameters:		
		upsell (string) – URL to the upsell of the app.

		account (string) – URL to the app payment account.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – sucessfully completed.

		
POST /api/v2/apps/app/(int: id)/payments/status/

		Queries the Mozilla payment server to check that the app is ready to be
sold. This would normally be run at the end of the payment flow to ensure
that the app is setup correctly. The Mozilla payment server records the
status of this check.

Request

Empty.

Response

{
 "bango": {
 "status": "passed",
 "errors": []
 }
}

		Parameters:		
		status (string) – passed or failed.

		errors (array of strings.) – an array of errors as string. Currently empty, reserved for
future use.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – app is not valid for checking, examine response content.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not allowed.

Note

The Transaction:Debug permission is required.

		
GET /api/v2/apps/app/(int: id)/payments/debug/

		Returns useful debug information about the app, suitable for marketplace
developers and integrators. Output is truncated below and is subject
to change.

Response

{
 "bango": {
 "environment": "test"
 },
}

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – app is not valid for checking, examine response content.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not allowed.

Manifest refresh

Note

Requires authentication and a successfully created hosted app.

		
POST /api/v2/apps/app/(int:id|string:slug)/refresh-manifest/

		Response
:status 204: Refresh triggered.
:status 400: App is packaged, not hosted, so no manifest to refresh.
:status 403: Not an app you own.
:status 404: No such app.

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

api/topics/firefox_os_addons.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

New in version 2.

Firefox OS Add-ons

The two main resources that are manipulated through this API are
Add-ons and Add-ons Versions.

Add-on

Detail

		
GET /api/v2/extensions/extension/(int: id)|(string: slug)/

		
Note

Non public add-ons can only be viewed by their authors or extension
reviewers (users with the ContentTools:AddonReview permission)

A single add-on.

Example Response:

{
 "id": 1,
 "author": "Mozilla",
 "description": null,
 "disabled": false,
 "device_types": ["firefoxos"],
 "icons": {
 "64": "https://example.com/uploads/extensions_icons/0/1-64.png?m=1a1337",
 "128": "https://example.com/uploads/extensions_icons/0/1-128.png?m=1a1337",
 }
 "latest_version": {
 "id": 1,
 "download_url": "https://example.com/downloads/extension/ce6b52d231154a27a1c54b2648c10379/1/extension-0.1.zip",
 "unsigned_download_url": "https://example.com/downloads/extension/unsigned/ce6b52d231154a27a1c54b2648c10379/1/extension-0.1.zip",
 "status": "public",
 "version": "0.1"
 },
 "last_updated": "2015-09-04T16:16:39",
 "latest_public_version": {
 "id": 1,
 "download_url": "https://example.com/downloads/extension/ce6b52d231154a27a1c54b2648c10379/1/extension-0.1.zip",
 "unsigned_download_url": "https://example.com/downloads/extension/unsigned/ce6b52d231154a27a1c54b2648c10379/1/extension-0.1.zip",
 "status": "public",
 "version": "0.1"
 },
 "mini_manifest_url": "https://example.com/extension/ce6b52d231154a27a1c54b2648c10379/manifest.json",
 "name": {
 "en-US": "My Lîttle Extension"
 },
 "slug": "my-lîttle-extension",
 "status": "public",
 "uuid": "be98056d6963461eb543bea2ddf3b9af"
}

Note

The name and description fields are user-translated fields and have a dynamic type
depending on the query. See translations.

		Response JSON Object:

		 		
		id (int) – The add-on id.

		author (string) – The add-on author, if specified in the manifest.

		description (string|object|null) – The add-on description.

		disabled (boolean) – Boolean indicating whether the developer has disabled
their add-on or not.

		device_types (string) – The devices the add-on is compatible with.

		icons (object) – An object containing information about the app icons. The keys represent icon sizes, the values the corresponding URLs.

		last_updated (string|null) – The latest date a version was published at for this add-on.

		latest_version (object) – The latest add-on version available for this extension.

		latest_public_version (object) – The latest public add-on version available for this extension.

		mini_manifest_url (string) – The (absolute) URL to the mini-manifest [https://developer.mozilla.org/docs/Mozilla/Marketplace/Options/Packaged_apps#Publishing_on_Firefox_Marketplace] for that add-on. That URL may be a 404 if the add-on is not public yet.

		name (string|object) – The add-on name.

		slug (string) – The add-on slug (unique string identifier that can be used
instead of the id to retrieve an add-on).

		status (string) – The add-on current status.
Can be incomplete, pending, or public.

		uuid (string) – The add-on uuid, used internally for URLs and for blocklisting.

		Parameters:		
		id (int) – The add-on id

		slug (string) – The add-on slug

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not allowed to access this object.

		404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – not found.

List

		
GET /api/v2/extensions/extension/

		
Note

Requires authentication.

A list of add-ons you have submitted.

		Response JSON Object:

		 		
		meta (object) – Listing response meta.

		objects (array) – An array of add-ons.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not authenticated.

Update

		
PATCH /api/v2/extensions/extension/(int: id)|(string: slug)/

		
Note

Requires authentication and ownership of the Add-on.

Update some properties of an add-on.

		Parameters:		
		id (int) – The add-on id

		slug (string) – The add-on slug.

		Request JSON Object:

		 		
		disabled (boolean) – Boolean indicating whether the developer has disabled
their add-on or not.

		slug (string) – The add-on slug (unique string identifier that can be used
instead of the id to retrieve an add-on).

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not allowed to access this object.

		404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – not found.

Search

		
GET /api/v2/extensions/search/

		Search through public add-ons.

All query parameters are optional. The default sort order when the sort
parameter is absent depends on whether a search query (q) is present or
not:

		If a search query is passed, order by relevance.

		If no search query is passed, order by popularity descending.

		Parameters:		
		q (string) – The search query.

		author (string) – Filter by author. Requires a case-insensitive
exact match of the author field.

		sort (string) – The field(s) to sort by. One or more of ‘popularity’,
‘created’, ‘name’, ‘reviewed’. In every case except ‘name’, sorting is
done in descending order.

		Response JSON Object:

		 		
		meta (object) – Listing response meta.

		objects (array) – An array of add-ons.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

Delete

		
DELETE /api/v2/extensions/extension/(int: id)|(string: slug)/

		
Note

Requires authentication. Only works on your own Add-ons.

Delete an add-on. This action is irreversible.

Blocking and Unblocking

		
POST /api/v2/extensions/extension/(int: id)|(string: slug)/block/

		
Note

Requires authentication and admin rights (Admin:%s permission).

Blocks an add-on.

When in this state the Extension should not be editable by the developers
at all; not visible publicly; not searchable by users; but should be shown
in the developer’s dashboard, as ‘Blocked’.

		
POST /api/v2/extensions/extension/(int: id)|(string: slug)/unblock/

		
Note

Requires authentication and admin rights (Admin:%s permission).

Unblocks an add-on. It should restore its status according to the rules
below.

Add-on Versions

Detail

		
GET /api/v2/extensions/extension/(int: id)|(string: slug)/versions/(int: version_id)/

		
Note

Non public add-ons versions can only be viewed by their authors or
extension reviewers (users with the ContentTools:AddonReview permission)

A single add-on version.

Example Response:

{
 "id": 1,
 "created": "2015-09-28T10:02:23",
 "download_url": "https://marketplace.firefox.com/downloads/extension/ce6b52d231154a27a1c54b2648c10379/42/extension-0.1.zip",
 "reviewer_mini_manifest_url": "https://marketplace.firefox.com/extension/reviewers/ce6b52d231154a27a1c54b2648c10379/42/manifest.json",
 "unsigned_download_url": "https://marketplace.firefox.com/downloads/extension/unsigned/ce6b52d231154a27a1c54b2648c10379/42/extension-0.1.zip",
 "status": "public",
 "version": "0.1"
}

		Response JSON Object:

		 		
		created (string) – The creation date for this version.

		download_url (string) – The (absolute) URL to the latest signed package for that add-on. That URL may be a 404 if the add-on is not public.

		reviewer_mini_manifest_url (string) – The (absolute) URL to the reviewer-specific mini_manifest URL (allowing reviewers to install a non-public version) for this version. Only users with ContentTools:AddonReview permission may access it.

		status (string) – The add-on version current status. Can be pending, obsolete, public or rejected.

		unsigned_download_url (string) – The (absolute) URL to the latest unsigned package for that add-on. Only the add-on author or users with ContentTools:AddonReview permission may access it.

		version (string) – The version number for this add-on version.

		Parameters:		
		id (int) – The add-on id

		slug (string) – The add-on slug

		version_id (int) – The add-on version id

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not allowed to access this object.

		404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – not found.

List

		
GET /api/v2/extensions/extension/(int: id)|(string: slug)/versions/

		
Note

Non public add-ons versions can only be viewed by their authors or
extension reviewers (users with the ContentTools:AddonReview permission)

A list of versions attached to an add-on.

		Response JSON Object:

		 		
		meta (object) – Listing response meta.

		objects (array) – An array of add-ons versions.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not allowed.

		404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – add-on not found.

Delete

		
DELETE /api/v2/extensions/extension/(int: id)|(string: slug)/versions/(int: version_id)/

		
Note

Requires authentication. Only works on versions attached to your
your own add-ons.

Delete an add-on version. This action is irreversible.

Add-on Statuses

		There are 5 possible values for the status property of an add-on: public, pending, rejected, incomplete or blocked.

		There are 4 possible values for the status property on an add-on version: public, obsolete, pending, rejected.

Add-on status directly depend on the status of its versions:

		Add-ons that are blocked never change.

		Add-ons with at least one public version are public.

		Add-ons with no public version and at least one pending version are pending.

		Add-ons with no public or pending version, and at least one rejected version are rejected.

		Add-ons with no public, pending or rejected version are incomplete.

Blocked Add-ons are hidden from the public. Reviewers and developers may still
access them, but can not make any modifications to them, only admins can.

In addition, Add-ons also have a disabled property that can be set to
true by the developer to disable the add-on. Disabled add-ons are hidden
from the public and do not appear in the reviewers queue, but retain their
original status so they can be re-enabled by just switching disabled back
to false.

Add-on and Add-on Version Submission

Submitting an Add-on or an Add-on Version is done in two steps. The client must
be logged in for all these steps and the user submitting the add-on or the
add-on version must have accepted the terms of use.

		Validate your package. The validation
will return a validation id.

		Post your add-on or
your add-on version using the validation
id obtained during the previous step. This will create an add-on or an
add-on version and populate the data with the contents of the manifest.

Validation

Note

The validation API does not require you to be authenticated, however
you cannot create add-ons from those unauthenticated validations.
To validate and then submit an add-on you must be authenticated with the
same account for both steps.

		
POST /api/v2/extensions/validation/

		Validate your add-on. The zip file containting your add-on should be sent
as the POST body directly.
A validation result is returned.

		Request Headers:

		 		
		Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] – must to be set to application/zip

		Content-Disposition [http://www.w3.org/Protocols/rfc2616/rfc2616-sec19.html#sec19.5] – must be set to form-data; name="binary_data"; filename="extension.zip"

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully created, processed.

		202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – successfully created, still processing.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – some errors were found in your add-on.

		
GET /api/v2/extensions/validation/(string: id)/

		Response

A single validation result. You should poll this API until it returns
a result with the processed property set to true before moving on
with the submission process.

		Response JSON Object:

		 		
		id (string) – the id of the validation.

		processed (boolean) – if the validation has been processed.

		valid (boolean) – if the validation passed.

		validation (string) – the resulting validation messages if it failed.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – validation not found.

Add-on Creation

		
POST /api/v2/extensions/extension/

		
Note

Requires authentication and a successful validation result.

Create an add-on. Note that an add-on version is created automatically for
you.
An add-on is returned. Icons are processed
asynchronously; as a result, the json data returned might not contain the
final URL for the icons at this time.

		Request JSON Object:

		 		
		validation_id (string) – the id of the
validation result for your add-on.

		message (optional) (string) – Notes for reviewers about the
submission.

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully created.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – some errors were found in your add-on.

Add-on Version Creation

		
POST /api/v2/extensions/extension/(int: id)|(string: slug)/versions/

		
Note

Requires authentication, ownership of the add-on (which must not be in
disabled state) and a successful validation result.

Create an add-on version.

		Request JSON Object:

		 		
		validation_id (string) – the id of the
validation result for your add-on version.

		message (optional) (string) – Notes for reviewers about the
submission.

		Parameters:		
		id (int) – The add-on id

		slug (string) – The add-on slug

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully created.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – some errors were found in your add-on.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not allowed.

		404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – add-on not found.

Add-ons Review Queue

Any add-on that is not disabled by its developer, and has at least one
pending version is shown in the review queue, even if the add-on itself is
currently public.

Add-ons are not directly published or rejected, Add-ons Versions are. Usually
the add-on latest_version is the version that needs to be reviewed.

Once a version is published, rejected or deleted, the parent Add-on status
can change as described above.

List

		
GET /api/v2/extensions/queue/

		
Note

Requires authentication and the ContentTools:AddonReview permission.

The list of add-ons in the review queue.

		Response JSON Object:

		 		
		meta (object) – Listing response meta.

		objects (array) – An array of add-ons.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not allowed.

Publishing

		
POST /api/v2/extensions/extension/(int: id)|(string: slug)/versions/(int: id)/publish/

		Publish an add-on version. Its file will be signed, its status updated to
public.

		Parameters:		
		id (int) – The add-on id

		slug (string) – The add-on slug

		version_id (int) – The add-on version id

		message (optional) (string) – Reviewer notes about publishing

		Status Codes:		
		202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – successfully published.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not allowed to access this object or disabled add-on.

		404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – add-on not found in the review queue.

Rejecting

		
POST /api/v2/extensions/extension/(int: id)|(string: slug)/versions/(int: id)/reject/

		Reject an add-on version. Its status will be updated to rejected. The
developer will have to submit it a new version with the issues fixed.

		Parameters:		
		id (int) – The add-on id

		slug (string) – The add-on slug

		version_id (int) – The add-on version id

		message (optional) (string) – Reviewer notes about rejecting

		Status Codes:		
		202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – successfully published.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not allowed to access this object or disabled add-on.

		404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – add-on not found in the review queue.

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

api/topics/stats.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

Statistics

These endpoints supply statistical data for aspects of the Marketplace.
This is a read-only resource intended to be consumed by various charting
libraries.

Global Statistics

Statistics across the Marketplace as a whole.

Note

Authentication is required and the authenticated user must have the
Stats:View permission.

Metrics

Provided are these metrics:

Apps added by packaging type

The number of apps added each day over time for each app package type.

		
GET /api/v2/stats/global/apps_added_by_package/

		Request:

		Parameters:		
		start (string) – The starting date in “YYYY-MM-DD” format.

		end (string) – The ending date in “YYYY-MM-DD” format.

		interval (string) – The interval. One of the following: ‘day’, ‘week’,
‘month’, ‘quarter’, ‘year’.

		region (string) – Filter by the provided region slug (e.g., “us”).

Response:

 {
 "hosted": [
 {
 "count": 12,
 "date": "2013-08-01"
 },
 {
 "count": 25,
 "date": "2013-08-02"
 },
 ...
],
 "packaged": [
 {
 "count": 32,
 "date": "2013-08-01"
 },
 {
 "count": 4,
 "date": "2013-08-02"
 },
 ...
]
}

Apps added by premium type

The number of apps added each day over time, filtered by premium type.

		
GET /api/v2/stats/global/apps_added_by_premium/

		Request:

		Parameters:		
		start (string) – The starting date in “YYYY-MM-DD” format.

		end (string) – The ending date in “YYYY-MM-DD” format.

		interval (string) – The interval. One of the following: ‘day’, ‘week’,
‘month’, ‘quarter’, ‘year’.

		region (string) – Filter by the provided region slug (e.g., “us”).

Response:

 {
 "free": [
 {
 "count": 12,
 "date": "2013-08-01"
 },
 {
 "count": 25,
 "date": "2013-08-02"
 },
 ...
],
 "free-inapp": [
 {
 "count": 32,
 "date": "2013-08-01"
 },
 {
 "count": 4,
 "date": "2013-08-02"
 },
 ...
],
 "premium": [
 {
 "count": 32,
 "date": "2013-08-01"
 },
 {
 "count": 4,
 "date": "2013-08-02"
 },
 ...
],
 "premium-inapp": [
 {
 "count": 32,
 "date": "2013-08-01"
 },
 {
 "count": 4,
 "date": "2013-08-02"
 },
 ...
],
 "other": [
 {
 "count": 32,
 "date": "2013-08-01"
 },
 {
 "count": 4,
 "date": "2013-08-02"
 },
 ...
]
}

Apps available by packaging type

The number of apps available each day over time for each app package type.

		
GET /api/v2/stats/global/apps_available_by_package/

		Request:

		Parameters:		
		start (string) – The starting date in “YYYY-MM-DD” format.

		end (string) – The ending date in “YYYY-MM-DD” format.

		interval (string) – The interval. One of the following: ‘day’, ‘week’,
‘month’, ‘quarter’, ‘year’.

		region (string) – Filter by the provided region slug (e.g., “us”).

Response:

 {
 "hosted": [
 {
 "count": 12,
 "date": "2013-08-01"
 },
 {
 "count": 25,
 "date": "2013-08-02"
 },
 ...
],
 "packaged": [
 {
 "count": 32,
 "date": "2013-08-01"
 },
 {
 "count": 4,
 "date": "2013-08-02"
 },
 ...
]
}

Apps available by premium type

The number of apps available each day over time, filtered by premium type.

		
GET /api/v2/stats/global/apps_available_by_premium/

		Request:

		Parameters:		
		start (string) – The starting date in “YYYY-MM-DD” format.

		end (string) – The ending date in “YYYY-MM-DD” format.

		interval (string) – The interval. One of the following: ‘day’, ‘week’,
‘month’, ‘quarter’, ‘year’.

		region (string) – Filter by the provided region slug (e.g., “us”).

Response:

 {
 "free": [
 {
 "count": 12,
 "date": "2013-08-01"
 },
 {
 "count": 25,
 "date": "2013-08-02"
 },
 ...
],
 "free-inapp": [
 {
 "count": 32,
 "date": "2013-08-01"
 },
 {
 "count": 4,
 "date": "2013-08-02"
 },
 ...
],
 "premium": [
 {
 "count": 32,
 "date": "2013-08-01"
 },
 {
 "count": 4,
 "date": "2013-08-02"
 },
 ...
],
 "premium-inapp": [
 {
 "count": 32,
 "date": "2013-08-01"
 },
 {
 "count": 4,
 "date": "2013-08-02"
 },
 ...
],
 "other": [
 {
 "count": 32,
 "date": "2013-08-01"
 },
 {
 "count": 4,
 "date": "2013-08-02"
 },
 ...
]
}

Apps installed

The number of apps installed each day over time, optionally filtered by
region.

Note

Zero values are not stored.

		
GET /api/v2/stats/global/apps_installed/

		Request:

		Parameters:		
		start (string) – The starting date in “YYYY-MM-DD” format.

		end (string) – The ending date in “YYYY-MM-DD” format.

		interval (string) – The interval. One of the following: ‘day’, ‘week’,
‘month’, ‘quarter’, ‘year’.

		region (string) – Optionally filter by the provided region slug (e.g., “us”).

Response:

 {
 "objects": [
 {
 "count": 12,
 "date": "2013-08-01"
 },
 {
 "count": 25,
 "date": "2013-08-02"
 },
 ...
],
}

Total developers

The total number of developers over time.

		
GET /api/v2/stats/global/total_developers/

		Request:

		Parameters:		
		start (string) – The starting date in “YYYY-MM-DD” format.

		end (string) – The ending date in “YYYY-MM-DD” format.

		interval (string) – The interval. One of the following: ‘day’, ‘week’,
‘month’, ‘quarter’, ‘year’.

Response:

 {
 "objects": [
 {
 "count": 12,
 "date": "2013-08-01"
 },
 {
 "count": 25,
 "date": "2013-08-02"
 },
 ...
],
}

Total visits

The total number of visits to Marketplace over time.

		
GET /api/v2/stats/global/total_visits/

		Request:

		Parameters:		
		start (string) – The starting date in “YYYY-MM-DD” format.

		end (string) – The ending date in “YYYY-MM-DD” format.

		interval (string) – The interval. One of the following: ‘day’, ‘week’,
‘month’, ‘quarter’, ‘year’.

Response:

 {
 "objects": [
 {
 "count": 12,
 "date": "2013-08-01"
 },
 {
 "count": 25,
 "date": "2013-08-02"
 },
 ...
],
}

Ratings

The number of app ratings each day to Marketplace over time.

		
GET /api/v2/stats/global/ratings/

		Request:

		Parameters:		
		start (string) – The starting date in “YYYY-MM-DD” format.

		end (string) – The ending date in “YYYY-MM-DD” format.

		interval (string) – The interval. One of the following: ‘day’, ‘week’,
‘month’, ‘quarter’, ‘year’.

Response:

 {
 "objects": [
 {
 "count": 12,
 "date": "2013-08-01"
 },
 {
 "count": 23,
 "date": "2013-08-02"
 },
 ...
],
}

Abuse Reports

The number of abuse reports each day to Marketplace over time.

		
GET /api/v2/stats/global/abuse_reports/

		Request:

		Parameters:		
		start (string) – The starting date in “YYYY-MM-DD” format.

		end (string) – The ending date in “YYYY-MM-DD” format.

		interval (string) – The interval. One of the following: ‘day’, ‘week’,
‘month’, ‘quarter’, ‘year’.

Response:

 {
 "objects": [
 {
 "count": 3,
 "date": "2013-08-01"
 },
 {
 "count": 0,
 "date": "2013-08-02"
 },
 ...
],
}

Gross Revenue

The gross revenue of apps purchased over time.

		
GET /api/v2/stats/global/revenue/

		Request:

		Parameters:		
		start (string) – The starting date in “YYYY-MM-DD” format.

		end (string) – The ending date in “YYYY-MM-DD” format.

		interval (string) – The interval. One of the following: ‘day’, ‘week’,
‘month’, ‘quarter’, ‘year’.

Response:

 {
 "objects": [
 {
 "count": "1.99",
 "date": "2013-08-01"
 },
 {
 "count": "2.98",
 "date": "2013-08-02"
 },
 ...
],
}

Per-app Statistics

Statistics per public app in the Marketplace.

Note

Authentication is required and the authenticated user must be the
app owner or have the Stats:View permission.

Metrics

Provided are these metrics:

Installs

The number of apps installs each day over time, optionally filtered by
region.

Note

Zero values are not stored.

		
GET /api/v2/stats/app/(int: id)|(string: slug)/installs/

		Request:

		Parameters:		
		start (string) – The starting date in “YYYY-MM-DD” format.

		end (string) – The ending date in “YYYY-MM-DD” format.

		interval (string) – The interval. One of the following: ‘day’, ‘week’,
‘month’, ‘quarter’, ‘year’.

		region (string) – Optionally filter by the provided region slug (e.g., “us”).

Response:

 {
 "objects": [
 {
 "count": 12,
 "date": "2013-08-01"
 },
 {
 "count": 25,
 "date": "2013-08-02"
 },
 ...
],
}

Visits

The number of page visits each day over time.

Note

Zero values are not stored.

		
GET /api/v2/stats/app/(int: id)|(string: slug)/visits/

		Request:

		Parameters:		
		start (string) – The starting date in “YYYY-MM-DD” format.

		end (string) – The ending date in “YYYY-MM-DD” format.

		interval (string) – The interval. One of the following: ‘day’, ‘week’,
‘month’, ‘quarter’, ‘year’.

Response:

 {
 "objects": [
 {
 "count": 12,
 "date": "2013-08-01"
 },
 {
 "count": 25,
 "date": "2013-08-02"
 },
 ...
],
}

Ratings

The number of app ratings each day for this app over time.

		
GET /api/v2/stats/app/(int: id)|(string: slug)/ratings/

		Request:

		Parameters:		
		start (string) – The starting date in “YYYY-MM-DD” format.

		end (string) – The ending date in “YYYY-MM-DD” format.

		interval (string) – The interval. One of the following: ‘day’, ‘week’,
‘month’, ‘quarter’, ‘year’.

Response:

 {
 "objects": [
 {
 "count": 12,
 "date": "2013-08-01"
 },
 {
 "count": 8,
 "date": "2013-08-02"
 },
 ...
],
}

Average ratings

The average rating for this app over time.

		
GET /api/v2/stats/app/(int: id)|(string: slug)/average_rating/

		Request:

		Parameters:		
		start (string) – The starting date in “YYYY-MM-DD” format.

		end (string) – The ending date in “YYYY-MM-DD” format.

		interval (string) – The interval. One of the following: ‘day’, ‘week’,
‘month’, ‘quarter’, ‘year’.

Response:

 {
 "objects": [
 {
 "count": 3.5,
 "date": "2013-08-01"
 },
 {
 "count": 3.75,
 "date": "2013-08-02"
 },
 ...
],
}

Abuse Reports

The number of abuse reports each day for this app over time.

		
GET /api/v2/stats/app/(int: id)|(string: slug)/abuse_reports/

		Request:

		Parameters:		
		start (string) – The starting date in “YYYY-MM-DD” format.

		end (string) – The ending date in “YYYY-MM-DD” format.

		interval (string) – The interval. One of the following: ‘day’, ‘week’,
‘month’, ‘quarter’, ‘year’.

Response:

 {
 "objects": [
 {
 "count": 3,
 "date": "2013-08-01"
 },
 {
 "count": 0,
 "date": "2013-08-02"
 },
 ...
],
}

Gross Revenue

The gross revenue of app purchases over time.

		
GET /api/v2/stats/app/(int: id)|(string: slug)/revenue/

		Request:

		Parameters:		
		start (string) – The starting date in “YYYY-MM-DD” format.

		end (string) – The ending date in “YYYY-MM-DD” format.

		interval (string) – The interval. One of the following: ‘day’, ‘week’,
‘month’, ‘quarter’, ‘year’.

Response:

 {
 "objects": [
 {
 "count": "1.99",
 "date": "2013-08-01"
 },
 {
 "count": "2.98",
 "date": "2013-08-02"
 },
 ...
],
}

Totals Statistics

Statistical information about metrics tracked. The information includes
the total, minimum and maximum, and other statistical calculations for
various metrics tracked.

Metrics

Provided are the following metrics.

Global totals

Statistical information about global metrics.

		
GET /api/v2/stats/global/totals/

		Response:

{
 "abuse_reports": {
 "max": 2.0,
 "mean": 1.5,
 "min": 1.0,
 "std_deviation": 0.5,
 "sum_of_squares": 10.0,
 "total": 6.0,
 "variance": 0.25
 },
 "installs": {
 "max": 2716.0,
 "mean": 14.313328064711078,
 "min": 1.0,
 "std_deviation": 55.293387141332197,
 "sum_of_squares": 70173830.0,
 "total": 307894.0,
 "variance": 3057.3586615612408
 },
 "ratings": {
 "max": 1.0,
 "mean": 1.0,
 "min": 1.0,
 "std_deviation": 0.0,
 "sum_of_squares": 2.0,
 "total": 2.0,
 "variance": 0.0
 }
}

Per-app totals

Statistical information about per-app metrics.

		
GET /api/v2/stats/app/(int: id)|(string: slug)/totals/

		Response:

{
 "abuse_reports": {
 "max": 1.0,
 "mean": 1.0,
 "min": 1.0,
 "std_deviation": 0.0,
 "sum_of_squares": 2.0,
 "total": 2.0,
 "variance": 0.0
 },
 "installs": {
 "max": 43.0,
 "mean": 7.730769230769231,
 "min": 1.0,
 "std_deviation": 7.5483087736492305,
 "sum_of_squares": 21247.0,
 "total": 1407.0,
 "variance": 56.976965342349956
 },
 "ratings": {
 "max": 1.0,
 "mean": 1.0,
 "min": 1.0,
 "std_deviation": 0.0,
 "sum_of_squares": 2.0,
 "total": 2.0,
 "variance": 0.0
 }
}

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

_static/comment.png

api/topics/ratings.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

Ratings

These endpoints allow the retrieval, creation, and modification of ratings on
apps in Marketplace.

List

		
GET /api/v2/apps/rating/

		Get a list of ratings from the Marketplace

Note

Authentication is optional.

Request:

		Query Parameters:

		 		
		app – the ID or slug of the app whose ratings are to be returned.

		user – the ID of the user or mine whose ratings are to be returned.

		lang – a language to filter ratings by if match_lang is set.

		match_lang – a boolean to specify to match language or not. If 1, only
results matching lang are returned. Otherwise all
results are returned.

The value mine can be used to filter ratings belonging to the currently
logged in user.

Plus standard Listing query params.

Response:

{
 "meta": {
 "limit": 25,
 "next": "/api/v2/apps/rating/?limit=25&offset=25",
 "offset": 0,
 "previous": null,
 "total_count": 391
 },
 "info": {
 "average": "3.4",
 "slug": "marble-run",
 "total_reviews": 391
 },
 "objects": [
 {
 "app": "/api/v2/apps/app/18/",
 "body": "This app is top notch. Aces in my book!",
 "created": "2013-04-17T15:25:16",
 "is_author": true,
 "lang": "en",
 "modified": "2013-04-17T15:34:19",
 "rating": 5,
 "resource_uri": "/api/v2/apps/rating/19/",
 "report_spam": "/api/v2/apps/rating/19/flag",
 "user": {
 "display_name": "chuck",
 "resource_uri": "/api/v2/account/settings/27/"
 },
 "version": {
 "name": "1.0",
 "latest": true
 }
 }
]
}

		Parameters:		
		is_author (boolean) – whether the authenticated user is the author of the rating.
Parameter not present in anonymous requests.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – success.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – submission error.

Detail

		
GET /api/v2/apps/rating/(int: id)/

		Get a single rating from the Marketplace using its resource_uri from the
List.

Note

Authentication is optional.

Response:

{
 "app": "/api/v2/apps/app/18/",
 "body": "This app is top notch. Aces in my book!",
 "created": "2013-04-17T15:25:16",
 "is_author": true,
 "modified": "2013-04-17T15:34:19",
 "rating": 5,
 "resource_uri": "/api/v2/apps/rating/19/",
 "user": {
 "display_name": "chuck",
 "resource_uri": "/api/v2/account/settings/27/"
 },
 "version": {
 "name": "1.0",
 "latest": true
 }
}

		Parameters:		
		is_author (boolean) – whether the authenticated user is the author of the rating.
Parameter not present in anonymous requests.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – success.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – submission error.

Create

		
POST /api/v2/apps/rating/

		Create a rating.

Note

Authentication required.

Request:

		Parameters:		
		app (int) – the ID of the app being reviewed

		body (string) – text of the rating

		rating (int) – an integer between (and inclusive of) 1 and 5, indicating the
numeric value of the rating

The user making the rating is inferred from the authentication details.

{
 "app": 18,
 "body": "This app is top notch. Aces in my book!",
 "rating": 5
}

Response:

{
 "app": 18,
 "body": "This app is top notch. Aces in my book!",
 "rating": 5
}

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully created.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid submission.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – user not allowed to rate app, because the user is an author of
the app or because it is a paid app that the user has not purchased.

		409 Conflict [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10] – the user has previously rated the app, so Update should be
used instead.

Update

		
PUT /api/v2/apps/rating/(int: rating_id)/

		Update a rating from the Marketplace using its resource_uri from the
List.

Note

Authentication required.

Request:

		Parameters:		
		body (string) – text of the rating

		rating (int) – an integer between (and inclusive of) 1 and 5, indicating the
numeric value of the rating

The user making the rating is inferred from the authentication details.

{
 "body": "It stopped working. All dueces, now.",
 "rating": 2
}

Response:

{
 "app": 18,
 "body": "It stopped working. All dueces, now.",
 "rating": 2
}

		Status Codes:		
		202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – successfully updated.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid submission.

Delete

		
DELETE /api/v2/apps/rating/(int: rating_id)/

		Delete a rating from the Marketplace using its resource_uri from the
List.

Note

Authentication required.

Response:

		Status Codes:		
		204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – successfully deleted.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – the user cannot delete the rating. A user may only delete a
rating if they are the original rating author, if they are an editor
that is not an author of the app, or if they are in a group with
Users:Edit or Addons:Edit privileges.

Flagging as spam

		
POST /api/v2/apps/rating/(int: rating_id)/flag/

		Flag a rating as spam.

Note

Authentication required.

Request:

{
 "flag": "review_flag_reason_spam"
}

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

_static/plus.png

api/topics/langpacks.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

New in version 2.

Langpacks

Currently in development, subject to change. Follow https://bugzilla.mozilla.org/show_bug.cgi?id=1105530
for more information.

List

		
GET /api/v2/langpacks/

		Returns a list of active langpacks.

Request

The standard Listing query params.

If the request is authenticated and the user has the LangPacks:%
permission, then the following additional parameters are accepted:

		Parameters:		
		active (string) – a flag indicating whether the response should include inactive langpacks or not. Pass active=null to show all langpacks regardless of their active status, and pass active=false to only show inactive langpacks.

Response

		Parameters:		
		meta (object) – Listing response meta.

		objects (array) – A listing of langpacks.

Detail

		
GET /api/v2/langpacks/(string: uuid)/

		Returns a single langpack. If the request is authenticated and the user has the LangPacks:% permission, inactive langpacks
can be returned.

Response

		Parameters:		
		active (string) – A boolean representing the langpack state. Inactive langpacks are hidden by default.

		created (string) – The date that the langpack was first uploaded (in ISO 8601 format).

		fxos_version (string) – The Firefox OS version this langpack provides translations for.

		language (string) – The language code (i.e. “de”, or “pt-BR”) this langpack provides translations for.

		language_display (string) – The language this langpack provides translations for, in a human-readable format (i.e. Deutsch).

		manifest_url – The URL to the mini-manifest for this package, which contains everything needed to install and update the language pack.

		modified (string) – The date that the langpack was last modified (in ISO 8601 format).

		uuid (string) – Unique identifier for this langpack.

		version (string) – The version of the Langpack package itself.

Langpack properties edition

		
PATCH /api/v2/langpacks/(string: uuid)/

		
Note

Requires authentication and the LangPacks:% permission.

		Parameters:		
		active (boolean) – A boolean representing the langpack state. Inactive langpacks are hidden by default.

Deletion

		
DELETE /api/v2/langpacks/(string: uuid)/

		
Note

Requires authentication and the LangPacks:% permission.

Creation

To upload a new langpack, the process is similar to app submission. First you
need to upload your package to the validation endpoint,
and then, once the package has been validated, you can use the validation id in the
endpoints below:

		
POST /api/v2/langpacks/

		
Note

Requires authentication and the LangPacks:% permission.

Note

By default, langpacks are created inactive. Once everything looks ok, use the patch API to activate a langpack.

		Parameters:		
		upload (string) – Validation id.

Package update

		
PUT /api/v2/langpacks/(string: uuid)/

		
Note

Requires authentication and the LangPacks:% permission.

		Parameters:		
		upload (string) – Validation id.

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

api/topics/tv.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

TV

TVs using Firefox OS call specialized variants of the search and detail
APIs. These are not recommended for consumption by other clients and can
change in conjunction with the TV client.

App

		
GET /api/v2/tv/app/

		A copy of the app API. The response only
contains the specific subset of fields TVs need.

		Parameters:		
		app_type (string) – A string representing the app type. Can be hosted,
packaged or privileged.

		author (string) – A string representing the app author.

		categories (array) – An array of strings representing the slugs of the
categories the app belongs to.

		current_version (string) – The version number corresponding to the app’s
latest public version.

		description (string|object) – The app’s description.

		device_types (array) – An array of strings representing the devices the app
is marked as compatible with. Currently available devices names are
desktop, android-mobile, android-tablet, firefoxos,
firefoxos-tv.

		feature_compatibility (boolean|null) – Boolean indicating whether the app’s current
version is compatible with the
feature profile signature passed to the
API request. If no profile signature was passed or if the backend is
unable to determine compatibility, null is returned.

		file_size (int) – Size of the app’s current version in bytes.

		homepage (string|object) – The app’s homepage.

		icons (object) – An object containing information about the app icons. The
keys represent icon sizes, the values the corresponding URLs.

		id (int) – The app ID.

		last_updated (string) – The date the app was last updated in the Marketplace,
in ISO 8601 format.

		manifest_url – URL for the app manifest. If the app is not an hosted
app, this will be a minimal manifest generated by the Marketplace.

		name (string|object) – The app name.

		privacy_policy (string) – The path to the privacy policy resource.

		promo_imgs (object) – An object containing information about app promo images.
The keys represent image sizes, the values the corresponding URLs.

		release_notes (string|object|null) – the release notes for the current version.

		resource_uri (string) – The canonical URI for this resource.

		slug (string) – The app slug

		status (int) – The app status. See the status table.

		support_email (string|object) – The email the app developer set for support requests.

		support_url (string|object) – The URL the app developer set for support requests.

		tv_featured (boolean) – Whether this is a featured app or not.

		user (object) – an object representing information specific to this
user for the app. If the user is anonymous this object will not
be present.

		user.developed (boolean) – true if the user is a developer of the app.

		user.installed (boolean) – true if the user installed the app (this
might differ from the device).

Website

		
GET /api/v2/tv/website/

		A copy of the website API.

		Parameters:		
		categories (array) – An array of strings representing the slugs of the
categories the app belongs to.

		description (string|object) – The site’s description.

		icons (object) – An object containing information about the site icons. The
keys represent icon sizes, the values the corresponding URLs.

		id (int) – The site ID.

		promo_imgs (object) – An object containing information about site promo
images. The keys represent image sizes, the values the corresponding
URLs.

		tv_featured (boolean) – Whether this is a featured app or not.

		tv_url (string|null) – The site’s TV-specific URL, if it exists.

		name (string|object) – The site’s name, as used on its detail page in Marketplace.

		short_name (string|object) – A shorter representation of the site’s name, to be used in the
listing pages in Marketplace.

		title (string|object) – The site’s title, extracted from the site’s <title> element. Used
internally to improve search results.

		url (string) – The site’s URL.

Multi Search

		
GET /api/v2/tv/multi-search/

		A copy of the multi-search API. Like the App API
above, the response only contains the specific subset of fields TVs
need.

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

_static/minus.png

api/topics/websites.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

Websites

Website

Note

The name, description, short_name, and title fields are
user-translated fields and have a dynamic type depending on the query.
See translations.

		
GET /api/v2/websites/website/(int: id)/

		Response

A website object, see below for an example.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – not found.

Example:

{
 "categories": [
 "news"
],
 "created": "2014-11-18T14:13:12",
 "description": {
 "en-US": "Example site description"
 },
 "icons": {
 "64": "https://marketplace-dev-cdn.allizom.org/media/img/hub/default-64.png",
 "128": "https://marketplace-dev-cdn.allizom.org/media/img/hub/default-128.png",
 "48": "https://marketplace-dev-cdn.allizom.org/media/img/hub/default-48.png",
 "32": "https://marketplace-dev-cdn.allizom.org/media/img/hub/default-32.png"
 },
 "id": 42,
 "mobile_url": null,
 "name": {
 "en-US": "Example site name"
 },
 "promo_imgs": {
 "320": "https://marketplace-dev-cdn.allizom.org/website_promo_imgs/0/31-320.png?modified=1362762723",
 "640": "https://marketplace-dev-cdn.allizom.org/website_promo_imgs/0/31-640.png?modified=1362762723",
 },
 "short_name": {
 "en-US": "Example"
 },
 "title": {
 "en-US": "Example site title"
 },
 "tv_url": null,
 "url": "http://example.url/"
}

Fields on the response:

		Parameters:		
		categories (array) – An array of strings representing the slugs of the
categories the app belongs to.

		created (string) – The date the app was added to the Marketplace, in ISO 8601
format.

		description (string|object) – The site’s description.

		icons (object) – An object containing information about the site icons. The
keys represent icon sizes, the values the corresponding URLs.

		id (int) – The site ID.

		mobile_url (string|null) – The site’s mobile-specific URL, if it exists.

		promo_imgs (object) – An object containing information about site promo
images. The keys represent image sizes, the values the corresponding
URLs.

		tv_url (string|null) – The site’s TV-specific URL, if it exists.

		name (string|object) – The site’s name, as used on its detail page in Marketplace.

		short_name (string|object) – A shorter representation of the site’s name, to be used in the
listing pages in Marketplace.

		title (string|object) – The site’s title, extracted from the site’s <title> element. Used
internally to improve search results.

		url (string) – The site’s URL.

Website Submission

Note

Authentication and the ‘Websites:Submit’ permission are required.

		
POST /api/v2/websites/website/submit/

		Request

{
 'canonical_url': 'https://www.bro.app',
 'categories': ['lifestyle', 'music'],
 'detected_icon': 'https://www.bro.app/apple-touch.png',
 'description': 'We cannot tell you what a Bro is. But bros know.',
 'keywords': ['social networking', 'Gilfoyle', 'Silicon Valley'],
 'name': 'Bro',
 'preferred_regions': ['us', 'ca', 'fr'],
 'public_credit': False,
 'url': 'https://m.bro.app',
 'why_relevant': 'Ummm...bro. You know.',
 'works_well': 3
}

		Parameters:		
		canonical_url (string) – the canonical URL to the website, if one can be
detected.

		categories (array) – slugs of categories to which the website belongs.

		detected_icon (string) – the URL to an icon for the website.

		description (string) – a description of the website.

		keywords (array) – website keywords

		name (string) – the name of the website

		preferred_regions (array) – the regions in which the website is specifically
relevant.

		public_credit (boolean) – whether or not the user wants public credit for
submitting the website.

		url (string) – the url of the website

		why_relevant (string) – why the submitters believes the website belongs in
Marketplace.

		works_well (integer) – how well the website works, on a scale of 1 (poorly) to
5 (very well).

Response

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully created.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – submission error, see the error message in the response body
for more detail.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not authorized.

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

api/topics/latecustomization.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

New in version 2.

Late Customization

Late customization allows loading of apps during the first-time experience on
devices.

		
GET /api/v2/latecustomization/?carrier=(str: carrier)®ion=(str: region)

		Returns a list of late customization items for this carrier/region.

Response

		Parameters:		
		latecustomization_id (int) – The id for this late-customization item.

		latecustomization_type (str) – Either ‘webapp’ or ‘extension’.

Includes the fields for either webapps or extensions, based on the item type.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – Successfully completed.

{
 "objects": [
 {
 "latecustomization_type": "webapp",
 "latecustomization_id": 3,
 "id": 47911,
 "slug": "carrier-provided-app-1",
 ...
 }
 ...
]
}

		
POST /api/v2/latecustomization/

		Create a single late-customization item.

Request

		Parameters:		
		type (str) – Indicates the kind of item: ‘webapp’ or ‘extension’.

		app (str) – A webapp slug, if item is a webapp.

		extension (str) – An extension slug, if item is an extension.

		region (int) – A region ID.

		carrier (int) – A carrier ID.

Response

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – Item created.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Not allowed to create this object.

		
DELETE /api/v2/latecustomization/(int: id)/

		Remove a late-customization list.

Response

		Status Codes:		
		204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Successfully completed.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – Not allowed to access this object.

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

README.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

Zamboni Documentation

Within: documentation for the use of Zamboni and its services. All this
documentation here is contained in plain text files using
reStructuredText [http://docutils.sourceforge.net/rst.html] and
Sphinx [http://sphinx-doc.org/].

To install Sphinx and its dependencies (including Sphinx plugins and the MDN
documentation theme), activate your virtualenv and run pip install -r
requirements/docs.txt.

A daemon is included that can watch and regenerated the built HTML when
documentation source files are changed:
python watcher.py 'make html' $(find . -name '*.rst').

There are two distinct documentation trees contained within this directory:

Zamboni

		Viewable at:

		http://zamboni.readthedocs.org/

		Covers:

		Development using Zamboni, the source code for
Add-ons [https://addons.mozilla.org/] and
Marketplace [http://marketplace.firefox.com/].

		Source location:

		/docs [https://github.com/mozilla/zamboni/tree/master/docs]

		Build by:

		Running make html from /docs. The generated documentation will be
located at /docs/_build/html.

Marketplace API

		Viewable at:

		http://firefox-marketplace-api.readthedocs.org/

		Covers:

		Consumption of the Marketplace API.

		Source location:

		/docs/api` <https://github.com/mozilla/zamboni/tree/master/docs/api>`_

		Build by:

		Running make htmlapi from /docs. The generated documentation will be
located at /docs/api/_build/html.

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

api/topics/content_ratings.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

Content Ratings

API for IARC (International Age Rating Coalition) app content ratings.

Content Rating

		
GET /api/v2/apps/app/(int:id|string:app_slug)/content_ratings

		Returns the list of content ratings of an app.

Request

		Parameters:		
		since (datetime (e.g. 2013-12-25 14:12:36)) – filter only for content ratings modified after the datetime.

Response

		Parameters:		
		meta (object) – Listing response meta.

		objects (array) – A listing of content ratings.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – not found.

Example:

{
 "objects": [
 {
 "created": "2013-06-14T11:54:24",
 "modified": "2013-06-24T22:01:37",
 "body": "esrb",
 "rating": "10",
 },
 {
 "created": "2013-06-14T11:54:24",
 "modified": "2013-06-24T22:01:37",
 "body": "pegi",
 "rating": "3",
 },
 ...
]
}

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

api/topics/rocketfuel.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

Rocketfuel

Rocketfuel is the consumer client for the Marketplace Publishing Tool. It has
some special APIs that are not recommended for consumption by other clients.

These APIs will change in conjunction with the Rocketfuel client, which is
under active development.

Warning

This API is for internal use only at this time. It SHOULD NOT be
used externally by third parties. It is not considered stable and WILL
change over time.

Collections

Deprecated since version 2: The collection endpoints were moved to the feed.

A collection is a group of applications

Note

The name and description fields are user-translated fields and have
a dynamic type depending on the query.
See translations.

Listing

		
GET /api/v2/rocketfuel/collections/

		A listing of all collections.

Note

Authentication is optional.

Request:

The following query string parameters can be used to filter the results:

		Parameters:		
		cat (string) – a category slug.

		region (int|string) – a region ID/slug.

		carrier (int|string) – a carrier ID/slug.

Filtering on null values is done by omiting the value for the corresponding
parameter in the query string.

If no results are found with the filters specified, the API will
automatically use a fallback mechanism and try to change the values to null
in order to try to find some results.

		The order in which the filters are set to null is:

		
		region

		carrier

		region and carrier.

In addition, if that fallback mechanism is used, HTTP responses will have an
additional API-Fallback header, containing the fields which were set to
null to find the returned results, separated by a comma if needed, like this:

API-Fallback: region, carrier

Create

		
POST /api/v2/rocketfuel/collections/

		Create a collection.

Note

Authentication and the ‘Collections:Curate’ permission are
required.

Request:

		Parameters:		
		author (string) – the author of the collection.

		background_color (string|null) – the background of the overlay on the image when
collection is displayed (hex-formatted, e.g. “#FF00FF”). Only applies to
curated collections (i.e. when collection_type is 0).

		can_be_hero (boolean) – whether the collection may be featured with a hero
graphic. This may only be set to true for operator shelves. Defaults
to false.

		carrier (int|null) – the ID of the carrier to attach this collection to. Defaults
to null.

		category (slug|null) – the slug of the category to attach this collection to.
Defaults to null.

		collection_type (int) – the type of collection to create.

		description (string|object) – a description of the collection.

		is_public (boolean) – an indication of whether the collection should be
displayed in consumer-facing pages. Defaults to false.

		name (string|object) – the name of the collection.

		region (int|null) – the ID of the region to attach this collection to. Defaults
to null.

		slug (string|null) – a slug to use in URLs for the collection. Automatically
generated if not specified.

		text_color (string|null) – the color of the text displayed on the overlay on the
image when collection is displayed (hex-formatted, e.g. “#FF00FF”). Only
applies to curated collections (i.e. when collection_type is 0).

Detail

		
GET /api/v2/rocketfuel/collections/(int:id|string:slug)/

		Get a single collection.

Note

Authentication is optional.

Update

		
PATCH /api/v2/rocketfuel/collections/(int:id|string:slug)/

		Update a collection.

Note

Authentication and one of the ‘Collections:Curate’ permission or
curator-level access to the collection are required.

Note

The can_be_hero field may not be modified unless you have the
Collections:Curate permission, even if you have curator-level
access to the collection.

Request:

		Parameters:		
		author (string) – the author of the collection.

		can_be_hero (boolean) – whether the collection may be featured with a hero
graphic. This may only be set to true for operator shelves. Defaults
to false.

		carrier (int|null) – the ID of the carrier to attach this collection to.

		category (string|null) – the slug of the category to attach this collection to.

		collection_type (int) – the type of the collection.

		description (string|object) – a description of the collection.

		name (string|object) – the name of the collection.

		region (int|null) – the ID of the region to attach this collection to.

		slug (string|null) – a slug to use in URLs for the collection.

Response:

A representation of the updated collection will be returned in the response
body.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – collection successfully updated.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid request; more details provided in the response body.

Duplicate

		
POST /api/v2/rocketfuel/collections/(int: id)/duplicate/

		Duplicate a collection, creating and returning a new one with the same
properties and the same apps.

Note

Authentication and one of the ‘Collections:Curate’ permission or
curator-level access to the collection are required.

Note

The can_be_hero field may not be modified unless you have the
Collections:Curate permission, even if you have curator-level
access to the collection.

Request:

Any parameter passed will override the corresponding property from the
duplicated object.

		Parameters:		
		author (string) – the author of the collection.

		can_be_hero (boolean) – whether the collection may be featured with a hero
graphic. This may only be set to true for operator shelves. Defaults
to false.

		carrier (int|null) – the ID of the carrier to attach this collection to.

		category (string|null) – the slug of the category to attach this collection to.

		collection_type (int) – the type of the collection.

		description (string|object) – a description of the collection.

		name (string|object) – the name of the collection.

		region (int|null) – the ID of the region to attach this collection to.

		slug (string|null) – a slug to use in URLs for the collection.

Response:

A representation of the duplicate collection will be returned in the
response body.

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – collection successfully duplicated.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid request; more details provided in the response body.

Delete

		
DELETE /api/v2/rocketfuel/collections/(int:id|string:slug)/

		Delete a single collection.

Note

Authentication and the ‘Collections:Curate’ permission are
required.

Response:

		Status Codes:		
		204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – collection successfully deleted.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid request; more details provided in the response body.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not authenticated or authenticated without permission; more
details provided in the response body.

Add Apps

		
POST /api/v2/rocketfuel/collections/(int:id|string:slug)/add_app/

		Add an application to a single collection.

Note

Authentication and one of the ‘Collections:Curate’ permission or
curator-level access to the collection are required.

Request:

		Parameters:		
		app (int) – the ID of the application to add to this collection.

Response:

A representation of the updated collection will be returned in the response
body.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – app successfully added to collection.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid request; more details provided in the response body.

Remove Apps

		
POST /api/v2/rocketfuel/collections/(int:id|string:slug)/remove_app/

		Remove an application from a single collection.

Note

Authentication and one of the ‘Collections:Curate’ permission or
curator-level access to the collection are required.

Request:

		Parameters:		
		app (int) – the ID of the application to remove from this collection.

Response:

A representation of the updated collection will be returned in the response
body.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – app successfully removed from collection.

		205 Reset Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.6] – app not a member of the collection.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid request; more details provided in the response body.

Reorder Apps

		
POST /api/v2/rocketfuel/collections/(int:id|string:slug)/reorder/

		Reorder applications in a collection.

Note

Authentication and one of the ‘Collections:Curate’ permission or
curator-level access to the collection are required.

Request:

The body of the request must contain a list of apps in their desired order.

Example:

[18, 24, 9]

Response:

A representation of the updated collection will be returned in the response
body.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – collection successfully reordered.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – all apps in the collection not represented in response body.
For convenience, a list of all apps in the collection will be included
in the response.

Image

		
GET /api/v2/rocketfuel/collections/(int:id|string:slug)/image/

		Get the image for a collection.

Note

Authentication is optional.

		
PUT /api/v2/rocketfuel/collections/(int:id|string:slug)/image/

		Set the image for a collection. Accepts a data URI as the request
body containing the image, rather than a JSON object.

Note

Authentication and one of the ‘Collections:Curate’ permission or
curator-level access to the collection are required.

		
DELETE /api/v2/rocketfuel/collections/(int:id|string:slug)/image/

		Delete the image for a collection.

Note

Authentication and one of the ‘Collections:Curate’ permission or
curator-level access to the collection are required.

Curators

Users can be given object-level access to collections if they are marked as
curators. The following API endpoints allow manipulation of a collection’s
curators:

Listing

		
GET /api/v2/rocketfuel/collections/(int:id|string:slug)/curators/

		Get a list of curators for a collection.

Note

Authentication and one of the ‘Collections:Curate’ permission or
curator-level access to the collection are required.

Response:

Example:

[
 {
 'display_name': 'Basta',
 'email': 'support@bastacorp.biz',
 'id': 30
 },
 {
 'display_name': 'Cvan',
 'email': 'chris@vans.com',
 'id': 31
 }
]

Add Curator

		
POST /api/v2/rocketfuel/collections/(int:id|string:slug)/add_curator/

		Add a curator to this collection.

Note

Authentication and one of the ‘Collections:Curate’ permission or
curator-level access to the collection are required.

Request:

		Parameters:		
		user (int|string) – the ID or email of the user to add as a curator of this
collection.

Response:

A representation of the updated list of curators for this collection will be
returned in the response body.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – user successfully added as a curator of this collection.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid request; more details provided in the response body.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not authenticated or authenticated without permission; more
details provided in the response body.

Remove Curator

		
POST /api/v2/rocketfuel/collections/(int:id|string:slug)/remove_curator/

		Remove a curator from this collection.

Note

Authentication and one of the ‘Collections:Curate’ permission or
curator-level access to the collection are required.

Request:

		Parameters:		
		user (int|string) – the ID or email of the user to remove as a curator of this
collection.

Response:

		Status Codes:		
		205 Reset Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.6] – user successfully removed as a curator of this collection.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – invalid request; more details provided in the response body.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not authenticated or authenticated without permission; more
details provided in the response body.

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

api/topics/abuse.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

Abuse and reporting

Abusive apps, users and websites may be reported to Marketplace staff. It can
also be used to signal issues about the corresponding listing on Marketplace.

Note

Authentication is optional for abuse reports.

Note

These endpoints are rate-limited at 30 requests per hour per user.

Report An Abusive App

		
POST /api/v2/abuse/app/

		Report an abusive app to Marketplace staff.

Request

		Parameters:		
		text (string) – a textual description of the abuse

		app (int|string) – the app id or slug of the app being reported

{
 "sprout": "potato",
 "text": "There is a problem with this app.",
 "app": 2
}

This endpoint uses PotatoCaptcha, so there must be a field named sprout
with the value potato and cannot be a field named tuber with a truthy
value.

Response

{
 "reporter": null,
 "text": "There is a problem with this app.",
 "app": {
 "id": 2,
 "name": "cvan's app",
 "...": "more info"
 }
}

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully submitted.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – submission error.

		429 Rate Limit Exceeded [http://tools.ietf.org/html/rfc6585#section-4] – exceeded rate limit.

Report An Abusive User

		
POST /api/v2/abuse/user/

		Report an abusive user to Marketplace staff.

Request

		Parameters:		
		text (string) – a textual description of the abuse

		user (int) – the primary key of the user being reported

{
 "sprout": "potato",
 "text": "There is a problem with this user",
 "user": 27
}

This endpoint uses PotatoCaptcha, so there must be a field named sprout
with the value potato and cannot be a field named tuber with a truthy
value.

Response

{
 "reporter": null,
 "text": "There is a problem with this user.",
 "user": {
 "display_name": "cvan",
 "resource_uri": "/api/v2/account/settings/27/"
 }
}

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully submitted.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – submission error.

		429 Rate Limit Exceeded [http://tools.ietf.org/html/rfc6585#section-4] – exceeded rate limit.

Report A Website

		
POST /api/v2/abuse/website/

		Report an issue with a website to Marketplace staff.

Request

		Parameters:		
		text (string) – a textual description of the issue

		app (int) – the id of the website being reported

{
 "sprout": "potato",
 "text": "There is a problem with this site.",
 "website": 42
}

This endpoint uses PotatoCaptcha, so there must be a field named sprout
with the value potato and cannot be a field named tuber with a truthy
value.

Response

{
 "reporter": null,
 "text": "There is a problem with this app.",
 "website": {
 "id": 42,
 "name": "cvan's site",
 "...": "more info"
 }
}

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully submitted.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – submission error.

		429 Rate Limit Exceeded [http://tools.ietf.org/html/rfc6585#section-4] – exceeded rate limit.

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

api/index.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

Firefox Marketplace API

API documentation for the Firefox Marketplace [https://marketplace.firefox.com].

Related Documentation

		Firefox Marketplace high-level documentation [https://marketplace.readthedocs.org]

		Firefox Marketplace frontend documentation [https://marketplace-frontend.readthedocs.org]

Quickstart

Read the overview to understand how the API works. If
you want to view typical responses, check out these endpoints:

		Details on an app: https://marketplace.firefox.com/api/v1/apps/app/twitter/?format=JSON

		Search for all hosted apps about Twitter: https://marketplace.firefox.com/api/v1/apps/search/?q=twitter&app_type=hosted&format=JSON

License

Except where otherwise noted [https://www.mozilla.org/en-US/about/legal/#site], content from this API is licensed under the Creative Commons Attribution Share-Alike License v3.0 [http://creativecommons.org/licenses/by-sa/3.0/] or any later version.

Questions

Updates and changes are announced on the marketplace-api-announce [https://mail.mozilla.org/listinfo/marketplace-api-announce] mailing
list. We recommend that all consumers of the API subscribe.

Questions or concerns may be raised in the #marketplace channel on
irc.mozilla.org. Bugs or feature requests are filed in Bugzilla [https://bugzilla.mozilla.org/buglist.cgi?list_id=6405232&resolution=—&resolution=DUPLICATE&query_format=advanced&component=API&product=Marketplace]. The API
code and source for these docs lives within Marketplace Backend [https://github.com/mozilla/zamboni].

Contents

		Overview
		Requests
		Verbs

		Versions

		Modifying Results

		Responses
		Data errors

		Rate limiting

		Other errors

		Listings

		Listing response meta

		Listing query params

		Listing response objects

		Cross Origin

		Timestamps

		Abuse and reporting
		Report An Abusive App

		Report An Abusive User

		Report A Website

		Accounts
		Account

		Feedback

		Newsletter signup

		Operator Permissions

		Sign Developer Agreement

		App Features
		Features List

		Apps
		App Submission

		App

		Updating an App Icon

		Versions

		Payments

		Manifest refresh

		Authentication
		Shared Secret
		Login

		Logout

		OAuth
		Web sites

		Command-line tools

		Production server

		Development server

		Using OAuth Tokens
		Example clients

		Communication
		App

		Thread

		Note
		List ordering params

		Attachment

		Content Ratings
		Content Rating

		Export
		Collection Format

		Feed
		Feed

		Feed Items
		List

		Detail

		Create

		Update

		Delete

		Feed Apps
		List

		Detail

		Create

		Update

		Delete

		Feed App Image

		Feed Brands
		List

		Detail

		Create

		Update

		Delete

		Feed Collections
		List

		Detail

		Create

		Update

		Delete

		Operator Shelf
		List

		List User’s

		Detail

		Create

		Update

		Delete

		Image

		Builder

		Feed Element Search

		Firefox OS Add-ons
		Add-on
		Detail

		List

		Update

		Search

		Delete

		Blocking and Unblocking

		Add-on Versions
		Detail

		List

		Delete

		Add-on Statuses

		Add-on and Add-on Version Submission
		Validation

		Add-on Creation

		Add-on Version Creation

		Add-ons Review Queue
		List

		Publishing

		Rejecting

		Fireplace
		App

		Error reporter

		Search

		Featured Search

		Multi Search

		Consumer Information

		Games
		Daily Games

		Featured Game Listings

		Langpacks
		List

		Detail

		Langpack properties edition

		Deletion

		Creation

		Package update

		Late Customization

		Payments
		Configuring payment accounts

		Upsell

		In-app products

		Preparing payment

		Signature Check

		Payment status

		Installing
		Free apps

		Premium apps

		Receipt Testing

		Receipt reissue

		Price Tiers
		Localized tier

		Product Icons

		Transaction failure

		Ratings
		List

		Detail

		Create

		Update

		Delete

		Flagging as spam

		Reviewers
		Reviewer Search

		Reviewing

		Mini-Manifest

		Canned Responses

		Reviewer Scores

		Rocketfuel
		Collections
		Listing

		Create

		Detail

		Update

		Duplicate

		Delete

		Add Apps

		Remove Apps

		Reorder Apps

		Image

		Curators
		Listing

		Add Curator

		Remove Curator

		Search
		Search

		Multi-Search

		Feature Profile Signatures

		Site
		Categories

		Carriers

		Regions

		Configuration

		Price tiers

		Statistics
		Global Statistics
		Metrics

		Per-app Statistics
		Metrics

		Totals Statistics
		Metrics

		Transactions
		Transaction

		TV
		App

		Website

		Multi Search

		Websites
		Website

		Website Submission

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

api/topics/search.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

Search

This API allows search for apps by various properties.

Search

		
GET /api/v2/apps/search/

		Request

		Parameters:		
		q (string) – The query string to search for.

		cat (int|string) – The category slug to filter by. Use the category API
to find the category slugs.

		dev (string) – Filters by supported device. One of ‘desktop’,
‘android’, or ‘firefoxos’.

		device (string) – Enables additional filtering by device profile
if device is ‘android’. One of ‘mobile’ or ‘tablet’.

		pro (string) – A feature profile
describing the features to filter by.

		premium_types (string) – Filters by whether the app is free or
premium or has in-app purchasing. Any of ‘free’, ‘free-inapp’,
‘premium’, ‘premium-inapp’, or ‘other’ [1].

		app_type (string) – Filters by types of web apps. Any of ‘hosted’,
‘packaged’, or ‘privileged’.

		manifest_url (string) – Filters by manifest URL. Requires an
exact match and should only return a single result if a match is
found.

		installs_allowed_from – Filters apps by the manifest
‘installs_allowed_from’ field. The only supported value is ‘*’.

		offline (string) – Filters by whether the app works offline or not.
‘True’ to show offline-capable apps; ‘False’ to show apps requiring
online support; any other value will show all apps unfiltered by
offline support.

		languages (string) – Filters apps by a supported language. Language
codes should be provided in ISO 639-1 format, using a comma-separated
list if supplying multiple languages.

		author (string) – Filters by author. Requires a case-insensitive
exact match of the author field.

		region (string) – Filters apps by a supported region. A region
code should be provided in ISO 3166 format (e.g., pl). In API v1 (and
only v1), if not provided, the region is automatically detected via
requesting IP address. To disable automatic region detection, None
may be passed.

		guid (string) – Filter for a specific app by Marketplace GUID.

		sort (string) – The fields to sort by. One or more of ‘created’,
‘downloads’, ‘name’, ‘rating’, ‘reviewed’, or ‘trending’. Sorts by
relevance by default. In every case except ‘name’, sorting is done in
descending order.

Response

		Parameters:		
		meta (object) – Listing response meta.

		objects (array) – A listing of
apps, with the following additional
fields:

{
 "absolute_url": https://marketplace.firefox.com/app/my-app/",
}

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

Multi-Search

This API allows search for mixed content by various properties. Content types
include webapps and websites.

		
GET /api/v2/multi-search/

		

		Parameters:		
		doc_type (optionnal) (string) – The type of content to search for,
separated by a comma (without spaces). Defaults to webapp,website if
absent or invalid. Supported content types: webapp, website and
extension.

Response

Similar to Search API but the objects field can contain:

		Apps if doc_type includes webapp;

		Websites if doc_type includes website;

		Firefox OS Add-ons if doc_type includes
extension.

Feature Profile Signatures

Feature profile signatures indicate what features a device supports or
does not support, so the search results can exclude apps that require
features your device doesn’t provide.

The format of a signature is FEATURES.SIZE.VERSION, where FEATURES is
a bitfield in hexadecimal, SIZE is its length in bits as a decimal
number, and VERSION is a decimal number indicating the version of the
features table.

Each bit in the features bitfield represents the presence or absence
of a feature. New features will always be added as the least significant
bit.

Feature table version 8:

		bit position
		feature

		0
		UDP Sockets

		1
		OpenMobile ACL

		2
		NFC

		3
		1GB RAM Device

		4
		512MB RAM Device

		5
		Asm.js Precompilation

		6
		Mobile ID

		7
		Multiple Network Information

		8
		Third-Party Keyboard Support

		9
		TCP Sockets

		10
		SystemXHR

		11
		Alarms

		12
		Notifications

		13
		Pointer Lock

		14
		Web Speech Recognition

		15
		Web Speech Synthesis

		16
		WebRTC PeerConnection

		17
		WebRTC DataChannel

		18
		WebRTC MediaStream

		19
		Screen Capture

		20
		Microphone

		21
		Camera

		22
		Quota Management

		23
		Gamepad

		24
		Full Screen

		25
		WebM

		26
		H.264

		27
		Web Audio

		28
		Audio

		29
		MP3

		30
		Smartphone-Sized Displays (qHD)

		31
		Touch

		32
		WebSMS

		33
		WebFM

		34
		Vibration

		35
		Time/Clock

		36
		Screen Orientation

		37
		Simple Push

		38
		Proximity

		39
		Network Stats

		40
		Network Information

		41
		Idle

		42
		Geolocation

		43
		IndexedDB

		44
		Device Storage

		45
		Contacts

		46
		Bluetooth

		47
		Battery

		48
		Archive

		49
		Ambient Light Sensor

		50
		Web Activities

		51
		Web Payment

		52
		Packaged Apps Install API

		53
		App Management API

For example, a device with only the ‘App Management API’, ‘Proximity’,
‘Ambient Light Sensor’, and ‘Vibration’ features enabled would send this
feature profile signature:

11002200000000.53.8

		[1]		other denotes a payment system other than the Firefox Marketplace
payments. This field is not currently populated by the Marketplace Developer
Hub.

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

api/topics/authentication.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

Authentication

Not all APIs require authentication. Each API will note if it needs
authentication.

Two options for authentication are available: shared-secret and OAuth.

Shared Secret

The Marketplace front end uses a server-supplied token for authentication,
stored as a cookie.

Login

		
POST /api/v2/account/login/

		Request

		Parameters:		
		assertion (string) – the Persona assertion.

		audience (string) – the Persona audience.

Example:

{
 "assertion": "1234",
 "audience": "some.site.com"
}

Response

		Parameters:		
		error (string) – any error that occurred.

		token (string) – a shared secret to be used on later requests. It should be
sent with authorized requests as a query string parameter named
_user.

		permissions (object) – user permissions.

		settings (object) – user account settings.

Example:

{
 "error": null,
 "token": "ffoob@example.com,95c9063d9f249aacfe5697fc83192e...",
 "settings": {
 "display_name": "fred foobar",
 "email": "ffoob@example.com",
 "enable_recommendations": true,
 "region": "appistan"
 },
 "permissions": {
 "reviewer": false,
 "admin": false,
 "localizer": false,
 "lookup": true,
 "developer": true
 }
}

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully completed, a new profile might have been created
in the marketplace if the account was new.

Logout

		
DELETE /api/v2/account/logout/

		Request

		Parameters:		
		_user (string) – the shared secret token returned from the login endpoint.

Example:

{
 "_user": "ffoob@example.com,95c9063d9f249aacfe5697fc83192e..."
}

Response

		Status Codes:		
		204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – successfully logged out. The previously shared token is now
unauthenticated and should be cleared from client storage.

OAuth

Marketplace provides OAuth 1.0a, allowing third-party apps to interact with its
API. It provides it in two flavours: 2-legged OAuth, designed for command line
tools and 3-legged OAuth designed for web sites.

See the OAuth Guide [http://hueniverse.com/oauth/guide/] and this authentication flow diagram [http://oauth.net/core/diagram.png] for an overview of OAuth concepts.

Web sites

Web sites that want to use the Marketplace API on behalf of a user should
use the 3-legged flow to get an access token per user.

When creating your API token, you should provide two extra fields used by the Marketplace when prompting users for authorization, allowing your application to make API requests on their behalf.

		Application Name should contain the name of your app, for Marketplace to show users when asking them for authorization.

		Redirect URI should contain the URI to redirect the user to, after the user grants access to your app (step D in the diagram linked above).

The OAuth URLs on the Marketplace are:

		The Temporary Credential Request URL path is /oauth/register/.

		The Resource Owner Authorization URL path is /oauth/authorize/.

		The Token Request URL path is /oauth/token/.

Command-line tools

If you would like to use the Marketplace API from a command-line tool you don’t
need to set up the full 3 legged flow. In this case you just need to sign the
request. Some discussion of this can be found here [http://blog.nerdbank.net/2011/06/what-is-2-legged-oauth.html].

Once you’ve created an API key and secret you can use the key and secret in
your command-line tools.

Production server

The production server is at https://marketplace.firefox.com.

		Log in using Persona:
https://marketplace.firefox.com/login

		At https://marketplace.firefox.com/developers/api provide the name of
the app that will use the key, and the URI that Marketplace’s OAuth provide
will redirect to after the user grants permission to your app. You may then
generate a key pair for use in your application.

		(Optional) If you are planning on submitting an app, you must accept the
terms of service: https://marketplace.firefox.com/developers/terms

Development server

The development server is at https://marketplace-dev.allizom.org.

We make no guarantees on the uptime of the development server. Data is
regularly purged, causing the deletion of apps and tokens.

Using OAuth Tokens

Once you’ve got your token, you will need to ensure that the OAuth token is
sent correctly in each request.

To correctly sign an OAuth request, you’ll need the OAuth consumer key and
secret and then sign the request using your favourite OAuth library. An example
of this can be found in the example marketplace client [https://github.com/mozilla/Marketplace.Python].

Example headers (new lines added for clarity):

Content-type: application/json
Authorization: OAuth realm="",
 oauth_body_hash="2jm...",
 oauth_nonce="06731830",
 oauth_timestamp="1344897064",
 oauth_consumer_key="some-consumer-key",
 oauth_signature_method="HMAC-SHA1",
 oauth_version="1.0",
 oauth_signature="Nb8..."

If requests are failing and returning a 401 response, then there will likely be
a reason contained in the response. For example:

{"reason": "Terms of service not accepted."}

Example clients

		The Marketplace.Python [https://github.com/mozilla/Marketplace.Python/] library uses 2-legged OAuth to authenticate requests.

		Curling [http://curling.readthedocs.org/] is a command library to do requests using Python [https://github.com/mozilla/Marketplace.Python/].

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

api/topics/app_features.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

App Features

API responses may be modified to exclude applications a device is unable to run.

Features List

		
GET /api/v2/apps/features/

		Returns a list of app features devices may require.

Response

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

The response will be an object with each key representing a feature. The
following parameters will be set for each feature:

		Parameters:		
		position (int) – the position of the feature in the list

		name (string) – the feature name

		description (string) – the feature description

If a feature profile is passed,
then each feature will also contain the following:

		Parameters:		
		present (boolean) – a boolean indicating whether the feature is present in the
profile passed to the request.

Example:

{
 "apps": {
 "position": 1,
 "name": "Apps",
 "description": "The app requires the `navigator.mozApps` API."
 },
 "packaged_apps": {
 "position": 2,
 "name": "Packaged apps",
 "description": "The app requires the `navigator.mozApps.installPackage` API."
 },
 ...
}

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

api/topics/reviewers.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

Reviewers

Reviewer API provides access to the reviewer tools.

Reviewer Search

Note

Requires authentication and permission to review apps.

		
GET /api/v2/reviewers/search/

		Performs a search just like the regular Search API, but customized with
extra parameters and different (smaller) apps objects returned, containing
only the information that is required for reviewer tools.

Response:

		Parameters:		
		meta (object) – Listing response meta.

		objects (array) – A listing of apps.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

Each app in the response will contain the following:

		Parameters:		
		device_types (array) – a list of the device types at least one of:
desktop, mobile, tablet, firefoxos. mobile and tablet both
refer to Android mobile and tablet. As opposed to Firefox OS.

		id (int) – the app’s id.

		is_escalated (boolean) – a boolean indicating whether this app is currently
in the escalation queue or not.

		is_packaged (boolean) – a boolean indicating whether the app is packaged or
not.

		latest_version (object) – an array containing the following information about
the app’s latest version:

		latest_version.has_editor_comment (boolean) – a boolean indicathing whether
that version contains comments from a reviewer.

		latest_version.has_info_request (boolean) – a boolean indicathing whether that
version contains an information request from a reviewer.

		latest_version.is_privileged (boolean) – a boolean indicating whether this
version is a privileged app or not.

		latest_version.status (int) – an int representing the version status. Can
be different from the app status, since the latest_version can be
different from the latest public one.

		name (string) – the name of the app

		premium_type (string) – one of free, premium, free-inapp,
premium-inapp. If premium or premium-inapp the app should
be bought, check the price field to determine if it can.

		price (string|null) – If it is a paid app this will be a string representing
the price in the currency calculated for the request. If 0.00 then
no payment is required, but the app requires a receipt. If null, a
price cannot be calculated for the region and cannot be bought.
Example: 1.00

		name – the URL slug for the app

		status – an int representing the version status.

Reviewing

Note

Requires authentication and permission to review apps.

Warning

Not available through CORS.

		
GET /api/v2/reviewers/reviewing/

		Returns a list of apps that are being reviewed.

Response:

		Parameters:		
		meta (object) – Listing response meta.

		objects (array) – A listing of apps.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

Mini-Manifest

Note

Requires authentication and permission to review apps.

Warning

Not available through CORS.

		
POST /api/v2/reviewers/app/(int: id)|(string: slug)/token

		Returns a short-lived token that can be used to access the
mini-manifest. Use this token as a query-string parameter to the
mini-manifest URL named “token” within 60 seconds.

Response:

		Parameters:		
		token – The token.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

Canned Responses

Note

Requires authentication and permission to alter reviewer tools.

		
GET /api/v1/reviewers/canned-responses/

		

		
POST /api/v1/reviewers/canned-responses/

		

		
GET /api/v1/reviewers/canned-responses/(int: id)/

		

		
PUT /api/v1/reviewers/canned-responses/(int: id)/

		

		
PATCH /api/v1/reviewers/canned-responses/(int: id)/

		

		
DELETE /api/v1/reviewers/canned-responses/(int: id)/

		Return, create, modify and delete the canned responses reviewers can use
when reviewing apps.

Response / Request parameters:

		Parameters:		
		id (int) – unique identifier for the canned response.

		name (string|object|null) – canned response name.

		response (string|object|null) – canned response text.

		sort_group (string) – group the canned response belongs to.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully created.

		204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – successfully deleted.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – error processing the request.

		404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – not found.

Reviewer Scores

Note

Requires authentication and permission to alter reviewer tools.

		
GET /api/v1/reviewers/scores/

		

		
POST /api/v1/reviewers/scores/

		

		
GET /api/v1/reviewers/scores/(int: id)/

		

		
PUT /api/v1/reviewers/scores/(int: id)/

		

		
PATCH /api/v1/reviewers/scores/(int: id)/

		

		
DELETE /api/v1/reviewers/scores/(int: id)/

		Return, create, modify and delete the reviewer scores for an user. This API
only deals with manual scores, and never returns or allows you to modify
automatic ones.

Response / Request parameters:

		Parameters:		
		id (int) – unique identifier for the reviewer score.

		score (int) – score value (can be negative).

		note (string) – optional note attached to the score.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully created.

		204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – successfully deleted.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – error processing the request.

		404 Not Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – not found.

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

api/topics/payment.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

Payments

This API is specific to setting up and processing payments for an app in the
Marketplace.

Configuring payment accounts

Payment accounts can be added and listed.

Note

Authentication is required.

		
POST /api/v2/payments/account/

		Request

		Parameters:		
		account_name (string) – Account name.

		companyName (string) – Company name.

		vendorName (string) – Vendor name.

		financeEmailAddress (string) – Financial email.

		supportEmailAddress (string) – Support email.

		address1 (string) – Address.

		address2 (string) – Second line of address.

		addressCity (string) – City/municipality.

		addressState (string) – State/province/region.

		addressZipCode (string) – Zip/postal code.

		countryIso (string) – Country.

		vatNumber (string) – VAT number.

the following fields cannot be modified after account creation

		Parameters:		
		bankAccountPayeeName (string) – Account holder name.

		bankAccountNumber (string) – Bank account number.

		bankAccountCode (string) – Bank account code.

		bankName – Bank name.

		bankAddress1 (string) – Bank address.

		bankAddress2 (string) – Second line of bank address.

		bankAddressState (string) – Bank state/province/region.

		bankAddressZipCode (string) – Bank zip/postal code.

		bankAddressIso (string) – Bank country.

		adminEmailAddress (string) – Administrative email.

		currencyIso (string) – Currency you prefer to be paid in.

Response

		Status:		201 successfully created.

		
PUT /api/v2/payments/account/(int: id)/

		Request

		Parameters:		
		account_name (string) – Account name.

		vendorName (string) – Vendor name.

		financeEmailAddress (string) – Financial email.

		supportEmailAddress (string) – Support email.

		address1 (string) – Address.

		address2 (string) – Second line of address.

		addressCity (string) – City/municipality.

		addressState (string) – State/province/region.

		addressZipCode (string) – Zip/postal code.

		countryIso (string) – Country.

		vatNumber (string) – VAT number.

Response

		Status Codes:		
		204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – successfully updated.

		
DELETE /api/v2/payments/account/(int: id)/

		
Warning

This can potentially remove all your apps from sale.

If you delete a payment account then all apps which use that account can
no longer process payments. All apps that use this payment account will
be moved into the incomplete state. Each of those apps will need to
resubmitted to process payments.

Response

		Status Codes:		
		204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – successfully deleted.

		409 Conflict [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10] – shared accounts cannot be deleted whilst apps are using them.

		
GET /api/v2/payments/account/

		Request

The standard Listing query params.

Response

		Parameters:		
		meta (object) – Listing response meta.

		objects (array) – A listing of accounts.

		
GET /api/v2/payments/account/(int: id)/

		Response

An account object, see below for an example.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

Example:

{
 "account_name": "account",
 "address1": "123 Main St",
 "addressCity": "Byteville",
 "addressPhone": "605-555-1212",
 "addressState": "HX",
 "addressZipCode": "55555",
 "adminEmailAddress": "apps_admin@example.com",
 "companyName": "Example Company",
 "countryIso": "BRA",
 "currencyIso": "EUR",
 "financeEmailAddress": "apps_accounts@example.com",
 "resource_uri": "/api/v2/payments/account/175/",
 "supportEmailAddress": "apps_support@example.com",
 "vendorName": "vendor"
}

Upsell

		
POST /api/v2/payments/upsell/

		Creates an upsell relationship between two apps, a free and premium one.
Send the URLs for both apps in the post to create the relationship.

Request

		Parameters:		
		free (string) – URL to the free app.

		premium (string) – URL to the premium app.

Response

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – sucessfully created.

		
GET /api/v2/payments/upsell/(int: id)/

		Response

{"free": "/api/v2/apps/app/1/",
 "premium": "/api/v2/apps/app/2/"}

		Parameters:		
		free (string) – URL to the free app.

		premium (string) – URL to the premium app.

		
PATCH /api/v2/payments/upsell/(int: id)/

		Alter the upsell from free to premium by passing in new free and premiums.

Request

		Parameters:		
		free (string) – URL to the free app.

		premium (string) – URL to the premium app.

Response

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – sucessfully altered.

		
DELETE /api/v2/payments/upsell/(int: id)/

		To delete the upsell relationship.

Response

		Status Codes:		
		204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – sucessfully deleted.

In-app products

In-app products are used for setting up in-app payments without the need to
host your own JWT signer. This API is for managing your in-app products for use
with the in-app payment service.

The origin refers to the
origin [https://developer.mozilla.org/en-US/Apps/Build/Manifest#origin] of the
packaged app. For example: app://foo-app.com.

Note

Feature not complete.

		
POST /api/v2/payments/(string: origin)/in-app/

		
Note

Authentication is required.

Creates a new in-app product for sale.

Request

		Parameters:		
		name (string) – Product names as an object of localizations, serialized to JSON.
Example:

{"en-us": "English product name",
 "pl": "polska nazwa produktu"}

The object keys must be lower case codes in the
IETF language tag [http://en.wikipedia.org/wiki/IETF_language_tag] format.

		logo_url (string) – URL to a logo for the product.

		price_id (int) – ID for the price tier.

Response

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully created.

		Parameters:		
		guid (string) – A globally unique ID for this in-app product.

		app (string) – The slug for the app.

		name (string) – The name for the in-app product.

		logo_url (string) – URL to a logo for the product.

		price_id (int) – ID for the price tier.

		
GET /api/v2/payments/(string: origin)/in-app/

		List the in-app products for this app.

Request

None

Response

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		Parameters:		
		guid (string) – The in-app product ID.

		app (string) – The slug for the app.

		name (string) – The name for the in-app product.

		logo_url (string) – URL to a logo for the product.

		price_id (int) – ID for the price tier.

		
GET /api/v2/payments/(string: origin)/in-app/(string: id)/

		Details of an in-app product.

Request

		Parameters:		
		active (string) – include active products, if ignored all in-app products are
returned. Value should be one of 0 or 1.

Response

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		Parameters:		
		guid (string) – The in-app product ID.

		app (string) – The slug for the app.

		name (string) – The name for the in-app product.

		logo_url (string) – URL to a logo for the product.

		price_id (int) – ID for the price tier.

		
PUT /api/v2/payments/(string: origin)/in-app/(string: id)/

		
Note

Authentication is required.

Update an in-app product.

Request

		Parameters:		
		name (string) – Product names as an object of localizations, serialized to JSON.
Example:

{"en-us": "English product name",
 "pl": "polska nazwa produktu"}

The object keys must be lower case codes in the
IETF language tag [http://en.wikipedia.org/wiki/IETF_language_tag] format.

IMPORTANT: Any string for a new locale will not
overwrite strings in existing locales. If you want
to delete an older locale, you need to set it to null
like {"en-us": null, "pl": "..."}.

		logo_url (string) – URL to a logo for the product.

		price_id (int) – ID for the price tier.

Response

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		Parameters:		
		guid (string) – The in-app product ID.

		app (string) – The slug for the app.

		name (string) – The name for the in-app product.

		logo_url (string) – URL to a logo for the product.

		price_id (int) – ID for the price tier.

		
GET /api/v2/payments/stub-in-app-products/

		List some stub in-app products that can be used for testing.
These products can only be purchased in simulation mode.

Request

None

Response

{
 "meta": {
 "limit": 25,
 "next": null,
 "offset": 0,
 "previous": null,
 "total_count": 2
 },
 "objects": [
 {
 "app": null,
 "guid": "d3182953-feed-44dd-a3be-e17ae7fe6a2c",
 "logo_url": "https://marketplace.cdn.mozilla.net/media/img/developers/simulated-kiwi.png",
 "name": "Kiwi",
 "price_id": 237
 },
 {
 "app": null,
 "guid": "8b3fa156-354a-47a9-b862-0f02b56d0e3d",
 "logo_url": "https://marketplace.cdn.mozilla.net/media/img/mkt/icons/rocket-64.png",
 "name": "Rocket",
 "price_id": 238
 }
]
}

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		Objects:		list of stub products.
See get stub product.

		
GET /api/v2/payments/stub-in-app-products/(string: guid)/

		Get detailed info for a specific stub product.

Request

None

Response

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		Parameters:		
		guid (string) – The in-app product ID.

		name (string) – The name for the in-app product.

		logo_url (string) – URL to a logo for the product.

		price_id (int) – ID for the price tier.

Preparing payment

Produces the JWT for purchasing an app that is passed to navigator.mozPay [https://wiki.mozilla.org/WebAPI/WebPayment].

Note

Authentication is required.

		
POST /api/v2/webpay/prepare/

		Request

		Parameters:		
		app (string) – the id or slug of the app to be purchased.

Response

{
 "app": "337141: Something Something Steamcube!",
 "contribStatusURL": "https://marketplace.firefox.com/api/v2/webpay/status/123/",
 "resource_uri": "",
 "webpayJWT": "eyJhbGciOiAiSFMy... [truncated]",
}

		Parameters:		
		webpayJWT (string) – the JWT to pass to navigator.mozPay [https://wiki.mozilla.org/WebAPI/WebPayment]

		contribStatusURL (string) – the URL to poll for
Payment status.

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully completed.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – app not found.

		401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – not authenticated.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – app cannot be purchased.

		409 Conflict [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10] – app already purchased.

Produces the JWT for purchasing an in-app product that is passed to navigator.mozPay [https://wiki.mozilla.org/WebAPI/WebPayment].

Note

Feature not complete.

Note

Authentication is not required or supported.

		
POST /api/v2/webpay/inapp/prepare/

		Request

		Parameters:		
		inapp (string) – the guid the in-app product to be purchased.

Response

{
 "contribStatusURL": "https://marketplace.firefox.com/api/v2/webpay/status/123/",
 "webpayJWT": "eyJhbGciOiAiSFMy... [truncated]",
}

		Parameters:		
		webpayJWT (string) – the JWT to pass to navigator.mozPay [https://wiki.mozilla.org/WebAPI/WebPayment]

		contribStatusURL (string) – the URL to poll for
Payment status.

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully completed.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – in-app product not found.

Signature Check

Retrieve a JWT that can be used to check the signature for making payments.
This is intended for system health checks and requires no authorization.
You can pass the retrieved JWT to the WebPay [https://github.com/mozilla/webpay] API to verify its signature.

		
POST /api/v2/webpay/sig_check/

		Request

No parameters are necessary.

Response

{
 "sig_check_jwt": "eyJhbGciOiAiSFMyNT...XsgG6JKCSw"
}

		Parameters:		
		sig_check_jwt (string) – a JWT that can be passed to WebPay [https://github.com/mozilla/webpay].

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully created resource.

Payment status

		
GET /api/v2/webpay/status/(string: uuid)/

		Request

		Parameters:		
		uuid (string) – the uuid of the payment. This URL is returned as the
contribStatusURL parameter of a call to prepare.

Response

		Parameters:		
		status (string) – complete or incomplete

		receipt – for in-app purchases only, a Web application receipt [https://wiki.mozilla.org/Apps/WebApplicationReceipt]

Example:

{"status": "complete",
 "receipt": null}

In-app purchases will include a receipt:

{"status": "complete",
 "receipt": "eyJhbGciOiAiUlM1MTI...0Xg0EQfUfH121U7b_tqAYaY"}

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – request processed, check status for value.

Installing

When an app is installed from the Marketplace, call the install API. This will
record the install.

Free apps

		
POST /api/v2/installs/record/

		Request:

		Parameters:		
		app (int|string) – the id or slug of the app being installed.

Response:

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully completed.

		202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – an install was already recorded for this user and app, so
we didn’t bother creating another one.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – app is not public, install not allowed.

Premium apps

Note

Authentication is required.

		
POST /api/v2/receipts/install/

		Returns a receipt if the app is paid and a receipt should be installed.

Request:

		Parameters:		
		app (int|string) – the id or slug of the app being installed.

Response:

{"receipt": "eyJhbGciOiAiUlM1MT...[truncated]"}

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully completed.

		401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – not authenticated.

		402 Payment Required [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.3] – payment required.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – app is not public, install not allowed.

Developers

Developers of the app will get a special developer receipt that is valid for
24 hours and does not require payment. See also Test Receipts [https://developer.mozilla.org/en-US/Marketplace/Monetization/Validating_a_receipt#Test_receipts].

Reviewers

Reviewers should not use this API.

Receipt Testing

Returns test receipts for use during testing or development. The returned
receipt will have type test-receipt. Only works for hosted apps.

		
POST /api/v2/receipts/test/

		Returns a receipt suitable for testing your app.

Request:

		Parameters:		
		manifest_url (string) – the fully qualified URL to the manifest, including
protocol.

		receipt_type (string) – one of ok, expired, invalid or refunded.

Response:

{"receipt": "eyJhbGciOiAiUlM1MT...[truncated]"}

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully completed.

Receipt reissue

Takes an expired receipt and returns a reissued receipt with updated expiry
times.

		
POST /api/v2/receipts/reissue/

		Request

		Param:		the body of the request must contain the receipt, in the same way
that the receipt verification [https://wiki.mozilla.org/Apps/WebApplicationReceipt#Interaction_with_the_verify_URL] endpoint does.

Response:

For a good response:

{
 "reason": "",
 "receipt": "eyJhbGciOiAiUlM1MT...[truncated]",
 "status": "expired"
}

For a failed response:

{
 "reason": "NO_PURCHASE",
 "receipt": "",
 "status": "invalid"
}

		Parameters:		
		reason (string) – only present if the request failed, contains the reason
for failure, see receipt verification [https://wiki.mozilla.org/Apps/WebApplicationReceipt#Interaction_with_the_verify_URL] docs.

		receipt (string) – the receipt, currently blank.

		status (string) – one of ok, expired, invalid, pending,
refunded

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – the receipt was not valid or not in an expired state, examine
the response to see the cause. The messages and the causes are the
same as for receipt verification [https://wiki.mozilla.org/Apps/WebApplicationReceipt#Interaction_with_the_verify_URL].

Price Tiers

		
GET /api/v2/webpay/prices/

		Gets a list of pay tiers from the Marketplace.

Request

		Parameters:		
		provider (string) – (optional) the payment provider. Current values: bango

The standard Listing query params.

Response

		Parameters:		
		meta (object) – Listing response meta.

		objects (array) – A listing of pay tiers.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		
GET /api/v2/webpay/prices/(int: id)/

		Returns a specific pay tier.

Response

{
 "name": "Tier 1",
 "pricePoint": "1",
 "prices": [{
 "price": "0.99",
 "method": 2,
 "region": 2,
 "tier": 26,
 "provider": 1,
 "currency": "USD",
 "id": 1225,
 "dev": true,
 "paid": true
 }, {
 "price": "0.69",
 "method": 2,
 "region": 14,
 "tier": 26,
 "provider": 1,
 "currency": "DE",
 "id": 1226,
 "dev": true,
 "paid": true
 }],
 "localized": {},
 "resource_uri": "/api/v2/webpay/prices/1/",
 "created": "2011-09-29T14:15:08",
 "modified": "2013-05-02T14:43:58"
}

		Parameters:		
		region (int) – a region.

		carrier (int) – a carrier.

		localized (object) – see Localized tier.

		tier (int) – the id of the tier.

		method (int) – the payment method.

		provider (int) – the payment provider.

		pricePoint (string) – this is the value used for in-app payments.

		dev (boolean) – if true the tier will be shown to the developer during
app configuration.

		paid (boolean) – if true this tier can be used for payments by users.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

Payment methods:

		0 Carrier billing only

		1 Credit card only

		2 Both carrier billing and credit card

Provider:

		0 Paypal, not currently supported

		1 Bango

		2 Reference implementation [http://zippypayments.readthedocs.org/en/latest/], not currently supported outside of
development instances

		3 Boku

Localized tier

To display a price to your user, it would be nice to know how to display a
price in the app. The Marketplace does some basic work to calculate the locale
of a user. Information that would be useful to show to your user is placed in
the localized field of the result.

A request with the HTTP Accept-Language header set to pt-BR, means that
localized will contain:

{
 "localized": {
 "amount": "10.00",
 "currency": "BRL",
 "locale": "R$10,00",
 "region": "Brasil"
 }
}

The exact same request with an Accept-Language header set to en-US
returns:

{
 "localized": {
 "amount": "0.99",
 "currency": "USD",
 "locale": "$0.99",
 "region": "United States"
 }
}

If a suitable currency for the region given in the request cannot be found, the
result will be empty. It could be that the currency that the Marketplace will
accept is not the currency of the country. For example, a request with
Accept-Language set to fr may result in:

{
 "localized": {
 "amount": "1.00",
 "currency": "USD",
 "locale": "1,00\xa0$US",
 "region": "Monde entier"
 }
}

Please note: these are just examples to demonstrate cases. Actual results will
vary depending upon data sent and payment methods in the Marketplace.

Product Icons

Authenticated clients like WebPay [https://github.com/mozilla/webpay] need to display external product images in a
safe way. This API lets WebPay cache and later retrieve icon URLs.

Note

All write requests (POST, PATCH) require authenticated users to have the
ProductIcon:Create permission.

		
GET /api/v2/webpay/product/icon/

		Gets a list of cached product icons.

Request

		Parameters:		
		ext_url (string) – Absolute external URL of product icon that was cached.

		ext_size (int) – Height and width pixel value that was declared for this icon.

		size – Height and width pixel value that this icon was resized to.

You may also request Listing query params.

Response

		Parameters:		
		meta (object) – Listing response meta.

		objects (array) – A listing of product icons.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		
GET /api/v2/webpay/product/icon/(int: id)/

		Response

{
 "url": "http://marketplace-cdn/product-icons/0/1.png",
 "resource_uri": "/api/v2/webpay/product/icon/1/",
 "ext_url": "http://appserver/media/icon.png",
 "ext_size": 64,
 "size": 64
}

		Parameters:		
		url (string) – Absolute URL of the cached product icon.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		
POST /api/v2/webpay/product/icon/

		Post a new product icon URL that should be cached.
This schedules an icon to be processed but does not return any object data.

Request

		Parameters:		
		ext_url (string) – Absolute external URL of product icon that should be cached.

		ext_size (int) – Height and width pixel value that was declared for this icon.

		size (int) – Height and width pixel value that this icon should be resized to.

Response

		Status Codes:		
		202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – New icon accepted. Deferred processing will begin.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – Some required fields were missing or invalid.

		401 Unauthorized [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – The API user is unauthorized to cache product icons.

Transaction failure

Note

Requires authenticated users to have the Transaction:NotifyFailure
permission. This API is used by internal clients such as WebPay [https://github.com/mozilla/webpay].

		
PATCH /api/v2/webpay/failure/(int: transaction_id)/

		Notify the app developers that our attempts to call the postback or
chargebacks URLs from In-app Payments [https://developer.mozilla.org/en-US/docs/Apps/Publishing/In-app_payments] failed. This will send an
email to the app developers.

Response

		Status Codes:		
		202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – Notification will be sent.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – The API user is not authorized to report failures.

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

api/topics/accounts.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

Accounts

User accounts on the Firefox Marketplace.

Account

Note

Requires authentication.

The account API, makes use of the term mine. This is an explicit variable to
lookup the logged in user account id.

		
GET /api/v2/account/settings/mine/

		Returns data on the currently logged in user.

Response

{
 "resource_uri": "/api/v2/account/settings/1/",
 "display_name": "Nice person",
 "enable_recommendations": true
}

To update account information:

		
PATCH /api/v2/account/settings/mine/

		Request

		Parameters:		
		display_name (string) – the displayed name for this user.

		enable_recommendations (boolean) – whether to show app recommendations or not.

Response

No content is returned in the response.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

Fields that can be updated:

		display_name

		enable_recommendations

		
GET /api/v2/account/installed/mine/

		Returns a list of the installed apps for the currently logged in user. This
ignores any reviewer or developer installed apps.

Request

The standard Listing query params.

Response

		Parameters:		
		meta (object) – Listing response meta.

		objects (array) – A listing of apps.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – sucessfully completed.

		
POST /api/v2/account/installed/mine/remove_app/

		Removes an app from the list of the installed apps for the currently logged
in user. This only works for user installed apps.

Request

		Parameters:		
		app (int) – the app id

Response

		Status Codes:		
		202 Accepted [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3] – sucessfully completed.

		
GET /api/v2/account/permissions/mine/

		Returns a mapping of the permissions for the currently logged in user.

Response

{
 "permissions": {
 "admin": false,
 "curator": false,
 "developer": false,
 "localizer": false,
 "lookup": true,
 "revenue_stats": false,
 "reviewer": false,
 "stats": false,
 "webpay": false
 },
 "resource_uri": "/api/v2/account/permissions/1/"
}

		Parameters:		
		permissions (object) – permissions and properties for the user account. It
contains boolean values which describe whether the user has the
permission described by the key of the field.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – sucessfully completed.

Feedback

		
POST /api/v2/account/feedback/

		Submit feedback to the Marketplace.

Note

Authentication is optional.

Note

This endpoint is rate-limited at 30 requests per hour per user.

Request

		Parameters:		
		chromeless (string) – (optional) “Yes” or “No”, indicating whether the user
agent sending the feedback is chromeless.

		feedback (string) – (required) the text of the feedback.

		from_url (string) – (optional) the URL from which the feedback was sent.

		platform (string) – (optional) a description of the platform from which the
feedback is being sent.

{
 "chromeless": "No",
 "feedback": "Here's what I really think.",
 "platform": "Desktop",
 "from_url": "/feedback",
 "sprout": "potato"
}

This form uses PotatoCaptcha, so there must be a field named sprout with
the value potato and cannot be a field named tuber with a truthy value.

Response

{
 "chromeless": "No",
 "feedback": "Here's what I really think.",
 "from_url": "/feedback",
 "platform": "Desktop",
 "user": null,
}

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully completed.

		429 Rate Limit Exceeded [http://tools.ietf.org/html/rfc6585#section-4] – exceeded rate limit.

Newsletter signup

		
POST /api/v2/account/newsletter/

		
This resource requests that the email passed in the request parameters be
subscribed to the Marketplace newsletter.

Note

Authentication is optional.

Note

This endpoint is rate-limited at 30 requests per hour per user/IP.

Request

		Parameters:		
		email (string) – The email address to send newsletters to.

		newsletter (string) – The newsletter to subscribe to. Can be either ‘marketplace’
or ‘about:apps‘.

Response

		Status Codes:		
		204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Successfully signed up.

		429 Rate Limit Exceeded [http://tools.ietf.org/html/rfc6585#section-4] – exceeded rate limit.

Operator Permissions

Users may be granted permission to operate as an administrator on individual
carrier/region pairs.

		
GET /api/v2/account/operators/

		Return a list of each carrier/region pair upon which the user has permission
to operate.

Note

Authentication is optional, but unauthenticated requests will never
return data.

Response

		Parameters:		
		meta (object) – Listing response meta.

		objects (array) – A list of carrier/region pairs for the user.

[
 {
 'carrier': 'telefonica',
 'region': 'br'
 },
 {
 'carrier': 'telefonica',
 'region': 'co'
 }
]

If the user is able to administer every carrier/region pair, it will
instead return:

[
 '*'
]

Sign Developer Agreement

		
POST /api/v2/account/dev-agreement/show/

		Get the developer agreement URL for the authenticating user.

Note

Authentication is required.

Response

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully viewed developer agreement.

		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully viewed developer agreement for the first time.
The user can now sign the agreement.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – user has already signed terms of service.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – authentication required.

		405 Method Not Allowed [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6] – invalid HTTP method; only POST is allowed on this endpoint.

		
POST /api/v2/account/dev-agreement/read/

		Sign the developer agreement for the authenticating user. The user must
have already been shown the developer agreement

Note

Authentication is required.

Response

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully signed.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – user has already signed terms of service.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – authentication required.

		405 Method Not Allowed [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6] – invalid HTTP method; only POST is allowed on this endpoint.

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

api/topics/site.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

Site

Configuration about the site.

Categories

Note

The URL for this API will be moving.

		
GET /api/v2/apps/category/

		Returns a list of categories available on the marketplace.

Request

Standard Listing query params.

Response

		Parameters:		
		meta (object) – Listing response meta.

		objects (array) – A listing of categories.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		
GET /api/v2/apps/category/(string: slug)/

		Returns a category.

Response

{
 "name": "Games",
 "slug": "games"
}

Carriers

		
GET /api/v2/services/carrier/

		Returns a list of possible carriers for apps.

Response

		Parameters:		
		meta (object) – Listing response meta.

		objects (array) – A listing of carriers.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		
GET /api/v2/services/carrier/<slug>/

		Returns a carrier.

Request

Standard Listing query params.

Response

{
 "id": "1",
 "name": "PhoneORama",
 "resource_uri": "/api/v2/services/carrier/phoneorama/",
 "slug": "phoneorama"
}

Regions

		
GET /api/v2/services/region/

		Returns a list of possible regions for apps.

Response

		Parameters:		
		meta (object) – Listing response meta.

		objects (array) – A listing of regions.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

		
GET /api/v2/services/region/<slug>/

		Returns a region.

Request

Standard Listing query params.

Response

{
 "id": "1",
 "name": "Appistan",
 "slug": "ap",
}

Configuration

		
GET /api/v2/services/config/site/

		Returns information about how the marketplace is configured. Not all
settings and configuration options are returned - only a subset. This
subset will change as features in the site change. The list of results
should not be relied upon to stay consistent.

Response

		Parameters:		
		fxa (object) – an object containing Firefox Accounts auth information if the
Firefox Accounts waffle switch is active.

		version (string|null) – the git commit number of the deployment.

		settings (object) – a subset of useful site settings.

		waffle (object) – an object containing a list waffle flags and switches.

Example:

{
 "fxa": {
 "fxa_auth_state": "aaabbbccctoken",
 "fxa_auth_url": "https://somelongauthurl.com?stuff=stuff"
 },
 "waffle": {
 "switches": {
 "some-switch": {
 "name": "some-switch",
 "created": "2013-12-17T15:38:10",
 "modified": "2013-12-17T15:38:10",
 "note": "",
 "active": true,
 "id": 17
 }
 },
 "flags": {
 "some-flag": {
 "note": "",
 "users": [],
 "testing": false,
 "everyone": true,
 "groups": [],
 "rollout": false,
 "id": 1,
 "staff": false,
 "superusers": true,
 "authenticated": false,
 "name": "a-flag",
 "created": "2013-12-19T10:21:56",
 "percent": null,
 "modified": "2013-12-19T10:21:56",
 "languages": ""
 }
 }
 }
 "settings": {
 "SITE_URL": "http://z.mozilla.dev"
 },
 "version": null
}

?serializer=commonplace

If you pass commonplace as a GET parameter for serializer, the switches
response will be simply a list of names of the active switches.

		Parameters:		
		switches (array) – a list of waffle switches

Example:

{
 ...

 "waffle": {
 "switches": ["user-curation", "feed"]
 },

 ...
}

For full information about waffle flags and switches, please see the waffle
documentation: http://waffle.readthedocs.org/en/latest/types.html

Price tiers

		
GET /api/v2/services/price-tier/

		Lists price tiers.

Response

		Parameters:		
		objects – A listing of tiers.

		
GET /api/v2/services/price-tier/(int: id)/

		Returns a price tier.

Response

		Parameters:		
		resource_uri (string) – The URI for this tier.

		active (boolean) – Whether the price tier is active.

		name (string) – The price tier name.

		method (string; one of "operator", "card", or "operator+card".) – How payment may be submitted.

		
POST /api/v2/services/price-tier/

		Create a price tier.

Note

Requires admin account.

Request

		Parameters:		
		active (boolean) – Whether the price tier is active.

		name (string) – The price tier name.

		method (string; one of "operator", "card", or "operator+card".) – How payment may be submitted.

		price (decimal string) – Price in US dollars.

		
PUT /api/v2/services/price-tier/(int: id)/

		Update a price tier.

Note

Requires admin account.

Request

		Parameters:		
		active (boolean) – Whether the price tier is active.

		name (string) – The price tier name.

		method (string; one of "operator", "card", or "operator+card".) – How payment may be submitted.

		price (decimal string) – Price in US dollars.

		
DELETE /api/v2/services/price-tier/(int: id)/

		Delete a price tier and all associated prices.

Note

Requires admin account.

		
GET /api/v2/services/price-currency/

		Lists prices in various currencies.

Request

		Parameters:		
		tier (number) – Price tier ID to select currencies for.

Response

		Parameters:		
		objects – A listing of prices.

		
GET /api/v2/services/price-currency/(int: id)/

		Fetch a single price.

Response

		Parameters:		
		id (number) – Identifier for this price.

		tier (number) – ID of tier this price belongs to.

		currency (string) – Code for this price’s currency.

		carrier (string) – Slug of carrier this price applies to.

		price (number) – Price in this currency.

		provider (string) – Name of payment provider for this price.

		method (string; one of "operator", "card", or "operator+card".) – How payment may be submitted.

		
POST /api/v2/services/price-currency/

		Create a price.

Note

Requires admin account.

Request

		Parameters:		
		tier (number) – ID of tier this price belongs to.

		currency (string) – Code for this price’s currency.

		carrier (string) – Slug of carrier this price applies to.

		price (number) – Price in this currency.

		provider (string) – Name of payment provider for this price.

		method (string; one of "operator", "card", or "operator+card".) – How payment may be submitted.

		
PUT /api/v2/services/price-currency/(int: id)/

		Update a price.

Note

requires an admin account.

Request

		Parameters:		
		tier (number) – ID of tier this price belongs to.

		currency (string) – Code for this price’s currency.

		carrier (string) – Slug of carrier this price applies to.

		price (number) – Price in this currency.

		provider (string) – Name of payment provider for this price.

		method (string; one of "operator", "card", or "operator+card".) – How payment may be submitted.

		
DELETE /api/v2/services/price-currency/(int: id)/

		Delete a price.

Note

Requires admin account.

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

api/topics/feed.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

New in version 2.

Feed

The feed is a stream of content relevant to the user displayed on
the Marketplace home page. The feed is comprised of a number of feed items, each containing a singular of piece of content. Currently, the
feed may include:

		Feed Apps

		Feed Brands

		Feed Collections

		Operator Shelves

Note

GET, HEAD, and OPTIONS requests to these endpoints may be made
anonymously. Authentication and the Feed:Curate permission are required
to make any other request.

Note

New in version 2 of the API.

Feed

		
GET /api/v2/feed/get/?carrier=(str: carrier)®ion=(str: region)

		A convenience endpoint containing all the data necessary for a user’s feed,
which currently includes:

		All the feed items.

If an operator shelf is available for the passed in carrier + region, it
appear first in the list of feed items in the respnse.

Request

		Parameters:		
		carrier (str) – the slug of a carrier. Omit if no carrier
is available.

		region (str) – the slug of a region. Omit if no region is
available.

Response

		Parameters:		
		meta (object) – Listing response meta.

		objects (array) – An ordered list of feed items for the
user.

{
 "objects": [
 {
 "id": 343,
 ...
 },
 {
 "id": 518,
 ...
 }
],
}

Feed Items

A feed item wraps a feed app, feed brand, or feed collection with additional
metadata regarding when and where to feature the content. Feed items are
represented thusly:

{
 "app": null,
 "brand": null,
 "carrier": "telefonica",
 "collection": {
 "data": "..."
 }
 "id": 47,
 "item_type": "collection",
 "region": "br",
 "resource_url": "/api/v2/feed/items/47/",
 "shelf": null
}

		app

		object|null - the full representation of a feed app.

		brand

		object|null - the full representation of a feed brand.

		carrier

		string|null - the slug of a carrier. If
defined, this feed item will only be available by users of that carrier.

		category

		string|null - the slug of a category. If defined,
this feed item will only be available to users browsing that category.

		collection

		object|null - the full representation of a collection.

		id

		int the ID of this feed item.

		item_type

		string - the type of object being represented by this feed item. This
will always be usable as a key on the feed item instance to fetch that
object’s data (i.e. feeditem[feeditem['item_type']] will always be
non-null). Can be app, collection, or brand.

		order

		int - order/weight at which the feed item is displayed on a feed.

		resource_url

		string - the permanent URL for this feed item.

		region

		string|null - the slug of a region. If defined, this
feed item will only be available in that region.

		shelf

		object - the full representation of an operator shelf.

List

		
GET /api/v2/feed/items/

		A listing of feed items.

Response

		Parameters:		
		feed (object) – Listing response meta.

		shelf (array) – A listing of
feed items.

{
 "carrier": null,
 "category": null,
 "collection": 4,
 "region": 1
}

Detail

		
GET /api/v2/feed/items/(int: id)/

		Detail of a specific feed item.

Request

		Parameters:		
		id (int) – the ID of the feed item.

Response

A representation of the feed item.

Create

		
POST /api/v2/feed/items/

		Create a feed item.

Request

		Parameters:		
		carrier (int|null) – the ID of a carrier. If defined, it will
restrict this feed item to only be viewed by users of this carrier.

		category (string|null) – the slug of a category. If defined,
it will restrict this feed item to only be viewed by users browsing
this category.

		region (int|null) – the ID of a region. If defined, it will
restrict this feed item to only be viewed in this region.

The following parameters define the object contained by this feed item.
Only one may be set on a feed item.

		Parameters:		
		app (int|null) – the ID of a feed app.

		collection (int|null) – the ID of a collection.

{
 "carrier": null,
 "category": null,
 "collection": 4,
 "region": 1
}

Response

A representation of the newly-created feed item.

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully created.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – submission error, see the error message in the response body
for more detail.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not authorized.

Update

		
PATCH /api/v2/feed/items/(int: id)/

		Update the properties of a feed item.

Request

		Parameters:		
		carrier (int|null) – the ID of a carrier. If defined, it will
restrict this feed item to only be viewed by users of this carrier.

		category (slug|null) – the slug of a category. If defined,
it will restrict this feed item to only be viewed by users browsing
this category.

		region (int|null) – the ID of a region. If defined, it will
restrict this feed item to only be viewed in this region.

The following parameters define the object contained by this feed item.
Only one may be set on a feed item.

		Parameters:		
		app (int|null) – the ID of a feed app.

		collection (int|null) – the ID of a collection.

Response

A serialization of the updated feed item.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully updated.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – submission error, see the error message in the response body
for more detail.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not authorized.

Delete

		
DELETE /api/v2/feed/items/(int: id)/

		Delete a feed item.

Request

		Parameters:		
		id (int) – the ID of the feed item.

Response

		Status Codes:		
		204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – successfully deleted.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not authorized.

Feed Apps

A feed app is a thin wrapper around an app, object containing
additional metadata related to its feature in the feed. A feed app represents
a featured app, a single app that is highlighted on its own in the feed.

Feed apps are represented thusly:

{
 "app": {
 "data": "..."
 },
 "background_color": "#A90000",
 "color": "ruby",
 "description": {
 "en-US": "A featured app",
 "fr": "Une application sélectionnée"
 },
 "type": "icon",
 "background_image": "http://somecdn.com/someimage.png"
 "id": 1
 "preview": null,
 "pullquote_attribute": null,
 "pullquote_rating": null,
 "pullquote_text": null,
 "slug": "app-of-the-month",
 "url": "/api/v2/feed/apps/1/"
}

		app

		object - the full representation of an app.

		background_color

		string - background color in 6-digit hex format prepended by a hash. Must
be one of #CE001C, #F78813, #00953F, #0099D0, #1E1E9C,
#5A197E, #A20D55.

		color

		string - color code name. The actual color values are defined in the
frontend. Currently one of ruby, amber, emerald, topaz,
sapphire, amethyst, garnet.

		description

		string|null - a translated description of
the app being featured.

		type

		string - describes how the feed app will be displayed or featured. Can be
icon, image, description, quote, preview.

		id

		int - the ID of this feed app.

		image

		string - header graphic or background image

		preview

		object|null - a featured preview
(screenshot or video) of the app.

		pullquote_attribute

		object|null - a translated attribute of the
pull quote.

		pullquote_rating

		integer|null - a numeric rating of the pull quote between 1 and 5
(inclusive).

		pullquote_text

		object|null - the translated text of a pull
quote to feature with the app

		slug

		string - a slug to use in URLs for the featured app

		url

		string|null - the permanent URL for this feed app.

List

		
GET /api/v2/feed/apps/

		A listing of feed apps.

Response

		Parameters:		
		meta (object) – Listing response meta.

		objects (array) – A listing of
feed apps.

Detail

		
GET /api/v2/feed/apps/(int: id)/

		Detail of a specific feed app.

Request

		Parameters:		
		id (int) – the ID of the feed app.

Response

A representation of the feed app.

Create

		
POST /api/v2/feed/apps/

		Create a feed app.

Request

		Parameters:		
		app (int|null) – the ID of a feed app.

		background_color (string) – [DEPRECATED] color in six-digit hex (with hash prefix)

		color (string) – primary color used to style. Actual hex value defined in
frontend.

		background_image_upload_url (string) – a URL pointing to an image

		description (object|null) – a translated description
of the app being featured.

		type (string) – can be icon, image, description,
quote, or preview.

		preview (int|null) – the ID of a preview to
feature with the app.

		pullquote_attribute (object|null) – a translated
attribution of the pull quote.

		pullquote_rating (int|null) – a numeric rating of the pull quote between 1 and 5
(inclusive).

		pullquote_text (object|null) – the translated text of
a pull quote to feature with the app. Required if
pullquote_attribute or pullquote_rating are defined.

		slug (string) – unique slug to use in URLs for the featured app

{
 "app": 710,
 "background_color": "#A90000",
 "color": "ruby",
 "background_image_upload_url": "http://imgur.com/XXX.jpg",
 "description": {
 "en-US": "A featured app",
 "fr": "Une application sélectionnée"
 },
 "type": "icon",
 "pullquote_rating": 4,
 "pullquote_text": {
 "en-US": "This featured app is excellent.",
 "fr": "Pommes frites"
 },
 "slug": "app-of-the-month"
}

Response

A representation of the newly-created feed app.

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully created.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – submission error, see the error message in the response body
for more detail.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not authorized.

Update

		
PATCH /api/v2/feed/apps/(int: id)/

		Update the properties of a feed app.

Request

		Parameters:		
		app (int|null) – the ID of a feed app.

		background_color (string) – background color in 6-digit hex format prepended
by a hash. Must be one of #CE001C, #F78813, #00953F,
#0099D0, #1E1E9C, #5A197E, #A20D55.

		color (string) – primary color used to style. Actual hex value defined in
frontend. Currently one of ruby, amber, emerald, topaz,
sapphire, amethyst, garnet.

		background_image_upload_url (string) – a URL pointing to an image

		description (object|null) – a translated description
of the app being featured.

		type (string) – can be icon, image, description,
quote, or preview.

		preview (int|null) – the ID of a preview to
feature with the app.

		pullquote_attribute (object|null) – a translated
attribution of the pull quote.

		pullquote_rating (int|null) – a numeric rating of the pull quote between 1 and 5
(inclusive).

		pullquote_text (object|null) – the translated text of
a pull quote to feature with the app. Required if
pullquote_attribute or pullquote_rating are defined.

		slug (string) – unique slug to use in URLs for the featured app

Response

A representation of the newly-created feed app.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully updated.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – submission error, see the error message in the response body
for more detail.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not authorized.

Delete

		
DELETE /api/v2/feed/apps/(int: id)/

		Delete a feed app.

Request

		Parameters:		
		id (int) – the ID of the feed app.

Response

		Status Codes:		
		204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – successfully deleted.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not authorized.

Feed App Image

One-to-one background image or header graphic used to display with the
feed app.

		
GET /api/v2/feed/apps/(int:id|string:slug)/image/

		Get the image for a feed app.

Note

Authentication is optional.

		
PUT /api/v2/feed/apps/(int:id|string:slug)/image/

		Set the image for a feed app. Accepts a data URI as the request
body containing the image, rather than a JSON object.

Note

Authentication and one of the ‘Collections:Curate’ permission or
curator-level access to the feed app are required.

		
DELETE /api/v2/feed/apps/(int:id|string:slug)/image/

		Delete the image for a feed app.

Note

Authentication and one of the ‘Collections:Curate’ permission or
curator-level access to the feed app are required.

Feed Brands

A feed brand is a collection-like object that allows editors to quickly create
content without involving localizers by choosing from one of a number of
predefined, prelocalized titles.

Feed brands are represented thusly:

{
 'apps': [
 {
 'id': 1
 },
 {
 'id': 2
 }
],
 'id': 1,
 'layout': 'grid',
 'slug': 'potato',
 'type': 'hidden-gem',
 'url': '/api/v2/feed/brands/1/'
}

		apps

		array - a list of serializations of the member apps.

		id

		int - the ID of this feed brand.

		layout

		string - a string indicating the way apps should be laid out in the
brand’s detail page. One of 'grid' or 'list'.

		slug

		string - a slug to use in URLs for the feed brand

		type

		string - a string indicating the title and icon that should be displayed
with this feed brand. See a
full list of options [https://github.com/mozilla/zamboni/blob/master/mkt/feed/constants.py].

		url

		string|null - the permanent URL for this feed brand.

List

		
GET /api/v2/feed/brands/

		A listing of feed brands.

Response

		Parameters:		
		meta (object) – Listing response meta.

		objects (array) – A listing of
feed brands.

Detail

		
GET /api/v2/feed/brands/(int: id)/

		Detail of a specific feed brand.

Request

		Parameters:		
		id (int) – the ID of the feed brand.

Response

A representation of the feed brand.

Create

		
POST /api/v2/feed/brands/

		Create a feed brand.

Request

		Parameters:		
		apps (array) – an ordered array of app IDs.

		layout (string) – string indicating the way apps should be laid out in the
brand’s detail page. One of 'grid' or 'list'.

		slug (string) – a slug to use in URLs for the feed brand.

		type (string) – a string indicating the title and icon that should be displayed
with this feed brand. See a
full list of options [https://github.com/mozilla/zamboni/blob/master/mkt/feed/constants.py].

{
 "apps": [19, 1, 44],
 "layout": "grid",
 "slug": "facebook-hidden-gem",
 "type": "hidden-gem"
}

Response

A representation of the newly-created feed brand.

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully created.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – submission error, see the error message in the response body
for more detail.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not authorized.

Update

		
PATCH /api/v2/feed/brands/(int: id)/

		Update the properties of a feed brand.

Request

		Parameters:		
		apps (array) – an ordered array of app IDs. If it is included in PATCH
requests, it will delete from the collection all apps not included.

		layout (string) – string indicating the way apps should be laid out in the
brand’s detail page. One of 'grid' or 'list'.

		slug (string) – a slug to use in URLs for the feed brand.

		type (string) – a string indicating the title and icon that should be displayed
with this feed brand. See a
full list of options [https://github.com/mozilla/zamboni/blob/master/mkt/feed/constants.py].

{
 "layout": "grid",
 "slug": "facebook-hidden-gem",
 "type": "hidden-gem"
}

Response

A representation of the updated feed brand.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully updated.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – submission error, see the error message in the response body
for more detail.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not authorized.

Delete

		
DELETE /api/v2/feed/brands/(int: id)/

		Delete a feed brand.

Request

		Parameters:		
		id (int) – the ID of the feed brand.

Response

		Status Codes:		
		204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – successfully deleted.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not authorized.

Feed Collections

A feed collection is a complex assemblage of apps with a variety of display
options.

Apps in feed collections may be grouped. The group they belong to, if set, is
represented as a translated group name, which is
assigned to the group property of each app’s serialization. If ungrouped,
group will be null.

Feed collections are represented thusly:

{
 'apps': [
 {
 'id': 1,
 'group': {
 'en-US': 'Games',
 'fr': 'Jeux'
 },
 ...
 },
 {
 'id': 2,
 'group': {
 'en-US': 'Games',
 'fr': 'Jeux'
 },
 ...
 },
 {
 'id': 3,
 'group': {
 'en-US': 'Tools',
 'fr': 'Outils'
 },
 ...
 }
],
 'background_color': '#00AACC',
 'description': {
 'en-US': 'A description of my collection.'
 },
 'id': 19,
 'name': {
 'en-US': 'My awesome collection'
 },
 'slug': 'potato',
 'type': 'promo',
 'url': '/api/v2/feed/collections/1/'
}

		apps

		array - a list of serializations of the member apps.

		background_color

		string - background color in 6-digit hex format prepended by a hash. Must
be one of #CE001C, #F78813, #00953F, #0099D0, #1E1E9C,
#5A197E, #A20D55.

		description

		object|null a translated description of
the collection.

		id

		int - the ID of this collection.

		name

		object a translated name of the
collection.

		slug

		string - a slug to use in URLs for the collection

		type

		string - a string indicating the display type of the collection. Must be
one of promo or listing.

		url

		string|null - the permanent URL for this collection.

When creating or updating a feed collection, the apps parameter may take
two forms:

		An array of app IDs. This will result in the collection’s apps being
ungrouped.

{
 'apps': [1, 18, 3, 111, 98, 231]
}

		An array of objects, each with an apps property containing app IDs and
a translated name property defining the
name of the group for those apps. This will result in the collection’s apps
being grouped as specified.

{
 'apps': [
 {
 'apps': [1, 18, 3],
 'name': {
 'en-US': 'Games',
 'fr': 'Jeux'
 }
 },
 {
 'apps': [111, 98, 231],
 'name': {
 'en-US': 'Tools',
 'fr': 'Outils'
 }
 }
]
}

List

		
GET /api/v2/feed/collections/

		A listing of feed collections.

Response

		Parameters:		
		apps (array) – an ordered array of app serializations..

		meta (object) – Listing response meta.

		objects (array) – A listing of
feed collections.

Detail

		
GET /api/v2/feed/collections/(int: id)/

		Detail of a specific feed collection.

Request

		Parameters:		
		id (int) – the ID of the feed collection.

Response

A representation of the feed collection.

Create

		
POST /api/v2/feed/collections/

		Create a feed collection.

Request

		Parameters:		
		apps – a grouped or ungrouped
app list.

		background_image_upload_url (string) – a URL pointing to an image

		background_color (string) – [DEPRECATED] a hex color used in display of the
collection. Currently must be one of #B90000, #FF4E00,
#CD6723, #00AACC, #5F9B0A, or #2C393B.

		color (string) – primary color used to style. Actual hex value defined in
frontend. Currently one of ruby, amber, emerald, topaz,
sapphire, amethyst, garnet.

		description (object|null) – a translated description
of the feed collection.

		name (object) – a translated name of the
collection.

		slug (string) – a slug to use in URLs for the collection.

		type (string) – a string indicating the display type of the collection. Must
be one of promo or listing.

{
 "apps": [984, 19, 345, 981],
 "background_image_upload_url": "http://imgur.com/XXX.jpg",
 "color": "#B90000",
 "description": {
 "en-US": "A description of my collection."
 },
 "id": 19,
 "name": {
 "en-US": "My awesome collection"
 },
 "slug": "potato",
 "type": "promo"
}

Response

A representation of the newly-created feed collection.

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully created.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – submission error, see the error message in the response body
for more detail.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not authorized.

Update

		
PATCH /api/v2/feed/collections/(int: id)/

		Update the properties of a collection.

Request

		Parameters:		
		apps (array) – a grouped or ungrouped
app list. If included in PATCH
requests, it will delete from the collection all apps not included.

		background_image_upload_url (string) – a URL pointing to an image

		background_color – [DEPRECATED] a hex color used in display of the
collection. Currently must be one of #B90000, #FF4E00,
#CD6723, #00AACC, #5F9B0A, or #2C393B.

		color (string) – primary color used to style. Actual hex value defined in
frontend. Currently one of ruby, amber, emerald, topaz,
sapphire, amethyst, garnet.

		description (object|null) – a translated description
of the feed collection.

		name (object) – a translated name of the
collection.

		slug (string) – a slug to use in URLs for the collection.

		type (string) – a string indicating the display type of the collection. Must
be one of promo or listing.

{
 "apps": [912, 42, 112],
 "color": "#B90000"
 "background_image_upload_url": "http://imgur.com/XXX.jpg",
 "description": {
 "en-US": "A description of my collection."
 },
 "name": {
 "en-US": "My awesome collection"
 },
 "slug": "potato",
 "type": "promo"
}

Response

A representation of the updated feed collection.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully updated.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – submission error, see the error message in the response body
for more detail.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not authorized.

Delete

		
DELETE /api/v2/feed/collections/(int: id)/

		Delete a feed collection.

Request

		Parameters:		
		id (int) – the ID of the feed collection.

Response

		Status Codes:		
		204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – successfully deleted.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not authorized.

Operator Shelf

An operator shelf is a collection-like object that provides a centralized place
for operators to showcase content to their customers. They are always bound to
category + region pairs, and are only shown to users browsing from the
specified category and region.

Operator shelves are represented thusly:

{
 "apps": [
 {
 "id": 1
 },
 {
 "id": 2
 }
],
 "background_image": "http://somecdn.com/someimage.png",
 "background_image_landing": "http://somecdn.com/some-other-image.png",
 "carrier": "telefonica",
 "description": {
 "en-US": "A description of my collection."
 },
 "id": 19,
 "is_published": false,
 "name": {
 "en-US": "My awesome collection"
 },
 "region": "br",
 "slug": "potato",
 "url": "/api/v2/feed/shelves/1/"
}

		apps

		array - a list of serializations of the member apps.

		background_image

		string - the URL to an image used while displaying the operator shelf.

		background_image_landing

		string - the URL to an image used while displaying the operator
shelf landing page.

		carrier

		string - the slug of the carrier the operator shelf
belongs to.

		description

		string|null - a translated description of
the operator shelf.

		id

		int - the ID of this operator shelf.

		is_published

		boolean - whether the shelf is published on a feed in its carrier/region.

		name

		string - a translated name for the
operator shelf.

		region

		string - the slug of the region the operator shelf
belongs to.

		slug

		string - a slug to use in URLs for the operator shelf

		url

		string|null - the permanent URL for the operator shelf.

List

		
GET /api/v2/feed/shelves/

		A listing of operator shelves.

Response

		Parameters:		
		meta (object) – Listing response meta.

		objects (array) – A listing of
operator shelves.

List User’s

		
GET /api/v2/account/shelves/

		A listing of operator shelves upon which the authenticating user has
permission to administer.

Response

		A listing of :ref:`operator shelves

		<feed-shelves>`.

Detail

		
GET /api/v2/feed/shelves/(int:id|string:slug)/

		Detail of a specific operator shelf.

Request

		Parameters:		
		id (int) – the ID of the operator shelf.

Response

A representation of the operator shelf.

Create

		
POST /api/v2/feed/shelves/

		Create an operator shelf.

Request

		Parameters:		
		apps (array) – an ordered array of app IDs.

		background_image_upload_url (string) – a URL pointing to an image

		background_image_landing_upload_url (string) – a URL pointing to an image

		carrier (string) – the slug of a carrier.

		description (object|null) – a translated description
of the app being featured.

		name (object) – a translated name of the
collection.

		region (string) – the slug of a region.

		slug (string) – a slug to use in URLs for the operator shelf.

{
 "apps": [19, 1, 44],
 "background_image_upload_url": "http://imgur.com/XXX.jpg",
 "background_image_landing_upload_url": "http://imgur.com/YYY.jpg",
 "carrier": "telefonica",
 "description": {
 "en-US": "A list of Telefonica's Favorite apps."
 },
 "name": {
 "en-US": "Telefonica's Favorite Apps"
 },
 "region": "br",
 "slug": "telefonica-brazil-shelf"
}

Response

A representation of the newly-created operator shelf.

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – successfully created.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – submission error, see the error message in the response body
for more detail.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not authorized.

Update

		
PATCH /api/v2/feed/shelves/(int:id|string:slug)/

		Update the properties of an operator shelf.

Request

		Parameters:		
		apps (array) – an ordered array of app IDs.

		background_image_upload_url (string) – a URL pointing to an image

		background_image_landing_upload_url (string) – a URL pointing to an image

		carrier (string) – the slug of a carrier.

		description (object|null) – a translated description
of the app being featured.

		name (object) – a translated name of the
collection.

		region (string) – the slug of a region.

		slug (string) – a slug to use in URLs for the operator shelf.

{
 "apps": [19, 1, 44],
 "background_image_upload_url": "http://imgur.com/XXX.jpg",
 "background_image_landing_upload_url": "http://imgur.com/YYY.jpg",
 "carrier": "telefonica",
 "description": {
 "en-US": "A list of Telefonica's Favorite apps."
 },
 "name": {
 "en-US": "Telefonica's Favorite Apps"
 },
 "region": "br",
 "slug": "telefonica-brazil-shelf"
}

Response

A representation of the updated operator shelf.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully updated.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – submission error, see the error message in the response body
for more detail.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not authorized.

Delete

		
DELETE /api/v2/feed/shelves/(int:id|string:slug)/

		Delete an operator shelf.

Request

		Parameters:		
		id (int) – the ID of the operator shelf.

Response

		Status Codes:		
		204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – successfully deleted.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not authorized.

Image

One-to-one background image or header graphic used to display with the operator
shelf.

		
GET /api/v2/feed/shelves/(int:id|string:slug)/image/

		Get the image for an operator shelf.

		
PUT /api/v2/feed/shelves/(int:id|string:slug)/image/

		Set the image for an operator shelf. Accepts a data URI as the request
body containing the image, rather than a JSON object.

		
DELETE /api/v2/feed/shelves/(int:id|string:slug)/image/

		Delete the image for an operator shelf.

Builder

		
PUT /api/v2/feed/builder/

		Sets feeds by region. For each region passed in, the builder
will delete all of the carrier-less feed items for
that region and then batch create feed items in the order that feed
element IDs are passed in for that region.

Request

{
 'us': [
 ['collection', 52],
 ['app', 36],
 ['brand, 123],
 ['app', 66]
],
 'cn': [
 ['app', 36],
 ['collection', 52],
 ['brand', 2313]
 ['brand, 123],
],
 'hu': [], // Passing in an empty array will empty that feed.
}

		The keys of the request are region slugs.

		The region slugs point to two-element arrays.

		
		The first element of the array is the item type. It can be

		app, collection, or brand.

		The second element of the array is the ID of a feed element.

		
		It can be the ID of a FeedApp, or

		FeedBrand.

		Order matters.

Response

		Status Codes:		
		201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – success.

		400 Bad Request [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – bad request.

		403 Forbidden [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4] – not authorized.

Feed Element Search

		
GET /api/v2/feed/elements/search?q=(str: q)

		Search for feed elements given a search parameter.

Request

		Parameters:		
		q (str) – searches names and slugs

Response

		Parameters:		
		apps (array) – feed apps

		brands (array) – feed brands

		collections (array) – feed collections

		shelves (array) – feed shelves

{
 "apps": [
 {
 "id": 343,
 ...
 },
],
 "brands": [
 {
 "id": 143,
 ...
 },
],
 "collections": [
 {
 "id": 543,
 ...
 },
],
 "shelves": [
 {
 "id": 643,
 ...
 },
],
}

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

api/topics/games.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

Games

This API allows search for featured games.

Daily Games

		
GET /api/v2/games/daily/

		Returns a small set of featured games, one game from each featured game
category (e.g., action, adventure, puzzle, strategy). This set will be
randomly updated daily.

Response

		Parameters:		
		meta (object) – Listing response meta.

		objects (array) – A listing of
apps and
websites that are tagged as featured
games.

		Status Codes:		
		200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – successfully completed.

Featured Game Listings

		
GET /api/v2/apps/search/?tag=featured-game

		Response

Returns apps and websites tagged as featured games.

		
GET /api/v2/apps/search/?tag=featured-game-[adventure, action, puzzle, strategy]

		Response

Returns apps and websites tagged as featured games, further categorized.

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

api/topics/fireplace.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

Fireplace

Fireplace is the consumer client for the Marketplace. It has some special
API’s. These are not recommended for consumption by other clients and can
change in conjunction with the Fireplace client.

App

		
GET /api/v2/fireplace/app/

		A copy of the app API. The response only
contains the specific subset of fields Fireplace needs.

Error reporter

		
POST /api/v2/fireplace/report_error

		An entry point for reporting client-side errors via Sentry.

Request

Takes a sentry.interfaces.Exception [https://sentry.readthedocs.org/en/latest/developer/interfaces/index.html#sentry.interfaces.Exception] JSON object.

Example:

[{
 "value": "important problem",
 "stacktrace": {
 "frames": [{
 "abs_path": "/real/file/name.py"
 "filename": "file/name.py",
 "function": "myfunction",
 "vars": {
 "key": "value"
 },
 "pre_context": [
 "line1",
 "line2"
],
 "context_line": "line3",
 "lineno": 3,
 "in_app": true,
 "post_context": [
 "line4",
 "line5"
],
 }]
 }
}]

Response

		Status Codes:		
		204 No Content [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5] – Message sent.

Search

		
GET /api/v2/fireplace/search/

		A copy of the search API. Like the App API above, the
response only contains the specific subset of fields Fireplace needs.

Featured Search

		
GET /api/v2/fireplace/search/featured/

		A copy of the search API. Like the App API above, the
response contains the specific subset of fields Fireplace needs.

Only kept for backwards-compatibility purposes, don’t use in new code.

Multi Search

		
GET /api/v2/fireplace/multi-search/

		A copy of the multi-search API. Like the App API
above, the response only contains the specific subset of fields Fireplace
needs.

Consumer Information

		
GET /api/v2/fireplace/consumer-info/

		Return information about the client making the request.

Response

		Parameters:		
		region (string) – The region slug for this client.

If user authentication information is passed to the request, the following
will also be added to the response:

		Parameters:		
		apps.developed (array) – IDs of apps the user has developed.

		apps.installed (array) – IDs of apps the user has installed.

		apps.purchased (array) – IDs of apps the user has purchased.

		enable_recommenations – A boolean if we should show app recommendations.

 © Copyright 2015, The Marketplace Crew.
 Created using Sphinx 1.3.5.

api/topics/export.html

 Navigation

 		
 index

 		
 routing table |

 		zamboni 0.9 documentation »

Export

There is an export of nightly data that is available as a tarball. The download
can be found at the following URLs (replace YYYY-MM-DD with today’s date):

		Development server: https://marketplace-dev-cdn.allizom.org/dumped-apps/tarballs/YYYY-MM-DD.tgz

		Production server: https://marketplace.cdn.mozilla.net/dumped-apps/tarballs/YYYY-MM-DD.tgz

Files remain on the server for 30 days then are removed.

Contents:

		readme.txt and license.txt: information about the export.

		apps: this directory contains all the exported apps. Each app is a separate
JSON file and contains the output of the app GET method.

		collections: this directory contains all the exported collections. Each
collection is a separate JSON file with the format shown below.

Collection Format

The collection format lists the collection data and references to the apps
within the collection. The app data is just an ID and filepath.

Warning

Ensure that you only read files within your export directory by
expanding the filepath (parts like ../ and /) and verifying the
comp