
yt Enhancement Proposals
Documentation

Release 1.0

The yt Project

May 27, 2022

Contents

1 YTEP-0000: Project Governance 3

2 YTEP-0001: IO Chunking 5

3 YTEP-0002: Profile Plotter 9

4 YTEP-0003: Standardizing field names 13

5 YTEP-0005: Octrees for Fluids and Particles 21

6 YTEP-0006: Periodicity 27

7 YTEP-0007: Automatic Pull Requests’ validation 31

8 YTEP-0008: Release Schedule 33

9 YTEP-0009: AMRKDTree for Data Sources 37

10 YTEP-0010: Refactoring for Volume Rendering and Movie Generation 41

11 YTEP-0011: Symbol units in yt 47

12 YTEP-0012: Halo Redesign 61

13 YTEP-0013: Deposited Particle Fields 67

14 YTEP-0014: Field Filters 71

15 YTEP-0015: Transfer Function Refactor 75

16 YTEP-0016: Volume Traversal 79

17 YTEP-0017: Domain-Specific Output Types 85

18 YTEP-0018: Changing dict-like access to Static Output 91

19 YTEP-0019: Reduce items in main import 93

20 YTEP-0020: Removing PlotCollection 101

i

21 YTEP-0021: Particle-Only Plots 103

22 YTEP-0022: Benchmarks 105

23 YTEP-0023: yt Community Code of Conduct 107

24 YTEP-0024: Alternative Smoothing Kernels 109

25 YTEP-0025: The ytdata Frontend 113

26 YTEP-0026: NumPy-like Operations 119

27 YTEP-0027: Non-Spatial Data 125

28 YTEP-0028: Alternative Unit Systems 129

29 YTEP-0029: Extension Packages 139

30 YTEP-0031: Unstructured Mesh 143

31 YTEP-0032: Removing the global octree mesh for particle data 149

32 YTEP-0033: Dropping Python2 Support 167

33 YTEP-0034: yt FITS Image Standard 171

34 YTEP-0036: Converting from Nose to Pytest 175

35 YTEP-0037: Code styling 181

36 YTEP-0039: Rich Terminal User Interface 187

37 YTEP-0040: a yt-baked colormap package 193

38 YTEP-1000: GitHub Migration 195

39 YTEP-3000: Let’s all start using yt 3.0! 199

40 YTEP-9999: YTEP Template 201

Bibliography 203

ii

yt Enhancement Proposals Documentation, Release 1.0

This is a repository of “yt Enhancement Proposals” (YTEPs). Because yt is relied upon for production-level science,
large-scale design decisions are to be described and discussed before being acted upon. YTEP documents are set up
to provide minimal overhead to discussion, while still allowing a clear and evolving specification.

YTEPs go through several stages in their lifetime:

1. Initial writing of the YTEP

2. Announcement and/or discussion on the yt-dev mailing list (may include implementation)

3. Implementation and integration, or possibly declination (this includes pull requests)

YTEPs are useful for any code development that affects how others build tools or infrastructure, and necessary for
breaking backwards compatibility. They are not necessary for most new developments or any bug fixes.

Contents:

Contents 1

yt Enhancement Proposals Documentation, Release 1.0

2 Contents

CHAPTER 1

YTEP-0000: Project Governance

1.1 Abstract

Created: August 24, 2014 Author: Britton Smith Modified: August 09, 2019 Author: Madicken Munk

This document describes the high-level structure, policies, procedures, and processes of the yt project.

1.2 Status

Completed

1.3 Project Management Links

• Apache Software Foundation

• Initial governance discussion on yt-dev: here.

• Secondary discussion about need to update governance from yt-exec: here.

1.4 Detailed Description

1.4.1 Motivation

The yt project consists of a number of repositories within the yt project organization. The organization itself has a
number of people interacting with and contributing to these associated repositories. Here we propose a broad overview
of the governance model of the project, which will be detailed in a specific governance repository within the yt project,
at: https://github.com/yt-project/governance. Major changes to the governance model will be iterated upon here, and
details about the model will happen in the governance repository. This will allow small changes within the governance
documentation to move quickly and not need to go through a major vote to update the YTEP.

3

http://incubator.apache.org/
http://lists.spacepope.org/pipermail/yt-dev-spacepope.org/2014-August/013549.html
https://github.com/yt-project/project-records/blob/master/meeting-notes/notes-20190528.md
https://github.com/yt-project/governance

yt Enhancement Proposals Documentation, Release 1.0

1.4.2 Structure

The governance document will do the following

• Define where the governance documents apply, and how to override them, if relevant

• Provide guidelines on project licensing

• Link to the Code of Conduct, state what happens if a violation occurs, and what avenues are available for
reporting violations

• State how conflicts of interest are handled among voting members of the community

• State who the voting members of the community are

• Outline and define the roles within the project, including: contributors, developers, reviewers, and maintainers

• Define how to become a project member, what expections exist for project members, how to become an emeritus
member of the project, and how to revoke project membership

• Define how to become a steering committee member, what expections exist for steering committee members,
and how members are voted into the steering committee, and how long membership on the steering committee
lasts

• Create a project leadership structure that facilites project sustainability, inclusive onboarding practices, and
mentorship to learn and understand packages/subpackages within the yt project.

• Make clear guidelines on how voting occurs for changes in the project, including:

– minor documentation changes

– code changes and major documentation changes

– changes to API principles and changes to dependencies or supported versions

– changes to the project governance

– project membership.

• State when project meetings happen, at what frequency that they occur, how they are announced to the commu-
nity, and where they are documented.

1.5 Backwards Compatibility

Sic semper inordinatio.

1.6 Alternatives

The alternative is to continue with no official guidelines and somehow manage, or to continue with an older version of
the governance model.

4 Chapter 1. YTEP-0000: Project Governance

CHAPTER 2

YTEP-0001: IO Chunking

2.1 Abstract

Created: November 26, 2012 Author: Matthew Turk

IO in yt 2.x has always been based on batching IO based on grids. This YTEP describes a new method, which allows
for a selection of keywords (‘spatial’, ‘all’, ‘io’) to describe methods of IO that are then left to the frontend or geometry
handler to implement. This way, the frontend is able to decide how to access data without any prescriptions on how it
should be accessed.

2.2 Status

In-Progress: This has been largely implemented for grid and oct geometries in yt-3.0.

2.3 Project Management Links

• Initial mailing list discussion

• Source of chunking tests

2.4 Detailed Description

2.4.1 Background

“Chunking” in this section refers to the loading of data off disk in bulk. For traditional frontends in yt, this has been
in the form of grids: either single or in bulk, grids have been loaded off disk. When Derived Quantities want to handle
individual grids, one at a time, they “preload” the data from whatever grids the ParallelAnalysisInterface thinks they
deserve. These grids are iterated over, and handled individually, then the result is combined at the end. Profiles do

5

http://bitbucket.org/yt_analysis/yt-3.0
http://lists.spacepope.org/pipermail/yt-dev-spacepope.org/2012-February/001852.html
https://bitbucket.org/yt_analysis/yt-3.0/src/a4bd4d12a47e614d6e3b9ab322f59c630c0bc6bf/yt/data_objects/tests/test_chunking.py?at=yt-3.0

yt Enhancement Proposals Documentation, Release 1.0

something similar. However, both of these are de facto, and not really designed. They rely on calls to semi-private
functions on data objects, manually masking data, on and on.

An explicit method of data chunking that relies on the characteristics of the desired chunks, rather than the means of
the chunking, is needed to bypass this reliance on the grid mediation of IO. In this method, data objects will request
that the geometry handler supply a set of chunks. Chunks are of the form (IO_unit, size), where IO_unit is only ever
managed or handled by _read_selection. This allows the information about all types of IO and collections of
data to live internal to the individual implementations of GeometryHandler objects. This way, Grids can still batch
based on Grid information, but this abstraction is not needed for Octree IO.

Note that YTEP-0017 redefines GeometryHandler to Index – this reflects the fact that the process of data selec-
tion and IO is better thought of as a process of indexing, and that any subsequent operations should be conducted at a
higher level.

2.4.2 Main Changes

• Data objects no longer have a _grids attribute.

• Parallelism is restructured to iterate over chunks (decided on by the geometry handler) rather than grids

• Grids do not exist outside of the grid geometry handler

• To specifically break backwards compatibility, a blocks property has been added which will iterate and yield
block-like data (i.e., grids) and the mask of the blocks. This should encompass the use case of both iterating
over the _grids attribute, obtaining the mask that selects points inside a region, and having a 3D dataset. This
should be used exceedingly rarely, but it will be implemented for all types of data. All routines that call upon
_grids directly must be updated to use blocks.

2.4.3 Implementation

The chunking system is implemented in a geometry handler through several functions. The GeometryHandler
class needs to have the following routines implemented:

• _identify_base_chunk(self, dobj): this routine must set the _current_chunk attribute on
dobj to be equal to a chunk that represents the full selection of data for that data object. This is the “base”
chunk from which other chunks will be subselected.

• _count_selection(self, dobj, sub_objects): this must count and return the count of cells
within a given data object.

• _chunk_io(self, dobj): this function should yield a series of YTDataChunk objects that have been
ordered and created to consolidate IO.

• _chunk_spatial(self, dobj, ngz, sort = None, preload_fields = None): this
should yield a series of YTDataChunk objects which have been created to allow for spatial access of the data.
For grids, this means 3D objects, and for Octs the behavior is undefined but should be 3D or possibly a string
of 3D objects. This is where ghost zone generation will occur, although that has not yet been implemented.
Optionally, the chunk request can also provide a “hint” to the chunking system of which fields will be necessary.
This is discussed below.

• _chunk_all(self, dobj): this should yield a single chunk that contains the entire data object.

The only place that YTDataChunk objects will ever be directly queried is inside the _read_fluid_selection
and _read_particle_selection routines, which are implemented by the geometry handler itself. This means
that the chunks can be completely opaque external to the geometry handlers.

6 Chapter 2. YTEP-0001: IO Chunking

yt Enhancement Proposals Documentation, Release 1.0

To start the chunks shuffling over the output, the code calls data_source.chunks(fields,
chunking_style). Right now only “spatial”, “io” and “all” are supported for chunking styles. This corre-
sponds to spatially-oriented division, IO-conserving, and all-at-once (not usually relevant.) The chunks function looks
like this:

def chunks(self, fields, chunking_style, **kwargs):
for chunk in self.hierarchy._chunk(self, chunking_style, **kwargs):

with self._chunked_read(chunk):
self.get_data(fields)
yield self

Note what it does here – it actually yields itself. However, inside the chunked_read function, what happens is that the
attributes corresponding to the size, the current data source, and so on, are set by the geometry handler (still called a
hierarchy here.) So, for instance, execution might look like this:

for ds in my_obj.chunks(["Density"], "spatial"):
print ds is my_obj
print ds["Density"].size

The first line will actually print True, but the results from the second one will be the size of (for instance) the grid it’s
currently iterating over. In this way, it becomes much easier to stride over subsets of data. Derived quantities now look
like this:

chunks = self._data_source.chunks([], chunking_style="io")
for ds in parallel_objects(chunks, -1):

rv = self.func(ds, *args, **kwargs)

It chunks data off disk, evaluates and then stores intermediate results.

This is not meant to replace spatial decomposition in parallel jobs, but it is designed to enable much easier and mesh-
neutral division of labor for parallelism and for IO. If we were to call chunk on an octree, it no longer has to make
things look like grids; it just makes them look like flattened arrays (unless you chunk over spatial, which I haven’t
gotten into yet.)

Essentially, by making the method of subsetting and striding over subsetted data more compartmentalized, the code
becomes more clear and more maintainable.

2.5 Field Preloading

A common problem with the current chunking system is the problem of preloading for data access for spatial fields.
For instance, inside the field generation system, this construction is used:

for io_chunk in self.chunks([], "io"):
for i,chunk in enumerate(self.chunks(field, "spatial", ngz = 0)):

At this point in the system, a single field is being generated and all of the dependencies for that field can be calculated
using _identify_field_dependencies, but this is not done. The chunking will first break into IO chunks, and then iterate
over those chunks in a spatial chunk. This results in IO not being conducted on the IO chunks, but instead on each
individual spatial chunk. For octree datasets, this is not typically that bad, as a spatial chunk there can consist of many
items. However, for patch-based datasets (particularly Enzo and the current FLASH implementation) this results in far
more fine-grained IO access than we want. As an example, this would not allow any batching of IO inside HDF5 files,
despite already ordering the access to the spatial data in that appropriate order. When depositing particles in Enzo, for
instance, this results in a single access to every single grid for each particle deposition operation.

For non-spatial fields, IO chunking is typically quite effective and appropriate for patch datasets.

2.5. Field Preloading 7

yt Enhancement Proposals Documentation, Release 1.0

To remedy this, we need to construct a language for preloading within an IO chunk. This would necessitate the
creation of a _field_cache attribute on DataContainer, which would be populated inside the _chunk_io
loop, if hinting is available. _read_fluid_fields and _read_particle_fields would then inspect the
chunk they are passed, and for any fields that are requested, if they are inside the _field_cache dict (or dict
subclass) those values would be returned. This is managed by the _activate_cache method.

This would change the loop above to look something like this:

field_deps = self._identify_dependencies(field)
for io_chunk in self.chunks([], "io"):

for i,chunk in enumerate(self.chunks(field, "spatial", ngz = 0,
preload_fields = field_deps)):

This should result in much more efficient IO operations as IO for spatial fields will be able to be consolidated. As
they are currently implemented, Octrees would likely not need this improvement, and so they will not need to have
this implemented. However, all frontends may ultimately benefit from this, as it could trivially be extended to keep all
data resident in memory for situations where many passes over a small amount of data are necessary.

2.6 Backwards Compatibility

This system changes how data objects access data, and so this may ultimately result in differences in results (due to
floating point error). Additionally, any code that relies on access of the _grids attribute on data objects will be
broken.

All Octree code will need to be updated for 3.0. All frontends for grids will need to be updated, as this requires
somewhat different IO systems to be in place. Updating the grid patch handling will require minimal code change.

Ghost zones have been implemented, but will require further study to ensure that the results are correctly being
calculated. Ghost zone-requiring fields are progressing.

To accommodate situations where data objects or processing routines (not derived fields) require information about the
shape, connectivity and masking of data, a blocks attribute has been implemented. This attribute will yield masks
of data and 3D-shaped data containers, enabling most old grids-using routines to work. By focusing on blocks of data
rather than grids, we emphasize that these may be of any size, and may also be generated rather than code-inherent
data.

2.7 Alternatives

The main alternative for this would be to grid all data, as is done in 2.x. I believe this is not sustainable.

8 Chapter 2. YTEP-0001: IO Chunking

CHAPTER 3

YTEP-0002: Profile Plotter

3.1 Abstract

Created: December 5, 2012 Author: Matthew Turk

This YTEP describes a profile plotting solution, in the style of the PlotWindow, to replace the functionality of the
methods on the PlotCollection that create profiles. It should have sane defaults, a restricted set of functionality,
and should make accessing the underlying matplotlib axes object very easy.

The method proposed needs to meet several competing needs. It should accept objects, it should “do the right thing”
for auto-creating profiles, it should provide access to

3.2 Status

Completed

The code can be seen in yt/visualization/profile_plotter.py, specifically the objects:

• PhasePlotter

• ProfilePlotter

3.3 Project Management Links

• Mailing list discussion

• Example notebook

9

http://lists.spacepope.org/pipermail/yt-dev-spacepope.org/2012-December/002700.html
https://hub.yt-project.org/nb/vlilvw

yt Enhancement Proposals Documentation, Release 1.0

3.4 Detailed Description

3.4.1 Motivation

The PlotCollection provides an easy way to quickly make profiles and phase plots, both from spheres that it will
create and from objects. However, it suffers from a number of deficiencies:

• Accessing the axes objects from matplotlib is non-trivial

• Plotting multiple profiles on the same axes object is non-trivial

• The profile plotter tries to do too many things, and in doing so does not do anything particularly well

• Profile plots can’t be pickled independently of the data

As such, by including this new approach, we will match the functionality from these routines:

• add_profile_sphere

• add_profile_object

• add_phase_sphere

• add_phase_object

in a way that will enable access to the underlying plots, pickling of plots, and also easier overplotting and multi-
plotting.

3.4.2 Implementation

The implementation will need to:

• Accept a data object and set sane defaults for calculating a profile

• Not add more than one field to the resulting BinnedProfile object; only one will be added at any time, and
additional fields will be left up to the user

• Include a standalone Plot-type object that contains all of the necessary data to create a representation of the
data in Matplotlib.

• Deposit the plot into an existing Axes or Figure object.

• Provide simple methods of translating the initial Profile data into the matplotlib object, and allow the user to
modify the visualization as she sees fit.

The current implementation contains this class structure:

ProfilePlotter

• profile: property, the BinnedProfile1D

• scale: “log” or “linear”, the scale of the profile’s y-axis (x-axis is set by the bins in the profile)

• _current_field: property, the name of the field currently selected

• _setup_plot: Called to create a new plot specification (not a Matplotlib plot) and usually called in the
background

10 Chapter 3. YTEP-0002: Profile Plotter

yt Enhancement Proposals Documentation, Release 1.0

PhasePlotter

• profile: property, the BinnedProfile2D

• scale: “log” or “linear”, the scale of the profile’s y-axis (x-axis and y-axis are set by the bins in the profile)

• _current_field: property, the name of the field currently selected

• _setup_plot: Called to create a new plot specification (not a Matplotlib plot) and usually called in the
background

AxisSpec

This specifies the description (title, bounds, scale, ticks) of an Axis. It is typically used without specifying
ticks, which are used only by the ExtJS widgets.

ColorbarSpec

• cmap: property, string

• display: property, true or false

PlotContainer

Used for profile plots

• x_spec: property, AxisSpec

• y_spec: property, AxisSpec

• x_values: property, numpy array

• y_values: property, numpy array

• to_mpl: routine that accepts either (Axes), (Figure), or None. Returns the figure and axes after
plottin.

ImagePlotContainer

Used for phase plots

• x_spec: property, AxisSpec

• y_spec: property, AxisSpec

• image: property, numpy array (2D)

• cbar: property, ColorbarSpec instance

• to_mpl: routine that accepts either (Axes), (Figure) or None. Returns the figure and axes after
plotting.

The indirection enables the user to pickle the plot, without storing the data. But it comes at the price of clarity.

This is currently implemented, and plots returned for the most part to not encourage or allow a substantial amount of
modification or fiddling. I think this is okay, as it will very easily allow users to plot multiple lines into the same axes,
for instance. However, it does less hand-holding.

3.4. Detailed Description 11

yt Enhancement Proposals Documentation, Release 1.0

3.4.3 Open Questions

• Should the PhasePlotter and ProfilePlotter objects be refactored to be explicitly favoring mat-
plotlib? The PlotWindow does this, and it is successful.

• Should we allow users to dynamically switch fields on the fly?

• Should the desire for pickling of objects be given up in favor of a cleaner and simpler class structure? (i.e.,
getting rid of the Specification objects.)

3.5 Backwards Compatibility

We will not remove the existing functionality from PlotCollection. So there are no backwards compatibility
issues.

3.6 Alternatives

Alternately, we could provide nothing, and encourage users to create their own BinnedProfile1D plots. Or, we
could provide a much more specific-to-MPL alternative.

12 Chapter 3. YTEP-0002: Profile Plotter

CHAPTER 4

YTEP-0003: Standardizing field names

4.1 Abstract

Created: December 11, 2012

Author: Casey Stark, Nathan Goldbaum, Matt Turk

Let’s clean up field names in yt, ex “SoundSpeed” -> “sound_speed”. The proposed work will serve to remove Enzo-
isms and encourage more consistent field names across frontends.

4.2 Status

Completed

4.3 Project Management Links

yt 3.0 goals doc https://docs.google.com/document/d/17Q-rbmTj9PyaTgtN1h6C8vqoWeIZjw_OjFbQp8L3Tkg/edit

Universal field names doc https://docs.google.com/document/d/1Qbt6z27S8VWh8h0kOx–ZYih4BDFAgGlH9pE55I51So/edit

4.4 Detailed Description

4.4.1 Background

The universal field names are PascalCased, while lowercase_underscored names are more standard in Python.

13

https://docs.google.com/document/d/17Q-rbmTj9PyaTgtN1h6C8vqoWeIZjw_OjFbQp8L3Tkg/edit
https://docs.google.com/document/d/1Qbt6z27S8VWh8h0kOx--ZYih4BDFAgGlH9pE55I51So/edit

yt Enhancement Proposals Documentation, Release 1.0

4.4.2 Solution

The field names must be updated to lowercase_underscored format. This means all of the common field names,
frontend-specific field names, and all references to field names elsewhere in the code base need to be updated.

Additionally, we will take the opportunity to reorganize the field definitions. Currently all of the field definitions live
in the monolithic universal_fields.py file, which in yt 2.6 is just shy of 1700 lines long. In the reference
implimentation, we have created a new top-level namespace, yt.fields. The fields module is container for
a number of submodules that contain field definitions or macros to create classes of field definitions. Currently, the
following submodules are attributes of yt.fields:

• angular_momentum Gas and particle angular momentum fields and field creation macros.

• fluid_fields Useful fields that are simple functions of the primitive variables in a hydrodynamic simula-
tion. cell_mass, sound_speed, pressure, entropy, and kinetic_energy all live here.

• geometric_fields Fields that are functions only of the geometry of the data. This includes radius, x, y, z,
curvilinear coordinat fields, zeros, ones, and grid_level.

• magnetic_fields Derived fields useful for analyzing simulation that include magnetic fields.

• particle_fields Particle derived fields, including all non-local particle deposition fields and local fields
that are functions of primitive particle properties.

• species_fields Fields for chemical species. This is currently a stub.

• vector_operations Fields that are the gradient, divergence or curl of another field as well as macros for
setting up these fields.

• universal_fields Fields that have so far not been assigned to one of the other field submodules. Eventu-
ally this module will be removed once the remaining fields have been reorganized.

Additionally, the fields module now contains the logic for field detection as well as the DerivedField class.

4.4.3 Testing

The existing unit testing framework as well as an updated set of field detection tests. If there are additional fixes
required in untested parts of the code base, we will update them as we find them.

4.5 Backwards Compatibility

We will provide a compatibility layer, allowing yt to map from the old field names to the new ones. This compatibility
layer will not be enabled by default.

Right now, one can turn it on via the _setup_deprecated_fields function:

import yt
ds = yt.load('IsolatedGalaxy/galaxy0030/galaxy0030')
ds._setup_deprecated_fields()

In the future we might also enable this via a config parameter.

4.6 Field Names

Naming rules:

14 Chapter 4. YTEP-0003: Standardizing field names

yt Enhancement Proposals Documentation, Release 1.0

• must be lowercase underscored.

• should be as verbose as possible.

• should not include units.

• vector fields are separated into 4 scalar fields with endings _x, _y, _z, and _magnitude.

This is a listing of all field names currently defined in the yt-3.0 universal_fields module and the proposed replacement
names.

Current name Proposal
GridLevel grid_level
GridIndices grid_indices
OnesOverDx ones_over_dx
Ones ones
CellsPerBin cells_per_bin
SoundSpeed sound_speed
RadialMachNumber radial_mach_number
MachNumber mach_number
CourantTimeStep courant_time_step
ParticleVelocityMagnitude particle_velocity_magnitude
VelocityMagnitude velocity_magnitude
TangentialOverVelocityMagnitude tangential_over_velocity_magnitude
Pressure pressure
Entropy entropy
sph_r spherical_r
sph_theta spherical_theta
sph_phi spherical_phi
cyl_R cylindrical_r
cyl_RCode remove (unit duplicate)
cyl_z cylindrical_z
cyl_theta cylindrical_theta
DiskAngle remove (replaced by theta)
Height remove (replaced by z)
HeightAU remove (unit duplicate)
cyl_RadialVelocity cylindrical_radial_velocity
cyl_RadialVelocityABS cylindrical_radial_velocity_absolute
cyl_RadialVelocityKMS remove (unit duplicate)
cyl_RadialVelocityKMSABS remove (unit duplicate)
cyl_TangentialVelocity cylindrical_tangential_velocity
cyl_TangentialVelocityABS cylindrical_tangential_velocity_absolute
cyl_TangentialVelocityKMS remove (unit duplicate)
cyl_TangentialVelocityKMSABS remove (unit duplicate)
DynamicalTime dynamical_time
JeansMassMsun jeans_mass (possible unit change)
CellMass cell_mass
CellMassMsun remove (unit duplicate)
CellMassCode remove (unit duplicate)
TotalMass total_mass
TotalMassMsun remove (unit duplicate)
StarMassMsun star_mass (possible unit change)
Matter_Density matter_density

Continued on next page

4.6. Field Names 15

yt Enhancement Proposals Documentation, Release 1.0

Table 1 – continued from previous page
Current name Proposal
ComovingDensity comoving_density
Overdensity overdensity
DensityPerturbation density_perturbation
Baryon_Overdensity baryon_overdensity
WeakLensingConvergence weak_lensing_convergence
CellVolumeCode remove (unit duplicate)
CellVolumeMpc remove (unit duplicate)
CellVolume cell_volume
ChandraEmissivity chandra_emissivity
XRayEmissivity xray_emissivity
SZKinetic sz_kinetic
SZY szy
AveragedDensity averaged_density
DivV div_v
AbsDivV div_v_absolute
Contours contours
tempContours temp_contours
SpecificAngularMomentumX specific_angular_momentum_x
SpecificAngularMomentumY specific_angular_momentum_y
SpecificAngularMomentumZ specific_angular_momentum_z
AngularMomentumX angular_momentum_x
AngularMomentumY angular_momentum_y
AngularMomentumZ angular_momentum_z
ParticleSpecificAngularMomentumX particle_specific_angular_momentum_x
ParticleSpecificAngularMomentumY particle_specific_angular_momentum_y
ParticleSpecificAngularMomentumZ particle_specific_angular_momentum_z
ParticleSpecificAngularMomentumXKMSMPC remove (unit duplicate)
ParticleSpecificAngularMomentumYKMSMPC remove (unit duplicate)
ParticleSpecificAngularMomentumZKMSMPC remove (unit duplicate)
ParticleAngularMomentumX particle_angular_momentum_x
ParticleAngularMomentumY particle_angular_momentum_y
ParticleAngularMomentumZ particle_angular_momentum_z
ParticleRadius particle_radius
Radius radius
RadiusMpc remove (unit duplicate)
ParticleRadiusMpc remove (unit duplicate)
ParticleRadiuskpc remove (unit duplicate)
Radiuskpc remove (unit duplicate)
ParticleRadiuskpch remove (unit duplicate)
Radiuskpch remove (unit duplicate)
ParticleRadiuspc remove (unit duplicate)
Radiuspc remove (unit duplicate)
ParticleRadiusAU remove (unit duplicate)
RadiusAU remove (unit duplicate)
ParticleRadiusCode remove (unit duplicate)
RadiusCode remove (unit duplicate)
RadialVelocity radial_velocity
RadialVelocityABS radial_velocity_absolute
RadialVelocityKMS remove (unit duplicate)

Continued on next page

16 Chapter 4. YTEP-0003: Standardizing field names

yt Enhancement Proposals Documentation, Release 1.0

Table 1 – continued from previous page
Current name Proposal
RadialVelocityKMSABS remove (unit duplicate)
TangentialVelocity tangential_velocity
CuttingPlaneVelocityX cutting_plane_velocity_x
CuttingPlaneVelocityY cutting_plane_velocity_y
CuttingPlaneBX cutting_plane_bx
CuttingPlaneBy cutting_plane_by
MeanMolecularWeight mean_molecular_weight
JeansMassMsun remove (duplicate)
particle_density particle_density
MagneticEnergy magnetic_energy
BMagnitude b_magnitude
PlasmaBeta plasma_beta
MagneticPressure magnetic_pressure
BPoloidal b_poloidal
BToroidal b_toroidal
BRadial b_radial
VorticitySquared vorticity_squared
gradPressureX grad_pressure_x
gradPressureY grad_pressure_y
gradPressureZ grad_pressure_z
gradPressureMagnitude grad_pressure_magnitude
gradDensityX grad_density_x
gradDensityY grad_density_y
gradDensityZ grad_density_z
gradDensityMagnitude grad_density_magnitude
BaroclinicVorticityX baroclinic_vorticity_x
BaroclinicVorticityY baroclinic_vorticity_y
BaroclinicVorticityZ baroclinic_vorticity_z
BaroclinicVorticityMagnitude baroclinic_vorticity_magnitude
VorticityX vorticity_x
VorticityY vorticity_y
VorticityZ vorticity_z
VorticityMagnitude vorticity_magnitude
VorticityStretchingX vorticity_stretching_x
VorticityStretchingY vorticity_stretching_y
VorticityStretchingZ vorticity_stretching_z
VorticityStretchingMagnitude vorticity_stretching_magnitude
VorticityGrowthX vorticity_growth_x
VorticityGrowthY vorticity_growth_y
VorticityGrowthZ vorticity_growth_z
VorticityGrowthMagnitude vorticity_growth_magnitude
VorticityGrowthMagnitudeABS vorticity_growth_magnitude_absolute
VorticityGrowthTimescale vorticity_growth_timescale
VorticityRadPressureX vorticity_radiation_pressure_x
VorticityRadPressureY vorticity_radiation_pressure_y
VorticityRadPressureZ vorticity_radiation_pressure_z
VorticityRadPressureMagnitude vorticity_radiation_pressure_magnitude
VorticityRPGrowthX vorticity_radiation_pressure_growth_x
VorticityRPGrowthY vorticity_radiation_pressure_growth_y

Continued on next page

4.6. Field Names 17

yt Enhancement Proposals Documentation, Release 1.0

Table 1 – continued from previous page
Current name Proposal
VorticityRPGrowthZ vorticity_radiation_pressure_growth_z
VorticityRPGrowthMagnitude vorticity_radiation_pressure_growth_magnitude
VorticityRPGrowthTimescale vorticity_radiation_pressure_growth_timescale
x-velocity velocity_x
y-velocity velocity_y
z-velocity velocity_z

4.7 Molecular and Atomic Species Names

Particular care must be taken to name molecular and atomic species in a way that is unambiguous as well as terse. We
need to be able to resolve the following types of species:

• CO (Carbon monoxide)

• Co (Cobalt)

• OVI (Oxygen ionized five times)

• H2+ (Molecular Hydrogen ionized once)

• H- (Hydrogen atom with an additional electron)

The naming scheme we have decided upon is of the form MM[_[mp][NN]]. MM is the molecule, defined as a con-
catenation of atomic symbols and numbers, with no spaces or underscores. The second sequence is only required
if the ionization state is not neutral, and is of the form p and m to indicate “plus” or “minus” respectively, followed
by the number. Our examples above would be CO, Co, O_p5, H2_p1, and H_m1. Note that we are not using an
exclusively-lowercase convention here, as we did for the other field names. The name El will be reserved for electron
fields, as it is unambiguous and will not be utilized elsewhere. Additionally, the isotope of 2H will be included as D.

Neutral ionic species (e.g. H I, O I) are represented as MM_p0. For backwards compatibility, neutral species will
be mirrored to MM_ fields, but this practice is deprecated as it is somewhat ambiguous if we are referring to just
the neutral species or all atoms of that type. As an example, the neutral hydrogen density field will now be called
H_p0_density, but it will be mirrored to the H_density field for backwards compatibility.

Finally, in those frontends which are single-fluid, we will define these fields for each species:

• _fraction

• _number_density

• _density

• _mass

This means that if a frontend only has color fields and species fields (as is the most common case), it will have
("gas", "H2_fraction") for instance. Otherwise, for multi-fluid calculations (where gas is joined by other
fields) the other fields will have their own mass and density and so on.

This will require some parsing, and initially we will only support those fields we expect to find. Additionally, because
different frontends define these fields in different ways, we will detect which one is the output and define the rest from
that. For example, if the frontend finds a _density field, the rest will be computed as derived fields from that.

As a point of clarification, the El_density currently defined for Enzo is scaled with respect to the ratio of the
electron to proton mass ratio. This means that dividing it by m_h will result in the number density. Moving forward,
this will not be the case. We will instead give correct results for mass density when the alias is queried. The original
name, Electron_Density, will still be defined the way it currently is, to preserve access to the original, on-disk
fields. (It will be able to be converted to CGS, as well, and will not be scaled in doing so.)

18 Chapter 4. YTEP-0003: Standardizing field names

yt Enhancement Proposals Documentation, Release 1.0

To refer to the number density of the entirety of a single atom or molecule (regardless of its ionization state), please
use the MM_nuclei_density fields, as opposed to MM_number_density fields.

4.7. Molecular and Atomic Species Names 19

yt Enhancement Proposals Documentation, Release 1.0

20 Chapter 4. YTEP-0003: Standardizing field names

CHAPTER 5

YTEP-0005: Octrees for Fluids and Particles

5.1 Abstract

Created: December 24, 2012 Author: Matthew Turk

In the yt 2.x series, octree AMR codes have largely been supported by re-gridding data to create larger grid patches
consisting of both high-resolution data and coarse data. This has the overhead of requiring that each time a dataset
(as in from RAMSES or ART) is loaded, the data has to be placed into these grids. This is an expensive process and
requires a considerable amount of RAM. This YTEP describes the mechanism in yt 3.0 that directly accesses Octree
data, avoiding the costly regridding step and enabling higher-fidelity data access. Additionally, it describes how the
Octree data structure will be used for particle data access from datasets such as N-body or SPH simulation output.

5.2 Status

This YTEP is in progress. Most aspects have been implemented in yt 3.0. A major deficiency (described below) is the
lack of a distributed memory octree. Discussion of distributed memory Octrees is reserved for a future YTEP.

5.3 Project Management Links

For the most part, this has been conducted internally in the source code.

• Octree data structure

5.4 Detailed Description

Here is where you should write detailed description of what the YTEP proposes. This needs to include:

• Background

21

http://en.wikipedia.org/wiki/Octree

yt Enhancement Proposals Documentation, Release 1.0

• Nature of the problem

• Nature of the solution

• How will the solution be implemented * Brief outline of the code needed to implement this * Code examples of
using the solution, in appropriate * How will the solution be tested?

• What are any stumbling points

• What is the proposed method for reaching out to the community about this?

5.4.1 Background

In the 2.x branch of yt, RAMSES and (NMSU) ART data are read and processed in a way that mocks up patch-based
AMR data. This is sub-par for several reasons:

1. A costly re-gridding step is required, where octs are deposited into grid patches that are split with some efficiency
measure.

2. To conduct IO, coarse grid cells are deposited multiple times into grid patches at finer levels. This results in
extremely inefficient IO, as it means that if multiple fine grids overlap with a single cell at coarse resolution,
that coarse cell will be read multiple times. It’s also very slow.

3. The end result is data that is not exactly what is in the file, reducing the ability of individuals to examine data in
a detailed way.

4. The regridding code is difficult to parse and understand, and even harder to extend.

In addition to this, particle codes are simply not available in yt 2.x. All attempts to include them have involved a
regridding method similar to that for Octree AMR codes, which is not efficient or high-fidelity. Finally, the RAMSES
code is broken in 2.x.

5.4.2 Why is it this way?

The 2.x branch of yt is relatively inflexible in how data is accessed. There are a number of locations that the attributes
grids or _grids are accessed, which are implicitly assumed to be grid patches with a relatively sizable extent. This
is used in things like projections, data masking, and the like. For patch-AMR codes where the grids are actually
somewhat larger, this is efficient; however, the overhead of python objects and iteration dominate if the grids are
smaller than some minimum size or extent. The first implementation of support for RAMSES implemented Octs as
grid patches by themselves; this was found to be unbearably slow.

To get around this, a regridding step was applied. This regridding step was based on refinement algorithms, where
octs were deposited into grid patches that covered some fraction of the domain. These grid patches were then split to
attempt to achieve some minimum efficiency ratio of “refined” (i.e., fine) versus “unrefined” (i.e., coarse) data. When
IO was conducted, these were filled in a non-interpolating inverse cascade, where grid patches were filled with fine
data, then coarser data. This could be very slow. Additional improvements such as restricting grid patches not to
cross “domains” (the RAMSES term for individual files or domains of a specific processr) were eventually added. The
NMSU ART data was also loaded in a similar way.

All of this is because yt 2.x relies on “grids” as the fundamental object. As described in YTEP-0001: IO Chunking, in
yt 3.0 we no longer rely on grids as the object by which all IO is mediated. Data can now be streamed from disk to
memory, and coordinates and resolution information can be seen as independent of that data. This allows octrees to
exist without a regridding step.

22 Chapter 5. YTEP-0005: Octrees for Fluids and Particles

yt Enhancement Proposals Documentation, Release 1.0

5.4.3 Octree Implementation

The octree implementation is designed around having a full Octree which contains subsets of that octree that are
distribute amongst different “domains.” The term “domain” comes from RAMSES, and it is best thought of as whatever
the natural, IO-oriented subdivision of the data is. For instance, RAMSES divides into multiple files, each of which
is called a domain. For purposes of consolidating IO costs, reading on a per-domain basis makes some sense. NMSU
ART does not have the concept of multiple domains, and so we can choose to divide data into domains however we
like.

Octrees can then be walked to identify which Octs, and then which cells, contribute to a given geometric selector. This
can default back to selecting based on the point-by-point location of the Octs, but it can also be queried much more
efficiently by early-terminating an octree traversal if a coarse node is not included inside a geometric selector.

This leads nicely to a future where subsets of the octree are not present on every processor; instead, portions can be
passed around at will or pinned to specific processors. This is not yet in place, but the Octree has been designed to be
forward compatible with this.

For RAMSES data (where the number of Octs is known before any are added to the system), the octree is composed
of a set of OctAllocationContainers, one for each domain, which are pre-allocated and include all of the Octs
themselves. Additionally, there is a base class OctreeContainer and a subclass RAMSESOctreeContainer.
The base class handles and exposes the majority of methods for traversing the octree and querying the octree. The
subclass specifies how Octs get added to the octree.

Octs are defined to have the following attributes:

• (np.int64_t) ind – index into the local OctAllocationContainer.

• (np.int64_t) local_ind – index into the global Octree container.

• (np.int64_t) domain – the domain to which an Oct belongs.

• (np.int64_t) pos[3] – the integer index, based on the local level’s refinement (i.e., the center divided by
the local dx)

• (np.int8_t) level – the level of refinement of the Oct

• (ParticleArrays) *sd – this is optional, and a pointer to particle arrays. This is typically only used for
N-body data and will otherwise be null.

• (Oct) *children[2][2][2] – Pointers to child nodes. Typically, ifany are null, all are null and the Oct is
not refined. However, in ART simulations, the root mesh is defined in cells, rather than octs. This is mocked up
in yt as a false mesh of Octs, and so the children values can be either NULL (for a refined cell) or not, but
may not be homogeneously refined.

• (Oct) *parent – an upward pointer, for easier traversal of the Octree.

Particle ad N-body data, which does not typically know the organization and structure of the resultant Octree in
advance, Uses the additional ParticleArrays class for storing particle data that will help govern refinement.
ParticleArrays have enough data to decide where all of the particles will go during a refinement. This has the
downside of mandating that the positions (but no other fields) of all particles in a simulation must, at present, be held
in memory. This is a key motivating factor in moving to a distributed octree.

Particle arrays have the following attributes:

• (Oct) *oct – the Oct to which this particle array belongs.

• (ParticleArrays) *next – the next particle array in sequence

• (np.float64_t) **pos – the array of positions for this particle array

• (np.int64_t) *domain_id – the domain ID (multiple domains mandates refinement in N-body data, as we
do not want to span two domains in a single oct.)

5.4. Detailed Description 23

yt Enhancement Proposals Documentation, Release 1.0

• (np.int64_t) np – the number of particles here.

As noted above there are a number of downsides. Many of these will be simple to fix: for instance, IO right now is
characterized by reading in large portions of octrees simultaneously. Furthermore, masks are passed around, although
masks are likely an artifact that is no longer necessary (and larget than they need be.)

To add on support for a new Octree code, a subclass of OctreeContainer must be made (or
RAMSESOctreeContainer, if you would like to re-use the OctAllocationContainer logic) that imple-
ments the following routines:

• add – to add new octs to the octree

• count – for counting based on a selector

• icoords, ires, fcoords, and IO routines

Additionally, right now the domain subset code is general but not set into base classses. This is also necessary.

5.4.4 Future Work

• Generalize the multi-domain support to allow routines such as icoords to be applied generally rather than
specifically only for each system of allocation.

• Allow domains to be pinned to processors (distributed memory) and reduce the overhead for individual proces-
sors of storing the entire Octree mesh.

• Convert FLASH to use the Octree code.

• Generalize Octree support structures beyond RAMSES.

• Ensure that children can be independently refined.

5.4.5 Stumbling Blocks

1. Spatial data and ghost zones is currently not implemented, and implementation may pose challenes. Part of the
reason the implementation for patch-based codes is straightforward is that the arrays come back as 3D arrays,
to which (for instance) stencils can be applied. However, for Octree data, we may need to move to returning 4D
data to reduce the overhead of processing 10^3 arrays. This means (X,Y,Z,N) where the final dimension is all
of the Octs. Retaining compatibility between We also do not want to read outside the domain if not necessary;
for instance, RAMSES includes ghost zones in the domain file, even if they are active on a different processor.
We should utilize this.

2. Implementation requires a good deal of understanding of how other Octree codes are set up. We should improve
readability and make this easier to use.

3. Applying density estimators to particle codes is not yet implemented, and still somewhat unclear. The first
implementation will use Voro++ and regions that have some fixed spatial growth affiliated with them. This will
likely not be efficient.

5.4.6 Particle Codes

Particle codes are currently supported for reading and creating octree structures. This means that particles can be
read in and Octree selection applied to them, where the Octree is refined after either reaching a critical particle count
threshold in a given Oct or where an Oct spans multiple domains.

24 Chapter 5. YTEP-0005: Octrees for Fluids and Particles

yt Enhancement Proposals Documentation, Release 1.0

5.5 Backwards Compatibility

Volume rendering no longer works with Octree codes, and will require spatial data support to do so. Additionally,
it may be the case that we need to move to a different method for spatial data analysis (X,Y,Z,N) which will require
rewriting old scripts.

5.6 Alternatives

I do not believe there are currently credible alternatives to directly understanding Octree data structures in yt. I believe
that while we may be able to improve the implemented system, other options such as grid patch conversions are
not worthwhile. The particle code support, relying on Octrees for fast selection, could also be implemented using a
kD-tree, which may speed the density estimation.

5.5. Backwards Compatibility 25

yt Enhancement Proposals Documentation, Release 1.0

26 Chapter 5. YTEP-0005: Octrees for Fluids and Particles

CHAPTER 6

YTEP-0006: Periodicity

Periodicity needs to be dealt with in an explicit, rather than implicit, fashion.

6.1 Abstract

• Created: January 10, 2013

• Modified: January 29, 2013

• Author: Matthew Turk, Nathan Goldbaum

Periodicity in yt has been handled poorly in the past. Some objects and fields have been set to be periodic by default,
but not all. This YTEP aims to define a mechanism by which fields and objects can query periodicity information and
use it correctly.

6.2 Status

In progress. See pull request #410: http://bitbucket.org/yt_analysis/yt/pull-request/410

6.3 Project Management Links

• Mailing list discussion: http://lists.spacepope.org/pipermail/yt-dev-spacepope.org/2012-December/002739.
html

• Mailing list discussion: http://lists.spacepope.org/pipermail/yt-users-spacepope.org/2012-December/003194.
html

• Issue: https://bitbucket.org/yt_analysis/yt/issue/484/fields-dont-know-about-periodic-boundary

• Pull request 410: http://bitbucket.org/yt_analysis/yt/pull-request/410

27

http://bitbucket.org/yt_analysis/yt/pull-request/410
http://lists.spacepope.org/pipermail/yt-dev-spacepope.org/2012-December/002739.html
http://lists.spacepope.org/pipermail/yt-dev-spacepope.org/2012-December/002739.html
http://lists.spacepope.org/pipermail/yt-users-spacepope.org/2012-December/003194.html
http://lists.spacepope.org/pipermail/yt-users-spacepope.org/2012-December/003194.html
https://bitbucket.org/yt_analysis/yt/issue/484/fields-dont-know-about-periodic-boundary
http://bitbucket.org/yt_analysis/yt/pull-request/410

yt Enhancement Proposals Documentation, Release 1.0

6.4 Detailed Description

Periodicity is a tricky business. By volume, the majority of simulations analyzed with yt are cosmology simulations,
which are exclusively periodic. So objects such as ellipsoids, fields such as radius, and so on have all evolved to select
data or regard data as wrapping around the edges of simulation boundaries.

However, all of these should only be periodic when it makes sense. This means that we need to have a method of
marking a simulation as periodic and a method for applying this periodicity. For those situations where periodicity
makes sense, it should either always be applied if the simulation is periodic, or never applied if it is not. I believe we
should allow simulations to be periodic in any one of the three axes, but not necessarily all simultaneously; this may
be overly complex. We explicitly do not support any type of domain-wrapping or boundary conditions more complex
than simply wrapping around.

6.5 Affected Regions

Region of the Code Type of Periodicity Change? Status?
Light cone Implicit No N/A
Halo finding Implicit No N/A
Light ray Implicit No N/A
EnzoFOF Implicit No N/A
FOF Implicit No N/A
Halo objects Implicit No N/A
Fixed Res Buffers Explicit Yes Not done yet
Multi-halo profiler Implicit No N/A
Radial column density Implicit Yes See PR #410
Periodic regions Explicit Yes Not done yet
Spheres Implicit Yes Not done yet
Ellipsoids Implicit Yes Not done yet
Two-point functions Implicit Yes Not done yet
Clumps Implicit Yes Not done yet
Boolean regions Implicit Yes Not done yet
AMR kD Tree Explicit Yes Not done yet
Domain decomp Implicit Yes Not done yet
Radius Implicit Yes Finished: PR 410
ParticleRadius Implicit Yes Finished: PR 410
Covering grids Implicit Yes Not done yet

6.6 New Method

Two types of changes will be made. The first is to remove implicit periodicity and replace it with a check on the
periodicity of the simulation. The second is to remove multiple definitions of objects or functions that operate either
in periodic or non-periodic methods, and instead provide only one that self-distinguished. Some operations, such
as anything that operates on cosmological simulations (which I reluctantly consider halo finding to do) can assume
periodicity.

We need to take account of the following types of checks:

• Distance between two points

• Shortest path between two points (uncommon, can be special cased)

28 Chapter 6. YTEP-0006: Periodicity

yt Enhancement Proposals Documentation, Release 1.0

• Object inclusion/collision

• Selection of points

We will make the following changes:

• Create a periodicity property on all StaticOutput objects. This will be a tuple of three booleans,
indicating whether or not the simulations are periodic (and if they are, they must be periodic by one domain
width). This has been implemented for most of the frontends in PR #410.

• Remove all locally-defined periodicity functions in favor of the function periodic_dist in yt/
utilities/math_utils.py and checking the periodicity attribute. For situations where a purely
euclidean distance is required, we also supply euclidean_dist, which calculates the distance between two
points without considering the domain boundaries. These two functions were finalized in PR #410 and currently
live in math_utils.py.

• Anything that applies periodic shifts to data for checks of inclusion should apply them exclusively through the
periodicity attribute. For data selectors, we will have a two-step process: the data object will need to
implement a check_periodicity function.

• Everything that relies on periodic_region should instead rely on region which will include an option
(default = True, which actually means) to check periodicity.

• The periodic_region data object will, in 2.X, become a wrapper around the basic region object.

6.7 Backwards Compatibility

All operations that relied on implicit periodicity for datasets that cannot be identified as periodic will have different
results.

Old results for non-periodic datasets that were incorrect will become correct.

6.7. Backwards Compatibility 29

yt Enhancement Proposals Documentation, Release 1.0

30 Chapter 6. YTEP-0006: Periodicity

CHAPTER 7

YTEP-0007: Automatic Pull Requests’ validation

7.1 Abstract

Created: February 21, 2013 Updated: January 25, 2015 Author: Kacper Kowalik

This YTEP describes framework used to automatically run both unit and answer testing for incoming pull requests to
main YT repository.

Methods proposed here need to be agnostic with respect to chosen continuous integration system.

7.2 Status

Completed

CI server is running at http://tests.yt-project.org. Scripts used in validation process are stored in
http://bitbucket.org/xarthisius/yt-validation.

7.3 Project Management Links

• Mailing list discussion

7.4 Detailed Description

7.4.1 Background

When a new pull request is issued there is no way to automatically test validity of proposed changes. Every author is
forced to run the tests manually, which requires: knowledge of how to perform the tests, downloading required data,
possessing significant free computing power. This is troublesome and results in tests being run less frequently than

31

http://lists.spacepope.org/pipermail/yt-dev-spacepope.org/2013-February/002826.html

yt Enhancement Proposals Documentation, Release 1.0

they are supposed to be. With implementation of this YTEP the responsibility of running the testsuite will be shifted
from PR’s author to designated, automatic infrastructure.

7.4.2 Required Features

The CI infrastructure will need to:

• Constantly poll for incoming changes to main repository (or react to POST message if required API will become
available)

• Run both unit and answer testsuite.

• Notify the author should the tests fail.

• Notify the author should the PR could not be cleanly merged.

• Inform people responsible for accepting PR that all tests have passed by sending mail to yt-
svn@lists.spacepope.org or broadcasting on #yt irc channel.

• Results of tests should be publicly available.

7.4.3 Implementation Details

Each PR will pulled and merged with current tip in prepared docker container that consists of yt’s dependencies:
yt_analysis/devenv. Resulting container will be tagged as yt_analysis/yt-PR#:commit_hash and will be available for
download from public docker registry for developers who wish to test changes locally. Subsequently, yt_analysis/yt-
PR#:commit_hash will be used to run both unit and answer tests on CI server. If PR contains commits that modify
or add files to doc/ subdirectory in the main yt tree, full documentation build will be performed and its result will be
stored at http://tests.yt-project.org.

Base container yt_analysis/devenv will be created using install_script.sh and updated every time changes to afore-
mentioned script is merged to yt branch. Additional containers with development environment based on bleeding
edge Linux distributions, such as: Gentoo, Debian Sid, Fedora Rawhide, will available and denoted by appropriate
tag: :gentoo, :sid, :rawhide respectively. Testsuite will be run on those containers periodically in order to detect
incompatibilities with newer versions of yt’s dependencies.

Dockerfiles for all containers will be a part of yt_analysis/yt repository.

7.4.4 Stumbling Blocks

CI described in this YTEP does not cover integration tests that should be performed on OSX or Windows, nor alter-
native installations using e.g. wheels, conda. Since CI server is a part of NCSA’s infrastructure, access allowing to
modify existing and creating new tests will be restricted to people present in NCSA’s LDAP.

7.5 Backwards Compatibility

There are no backwards compatibility issues.

32 Chapter 7. YTEP-0007: Automatic Pull Requests’ validation

mailto:yt-svn@lists.spacepope.org
mailto:yt-svn@lists.spacepope.org

CHAPTER 8

YTEP-0008: Release Schedule

8.1 Abstract

Created: February 21, 2013 Author: Matthew Turk Updated: November 3, 2021 Author: Clément Robert

The yt release schedule is somewhat dysfunctional in several ways. Release dates can be difficult to stick to, and
merges to stable occur only after long periods. This results in bug fixes not propagating and increases the pressure on
developers for a given “release,” as each release is seen as monumental rather than incremental. This YTEP describes
a new mechanism for increasing the cadence of point releases as well as merging from the development branch into
the stable branch.

8.2 Status

Proposed

8.3 Project Management Links

The Mercurial time based release plan, which has partially inspired this discussion, is available here: http://mercurial.
selenic.com/wiki/TimeBasedReleasePlan .

8.4 Detailed Description

The yt release schedule is irregular. Here’s a table of the releases over time, along with the number of days since the
most recent major (i.e., non-point) release. Depending on when this document was last updated, this may include both
planned and historical releases.

33

http://mercurial.selenic.com/wiki/TimeBasedReleasePlan
http://mercurial.selenic.com/wiki/TimeBasedReleasePlan

yt Enhancement Proposals Documentation, Release 1.0

Version Release Date Days Since Last
1.0.1 2008-10-25 N/A
1.5 2009-11-04 375
1.6 2010-01-22 79
1.6.1 2010-02-11 N/A
1.7 2010-06-27 156
2.0 2011-01-17 204
2.0.1 2011-01-20 N/A
2.1 2011-04-06 79
2.2 2011-09-02 149
2.3 2011-12-15 104
2.4 2012-08-02 231
2.5 2013-03-01 211
2.5.1 2013-03-31 30
2.5.2 2013-05-01 30
2.5.3 2013-06-03 33
2.5.4 2013-07-02 29
2.5.5 2013-08-23 52
2.6 2013-11-23 92
2.6.1 2013-12-03 10
2.6.2 2014-02-28 87
2.6.3 2014-07-23 145
3.0 2014-08-04 N/A
3.0.1 2014-09-01 28
3.0.2 2014-10-03 60
3.0.3 2014-11-03 89
3.1 2015-01-14 N/A
3.2 2015-07-24 N/A
3.2.1 2015-09-09 47
3.2.2 2015-11-13 65
3.2.3 2016-02-04 83
3.3.0 N/A
3.3.1 2016-07-24 171
3.3.2 2016-10-26 94
3.3.3 2016-12-12 47
3.3.4 2017-02-13 63
3.3.5 2017-03-08 23
3.4 2017-08-11 156
3.4.1 2018-02-16 189
3.5 2018-10-16 242
3.5.1 2019-02-26 133
3.6 2020-04-11 410
3.6.1 2020-11-13 216
4.0 2021-07-06 235
4.0.1 2021-07-21 15
4.0.2 2022-02-01 195

In principle, a long release schedule is not a problem. However, what this results in is a reluctance to merge to the
stable branch. This has two major side effects: it leads to many people working off of the development branch and
it leads to a long time between bug fixes for individuals working off of the stable branch. The development branch,
despite its name, is quite stable – however, this also means that when instabilities (or API changes) are introduced in
the development branch, it can be much more disruptive.

34 Chapter 8. YTEP-0008: Release Schedule

yt Enhancement Proposals Documentation, Release 1.0

8.4.1 What Constitutes a Release

The majority of development in the primary yt repository is stable. Seldom are backwards-incompatible changes
introduced, nor functionality broken. This is helped by continuous integration and detailed code review. As such, for
the most part, yt is in a constant state of “release.”

For the purposes of this document, a “release” constitutes five things:

• A new build of the documentation with API and cookbook is placed in a long-term container.

• The development branch (yt) is merged to the stable branch (stable)

• A new tag in the version control history

• An upload of the source code to PyPI (https://pypi.org/)

• An new entry on conda-forge (https://anaconda.org/conda-forge/yt)

• An announcement email (to yt-users for minor releases and more broadly for major releases)

• For “bugfix”-level releases, changes should be backported to a dedicated branch.

8.4.2 Release Managers

The release manager for minor releases will be Matthew Turk, as they will only be announced to yt-users. For
major releases, a new release manager will be selected by consensus in the yt-dev community. Merging, tagging
and uploading will be handled by Matthew Turk, but the release manager will act as “whip” to ensure the necessary
documentation building is done. Additionally, this release manager will write the release notes and send the email to
various mailing lists.

8.4. Detailed Description 35

https://pypi.org/
https://anaconda.org/conda-forge/yt

yt Enhancement Proposals Documentation, Release 1.0

Version Release Manager
2.5 John ZuHone
2.5.1 Matthew Turk
2.5.2 Matthew Turk
2.5.3 Matthew Turk
2.6 Kacper Kowalik
2.6.1 Matthew Turk
2.6.2 Matthew Turk
2.6.3 Matthew Turk
3.0 Matthew Turk
3.1 John Zuhone
3.2 Britton Smith
3.2.1 Nathan Goldbaum
3.2.2 Nathan Goldbaum
3.2.3 Nathan Goldbaum
3.3.0 Nathan Goldbaum
3.3.1 Nathan Goldbaum
3.3.2 Nathan Goldbaum
3.3.3 Nathan Goldbaum
3.3.4 Nathan Goldbaum
3.3.5 Nathan Goldbaum
3.4.0 Nathan Goldbaum
3.4.1 Nathan Goldbaum
3.5.0 Nathan Goldbaum
3.5.1 Nathan Goldbaum
3.6.0 Madicken Munk
3.6.1 Madicken Munk
4.0.0 Madicken Munk
4.0.1 Madicken Munk
4.0.2 Matthew Turk

8.5 Backwards Compatibility

This should have no backwards-incompatible changes.

8.6 Alternatives

One alternative would be to forego release numbers and move to completely continuous integration. Another would
be to continue on our current path.

36 Chapter 8. YTEP-0008: Release Schedule

CHAPTER 9

YTEP-0009: AMRKDTree for Data Sources

9.1 Abstract

Created: February 28, 2012 Author: Sam Skillman

This proposal outlines the changes (functional and API) necessary for the ability to render volumes using arbitrary
data sources. This will still operate with the idea of grids and masks. However, this should lead as a stepping stone to
non-grid-based rendering.

9.2 Status

Status should be one of the following:

1. Implemented in yt-3.0 PR77

YTEPs do not need to pass through every stage.

9.3 Project Management Links

Currently the development of this capability is in the camera-refactor bookmark at: https://bitbucket.org/samskillman/
yt/commits/all/tip/..bookmark%28%22camera-refactor%22%29

There is a Camera refactor YTEP-0010 that is closely related to the AMRKDTree functional changes suggested in this
YTEP.

This has been implemented as of: https://bitbucket.org/yt_analysis/yt-3.0/pull-request/77/
add-legitimate-source-rendering-using-a/diff

37

https://bitbucket.org/samskillman/yt/commits/all/tip/..bookmark%28%22camera-refactor%22%29
https://bitbucket.org/samskillman/yt/commits/all/tip/..bookmark%28%22camera-refactor%22%29
https://bitbucket.org/yt_analysis/yt-3.0/pull-request/77/add-legitimate-source-rendering-using-a/diff
https://bitbucket.org/yt_analysis/yt-3.0/pull-request/77/add-legitimate-source-rendering-using-a/diff

yt Enhancement Proposals Documentation, Release 1.0

9.4 Detailed Description

Functional Background:

The volume rendering has long operated on either the entire domain or (at best) a sub-rectangular-prism using left and
right edges. This is fairly limiting in that a user may not need (or want) to render the entire volume, and may want
to restrict the volume shown by something other than a single box. A majority of the reasoning behind the recent
AMRKDTree was to allow for more generic adding of grids/data to the homogenized volume.

The primary problem with attempting to do this is that the volume rendering acts on a rectangular brick of data, and
the traversal of this brick is fairly far removed from a AMR3DData object. Therefore, we either need to modify the
traversal, or somehow mask out the data being handed to the traversal.

The latter approach can be accomplished using the following code:

def _source_mask(field, data):
return 1.0*self.source._get_cut_mask(data)

self.pf.field_info.add_field('source_mask', function=_source_mask, take_log=False)

then when creating the vertex centered data:

mask = grid.get_vertex_centered_data('source_mask',smoothed=False,no_ghost=self.no_
→˓ghost).astype('float64')
mask = np.clip(mask, 0.0, 1.0)
mask[mask<1.0] = np.inf
for i,field in enumerate(self.fields):

vcd = grid.get_vertex_centered_data(field,smoothed=True,no_ghost=self.no_ghost).
→˓astype('float64')

vcd = vcd*mask

However, this approach is full of quirks since what we really want is to mask out an entire cell, and not some set of
vertices. Therefore, we propose to modify the PartitionedGrid object to include an integer mask that is used
during traversal to mask out the individual cells.

API Background:

The method for specifying a data source in a volume rendering has not been suggested. Currently, the rectangular
volume that is used for rendering uses a le and re pair of keywords to specify the left and right edges. When moving
to a data source, we should simplify the volume selection by simply supplying a data_source= keyword.

Changes to the Camera interfaces suggested in YTEP-0010 will handle the move to using a data_source.

In my working solution, I have set the AMRKDTree __init__ function to have the following form:

class AMRKDTree(ParallelAnalysisInterface)
def __init__(self, pf, min_level=None, max_level=None, data_source=None):

9.5 Backwards Compatibility

This YTEP breaks the following backwards compatibility:

• AMRKDTree API

It will additionally break internal uses of the API for the Camera, other cameras inheriting the __init__ of Camera,
and the AMRKDTree.

38 Chapter 9. YTEP-0009: AMRKDTree for Data Sources

yt Enhancement Proposals Documentation, Release 1.0

9.6 Alternatives

• Do nothing

• Add more keyword arguments to everything

• Wait until rendering is ready in yt-3.0, which will also likely demand a breakage of API.

After discussion, it was found to be easiest to only implement in yt-3.0, as it is increasingly difficult to manage the
two versions and how they handle grids. Since in yt-3.0 there are explicit mask objects in the pf.h.blocks generator,
it was significantly easier than expected to implement the mask on the PartitionedGrid object. I’m also hopeful that
this simplification is along the same lines of the idea of a simplified volume rendering scene object, as outlined in
YTEP-0010.

9.6. Alternatives 39

yt Enhancement Proposals Documentation, Release 1.0

40 Chapter 9. YTEP-0009: AMRKDTree for Data Sources

CHAPTER 10

YTEP-0010: Refactoring for Volume Rendering and Movie Generation

10.1 Abstract

Created: March 3, 2013 Author: Cameron Hummels

This YTEP describes significant modifications of the camera infrastructure to enable more focus on scenes, camera
paths, and movies, while still retaining functionality for individual images.

10.2 Status

Open to changes through pull requests.

10.3 Project Management Links

This integrates directly with YTEP-0009 currently in pull request at: https://bitbucket.org/yt_analysis/ytep/
pull-request/11/data-source-rendering-camera-refactor

10.4 Detailed Description

10.4.1 Background

Visualization of data is one of the primary reasons why people use yt. yt’s visualization capabilities are quite advanced,
particularly in generating single images of a simulated volume. However, the tools for using the camera objects are
complicated and difficult to use to generate movies of anything beyond simple camera paths around single simulation
outputs. This is understandable based on the way the camera object code built up organically over the last few years,
but a refactor of this code could dramatically simplify the steps for generating complex movies.

Here is a rough algorithm of how to create a rendering under the current system:

41

https://bitbucket.org/yt_analysis/ytep/pull-request/11/data-source-rendering-camera-refactor
https://bitbucket.org/yt_analysis/ytep/pull-request/11/data-source-rendering-camera-refactor

yt Enhancement Proposals Documentation, Release 1.0

1. The user chooses a method for breaking up the region to be rendered, either a Homogenized Volume, or a kd-
tree. Homogenized volumes can be re-used from rendering to rendering, thereby saving time in re-rendering the
same volume from different perspectives, as well as allowing the user to define an arbitrary geometric object
to act as the rendering volume. On the other hand, the kd-tree is generally faster for individual renderings, but
cannot currently be re-used from rendering to rendering, and does not allow the user to specify a subregion to
render beyond an AMRRegion object (i.e. box).

2. The user must explicitly choose whether she wants to do a volume rendering , or if she wants to do an off-axis
projection, as each of these two options is a different camera class. There can be no mixing between these
classes–once this is chosen, the user is locked in.

3. The user must explicitly define the central focus point of the image to be rendered, along with the ‘width’ of the
image (thereby defining the extent to be rendered), the normal vector of the from which the camera will render,
and the resulting resolution of the final image.

4. The user must explicitly define a transfer function to be used in the case of the volume rendering, and it is
generally non-intuitive as to how to get this correct a priori.

Here is a sample script for generating a volume rendering under the current system taken from the docs. Note how
much has to be done prior to actually rendering an output image.

>>> from yt.mods import *
>>> pf = load("Enzo_64/DD0043/data0043")
>>> dd = pf.h.all_data()
>>> mi, ma = dd.quantities["Extrema"]("Density")[0]
>>> tf = ColorTransferFunction((np.log10(mi)+1, np.log10(ma)))
>>> tf.add_layers(5, w=0.02, colormap="spectral")
>>> c = [0.5, 0.5, 0.5]
>>> L = [0.5, 0.2, 0.7]
>>> W = 1.0
>>> Npixels = 512
>>> cam = pf.h.camera(c, L, W, Npixels, tf)
>>> cam.snapshot("%s_volume_rendered.png" % pf, clip_ratio=8.0)

10.4.2 Problem

Here we note some of the shortcomings of the current camera implementation:

1. Too much overhead in generating a simple rendering for the end user. Needs helper functions to use sensible
defaults so the user must only call one or two commands before generating a rendering.

2. Too much complexity in the camera object constructor due to a large number of parameters and keyword options.

3. Volume renderings and off-axis projections are too distinct from each other.

4. Not enough focus on time series or persistence of a camera from from one rendering to another for generating
movies.

5. Cameras are defined in a somewhat counterintuitive manner, rather than focusing on the camera as being in a
physical location in a volume and moving it around that volume.

6. Not enough integration of particle data in camera renderings.

7. Minimal ability to move a camera in a complex path through a volume beyond simple rotations, pans, and
zooms.

42 Chapter 10. YTEP-0010: Refactoring for Volume Rendering and Movie Generation

yt Enhancement Proposals Documentation, Release 1.0

10.4.3 Proposed Solution

We propose to break up the camera infrastructure into a few different classes to enable more transparency and usability
of this important functionality.

• Make cameras just cameras. They should be very lightweight, should be situated in a scene, and should not
contain references to the volumes.

• Add a “scene” object which then contains components like data sources (i.e. volumes, streamlines, particles),
cameras, transfer functions, etc. The scene remains a structure for modifying the underlying components in that
scene throughout the duration of the scene.

• Make a camera a reusable object for a given movie which can be modified in virtually any way (location, transfer
function, underlying pf) through a series callback functions, or modifying the scene object directly.

• Remove the homogenized volume method for generating volume renderings and make the kd-tree method handle
all functionality that homogenized volumes provided (e.g. reusability, usability on an arbitrary geometric object
– see ytep 0009).

• Integrate all current camera classes into a single camera class, so we don’t have separate classes for volume
renderings, projections, stereoscopic renderings, HEALpix renderings, etc.

• Make the scene understand how to traverse from point A to point B in a complex way by designating keyframes
where you constrain the exact rendered image (position/orientation of camera, state of transfer function, data
source for rendering, etc.) and having the scene figure out a smooth transition between these keyframes.

• Remove a ridiculous amount of complexity from the Camera and Volume objects by stripping out a large number
of variables from the constructors.

• KDTrees should be built for the volume active at any time for easy reusability in future frames (e.g. by moving
the camera or changing the transfer function). If the underlying data source changes, then the old kdtree is purged
and a new one for that new data source is constructed. This will dramatically reduce overhead on rendering the
same volume from different perspectives.

• By default, when one defines a Scene object from a single datadump, it sets the Timeline object to 1 output
frame, whereas if one defines a Scene object from a TimeSeries, it adds keyframes for each pf in that TimeSeries
uniformly across the Timeline object.

In short, we propose that by reducing complexity of individual objects and splitting them in to multiple objects, we
can reduce the complexity of individual operations by adding in a slightly larger set of objects that are more flexible.

New classes:

• Scene Meant to be the main class for dealing with volumetric visualization. It is constructed using a static
output instance, which it uses to set up a default camera based on domain extents. It also instantiates
a list of objects to be rendered, which include RenderSource instances for volume rendering and
streamlines.

• RenderSource Base class for rendering types. This can be (minimally) volumetric data for volume ren-
dering, path data for streamlines, point data for particles, and other yet to be determined data types.

• Camera A lightweight camera representing the location and orientation of the camera. This can be speci-
fied in a number of ways, but to uniquely define it, we need position of camera, pointing vector, and an
optional north vector (which is used to determine the image “up” direction which specifies the image
“up” direction).

• Timeline The timeline object represents how the scene changes with time. It is valid from t=0 to t=1,
but this can be mapped on to any number of output frames during the render. One can modify the
Timeline object by setting events such as keyframes to change the underlying scene components at
any point in the timeline.

10.4. Detailed Description 43

yt Enhancement Proposals Documentation, Release 1.0

• CameraPath In dealing with movies, one can set key frames of where and in what orientation one wants
the camera to be at certain times. A smoothing function (like a spline) can connect up these keyframes
into a smooth camera path for application on the timeline.

In each of these following derived classes, the returned object from the __init__ function is an instance of the Scene
class, capable of adding additional sources. These are meant to provide shortcuts

Derived Classes:

• VolumeScene Inherits from Scene, sets up a scene with a volume rendering data source

• StreamlineScene Inherits from Scene, sets up a scene with streamlines data source

• ParticleScene Inherits from Scene, sets up a scene with particles data source

10.4.4 Sample Scripts for Proposed Infrastructure

Under the proposed changes, one could simply get a simple volume rendering by running this short script:

>>> from yt.mods import *
>>> pf = load("Enzo_64/DD0043/data0043")
>>> sc = VolumeScene(pf, 'Density')
>>> im = sc.render()

where the scene constructor uses helper functions to set up all of the default objects (volume, camera, timeline, transfer
function) in order to use the entire volume, place a camera at 1.5*domain_right_edge pointing at domain_center and
north vector (nx,ny,nz)=(0,0,1), make the timeline object number_of_frames=1, setting the transfer function to use the
min/max of the volume and adding 4 isodensity contours.

The previous image can be grabbed using:

>>> im = sc.current_image

If one wanted to modify this scene prior to rendering, a series would allow the end user to change things through a
series of callbacks:

>>> from yt.mods import *
>>> pf = load("Enzo_64/DD0043/data0043")
>>> sp = pf.h.sphere([0.5,0.5,0.5],100/pf['kpccm'])
>>> sc = VolumeRender(sp, 'Density')
Change the camera position and orientation
>>> sc.camera.move(pos=[0,(100,'kpccm'),0], focus=[0,0,0], north=[0,0,1])
>>> sc.render()

In order to create a short movie making a rotation around the center from one side at 100 kpc out to the other side 100
kpc out while the simulation is evolving, one might run a script such as the following. It would automatically set the
timeline to match the timeseries data with a framerate of 12 frames/sec.

>>> from yt.mods import *
>>> ts = TimeSeriesData.from_filenames("Enzo_64/DD????/data????")
>>> sc = scene(ts)
>>> keyframe_start = camera(pos = [0,1,0], point = [0,0,0], north = [0,0,1])
>>> keyframe_mid = camera(pos = [1,0,0], point = [0,0,0], north = [0,0,1])
>>> keyframe_end = camera(pos = [0,-1,0], point = [0,0,0], north = [0,0,1])
>>> sc.set_keyframe(time=0, camera = keyframe_start)
>>> sc.set_keyframe(time=0.5, camera = keyframe_mid)
>>> sc.set_keyframe(time=1, camera = keyframe_end)

(continues on next page)

44 Chapter 10. YTEP-0010: Refactoring for Volume Rendering and Movie Generation

yt Enhancement Proposals Documentation, Release 1.0

(continued from previous page)

>>> sc.timeline.set_num_frames(50)
>>> sc.render()

While all the prior examples are focused on handling a single data source at a time, a major goal of the refactor
is to allow for the combination of data sources and data types, such as streamlines, particles, opaque planes, and
annotations. We want to allow for the composure of a full scene containing many different sources.

For example,

>>> from yt.mods import *
>>> pf = load("Enzo_64/DD0043/data0043")
>>> sc = Scene(pf)
Change the rendered volume to be a sphere of radius 100 kpc
>>> sp = pf.h.sphere([0.5,0.5,0.5],100/pf['kpccm'])
>>> vr_handle = sc.add_volume_rendering(sp)
Here vr_handle is an instance of a VolumeRenderSource(RenderSource)
>>> vr_handle.transfer_function.clear()
>>> vr_handle.transfer_function.map_to_colormap(mi, ma, cmap='RdBu')
>>> streamlines = Streamlines(pf,...) # Create streamlines
>>> stream_handle = sc.add_streamlines(streamlines)
>>> stream_handle.set_opacity(0.1)
>>> stream_handle.set_radius((0.1,'kpc'))
>>> sc.add_particles(sp)
>>> particle_handler = sc.get_particle_handle()
>>> particle_handler.transfer_function.set_color_field('density')
>>> particle_handler.transfer_function.set_alpha(0.1)
>>> sc.render()
Remove piece of the scene
>>> sc.toggle(vr_handle)
... # Type Tag Status
... VolumeRenderSource(density): vr_1 off
... Streamlines(velocity): sl_1 on
... Particles(density): pt_1 on
>>> sc.render()
>>> sc
... # Type Tag Status
... VolumeRenderSource(density): vr_1 off
... Streamlines(velocity): sl_1 on
... Particles(density): pt_1 on
>>> sc.toggle('vr_1')
... # Type Tag Status
... VolumeRenderSource(density): vr_1 on
... Streamlines(velocity): sl_1 on
... Particles(density): pt_1 on

10.5 What Needs to be Decided

• What should the syntax be for annotations (lines, boxes, orientation vectors)?

• How do we manipulate the Scene positions (positions of all non-spatial annotations)? For example, put the
transfer function display over here.

• Probably many more things.

• How to handle the API of running in different parallel regimes (Image plane vs domain vs time-series vs . . .)

10.5. What Needs to be Decided 45

yt Enhancement Proposals Documentation, Release 1.0

10.6 Backwards Compatibility

This will break all backwards compatibility with the pf.h.camera interface. We will attempt to keep as many of the
useful modifications (pitch, roll, yaw, etc.) as similar as possible to ease the pain.

46 Chapter 10. YTEP-0010: Refactoring for Volume Rendering and Movie Generation

CHAPTER 11

YTEP-0011: Symbol units in yt

11.1 Abstract

Created: March 7, 2013
Authors: Nathan Goldbaum, Casey Stark, Anna Rosen, Matt Turk

This YTEP describes adding symbolic units to yt using the sympy package. The main benefit is to make sure units
are carried through calculations in a transparent and intuitive manner. The new components are:

• a Unit class, which describes the dimensionality (powers of mass, length, time, temperature) and conversion
factor of any unit.

• a UnitRegistry class, which stores valid atomic unit symbols (ex: “g” for gram).

• a YTArray class, a subclass of NumPy ndarray that attaches a Unit object.

• a YTQuantity class, a subclass of YTArray which is restricted to a single element (for handling scalars).

11.2 Status

Completed

11.3 Project Management Links

The code can be found in the unit refactor pull request:

https://bitbucket.org/yt_analysis/yt/pull-request/662/unit-refactor/diff#comment-897255

The latest work is in Matt Turk’s fork in yt in the unitrefactor bookmark:

https://bitbucket.org/MatthewTurk/yt/commits/branch/unitrefactor

47

http://sympy.org/
https://bitbucket.org/yt_analysis/yt/pull-request/662/unit-refactor/diff#comment-897255
https://bitbucket.org/MatthewTurk/yt/commits/branch/unitrefactor

yt Enhancement Proposals Documentation, Release 1.0

The work is based on Casey’s dimensionful library:

https://github.com/caseywstark/dimensionful

11.4 Detailed Description

11.4.1 Background

The current system for units is functional but not terribly flexible. All data are treated as scalars and it is up to the user
to convert data from CGS, which yt uses internally, to their chosen unit system. A sample workflow might look like
this:

from yt.mods import *
from yt.utilities.physical_constants import mass_sun_cgs
pf = load('IsolatedGalaxy/galaxy0030/galaxy0030')
dd = pf.h.all_data()
mass = dd['CellMass']
print "Mass in CGS: ", mass
print "Mass in Solar Masses: ", dd['CellMass']/mass_sun_cgs
print "Mass in code units: ", dd['CellMass']/pf['Mass']

This model works well if a user always uses CGS units. If the user needs a quantity in a different unit system, they run
into trouble. This is illustrated above in the example to convert to ‘solar mass’ units, since this isn’t a proper unit, the
conversion isn’t stored inside the pf dict, so a user will either need to import the unit definition from yt, or add their
own definition to their script. The situation is a little bit better for length conversions:

dx = dd['dx']
print "Cell dx in code units: ", dx
print "Cell dx in centimeters: ", dx*pf['Length']
print "Cell dx in megaparsecs: ", dx*pf['mpc']

This works pretty nicely, since all of the various length units are stored in the pf dictionary. However, this example
illustrates another problem; here dx is returned in code units, while most quantities are returned in CGS. If we wanted
to enforce that all quantities be returned in CGS, we would need to painstakingly go through the codebase, tweaking
the field definitions and places where fields are used so that units are handled properly. Clearly, a better solution is
needed.

Cosmological units are also handled in a somewhat ad hoc way. Each of the code frontends need to detect that a
simulation was performed using comoving units, and define new scaled, comoving and scaled comoving units (i.e.
‘kpccm’, ‘kpchcm’ and ‘kpch’). This encourages duplication of code in each of the frontends and makes likely that
different frontends will ignore some of the cosmological units that are defined in the Enzo frontend. In addition, this
is not documented in the frontend docs, making it easier for newly supported codes to miss this. Cosmological units
are also not labeled correctly in plots.

To ensure units to display nicely on plots, the unit definition is currently encoded as a raw string in LaTeX format:

add_field("MagneticEnergy",function=_MagneticEnergy,
units=r"\rm{ergs}\/\rm{cm}^{-3}",
display_name=r"\rm{Magnetic}\/\rm{Energy}")

This is harmful for readability and has the effect that user-defined or automatically generated fields are not assigned
units.

48 Chapter 11. YTEP-0011: Symbol units in yt

https://github.com/caseywstark/dimensionful

yt Enhancement Proposals Documentation, Release 1.0

11.4.2 Proposed Solution

We propose to handle units in a more automatic fashion, leveraging the symbolic math library sympy. Instead of
returning a NumPy ndarray when users query for fields, the __getitem__ selector on data objects will return a
YTArray, a subclass of ndarray. This preserves ndarray’s array operations, including deep and shallow copies,
broadcasting, and views.

Additonally, YTArray has a Unit object attached to it that tracks units associated with each value in the array. This
is encoded in the __repr__ method of YTArray:

>>> dd['density']
YTArray([4.92775113e-31, 4.94005233e-31, 4.93824694e-31, ...,

1.12879234e-25, 1.59561490e-25, 1.09824903e-24]) g/cm**3

YTArray defines several user-visible member functions:

• convert_to_units

Converts an array to a valid unit, specified by a string argument. Valid units possess the same dimension
expression as the current unit.

• convert_to_cgs

Converts the array to CGS units.

• in_units

Returns a copy of the array in a valid unit, specified by a string argument. Valid units possess the same
dimension expression as the current unit.

• in_cgs

Returns a copy of the array in CGS units.

It’s important to remember that convert_to_cgs and convert_to_units do in-place conversion of an existing
array and in_units and in_cgs return a copy of the original array in the new unit. This can get complicated if one
isn’t careful about the distinction between creating copies and references, as illustrated in the following example:

>>> dens = dd['density']
>>> print dens
[4.92775113e-31 4.94005233e-31 4.93824694e-31 ..., 1.12879234e-25

1.59561490e-25 1.09824903e-24] g/cm**3

>>> dens.convert_to_units('Msun/pc**3')
>>> print dens
[7.27920765e-09 7.29737882e-09 7.29471191e-09 ..., 1.66743685e-03

2.35702085e-03 1.62231868e-02] Msun/pc**3

>>> dd['density'].in_units('Msun/pc**3')
YTArray([7.27920765e-09, 7.29737882e-09, 7.29471191e-09, ...,

1.66743685e-03, 2.35702085e-03, 1.62231868e-02]) Msun/pc**3

In the example above, if a user tries to query dd['density'] again, they will find that it has been converted to
solar masses per cubic parsec, since a shallow copy, dens, underwent an in-place unit conversion. In practice this is
not a big concern, since the unit metadata is preserved and the array values are still correct in the new unit system, all
numerical operations will still be correct.

One of the nicest aspects of this new unit system is that the symbolic algebra for unitful operations is performed
automatically by sympy:

11.4. Detailed Description 49

yt Enhancement Proposals Documentation, Release 1.0

>>> print dd['cell_mass']/dd['cell_volume']
[4.92775113e-31 4.94005233e-31 4.93824694e-31 ..., 1.12879234e-25

1.59561490e-25 1.09824903e-24] g/cm**3

>>> print dd['density']
[4.92775113e-31 4.94005233e-31 4.93824694e-31 ..., 1.12879234e-25

1.59561490e-25 1.09824903e-24] g/cm**3

YTArray is primarily useful for attaching units to NumPy ndarray instances. For scalar data, we have created
the new YTQuantity class. In the proposed implementation, YTQuantity is a subclass of YTArray with the
requirement that it is limited to one element. YTQuantity is primarily useful for physical constants and ensures that
the units are propogated correctly when composing quantities from arrays, physical constants, and unitless scalars:

>>> from yt.utilities.physical_constants import boltzmann_constant
>>> print dd['temperature']*boltzmann_constant
[1.28901607e-12 1.29145540e-12 1.29077208e-12 ..., 1.63255263e-12

1.59992074e-12 1.40453862e-12] erg

With this new capability, we will have no need for fields defined only to handle different units (e.g. RadiusCode,
Radiuspc, etc.). Instead, there will only be one definition and if a user needs the field in a different unit system, they
can quickly convert using convert_to_units or in_units.

When a StaticOutput object is instantiated, it will its self instantiate and set up a UnitRegistry class that
contains a full set of units that are defined for the simulation. This is particularly useful for cosmological simulations,
since it makes it easy to ensure cosmological units are defined automatically.

The new unit systems lets us to encode the simulation coordinate system and scaling to physical coordinates directly
into the unit system. We do this via “code units”.

Every StaticOutput object will have a length_unit, time_unit, mass_unit, and velocity_unit
attribute that the user can quickly and easily query to discover the base units of the simulation. For example:

>>> from yt.mods import *
>>> ds = load("Enzo_64/DD0043/data0043")
>>> print ds.length_unit
128 Mpccm/h

Additionally, we will allow conversions to coordinates int the simulation coordinate system defined by the on-
disk data. Data in code units will be available by converting to code_length, code_mass, code_time,
code_velocity, or any combination of those units. Code units will preserve dimensionality: an array or quantity
that has units of cm will be convertible to code_length, but not to code_mass.

On-disk data will also be available to the user, presented in unconverted code units. To obtain on-disk data, a user need
only query a data object using an on-disk field name:

>>> from yt.mods import *
>>> ds = load("Enzo_64"/DD0043/data0043")
>>> dd = ds.h.all_data()
>>> print dd['Density']
[6.74992726e-02 6.12111635e-02 8.92988636e-02 ..., 9.09875931e+01

5.66932465e+01 4.27780263e+01] code_mass/code_length**3
>>> print dd['density']
[1.92588950e-31 1.74647714e-31 2.54787551e-31 ..., 2.59605835e-28

1.61757192e-28 1.22054281e-28] g/cm**3

Here, the first data object query is returned in code units, while the second is returned in CGS. This is because
Density is an on-disk field, while density is a ‘standard’ yt field. See YTEP-0003: Standardizing field names.

50 Chapter 11. YTEP-0011: Symbol units in yt

yt Enhancement Proposals Documentation, Release 1.0

Unit labels for plots will be programatically generated. This will leverage the sympy LaTeX output module. Even
though the field definitions will have their units encoded in plain text, we will be able to automatically generate LaTeX
to supply to matplotlib’s mathtext parser.

11.4.3 Implementation

Our unit system has 6 base dimensions, mass, length, time, temperature, metallicity, and angle.
The unitless dimensionless dimension, which we use to represent scalars is also technically a base dimension,
although a trivial one.

For each dimension, we choose a base unit. Our system’s base units are grams, centimeters, seconds, Kelvin, metal
mass fraction, and radian. All units can be described as combinations of these base dimensions along with a conversion
factor to equivalent base units.

The choice of CGS as the base unit system is somewhat arbitrary. Most unit systems choose SI as the reference
unit system. We use CGS to stay consistent with the rest of the yt codebase and to reflect the standard practice
in astrophysics. In any case, using a physical coordinate system makes it possible to compare quantities and arrays
produced by different datasets, possibly with different conversion factors to CGS and to code units. We go into more
detail on this point below.

We provide sympy Symbol objects for the base dimensions. The dimensionality of all other units should be sympy
Expr objects made up of the base dimension objects and the sympy operation objects Mul and Pow.

Let’s use some common units as examples: gram (g), erg (erg), and solar mass per cubic megaparsec (Msun /
Mpc**3). g is an atomic, CGS base unit, erg is an atomic unit in CGS, but is not a base unit, and Msun/Mpc**3
is a combination of atomic units, which are not in CGS, and one of them even has a prefix. The dimensions of g are
mass and the cgs factor is 1. The dimensions of erg are mass * length**2 * time**-2 and the cgs factor
is 1. The dimensions of Msun/Mpc**3 are mass / length**3 and the cgs factor is about 6.8e-41.

We use the UnitRegistry class to define all valid atomic units. All unit registries contain a unit symbol lookup
table (dict) containing the valid units’ dimensionality and cgs conversion factor. Here is what it would look like with
the above units:

{ "g": (mass, 1.0),
"erg": (mass * length**2 * time**-2, 1.0),
"Msun": (mass, 1.98892e+33),
"pc": (length, 3.08568e18), }

Note that we only define atomic units here. There should be no operations in the registry symbol strings. When we
parse non-atomic units like Msun/Mpc**3, we use the registry to look up the symbols. The unit system in yt knows
how to handle units like Mpc by looking up unit symbols with and without prefixes and modify the conversion factor
appropriately.

We construct a Unit object by providing a string containing atomic unit symbols, combined with operations in Python
syntax, and the registry those atomic unit symbols are defined in. We use sympy’s string parsing features to create the
unit expression from the user-provided string. Here’s how this works on Msun/Mpc**3:

>>> from sympy.parsing.sympy_parser import parse_expr
>>> unit_expr = parse_expr("Msun/Mpc**3")
>>> from sympy.printing import print_tree
>>> print_tree(unit_expr)

Mul: Msun/Mpc**3
+-Symbol: Msun
| comparable: False
+-Pow: Mpc**(-3)
+-Symbol: Mpc
| comparable: False

(continues on next page)

11.4. Detailed Description 51

yt Enhancement Proposals Documentation, Release 1.0

(continued from previous page)

+-Integer: -3
real: True
...

When presented with a new unit specification string, a new Unit is created by first decomposing the unit specification
into atomic unit symbols. This may require considering SI prefixes, which we allow for a whitelisted subset of atomic
unit symbols, listed in the table of unit symbols below. The Unit instance is then created by combining a sympy
expression for the unit and the appropriate CGS factors, found by combining the CGS factors of the base unit and
optional SI prefixes.

Unit objects are associated with four instance members, a unit Expression object, a dimensionality Expression
object, a UnitRegistry instance, and a scalar conversion factor to CGS units. These data are available for a Unit
object by accessing the expr, dimensions, registry, and cgs_value attributes, respectively.

Unit provides the methods same_dimensions_as, which returns True if passed a Unit object that has equiv-
alent dimensions, get_cgs_equivalent, which returns the equivalent cgs base units of the Unit, and the
is_code_unit property, which is True if the unit is composed purely of code units and False otherwise. Unit
also defines the mul, div, pow, and eq operations with other unit objects, making it easy to compose compound
units algebraically.

The UnitRegistry class provides the add, remove, and modify methods which allows users to add, remove,
and modify atomic unit definitions present in UnitRegistry objects. A dictionary lookup table is also attached to
the UnitRegistry object, providing an interface to look up unit symbols. In general, unit registries should only
be adjusted inside of a code frontend, since otherwise quantities and arrays might be created with inconsistent unit
metadata. Once a unit object is created, it will not recieve updates if the original unit registry is modified.

We also provide a singleton default_unit_registry instance that frontend developers can copy and modify to
build a simulation-specific unit symbol registry.

The YTArray class works by tacking a Unit object onto an ndarray instance. Besides the conversion methods
already listed, most of the implementation of YTArray depends on defining all possible ndarray operations on
YTArray instances. We want to preserve normal ndarray operations, while getting the correct units on the resulting
YTArray (be it in-place or a copy). The proper way to handle operations on ndarray subclasses is explained in the
NumPy docs page, subclassing ndarray. We follow this approach and describe the desired behavior in the next section
below.

The code for these new classes will live in a new top-level yt.units package. This package will contain five
submodules:

• unit_lookup_table

Contains all static unit metadata used to generate the sympy unit system

• unit_object

Contains the Unit class

• unit_registry

Contains the UnitRegistry class

• yt_array

Contains the YTArray and YTQuantity classes.

• unit_symbols

Contains a host of predefined unit quantities, useful for applying units to raw scalar data.

52 Chapter 11. YTEP-0011: Symbol units in yt

http://docs.scipy.org/doc/numpy/user/basics.subclassing.html

yt Enhancement Proposals Documentation, Release 1.0

11.4.4 Creating YTArray and YTQuantity instances

In the current implementation, there are two ways to create new array and quantity objects, via a constructor, and by
multiplying scalar data by a unit quantity.

Class Constructor

The primary internal interface for creating new arrays and quantities is through the class constructor for YTArray. The
constructor takes three arguments. The first argument is the input scalar data, which can be an integer, float, list, or
array. The second argument, input_units, is a unit specification which must be a string or Unit instance. Last,
users may optionally supply a UnitRegistry instance, which will be attached to the array. If no UnitRegistry is supplied,
the default_unit_registry is used instead.

Unit specification strings must be algebraic combinations of unit symbol names, using standard Python mathematical
syntax (i.e. ** for the power function, not ^).

Here is a simple example of YTArray creation:

>>> from yt.units import yt_array, YTQuantity
>>> YTArray([1, 2, 3], 'cm')
YTArray([1, 2, 3]) cm
>>> YTQuantity(3, 'J')
3 J

In addition to the class constructor, we have also defined two convenience functions, quan, and arr, for quantity
and array creation that are attached to the StaticOutput base class. These were added to syntactically simplify
the creation of arrays with the UnitRegistry instance associated with a dataset. These functions work exactly like
the YTArray and YTQuantity constructors, but pass the UnitRegistry instance attached to the dataset to the
underlying constructor call. For example:

>>> from yt.mods import *
>>> ds = load("Enzo_64/DD0043/data0043")
>>> ds.arr([1, 2, 3], 'code_length').in_cgs()
YTArray([5.55517285e+26, 1.11103457e+27, 1.66655186e+27]) cm

This example illustrates that the array is being created using ds.unit_registry, rather than the
default_unit_registry, for which code_length is equivalent to cm.

Multiplication

New YTArray and YTQuantity instances can also be created by multiplying YTArray or YTQuantity instances by
float or ndarray instances. To make it easier to create arrays using this mechanism, we have populated the yt.units
namespace with predefined YTQuantity instances that correspond to common unit symbol names. For example:

>>> from yt.units import meter, gram, kilogram, second, joule
>>> kilogram*meter**2/second**2 == joule
True

>>> from yt.units import m, kg, s, W
>>> kg*m**2/s**3 == W
True

>>> from yt.units import kilometer
>>> three_kilometers = 3*kilometer

(continues on next page)

11.4. Detailed Description 53

yt Enhancement Proposals Documentation, Release 1.0

(continued from previous page)

>>> print three_kilometers
3.0 km

>>> from yt.units import gram, kilogram
>>> print gram+kilogram
1001.0 g
>>> print kilogram+gram
1.001 kg
>>> print kilogram/gram
1000.0 dimensionless

11.4.5 Handling code units

If users want to work in code units, they can now ask for data in code units, just like any other unit system. For
example:

>>> dd["density"].in_units("code_mass/code_length**3")

will return the density field in code units.

Code units are tightly coupled to on-disk parameters. To handle this fact of life, the yt unit system can modify, add,
and remove unit symbols via the UnitRegistry.

Associating arrays with a coordinate system

To create quantities and arrays in units defined by a simulation coordinate system, we associate a UnitRegistry
instance with StaticOutput instances. This unit registry contains the metadata necessary to convert the array to
CGS from some other known unit system and is available via the unit_registry attribute that is attached to all
StaticOutput instances.

To avoid repetitive references to the unit_registry, we also define two new member functions in the
StaticOutput base class, quan and arr. These functions simply pass the appropriate unit_registry object
to the YTQuantity and YTArray constructors, returning the resulting quantity or array.

We have modified the definition for set_code_units in the StaticOutput base class. In this new impleme-
nation, the predefined code_mass, code_length, code_time, and code_velocity symbols are adjusted to
the appropriate values and length_unit, time_unit, mass_unit, velocity_unit attributes are attached
to the StaticOutput instance. If there are frontend specific code units, like MHD units, they should also be defined
in subclasses by extending this function.

Mixing modified unit registries

It becomes necessary to consider mixing unit registries whenever data needs to be compared between disparate
datasets. The most straightforward example where this comes up is a cosmological simulation time series, where
the code units evolve with time. The problem is quite general – we want to be able to compare any two datasets, even
if they are unrelated.

We have designed the unit system to refer to a physical coordinate system based on CGS conversion factors. This
means that operations on quantities with different unit registries will always agree since the final calculation is always
performed in CGS.

The examples below illustrate the consistency of this choice:

54 Chapter 11. YTEP-0011: Symbol units in yt

yt Enhancement Proposals Documentation, Release 1.0

>>> from yt.mods import *
>>> pf1 = load('Enzo_64/DD0002/data0002')
>>> pf2 = load('Enzo_64/DD0043/data0043')
>>> print pf1.length_unit, pf2.length_unit
128 Mpccm/h, 128 Mpccm/h
>>> print pf1.length_unit.in_cgs(), pf2.length_unit.in_cgs()
6.26145538088e+25 cm 5.55517285026e+26 cm
>>> print pf1.length_unit*pf2.length_unit
145359.100149 Mpccm**2/h**2
>>> print pf2.length_unit*pf1.length_unit
1846.7055432 Mpccm**2/h**2

Note that in both cases, the answer is not the seemingly trivial 1282 = 16384Mpccm2/h2. This is because the new
quantity returned by the multiplication operation inherits the unit registry from the left object in binary operations.
This convention is enforced for all binary operations on two YTarray objects. In any case, results are always consistent
in CGS:

>>> print (pf1.length_unit*pf2.length_unit).in_cgs()
3.4783466935e+52 cm**2
>>> print pf1.length_unit.in_cgs()*pf2.length_unit.in_cgs()
3.4783466935e+52 cm**2

11.4.6 Handling cosmological units

We also want to handle comoving length units and the hubble little “h” unit. In StaticOutput.set_units, we
implement this by checking if the simulation is cosmological, and if so adding comoving units to the dataset’s unit
registry. Comoving length unit symbols are still named following the pattern “(length symbol)cm”, i.e. “pccm”.

The little “h” symbol is treated as a base unit, h, which defaults to unity. StaticOutput.set_units should
update the h symbol to the correct value when loading a cosmological simulation.

11.4.7 LaTeX printing

We will make use of sympy’s LaTeX pretty-printing functionality to generate axis and colorbar labels automatically for
unit symbols. The LaTeX strings used for atomic units are encoded in the latex_symbol_lut. This is necessary
because, for the purposes of LaTeX representation, sympy interprets symbol names as if they were algebraic variables,
and so get displayed using an italic font. Since our symbols represent units, we want to display them in a roman font
and need to wrap them in \rm{}. New units do not need to be explicitly added to the look-up-table, by default the
LaTeX symbol will simply be the string name of the unit, wrapped using \rm{}.

Using these LaTeX representations of atomic unit symbols, we then use sympy to generate labels, composing the
LaTeX expressions for compound units according to the algebraic relationships between the atomic unit symbols.

11.4.8 YTArray operations

When working interactively, it is important to make sure quick workflows are possible. To this end, we want to make
it possible to use our new dimensionful operations while still leveraging the syntactic simplicity NumPy offers. We
want to avoid mandating that all user-defined data be a YTArray or YTQuantity.

To this end, we define operations between native Python objects like float, NumPy float, NumPy ndarray, and
YTArray. In the table below, we have enumerated all combinations of YTArray, scalar (native Python float or
np.float64), and ndarray for binary operations. In most cases, unitful operations are well defined, however in cases
where the unitful operations are not well defined, we raise a new exception, YTInvalidUnitOperation.

11.4. Detailed Description 55

yt Enhancement Proposals Documentation, Release 1.0

Since NumPy defines in-place, left, and right versions of all mathematical operations (i.e. add, iadd, ladd, radd), we
only list the ‘basic’ version of each operation, with the expectation the implemenation accounts for all four variants,
which all have the same behavior with respect to passing units.

56 Chapter 11. YTEP-0011: Symbol units in yt

yt Enhancement Proposals Documentation, Release 1.0

Operation Combination Result (pseudocode)
mul, div, truediv, floordiv scalar, YTArray ndarray, YTArray

YTArray, units = input_units (op) 1

YTArray, YTArray

YTArray, units = left_units (op)
right_units

add, sub scalar, YTArray ndarray, YTArray

if YTArray is dimensionless:
return YTArray

YTArray, YTArray

if left_units same dimensions as
right_units:

return YTArray, in left_units
else:

raise
YTInvalidUnitOperation

pow scalar, YTArray
ndarray, YTArray

if YTArray is dimensionless:
return scalar**YTArray

else:
raise
YTInvalidUnitOperation

YTArray, scalar

return YTArray**scalar (note units
change)

YTArray, ndarray

if YTArray is dimensionless:
return YTArray**ndarray

raise YTInvalidUnitOperation1

YTArray, YTArray

if YTArray and YTArray are
dimensionless:

return YTArray**YTArray
raise YTInvalidUnitOperation1

le, lt, ge, gt, eq scalar, YTArray ndarray, YTArray

if YTArray is dimensionless:
return YTArray

else
raise
YTInvalidUnitOperation

YTArray, YTArray

if left_units same dimensions as
right units:

return left (op) (right in left
units)

else:
raise
YTInvalidUnitOperation

11.4. Detailed Description 57

yt Enhancement Proposals Documentation, Release 1.0

Now we list the behavior of unary operations on YTArray objects.

Operation Result (pseudocode)
abs, sqrt neg YTArray
exp

if YTArray is dimensionless:
return exp(YTArray)

raise YTInvalidUnitOperation

11.4.9 Unit symbol names

In the table below we provide a listing of all units that are in the current implementation. We also list the dimensions
of the unit, if the unit is in the whitelist to be prefixable with SI abbreviations, the dimensions of the unit, and the
adopted CGS conversion factor.

Unit Symbol name Dimensions SI Prefixable? CGS Conversion factor

Base units
Gram g mass yes 1.0
Meter m length yes 100.0
Second s time yes 1.0
Kelvin K temperature yes 1.0
Radian radian angle no 1.0
Gauss gauss magnetic_field yes 1.0

Code units
Code mass units code_mass mass no ?
Code length units code_length length no ?
Code time units code_time time no ?
Code velocity units code_velocity velocity no ?
Code magnetic field units code_magnetic magnetic_field no ?
Code temperature units code_temperatre temperature no ?
Code metallicity units code_metallicity metallicity no ?
Normalized domain units unitary length no Domain width

Misc CGS
Dyne dyne force yes 1.0
Erg erg energy yes 1.0
Electrostatic unit esu (energy*length)**0.5 yes 1.0
Gauss gauss magnetic_field yes 1.0

Misc SI
Joule J energy yes 1.0e7
Watt W power yes 1.0e7
Hertz Hz rate yes 1.0

Continued on next page

1 This one is a little tricky, since it is defined for ndarrays. Technically, it’s a well-defined unitful operation if the ndarray is the exponent.
Unfortunately, this will make all the elements of the ndarray have different units, so we don’t allow it in practice.

58 Chapter 11. YTEP-0011: Symbol units in yt

yt Enhancement Proposals Documentation, Release 1.0

Table 1 – continued from previous page
Unit Symbol name Dimensions SI Prefixable? CGS Conversion factor

Imperial units
Foot ft length no 30.48
Mile mile length no 160934

Cosmological “units”
Little h h dimensionless no ?

Time units
Minute min time no 60
Hour hr time no 3600
Day day time no 86400
Year yr time yes 31557600

Solar units
Solar mass Msun mass no 1.98841586e33
Solar radius Rsun length no 6.9550e10
Solar luminosity Lsun power no 3.8270e33
Solar temperature Tsun temperature no 5870.0
Solar metallicity Zsun metallicity no 0.02041

Astronomical distances
Astronomical unit AU length no 1.49597871e13
Light year ly length no 9.4605284e17
Parsec pc length yes 3.0856776e18

Angles
Degree degree angle no 𝜋/180
Arcminute arcmin angle no 𝜋/10800
Arcsecond arcsec angle no 𝜋/648000
Milliarcsecond mas angle no 𝜋/648000000

Physical units
Electron volt eV energy no 1.602176562e-12
Atomic mass unit amu mass no 1.660538921e-24
Electron mass me mass no 9.10938291e-28

11.5 Testing

We have written a set of unit tests that check to make sure all valid and invalid unit operations succeed or fail as
appropriate. We will also need to verify that the extant unit and answer tests pass before this can be accepted.

11.6 Backwards Compatibility

This is a serious break in backwards compatibility. Once this is accepted, units will no longer be stored in the
StaticOutput dict. This means that all scripts which use the pf[unit] construction will no longer be valid.
We will also need to eliminate instances of this construction within the yt codebase.

11.5. Testing 59

yt Enhancement Proposals Documentation, Release 1.0

We will need to check to make sure the analysis modules and external tools that operate on yt data can either work
appropriately with YTArray or figure out a way to degrade to ndarray gracefully.

60 Chapter 11. YTEP-0011: Symbol units in yt

CHAPTER 12

YTEP-0012: Halo Redesign

12.1 Abstract

Created: March 7, 2013

Author: Britton Smith, Cameron Hummels, Chris Moody, Mark Richardson, Yu Lu

In yt 3.0, operations relating to the analysis of halos (halo finding, merger tree creation, and individual halo analysis)
will be brought together into a single framework. This will enable the analysis of individual halos through time without
the need to bridge the gap between halo finding, merger tree creation, and halo profiling on one’s own.

12.2 Status

Completed

12.3 Project Management Links

• Issue tracker

12.4 Detailed Description

12.4.1 Halo Analysis in yt 2.x

Currently, analyzing halos from a cosmological simulation works in the following way. First, a halo finder is run,
which produces a halo catalog in the form of an ascii file. Each of the halo finders implemented in yt produce halo
catalogs with slightly different formats, including various quantities that also differ. To perform any additional analysis
on the halos that have been found, one then uses the HaloProfiler. The HaloProfiler reads the various halos
catalogs from their files and performs a limited set of specific functionality, namely one-dimensional radial profiles

61

https://bitbucket.org/yt_analysis/yt/issue/522/unified-halo-analysis

yt Enhancement Proposals Documentation, Release 1.0

and projections. There is also a function that accepts a callback function for performing custom analysis. The analysis
products for each of these are stored in separate locations. Any figures to be made from these analyses require the user
to write their own scripts that are responsible for all file i/o, sorting, and plotting.

Analysis of a halo as it evolves over time first requires the creation of a merger tree. For this to work, the particles
that belong to each halo need to have been written out during the halo finding step. Most of the merger trees work by
manually specifying a list of dataset filenames over which the merger tree is to be calculated. A separate database file is
created that contains the entire merger tree and helper functions exist to tracks a given halo’s lineage over time. There
is little comprehensive framework for performing halo time series analysis. With the functionality existing currently,
halo time series analysis can be managed in one of two ways. The first, and more expensive by far, is to run the
HaloProfiler on all halos in all datasets and then use the merger tree database file to correlate halos from multiple
times in the user’s hand-built plotting script. The second is to use the merger tree information to specify a single halo
index to be analyzed with the HaloProfiler. This is accomplished by creating a filter for a specific halo index,
and cannot account for halos coming from multiple parents or having multiple children. There are numerous other
ways in which these approaches are very limiting.

12.4.2 Proposed Halo Analysis in yt 3.0

All of the functionality described above will be managed by a series of new objects working in a hierarchy. These will
be HaloCatalogTimeSeries, HaloCatalog, and Halo, decribed in further detail below. The files created by
the operations described here will allow for the full state of the HaloCatalogTimeSeries object to be restored
by running the same commands that were used to create them. This will allow the user to create a single script that
will be run first on a supercomputer to perform all of the dataset-requiring analysis and then later on a local machine
to load the halo data into memory for further analysis and plotting.

HaloCatalogTimeSeries

This object will accept a TimeSeriesData object containing all the datasets to be used. Its two primary func-
tions will be to perform halo finding on all datasets and creating the merger tree. Each of these two steps will be
performed with separate functions calls where the arguments given will be a callable halo finding or merger tree
function and a dictionary containing additional configuration paramters specific to the provided callables. The data
structure contained in memory will be a time-sorted list of HaloCatalog objects, one for each dataset. It will
also contain a dictionary of dictionaries showing the merger tree information for each halo. The on-disk format for
HaloCatalogTimeSeries objects will likely need to be refined, but will ideally preserve the system of pointers
connecting Halo objects to their past and future counterparts (described further in the Halo section). The data stored
here will potentially be far too large for a single file. Instead, a system of multiple files that is capable of quickly
reconstructing the Halo pointer structure may be better.

The other primary function will be to create halo tables that are flattened numpy structured arrays of various halo
quantities from all or a selection of all halos (e.g. by timestep) from all halo catalogs. This will enable easy slicing
and plotting of properties from multiple halos.

HaloCatalog

This will be a light-weight container for Halo objects from a single dataset. It will be responsible for writing Halo
objects to and restoring from disk. It will be a numpy structured array. The manner in which HaloCatalog
objects will be written to disk will be specified similar to how halo finders and merger tree generators given to
HaloCatalogTimeSeries objects, i.e., by providing a callable writer function. This will allow users to write
to any number of standardized formats, such as the IRATE format.

62 Chapter 12. YTEP-0012: Halo Redesign

http://www.physics.uci.edu/~etolleru/irate-docs/formatspec.html

yt Enhancement Proposals Documentation, Release 1.0

Halo

The Halo object will contain all quantities associated with a given halo calculated either during the halo finding
step or by analysis performed later. By default, particle information will be saved to disk after halo finding has been
performed since it is required for merger tree generation. However, particle information will not remain attached to
the Halo object since it takes a great deal of memory to store this information. Instead, there will be several halo
quantities calculatd at instantiation using these particles including center-of-mass phase-space coordinates, densest
point, shape of halo, and merger tree information (matching against previous and later timesteps to determine lineage
of a halo). However, the option will exist for reloading particle information for later analysis. This technique of
frontloading analysis that requires particle information is how some halo finders, such as Rockstar, currently operate.

The Halo object will also have pointers to the Halo objects that are their past and future instances, essentially the
most massive pro/postgenitors with the largest match of particles inventories. This will allow one to perform any
additional analysis on a single halo lineage simply by traversing this linked list. Further analysis on Halo objects will
be facilitated by associating quantities with callable functions. If the user attempts to access a halo quantity whose
value is not currently stored within the Halo object, it will run the associated callable to create it. At any time, the
HaloCatalogTimeSeries object can be directed to update the files on disk with any new quantities that have
been calculated.

12.5 Backwards Compatibility

This will be a completely new framework for performing this type of analysis. Other than working with existing
halo finders and potentially reading in the output they produce now, there will be no compatibility with pre-existing
machinery. For these reasons, this development will be confined to yt 3.0.

12.6 Current Progress

Development of the new halo analysis is taking place in this repository under the ytep0012 bookmark. This work
is being done alongside the unit refactor and thus includes all changes in the unitrefactor bookmark here. The
majority of the work is taking place within yt/analysis_modules/halo_analysis. Everything detailed
below, except where explicitly noted, has been implemented.

12.6.1 HaloCatalogTimeSeries

Not Implemented. This is currently awaiting development of a new merger tree framework.

12.6.2 HaloCatalog

This relies on the recently added ability to load a Rockstar halo catalog as a yt dataset, referred to hereon as a halo
finder dataset for clarity. A HaloCatalog object is created by providing it with a simulation dataset, a halo finder
dataset, or both.

dpf = load("DD0064/DD0064")
hpf = load("rockstar_halos/halos_64.0.bin")

hc = HaloCatalog(halos_pf=hpf, data_pf=dpf,
output_dir="halo_catalogs/catalog_0064")

12.5. Backwards Compatibility 63

https://bitbucket.org/brittonsmith/yt/
https://bitbucket.org/MatthewTurk/yt/

yt Enhancement Proposals Documentation, Release 1.0

If the halo_pf is not given, halo finding will be done using the method provided with the finder_method keyword
(not implemented). A data container can also be given, associated with either dataset, to control the spatial region in
which halo analysis will be performed.

Analysis is done by adding actions to the HaloCatalog. Each action is represented by a callback function that will
be run on each halo. There are three types of actions.

1. Quantities - a call back that returns a value or values. The return values are stored within the halo object in a
dictionary called “quantities.” At the end of the analysis, all of these quantities will be written to disk as the final form
of the generated “halo catalog.”

definition of the center of mass quantity
def center_of_mass(halo):

if halo.particles is None:
raise RuntimeError("Center of mass requires halo to have particle data.")

return (halo.particles['particle_mass'] *
np.array([halo.particles['particle_position_x'],

halo.particles['particle_position_y'],
halo.particles['particle_position_z']])).sum(axis=1) / \

halo.particles['particle_mass'].sum()
add to a registry of available quantities
add_quantity('center_of_mass', center_of_mass)

in the actual halo analysis script
hc.add_quantity("center_of_mass")

The above example is better suited as a parallel-safe derived quantity, but the use is the same.

Instead of being generated from a callback, quantities can also be values pulled directory from the halo finder dataset.

get the field value ("halos", "particle_mass") for this halo from the halo dataset
hc.add_quantity("particle_mass", field_type="halos")

2. Callbacks - the callback is actually the super class for quantities and filters and is a general purpose function that
does something, anything, to a Halo object. This can include hanging new attributes off the Halo object, performing
analysis and writing to disk, etc. A callback does not return anything. In the example below, we create a sphere for a
halo with a radius that is twice the saved “virial_radius” (in the quantities dict), recenter it on the location of maximum
density, then do some profiling, compute virial quantities based on those profiles (storing them in the quantities dict),
and then write the profiles to disk.

hc.add_callback("sphere", radius_field="virial_radius", factor=2.0)
hc.add_callback("sphere_field_max_recenter", ("gas", "density"))
hc.add_callback("profile", "radius", [("gas", "matter_mass"),

("index", "cell_volume")],
weight_field=None, accumulation=True,
output_dir="profiles", storage="profiles")

hc.add_callback("virial_quantities", ["radius", ("gas", "matter_mass")])
hc.add_callback("save_profiles", storage="profiles")

Currently existing stock callbacks:

• sphere creation

• sphere recenter

• sphere bulk velocity

• 1D profiling

• virial quantity calculation based on 1D profiles

64 Chapter 12. YTEP-0012: Halo Redesign

yt Enhancement Proposals Documentation, Release 1.0

• writing profile data

• reloading saved profile data

• removing Halo attributes.

• PhasePlot

3. Filters - a filter is a callback function that returns True or False. If the return value is True, any further queued
analysis will proceed and the halo in question will be added to the final catalog. If the return value False, further
analysis will not be performed and the halo will not be included in the final catalog.

hc.add_filter("quantity_value", "matter_mass_200", ">", 1e13, "Msun")

Currently existing stock filters:

• quantity filter (shown above): uses an eval statement with a value stored in the quantities dict

Running and Order of Operations

After all callbacks, quantities, and filters have been added, the analysis begins with a call to HaloCatalog.create.

hc.create(save_halos=False, njobs=-1, dynamic=True)

The save_halos keyword determines whether the actual Halo objects are saved after analysis on them has com-
pleted or whether just the contents of their quantities dicts will be retained for creating the final catalog. The looping
over halos uses a call to parallel_objects allowing the user to control how many processors work on each halo.
The final catalog is written to disk int the output directory given when the HaloCatalog object was created. The
final halo catalog can then be loaded in as a yt dataset just in the manner of a halo finder dataset.

All callbacks, quantities, and filters are stored in an “actions” list, meaning that they are executed in the same order in
which they were added. This enables the use of simple, reusable, single action callbacks that depend on each other.
This also prevents unecessary computation by allowing the user to add filters at multiple stages to skip remaining
analysis if it is not warranted.

Reloading a Halo Catalog

A HaloCatalog saved to disk can be reloaded as yt dataset with the standard call to load. Any side data, such as
profiles, can be reloaded with a load_profiles callback and a call to HaloCatalog.load.

from yt.mods import *
from yt.analysis_modules.halo_analysis.api import *

hpf = load("halo_catalogs/catalog_0046/catalog_0046.0.h5")
hc = HaloCatalog(halos_pf=hpf,

output_dir="halo_catalogs/catalog_0046")
hc.add_callback("load_profiles", output_dir="profiles",

filename="virial_profiles")
hc.load()

The load and create functions are wrappers around a _run function responsible for looping over all the halos
and applying callbacks. The only difference between the two is that their default keyword arguments are specifically
tailored for creating (do not retain Halo objects, do write catalog) or rereading catalogs (do retain Halo objects, do
not write catalog).

12.6. Current Progress 65

yt Enhancement Proposals Documentation, Release 1.0

12.6.3 Halo

Halo objects are created by the HaloCatalog during the call to HaloCatalog.run. They are mainly meant
to be temporary objects for retaining information so that it can be passed between callbacks. They can be kept by
specifying save_halos=True. This might be useful when working with a time series of halo catalogs where future_self
and past_self attributes may act as pointers to Halo objects within HaloCatalogs that are time-adjacent.

12.7 Remaining Work

See the Trello board.

All are welcome to get involved with development, testing, etc!

66 Chapter 12. YTEP-0012: Halo Redesign

https://trello.com/b/Aokog41p/halo-analysis

CHAPTER 13

YTEP-0013: Deposited Particle Fields

13.1 Abstract

Created: April 25, 2013

Author: Chris Moody, Matthew Turk, Britton Smith, Doug Rudd, Sam Leitner

The majority of the yt codebase is currently built around Eulerian, grid or cell-like quantities. In order to use particle
quantities, we typically have to deposit particles and essentially make them look like fluid quantities. This YTEP
details the suggest deposition process, how to implement it, how to extend and subclass it, and suggested syntax.

This should improve particle support for Octrees and SPH codes dramatically, and extend particle deposition syntax
for grid-patch codes.

Note that while this covers initial implementation of particle deposition, that deposition does not include smoothing
kernels that utilize extended regions outside of the target region. SPH smoothing kernel implementations will be
defiend in a subsequent YTEP.

Furthermore, we note that this describes fundamentally an interface between the particles and an index. For eulerian
codes, the index corresponds to the fluids; however, for SPH and N-body systems, this is not the case.

13.2 Status

Completed

13.3 Project Management Links

Pull request this was conducted inside:

• https://bitbucket.org/yt_analysis/yt-3.0/pull-request/32/implement-initial-spatial-chunking-for/diff

67

https://bitbucket.org/yt_analysis/yt-3.0/pull-request/32/implement-initial-spatial-chunking-for/diff

yt Enhancement Proposals Documentation, Release 1.0

13.4 Detailed Description

13.4.1 Particle Deposition in yt 2.x

Currently, particle deposition for grid-patch codes works by querying particle fields and supplying them to a routine
like CIC_Deposit3. It is non-trivial to extend this CIC function to octree codes but essential to making SPH codes
interoperable with the yt codebase.

13.4.2 Proposed Syntax

The names of deposited fields can be user-defined, and thus are not explicitly restricted. However, as having a deposited
fields becomes more common in the yt framework and libraries begin to expect and depend on particular names, we
suggest that field names are written as ("deposit", "pname_poperation") where pname is the name of the
particle type and poperation is some semantically-meaningful description of the operation. deposit is defined
as a fluid type in all frontends. This indicates that the returned array is shaped like a fluid field and not particle-shaped.
This is distinct from gas as we may have conflicting or overlapping field definitions.

13.4.3 Example Deposited Field

Below is example particle deposition field defined in Python:

@derived_field(name = ("deposit", "particle_count"),
validators=[ValidateSpatial()])

def particle_count(field, data):
pos = np.column_stack([data["particle_position_%s" % ax]

for ax in 'xyz'])
return data.deposit(pos, method = "count")

13.4.4 Changes to Frontend Code

We exploit the fact that the octree frontends share a common base class
OctreeSubset(YTSelectionContainer) to create a common function deposit(). The patch-based
codes have an analogous AMRGridPatch(YTSelectionContainer). The deposition is passed the particle
positions, the particle fields required, and the deposition method: deposit(positions, field = None,
method = None). The deposit function uses method to lookup a Cython ParticleDepositOperation
class in particle_deposit.pyx. This class defines the deposition procedure in three steps, which deposit
calls sequentially. The first ParticleDepositOperation member function is initialize which allocates
the memory required to hold temporary arrays for the deposition of particles into grids or octs. Extra temporary arrays
are useful when a reduction of data must occur after the we have looped through all particles. The next step is either
process_octree or process_grid where we loop over all particles, find the oct or cell in an octree or grid
(respectively). Once found, we call process(dims, left_edge, dds, 0, pos, field_vals) which
relates a single particle, its associated cell, and the incremental deposited value. The last step finalize reduces the
data from the temporary arrays and return an oct-shaped or grid-shaped array. This organization allows us to seperate
the particle lookup along in a grid or oct tree from the deposition operation we would like to perform.

13.4.5 Example Cython Code

Below we include an example of the base particle deposit class with most of the Cython type definitions removed for
legibility:

68 Chapter 13. YTEP-0013: Deposited Particle Fields

yt Enhancement Proposals Documentation, Release 1.0

cdef class ParticleDepositOperation:
def initialize(self, *args): raise NotImplementedError
def finalize(self, *args): raise NotImplementedError
def process_octree(self, octree, dom_ind, positions, fields = None):

for i in range(positions.shape[0]):
oct = octree.get(pos, &oi)
offset = dom_ind[oct.ind]
self.process(dims, oi.left_edge, oi.dds,

offset, pos, field_vals)
def process_grid(self, gobj, positions,fields = None):

for i in range(positions.shape[0]):
for j in range(3):

pos[j] = positions[i, j]
self.process(dims, left_edge, dds, 0, pos, field_vals)

def process(self, *args): raise NotImplementedError

Below we subclass the template above to deposit a particle count, taking care to override initialize, process
and finalize but leaving grid traversal in process_octree/grid alone, ensuring that this will work with grid
and octree codes:

cdef class CountParticles(ParticleDepositOperation):
def initialize(self):

self.ocount = np.zeros(self.nvals, dtype="float64")
cdef np.ndarray arr = self.ocount
self.count = <np.float64_t*> arr.data

@cython.cdivision(True)
cdef void process(self, int dim[3],left_edge[3], dds[3], offset,

ppos[3], *fields):
cdef int ii[3], i
for i in range(3):

ii[i] = <int>((ppos[i] - left_edge[i])/dds[i])
self.count[gind(ii[0], ii[1], ii[2], dim) + offset] += 1

def finalize(self):
return self.ocount

Using the templates and organizational scheme proposed here, one can define fields with arbitrary particle selections
(e.g. young stars), perform arbitrary accumulations (e.g. count, sum, or std), loops over all of the particles multiple
times, and switch between cloud-in-cell, SPH smoothing kernel, or simple direct deposition.

13.4.6 Future SPH Kernel

A process very similar to this will be utilized in the future to conduct smoothing kernel operations. This will require
two operations:

• Iteration over the Octs, rather than the particles, and selection of particles based on proximity to an Oct

• An octree selector that has lee-way in its selection of particles; i.e., particles can be fed in as having a dx that
allows them to be selected by octs within which they do not directly reside.

We may find that this specific operation is too slow for applying the smoothing kernel, in which case other options
will be explored.

An initial implementation of this operation is contained in yt/geometry/particle_smooth.pyx.

13.4. Detailed Description 69

yt Enhancement Proposals Documentation, Release 1.0

13.5 Backwards Compatibility

This has no backwards incompatible changes.

13.6 Alternatives

We were unable to identify any.

70 Chapter 13. YTEP-0013: Deposited Particle Fields

CHAPTER 14

YTEP-0014: Field Filters

14.1 Abstract

Created: July 2nd, 2013 Author: Matthew Turk

This YTEP outlines a method for defining generic, evaluated filters to apply to particles used in derived fields. Cur-
rently it does not extend to fluid quantities, as that will require rethinking the method of presenting and handling
Eulerian quantities.

14.2 Status

Proposed. Target is 3.0a3.

14.3 Project Management Links

There has been some disucssion of this in YTEP-0013 and its pull request.

• https://bitbucket.org/yt_analysis/ytep/pull-request/15/ytep-0013-first-class-deposited-particle/diff

• https://ytep.readthedocs.org/en/latest/YTEPs/YTEP-0013.html

• https://bitbucket.org/yt_analysis/yt-3.0/pull-request/59/

14.4 Detailed Description

Currently, filtering particles is done ad-hoc by derived fields. Typically something like this is done:

71

https://bitbucket.org/yt_analysis/ytep/pull-request/15/ytep-0013-first-class-deposited-particle/diff
https://ytep.readthedocs.org/en/latest/YTEPs/YTEP-0013.html
https://bitbucket.org/yt_analysis/yt-3.0/pull-request/59/

yt Enhancement Proposals Documentation, Release 1.0

def finest_particles(field, data):
filter = data["ParticleMassMsun"] <= 340000
pos = data["Coordinates"][filter, :]
d = data.deposit(pos, [data["all", "ParticleMass"][filter]],

method = _method)
d /= data["CellVolume"]
return d

This is not ideal, as it requires new fields to be defined for every single particle filtering and field combination. This
requires every single derived field that is desired to be filtered individually, including derived fields that are used as
dependencies in another field. This is not workable, and a new mechanism for definining filtered particle types is
needed. However, rather than declaring a completely new domain-specific language for defining particles to select
inside a given field specification, this YTEP defines a method for declaring filters that can be applied to particles
inside a contextmanager. This means that all particles used inside the context manager will be pre-filtered.

However, to avoid over-complication, the filtering step will be defined inside functions similar to derived fields and
will not be auto-detected. Instead, all filters defined will be allowed to be applied and in the case of a filtering-needed
field not being found, an exception will be allowed to be raised. However, field dependencies noted in the creation of
a filter will be taken into account when filters are added to a given dataset.

These filters will be added and viewed as a new particle type. For instance, if a dataset has only “all” particles, a new
filter could be added that filtered out particles that should be regarded as “star” particles and that filter will then be
presented as a new particle type “star”.

Filters are only meant to act on homogeneous groups of particles. For instance, a given filter could not select sets of
particles with hetereogeneous attributes and combine them.

Here is an example filter that would accomplish the filtering task shown above:

def finest_particles(pfilter, data):
filter = data["all","ParticleMassMsun"] <= 34000
return filter

add_particle_filter("finest_particles",
function = finest_particles,
filtered_type = "all",
requires=["ParticleMassMsun"])

ds = load("DD0040/DD0040")
sp = ds.h.sphere("max", (1.0, 'mpc'))
sp.quantities["TotalQuantity"]([("finest_particles", "ParticleMassMsun")])

However, more complex filters could be defined as well, relying on additional fields. Furthermore, a side-effect of
future particle field definitions being generated for specific particle types (described in issue 598) would be that any
particle filters defined would also have any particle derived fields added on a per-particle-type basis added automati-
cally. The addition of field definitions will occur during the creation of derived fields.

Note that we do explicitly specify field dependences in these particle types. This may cause issues, as derived fields
will first need to be identified, then particle filters, then any derived fields for those new ad-hoc particle types will be
added. This will require some refactoring of field detection methods, which will overall serve to improve the reliability
of the code base and field detection mechanisms.

Derived fields based on filtered particles are not currently available; only derived fields that work on the filtered particle
type will be available.

Adding this filtering mechanism will also considerably simplify the Enzo frontend, as currently the Enzo frontend
defines several different methods for identify star particles. (Other frontends, where attributes of particles separate
them into different classes, will also benefit.) As an example, for Enzo 2.X-class simulations, the definition of a star is

72 Chapter 14. YTEP-0014: Field Filters

yt Enhancement Proposals Documentation, Release 1.0

through either a creation_time attribute or a particle_type attribute. This will enable definition of filters,
and only the one that is applicable to the specific dataset will be added and applied.

def star_creation_time(pfilter, data):
filter = data["all", "creation_time"] > 0
return filter

add_particle_filter("star",
function = star_creation_time,
filtered_type = "all",
requires = ["creation_time"])

def star_particle_type(pfilter, data):
filter = data["all", "particle_type"] == 2
return filter

add_particle_filter("star",
function = star_particle_type,
filtered_type = "all",
requires = ["particle_type"])

The correct filter will be identified and added to a dataset. Filters are distinct from types in the sense that types have a
fast-path that can be passed down to IO functions; for instance, this may be because particles are stored in a separate
location or IO routines are able to quickly identify those particles that are able to be loaded. Filters are better thought
of as a set of generic validation and selection routines, where those filters are difficult or impossible to pass into the
IO routines in a general way.

Since this is a multi-map to filter names, we will not be able to store filters in a dict-like object, or we will at the very
least have to return a list of possible filters when accessing via dict. This will likely not serve as a large barrier, as the
set of filters will not be user-exposed.

In addition to this, we will define a similar system for filters as is done for fields, in that a hierarchy of filtering
databases will be available. The base or universal filters will be available across codes (suitable, for instance, in direct
cross-code comparison) and then frontend-specific filters can be created. This will enable degeneracies of field names
and so on to be eliminated. The first implementation will require manual calling of add_particle_filter on
StaticOutput subclasses before instantiation of a hierarchy.

However, unlike derived fields, because these filters define actual new particle types, they will not by-default be applied
universally, but instead universal filters will need to be activated by the user. Frontends can decide on a frontend-by-
frontend basis whether or not new frontend-specific filters will be added by default.

14.5 Backwards Compatibility

This should not break any backwards compatibility by itself. However, should functions in yt begin to rely on these
filters, those functions will no longer be backwards compatible.

14.6 Alternatives

I have not presently identified any alternatives, other than construction of a domain-specific language for describing
filters that would then be embedded in the particle type. I believe that will raise complexity considerably.

14.5. Backwards Compatibility 73

yt Enhancement Proposals Documentation, Release 1.0

74 Chapter 14. YTEP-0014: Field Filters

CHAPTER 15

YTEP-0015: Transfer Function Refactor

15.1 Abstract

Created: August 13, 2013 Author: Sam Skillman

This YTEP proposes a fundamental change in the way transfer functions are constructed, modified, and implemented.
The overall goal is to decrease the overhead and difficulty in constructing high-quality transfer functions and displaying
their current state to the user.

15.2 Status

Status should be one of the following:

1. Proposed

2. In Progress

YTEPs do not need to pass through every stage.

15.3 Project Management Links

PR Under Development: https://bitbucket.org/yt_analysis/yt/pull-request/538/transfer-function-helper/diff

15.4 Detailed Description

Transfer functions are currently:

• Fragile – to log/linear, ranges, field swapping

• Complex – must have prior knowledge of data to construct valid TF

75

https://bitbucket.org/yt_analysis/yt/pull-request/538/transfer-function-helper/diff

yt Enhancement Proposals Documentation, Release 1.0

• Difficult to Design – User must guess where interesting features will be.

The aim of this refactoring is to alleviate these three problems. To do so, we will implement several helper functions
that are automate many of the actions that are commonly used during the design process of the transfer function.
Several operations may be costly, and thus will not be done automatically but rather upon request by the user.

This splits up the TransferFunction into two pieces – the TransferFunction and TransferFunctionData. The former
encompasses all the user-facing API in terms of designing and modifying a transfer function, and the latter contains
the data needed by the volume renderer.

Suggested TF Structure:

class TransferFunctionData(object):
"""
Contains the data used by the Camera to actually do the volume
rendering. Not accessed by the user in most circumstances. This
contains most of what the TransferFunction used to be.
"""

class TransferFunction(object):
def __init__(self, data_source=None):

self.data_source = data_source
self.pf = self.data_source.pf
self.rgb_field = None
self.bounds = None
self.alpha_field = None
self._valid = False
self.transfer_function_data = None

def smart_build(self):
"""
Automatically set up best guess bounds, and run initial 1D

profiling of given field. We could make this as automatic
or not as we want.

"""
pass

def set_field(self, field):
"""
Sets the rgb channel to be linked to a given field, invalidating
the current profiles/ranges if different than current field.
"""
if field == self.rgb_field:

return
self._valid = False
assert (field in self.pf.h.field_list)
self.rgb_field = field

def _get_field_bounds(self):
return self.data_source.quantities['Extrema'](self.field)[0]

def set_bounds(self, bounds=None):
if bounds is None:

bounds = self._get_field_bounds()
Do error checking on log/linear state of rendering.
self.bounds = bounds

def _get_1D_field_histogram(self):
"""

(continues on next page)

76 Chapter 15. YTEP-0015: Transfer Function Refactor

yt Enhancement Proposals Documentation, Release 1.0

(continued from previous page)

Calculates 1D profile (in mass/volume/count) of current field to
aid in placement of transfer function features.
"""
pass

def plot/show/display(self):
"""
plots, shows, or displays current TF based on how the user is
interacting with yt. This could save an image to tf_tmp.png,
display in an interactive matplotlib backend, display in an IPython
notebook, or directly interact with the user's visual cortex.
"""

add in all the transfer function modifiers here (gaussians, layers,
ramps, map_to_colormap, etc.)

def set_log(self, log=True):
self.log = log

def clear(self):
"""Clears out the channel values, but leaves the bounds intact"""
pass

def _get_tf_data(self):
"""
This is what the Cameras call to get the TF information. This does
error checking to make sure the transfer function is valid."""
if not self._valid:

Rebuild TransferFunctionData
pass

return self.transfer_function_data

After this is implemented, the usage pattern I would see would be something like:

tf = TransferFunction(pf.h.all_data())
tf.set_field('Density')
tf.smart_build() #<--- maybe another name like: auto_build or auto_awesome
tf.display() #<--- Should we make this automatically display if possible?

cam.set_transfer_function(tf) #<---- links a camera to this tf.
Alternatively we could have done tf = cam.transfer_function and modified
the camera's tf directly.'

tf.set_log(True) # <--- invalidates the TF
tf.do_whatever_modifications(...)
cam.snapshot()

15.5 Backwards Compatibility

This change will break backwards compatibility with how old TransferFunctions were constructed.

15.5. Backwards Compatibility 77

yt Enhancement Proposals Documentation, Release 1.0

78 Chapter 15. YTEP-0015: Transfer Function Refactor

CHAPTER 16

YTEP-0016: Volume Traversal

16.1 Abstract

Created: September 10, 2013 Author: Matthew Turk

yt should consider volume traversal, accumulation of data, and flexible definitions of paths to be first-class operations
as well as implementable by individuals. Essentially, we need a method for describing “derived values for volumes”.

16.2 Status

In progress

16.3 Project Management Links

This is being done in the bookmark cylindrical_rendering in http://bitbucket.org/MatthewTurk/yt-3.0 .

16.4 Detailed Description

Currently, the only mechanisms for studying or understanding data in yt are contained in the following procedures:

• Derived quantities (generating scalars from fields in volumes)

• Derived fields (generating fields from other fields)

• Contour identification

• Ray casting (on or off axis; i.e., projections or volume rendering)

• Streamlines

• Contour identification

79

http://bitbucket.org/MatthewTurk/yt-3.0

yt Enhancement Proposals Documentation, Release 1.0

• Surface extraction

Several of these items utilize brick decomposition, but not all. This is the process by which overlapping grids are
broken apart until a full tesselation of the domain (or data source) is created with no overlaps. This is done by the
kD-tree decomposition.

What this YTEP proposes is to make handling tiles of data first class, as well as provide easy mechanisms for creating
volume traversal mechanisms. There are two components to this: handling tiles of data, and creating fast methods for
passing through the data and moving between tiles.

Note that this YTEP does not (yet) address situations where the mesh of the simulation is too large to fit into memory
on a single node. Because the kD-tree is able to build in parallel, this essentially will amount to distributing regions
of the dataset (where the mesh may not be known) to individual processors, allowing build on those processors, and
enabling individuals to describe reduction steps in their operators.

16.4.1 Brick Iteration

Currently, in yt-3.0, all data objects expose a “block” iterator that returns data containers as well as masks of data. A
similar iterator should exist for iterating over the “tiles” that compose a given data object. How this should behave is
somewhat open for discussion, as the kD-tree itself has a notion of a ‘viewpoint traversal’ which may be important.
Furthermore, it is not necessarily true that the traversal will be easily defined. As an example of this, tiles may need to
traversed according to extrema in some fluid.

Traversal Orders

The order that tiles are returned to the individual should be flexible and extensible. A few predefined orders should be
implemented:

• Depth-first traversal

• View-point traversal

• Breadth-first traversal

Additionally, these should allow for front-to-back or back-to-front yielding. An example API for this would be:

data_source = ds.h.sphere(c, (10.0, 'mpc'))
for brick in data_source.tiles.depth_traverse():

operation(brick)

By default, depth_traverse() would also be exposed for simply iterating over the tiles object. Additional
traversals could be extensibly defined. Many of these traversal already exist for the AMR kD-tree. A traversal should
be able to be defined and executed from the following set of information:

• kD-tree object

• Arguments defining the traversal itself

• Data-centering (optional) and fields (optional)

It should yield PartitionedGrid objects.

Return Values

Most importantly, the notion of what is returned by this system needs to be defined. The notions of what brick is and
possessed need to be defined. There are several options:

1. An empty CoveringGrid that knows how to read data.

80 Chapter 16. YTEP-0016: Volume Traversal

yt Enhancement Proposals Documentation, Release 1.0

2. A filled (i.e., data pre-specified) PartitionedGrid, where vertex or cell-centered data must be specified.

3. A slice object and a grid object

4. A new object, designed for this system, which acts as a superset of PartitionedGrid. This object
would include connectivity information as well, as it would not be independent of the tree itself. The
PartitionedGrid could be modified to fit this.

Regardless of which object is returned, at a minimum a kD-tree (or other partitioning) must be created when requested,
at the call to tiles, potentially cached, and then objects iterated over. Each of these tiles is guaranteed to be the finest
data available within the region they cover, and they are guaranteed not to overlap with any others.

For the purposes of this YTEP, we will assume the fourth option. If the PartitionedGrid object were to be
extended, I believe it would likely be best to extend it as follows. Note that for many of these operations we implicitly
assume that it is operating on a grid patch; for octree codes, the creation of this object will be considerably simpler,
and for particle codes we simply define these as the leaf nodes from the octree index itself. Because we need to handle
particle codes, we must also ensure that these objects can query particles.

• Cache a slice of the grid or data object that it operates on. (For situations where it fully encompasses the parent
region, it need not have a slice.)

• Create a mechanism for filtering particles from the data object it operates on.

• Enable the object to query new fields from its source object. This means that at instantiation time we may not
regard the object as having a given field, but that this field can be added at a later time by querying.

• Provide a mechanism for identifying neighbor objects from a given face index. This is the connectivity relation-
ship described above; given any one cell that resides on the boundary of a brick, return the brick (which may or
may not be a leaf node) that is adjacent. This would enable identifying the leaf node at a given location within
that boundary cell, which may reside at a higher level of refinement and could thus correspond to multiple tiles.
This degeneracy results from the fact that we cannot guarantee that neighboring tiles differ by only a single level
of refinement. However, because this will be defined at the Python level, rather than specifically for well-defined
traversal operations, this is acceptable as we should leave open to the individual how to select the appropriate
cell or what to do with it.

• Provide mechanisms for generating vertex-centered data or cell-centered data quickly.

At the present time, a simple first-pass at implementation could occur with the following:

• Implement a tiles routine that mandates supplying fields to cache or load, the vertex or cell centering of data,
and a viewpoint traversal scheme.

• Cache a kD-tree based on these tiles.

• Iteratively yield tiles from this tree based on the traversal specified above.

The interface for these tiles, at a minimum, must expose that of the PartitionedGridwith one modification: fields
should be accessible by __getitem__, so that any possible changes in the future that would expose this would be
backwards compatible with usages now.

16.4.2 Volume Traversal

The second aspect of this YTEP is to define a mechanism for integrating paths through tiles. Currently we do this
through strict vectors that cannot be re-entrant into a grid; these vectors cannot change path along the way, and the
number of them is fixed at the time of the first grid traversal.

As currently implemented, flexibility in volume traversal is defined in terms of the mechanism by which values are
accumulated. This includes the definition of these objects, all inside grid_traversal.pyx:

• ImageContainer

• ImageAccumulator

16.4. Detailed Description 81

yt Enhancement Proposals Documentation, Release 1.0

• sampler_function

• Accumulator data (i.e., VolumeRenderAccumulator

Essentially, for a given image type, a sampler can be defined. This sample receives the following arguments:
VolumeContainer (a C-interface to a partitioned grid with nogil), v_pos (vector position), v_dir (vector
direction), enter_t (cell-entrance in terms of the parameter), exit_t (exit time based on the vector at time of
entrance), index (index into the data) and data, a pointer to an accumulator (i.e., ImageAccumulator) object.

These sampler functions are called for every index that a vector traverses. The volumes themselves are traversed inside
walk_volume (and, in the nascent cylindrical volume rendering bookmark, walk_cylindrical_volume).
This assumes cartesian coordinates and simply calls the sampler_function for every zone that is crossed. This
enables volume rendering, projecting and so on to be conducted simply by swapping out the sampler function and
correctly interpreting an image object returned.

However, this is not sufficient for arbitrary traversals or arbitrary data collection. We need flexibility to define the
following things:

• The mechanism of traversing blocks of data (covered at a higher level by the kD-tree itself, and not necessarily
a part of this YTEP)

• Bootstrapping traversal of a volume by a given ray object. This would include identifying the zones that a ray
first encounters and setting its initial time of intersection.

• Defining a mechanism for updating the indices in the volume that a ray will intersect next

• Defining a method for determining when a ray has left an object

• Defining a method for selecting the next brick to traverse or connect to

• Updating the value of a ray’s direction

Many of the problems can be seen simply by considering cylindrical volume rendering itself. If the view point is
somewhere outside the cylinder looking toward it, rays from an orthonormal image plane will each construct a chord
through the cylindrical shells. These chords will each span up to pi along the theta direction, and can have the following
properties in their traversal:

• dtheta/dl can switch signs

• grids can be periodic with themselves

• dr/dl can switch signs

• a ray can exit a grid off the r boundary and then re-enter it later in the computation

• Both dtheta/dl and dr/dl change with each update of the ray’s position, and are not even constant over a single
zone.

While this demonstrates some of the complexity, we also want to be able to support translating streamlines, clump
finding and even gravitational lensing into this new mechanism for traversing volumes.

Therefore, we need a new mechanism that abstracts (independently) both the collecting or accumulating of data as
well as the mechanism by which a given ray traverses a patch of data, whether that patch is one or several cells large.
In this manner we will remain neutral to the nature of the data container, which may be an octree, a kD-tree, or a single
grid.

Flow Control

1. At the outermost level, tiles will be traversed in Python, and a collection of rays (either in an ImagePlane or
some other object) will be handed each brick as it comes.

2. Each ray will be “bootstrapped” onto a brick. This will result either in a traversal or an immediate return. (At a
later time we will consider fast evaluation of which rays to consider.)

82 Chapter 16. YTEP-0016: Volume Traversal

yt Enhancement Proposals Documentation, Release 1.0

3. Each cell traversed by the ray will be “sampled” in some way.

4. The ray state (location, index, direction, etc) will be updated.

5. Rays will traverse until they leave a brick.

6. The next brick will be identified, either from ray positions or from the traversal at the python level.

Note that this does not yet enable a ray to request the next brick at a given position, which will be necessary. However,
for the purposes of this iteration of the YTEP, we take it as given that such communication will be defined at a later
time, or will be handled on a ray-by-ray basis, where the iteration is managed for each ray individually.

Objects to Manage

To accommodate the flow control outlined above, the following classes will need to be implemented, with the following
specifications. These will be in Cython. A base class (listed below) will form the basis for each type of traversal.

struct ray_state:
np.float64_t v_dir[3]
np.float64_t v_pos[3]
np.float64_t tmax[3]
int ind[3]
int step[3]
np.float64_t enter_t
np.float64_t exit_t
void *sdata

class GeometryTraversal:

set values like domain size or whatever is necessary here
def __init__(self, parameter_file)
Return whether the ray hits the vc or not
cdef int initialize_ray(self, ray_state *ray, VolumeContainer *vc) nogil
cdef int increment_ray(self, ray_state *ray, VolumeContainer *vc) nogil
cdef np.float64_t intersection(self,

np.float64_t val, int axis, np.float64_t v_dir[3],
np.float64_t v_pos[3]) nogil

cdef int walk_volume(self, VolumeContainer *vc, sampler_function *sampler,
ray_state *ray, np.float64_t *return_t = ?) nogil

cdef

The ray_state object will be independent of the geometry, and will always refer to the cartesian state of the ray.
A given geometry traversal will set up the ray state (i.e., where it intersects with a volume container) and how to
increment the ray state as zones are crossed. The initialize_ray function will determine the state of the ray as it
first touches a brick, and will return 0 or 1 if the ray is inside that brick. The increment_ray function will receive
a ray and determine the crossing time in the parameter t that the ray uses as it passes through a cell. The return value
is 0 for the ray having left the object and 1 for the ray being within the object and the sampler function needing to
be called. intersection will get the position at which a ray intersects a given value, and walk_volume will
typically be described in the base class and not overridden elsewhere. Part of the level of abstraction is to enable
walk_volume to largely be the same for each geometry, but enabling it to be overridden means we can use the same
traversal for other operations such as clump finding and so on.

As a first implementation, the following classes will need to be implemented:

• CartesianTraversal

• PolarTraversal

16.4. Detailed Description 83

yt Enhancement Proposals Documentation, Release 1.0

• CylindricalTraversal

At a later time, the SphericalTraversal object can be implemented.

16.5 Backwards Compatibility

This should retain all backwards compatibility for cartesian systems.

16.6 Alternatives

I’m not sure of any alternatives currently.

84 Chapter 16. YTEP-0016: Volume Traversal

CHAPTER 17

YTEP-0017: Domain-Specific Output Types

17.1 Abstract

Created: September 18, 2013 Author: Matthew Turk and Anthony Scopatz

This YTEP is designed to begin the process of generalizing astrophysics-specific components of yt toward applications
in other domains.

17.2 Status

Proposed and in completed.

This would only be implemented in yt 3.0.

17.3 Project Management Links

The first phase pull request, which is contingent on this being accepted, is here:

• https://bitbucket.org/yt_analysis/yt-3.0/pull-request/96/rename-generic-objects/diff

17.4 Detailed Description

Currently, yt is extremely strongly focused on astrophysical data. This leads to the inclusion of attributes such as
cosmological_simulation, current_redshift and so on, as well as some other fundam. Even within
astrophysical simulations, these can be irrelevant or unnecessary. Furthermore, there may be attributes relevant to
other domains (that transcend a single subclass of StaticOutput) that may be relevant or necessary.

This concept of branding things extends even to the level of the commonly-used variable name pf, which originated
within the original Enzo usage as shorthand for “parameter file,” and the name StaticOutput as in contrast to

85

https://bitbucket.org/yt_analysis/yt-3.0/pull-request/96/rename-generic-objects/diff

yt Enhancement Proposals Documentation, Release 1.0

the “streaming” movie format within Enzo. In order to effectively move beyond both astro- and Enzo-centrism, the
terminology, attributes, and extensibility of datasets should be emphasized and defined.

17.4.1 Problematic Areas

Attributes on StaticOutput

The following attributes are defined on every StaticOutput regardless of whether the dataset is astrophysics,
cosmology, or even rectilinear cartesian mesh.

• current_time (note: this also is not correctly implemented for Enzo)

• domain_dimensions

• domain_left_edge

• domain_right_edge

• cosmological_simulation

• current_redshift

• omega_lambda

• omega_matter

• hubble_constant

Even if cosmological_simulation is set to off, the cosmology-related parameters will be defined. Additionally,
the default “field type” is gas, which is globally set and not necessarily trivial to modify. Changing the units to be
less astro-specific (which may not be necessary for length units) is part of a larger units-related discussion, rather than
part of this YTEP.

Additionally, StaticOutput is tied extremely strongly to a file on disk. Because that is largely internally-facing,
changing that may not be subject to a YTEP, but rather a simple refactoring.

Finally, not all simulation types have a concept of domain_dimensions, even if the indexing system does. This
is currently outside the scope of this YTEP. The domain left and right edges also do not always matter for particle
simulations (except in non-outflow boundary conditions) but are still always relevant to the indexing system.

Below are a few suggested mechanisms for retaining this information as “first class” attributes of a given data set when
appropriate, but to remove it from those datasets where it is not appropriate.

Naming and Branding

Objects will be renamed:

• StaticOutput will be renamed to Dataset

• TimeSeriesData will be renamed to DatasetSeries and will no longer exclusively refer to a time-
related set of data, but instead include arbitrary collections of datasets.

• Instead of pf as shorthand, we will use ds.

• Renaming GeometryHandler to Index

Currently, all datasets expose a .hierarchy attribute, shortened to .h. This naming is a holdover from the time
when Enzo ando ther patch-based AMR datasets were the primary data examined with yt. However, this makes
considerably less sense when seen in light of support of particle datasets, semi-structured datasets, unigrid datasets,
and eventually unstructured mesh datasets. What we really mean when we say .hierarchy or .h is index or

86 Chapter 17. YTEP-0017: Domain-Specific Output Types

yt Enhancement Proposals Documentation, Release 1.0

geometry. Currently, the StaticOutput object also possesses a .geometry attribute, although this is a string
scalar.

I do not think we should replace the .h attribute wholesale, and I do not necessarily think that data objects should
necessarily directly hang off of the StaticOutput (or whatever it is renamed) object. However, I do think that we
should eliminate hierarchy in favor of something more generic that is more descriptive, and we should consider
alternates for creating data objects. Regardless of what we decide on, the .h attribute should remain for the time
being, and we should also not instantiate our indexing method until requested.

The resolution decided upon during discussion has been:

• Eliminate the hierarchy object as a name. geometry seems to be the most popular for what the
GeometryHandler object does.

• Retain the h attribute as an alias (for now, possibly forever)

• Each dataset will have an index property which will be a GridIndex, OctIndex etc etc. This is essentially
the same as the Hierarchy attribute.

• Move data objects up to the top level of Dataset.

17.4.2 Domain-Specific Datasets

Because some domains will have fundamental parameters that put into context the data they represent, this YTEP
proposes a plugin system wherein domain-specific “contexts” register themselves and specific frontends identify which
plugins are applicable to that specific frontend. This dual-ended handshaking helps ensure that plugins ensure they are
applicable to a frontend, and that frontends identify potential plugins that work for them.

A domain plugin (called DomainContext) will operate on a dataset object, adding new attributes, but not new
methods. This violates common object-oriented philosophy and practice, but from an implementation perspective it
seems to be the cleanest and avoiding the most meta-programming.

On instantiation, a static output normally goes through these steps:

1. _parse_parameter_file

2. _setup_coordinate_handler

3. _set_units

4. _set_derived_attrs

5. print_key_parameters

6. create_field_info

This YTEP would propose changing this order to:

1. _parse_parameter_file

2. _setup_coordinate_handler

3. _set_units

4. _set_derived_attrs

5. _apply_domain_contexts

6. create_field_info

7. print_key_parameters

17.4. Detailed Description 87

yt Enhancement Proposals Documentation, Release 1.0

_apply_domain_contexts would iterate through the intersecting set of globally and frontend-specific registered
domain-specific plugins, and for each one would call the class method: is_appropriate supplying the dataset
object (self) as the only argument. If so, the plugin would then return True and an instance of it would be appended
to the dataset property domain_contexts (or some other name, as this collides with domain_* referring to
simulation spatial information.) Alternately, we could mandate an _adapt_*method (seen below) and in the absence
of such a method assume the plugin is blacklisted.

These plugins would then, in sequence, have their apply method called with the dataset as the only argument. They
can then add additional attributes to the dataset, as well as additional key parameters to print out. The runtime overhead
should be negligible.

This extends further to the compartmentalization of field definitions. We leave that somewhat unspecified here, but
domain contexts should enable the application of specific field objects based on runtime parameters. This could mean,
for instance, conversion of face-centered to cell-centered quantities, magnetic field analysis, nuclear decay times, and
so on. One mechanism for doing this would be to add field objects to the already-created field_info object. (This
is why that step must be raised in the list.)

One concern with this is that frontend-specific parameters (i.e., cosmological_simulation) are not universal,
so an adapter between the frontend and the plugin needs to be created. We propose that this be required for each
frontend by enabling plugins to call methods on the dataset. These methods will be named _adapt_* where the
suffix is the contexts’s shortname. These will return dictionaries of parameters which will be rigorously checked for
contents (i.e., preventing incorrect or incomplete information from being passed back.) Contexts must define these
methods.

As an example, here is pseudocode for a cosmological simulation context:

class CosmologyContext(DomainContext):
domain = 'cosmology'

def __init__(self):
pass

@classmethod
def is_appropriate(cls, pf):

if not hasattr(pf, '_adapt_cosmology'): return None
rv = pf._adapt_cosmology()
if rv['cosmological_simulation'] == 1:

c = cls()
return c

return None

def apply(self, pf):
params = pf._adapt_cosmology()
pf.cosmological_simulation = rv['cosmological_simulation']
pf.cosmology = Cosmology()

This design mechanism is somewhat open for discussion; the problems of adapting varying parameters and matching
both the generality of the domain context and the frontend dataset provide challenges. An alternative is to provide a
default class method for each context that is used by the base dataset object to obtain a false value.

As noted during discussion, context can and should subclass each other. How this interfaces with which plugin in the
order of resolution is not yet clear, as (for instance) the base class should not necessarily modify an attribute when the
subclass would then override.

88 Chapter 17. YTEP-0017: Domain-Specific Output Types

yt Enhancement Proposals Documentation, Release 1.0

17.4.3 Runtime Extensibility

These domain context will be extensible at runtime by specifying an additional list of plugins to check, by adding
additional plugins to the global (and frontend-specific) registry, and by adding to the plugin list for each dataset type.

17.4.4 Implementation

Much of the implementation has been described above. However, these domain plugins should reside in a subdirectory
of data_objects, specifically named yt/data_objects/domain_contexts/ and should be limited to one
class per file.

17.5 Backwards Compatibility

• The backwards compatibility of renaming is likely quite small, except for those cases where names would be
changed.

• The backwards compatibility of checking for cosmological_simulation would probably require addi-
tional field validation (or instead, fields that are added specifically by the cosmology context).

• Changing TimeSeriesData to a new name may need to be gradually introduced, retaining backwards com-
patibility for a while.

• Fixing Enzo’s current_time will cause challenges for anyone who is not using internal time conversion
factors. I think this number is likely small.

17.6 Alternatives

We could continue with the status quo.

17.5. Backwards Compatibility 89

yt Enhancement Proposals Documentation, Release 1.0

90 Chapter 17. YTEP-0017: Domain-Specific Output Types

CHAPTER 18

YTEP-0018: Changing dict-like access to Static Output

18.1 Abstract

Created: September 18, 2013 Author: Matthew Turk

Currently, accessing a StaticOutput like a dictionary will check the parameters, units, time_units and conver-
sion_factors dictionaries. This YTEP proposes changing it such that no dictionaries will be queried.

18.2 Status

Proposed

18.3 Project Management Links

There are no easily-identified project management links. However, it should be noted that over the years, numerous
times confusion has arisen as to what things like pf[“Time”] refer to.

18.4 Detailed Description

The conflation of parameters, conversion factors, units and so on causes an enormous amount of confusion. The most
common uses of this are:

• Length conversions such as: 1.0/pf[‘cm’]

• Accessing parameters

• Occasional unit conversions (typically this causes more problems than it solves)

91

yt Enhancement Proposals Documentation, Release 1.0

However, the degeneracy that often arises between unit conversions and parameter access is typically quite problem-
atic. This proposes that we simplify the entire procedure to disable all dict-like access, and ensure that individuals
access .parameters explicitly. This may be unintuitive and will cause large changes to user-facing code, so we
may consider re-enabling it.

The difficulty in ensuring that conversions can be conducted in a separate manner arises from the variable conversion
factors even within a given frontend; particularly for cosmology simulations, these conversion factors (length, time,
etc) change over time.

To implement this, we will ensure that:

1. All places that require a length unit accept a tuple. This is nearly if not completely implemented.

2. For a specified time (until 3.1 is released), dict-like access to the StaticOutput object will raise a deprecation
warning if the key is not found in parameters. This can be elevated to an exception upon request by the user.

3. Ensure the test-suite passes.

4. Update all documentation and examples.

By stepping into this gradually, we will follow the example set forth by the field refactor and enable individuals to see
that the behavior is changing without mandating an immediate switch.

18.5 Backwards Compatibility

In 3.0, this will not break scripts; deprecation warnings will be issued. In 3.1, this will break a considerable number of
scripts that rely on unit conversions mediated by the StaticOutput object. This is very worrisome and will require the
graduated change to disabling dict-like access.

18.6 Alternatives

We can continue allowing this behavior, but it will continue to cause confusion and impede progress toward a cleaner
API.

92 Chapter 18. YTEP-0018: Changing dict-like access to Static Output

CHAPTER 19

YTEP-0019: Reduce items in main import

19.1 Abstract

Created: October 2, 2013 Author: Matthew Turk

Currently, yt.mods includes a huge number of items, polluting the namespace considerably. Many of these are not
necessary, as they are seldom used.

19.2 Status

Proposed

19.3 Project Management Links

19.4 Detailed Description

Currently, the number of items in the yt.mods namespace is enourmous. There are 276 items (including module
builtins.) By providing a better set of namespaces, we can make all of these items accessible without polluting the
namespace itself.

As an example, we should expose the load command primarily, and encourage directly importing frontend-specific
code if that code needs to be interacted with.

This YTEP concerns two changes in functionality.

• Reduce the number of items in yt.mods.

• Make yt.mods a superset of functionality of yt/__init__.py. This means startup_tasks.py
(which includes argument parsing, parallel initialization, configuration system reading, and so on.)

93

yt Enhancement Proposals Documentation, Release 1.0

This will change some aspects of behavior, as it will make operations that currently require the ytcfg variable to be
modified before any other startup_tasks code is executed no longer possible. This number is extremely small,
and the primary one is loglevel setting, which is easily exposed in mylog.setLevel.

Primarily, we want to make yt exist better as a module as well as an environment.

19.4.1 Current Imports

These are the items currently imported, and their proposed status.

We can implement this either through not importing into the main namespace items we do not want to include, or by
explicitly enumerating the items to include in an __all__ attribute.

A few comments on specific items:

• TransferFunction classes have been removed and we should investigate other ways of exposing them.
One option would be importing the module transfer_functions and accessing attributes.

• HaloFinder has been removed, so a new method for setting up this process easily and transparently (perhaps
with amods) is needed.

• add_grad should probably have a new name.

Object Include
ARTFieldInfo No
ARTIOFieldInfo No
ARTIOStaticOutput No
ARTStaticOutput No
AnalysisTask No
ArrowCallback No
AthenaFieldInfo No
AthenaStaticOutput No
BinnedProfile1D Yes
BinnedProfile2D Yes
BinnedProfile3D Yes
Camera No
CastroFieldInfo No
CastroStaticOutput No
ChomboFieldInfo No
ChomboStaticOutput No
ClumpContourCallback No
ColorTransferFunction No
ContourCallback No
CoordAxesCallback No
CuttingQuiverCallback No
DummyProgressBar No
EnzoFieldInfo No
EnzoSimulation No
EnzoStaticOutput No
EnzoStaticOutputInMemory No
EnzoTestOutputFileNonExistent No
FLASHFieldInfo No
FLASHStaticOutput No
FieldInfo No

Continued on next page

94 Chapter 19. YTEP-0019: Reduce items in main import

yt Enhancement Proposals Documentation, Release 1.0

Table 1 – continued from previous page
Object Include
FixedResolutionBuffer Yes
FlashRayDataCallback No
GDFFieldInfo No
GDFStaticOutput No
GUIProgressBar No
GadgetFieldInfo No
GadgetHDF5StaticOutput No
GadgetStaticOutput No
GridBoundaryCallback No
HaloFinder No
HomogenizedVolume No
HopCircleCallback No
HopParticleCallback No
ImageArray Yes
ImageLineCallback No
InvalidSimulationTimeSeries No
LabelCallback No
LinePlotCallback No
LooseVersion No
MagFieldCallback No
MarkerAnnotateCallback No
MaterialBoundaryCallback No
MissingParameter No
MoabFieldInfo No
MoabHex8StaticOutput No
MosaicFisheyeCamera No
NoCUDAException No
NoStoppingCondition No
NyxFieldInfo No
NyxStaticOutput No
OWLSFieldInfo No
OWLSStaticOutput No
ObliqueFixedResolutionBuffer Yes
OffAxisProjectionPlot Yes
OffAxisSlicePlot Yes
OrionFieldInfo No
OrionStaticOutput No
ParallelProgressBar No
ParticleCallback No
ParticleTrajectoryCollection Yes
PlanckTransferFunction No
PlotCallback No
PlotCollection Yes
PlotCollectionInteractive Yes
PlutoFieldInfo No
PlutoStaticOutput No
PointAnnotateCallback No
ProjectionPlot Yes
ProjectionTransferFunction No

Continued on next page

19.4. Detailed Description 95

yt Enhancement Proposals Documentation, Release 1.0

Table 1 – continued from previous page
Object Include
PyneMoabHex8StaticOutput No
QuiverCallback No
RAMSESFieldInfo No
RAMSESStaticOutput No
SlicePlot Yes
SphereCallback No
StreamFieldInfo No
StreamHandler No
StreamStaticOutput No
StreamlineCallback No
TextLabelCallback No
TigerFieldInfo No
TigerStaticOutput No
TimeSeriesData Yes
TimestampCallback No
TipsyFieldInfo No
TipsyStaticOutput No
TitleCallback No
UnitBoundaryCallback No
ValidateDataField Yes
ValidateGridType Yes
ValidateParameter Yes
ValidateProperty Yes
ValidateSpatial Yes
VelocityCallback Yes
YTAxesNotOrthogonalError No
YTCannotParseFieldDisplayName No
YTCannotParseUnitDisplayName No
YTCloudError No
YTCoordinateNotImplemented No
YTCouldNotGenerateField No
YTDataSelectorNotImplemented No
YTDomainOverflow No
YTEllipsoidOrdering No
YTEmptyClass No
YTException No
YTFieldNotFound No
YTFieldNotParseable No
YTFieldTypeNotFound No
YTGeometryNotSupported No
YTHubRegisterError No
YTIllDefinedBounds No
YTIllDefinedFilter No
YTInvalidWidthError No
YTNoAPIKey No
YTNoDataInObjectError No
YTNoFilenamesMatchPattern No
YTNoOldAnswer No
YTNotDeclaredInsideNotebook No

Continued on next page

96 Chapter 19. YTEP-0019: Reduce items in main import

yt Enhancement Proposals Documentation, Release 1.0

Table 1 – continued from previous page
Object Include
YTNotInsideNotebook No
YTObjectNotImplemented No
YTOutputNotIdentified No
YTParticleDepositionNotImplemented No
YTRockstarMultiMassNotSupported No
YTSimulationNotIdentified No
YTSphereTooSmall No
YTTooManyVertices No
YTUnitNotRecognized No
__builtins__ No
__doc__ No
__file__ No
__level No
__name__ No
__package__ No
__startup_tasks No
_fn No
absolute_import No
add_art_field No
add_artio_field No
add_athena_field No
add_castro_field No
add_chombo_field No
add_enzo_1d_field No
add_enzo_2d_field No
add_enzo_field No
add_field Yes
add_flash_field No
add_gadget_field No
add_gdf_field No
add_grad Yes
add_moab_field No
add_nyx_field No
add_orion_field No
add_owls_field No
add_pluto_field No
add_quantity No
add_ramses_field No
add_stream_field No
add_tiger_field No
add_tipsy_field No
amods Yes
analysis_task No
annotate_image Yes
apply_colormap Yes
available_analysis_modules Yes
axis_names No
bb_apicall No
cPickle No

Continued on next page

19.4. Detailed Description 97

yt Enhancement Proposals Documentation, Release 1.0

Table 1 – continued from previous page
Object Include
callback_registry No
ceil No
cls No
contextlib No
data_object_registry No
defaultdict No
deprecate No
derived_field Yes
ensure_dir_exists No
ensure_list No
ensure_numpy_array No
ensure_tuple No
fix_axis No
fix_length No
floor No
get_available_modules No
get_hg_version No
get_image_suffix No
get_ipython_api_version No
get_memory_usage Yes
get_multi_plot Yes
get_num_threads No
get_pbar Yes
get_script_contents No
get_version_stack Yes
get_yt_supp Yes
get_yt_version Yes
glob No
humanize_time No
imgur_upload No
insert_ipython Yes
inspect No
inv_axis_names No
is_root Yes
iterable Yes
just_one No
load Yes
load_amr_grids Yes
load_hexahedral_mesh Yes
load_particles Yes
load_uniform_grid Yes
my_plugin_name No
mylog Yes
na No
name No
np Yes
numpy No
off_axis_projection Yes
only_on_root Yes

Continued on next page

98 Chapter 19. YTEP-0019: Reduce items in main import

yt Enhancement Proposals Documentation, Release 1.0

Table 1 – continued from previous page
Object Include
ortho_find Yes
os No
parallel_objects Yes
parallel_profile Yes
particle_filter Yes
paste_traceback No
paste_traceback_detailed No
pb No
pdb No
pdb_run No
periodic_position Yes
physical_constants Yes
print_tb Yes
projload No
quantity_info No
quartiles Yes
read_struct No
resource No
rootloginfo No
rootonly Yes
rpdb No
scale_image Yes
show_colormaps Yes
signal No
signal_ipython No
signal_print_traceback No
signal_problem No
simulation Yes
struct No
subprocess No
sys No
time No
time_execution No
time_function No
traceback No
traceback_writer_hook No
types No
unparsed_args Yes
update_hg No
warnings No
wraps No
write_bitmap Yes
write_fits Yes
write_image Yes
write_projection Yes
x_dict No
y_dict No
yt_counters No
ytcfg Yes

Continued on next page

19.4. Detailed Description 99

yt Enhancement Proposals Documentation, Release 1.0

Table 1 – continued from previous page
Object Include
ytcfgDefaults No

19.4.2 Changing yt/__init__.py to Import

The second aspect of this YTEP is to change the yt module to include everything that is in yt.mods, but with-
out the side effects that come from yt.startup_tasks. Because importing submodules necessarily will then
import __init__.py, this means submodules cannot be imported without the whole of yt that is exposed in yt.
__init__.py being imported.

This primarily will affect configuration options, which are largely no longer necessary to modify directly at runtime.
Additionally, the old behavior can still be preserved by yt.mods.

19.5 Backwards Compatibility

This may break compatibility, although nearly all of the items removed are items that are not typically used in scripts.
This list can be modified.

Note that importing frontends into a namespace will still enable them to be used in load.

Importing yt.mods will still act as before, with option parsing and the like. Importing yt.config will result in
the config file being parsed once; this means runtime options will need to be modified differently.

19.6 Alternatives

We could identify additional means of reducing the namespace pollution, but this is the main one that I see.

We could also not put anything into yt/__init__.py.

100 Chapter 19. YTEP-0019: Reduce items in main import

CHAPTER 20

YTEP-0020: Removing PlotCollection

20.1 Abstract

Created: March 18, 2014 Author: Matthew Turk

20.2 Status

Completed

20.3 Project Management Links

20.4 Detailed Description

The PlotCollection object was designed to work with the package HippoDraw, as a means of controlling multiple
plots from a single command. This was also focused very strongly on the idea of viewing a single object from multiple
angles, and was mostly useful for my research. All other uses largely used it as the only mechanism of creating plots
– not because of any particular functionality it has.

With yt 3.0, I propose that we remove the PlotCollection entirely, as its functionality is 100% replaced by the
various other objects such as SlicePlot, ProjectionPlot, ProfilePlot and PhasePlot, all of which are
more modern and provide greater access to the underlying matplotlib objects.

This change will occur in yt 3.0. Nearly all users have migrated to using SlicePlot and so on, and we are seeing
much greater uptake of ProfilePlot and PhasePlot. Because we also anticipate growing our community with
this release, and because it will be the time when we can break backwards compatibility, this is the most natural time
to remove it.

101

yt Enhancement Proposals Documentation, Release 1.0

20.5 Backwards Compatibility

Existing scripts that utilize PlotCollection will break, but there will be other yt-3.0 changes that they may suffer
from anyway.

20.6 Alternatives

I do not think we have the resources to pursue alternate options such as supporting PlotCollection in perpetuity.

102 Chapter 20. YTEP-0020: Removing PlotCollection

CHAPTER 21

YTEP-0021: Particle-Only Plots

21.1 Abstract

Created: August 29, 2014 Author: Andrew Myers

This YTEP describes a mechanism for creating scatter plots of particle fields in yt. It was prompted by a question
posted to the yt-users list by Jeremy Ritter, linked below. Essentially, it proposes creating a user-facing function
called ParticlePlot (analagous to SlicePlot or ProfilePlot) that facilitates plotting arbitrary particle
fields against one another.

21.2 Status

Completed

21.3 Project Management Links

• Discussion on yt-users

• Discussion on yt-dev

• Example notebook #1

• Example notebook #2

• Sam’s color splatting PR

21.4 Detailed Description

Currently, to make plots like those in the linked notebooks, you would have to grab the particle data from the data
source and feed them to something like pyplot.plot(). Instead of units, labels, and log_scales getting grabbed from

103

http://http://lists.spacepope.org/pipermail/yt-users-spacepope.org/2014-May/020407.html
http://lists.spacepope.org/pipermail/yt-dev-spacepope.org/2014-August/013604.html
http://nbviewer.ipython.org/gist/atmyers/f8616c9ed5a9d2b027e8
http://nbviewer.ipython.org/gist/atmyers/8d979d990268f48c9688
https://bitbucket.org/yt_analysis/yt/pull-request/887/color-splatting/diff

yt Enhancement Proposals Documentation, Release 1.0

the FieldInfoContainer, they would need to be set up manually. Furthermore, the standardized interface for
modifying yt plots that exists in PlotWindow would not be available.

Instead, we could create a ParticlePlot class that would act like the currently existing yt plotting classes. The
constructor would take:

• data_source: an AMR3DData object

• x_fields: str or list, the field(s) to put on the x-axis

• y_fields: str or list, same but for the y-axis

• color: either a color string, or another particle field to be mapped to a color scale

If x_fields and y_fields are strings, this would add a single scatter plot to the ParticlePlot. If they are lists of
field_names, then a series of plots will be added, in the style of (for example) PhasePlot. The standard methods for
modifying these plots (e.g. set_log, set_units, set_cmap, etc.) should all work as expected, and they should
be able to be saved / sent to the notebook as normal.

21.5 Implementation Details

My current implementation wraps pyplot.plot(), but because pyplot.plot can be slow when the number of points
is large, ParticlePlot should instead use Sam Skillman’s particle splatting code to create something like a
FixedResolutionBuffer. This could then be displayed with pyplot.imshow(). This would also make it easy for
users to access the raw image and pass it to another plotting routine, if they prefer.

21.6 Inheritance Structure

ParticlePlot shares a lot of its functionality with PhasePlot, so the implementation should be similar. In
particular, ParticlePlot should inherit from ImagePlotContainer and the individual plots in it should be
ParticlePlotMPL objects that inherit from ImagePlotMPL.

21.7 Open issues

Plots that have spatial variables on both axes are logically different from those that don’t in a few ways. For instance,
it could be misleading if the aspect ratios are different for two spatial axes, as in the second linked notebook. Also,
things like “pan” and “zoom” make sense for spatial data, but not when plotting, say, velocity versus position. Should
we handle spatial plots differently, as Nathan suggested in the yt-dev discussion above? Spatial plots could in inherit
from PlotWindow to take advantage of all the methods and callbacks in there.

21.8 Backwards Compatibility

None; all existing code should work exactly as before.

21.9 Alternatives

Alternatively, there could be no mechanism for making particle scatter plots inside of yt, and users could call py-
plot.plot() or whatever directly.

104 Chapter 21. YTEP-0021: Particle-Only Plots

CHAPTER 22

YTEP-0022: Benchmarks

22.1 Abstract

Created: January 19, 2015 Author: Matthew Turk

This document proposes a mechanism for tracking performance improvements and regressions, based on the airspeed
velocity project for automated benchmarking.

22.2 Status

Proposed

22.3 Project Management Links

• Pull request: https://bitbucket.org/yt_analysis/yt/pull-request/1415/add-airspeed-velocity-config-file/

• ASV homepage: http://spacetelescope.github.io/asv/

• Intro talk: http://youtube.com/watch?v=OsxJ5O6h8s0

22.4 Detailed Description

22.4.1 Background

Particularly during the transition from yt 2 to yt 3, there has been a large degradation in overall performance. The
underlying implementation of data selection has become considerably more general and the array operations have all
been overloaded, both of which have performance impacts, both of which are large improvements in functionality
and usability. However, in order to address the sad and unacceptable performance degradations, this YTEP has been
proposed as the first step toward tracking performance and attempting to mitigate regressions now and in the future.

105

http://spacetelescope.github.io/asv/
http://spacetelescope.github.io/asv/
https://bitbucket.org/yt_analysis/yt/pull-request/1415/add-airspeed-velocity-config-file/
http://spacetelescope.github.io/asv/
http://youtube.com/watch?v=OsxJ5O6h8s0

yt Enhancement Proposals Documentation, Release 1.0

22.4.2 Proposed Actions

Currently, as described in YTEP-0007: Automatic Pull Requests’ validation, we conduct automatic validation of pull
requests. A mechanism for examining and validating change in performance should also be implemented.

The “airspeed velocity” project has been designed to track the changes in performance as denoted by specific bench-
marks over time in a given project. What we will do is implement a number of characteristic benchmarks, potentially
relying on larger datasets than we do for simple testing, and track how changes to the code make these benchmarks run
faster or slower. As part of the CI process, these results will be posted to a website (ASV has the ability to generate
such websites, along with detailed drilldowns into specific routines, automatically.) Because of how asv works, these
updates will likely need to be a part of the post-acceptance process, rather than pre-acceptance.

A sample website can be seen here: http://mdboom.github.io/astropy-benchmark/

There are three axes of benchmarks, along with the specific benchmark being run.

• Changeset hash being benchmarked

• Version of external dependencies

• Machine on which benchmarks are run

This YTEP proposes:

• Adding running the benchmarks to the CI suite

• Adding publishing of the benchmarking results to the CI suite (perhaps at speed.yt-project.org)

• Encouraging writing new benchmarks by project contributors

Once a benchmark has been written, it can be used forevermore, and even evaluated against past changeset hashes in
the yt repository. Writing benchmarks is easy, too – easier even than tests.

22.4.3 Proposed Repository Layout

Keeping benchmarks next to the code is important to avoid fragmentation. However, the repository containing the
benchmark results will balloon in size, as results and outputs will be committed with mildly reckless abandon. So this
YTEP proposes two repositories:

• Existing yt repository, which will contain the asv configuration file and the benchmarks directory

• A yt-benchmarks repository, which will contain the results (committed, included in the repo, and probably
gigantic) along with a bootstrap script that makes symlinks to the asv configuration file and the benchmarks
directory.

This way, we can very easily run in this directory, commit, and auto-publish. It will mean that all the benchmarks are
in the main repository, for ease of contribution and modification, but all the results are stored elsewhere. It also will
make it easier for folks who want to run and store results on other machines to do so.

22.5 Backwards Compatibility

No backwards compatibility problems exist.

22.6 Alternatives

We could implement our own framework, but this one exists and is pretty nice.

106 Chapter 22. YTEP-0022: Benchmarks

http://mdboom.github.io/astropy-benchmark/

CHAPTER 23

YTEP-0023: yt Community Code of Conduct

23.1 Abstract

Created: July 11, 2015

Author: Britton Smith

This document contains the code of conduct for the yt community. It is a near exact copy of the Astropy Community
Code of Conduct, except that we will employ our own confidential email address for community members to report
violations.

23.2 Status

Completed

23.3 Project Management Links

• Astropy Communitiy Code of Conduct

23.4 Detailed Description

The code of conduct, whose language is below, will be displayed in the following places:

• Developer Documentation

• yt Project About page

• yt Project Community page

• yt Project Development page

107

https://github.com/astropy/astropy-APEs/blob/master/APE8.rst
https://github.com/astropy/astropy-APEs/blob/master/APE8.rst
http://www.astropy.org/about.html#codeofconduct
http://yt-project.org/about.html#codeofconduct
http://yt-project.org/community.html#codeofconduct
http://yt-project.org/development.html#codeofconduct

yt Enhancement Proposals Documentation, Release 1.0

Emails sent to the confidential address will be seen by Hilary Egan, Britton Smith, and John Zuhone.

23.5 yt Community Code of Conduct

The community of participants in open source Scientific projects is made up of members from around the globe with
a diverse set of skills, personalities, and experiences. It is through these differences that our community experiences
success and continued growth. We expect everyone in our community to follow these guidelines when interacting
with others both inside and outside of our community. Our goal is to keep ours a positive, inclusive, successful, and
growing community.

As members of the community,

• We pledge to treat all people with respect and provide a harassment- and bullying-free environment, regardless
of sex, sexual orientation and/or gender identity, disability, physical appearance, body size, race, nationality,
ethnicity, and religion. In particular, sexual language and imagery, sexist, racist, or otherwise exclusionary jokes
are not appropriate.

• We pledge to respect the work of others by recognizing acknowledgment/citation requests of original authors.
As authors, we pledge to be explicit about how we want our own work to be cited or acknowledged.

• We pledge to welcome those interested in joining the community, and realize that including people with a
variety of opinions and backgrounds will only serve to enrich our community. In particular, discussions relating
to pros/cons of various technologies, programming languages, and so on are welcome, but these should be done
with respect, taking proactive measure to ensure that all participants are heard and feel confident that they can
freely express their opinions.

• We pledge to welcome questions and answer them respectfully, paying particular attention to those new to the
community. We pledge to provide respectful criticisms and feedback in forums, especially in discussion threads
resulting from code contributions.

• We pledge to be conscientious of the perceptions of the wider community and to respond to criticism respect-
fully. We will strive to model behaviors that encourage productive debate and disagreement, both within our
community and where we are criticized. We will treat those outside our community with the same respect as
people within our community.

• We pledge to help the entire community follow the code of conduct, and to not remain silent when we see
violations of the code of conduct. We will take action when members of our community violate this code
such as contacting confidential@yt-project.org (all emails sent to this address will be treated with the strictest
confidence) or talking privately with the person.

This code of conduct applies to all community situations online and offline, including mailing lists, forums, social
media, conferences, meetings, associated social events, and one-to-one interactions.

The yt Community Code of Conduct was adapted from the Astropy Community Code of Conduct, which was partially
inspired by the PSF code of conduct.

23.6 Alternatives

None.

108 Chapter 23. YTEP-0023: yt Community Code of Conduct

mailto:confidential@yt-project.org
http://www.astropy.org/about.html#codeofconduct

CHAPTER 24

YTEP-0024: Alternative Smoothing Kernels

24.1 Abstract

Created: August 1, 2015 Author: Bili Dong

This YTEP proposes to add alternative smoothing kernels besides the current standard cubic spline one, make them
available to the smoothing operations, and define a convenient interface for users to choose among them.

24.2 Status

Completed

24.3 Project Management Links

• yt-dev thread

• yt PR #1670

• yt PR #1712

• yt PR #1830

• ytep PR #53

24.4 Detailed Description

Currently in yt, the standard cubic spline kernel is exclusively used for smoothing operations. It is a desired feature
for yt to have support for varied smoothing kernels.

109

http://lists.spacepope.org/pipermail/yt-dev-spacepope.org/2015-July/019477.html
https://bitbucket.org/yt_analysis/yt/pull-requests/1670/alternative-smoothing-kernels/diff
https://bitbucket.org/yt_analysis/yt/pull-requests/1712/wip-alternative-smoothing-kernels/diff
https://bitbucket.org/yt_analysis/yt/pull-requests/1830/alternative-smoothing-kernels-reissued/diff
https://bitbucket.org/yt_analysis/ytep/pull-requests/53/adding-ytep-0024-for-alternative-smoothing/diff

yt Enhancement Proposals Documentation, Release 1.0

The implementations of the kernel functions themselves are straightforward. [DA2012] is referenced for the function
forms and the kernel names.

The bigger challenge is the design of a convenient user interface for future users and a convenient application pro-
gramming interface for future developers. Details of those designs are explained in the following sections.

24.4.1 User Interface

Future users can specify which kernel to use in the smoothing operations by passing a keyword argu-
ment kernel_name to the relevant functions. Currently, functions with potential access to kernels include
Dataset.add_deposited_particle_field and Dataset.add_smoothed_particle_field1. The
naming scheme for fields added through these functions is an extension of the scheme described in
SPH Fields, which is proposed by Nathan Goldbaum in this yt-dev thread. So a particle field
("particletype", "fieldname") smoothed by a certain kernel can be accessed by ("deposit",
"particletype_kernelname_smoothed_fieldname"), except for the cubic spline kernel, whose
smoothed field remains to be ("deposit", "particletype_smoothed_fieldname") (the same as be-
fore).

For example, as demonstrated by the following code, the particle field ("PartType0", "Density")
is smoothed using a quintic kernel and the resultant smoothed field could be accessed by ("deposit",
"PartType0_quintic_smoothed_Density").2

import yt

ds = yt.load("GadgetDiskGalaxy/snapshot_200.hdf5")
ds.add_smoothed_particle_field(("PartType0", "Density"), kernel_name="quintic")

yt.ProjectionPlot(ds, "z", ("deposit", "PartType0_quintic_smoothed_Density"))

Below is a table of available kernel_name and the corresponding name in [DA2012]. All kernels are in 3D (a.k.a.
𝜈 = 3).

Table 1: Kernel Names
kernel_name Name in [DA2012]
cubic Cubic spline
quartic Quartic spline
quintic Quintic spline
wendland2 Wendland C2

wendland4 Wendland C4

wendland6 Wendland C6

24.4.2 Application Programming Interface

When a kernel function is needed, get_kernel_func is used to retrieve it. Given the string of the kernel name, a
kernel function of the type kernel_func is returned. Both get_kernel_func and kernel_func are defined
in geometry/particle_deposit.pxd. The following snippet demonstrate their usage, assuming the source
file is in the same directory as particle_deposit.pxd.

1 Dataset.add_smoothed_particle_field is a wrapper of add_volume_weighted_smoothed_field. It is more convenient
to use. So, for simplicity, add_volume_weighted_smoothed_field will be omitted in the following discussions.

2 The dataset can be downloaded from here.

110 Chapter 24. YTEP-0024: Alternative Smoothing Kernels

http://yt-project.org/docs/dev/analyzing/fields.html#sph-fields)
http://lists.spacepope.org/pipermail/yt-dev-spacepope.org/2015-July/019478.html
http://yt-project.org/data/GadgetDiskGalaxy.tar.gz

yt Enhancement Proposals Documentation, Release 1.0

from .particle_deposit cimport kernel_func, get_kernel_func

cdef class DemoParticleSmoothOperation:
cdef kernel_func sph_kernel
def __init__(self, kernel_name):

self.sph_kernel = get_kernel_func(kernel_name)

Once the kernel function is retrieved, self.sph_kernel could be utilized to do the smoothing.

The rest of the changes to the API is merely the passing of the keyword argument kernel_name. Below is a table
demonstrating the potential passing routes:

Table 2: Passing of kernel_name through Methods (or Functions)
Method Pass to3 File Path
1 SimpleSmooth (aliased as

deposit_simple_smooth)4
yt/geometry/
particle_deposit.pyx

2 VolumeWeightedSmooth (aliased as
volume_weighted_smooth)4

yt/geometry/
particle_smooth.pyx

3 SmoothedDensityEstimate (aliased as
density_smooth)4

yt/geometry/
particle_smooth.pyx

4 ARTIORootMeshSubset.deposit 1 yt/frontends/artio/
data_structures.py

5 YTCoveringGridBase.deposit 1 yt/data_objects/
construction_data_containers.
py

6 AMRGridPatch.deposit 1 yt/data_objects/
grid_patch.py

7 UnstructuredMesh.deposit 1 yt/data_objects/
unstructured_mesh.py

8 OctreeSubset.deposit 1 yt/data_objects/
octree_subset.py

9 OctreeSubset.smooth 2, 3 yt/data_objects/
octree_subset.py

10 OctreeSubset.particle_operation 2, 3 yt/data_objects/
octree_subset.py

11 Dataset.add_deposited_particle_field 4 - 8 yt/data_objects/
static_output.py

12 Dataset.add_smoothed_particle_field 9 yt/data_objects/
static_output.py

To demonstrate how 4 - 10 utilize 1 - 3, the main structure of the smooth method is shown below (irrelevant parts are
ignored; deposit and particle_operation are similar).

def smooth(self, method = None, kernel_name = "cubic", ...):
cls = getattr(particle_smooth, "%s_smooth" % method, None)
op = cls(..., kernel_name)

op is used for the actual smoothing operations thereafter.

For 11 & 12, they simply call the dataset’s deposit or smooth method to get the smoothing operations done.

3 This column indicates the possibility that kernel_name could be passed to ‘Pass to’, which also depends on another parameter method.
4 When a class is given, its __init__ method is meant.

24.4. Detailed Description 111

yt Enhancement Proposals Documentation, Release 1.0

24.4.3 Reference

24.5 Backwards Compatibility

New functionality is accessed by the keyword argument kernel_name with default value kernel_name =
"cubic", so existing codes’ behavior won’t change.

24.6 Alternatives

None.

112 Chapter 24. YTEP-0024: Alternative Smoothing Kernels

CHAPTER 25

YTEP-0025: The ytdata Frontend

25.1 Abstract

Created: August 31, 2015 Author: Britton Smith

This YTEP proposes to make data products created by yt into loadable datasets. Primarily, this will provide the
following features:

• exporting geometric data containers to datasets that can be reloaded for further geometric selection and analysis.

• exporting plot-type data (projections, slices, profiles) so that they can be moved, reloaded, and manipulated to
make new images.

25.2 Status

Completed

25.3 Project Management Links

• yt PR #1718: the accepted pull request containing the full implementation

25.4 Detailed Description

Currently, yt’s main data products (data containers, projections, slices, profiles) can only be used with their full func-
tionality with the original dataset loaded. This is cumbersome when the datasets are so large that they can only be
hosted at remote facilities. Creating publication-quality images from such data either requires a cycle of tweaking,
transferring, viewing, and cursing or creating custom intermediate data products and plotting codes.

113

https://bitbucket.org/yt_analysis/yt/pull-requests/1718/wip-adding-ytdata-frontend

yt Enhancement Proposals Documentation, Release 1.0

This YTEP proposes to create functionality that will allow for the above data products to be exported to a format that
can be reloaded as a full-fledged dataset.

The proposed functionality consists of two main components: functionality to save objects to disk and a frontend
responsible for reloading the saved objects.

25.4.1 Exporting

A general function for saving array data associated with an open dataset will be responsible for writing data to disk.
Data will be written to a single hdf5 file. Metadata associated with the dataset (i.e., current_time, current_redshift,
cosmological parameters, domain dimensions) will be saved as attributes of the root file group. By default, data
will be saved to a “grid” group with “units” attributes saved for each dataset. This function is implemented as
save_as_dataset in yt/frontends/ytdata/utilities.py and imported in the main yt import.

The above function will be called by the user-facing functions, YTDataContainer.save_as_dataset,
ProfileND.save_as_dataset, and FixedResolutionBuffer.save_as_dataset, which will op-
tionally take a filename and a list of fields. If no field list is given, then the fields that have been queried and cached
will be saved. This function will also make sure that fields necessary for geometric selection (grid position/cell size,
particle position) are also saved. Mesh data will be saved to the “grid” group and particle data will be saved to groups
named after the specific particle type.

25.4.2 ytdata Frontend

This frontend will be responsible for reloading all data saved with the above method. As this data is of multiple types,
this will actually be multiple frontends living under the general “ytdata” heading. All dataset types will inherit from
the YTDataset class. See ytdata Dataset Types for a description of each class. For each loaded dataset, ds, in the
ytdata frontend, ds.data will provide direct access to the field data.

Geometrical Data Containers

Fields queried from data containers are returned as unordered, one-dimension arrays and, thus, most closely resemble
particle datasets. All geometric data containers are reloaded as type YTDataContainerDataset, which is a
particle dataset type. Mesh data is stored with the corresponding dx, dy, and dz fields such that derived fields like
cell_volume can be created. All mesh data is aliased to the “gas” field type. The data attribute associated with
the loaded dataset will be a data container configured identically to the original data container. In the case of ray
data containers, this is not possible as a ray is defined by cells it intersects and not cells/particles enclosed within. In
this case, data will be an instance of ds.all_data(). Field access through conventional data containers is also
possible.

ds = yt.load("enzo_tiny_cosmology/DD0046/DD0046")

sphere = ds.sphere([0.5]*3, (10, "Mpc"))
sphere.save_as_dataset(fields=["density", "particle_mass"])

sds = yt.load("DD0046_sphere.h5")

sphere with the same center and radius
print (sds.data)
print (sds.data["grid", "density"])
print (sds.data["gas", "density"])
print (sds.data["all", "particle_mass"])
print (sds.data["all", "particle_position_x"])

(continues on next page)

114 Chapter 25. YTEP-0025: The ytdata Frontend

yt Enhancement Proposals Documentation, Release 1.0

(continued from previous page)

create a data container
ad = sds.all_data()
print (ad["grid", "density"])
print (ad["all", "particle_mass"])

Grid Data Containers

Covering grids, smoothed covering grids, and arbitrary grids return 3D arrays and so can be treated as uniform grid
datasets. After being saved with save_as_dataset, these are reloaded as type YTGridDataset, which is a
uniform grid that also supports particles. FixedResolutionBuffer objects saved with save_as_dataset
will be reloaded as this type as well, only 2D. In this case, ds.data will give access to the multi-dimensional field
arrays.

ds = yt.load("enzo_tiny_cosmology/DD0046/DD0046")

cg = ds.covering_grid(level=0, left_edge=[0.25]*3, dims=[16]*3)
cg.save_as_dataset("cg.h5", ["density", "particle_mass"])
cg_ds = yt.load("cg.h5")

this has the dimensions of the original covering grid
print (cg_ds.data["gas", "density"]).shape

access via geometric selection
ad = cg_ds.all_data()
print (ad["gas", "density"])
print (ad["all", "particle_mass"])

ray = cg_ds.ray(cg_ds.domain_left_edge, cg_ds.domain_right_edge)
print (ray["gas", "density"])

FRBs
proj = ds.proj("density", "x", weight_field="density")
frb = proj.to_frb(1.0, (800, 800))
frb.save_as_dataset(fields=["density"])
fds = yt.load("DD0046_proj_frb.h5")
print (fds.data["density"])

Projections and Slices

Projections and slices are like two-dimensional particle datasets where the x and y fields are “px” and “py”. They
are reloaded as type YTProjectionDataset, which is a subclass of YTDataContainerDataset. Reloaded
projection or slice data can be selected geometrically or fed into a ProjectionPlot or SlicePlot. In these
cases, ds.data is an instance of ds.all_data().

ds = yt.load("enzo_tiny_cosmology/DD0046/DD0046")

proj = ds.proj("density", "x", weight_field="density")
proj.save_as_dataset("proj.h5")

gds = yt.load("proj.h5")
print (gds.data["gas", "density"])
p = yt.ProjectionPlot(gds, "x", "density", weight_field="density")
p.save()

25.4. Detailed Description 115

yt Enhancement Proposals Documentation, Release 1.0

The above would enable someone to make projections or slices of large datasets remotely, then download the exported
dataset, and perfect the final image on a local machine. On and off-axis slices are implemented. Off-axis projections
are not implemented at this time as they use totally different machinery. In this case, the best strategy would be to
create an FRB and call save_as_dataset on that.

General Array Data

Array data written with the base save_as_dataset function can be reloaded as a non-spatial dataset. Geometric
selection is not possible, but the data can be accessed through the YTNonspatialGrid object, ds.data. This
object will only grab data from the hdf5 file and do further selection on it.

from yt.frontends.ytdata.api import save_as_dataset

ds = yt.load("enzo_tiny_cosmology/DD0046/DD0046")

region = ds.box([0.25]*3, [0.75]*3)
sphere = ds.sphere(ds.domain_center, (10, "Mpc"))

my_data = {}
my_data["region_density"] = region["density"]
my_data["sphere_density"] = sphere["density"]
save_as_dataset(ds, "test_data.h5", my_data)

ads = yt.load("test_data.h5")
print (ads.data["region_density"])
print (ads.data["sphere_density"])

Profiles

1, 2, and 3D profiles are like 1, 2, and 3D uniform grid datasets where dx, dy, and dz are different and have different
dimensions. YTProfileDataset objects inherit from the YTNonspatialDataset class. Similarly, the data
can be accessed from ds.data. The x and y bins will be saved as 1D fields and fields named after the x and y bin
field names will be saved with the same shape as the actual profile data. This will allow for easy array slicing of the
profile based on the bin fields.

ds = yt.load("enzo_tiny_cosmology/DD0046/DD0046")
profile = yt.create_profile(ds.all_data(), ["density", "temperature"],

"cell_mass", weight_field=None)
profile.save_as_dataset()

pds = yt.load("DD0046_profile.h5")
print the profile data
print pds.data["cell_mass"]
print the x and y bins
print pds.data["x"], pds.data["y"]
bin data shaped like the profile
print pds.data["density"]
print pds.data["temperature"]

116 Chapter 25. YTEP-0025: The ytdata Frontend

yt Enhancement Proposals Documentation, Release 1.0

25.4.3 ytdata Dataset Types

Name Inheritance Purpose Dataset
Type

Geometric
Selection

YTDataset Dataset common functionality for other
dataset types

n/a n/a

YTDataContainerDatasetYTDataset geometric data containers (sphere,
region, ray, disk)

particle yes

YTSpatialPlotDatasetYTDataContainerDatasetprojections, slices, cutting planes particle yes
YTGridDataset YTDataset covering grids, arbitrary grids,

fixed resolution buffers
grid
w/particles

yes

YTNonspatialDatasetYTGridDataset general array data grid no
YTProfileDatasetYTNonspatialDataset1, 2, and 3D profiles grid no

25.5 Backwards Compatibility

Currently, the only API breakage is in the AbsorptionSpectrum. Previously, it accepted a generic hdf5 file
created by the LightRay. As per the open PR, the LightRay now writes out a yt.loadable dataset that is loaded by
the AbsorptionSpectrum.

Other than the above, this is all new functionality and so has no backward incompatibility. One general change made to
the yt codebase is that places that refer to index fields (x, y, z, dx, etc.) now refer to (<fluid_type>, "dx")
instead of ("index", "dx"). This is to allow fields like cell_volume to be created from the ("grid",
"dx") field that, for the ytdata frontend, lives on disk instead of the version being generated by the geometry handler.
For actual grid datasets, we simply create an alias from (<fluid_type>, "dx") to ("index", "dx") upon
loading. This should be completely transparent to the user.

25.6 Alternatives

We could create custom binary files for every type of plot and data container. We could also revive the concept of
saving pickled objects that was used somewhat in yt-2.

25.5. Backwards Compatibility 117

https://bitbucket.org/yt_analysis/yt/pull-requests/1718/wip-adding-ytdata-frontend

yt Enhancement Proposals Documentation, Release 1.0

118 Chapter 25. YTEP-0025: The ytdata Frontend

CHAPTER 26

YTEP-0026: NumPy-like Operations

26.1 Abstract

Created: September 21, 2015

Author: Matthew Turk

This YTEP describes implementing some NumPy-like and potentially some Pandas-like operations on data container
objects.

26.2 Status

This YTEP is proposed, but proof-of-concept code has been developed and issued in a PR: https://bitbucket.org/yt_
analysis/yt/pull-requests/1763

Once the YTEP PR has been accepted, documentation will be added to the PR to the codebase.

26.3 Project Management Links

Any external links to:

• PR with first work-in-progress: https://bitbucket.org/yt_analysis/yt/pull-requests/1763

26.4 Detailed Description

26.4.1 Background

Data objects in yt are lazy-loaded; only when data is accessed is it read from disk. However, the way they behave is
similar to “data frames” or numpy named dtypes – they act as though they are dicts-of-arrays, with some operations

119

https://bitbucket.org/yt_analysis/yt/pull-requests/1763
https://bitbucket.org/yt_analysis/yt/pull-requests/1763
https://bitbucket.org/yt_analysis/yt/pull-requests/1763

yt Enhancement Proposals Documentation, Release 1.0

being defined that operate in parallel-aware ways.

However, this is something of a leaky abstraction; in order to compute relatively simple operations, the .quantities
object has to be accessed, the correct “quantity” to use determined, and then called.

But, many of these quantities map relatively simply to NumPy operations.

This YTEP doesn’t (yet) address adding other, Pandas-like operations (such as select or group) even though they also
map to yt operations; that may come in the future.

26.4.2 What Can Be Done

I think we should map numpy array operations to quantities and other things! And while we’re at it, let’s add on
very simple “plot” operations. Furthermore, to make the connection more explicit, slices will be implemented as
well to generate data objects and selections. The dataset object will have a .r attribute, aliased to the much more
descriptive .region_expression, which enables directly slicing it, which will either return a region, a slice,
or an arbitrary_grid, depending on how many dimensions are used and if an imaginary step is supplied (like
np.mgrid). This will accept a unitful slice.

26.4.3 Implementation

This will be implemented very simply as a set of aliases that look at the input arguments and then generate results
from them.

NumPy arrays have several operations that return scalars, which is what we want to map to within these operations:

• all

• any

• argmax

• argmin

• max

• mean

• min

• prod

• ptp

• std

• sum

• var

For the purposes of this YTEP, we will concern ourselves with argmax, argmin, max, mean, min, std, ptp,
sum, and also the non-NumPy operations hist and integrate, which normally do not return a single scalar but a
set that does not correspond to the number of elements in the array.

We break these up based on the axis argument, and other optional arguments. Below is the enumerated behavior. Note
that for those items that can be computed in a single pass (i.e., statistical information about the fields as a whole) we
will likely implement a system that computes them in a single pass and caches them, so that min and max and std
will cache in-between calls and only require a single pass over the array.

120 Chapter 26. YTEP-0026: NumPy-like Operations

yt Enhancement Proposals Documentation, Release 1.0

argmax

The mandatory argument is the field over which the maximum is to be computed; the default return argument is the
index, but the axis optional parameter can specify one or more fields that will be returned. (For instance, one could
supply ('x', 'y', 'z') and be handed back the spatial locations.

argmin

The mandatory argument is the field over which the minimum is to be computed; the default return argument is the
index, but the axis optional parameter can specify one or more fields that will be returned. (For instance, one could
supply ('x', 'y', 'z') and be handed back the spatial locations.

max

The mandatory argument is the field of which the maximum is to be computed. This can be a list of fields.

This accepts the optional argument axis. If axis is a spatial axis (as defined by coordinates.axis_names
and thus including 0, 1, 2, and the axis names) it will generate a maximum intensity projection along that axis of the
specified field.

mean

The mandatory argument is the field to average. This will return either a projection if the axis is spatial, or a quantity
result.

The optional axis argument can either be the spatial axis along which the weighted projection can be computed
(defaults to weighted by ones, which is usually not desired for astro data, but may be for other data) or None.
Non-spatial axes are not supported.

The optional weight argument (which defaults to ones) describes how to weight this average. If axis is None
and weight is None, it will compute the sum; if axis is None and weight is not None, it will compute the
weighted_average_quantity.

min

The mandatory argument is the field of which the minimum is to be computed. This can be a list of fields.

Because we do not have “minimum intensity projections,” spatial axes are not supported.

std

The mandatory argument is the field of which the standard deviation is to be computed. This can be a list of fields.

The optional argument weight will describe the weight for computing standard deviation.

ptp

The mandatory argument is the field of which the peak-to-peak is computed.

26.4. Detailed Description 121

yt Enhancement Proposals Documentation, Release 1.0

sum

The mandatory argument is the field to sum.

The axis argument, if spatial, will be the axis along which the projection will be taken. This must either be None or
a spatial axis. The weighting will be None, and thus it will be the line integral. (Note that this will not includes a dl
term, as it will be using the sum method.)

integrate

The mandatory field argument is the field to integrate; if axis is one of the coordinate axes, the return value will
be a projection. This will be using the standard projection method, which includes dl.

If the axis argument is not a spatial dimension, maybe it could return a profile of some type? I’m not sure.

hist

This should return a profile. Determining the most natural way to map how we profile (i.e., the fields along the axes,
and the weighting) is an open question. But, it seems to me that we want to do something like:

• Mandatory argument: field or fields to take the average of, or the sum of. If bins is not specified, the returned
profile will compute the sum of this field in bins along the x axis; this is somewhat of a weird conditional, but
seems to match the closest.

• Optional weight argument: the field to use as the weight; if not specified, this will just be a sum.

• Optional bins argument: the x and optionally y field to use as bins

__getitem__

The slice operation on a shadow .r quantity should return regions or slices.

If one axis is fully-specific, it will be the slice along that axis. If all three are left as start/stop tuples with no step, it
will be a region. These can be either float values or unitful objects or tuples of (val, unit_name).

If a step is supplied, it will need to be supplied for all three dimensions, will need to be imaginary (i.e., 64j) and it
will be interpreted as input to an arbitrary_grid object. The start/stop will provide the left and right edges and
the step will provide the number of dimensions.

plot

The plot operation will only be implemented on things that have obvious plotting candidates – slices, projections,
profiles. This will default to creating the necessary PlotWindow or related class, and will try to choose sane defaults
for it. For instance, this could wrap to_pw. In contrast to to_pw, this will also default to native plot coordinates, as
we want this to match more closely the behavior that would be done by simply plotting the field.

26.4.4 Examples

At the present to get a projection plot of a data object, one would do:

obj = ds.sphere((100, 'cm'), 'c')
p = yt.ProjectionPlot(ds, 'x', 'density', data_source = obj)
p.show()

122 Chapter 26. YTEP-0026: NumPy-like Operations

yt Enhancement Proposals Documentation, Release 1.0

or:

obj = ds.sphere((100, 'cm'), 'c')
proj = ds.proj("x", "density", data_source=obj)
p = proj.to_pw()
p.show()

The alternate here would be:

obj = ds.sphere((100, 'cm'), 'c')
p = obj.sum("density", axis="x")
p.plot()

The histogram could be computed:

obj = ds.sphere((100, 'cm'), 'c')
p = obj.hist("density", bins="temperature", weight="cell_mass")
p.plot()

The slicing would look like:

ds = yt.load("galaxy0030")
my_obj = ds.r[(100,'kpc'):(200,'kpc'), :, (100,'kpc'):(200,'kpc')]

The way to construct this at present would be, which is a bit cumbersome (there are other ways to do this, too, but this
is the one that is the clearest):

ds = yt.load("galaxy0030")
left_edge = ds.domain_left_edge.in_units("kpc").copy()
left_edge[0] = 100
left_edge[2] = 100
right_edge = ds.domain_right_edge.in_units("kpc").copy()
right_edge[0] = 200
right_edge[2] = 200
center = (left_edge + right_edge)/2.0
my_obj = ds.region(center, left_edge, right_edge)

Or for a slice:

ds = yt.load("galaxy0030")
my_obj = ds.r[(100,'kpc'):(200,'kpc'), (250,'kpc'), (100,'kpc'):(200,'kpc')]
my_obj.plot()

At present, we would have to:

ds = yt.load("galaxy0030")
left_edge = ds.domain_left_edge.in_units("kpc").copy()
left_edge[0] = 100
left_edge[2] = 100
right_edge = ds.domain_right_edge.in_units("kpc").copy()
right_edge[0] = 200
right_edge[2] = 200
center = (left_edge + right_edge)/2.0
reg = ds.region(center, left_edge, right_edge)
my_obj = ds.slice(1, (250,'kpc'))
my_obj.to_pw("density")

Another example is how to make very terse computations, which still demonstrate reasonably clearly what they do:

26.4. Detailed Description 123

yt Enhancement Proposals Documentation, Release 1.0

ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
dd = ds.r[:,:,:]
print dd.mean(["velocity_%s" % ax for ax in 'xyz'], weight="cell_mass")

This returns::

[37021.0582639 cm/s, 35794.630883 cm/s, 82204.2708063 cm/s]

Note that we can also do:

print ds.r[:,:,:].mean(["velocity_%s" % ax for ax in 'xyz'], weight="cell_mass")

With the step functionality, this is also possible:

g = ds.r[::128j,::128j,::128j]
g["density"]

which will be an arbitrary_grid object with 128 cells in each dimension.

We may at some point want to add pandas-like selection and indexing functions (http://pandas.pydata.org/pandas-docs/
stable/indexing.html) but right now the use case is less clear. Maybe having select() be an alias for cut_region, or
adding in a groupby method (maybe; not sure that’s useful unless it were by binning) would be interesting, but not
immediately clear to me.

This work, if completed, will include an overhaul of the documentation to reflect this, as I think it is considerably
terser and more expressive.

26.5 Backwards Compatibility

There are no backwards-compatible issues.

26.6 Alternatives

I do not know if there are alternatives to consider; in many ways, this will open us up to more straightforward utilization
of tools like xray and dask.

124 Chapter 26. YTEP-0026: NumPy-like Operations

http://pandas.pydata.org/pandas-docs/stable/indexing.html
http://pandas.pydata.org/pandas-docs/stable/indexing.html

CHAPTER 27

YTEP-0027: Non-Spatial Data

27.1 Abstract

Created: December 1, 2015 Author: Matthew Turk, Nathan Goldbaum, John ZuHone

This YTEP outlines a plan to implement support for native non-spatial data representations in yt.

27.2 Status

In Progress

27.3 Project Management Links

• This pull request is the first attempt at implementing this: https://bitbucket.org/yt_analysis/yt/pull-requests/
1891/wip-supporting-non-spatial-coordinate

• This Trello card discusses it a bit: https://trello.com/c/7d5PCUym/7-index-arrays as does this one: https://trello.
com/c/MXF1sWam/6-non-spatial-data

27.4 Detailed Description

27.4.1 Background

Currently, most of yt assumes that its data structures (particularly for purposes of selection and units) are related to spa-
tial coordinates. This leads to issues such as spherical and cylindrical coordinates believing their angular coordinates
are in code_length, having to pretend that pressure coordinates are code_length, and so on.

An additional complication is that at present, index operations (particularly in selection operations) cannot know in
advance that their input arrays are in “index space.” This leads to costly operations that check the units (which are

125

https://bitbucket.org/yt_analysis/yt/pull-requests/1891/wip-supporting-non-spatial-coordinate
https://bitbucket.org/yt_analysis/yt/pull-requests/1891/wip-supporting-non-spatial-coordinate
https://trello.com/c/7d5PCUym/7-index-arrays
https://trello.com/c/MXF1sWam/6-non-spatial-data
https://trello.com/c/MXF1sWam/6-non-spatial-data

yt Enhancement Proposals Documentation, Release 1.0

assumed to be code_length) and converts if need be. It is often very difficult to create a situation where the arrays
are not in those units, though.

Fortunately, there are very few places where the arrays used to index the dataset are utilized directly; for the most
part, they are manually stripped of units and then re-applied with the correct units in classes such as the spherical
coordinates handler.

This YTEP concerns itself with a few things:

• Allowing datasets to be loaded that are indexed in non-spatial dimensions (for instance, lat, lon, pressure)

• Developing unitful coordinate systems for these non-spatial datasets

• Implementing a custom coordinate handler

27.4.2 Why is this hard?

There are assumptions made in a number of places that data is spatial. Often this shows up in one of these ways:

• Calls to ensure_code or conversions explicitly to code_length.

• Assumptions that a set of units can be represented as a form of length, for instance during integration.

• Inhomogeneous units in a single YTArray are not supported in the current development tip of yt. Some behavior
can be mocked up using object arrays, but this is incredibly unreliable.

27.4.3 Implementation of Index Arrays

To address this issue, an implementation of an object explicitly for indexing data has been created, currently called an
IndexArray. This object subclasses from YTArray, but differs in some crucial ways.

• Multiple units may be specified. These units must be of the same length as the final axis of the array.

• The units in an array are immutable. To change units, the array must be copied. Practically, this means that
convert_to_units will raise an exception, but it brings with it the benefit that it is difficult to find oneself
in a situation where something like domain_left_edge is not the native units of the indexing system.

• Fancy-indexing is not possible; only slicing can be conducted.

These arrays are almost always assumed to be created internally within yt. Some situations, such as specifying a
“center” to an object, can accept IndexArray objects.

27.4.4 Implementation of Coordinates

For inhomogeneous units to be useful, there must be a mechanism for specifying the units to a coordinate handler.
The implementation of a CustomCoordinateHandler manages this task. This coordinate handler assumes that
the coordinate space is functionally Cartesian, but where the axes correspond to non-spatial information. For instance,
you might have the first axis be mass, the second time, the third distance.

Warning: At present, distance metrics are assumed to be scaled identically amongst the three axes. This means
that distance is computed in a Euclidean fashion!

To specify this, the CustomCoordinateHandler accepts an axis unit specification. This extends the existing axis
ordering argument to include axis units. From the perspective of the user, this would look like this::

126 Chapter 27. YTEP-0027: Non-Spatial Data

yt Enhancement Proposals Documentation, Release 1.0

ds = yt.load_uniform_grid(data, [30, 30, 30],
bbox=np.array([[0.0, 10.0], [0.0, 30.0], [0.4, 0.9]]),
geometry = ('custom', (('length', 'm'), ('mass', 'g'), ('time', 's')))

)

In this function call, note that the geometry argument has been extended to include both the axis ordering and the
units that each takes. The first axis is called length with units of m, the second is called mass with units of g and
the third is time with units of s.

Note that these could all be length units, but with different names – this would also be a custom coordinate system
where the naming scheme can be modified.

All coordinate handlers now have an axes_unit dict, which maps the axis names to units.

Future developments may include allowing for specification of non-Euclidean distance functions.

27.4.5 Impact on Plotting

PlotWindow as a whole is designed to be used for plotting spatial datasets. Integrating non-spatial datasets presents
us with two options:

• Modify PlotWindow such that it is generic with respect to units and aspect ratios and usable for non-spatial
data.

• Utilize something like PhasePlot or ParticlePlot for plotting image data from non-spatial datasets.

At present, extremely basic plotting functionality has been put into PlotWindow to deal with non-spatial datasets,
but this has also caused some minor impedance mismatches.

The current long-term strategy is to refactor the two plotting interfaces to share a common base class (also likely with
ParticlePlot), and then have these choose the appropriate subclass for plotting non-spatial data and “do the right
thing.”

27.4.6 Future: More than Three Dimensions

Utilizing IndexArray is the first step toward enabling additional dimensions of data access. However, this set of
functionality alone is by far insufficient. In order to enable access to greater dimensionality of data, there must be
concerted effort to eliminate assumptions of 3 dimensions and generalize data structures. While this is now feasible,
it is still quite the undertaking.

27.5 Backwards Compatibility

The biggest potential source of problems with backwards compatibility arise from the utilization of YTArray objects
where IndexArray objects are required. This is mostly likely to happen places like centers specified to objects.
However, in updating the tests, it seems that these are minimally invasive and should have only very minor impact on
user-facing scripts and APIs.

Work is in progress to ensure that an IndexArray with homogeneous units behaves the same as a YTArray with
those same units. This should minimize impact.

27.5. Backwards Compatibility 127

yt Enhancement Proposals Documentation, Release 1.0

128 Chapter 27. YTEP-0027: Non-Spatial Data

CHAPTER 28

YTEP-0028: Alternative Unit Systems

28.1 Abstract

Created: December 8, 2015 Author: John ZuHone, Nathan Goldbaum, Matthew Turk

This YTEP outlines a plan to support alternative unit systems for yt.

28.2 Status

In Progress

28.3 Project Management Links

PR: https://bitbucket.org/yt_analysis/yt/pull-requests/1904/wip-switching-between-different-base-units/

28.4 Detailed Description

28.4.1 Background

Currently, yt works with a “cgs”-based unit system. That is, all units can be expressible in a set of “base” units, which
are reducible to the “centimeter-gram-second” system of units. There is one exception to this rule, that of SI current
units which are not reducible to anything within the cgs system, and have a base unit of Amperes.

In the current state of the code, there is minimal support for other unit systems. The extent of this support are the
methods for converting unitful quantities (YTArrays, YTQuantities) and units themselves to the SI or “MKS”
(meter-kilogram-second) system. These are:

• in_mks: Takes a YTArray or YTQuantity and returns a new one in equivalent MKS base units.

129

https://bitbucket.org/yt_analysis/yt/pull-requests/1904/wip-switching-between-different-base-units/

yt Enhancement Proposals Documentation, Release 1.0

• convert_to_mks: Converts the units of a YTArray or YTQuantity into the equivalent MKS base units.

• get_mks_equivalent: Takes a Unit object and returns the equivalent MKS units.

These methods are useful, but they require the user to convert to MKS “by hand” from the default “cgs” unit system
used by yt, within which all calculations are carried out. Some users would prefer to work within the MKS system (or
another alternative unit system) which is more appropriate for their datasets and calculations.

This YTEP outlines a proposal for allowing different unit systems to be used in yt. The core of the proposal is to allow
this functionality on a per-object basis: namely, changing the unit system at the level of individual datasets, units, and
unitful quantities, instead of on a global scale. The advantages of this approach are that it is relatively simple, is easily
extendable, and makes only a fairly small number of changes to the fundamental code base.

28.4.2 The UnitSystem Object

Managing different unit systems requires the creation of a new UnitSystem class. A given UnitSystem object
will consist of dict-like access to setting and getting default units with the keys corresponding to dimensions, whether
strings (e.g., "velocity") or SymPy Symbol objects registered in yt.units.dimensions (e.g., yt.units.
dimensions.current_mks). Initialization of a UnitSystem object requires setting the name of the system, as
well as a set of base units:

cgs_unit_system = UnitSystem("cgs", "cm", "g", "s")

This will initialize the UnitSystem along with a set of base units. The required arguments are, in order:

• name: The shorthand name for the UnitSystem.

• length_unit: The base length unit for this system.

• mass_unit: The base mass unit for this system.

• time_unit: The base time unit for this system.

The optional arguments are:

• temperature_unit: The base temperature unit for this system. Defaults to "K" (Kelvin).

• angle_unit: The base angular unit for this system. Defaults to "rad" (radians).

• current_mks: The base angular unit for current in an MKS-like system. Defaults to None.

If need be, the base units for temperature, angle, and MKS current can be supplied:

mks_unit_system = UnitSystem("mks", "m", "kg", "s",
temperature_unit="K",
angle_unit="radian",
current_mks_unit="A")

The initialization of the UnitSystem will also add it to a unit_system_registry dictionary which may be
queried for a given system by its name:

from yt import unit_system_registry
imperial_unit_system = unit_system_registry["imperial"]

Once the UnitSystem exists, new unit defintions for specific dimensions may be added in two ways. The first is to
explicitly set a unit for a specific dimension:

from yt.units.import dimensions
mks_unit_system["pressure"] = "Pa"
mks_unit_system[dimensions.energy] = "J"

130 Chapter 28. YTEP-0028: Alternative Unit Systems

yt Enhancement Proposals Documentation, Release 1.0

So, whenever yt asks for the unit corresponding to a given dimensionality (such as in a field definition), the unit
specified here will be returned. The second way to add new units to the system is simply by querying for the units
for a particular dimension, without having set them previously. The effect of this is to set the units for that specific
dimension by deriving them from the base units:

print(mks_unit_system["angular_momentum"]) # We haven't set a unit for this yet!

which will return kg*m**2/s because it will be derived from the base units of m, kg, and s.

Several unit systems will already be supplied for use with yt. They will be:

• "cgs": Centimeters-grams-seconds unit system, with base of (cm, g, s, K, radian). Uses the Gaus-
sian normalization for electromagnetic units.

• "mks": Meters-kilograms-seconds unit system, with base of (m, kg, s, K, radian, A).

• "imperial": Imperial unit system, with base of (mile, lbm, s, R, radian).

• "galactic": “Galactic” unit system, with base of (kpc, Msun, Myr, K, radian).

• "solar": “Solar” unit system, with base of (AU, Mearth, yr, K, radian).

• "planck": Planck natural units (~ = 𝑐 = 𝐺 = 𝑘𝐵 = 1), with base of (l_pl, m_pl, t_pl, T_pl,
radian).

• "geometrized": Geometrized natural units (𝑐 = 𝐺 = 1), with base of (l_geom, m_geom, t_geom,
K, radian).

Users may create new UnitSystem objects on the fly, which will be added to the unit_system_registry
automatically as they are created. Both of these will be accessible from the top-level yt module.

"code" UnitSystems

When a dataset is instantiated, a UnitSystem object corresponding to the code units for that dataset will be created
and added to the unit_system_registry, where the name will be the string representation of the Dataset
object:

from yt import unit_system_registry, load
ds = load("GasSloshing/sloshing_nomag2_hdf5_plt_cnt_0100")
sloshing_unit_system = unit_system_registry[str(ds)]

28.4.3 Unit Systems and Dataset objects

The main user-facing interface to the different unit systems will be through the load function. load will take a new
keyword argument, unit_system, which will be a string that corresponds to the name identifier for the desired unit
system, with a default value of "cgs". The main effect of changing the unit system will be to return all aliased fields
and derived fields in the units of the chosen system. For example, to change the units to MKS in a FLASH dataset:

ds = yt.load("GasSloshing/sloshing_nomag2_hdf5_plt_cnt_0100", unit_system="mks")
sp = ds.sphere("c", (100.,"kpc"))
print(sp["density"])
print(sp["flash","dens"])
print(sp["kinetic_energy"])
print(sp["angular_momentum_x"])

28.4. Detailed Description 131

yt Enhancement Proposals Documentation, Release 1.0

[1.30865584e-23 1.28922012e-23 1.30364287e-23 ..., 1.61943869e-23
1.61525279e-23 1.59566008e-23] kg/m**3

[1.30865584e-26 1.28922012e-26 1.30364287e-26 ..., 1.61943869e-26
1.61525279e-26 1.59566008e-26] code_mass/code_length**3

[6.37117204e-13 6.12785535e-13 6.20621019e-13 ..., 3.12205509e-13
3.01537806e-13 3.39879277e-13] Pa

[-3.97578436e+63 -3.92971077e+63 -3.95375204e+63 ..., 2.39040654e+63
2.39880417e+63 2.44245756e+63] kg*m**2/s

Note that in this example, "density" is an alias to the FLASH field ("flash","dens"), and it has had its
units converted to MKS, but the original FLASH field remains in its default code units. "kinetic_energy" and
"angular_momentum_x" are derived fields which have also had their units converted.

Another option is to express everything in terms of code units, which may be achieved by setting
unit_system="code":

ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030", unit_system="code")
sp = ds.sphere("c", (30., "kpc"))
print(sp["density"])
print(sp["kinetic_energy"])
print(sp["angular_momentum_x"])

[744.93731689 717.57232666 682.97546387 ..., 40881.68359375
57788.68359375 397754.90625] code_mass/code_length**3

[97150.95501972 91893.64007627 85923.44662925 ...,
11686694.21560157 16358988.90006877 79837013.8427877] code_mass/(code_

→˓length*code_time**2)

[-1.17917130e-10 -1.05648103e-10 -9.26664470e-11 ..., 2.05149702e-09
2.03607319e-09 6.72304619e-09] code_length**2*code_mass/code_time

Currently, the plan is to have all frontends allow the user to set unit_system in the call to load, but this should
be evaluated on a per-frontend basis. For some frontends, it may be more appropriate to set the unit system explicitly,
whether to "cgs" or some other system.

28.4.4 Using UnitSystems in Field Definitions

In order for derived fields to take advantage of the different unit systems, it will be necessary to change the units in the
field definitions, so that the derived fields may be returned in the units of the system specified when the dataset was
loaded.

For example, in setting up the specific angular momentum fields in yt.fields.
specific_angular_momentum, we would change the units thus:

def setup_angular_momentum(registry, ftype = "gas", slice_info = None):
unit_system = registry.ds.unit_system
def _specific_angular_momentum_x(field, data):

xv, yv, zv = obtain_velocities(data, ftype)
rv = obtain_rvec(data)
rv = np.rollaxis(rv, 0, len(rv.shape))
rv = data.ds.arr(rv, input_units = data["index", "x"].units)
return yv * rv[...,2] - zv * rv[...,1]

(continues on next page)

132 Chapter 28. YTEP-0028: Alternative Unit Systems

yt Enhancement Proposals Documentation, Release 1.0

(continued from previous page)

...

registry.add_field((ftype, "specific_angular_momentum_x"),
function=_specific_angular_momentum_x,
units=unit_system["specific_angular_momentum"],
validators=[ValidateParameter("center")])

Notice that the field definition code itself has not been altered at all except that the
units keyword argument to registry.add_field has been changed from cm**2/s to
unit_system["specific_angular_momentum"], which will set the units for the field to whatever is
appropriate for the unit system associated with the dataset. The unit_system object may be queried with either
SymPy symbol objects in yt.units.dimensions or strings corresponding to the variable names of those
objects.

This will not be appropriate for all fields–some fields naturally belong in certain units regardless of the underlying
system used. In the context of galaxy clusters, "entropy" is an example, which naturally belongs in units of
keV*cm**2. Whether or not to change units should be evaluated on a per-field basis.

For users adding their own derived fields, there will be two ways to take advantage of the new unit systems function-
ality. If derived fields are being created from a dataset using ds.add_field, they can set up the units in a similar
way as above:

def _density_squared(field, data):
return data["density"]*data["density"]

ds.add_field(("gas","density_squared"), function=_density_squared, units=ds.unit_
→˓system["density"]**2)

If using yt.add_field, however, it will be necessary to set units="auto" in the call to add_field. To
provide an extra layer of error handling for this case, a dimensions keyword argument will be added to the
DerivedField initialization, which will only be used if units="auto", and will be used to check that the
dimensions supplied to add_field and the dimensions of the YTArray in the field definition are the same:

from yt.units.dimensions import temperature

inverse_temp = 1/temperature

def _inv_temperature(field, data):
return 1.0/data["temperature"]

yt.add_field(("gas","inv_temperature"), function=_inv_temperature, units="auto",
dimensions=inverse_temp)

If one does not supply a dimensions argument when units="auto", or if the dimensions are incompatible,
errors will be thrown.

Special Handling for Magnetic Fields

Making magnetic fields compatible with different unit systems requires special handling. The reason for this is that
the units for the magnetic field in the cgs and MKS systems are not reducible to one another. Superficially, it would
appear that they are, since the units of the magnetic field in the cgs and MKS system are gauss (G) and tesla (T),
respectively, and numerically 1 G = 10−4 T. However, if we examine the base units, we find that they have different

28.4. Detailed Description 133

yt Enhancement Proposals Documentation, Release 1.0

dimensions:

1 G = 1

√
g

√
cm · s

1 T = 1
kg

A · s2

It is easier to see the difference between the dimensionality of the magnetic field in the two systems in terms of the
definition of the magnetic pressure:

𝑝𝐵 =
𝐵2

8𝜋
(cgs)

𝑝𝐵 =
𝐵2

2𝜇0
(MKS)

where 𝜇0 = 4𝜋 × 10−7 N/A2 is the vacuum permeability. Therefore, in order to handle the different cases of the
magnetic field units for the two different systems, it is necessary to have field definitions which can take the different
dimensionalities into account.

The most fundamental change which is required will be to change the way aliases are handled for the magnetic field
vector fields. Normally, the dataset field and the aliased field will have the same dimensions. For example, in the case
of a FLASH dataset, ("flash","magx") and its alias ("gas","magnetic_field_x") will have the same
dimensions of magnetic_field_cgs, which are sqrt((mass))/(sqrt((length))*(time)). This is
handled by specifying the alias in the known_other_fields atttribute of the FieldInfoContainer like this:

class FLASHFieldInfo(FieldInfoContainer):
known_other_fields = (

...
("magx", (b_units, ["magnetic_field_x"], "B_x")),
("magy", (b_units, ["magnetic_field_y"], "B_y")),
("magz", (b_units, ["magnetic_field_z"], "B_z")),
...

)

Where the alias is the second item in the 3-element tuple after the field name. However, we may want to con-
vert from a cgs unit system to an MKS unit system, which would require changing the dimensions of the alias
"magnetic_field_x" (while leaving the units and dimensions of the dataset field "magx" intact). The solu-
tion is to remove the alias from known_other_fields and supply a helper function which creates the aliases,
taking into account the specified unit system:

class FLASHFieldInfo(FieldInfoContainer):
known_other_fields = (

...
("magx", (b_units, [], "B_x")), # Note the alias has been removed
("magy", (b_units, [], "B_y")),
("magz", (b_units, [], "B_z")),
...

)

def setup_fluid_fields(self):
from yt.fields.magnetic_field import \

setup_magnetic_field_aliases
...
setup_magnetic_field_aliases(self, "flash", ["mag%s" % ax for ax in "xyz"])

Again, this will have to be evaluated on a per-frontend basis as to what is most appropriate for the handling of
the magnetic field units. The definitions for other magnetic-related fields such as "magnetic_pressure" and
"alfven_speed" will also be modified to ensure that the units are handled properly for the different systems.

134 Chapter 28. YTEP-0028: Alternative Unit Systems

yt Enhancement Proposals Documentation, Release 1.0

28.4.5 Other Ways to Use the Unit Systems

There will be other ways in which unit-aware objects in yt may be converted to a different unit system. they are:

in_base, convert_to_base, get_base_equivalent methods

These three methods, which currently convert unitful quantities and units to the yt base units of cgs (plus Ampere
if the dimensionality includes current_mks), will be modified to include a unit_system keyword argument,
which will be set to "cgs" by default. The purpose of this keyword argument is to allow switching between different
unit systems for YTArrays, YTQuantities, and Unit objects. This keyword argument may be set to a string
corresponding to the name of the desired unit system. Some examples:

a = YTArray([1.0, 2.0, 3.0], "km/hr")
print(a.in_base("imperial"))

[0.91134442, 1.82268883, 2.73403325] ft/s

b = YTQuantity(12., "g/cm**3")
b.convert_to_base("galactic")
print(b)

1.7730691071344677e+32 Msun/kpc**3

c = YTQuantity(100., "mile/hr")
print(c.units.get_base_equivalent("mks"))

m/s

Alternatively, a Dataset object may be passed as the unit_system argument, which will convert to the base code
units of that dataset:

ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
sp = ds.sphere("c", (30., "kpc"))
print(sp["density"].in_base(ds))

[744.93731689 717.57232666 682.97546387 ..., 40881.68359375
57788.68359375 397754.90625] code_mass/code_length**3

Note that this will only work if the YTArray, YTQuantity, or Unit in question “knows” about those code units,
e.g., it is from a data container from that Dataset or was initialized using ds.arr.

A call to in_base or convert_to_base without specifying a unit system will convert to the default “cgs” unit
system:

a = YTArray([1.0, 2.0, 3.0], "km/hr")
print(a.in_base())

[27.77777778, 55.55555556, 83.33333333] cm/s

which is the current behavior of the code, ensuring backwards-compatibility. The behavior of the cgs and MKS-
specific methods (e.g., in_cgs, in_mks, etc.) will not be modified.

28.4. Detailed Description 135

yt Enhancement Proposals Documentation, Release 1.0

Cosmology object

Currently, the Cosmology object returns all quantities in cgs units. The proposed changes will add a new keyword
argument, unit_system, which will be a string that corresponds to the name identifier for the desired unit system,
with a default value of "cgs".

cosmo = Cosmology(unit_system="galactic")

Alternatively, unit_system may be set to a Dataset object to use the code units of that dataset:

ds = yt.load("IsolatedGalaxy/galaxy0030/galaxy0030")
cosmo = Cosmology(unit_system=ds)

28.4.6 Physical Constants in the Different Unit Systems

Each UnitSystem object will have a constants attribute which can be used to obtain any physical constant in
yt.utilities.physical_constants in the base units of that system. For example:

import yt

galactic_units_system = yt.unit_system_registry["galactic"]

G = galactic_units_system.constants.G
clight = galactic_units_system.constants.clight
mp = galactic_units.system.constants.mp

print(G)
print(clight)
print(mp)

4.498205661165364e-12 kpc**3/(Msun*Myr**2)

306.6013938381177 kpc/Myr

8.417430465502256e-58 Msun

28.4.7 Notifying the Community

The community will be notified about this feature enhancement via the mailing list and appropriate social media
accounts. Appropriate documentation of this feature will be added.

28.5 Backwards Compatibility

Since the base unit system for all yt units will remain cgs, and the unit_system keyword will always default to
"cgs" for loading datasets, setting up Cosmology objects, and unit conversions of arrays, the changes as proposed
are fully backwards-compatible.

136 Chapter 28. YTEP-0028: Alternative Unit Systems

yt Enhancement Proposals Documentation, Release 1.0

28.6 Alternatives

The only alternative discussed up to this point was to set the unit system globally for a given yt session using the
configuration system. The system proposed here allows for more fine-grained control at the level of individual ob-
jects, e.g. Dataset, YTArray, and Cosmology objects, which should be sufficient for most (if not all) purposes.
Another option is to make the default base units themselves configurable. This is disfavored since it does not appear
to add additional functionality beyond the currently proposed scheme, and would result in more widespread changes
to the code base.

28.6. Alternatives 137

yt Enhancement Proposals Documentation, Release 1.0

138 Chapter 28. YTEP-0028: Alternative Unit Systems

CHAPTER 29

YTEP-0029: Extension Packages

29.1 Abstract

Created: January 25, 2016

Author: Matthew Turk

The yt project is not the same as the yt codebase. However, the bundling of analysis modules and maintaining a
monolithic repository tends to blur the distinction between the two. This YTEP is an attempt to identify how we can
make the codebase more friendly to extension modules, and to encourage an ecosystem of independently developed
packages that utilize yt.

29.2 Status

Completed

29.3 Project Management Links

There has been discussion on yt-dev about this, but due to Dreamhost’s constant problems with archiving mail, they
may be gone forever, about which I will refrain from editorializing here.

29.4 Detailed Description

This YTEP proposes a few courses of action designed to promote the idea of yt as a dependency, rather than a desti-
nation, for analysis modules and external projects.

As it stands, many (the author included) have viewed yt as the “place” to put things, whether or not they contribute to
its core mission. There are several good reasons for this:

139

yt Enhancement Proposals Documentation, Release 1.0

• Distribution: yt is largely a monolithic codebase, and if you have downloaded and installed yt, you have access
to all of the analysis modules. This makes discoverability and distribution much easier.

• Infrastructure: yt has testing infrastructure which gets run on all pull requests and new revisions. As such, if
the analysis module is in the primary codebase, it too will be tested. If functionality in yt changes, the analysis
module will track this. Additionally, we provide the ability to run tests on managed infrastructure.

• Hosting: We will allow these projects to host data on hub.yt as well as have their websites either as subrepos-
itories in the main yt-project/website repository or as subdirectories. This will allow them to share our hosting
infrastructure without developing their own, if they so wish.

• Prestige: (maybe?) Having something be a part of yt adds to the sense that it’s part of the bigger project, and
that it’s somehow graduated to a stable component. (I am not sure this is real, but it’s been mentioned to me.)

• Social infrastructure: There’s a mailing list for yt, so folks know where to go.

But, there are several – sometimes quite large – downsides to being part of the mainline yt codebase.

• Project Standards: The methods right now for developing in yt require several iterations of code review as well
as conforming to standards of development practices. For instance, this could include style or where the code is
developed (i.e., bitbucket/github/kallithea/etc).

• Credit: While the situation is certainly improving, and there is nothing to stop a contributor from writing a
paper describing a new analysis module (in fact this is encouraged) it is still a part of a “project” codebase rather
than a standalone entity. This can diminish the perception of individual contributions, particularly by people not
directly affiliated with the mainline yt project.

• Timeline: The acceptance of a change into yt can often be on a weeks or longer timescale, depending largely on
the time being issuing a pull request and the next PR triage. For modules that are developed with much higher
frequency, this can be very cumbersome and costly in developer efforts.

• Dependencies: yt attempts to keep the number of dependencies at a minimum; if a package wants to use them,
it often has to either make them on-demand or vendor them with the source. We want to encourage packages to
utilize new technologies and experiment – but at present, we can’t allow that into mainline.

A solution to this problem would be to encourage an ecosystem of discoverable packages that build on yt as a depen-
dency. Three such packages exist at time of writing – powderday, trident, and astroblend.

What this YTEP proposes is to restructure our discussion of yt as a project to emphasize these types of packages and
projects as citizens in the community, and provide to them a mechanism for people to find them.

This will take a few forms:

• Re-designing the website to emphasize the burgeoning ecosystem of projects, perhaps similar to the way as-
tropy.org is set up.

• Offering, but not mandating, projects that they should direct questions to the yt-users mailing list.

• Splitting out some particularly isolated projects from analysis modules. This may include photon simulator and
the sz generator.

• Provide entry points in the code for people to find out about available analysis modules. (Discussed below.)

• Utilize intersphinx documentation links for analysis modules, or offer to host documentation on the main yt
homepage.

• Determine mechanisms for recognizing projects as extensions, independent, related, etc.

• Adding testing support can be difficult and labor intensive; however, we should explore adding testing support
for extensions under some criteria. (Such as, does this depend on public APIs, do test failures constitute upstream
breakages, etc.)

• Accept either subrepos or subdirectories in yt-project/website.

140 Chapter 29. YTEP-0029: Extension Packages

yt Enhancement Proposals Documentation, Release 1.0

At present, people can find analysis modules by doing something like::

>>> dir(yt.amods)

This returns a list of analysis modules. This could be extended to also parse a small list of known external projects
which could be installed. Importing one that was not installed would report that it wasn’t installed and describe a
method for installing it.

Depending on the type of project, we may want to distinguish between yt extensions and projects that share the yt
ecosystem. For the former, we could evaluate using yt.extension as the namespace, if yt.analysis_module
is not appropriate. This would then provide (similar to how Flask manages extension modules) a naming scheme (say,
ytext_projectname) that would be imported into yt.extension. This is not necessary, but is a possibility
within the scope of this YTEP.

29.5 Backwards Compatibility

If we split out existing modules, they would need to be API compatible. We would also want to make sure that they
are well-supported by our infrastructure.

29.6 Alternatives

One possible alternative would be to make the yt.analysis_modules namespace a free-for-all of modifications,
with much shorter timescales and essentially autonomous operation by developers.

29.5. Backwards Compatibility 141

http://flask.pocoo.org/docs/0.10/extensiondev/

yt Enhancement Proposals Documentation, Release 1.0

142 Chapter 29. YTEP-0029: Extension Packages

CHAPTER 30

YTEP-0031: Unstructured Mesh

30.1 Abstract

Created: December 18, 2014

Author: Matthew Turk

Supporting data generated by unstructured mesh codes can be implemented using a combination of existing data
selection routines, vector fields, index fields, and pixelization routines. This YTEP also touches on decoupling the
step of constructing an image buffer from data and the data representation itself, which applies to data types such as
SPH as well as mixing different mesh types in a single Dataset object.

30.2 Status

Proposed

30.3 Project Management Links

Any external links to:

• WIP pull request for hexahedral mesh: https://bitbucket.org/yt_analysis/yt/pull-request/1370/
wip-generic-hexahedral-mesh-pixelizer/diff

Some small discussion has occurred on-list as well, but not yet of too much detail.

143

https://bitbucket.org/yt_analysis/yt/pull-request/1370/wip-generic-hexahedral-mesh-pixelizer/diff
https://bitbucket.org/yt_analysis/yt/pull-request/1370/wip-generic-hexahedral-mesh-pixelizer/diff

yt Enhancement Proposals Documentation, Release 1.0

30.4 Detailed Description

30.4.1 Background

Data in yt has until now been assumed to be either discrete, or on a regular mesh that is defined by cells. This has been
the implementation for smoothing kernels as well as particle and particle depositions. However, to support broader
codes (and to support more flexible visualizations of particle datasets, such as direct smoothing kernel application
onto image buffers) we should develop methods for supporting unstructured mesh. This will require uncoupling
the pixelization step not only from coordinates (as has been done) but also from the underlying data model. This
YTEP proposes a strategy for implementing support for unstructed meshes. We will not restrict ourselves to specific
element types; however, where particular geometries are required, we will first focus on hexahedral, tetrahedral,
wedge, pyramid and voronoi tesselation cells. The YTEP as a whole is designed to be generic with respect to element
geometry.

We will not spend much time discussing Voronoi tesselation cells here and will instead reserve discussion of them
for a future YTEP, as they are similar in some ways but quite different in others. Additionally, we restrict ourselves
initially to convex elements.

In conjunction with these different cell types, data may be stored at vertices, centers, edges, faces, and so on. Devel-
oping the appropriate intra-cell interpolation methods will remove the need to explicitly identify these different data
“centering” methods, but see below for discussion of how these centering methods will be denoted.

Typically within an element, the value at a given position is a function of a kernel that uses as input the quantities
defined in the output. So given the kernel, and the data points, the value at any internal position in the cell can be
determined. Supporting these interpolation kernels is part of a longer-term roadmap. Initially, we will likely perform
nearest-neighbor or IDW.

The difficulty in handling unstructed mesh data is ensuring high-fidelity visualizations as well as high-fidelity data rep-
resentation. The latter is considerably more straightforward, as if the system is viewed as a sequence of discrete points
(and the question of intra-element interpolation is ignored except when explicitly requested) the existing selection
routines can be used by regarding the data as a sequence of discrete points (“particles”).

We assume for the purposes of this document that the datasets are defined by connectivity and coordinates (i.e., an
array of indices that define each element’s vertices and an array of common coordinates into which we index) and that
the ordering of the vertices is such that we can identify which vectors span faces of the elements.

30.4.2 Irregular Mesh Points

In YTEP-0001: IO Chunking a system for chunking was described, wherein attributes such as fcoords, icoords and so
on are exposed. We propose to augment these, which work nicely for regular mesh data, with coordinates for vertices
and edges. However, this will only be accessible for chunks which are homogeneous in element type. (Otherwise, the
vector would need to be “ragged” with differing component length.)

What this YTEP proposes to do is to create a new set of fields and chunk attributes. The fields, much like fields such
as x, y and z, will reflect the position of vertices and/or faces of an element and will be vector fields. The new chunk
attributes will be the underlying data from which these fields are generated. The new chunk system will add on these
attributes to YTDataChunk:

• fcoords_vertex - vertex positions, of shape (N, Nvertex, 3)

• fcoords_face - barycenter of the faces, of shape (N, Nface, 3)

• fcoords_edge - middle of edge, of shape (N, Nedge, 3)

We anticipate that for the existing data index types, these attributes can be created on the fly, but will not often be used.

The new fields will follow the naming convention of element_type, type_coordinateaxis. A few exam-
ples:

144 Chapter 30. YTEP-0031: Unstructured Mesh

http://en.wikipedia.org/wiki/Inverse_distance_weighting

yt Enhancement Proposals Documentation, Release 1.0

• ("hex", "vertex_x") - vector of shape (N, Nvertex)

• ("hex", "face_x") - vector of shape (N, Nface)

• ("tetra", "face_phi") - vector of shape (N, Nface)

• ("wedge", "edge_z") - vector of shape (N, Nedge)

• ("vertex", "x") - array of shape (N)

• ("edge", "x") - array of shape (N)

We will still retain existing index fields, which will return centroids for coordinates and will simply return invalid
coordinate requests for the path element and cell width fields, similar to when fields like dx are requested in non-
Cartesian coordinates. This should work, although it’s not entirely clear that it is the best bet. Namespacing could
potentially fix this.

What this will provide:

• Uniform access to coordinates of all raw, unprocessed data points.

• Re-use of existing routines that query based on field type and field name.

• Avoid confusion based on re-use of names from other systems of coordinates.

Likely this will also need a method for transforming values between definition systems; for instance, a method for
converting vertex-centered values to cell-centered. This would be akin to the method used for depositing particles on
a mesh and would mandate access to the mesh object via ValidateSpatial.

30.4.3 Decoupling Pixelization from Mesh Values

The pixelization step is the point at which mesh values are transformed into an image. These mesh values are variable
resolution, and so the operation essentially deposits (through NN interpolation with anti-aliasing) these variable mesh
values into an image buffer.

In cases where the mesh values are accessible through the fields used currently (such as px and the like), the standard
pixelization routines will be called.

For datasets that do not, or cannot, create px fields and the like, separate pixelization routines will be called. In the (at
time of writing) WIP PR for hexahedral mesh datasets, and example of this can be found. This will be implemented
in the coordinate handler.

The generic pixelization routine will accept a set of vertices, an interpolation kernel (nearest-neighbor for starters) and
the field (initially only support for fields defined at centroids will be added for simplicity, but with edge and face added
later). The ordering of vertices that provides face values will be specified at pixelization time, and will draw from one
of a set of orders.

The pixelization routine will first apply coarse bounding box checks to the image plane and all supplied elements.
Each pixel that passes the bounding box check for a given element will move on to the second step of selection. In
this step, the sign of the dot product of the centroid with each normal vector defining each face will be stored (this
prevents the need for knowing the CW / CCW ordering of the vertices) and for each pixel in the image plane, the signs
of the same dot product will be examined. If all the signs match, the point is internal to our (convex) element. This
appropriate kernel will be evaluated and the resulting value deposited in the image plane.

Because of the requirements of single mesh type, the pixelization routines will iterate over each mesh type and deposit
the fields in sequence. This will enable the interoperation of fields between mesh types, without requiring that they be
made uniform in size.

Note also that separating out based on the type of field and data represented means that we may now be able to
implement slices of particle fields directly.

30.4. Detailed Description 145

yt Enhancement Proposals Documentation, Release 1.0

30.4.4 Multiple Meshes for Multiple Mesh Types

Each mesh type – hex, tet, wedge, etc – will be isolated to a different mesh type.

For a given data object, much like particles and mesh objects cannot interact without the mediation of a deposition
step, each must be queried separately if the vertices are to be examined. If the field values are the only items of
concern, they can be queried in concatenated form. For situations where fields persist across mesh types, we will be
unable to supply vertex information and can only then supply x fields and the like.

At present, there is a semi-structured mesh object, and for datasets that expose that, it lives within the .meshes
attribute of the index. Each mesh type will be in a separate element in that list.

30.4.5 Example Use Cases

These example use cases should just work in a successful implementation. The dataset imagined in them contains
tetrahedra (N_t), hexahedra (N_h), and wedges (N_w). The field field1 is defined at vertices and field2 is
defined at the element centroids.

Querying all of the values of field1:

dd = ds.all_data()
print dd["vertex", "x"].shape
print dd["index", "x"].shape
print dd["field1"].shape

The first and third print statements will return the same shape, but the middle will return the total number of elements
(centroids). Ultimately, much like with particle fields, the user will need to have some knowledge of the mesh (which
yt can provide hints about) to know how to combine fields.

This should also work:

prof1d = yt.create_profile(dd, ("vertex", "x"), "field1")

Because our selection operators will operate on the field values as though they were discrete points, this must also
work:

sp = ds.sphere([0.5, 1.0, 30.1], (1.0, "km"))
sp["field1"]
sp["field2"]

These fields will not be the same size, but will select from all different mesh types. Querying the "x" field will
return the centroids that pass the selector, which will be of different size than "field1" but will be the same size as
"field2". This also means that it will be impossible to bin "field1" against "x" without explicitly namespacing
it as ("vertex", "x").

30.4.6 Volume Rendering

Initial support for volume rendering will use Embree, a fast ray-tracing code from Intel, to do the ray traversal. A set
of python bindings for Embree already exists. Later on, this may be replaced our own ray-tracing code to remove the
external dependency.

To use Embree, we must write code that generates a Triangular polygon mesh from the unstructured mesh data yt
reads in. This may involve breaking up faces into multiple triangles. Currently, this is implemented for Hexahedral
and Tetrahedral mesh elements, and adding support for other mesh types should not be difficult. One then uses the
functions Embree provides to cast rays at the resulting mesh.

146 Chapter 30. YTEP-0031: Unstructured Mesh

https://embree.github.io/index.html
https://github.com/scopatz/pyembree

yt Enhancement Proposals Documentation, Release 1.0

There will be two basic “plot types” for volume renderings of unstructured mesh data. The first will be “surface
plots”, where the value of the field at the intersection point with each ray will be calculated using hit data computed by
Embree. The second will be more like the traditional yt volume renderings, values along each ray will be accumulated
for every element the rays intersect. For example, one could compute the maximum intensity along each ray instead
of the value on the surface. Both of these types of renderings will need implementations of various intra-element
interpolation functions to support meshes of various types and orders.

All of this will be integrated in with the Volume Rendering refactor, so that we retain the flexibility provided there for
creating movies and camera paths. This will involve (at least) defining a new type of RenderSource object for polygon
meshes. This object will know how to create the Embree polygon mesh from the data_source that gets passes in, and
how to do the appropriate ray tracing calls. Once this source has been created, the Camera will be able to be changed
at will, as defined in the YTEP for the scene refactor. Because multiple RenderSource objects can exist in the same
scene, there is no reason why different meshes with different plot types can’t exist in the same scene.

Some examples of what the volume renderings will look like are here: https://www.dropbox.com/s/xx2it8p0ivk7s69/
surface_render_0.png?dl=0 https://www.dropbox.com/s/m0b9wdp6uh6h4nm/surface_render_1.png?dl=0

30.4.7 Explicitly Not Implemented Functionality

These pieces of functionality will need considerable reworking before they will be suitable for use with unstructured
mesh data, and they are outside of the scope of this document:

• “Spatial” fields, as connectivity between elements is not well-defined in general (although it may be for specific
element types)

• Block and tile iterators, as they are not immediately relevant to unstructured meshes

These are difficult, and we will be holding off on implementing them until this YTEP and its implementation have
shaken out.

30.5 Backwards Compatibility

This should have absolutely no backwards incompatible changes; any backwards-incompatible changes will be con-
sidered bugs and will result in a redesign.

30.6 Alternatives

A few alternatives exist. For instance, instead of augmenting fcoords and so on with new definitions, we could
either define new fields and leave fcoords to refer to centroids (or delete it for those objects), or we could define
vector fields for these that are of shape (N, Ncell, 3), and refer to the vertices of the data.

Additionally, we could be more explicit about what refers to what; we could have different namespaces for vertices.

Another alternate idea would be to mimic the particle method for namespacing and positions; this would result in
things like ("field_type", "hex_vertex_x") and so on. Or, we could do ("hex_vertex", "x") and
similar.

30.6.1 Open Questions

• Should we get rid of particle_type and replace with a classification such as centroids, discrete,
vertex and so on?

30.5. Backwards Compatibility 147

https://www.dropbox.com/s/xx2it8p0ivk7s69/surface_render_0.png?dl=0
https://www.dropbox.com/s/xx2it8p0ivk7s69/surface_render_0.png?dl=0
https://www.dropbox.com/s/m0b9wdp6uh6h4nm/surface_render_1.png?dl=0

yt Enhancement Proposals Documentation, Release 1.0

• How should we handle namespacing for fields that may be defined at multiple places (face and vertex, for
instance)

148 Chapter 30. YTEP-0031: Unstructured Mesh

CHAPTER 31

YTEP-0032: Removing the global octree mesh for particle data

31.1 Abstract

Created: February 9 2017
Author: Nathan Goldbaum, Meagan Lang, Matthew Turk

The global particle octree index used by yt presents a barrier for improving the performance and scalability of vi-
sualizing and analyzing particle datasets. This YTEP proposes removing the global octree index, replacing it with
a combination of a new IO system and changes to the high-level yt API to focus on returning particle-centric data.
The particle I/O refactor makes use of an indexing scheme based on compressed Morton bitmaps which dramatically
improves memory usage and scaling for large particle datasets by eliminating the need for a global octree index.

Rather than constructing a global index to maintain backward compatibility at the cost of scaling and performance,
we instead propose a reworking of the yt user interface for particle and SPH data to be more “particle-centric”. This
means that data object selections for fields that are now defined on the global octree mesh will instead return field data
at particle locations. For SPH data, visualizations of slices and projections are done in the image plane, making use
of the “scatter” approach by smoothing SPH data directly onto images, employing either a volumetric or projected
SPH smoothing kernel. Fully local derived fields are calculated using yt’s existing field definitions but passing in data
defined at particle locations. Fields that need spatial derivatives are implemented using the SPH formalism and are
also evaluated at the particle locations.

Altogether these changes allow for improved performance and scaling, and allow users to access, analyze, and visualize
particle field data for SPH simulations in a more straightforward fashion. While we do not propose substantial API
changes for mesh or octree codes, these changes to yt’s field system for particle data imply substantial changes to the
meaning of yt’s data selection system for particle data. We discuss the implications of these backward incompatible
changes and how we intend to document and manage them in a way that is minimally disruptive to users.

31.2 Status

In Progress. The implementation is mostly finished, although there are a few features that still need to be implemented.

149

yt Enhancement Proposals Documentation, Release 1.0

31.3 Project Management Links

The code can be found in pull request 2382:

https://bitbucket.org/yt_analysis/yt/pull-requests/2382

The C++ compressed bitmap implementation we intend to vendor into yt:

https://github.com/lemire/EWAHBoolArray

31.4 Detailed Description

31.4.1 Background

Currently most user-facing operations on SPH data are produced by interpolating SPH data onto a volume-filling oc-
tree mesh. When support for SPH data was added to yt in the run-up to the yt-3.0 release, this approach allowed yt to
support SPH data in a way that could reuse the existing infrastructure in yt for octree data and preserve core assump-
tions in yt that gas fields must correspond to a volume-filling AMR structure. While this did make initial support for
SPH data much easier, it also had some downsides. In particular, because the octree was a single, global object, the
memory and CPU overhead of smoothing SPH data onto the octree can be prohibitive on particle datasets produced
by large simulations. Constructing the octree during the initial indexing phase also required each particle (albeit,
in a 64-bit integer) to be present in memory simultaneously for a sorting operation, which was memory prohibitive.
Visualizations of slices and projections produced by yt using the default n_ref and over_refine_factor are
somewhat blocky since by default we use a relatively coarse octree to preserve memory. In addition, since we construct
the global octree based on the positions of all particles, visualizations that include only one particle type sometimes
include “holes” in regions under-sampled by that particle type.

These cosmetic and semantic issues are jarring to users of SPH codes, who tend to think of data defined at the particle
locations rather than sampled onto an adaptive mesh. Making our high-level API focus more on particle-centric data
will help to ease the cognitive dissonance felt by users of SPH codes when they work with yt.

Over the past two years, Meagan Lang and Matt Turk implemented a new approach for handling I/O of particle data,
based on storing compressed bitmaps containing Morton indices instead of an in-memory octree. This new capability
means that the global octree index is now no longer necessary to enable I/O chunking and spatial indexing of particle
data in yt.

In this document we describe the approach we take for replacing the global octree index with Morton bitmasks. First,
we describe the implementation of the Morton bitmask index, changes to the low-level selector API needed to support
the Morton bitmask work, and the testing strategy used for the Morton bitmap indexing scheme. Next we discuss
high-level changes to how yt handles particle data, changes to the field system for SPH data, the implementation of
the SPH pixelizer system for visualizations, a discussion of deposit fields, and a description of the strategy used to test
the new approach for SPH data. We close with a discussion of questions that still need to be tackled before this work
can be merged.

31.4.2 Low-Level Implementation

Morton Bitmap Index

The generated index serves to map how the domain is populated by particles in datasets split across multiple files. This
way, spatial queries can skip files that do not contain particles in the selected part of the domain. The files are mapped
by storing two nested Morton indices for each particle in a dataset. Rather than storing the indices in plaintext, we
make use of an EWAH compressed boolean array bitmap. Given a domain with known boundaries in each dimension,
a 3-dimension position can be described by a single integer Morton index by

150 Chapter 31. YTEP-0032: Removing the global octree mesh for particle data

https://bitbucket.org/yt_analysis/yt/pull-requests/2382
https://github.com/lemire/EWAHBoolArray
https://en.wikipedia.org/wiki/Z-order_curve

yt Enhancement Proposals Documentation, Release 1.0

1. Dividing the domain into 2^index_order1 cells in each dimension with widths ddx =
domain_width_x/(2^index_order1).

2. Determining the 3 integers specifying the cell that contains the 3D position (e.g. x/ddx).

3. Combine the 3 integers into a single integer by alternating bits from each dimension.

These indices can be stored as either integers or in boolean masks. In the case of the mask, an array of zeroed bits is
created with a length equal to the maximum possible index for the chosen value of index_order1. Then the bits
for the indices present are set to one. To save space, boolean masks in the form of bitmaps can then be compressed
further using the Enhanced Word-Aligned Hybrid (EWAH) bitmap compression algorithm. In practice, we make use
of a vendored version of EWAHBoolArray, a C++ EWAH bitmask implementation available under the Apache v2
license.

One bitmap is created for each file. If an index is present in more than one file’s bitmap, this represents a collision
and decreases the likelihood that the bitmap can be used to exclude files during spatial queries. This is unlikely if the
particles are well partitioned between the files according to a domain decomposition scheme at the chosen order, but
this is not generally true of particle datasets produced by astrophysical simulations. In these cases, it is better to create
a more refined index.

Using a larger index_order1 increases the refinement of the index, but also increases both the memory required to
store the indices and the time required to query them for EWAH bitmaps. To combat this, we include a second refined
index within those cells that have indices in multiple files’ bitmaps for the coarse index. For each particle with a coarse
index that collides with another file, a second refined Morton index is creating by following the same procedure as for
the coarse index, but exchanging the domain boundaries for the boundaries of the coarse index cell. The refined index
for each file is then stored in a EWAH bitmap for each coarse cell with a collision.

The coarse and refined indices are generated in two separate I/O passes over the entire dataset. To generate the coarse
index, the coordinates of all particles, as well as the softening lengths for SPH particles, are read in from each file.
For each particle we then compute the Morton index corresponding to the particles position within the domain. This
index, mi is then used to set the mith element in a boolean mask for the file to 1. If the particle is an SPH particle,
neighboring indices with cells that overlap a sphere with a radius equal to the particle’s softening length and centered
on the particle are also set to 1.

Once a coarse boolean mask is obtained for each file, the masks are stored in a set of EWAH compressed bitmaps
(implemented in the ewah_bool_array Cython extension classes). Using logical boolean operations, we then
identify those indices that are set to 1 in more than one file’s mask (the collisions). The EWAH format is particularly
good at logical operations, as it does not necessarily require decompression to determine whether or not particular bits
are set.

During a second I/O pass over the entire dataset, refined indices are created for those particles with colliding coarse
indices. Both the coarse and refined indices are stored in an array for each file. One a file has been completely read
in, those indices are sorted and used to create a map from coarse indices to EWAH compressed bitmaps. This is done
because entries in EWAH compressed bitmaps must be set in order.

The Morton bitmap index is created for each particle dataset upon its first ingestion into yt and saved to a sidecar file. At
all future ingestions of the dataset into yt, the index will be loaded from the sidecar file. Indexes are managed through
the Cython extension class ParticleBitmap (defined in yt/geometry/particle_oct_container.
pyx), which is exposed to the user visible yt API via the regions attribute of the ParticleIndex class (e.g. ds.
index.regions). The ParticleBitmap class generates EWAH bitmaps via the BoolArrayCollection
Cython extension object (defined in yt/utilities/lib/ewah_bool_wrap.pyx), which wraps the underly-
ing EWAHBoolArray C++ library.

In the current implementation users can control the creation of the bitmask index via the index_order and
index_filename keyword arguments accepted by SPHDataset instances. These keyword arguments replace
the deprecated n_ref, over_refine_factor and index_ptype keyword arguments. The index_order
is a two-element tuple corresponding to the maximum Morton order for the coarse and refined index. Using a tuple
for the index_order instead of two keyword arguments is not only more terse, but it will allow us to produce bit-
mask indexes in the future with multiple refined indices while maintaining the same public API. Currently the default

31.4. Detailed Description 151

https://doi.org/10.1145/1458432.1458434
https://github.com/lemire/EWAHBoolArray

yt Enhancement Proposals Documentation, Release 1.0

index_order is (7, 5). If a user specifies index_order as an integer, the integer is taken as the order of the
coarse index and the order of the refined index is set to 1, producing a trivial refined index. For example:

import yt
ds = yt.load('snapshot_033/snap_033.0.hdf5',

index_order=(5, 3), index_filename='my_index')
ds.index

Running this script will produce the following output:

yt : [INFO] 2017-02-14 11:50:20,815 Allocating for 4.194e+06 particles
Initializing coarse index at order 5: 100%|| 12/12 [00:00<00:00, 14.60it/s]
Initializing refined index at order 3: 100%|| 12/12 [00:01<00:00, 8.80it/s]

And produce a file named my_index in the same folder as snapshot_033/snap_033.0.hdf5. The second
and all later times the script is run we only need to load the index from disk, so it produces the following output:

yt : [INFO] 2017-02-14 11:56:07,977 Allocating for 4.194e+06 particles
Loading particle index: 100%|| 12/12 [00:00<00:00, 636.33it/s]

Note that there 12 iterations for each loop. Each of these iterations correspond to a single IO chunk. If a file has
fewer than 262144 particles, the entire file is used as an IO chunk. If a file has more than 262144 particles, the file
is logically split into several subfiles, each containing up to 262144 particles. Currently the chunk size of 262144
particles is hard-coded for all SPH frontends.

Changes to the Selector API

The Morton bitmaps needed for individual data objects are constructed using the existing low-level Cython selection
API. To determine whether a given Morton index is “contained” in the geometric primitive defined by the selector we
make use of the select_bbox selection API call, since each index corresponds to a single cell in an octree. If the
selector fully encloses the bounding box for the cell defined by a given Morton index, the existing select_bbox
function is sufficient. However, given that the goal of the Morton bitmap index is to reduce the number of files we need
to read from for a given selection operation, more care must be taken near the “edges” of a selector. For this reason, we
have added a new function to the selector API, select_bbox_edge. This function is identical to select_bbox
in the case when a bounding box is fully contained inside of the geometric primitive associated with a selector, simply
returning 1 in these cases. However, if the bounding box is only partially contained in the geometric primitive,
select_bbox_edge returns 2, indicating partial overlap. This is used in the bitmap index code to indicate that
the coarse Morton index does not have sufficient resolution in this region, triggering the generation of refined Morton
indices in this region. These smaller bounding boxes will have a higher probability of being either fully contained or
fully excluded from a data object, decreasing the probability of a file collision. The select_bbox_edge function
has been implemented for all selectors and if this YTEP is accepted will be a required part of the API for new selectors
in the future.

In addition to the above change, a more minor change was necessary to the portion of the selector API used to count
and select particles contained in a given selector. Currently, all particles are assumed to be pointlike, which will
lead to incorrect selections for particles that actually have finite volumes like SPH particles. To account for this, the
signature of the count_points and select_points functions were changed so that instead of accepting only
single scalar radius for all particles, they can accept an array of possibly variable radii as well. If non-zero radii are
passed in, particle selection operates via the select_sphere method instead of the select_point method that
is currently used. Since some selectors did not yet have implementations of select_sphere, we have added new
implementations where necessary.

152 Chapter 31. YTEP-0032: Removing the global octree mesh for particle data

yt Enhancement Proposals Documentation, Release 1.0

Testing

Testing is provided for both the low level routines controlling access to the bitmap, as well for higher level routines that
control bitmap generation. Low level tests are located in yt.utilities.lib.tests.test_geometry_utils. This includes tests of
the routines for generating Morton indices from cartesian coordinates, extracting single bit coordinates, and locating
neighboring morton indices at the coarse or refined index level both with and without periodic boundary conditions.

Higher level tests are located in yt.geometry.tests.test_particle_octree and include the framework to create test datasets
with arbitrary domain decomposition schemes across a specified number of files. Tests are included for creating
bitmap indices for datasets with no collisions and all collisions that check the number of coarse and refined cells
against known answers. In addition we also provided tests for saving/loading bitmaps and identifying input files for
rectangular selections on known domain decomposition schemes.

31.4.3 Removing the Global Octree Mesh

Currently, all I/O operations are mediated via the global octree index. Particles are read in from the output file as
needed based on their position in the octree. With the arrival of the compressed bitmap index scheme described above,
we no longer need to use the global octree to manage I/O chunking. Making the global octree redundant in this way
raises the question about whether the octree is really needed at all.

Currently yt makes a distinction between particle fields and mesh fields. All SPH-smoothed fields (e.g. ('gas',
'density')) are smoothed onto the global octree mesh. To make a concrete example, let’s try loading an SPH
zoom-in simulation of a galaxy and ask for the ('gas', 'density') field:

import yt
ds = yt.load('GadgetDiskGalaxy/snapshot_200.hdf5')

ad = ds.all_data()
density = ad['gas', 'density']

print(density.shape)
print(ds.particle_type_counts)

Running this script on the latest development version of yt at time of writing (abf5a8eff1b2) produces the follow-
ing output:

(5661944,)
{'PartType0': 4334546,
'PartType1': 4786616,
'PartType2': 2333848,
'PartType3': 0,
'PartType4': 450921,
'PartType5': 1149}

On my laptop, this script also takes about 116 seconds to run, with 105 s spent performing the SPH smoothing
operation onto the global octree. Note also how the number of leaf octs in the octree (5661944) does not match the
number of SPH particles (PartType0). This discrepancy is a common source of initial confusion for users of SPH
codes when they first try to use yt to analyze their data.

We can ask ourselves whether it makes sense to always smooth data onto the global octree. It makes intuitive sense
for users of AMR codes for yt to return data defined on a volume-filling mesh, since the volume filling mesh is the
“real” data. However, for SPH data, the global octree mesh is not representative of the “native” data. By making the
return value of most yt operations for SPH fields be defined on the octree mesh, yt is not being “true” to the data and
also makes it harder than it needs to be to access the particle data as such.

In this YTEP, we propose changing the data object API for SPH data by ensuring that all SPH smoothed fields
return data defined at the locations of SPH particles. This means that rather than relying on smoothing data onto

31.4. Detailed Description 153

yt Enhancement Proposals Documentation, Release 1.0

the global octree, we will instead always return data defined at the particle locations. This means that running the
script included above would produce the following output:

(4334546,)
{'PartType0': 4334546,
'PartType1': 4786616,
'PartType2': 2333848,
'PartType3': 0,
'PartType4': 450921,
'PartType5': 1149}

And that the ('gas', 'density') field would merely be an alias to the ('PartType0', 'Density')
field available on-disk. Since we no longer need to smooth data onto the in-memory global octree, this substantially
reduces the memory needed to work with SPH data while simultaneously substantially improving performance. Just
as an example, in the version of the yt that implements this YTEP, the script at the top of this section requires only 3.3
seconds to run.

The details of how this backward incompatible change to the yt user experience for SPH data will be implemented is
detailed below. This includes all design decisions that have been made in the prototype version of yt that implements
this YTEP. In addition, there are still several design decisions about how to implement this YTEP that have not yet
been decided on. For more details about these issues, see the “Open Questions” section at the bottom of this document.

Identifying the SPH Particle

All of the proposals in this YTEP require that there be special handling for fields that correspond to the SPH particle
type. Currently yt does not have a way of identifying whether a given particle type in a particle dataset is an SPH
particle. To ameliorate this, we propose adding a new private attribute of SPHDataset instances, _sph_ptype.
This attribute should resolve to the string name of the SPH particle type for the given output type. For example, for
Gadget HDF5 data, the _sph_ptype is 'PartType0'. Having this attribute available makes it much easier to
write code that does special handling for SPH data.

SPH Fields

Here we discuss changes to the yt field system for SPH particle data that will enable removing the global octree mesh.

Local Fields

Currently yt assumes that fields with a 'gas' field type are defined on a volume filling mesh. This YTEP proposes
relaxing that assumption for SPH data so that 'gas' fields correspond to particle fields. Since we would like to reuse
the existing field definitions in yt as much as possible, we need to explore how to adjust the field system to allow reuse
of existing fields when the field data might represent local particle data, SPH smoothed quantities, or mesh fields,
depending on the type of data being loaded.

As a reminder, sampling_type is a newly introduced keyword argument that can be passed to the initializer for yt
DerivedField objects that will be released publicly as part of yt 3.4. It replaces the particle_type keyword
argument, allowing more flexibility to define new types of fields that are sampled in novel ways without needing to
expose additional keyword arguments like particle_type. Currently, the default value of sampling_type is
'cell', preserving the old default behavior (e.g. particle_type=False).

We propose changing the default value of the sampling_type used for yt derived fields from 'cell' to a new
value: 'local'. Derived fields with sampling_type='local' are fully local functions of other derived fields
(which themselves do not have to be fully local). It turns out that nearly all of the fields that are currently defined
inside yt with sampling_type='cell' are actually fully local and the field functions they encode can be readily

154 Chapter 31. YTEP-0032: Removing the global octree mesh for particle data

yt Enhancement Proposals Documentation, Release 1.0

reused with particle data. In the version of yt that implements this YTEP, all fully local derived fields defined inside
yt have had their field definitions altered such that sampling_type='local'.

With this accomplished, making all fully local derived fields work simply requires setting up SPH particle fields with
aliases to yt “universal” field names. To make that concrete, this means that a Gadget HDF5 output needs an alias
from ('PartType0', 'Density') to ('gas', 'density'). With this alias defined, all fully local de-
rived fields that depend only on ('gas', 'density') will automatically work. In addition, any particle derived
fields defined for the PartType0 with field names that begin with 'particle_' will be aliased to 'gas' fields
without the 'particle_ prefix. For example, the ('PartType0', 'particle_angular_momentum_x')
field is aliased to ('gas', 'angular_momentum_x'). This means that any 'gas' derived fields that de-
pend on ('gas', 'angular_momentum_x') being defined will function as expected. In other words, we
use the existing system of particle fields to bootstrap the needed “input” fields for the bulk of the 'gas' derived
fields. The aliasing described here is implemented in the setup_smoothed_fields member function of the
FieldInfoContainer class.

One side effect of this approach is that there are some “odd” 'gas' derived fields (particularly if one is com-
ing from an AMR code). For example, ('gas', 'position') is defined as an alias to ('PartType0',
'particle_position'). It may not be a good idea in the end to alias all particle fields for the SPH parti-
cle type to 'gas' fields, and it may be necessary to add a blacklist of fields that should not be aliased, or that
should be aliased with explicit particle field names (e.g. maybe it would be most helpful to define ('gas',
'particle_position')).

Non-local Fields

Unfortunately, not all fields are fully local. We would optimally like to support fields that require some sort of
difference operation, in particular physically meaningful fields like the gas vorticity or divergence. Currently these
fields are not supported for particle data (since ghost zones have not yet been implemented for octrees), so if this effort
makes it easier to add support for these fields, that will be a substantial improvement.

It turns out that within the SPH formalism there is a straightforward way to compute fields that depend on spatial
derivatives. These formulae are used internally in SPH codes to estimate various terms in the equations of fluid
dynamics. Thankfully, we can make use of these formulae for visualization and analysis purposes. There is a very
nice paper by Dan Price [PricePaper] that works through this formalism, from which we can derive several formulae
for partial derivatives and vector derivatives. For some quantity 𝐴 that is a function of position, the partial derivative
of 𝐴 with respect to 𝑥 at the position of particle 𝑎 can be evaluated via:

𝜕𝐴𝑎

𝜕𝑥
=

∑︁
𝑏

𝑚𝑏

𝜌𝑏

𝜑𝑏

𝜑𝑎
(𝐴𝑏 −𝐴𝑎)

𝜕𝑎𝑊𝑎𝑏

𝜕𝑥

Here 𝑚𝑏 and 𝜌𝑏 are the mass of and gas density associated with the 𝑏’th particle, 𝜑 is an arbitrary function of position
(common choices are 1 and 𝜌), and 𝑊𝑎 is the SPH smoothing kernel at the position of particle 𝑎. The derivative inside
the sum in the above expression is evaluated at the position of particle 𝑎.

Similarly for the gradient, divergence, and curl:

∇𝑎𝐴 =
∑︁
𝑏

𝑚𝑏

𝜌𝑏

𝜑𝑏

𝜑𝑎
(𝐴𝑏 −𝐴𝑎)∇𝑎𝑊𝑎𝑏

⟨∇ ·A⟩𝑎 =
∑︁
𝑏

𝑚𝑏

𝜌𝑏

𝜑𝑏

𝜑𝑎
(A𝑏 −A𝑎) · ∇𝑎𝑊𝑎𝑏

⟨∇ ×A⟩𝑎 = −
∑︁
𝑏

𝑚𝑏

𝜌𝑏

𝜑𝑏

𝜑𝑎
(A𝑏 −A𝑎)×∇𝑎𝑊𝑎𝑏

These symmetrized formulae (i.e. they all include a term that looks like 𝐴𝑏−𝐴𝑎) have the advantage that the derivative
of a constant field is zero by construction.

31.4. Detailed Description 155

yt Enhancement Proposals Documentation, Release 1.0

To actually use these formula, we will need to calculate on a particle-by-particle basis the list of nearest neighbors for
each particle and then evaluate these formulae at the locations of each particle. This has not yet been implemented in
the version of yt that implements this YTEP, but we expect it to be straightforward using the existing functionality in
yt to generate nearest neighbor lists.

Non-local fields that do not depend on an explicit derivative operation will (e.g. ('gas',
'averaged_density')) will not be implemented for SPH data.

Data Selection for SPH Fields

Currently data selection for particle fields models all particles, including SPH particles, as infinitesimal points. This
means that 2D data objects do not select particles without exact floating point intersection between the data object and
the particle.

This YTEP proposes modifying the selection semantics for SPH particles. Instead of modeling SPH particles as
infinitesimal points, we will select SPH particles if the smoothing volume intersects with the data container. This
means that particles with positions outside of 3D data containers will be selected, since if the smoothing volume
overlaps these particles still contribute to estimates of fluid quantities inside of the data object. See Testing for more
discussion of the testing strategy used to validate the yt data object and data selection system for SPH particles. To
allow for use cases where it is convenient to treat SPH particles as infinitesimal, we will add the ability to dynamically
turn on and off this behavior with a configuration option.

We have implemented and added unit tests for all of the following data objects:

• Point

• Slice

• Off-axis Slice

• Region

• Disk

• Ray

In addition, we have implemented the following data object features that depend on hooks in the C selector API:

• Chained selection (e.g. reg = ds.region(..., data_source=sphere))

• Boolean negation

• Boolean addition

• Boolean AND

• Boolean XOR

• ds.intersection

• ds.union

Visualization of Slices and Projection

Currently slices and projections of SPH data are generated by slicing data that has been SPH smoothed onto the global
octree. If there is no more global octree, an alternative strategy for generating pixelized representations of SPH data
needs to be implemented. This YTEP proposes replacing the pixelizer operations for slices, off-axis slices, and axis-
aligned projections to make use of an SPH-centric pixelization operation. For inspiration, we look to SPLASH, an
open-source SPH visualization tool written in Fortran. The algorithms used in SPLASH are detailed in the SPLASH
method paper [SPLASHPaper]. We note that we have not consulted the SPLASH source code in support of this
implementation.

156 Chapter 31. YTEP-0032: Removing the global octree mesh for particle data

http://users.monash.edu.au/~dprice/splash/

yt Enhancement Proposals Documentation, Release 1.0

The key to the pixelization algorithm used in SPLASH is to compute the SPH smoothing operation via the “scatter”
approach. Rather than looping over pixels in the image, determining which particles contribute to the SPH smoothing
operation at the location of that pixel, and then compute a field value using the SPH smoothing formula, we instead
loop over particles, finding the set of pixels whose smoothing volumes overlap with the pixel location and deposit a
contribution for that particle to all of the pixels the smoothing volume overlaps. As we loop over all of the particles
that contribute to the image, we fill in the image by summing the contributions of each particle. This approach is
attractive because it does not require any sort of nearest-neighbor operation and is also trivially parallelizable using
e.g. OpenMP threads.

For slices we estimate the contributions of a particle to a single pixel using the standard SPH smoothing for-
mula. For Projections we make use of a projected version of the smoothing formula, taking advantage of
the spherical symmetry of the problem. The smoothing operation is implemented in two Cython functions:
pixelize_sph_kernel_slice and pixelize_sph_kernel_projection which are defined in yt.
utilities.lib.pixelization_routines.

To make the above discussion a bit more concrete, consider the following script:

import yt

ds = yt.load('snapshot_033/snap_033.0.hdf5')

plot = yt.SlicePlot(ds, 2, ('gas', 'density'))

plot.set_zlim(('gas', 'density'), 1e-32, 1e-27)

plot.save()

plot = yt.ProjectionPlot(ds, 2, ('gas', 'density'))

plot.set_zlim(('gas', 'density'), 8e-6, 8e-3)

plot.save()

Running the latest development version of yt at time of writing (25651334863b) requires 43 seconds to run and
produces the following images:

Slice:

31.4. Detailed Description 157

yt Enhancement Proposals Documentation, Release 1.0

Projection:

158 Chapter 31. YTEP-0032: Removing the global octree mesh for particle data

yt Enhancement Proposals Documentation, Release 1.0

Running the same script on the version of yt that implements this YTEP produces requires 20 seconds and produces
the following images:

Slice:

31.4. Detailed Description 159

yt Enhancement Proposals Documentation, Release 1.0

Projection:

160 Chapter 31. YTEP-0032: Removing the global octree mesh for particle data

yt Enhancement Proposals Documentation, Release 1.0

Note also that the performance improvement here becomes more stark for larger datasets as well as for zoom-in
simulations which have deeper octrees.

The images produced using the octree are quite “blocky”, since the resolution of the image in any given location is
limited by the octree. This could be ameliorated somewhat using over_refine_factor but that requires steeper
memory and runtime cost requirements to smooth onto the octree. In general the images produced by the new pixelizers
are truer to the actual structure of the data. Rather than generating an image from a sampled representation of the real
data, it is our opinion that it makes more sense to instead sample directly from the particle data.

Deposition operations

Regular Grids

While we do want to make it easier to access particle-centric data, we need to make sure it’s still possible to locally
deposit and SPH smooth data onto grids. Not only is that a useful operation for users of SPH codes, but it’s also
functionality that yt currently provides, so we need to ensure that currently supported operations on covering_grid
and arbitrary_grid data objects continue to work and produce sensible results. We will add tests to verify that
this is the case.

31.4. Detailed Description 161

yt Enhancement Proposals Documentation, Release 1.0

Octrees

We should not abandon the ability to smooth SPH data and deposit particle data onto a volume-filling octree. Simply
because users are currently using these data for their own analyses, we need to provide a migration path so that users
can reproduce prior work made with yt using the global octree.

We propose adding a new data object to yt that represents an octree with a given bounding box (which need not overlap
with the domain bounding box) and maximum refinement level. One can think of this as something of an adaptive
arbitrary_grid data object. Initially we will only allow refinement in terms of particle quantities (e.g. particle
mass or particle count per octree leaf node), but it should be possible to add support for data defined on octree or patch
AMR meshes eventually.

We still need to decide on an appropriate API for this. Ideally we would be able to reuse some of the existing code for
the global octree.

Testing

The testing strategy for this work follows two basic approaches so far. First, we make sure that all derived fields that are
associated with a number of real-world SPH datasets from http://yt-project.org/data can be calculated without generat-
ing any errors. This ensures both that the derived field system is functioning but also that the I/O routines in the various
SPH frontends are functioning correctly. These tests are present in yt.fields.tests.test_sph_fields.

In addition, we have added support in the stream frontend for loading SPH data. This allows us to create fake in-
memory SPH datasets that we can construct in a way that make them easier to reason about for testing than a real-
world SPH dataset. The primary route for generating these dataset is a new function in the yt.testing namespace,
fake_sph_orientation_ds. This function has the following very straightforward definition:

def fake_sph_orientation_ds():
"""Returns an in-memory SPH dataset useful for testing

This dataset should have one particle at the origin, one more particle
along the x axis, two along y, and three along z. All particles will
have non-overlapping smoothing regions with a radius of 0.25, masses of 1,
and densities of 1, and zero velocity.
"""
from yt import load_particles

npart = 7

one particle at the origin, one particle along x-axis, two along y,
three along z
data = {

'particle_position_x': (
np.array([0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0]), 'cm'),

'particle_position_y': (
np.array([0.0, 0.0, 1.0, 2.0, 0.0, 0.0, 0.0]), 'cm'),

'particle_position_z': (
np.array([0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 3.0]), 'cm'),

'particle_mass': (np.ones(npart), 'g'),
'particle_velocity_x': (np.zeros(npart), 'cm/s'),
'particle_velocity_y': (np.zeros(npart), 'cm/s'),
'particle_velocity_z': (np.zeros(npart), 'cm/s'),
'smoothing_length': (0.25*np.ones(npart), 'cm'),
'density': (np.ones(npart), 'g/cm**3'),

}

(continues on next page)

162 Chapter 31. YTEP-0032: Removing the global octree mesh for particle data

http://yt-project.org/data

yt Enhancement Proposals Documentation, Release 1.0

(continued from previous page)

bbox = np.array([[-4, 4], [-4, 4], [-4, 4]])

return load_particles(data=data, length_unit=1.0, bbox=bbox)

This example also demonstrates how load_particles can be used by users in this work to load SPH data written
in data formats that aren’t yet supported by a frontend. This testing dataset has one particle at the origin, another
particle along the x axis, two more along the y axis, and three along z. All particles have the same smoothing length,
such that the smoothing volumes of any of the particles in the dataset do not overlap. This means that we can construct
various data objects and reason about which particles we should be selecting given the geometry of the particles in the
dataset and the boundaries of the data object. In addition, we take care to make sure that the boundaries of the data
objects do not necessarily directly overlap with the position of a particle near the boundary. This ensures that particles
are selected when their smoothing volume overlaps with a data object, not necessarily based on the particle positions.
These tests are present in yt.data_objects.tests.test_sph_data_objects. Currently all of the data
objects supported by yt are explicitly tested here. As an example, here is the test that verifies the slice data object is
working correctly:

The number of particles along each slice axis at that coordinate
SLICE_ANSWERS = {

('x', 0): 6,
('x', 0.5): 0,
('x', 1): 1,
('y', 0): 5,
('y', 1): 1,
('y', 2): 1,
('z', 0): 4,
('z', 1): 1,
('z', 2): 1,
('z', 3): 1,

}

def test_slice():
ds = fake_sph_orientation_ds()
for (ax, coord), answer in SLICE_ANSWERS.items():

test that we can still select particles even if we offset the slice
within each particle's smoothing volume
for i in range(-1, 2):

sl = ds.slice(ax, coord + i*0.1)
assert_equal(sl['gas', 'density'].shape[0], answer)

31.5 Open Questions

There are a number of design decisions that still need to be made if this YTEP is going to be fully implemented and
accepted. Comments and suggestions on these points are very welcome.

31.5.1 The Projection Data Object

Currently the projection data object is completely broken for particle data for all frontends:

In [1]: import yt

In [2]: ds = yt.load('IsolatedGalaxy/galaxy0030/galaxy0030')
yt : [INFO] 2017-03-01 09:54:22,491 Parameters: current_time = 0.
→˓0060000200028298 (continues on next page)

31.5. Open Questions 163

yt Enhancement Proposals Documentation, Release 1.0

(continued from previous page)

yt : [INFO] 2017-03-01 09:54:22,491 Parameters: domain_dimensions = [32
→˓32 32]
yt : [INFO] 2017-03-01 09:54:22,492 Parameters: domain_left_edge = [0.
→˓ 0. 0.]
yt : [INFO] 2017-03-01 09:54:22,492 Parameters: domain_right_edge = [1.
→˓ 1. 1.]
yt : [INFO] 2017-03-01 09:54:22,492 Parameters: cosmological_simulation = 0.0

In [3]: proj = ds.proj(('gas', 'density'), 0)
Parsing Hierarchy : 100%|| 173/173 [00:00<00:00, 3535.74it/s]
yt : [INFO] 2017-03-01 09:54:27,650 Gathering a field list (this may take a
→˓moment.)
yt : [INFO] 2017-03-01 09:54:29,653 Projection completed

In [4]: proj['all', 'particle_mass']

ValueError Traceback (most recent call last)
<ipython-input-4-1a26d598985b> in <module>()
----> 1 proj['all', 'particle_mass']

/Users/goldbaum/Documents/yt-hg/yt/data_objects/data_containers.py in __getitem__
→˓(self, key)

281 return self.field_data[f]
282 else:

--> 283 self.get_data(f)
284 # fi.units is the unit expression string. We depend on the registry
285 # hanging off the dataset to define this unit object.

/Users/goldbaum/Documents/yt-hg/yt/data_objects/construction_data_containers.py in
→˓get_data(self, fields)

339 self._initialize_projected_units(fields, chunk)
340 _units_initialized = True

--> 341 self._handle_chunk(chunk, fields, tree)
342 # Note that this will briefly double RAM usage
343 if self.method == "mip":

/Users/goldbaum/Documents/yt-hg/yt/data_objects/construction_data_containers.py in _
→˓handle_chunk(self, chunk, fields, tree)

440 v = np.empty((chunk.ires.size, len(fields)), dtype="float64")
441 for i, field in enumerate(fields):

--> 442 d = chunk[field] * dl
443 v[:,i] = d
444 if self.weight_field is not None:

/Users/goldbaum/Documents/yt-hg/yt/units/yt_array.py in __mul__(self, right_object)
955 """
956 ro = sanitize_units_mul(self, right_object)

--> 957 return super(YTArray, self).__mul__(ro)
958
959 def __rmul__(self, left_object):

ValueError: operands could not be broadcast together with shapes (3976,) (37432,)

By making SPH data return most data as particle fields we are making this problem much more visible. We should
decide what a sensible return value for the projection operation on a particle field should be. Note that in practice we
do not need to solve this issue to create a ProjectionPlot since we can short-circuit the data selection operation
when we create the pixelized projection.

164 Chapter 31. YTEP-0032: Removing the global octree mesh for particle data

yt Enhancement Proposals Documentation, Release 1.0

Some ideas:

• Write a new ParticleQuadTree class that adaptively deposits particle data onto a quadtree mesh.

• Since most people really want a pixelized representation of the particle data (e.g. via a
FixedResolutionBuffer we could simply make it so the projection data object returns a regular reso-
lution image.

31.5.2 Cut Regions

We have not yet implemented the Cut Region data object since it’s not clear how it should work for particle data.
Similar to the projection data object, the cut region data object does not currently work when it is defined in terms of
a threshold on a particle field. It may be possible to define an internal particle filter to implement cuts on Lagrangian
data.

31.5.3 Volume Rendering

Currently we don’t support volume rendering particle data. In principle writing at least a basic volume renderer
specifically for particle data is a straightforward project. Making it scale well to arbitrarily large datasets would be
a bigger undertaking, but we think we should attempt to write a volume rendering engine that accepts particle data.
Optimally this will plug in to the existing volume rendering infrastructure at the same level as the AMRKDTree.
Attempting this will also make it easier to add support for volume rendering octree AMR data with an octree volume
rendering engine.

The API and design for this component have not yet been settled.

31.6 Community engagement

We are early enough in the process of implementing this YTEP that the major design points have not yet calcified. To
encourage wide adoption of these changes with a minimum amount of breakage for existing users, we will to reach
out to existing users of yt who regularly work with SPH data to ensure that their existing code continue to work as
much as possible. If there are widespread breakages, this will inform where we should focus on building backward
compatibility shims and helpers.

Before this work can be merged into the main development branch we will need to update the documentation for
particle data. This should include coverage of the following topics:

• Loading in-memory SPH data using load_particles

• A high-level description of the Morton bitmap index system and how to tune it for performance by adjusting the
maximum coarse and refined Morton index level.

• A high-level description of the data selection semantics for particle and SPH data.

• A transition guide explaining all of the changes and how to port scripts, particularly those making direct use of
the global octree via a deposition operation.

Finally, we will attempt to publicize this document as much as possible to attract feedback from current and prospective
users at an early stage.

31.6.1 yt 4.0?

Since these are substantial backward incompatible changes, we think the next version of yt released after this work
is merged should be yt 4.0. This opens the possibility of adding other backward incompatible changes as well as

31.6. Community engagement 165

yt Enhancement Proposals Documentation, Release 1.0

removing deprecated features. We should be sure to signal to our users that there will only be major changes for those
who work with SPH data - support for AMR and unstructured mesh data should remain the same.

166 Chapter 31. YTEP-0032: Removing the global octree mesh for particle data

CHAPTER 32

YTEP-0033: Dropping Python2 Support

32.1 Abstract

Created: November 28, 2017 Author: Nathan Goldbaum Revision: Matt Turk

We will be dropping support for Python 2.7 in all “major” releases after 3.5, which will include both 3.6 and 4.0.

32.2 Status

Completed

32.3 Project Management Links

This has come up in the past on the mailing list:

http://lists.spacepope.org/pipermail/yt-dev-spacepope.org/2017-April/006851.html

This document formalizes much of the discussion in that mailing list thread.

32.4 Detailed Description

32.4.1 Background

Python 2.7, the last major release in the Python 2 series, is currently in maintenance mode, only receiving critical
bugfixes. Even this minimal level of support will end on April 12, 2020, when Python 2.7 will go end of life. At that
point, Python 2.7 will no longer receive even security fixes. It is thus incumbent on us to not encourage our users to
use an insecure, unsupported version of Python that may not even necessarily build on future versions of operating
systems by maintaining support for Python 2.7 indefinitely.

167

http://lists.spacepope.org/pipermail/yt-dev-spacepope.org/2017-April/006851.html
https://www.python.org/dev/peps/pep-0373/

yt Enhancement Proposals Documentation, Release 1.0

Beyond that, for purely selfish reasons, we as a community have taken on costs to support both Python 2 and Python
3 in the same codebase. All contributions must happen in the dialect of Python that simultaneously functions under
both major versions. We make heavy use of six, requiring contributors to learn about six to make even trivial
contributions that happen to touch on Python 2/3 incompatibilities. We must run tests on both versions to avoid
version-specific bugs and regressions. We are unable to use new features that have been added in Python 3 since these
features are unavailable in Python 2.

For this reason, many projects in the scientific python ecosystem have either already ended support or proposed ending
support for Python 2.7 in the near future. These efforts are summarized in the Python 3 statement, including a timeline
that depicts the end of Python 2.7 support for projects that have signed the statement.

32.4.2 Proposed Solution

This YTEP proposes that yt 3.5 be the last major release of yt that will support Python 2.7. Subsequent releases,
including 3.6 and 4.0 (but not including 3.5.1, 3.5.2, etc) will not support Python 2.7. In the past, we had suggested
that yt 3.6 would not exist, or would not drop python 2.7 support, but the delay in yt 4.0 release has changed this
timeline.

The development bandwidth for yt is somewhat restricted. In the past, we have had to ensure installation and utilization
on many reasonably slow-moving environments (in particular HPC) but in the last five years or so the change in
environments on HPC resources has largely eliminated this as a concern; we do not need to ensure extremely long-
term compatibility with python 2.7. Some projects are treating their last release that supports Python 2.7 as a “long
term support” (LTS) release. Given our development resources, we generally do not have the bandwidth available to
simultaneously support both yt 4.0 and and python2-enabled yt 3.5 at the same level.

We are thus proposing that we make “best effort” compatibility with python2 in the 3.6 series (i.e., “soft” backcompat)
and we will continue to accept patches for 3.5, although we anticipate these will taper with time, and we will cease to
accept them one calendar year after support for python2.7 has ended. yt 4.0 will not have any backcompat built in.

To summarize:

• yt 3.5: This will be the last release series that explicitly supports python 2. No further development is anticipated
once yt 3.6 has been released.

• yt 3.6: No hard python2 compatibility requirements, and “best efforts” may not be retained over the development
lifetime. Testing of python2 will be dropped prior to release.

• yt 4.0: No back-compat with python 2.

These timelines are roughly comparable with projects that we directly depend on. In particular:

• SymPy: Dropping support in 2019.

• Numpy: Dropping support January 1 2019

• Matplotlib: Dropping support in 2018

In principle we don’t need to be constrained by the timelines of projects we depend on, since we need only use the last
version that supports Python 2.7, but that would add yet another maintenance burden, since we would not be able to
use the latest and greatest version of a downstream project for development.

Since we will be backporting bugfixes to the yt 3.6 release branch while yt 4.0 is under development, we will keep the
uses of six and other python 2/3 compatibility code in an effort to make backporting easier. Once yt 4.0 is released
we will be able to begin removing compatibility shims and __future__ imports. We will be able to immediately
drop the tests for Python 2.7 support on th development branch.

168 Chapter 32. YTEP-0033: Dropping Python2 Support

http://www.python3statement.org/
https://groups.google.com/d/msg/sympy/3SXUEjeNhrM/wrm9ZSQEAgAJ
https://github.com/numpy/numpy/blob/master/doc/neps/dropping-python2.7-proposal.rst
https://mail.python.org/pipermail/matplotlib-devel/2017-October/000892.html

yt Enhancement Proposals Documentation, Release 1.0

32.4.3 Community Outreach

I am planning to make both yt-dev and yt-users aware of this proposal, with the hope of soliciting feedback from
interested users who do not normally participate in development discussions. Additionally, if this proposal is accepted,
we will announce the future timeline for releases, along with the planned timeline for dropping Python 2.7 support in
all release announcements. This should give more than a year of warning for community members to either say their
peace about Python 2.7 support, or to make preparations to migrate user scripts to use Python 3.

32.5 Backwards Compatibility

Users who must remain on Python 2.7 for whatever reason will no longer be able to run the latest version of yt.
Existing versions will continue to function, however. Users who currently run yt under python 3 (this is the default
option in the install script since April) will see no change.

32.6 Alternatives

• Maintain support for Python 2.7 indefinitely.

• Maintain support for Python 2.7 for the yt 4.x series, dropping support in yt 5.0 or in a subsequent verison. This
would likely mean maintaining support beyond 2020.

32.5. Backwards Compatibility 169

yt Enhancement Proposals Documentation, Release 1.0

170 Chapter 32. YTEP-0033: Dropping Python2 Support

CHAPTER 33

YTEP-0034: yt FITS Image Standard

33.1 Abstract

Created: September 9, 2018 Author: John ZuHone

This YTEP will define the standard for FITSImageData objects written from slices, projections, and covering grids,
for better support for reading these objects back into yt as datasets using the FITS frontend, using the dataset class
YTFITSDataset.

33.2 Status

In Progress.

33.3 Project Management Links

The relevant code has been written and is in a PR which is under review:

https://github.com/yt-project/yt/pull/2010

33.4 Detailed Description

From its beginning, yt has been capable of producing projected images of simulations as representations of the quan-
tities which would be observed on the sky plane. This enables comparisons of simulation predictions to real data.
Nearly all observational data in astronomy is in the Flexible Image Transport System (FITS) format. Therefore, yt
also has a method to write slices, projections, and regularly gridded data derived from datasets to FITS files using the
FITSImageData class. Documentation on how to use this class and its subclasses may be found here.

FITS files consist of a list of “header data units” (hereafter HDUs), each of which contain data in image (an array
of 𝑛 dimensions with 𝑛 ≥ 2) or table form, associated with a header which typically contains information about the

171

https://github.com/yt-project/yt/pull/2010
https://en.wikipedia.org/wiki/FITS
https://yt-project.org/doc/visualizing/writing_fits_images.html

yt Enhancement Proposals Documentation, Release 1.0

coordinate system and other metadata. The header provides an opportunity to standardize FITS files written by yt so
that the data is as self-describing as possible with respect to coordinates, units, and fields.

yt has also long had the capability to read FITS image files as datasets using the FITS frontend and the FITSDataset
class. In general, each FITS HDU is classified as a yt field, and the metadata in its header is used to define the properties
of the dataset. However, there is no universal standard for FITS files, and therefore in most cases a number of properties
of these datasets may be undefined (e.g., units, coordinates, etc.).

At the very least, the FITS files produced by yt should be standardized. This requires ensuring that both the
FITSImageData class and a new subclass of FITSDataset, YTFITSDataset, adhere to this standard.
This YTEP serves to define the “yt FITS standard” for FITS images produced from 2/3D datasets using the
FITSImageData class in yt and its subclasses.

33.5 Overall File Structure

yt FITS images shall be a single FITS file with one or more image HDUs, each one containing a 2 or 3-dimensional
array with will correspond to a “field” in standard yt parlance. The dimensions of each array shall be consistent with
the others for the entire file. The first or “primary” HDU will also contain an image array.

33.6 Header Information

Each FITS header associated with a a field in the FITS file shall be entirely self-describing with respect to the properties
of the field, the current time of the dataset, the coordinate system of the dataset, and the unit system of the entire file.
The file shall be distinguished as a yt FITS file by setting the WCSNAME property equal to yt.

33.6.1 Field Properties

The name of each field shall be stored in both the EXTNAME and BTYPE properties of the header. The units of the
field shall be stored in the BUNIT property of the header.

33.6.2 Unit Information

Each header will be entirely self-describing as to the unit system of the dataset, including the dimensions of length,
time, mass, velocity, temperature, and magnetic field units. In most cases, these units will be derived from the un-
derlying dataset used by FITSImageData to produce the file, but it will be possible for the user to specify their
own code unit definitions in the instantiation of the FITSImageData object. For images created by subclasses of
FITSImageData such as FITSSlice, FITSProjection, etc., the length_unit of the file will be given by
the units specified in the width keyword argument or be chosen automatically based on the size of the image.

33.6.3 Coordinate System

Each header shall have the coordinate system of the dataset stored in the WCS keywords. These will set up a linear
coordinate system with an origin in pixel space at the center of the image. The relevant keyword arguments are:

• CTYPE[123]: The coordinate system type, all of which shall be "LINEAR" for all axes.

• CUNIT[123]: The units of the coordinate axes, in dimensions of length and in the specified length_unit
of the FITS image. The units should be the same for all axes.

• CRPIX[123]: The reference pixel coordinate of the image, which shall always be the center of the image:
0.5*(n[xyz]+1), where n[xyz] is the number of pixels in each dimension.

172 Chapter 33. YTEP-0034: yt FITS Image Standard

yt Enhancement Proposals Documentation, Release 1.0

• CDELT[123]: The width of each pixel along each axis in the units specified by CUNIT[123].

• CRVAL[123]: The reference physical coordinate of the image, which corresponds to the same location as
CRPIX[123].

33.6.4 Other Metadata

Each header shall have the current time of the dataset stored in the header keyword "TIME", where the units shall be
the code time units of the dataset.

Future iterations of this standard may allow for other optional metadata such as the redshift, etc., which can be checked
upon instantiation of the YTFITSDataset instance.

33.6.5 Example Header

The following is an example header for a density field created from a slice of a FLASH dataset, as printed out by the
AstroPy command-line tool fitsheader:

SIMPLE = T / conforms to FITS standard
BITPIX = -64 / array data type
NAXIS = 2 / number of array dimensions
NAXIS1 = 512
NAXIS2 = 512
EXTEND = T
EXTNAME = 'DENSITY ' / extension name
BTYPE = 'density '
BUNIT = 'g/cm**3 '
LUNIT = 1.0 / [kpc]
TUNIT = 1.0 / [s]
MUNIT = 1.0 / [g]
VUNIT = 1.0 / [cm/s]
BFUNIT = 3.544907701811032 / [gauss]
TIME = 1.18350909938232E+17
WCSAXES = 2
CRPIX1 = 256.5
CRPIX2 = 256.5
CDELT1 = 0.9765625
CDELT2 = 0.9765625
CUNIT1 = 'kpc '
CUNIT2 = 'kpc '
CTYPE1 = 'LINEAR '
CTYPE2 = 'LINEAR '
CRVAL1 = 0.0
CRVAL2 = 0.0
LATPOLE = 90.0
WCSNAME = 'yt '

Many of the items in the header are automatically filled, but the rest are defined by yt.

33.7 Backwards Compatibility

FITS files generated using FITSImageData prior to these changes will still be readable, and may be recognizable
as YTFITSDataset objects if they have the "WCSNAME" keyword set to "yt" in the FITS header. If not, they will
still be readable as generic FITSDataset objects as before. Since previous FITS files made with FITSImageData

33.7. Backwards Compatibility 173

http://docs.astropy.org/en/stable/io/fits/usage/scripts.html#module-astropy.io.fits.scripts.fitsheader

yt Enhancement Proposals Documentation, Release 1.0

did not include unit information in their headers, units for these files will back to default cgs values if recognized as
YTFITSDataset instances by yt.

33.8 Alternatives

Leaving things the way they are, which means that we will have support for writing FITSImageData objects to
FITS files which can be read in and mostly understood by yt with the currently available metadata, but unit support
will be incomplete and some corner cases may be missed.

174 Chapter 33. YTEP-0034: yt FITS Image Standard

CHAPTER 34

YTEP-0036: Converting from Nose to Pytest

34.1 Abstract

Created: September 30, 2019 Author: Jared Coughlin

This YTEP proposes two major changes to yt’s answer testing:

• Switch from nose to pytest

• Store array hashes rather than full arrays

34.2 Status

In progress

34.3 Project Management Links

Relevant pull requests (chronological order from past to present):

• 2286

• 2401

• 2468

• 2548

• 2817

• 3102

175

https://github.com/yt-project/yt/pull/2286
https://github.com/yt-project/yt/pull/2401
https://github.com/yt-project/yt/pull/2468
https://github.com/yt-project/yt/pull/2548
https://github.com/yt-project/yt/pull/2817
https://github.com/yt-project/yt/pull/3102

yt Enhancement Proposals Documentation, Release 1.0

34.4 Detailed Description

34.4.1 Background

Currently, testing in yt makes use of the nose framework. Issues with nose include:

• Being in a self-described maintenance mode for the last several years

• Lacking modularity

• Using lots of boilerplate code

The first proposal of this YTEP is to switch yt’s testing framework from nose to pytest. Pytest offers many of the same
benefits of nose:

• Automatic test discovery

• Ability to selectively run tests

• A large number of external plugins

• Fine-tuning via configuration files

• Compatibility with python’s standard library testing framework unittest.

In addition to these benefits, pytest is also:

• Actively maintained and developed

• Compatible with nose

• Equipped with a fully-featured fixture system

In fact, this fixture system is arguably the best reason to use pytest. Benefits include:

• Greatly increases modularity

• Reduces boilerplate

• Makes writing tests easier

• Allows for smarter resource use when collecting tests

The second proposal of this YTEP is a change to the way answer test results are saved. Currently, many answer tests
in yt generate large arrays of data that need to be saved in order to facilitate comparison with future test runs. The size
of these arrays:

• Slows down answer comparison

• Necessitates that they be stored separately from the main yt code base, which serves to complicate answer
comparison

• Synchronizing pull-request merging with two repositories instead of one also slows down the development itself
and creates technical debt

In an effort to combat these issues, this YTEP proposes saving the hashes of the answer arrays. Since these hashes are
short, simple strings, they:

• Can be stored in human-readable yaml files

• Take up much less disk space

• Facilitate more efficient comparisons

• Can be packaged with the code itself

176 Chapter 34. YTEP-0036: Converting from Nose to Pytest

https://nose.readthedocs.io/en/latest/
http://pytest.org/en/latest/
https://docs.python.org/3/library/unittest.html#module-unittest

yt Enhancement Proposals Documentation, Release 1.0

34.4.2 Converting to Pytest

There are two steps for converting from nose to pytest:

• Rewrite each nose test class as a function

• Rewrite each answer test to employ pytest fixtures

Rewrite Nose Test Classes As Functions

Currently, the abstract answer tests are implemented as classes that use yield statements (e.g.,
FieldValuesTest). Pytest does not support yield tests due to conflicts with the fixture system.

As such, each nose test class’ run() method is now a function named after the test class (e.g., FieldValuesTest
becomes field_values_test and contains the code from the former’s run() method). These abstract answer
test functions are now contained in the following file: yt/utilities/answer_testing/answer_tests.
py.

Rewrite Each Answer Test To Employ Pytest Fixtures

The answer tests (e.g., those contained in yt/frontends/enzo/tests/test_outputs.py) are now, where
applicable, parameterized using the @pytest.mark.parametrize decorator, which removes the need to loop
over various parameter combinations and makes logging the results of individual parameter combinations easier.

Conftest Files

These are configuration files that are used by pytest in order to define custom fixtures for processes such as setup,
teardown, parameterizing, and using temporary directories and files.

The primary conftest.py file resides in the root of the yt repository. It:

• Defines the command-line options

• Defines the fixtures used across each of the answer tests

Testing the Tests

The pytest ecosystem contains a swath of useful tools that can be employed in order to aid the testing process. Several
such tools are listed here:

• pytest-randomly is a plugin for causing the tests to be collected in a random order each time they are run. This
helps guard against nefarious bugs that may result from calling tests in a specific order

• pytest-cov is a plugin that generates test coverage reports. It also plays well with other useful pytest plugins
such as pytest-xdist, which allows for tests to be run in parallel

• coverage-badge is a plugin for generating a test coverage badge that can be added to the README file

Doctest Integration

In addition to being able to run both the unit and answer tests for yt, pytest can also run doctests embed-
ded in documentation as well as source code doc string via the --doctest-glob="*.rst" command-
line option, which is described here, and the doctest_namespace fixture, which is described ‘here <
https://docs.pytest.org/en/stable/doctest.html#doctest-namespace-fixture>‘_.

34.4. Detailed Description 177

https://docs.pytest.org/en/latest/deprecations.html#yield-tests
https://github.com/pytest-dev/pytest-randomly
https://pypi.org/project/pytest-cov/
https://pypi.org/project/pytest-xdist/
https://pypi.org/project/coverage-badge/
https://docs.pytest.org/en/stable/doctest.html

yt Enhancement Proposals Documentation, Release 1.0

34.4.3 Saving Answer Test Results As Hashes

This is handled by the hashing fixture defined in the central conftest.py file. This fixture is then applied to
every test that needs to save a result. The fixture applies the md5 method of the hashlib library to get the hex digest
of the arrays produced by the tests. Once completed, the hashes and test parameters are written to yaml files with the
following format:

calling_function_name:
test_name: hash
test_parameter1: value
test_parameter2: value

This produces human-readable text files that can be easily packaged with the main code base, which facilitates easier
test management.

34.4.4 Running the Tests

The unit and answer tests are mutually exclusive, being run with two separate commands.

Similar to how the unit tests were run with nose, they can be run with

$ pytest

from the root yt repository directory.

To run a specific test or group of tests, one can either pass in the path to the module containing the tests

$ pytest /path/to/tests/test_module.py

or use pytest’s -k flag, which enables test selection by name. For example, to run all of the tests contained in a single
class, one would do:

$ pytest -k "TestClass"

To run only a specific method within a given class, one would do:

$ pytest -k "TestClass and test_method"

See this link for more on pytest’s selection capabilities and options.

The first step is to tell yt where the test data is located

$ yt config set yt test_data_dir /path/to/yt-data

To run the answer tests for a specific frontend (e.g., tipsy)

$ pytest --with-answer-testing --answer-store -k "TestTipsy"

By default, the answers are stored in the location specified in pytest_answer.ini. This can be overridden from
the command line

$ pytest --with-answer-testing --answer-store --local-dir=/path/to/save -k "TestTipsy"

Should one desire to save the actual arrays produced by the answer tests, this can be done with the following command
line options

178 Chapter 34. YTEP-0036: Converting from Nose to Pytest

https://docs.pytest.org/en/latest/usage.html#specifying-tests-selecting-tests

yt Enhancement Proposals Documentation, Release 1.0

$ pytest --with-answer-testing --answer-raw-arrays --raw-answer-store

If the --raw-answer-store option is left off, then pytest will attempt to load in a set of previously generated
arrays and perform a comparison to those generated during the current run.

34.4.5 Writing New Tests

Within the file containing the answer tests, one should define a new class that is marked by pytest as being an answer
test. If the tests need to save data, they should utilize the hashing fixture. Additionally, if possible, the arguments
passed to the test function should be parameterized. For example:

import pytest

dsList = [some_dataset, other_dataset]
param1List = [value1, value2]
param2List = [value1, value2]

@pytest.mark.answer_test
class TestNewFrontend:

answer_file = None
saved_hashes = None

@pytest.mark.usefixtures("hashing")
@pytest.mark.parametrize("ds", dsList, indirect=True)
@pytest.mark.parametrize("param1", param1List, indirect=True)
@pytest.mark.parametrize("param2", param2List, indirect=True)
def test_method1(self, ds, param1, param2):

test_result = some_answer_test(ds, param1, param2)
self.hashes.update({"some_answer_test": test_result})

If desired, test parameterization can be handled in a conftest.py file that lives in the new frontend’s tests
directory. See the pytest documentation for more.

34.5 Community

The primary method of reaching out to the community about these changes is through the yt-dev mailing list.

These solutions will be tested by making sure that all of the current answer tests produce results that match those
currently produced by nose.

34.6 Backwards Compatibility

This YTEP breaks backward compatibility of testing because testing will no longer be able to be done by nose.

34.5. Community 179

https://docs.pytest.org/en/stable/

yt Enhancement Proposals Documentation, Release 1.0

180 Chapter 34. YTEP-0036: Converting from Nose to Pytest

CHAPTER 35

YTEP-0037: Code styling

35.1 Abstract

Created: May 18, 2020 Author: Clément Robert

This YTEP proposes the enforcement of code styling guidelines with auto-formatting tools.

35.2 Status

Completed

35.3 Project Management Links

The following PR are part of this proposal

• sorting imports with isort (#2592)

• code formatting with black (#2596)

• add a pyproject.toml file (#2598)

• add a precommit hook configuration file (#2600)

• add flake8-bugbear to our CI and fix existing errors (#2667 #2668 #2669 #2670 #2671 #2672 #2673
#2674)

And those are post-process PRs

• #2750 (merged)

• #2756 (merged)

• #2759 (merged)

181

https://github.com/timothycrosley/isort
https://github.com/yt-project/yt/pull/2592
https://github.com/psf/black
https://github.com/yt-project/yt/pull/2596
https://github.com/yt-project/yt/pull/2598
https://github.com/yt-project/yt/pull/2600
https://github.com/yt-project/yt/pull/2667
https://github.com/yt-project/yt/pull/2668
https://github.com/yt-project/yt/pull/2669
https://github.com/yt-project/yt/pull/2670
https://github.com/yt-project/yt/pull/2671
https://github.com/yt-project/yt/pull/2672
https://github.com/yt-project/yt/pull/2673
https://github.com/yt-project/yt/pull/2674
https://github.com/yt-project/yt/pull/2750
https://github.com/yt-project/yt/pull/2764
https://github.com/yt-project/yt/pull/2759

yt Enhancement Proposals Documentation, Release 1.0

• #2758 (merged)

• #2777 (merged)

• #2789 (merged)

35.4 Detailed Description

Code styling guidelines are already presented in the project’s documentation, though enforcing them is not explicitly
made part of the reviewing process.

We already use flake8 and integrate it to our CI to catch a subset of infractions to PEP 8. From flake8’s pypi
page

Flake8 is a wrapper around these tools:

• PyFlakes

• pycodestyle

• Ned Batchelder’s McCabe script

From black’s documentation

The rules for horizontal whitespace can be summarized as: do whatever makes pycodestyle happy. (. . .)
The coding style used by Black can be viewed as a strict subset of PEP 8.

so it is expected that black plays nicely with flake8 by construction. black applies an opinionated style, and
offers very little configuration options by design. Only the target line length can be changed. This makes it a critical
point, requiring discussion if this YTEP is approved.

35.4.1 Maximal line length

Note: After discussion a maximum-line-length of 88, which is black’s default setting, was adopted.

The guidelines states that

Line widths should not be more than 80 characters

Despite this being respected in most of the code base, there remains a large amount of outliers, that would be time-
consuming to go through by hand. Taking the example of the yt-4.0 branch at the time of writing, there are 2158 lines
exceeding 80 characters (~1.5% of the whole code base), or, visually

182 Chapter 35. YTEP-0037: Code styling

https://github.com/yt-project/yt/pull/2758
https://github.com/yt-project/yt/pull/2777
https://github.com/yt-project/yt/pull/2789
https://yt-project.org/docs/dev/developing/developing.html#coding-style-guide
https://www.python.org/dev/peps/pep-0008/
https://pypi.org/project/flake8/
https://pypi.org/project/flake8/
https://black.readthedocs.io/en/stable/the_black_code_style.html

yt Enhancement Proposals Documentation, Release 1.0

Note that when long strings are present, black will not attempt to split them to shorten the individual lines. This is
most important in the case of dosctrings, and I explore the tools available to validate them hereafter (see additional
rules).

There is a range of possible values we might give preference to. Python’s standard library caps line-length at 79,
pandas does so at 88. By default, black will target 88, as its authors claim it reduces the total number of lines by
some 10% (as compared to enforcing 80).

In first drafting the PR linked above, I chose a line-length of 100, so as to minimize the amount of manual tweaking
left to me after a black pass. I estimated that imposing a strict limit to 80 chars would leave 545 lines to be manually
updated, while capping at 88 leaves a mere 135 (75% less work). As a reference, dask uses black’s default settings,
and allows flexibility for docstrings up to 120 characters through flake8.

35.4.2 Sorting imports

PEP8 recommends sorting imports statements, Needless to say, the task is daunting and definitely not worthy of
anyone’s time if we had to go back and apply those rules manually to the code base. Luckily, isort is able to check
for and auto-apply those rules, so it can easily be added to the CI-linting process.

35.4.3 Additional rules & flake8 plugins

Since the oldest python version supported (as of yt 4.0dev) is 3.6, it means we can start using fstrings instead of
str.format() and % formatting. #2605 demonstrates how a transition can be performed using flynt.

–

flake8-bugbear is a flake8 plugging that goes beyond code style and detects some additional anti-patterns, most of
which are correspond very likely to design flaws in otherwise syntactically valid statement. For instance, it will catch
mutable default values such as in

35.4. Detailed Description 183

https://www.python.org/dev/peps/pep-0008/#imports
https://github.com/yt-project/yt/pull/2605
https://github.com/PyCQA/flake8-bugbear

yt Enhancement Proposals Documentation, Release 1.0

def spam(a={}, b=[]):
#...

which, in most contexts, should be rewritten as

def spam(a=None, b=None):
if a is None:

a = {}
if b is None:

b = []

This is a well known “gotcha”, as documented for instance here. In short, this plugin detects bugs that went under the
radar up to now, so it’s probably worth adding it to our linting CI.

–

Another plugging can be added to enforce docstring formatting (flake8-docstrings), and has a straight-forward option
configuration to validate docstrings are numpy-styled. However, there is currently a very large debt in errors caught
by this tool, and no way to automatically solve them. However, it could still be added to our linting CI, if check for
new errors only, such as

git diff upstream/master -u -- "*.py" | flake8 --diff

(snippet borrowed from pandas’ contributing guide)

35.4.4 Side effects

Although some default options in isort conflict with black’s opinionated standard, it can be configured so that the
tools play nicely with each other. This is demonstrated in #2596 where both check pass on Travis.

On another note, black only recognizes pyproject.toml as a configuration file (and is explicitly not planning to
support other files such as setup.cfg). An undesirable effect of using pyproject.toml solely as a configuration
file for black is that pip will detect it and change its behaviour when its present. The correct way to introduce this
file is by specifying yt’s build requirements within it. A proof of concept for this is #2598, where CI builds are run
correctly across all tested python versions (3.6, 3.7, 3.8).

A serious counter-argument to applying black is that it implies messing up with git blame by making a single
contributor the de facto last-author of a large number of lines they have not even necessarily read. Most recent
versions of git can be configured to ignore specific commits in git blame. However, black’s own README
currently points out that GitHub’s UI for git-blame does not support this feature (yet ?).

It should be noted that black does not have a parser for Cython files, but interestingly flake8 and isort do. Thus
it is possible to add style checks for Cython extensions to the CI pipeline.

Additionally, black will not force line-length limits in docstrings. flake8 will still be able to catch violations there,
but solving them require manual tweaking. However, the amount of existing docstrings going over 88 characters is
fairly small (a few dozens), so this is by no means a blocking condition.

35.4.5 Outreach and transition

Enforcing these change throughout future contributions can be done by

• updating the Developer Guide (done in part in #2592)

• offering a precommit hook configuration file to help contributors automate the linting stage locally
(precommit_hook.yaml) such a configuration file is proposed in #2600

184 Chapter 35. YTEP-0037: Code styling

https://docs.python-guide.org/writing/gotchas/#mutable-default-arguments
https://github.com/PyCQA/flake8-docstrings
https://github.com/yt-project/yt/pull/2596
https://github.com/yt-project/yt/pull/2598
https://github.com/yt-project/yt/pull/2592
https://github.com/yt-project/yt/pull/2600

yt Enhancement Proposals Documentation, Release 1.0

It is expected that transitioning to the “blackened” version of the code will add a bit of overhead in merging pre-
existing PRs. Specifically, a simple git merge <pr-branch> master will almost certainly raise git conflicts.
One possible solution to this is to sanitize the pr-branch (on author side) with:

pip install lint_requirements.txt
black yt/
isort .
git merge --strategy ours master
git push

I tested this strategy locally by simulating blackening at an arbitrary point in the past and merging the current state
of the code base back in, producing a net zero diff with a direct blackening of the current state. In practice I advise
caution, and sanitized code should be reviewed before merging. Another, arguably cleaner way to to resolve conflicts
is to rebase the branch onto master and solve conflicts along the process. This is the prefered method though I would
not recommend it to contributors who are not used to rebasing since it is easy to make mistakes in the process.

The shorter the transition, the easier, so I think that most of the PRs could be merged in a very narrow time window
(a day or two), provided the appropriate conditions. However, because we want to ensure that each step passes the
tests, which typically takes a least an hour or two per step, I propose that prep steps be done separately, and the big
one (blackening) happen on a meeting.

35.5 Roadmap

To ensure cohesion in getting the number of features included in this PR in the codebase, we will have a dedicated
maintainer/triage meeting. This YTEP’s PR, the yt slack, and the yt-dev mailing list will include the meeting details
for interested parties to attend. Some items require completion before the triage meeting, and some can be done
afterwards, and have been categorized below.

35.5.1 Pre meeting

The following questions should be resolved * settle on a maximal line length (final: 88 characters) * decide on
where should unyt import statement lands (for isort sorting): on third party section, or a custom intermediate section
between first and third parties ? (final: third party)

35.5.2 On the meeting

• merge isort pass on the code base + CI check + doc (done)

• merge (needs tweaking) #2598 (done)

• merge blackening + manual fixups + CI checks + doc (done)

• signal to open PR authors that they should apply black (see transitioning strategy)

35.5.3 Can be done later

• merge #2600 (done)

• merge #2595 (done)

• reduce flake8 ignore list (done)

• add bugbear plugin and correct detected anti-patterns

35.5. Roadmap 185

https://github.com/yt-project/yt/pull/2598
https://github.com/yt-project/yt/pull/2600
https://github.com/yt-project/yt/pull/2595

yt Enhancement Proposals Documentation, Release 1.0

35.6 Backwards Compatibility

Yes.

35.7 Alternatives

• Enforcing styling guidelines through peer review for each PR. Obviously this is a lot more work. Additionally,
this methodology is prone to error and may cause delay in the PR approval process in case the authors disagree
with the reviewers on the application of styling rules.

• Leaving code style decisions up to authors, and embracing the style diversity.

186 Chapter 35. YTEP-0037: Code styling

CHAPTER 36

YTEP-0039: Rich Terminal User Interface

36.1 Abstract

Created: March 3, 2021 Author: Clément Robert

Use rich to prettify our TUI (Terminal User Interface). Most notably logs, and progress bars (as a replacement for
tqdm).

36.2 Status

Withdrawn

36.3 Project Management Links

• rich logging #3106

• rich progress bars #3114

• upstream, add support for non-tqdm based progress bars to pooch

(unreleased as of May the 8th, 2021)

36.4 Detailed Description

rich is a library to build colorful and styled terminal user interfaces.

187

https://github.com/yt-project/yt/pull/3106
https://github.com/yt-project/yt/pull/3114
https://github.com/fatiando/pooch/pull/228
https://github.com/willmcgugan/rich

yt Enhancement Proposals Documentation, Release 1.0

36.4.1 Logging

In particular it offers a rich.logging.RichHandler class that can be used to replace standard logging.
Handler instances, such as the one currently used by yt.

It supersedes our custom code to turn on colors in log entries and overall produces much prettier (as well as more
useful) logs at a marginal maintainance cost, arguably cheaper than our existing facility.

Let’s illustrate our existing logger outputs and what rich turns them into, using the following script, and a minimalist
configuration

import yt

yt.set_log_level(10)
yt.mylog.debug("2 + 2 = 5")
yt.mylog.info("Oh, people can come up with statistics to prove anything, Kent. 14% of
→˓people know that.")
yt.mylog.warning("Don't eat that yellow snow.")
yt.mylog.error("I am Bender, please insert girder.")
yt.mylog.critical("You have 24h left to live.")

data = {
"Nonetype": None,
"a number": 1.657,
"a boolean": True,
"a list": [1, 2, 3, "spam", "bacon"],

}
yt.mylog.info("Logging some data:\n %s", data)

188 Chapter 36. YTEP-0039: Rich Terminal User Interface

yt Enhancement Proposals Documentation, Release 1.0

Note that rich adds a clickable path to the source file where each entry was emmited from. Only the filename + line
number are displayed but those are actually absolute links. Advanced terminal apps like iterm support link integration
to make the best out of rich logging.

rich is flexible, supports a handful of color systems, and adapts to the system it runs against, which makes it more
robust than our existing on/off switch for colored logs.

Currently, colored logs are turned off by default and activated from yt’s config file as

[yt]
colored_logs = true

With rich, colored logs could be turned on by default at no cost, and with no risk of crashing a shell lacking color
support. Because rich offers a lot of configuration options, we could choose to expose some of them in yt’s config
file within a new, dedicated section, which I’m drafting here with proposed default values. This should be aligned with
the current state of the documentation in #3106

[logging]

replaces yt.log_level
logging level can be specifies as case (insensitive) string
and passed down to yt.utilities.logger.set_log_level
level = "INFO"

replaces yt.colored_logs
use_color = false

replaces yt.stdout_stream_logging as well as yt.suppress_stream_logging
accepted values are "stderr", "stdout" and "none" (completely disable logging)
this is case insensitive to avoid breakage if a user was to write e.g., "None"
stream = "stderr"

this is passed to a logging.Formatter instance
format = "%(message)s"

this is arguably a more sensible default that the legacy format (unspecified)
where miliseconds are displayed.
This default value mimicks rich's, but exposing it makes it more obvious how it
can be customized.
date_format = "[%m/%d/%Y %H:%M:%S]"

the other option would be "legacy", see Backwards Compatibility section below
handler = "rich"

the following options are silently ignored when `handler = "legacy"`

width <=0 leaves rich's default Console width (auto-adjusted if the window changes
size)
otherwise must be >0 and is the total size (in columns) of a log entry
width = -1

path to a custom rich config file, either absolute or relative to the cwd
this parameter should be a (non-empty) string when it's used.
custom_theme = ""

Note that it is pretty hard to come up with satisfying and intuitive solution to interpret a relative path for the
custom_theme option. It could be interpreted by humans as relative to any of the following - the global config

36.4. Detailed Description 189

https://iterm2.com
https://github.com/yt-project/yt/pull/3106

yt Enhancement Proposals Documentation, Release 1.0

file - the local config file - the current config file - the current working directory - the python script being run - yt’s
install dir (less likely)

For this reason, I am not convinced it’s worth supporting relative paths at all, or exposing this option, but I’m willingly
leaving to it in this state as the most experimental part of the (logging) project. Feedback will be collected to decide
how it should or shouldn’t work according to early addopters if any.

36.4.2 Progress bars and status

The rich.progress module offers progress bars that are arguably much cooler-looking than the leading concurent
(and current yt dependency) tqdm. More importantly, they are also much more flexible in a multi-tasking context
(threading). Typically, rich can display more than one progress bar at once without interrupting the logging stream.
For a demo of this, run

python -m rich.progress

Coexisting progress bars open the possibility for mutli-tasking with long-running tasks in yt without sacrifying ex-
pressivity in logs and other outputs.

Note that rich also borrows so-called “spinners” from cli-spinners, which offer a nice alternative to progress bars to
express on-going progress, in particular in tasks where completion time may be difficult to estimate. Try them for
yourself with

python -m rich.spinner

Known caveats

• Progress bars + Jupyter lab bug: https://github.com/willmcgugan/rich/issues/830

• Progress bars would be defacto heterogenous with pooch (used for yt.load_sample)

because it only knows tqdm. Replacing tqdm or more realistically adding support for rich.progress, or even
arbitrary progress bar classes in pooch clearly requires a change upstream and is not a high priority, but eventually,
this looks feasible.

36.4.3 yt CLI

A marginal side effect is that interactive command line applications could be writen in simpler ways than with vanilla
Python using rich.

For instance, let’s look at a snippet that was proposed for inclusion our config migration script yt config
migrate (see #3044)

prompt = "Perform the migration now [yn]? "
user_input = input(prompt).lower()
while user_input not in ("y", "yes", "n", "no"):

print(f"Did not understand your input '{user_input}'. Please enter 'y' or 'n'.")
user_input = input(prompt).lower()

if user_input in ("y", "yes"):
migrate_config()

else:
raise SystemExit("Migration not performed: exiting.")

This can be expressed much more efficiently using rich.prompt

190 Chapter 36. YTEP-0039: Rich Terminal User Interface

https://www.npmjs.com/package/cli-spinners
https://github.com/willmcgugan/rich/issues/830
https://github.com/yt-project/yt/pull/3044

yt Enhancement Proposals Documentation, Release 1.0

from rich.prompt import Confirm
if not Confirm.ask("Perform the migration now ?"):

raise SystemExit("Migration not performed: exiting.")
migrate_config()

At the time of writing however there is no clear spot where this functionality would shine in yt.

36.4.4 Testing

YTEP-0035 (pytest) is making progress and closing final implementation. pytest has builtin fixtures to capture logs
(caplog) and standard outputs (capsys) to inspect them, which makes testing of logging format much easier.

I have started a branch to test and fix existing and new problems with the migration CLI yt config migrate in
#3112, which relies on pytest.

36.4.5 Outreaching

• Release notes.

• config file migration/conversion facility: produce warnings when deprecated log-related parameters are found
and offer to auto-convert them in place. In case a conflict is detected at runtime between old and new parameters,
use the new ones, but advise the user to manually remove old ones (list them).

36.5 Backwards Compatibility

Downstream projects may rely on yt’s existing logging format. Some users may also simply prefer this style over
what rich offers. Even if we make rich’s logging handler the default, we could offer a option to restore the “legacy”
logging format in yt’s configuration file.

[yt.logging]
handler = "legacy"
use_color = false

Note that by construction, switching back to the legacy format would be an opt-in, which should be ok as long as it is
properly documented in release notes. Keeping support for old-style progress bars would be relatively straightforward
but it would create friction on the side of dependency specifications: if we support both styles at any point, then we
have no way to formally specify tqdm OR rich is required but not both. Considering this, I suggest to simply drop
tqdm and make rich a hard dependency immediately (#3114).

Functions yt.utilities.logging.colorize_logging and yt.utilities.logging.
uncolorize_logging won’t be necessary anymore except if we want to maintain full backwards compatibility
(legacy handler + color). What should be done with them is up for discussion but here’s my personnal opinion.
They live in a pretty nested part of the yt namespace, but they may be used downstream since they are not explicitly
(or implicitly) documented as private. I think it’s unlikely that anyone would want to use them at runtime instead
of configuring yt, so this backwards compatibility breakage is likely acceptable. I also can’t think of a reasonable
workflow for which users would care about pretty logs and wish to keep the legacy format at the same time. I propose
to mark them as deprecated until the next release (following the acceptance of this YTEP), then remove them.

36.6 Cost

rich would be added to yt’s requirements.

36.5. Backwards Compatibility 191

https://github.com/yt-project/ytep/pull/9
https://github.com/yt-project/yt/pull/3112
https://github.com/yt-project/yt/pull/3114

yt Enhancement Proposals Documentation, Release 1.0

36.7 Alternatives

Keep simple logs + tqdm.

192 Chapter 36. YTEP-0039: Rich Terminal User Interface

CHAPTER 37

YTEP-0040: a yt-baked colormap package

37.1 Abstract

Created: 20 April, 2021 (happy 40th birthday Matt !) Author: Clément Robert

I propose to extract native colormaps (“cmaps” hereafter) from yt into a separate, lightweight package.

37.2 Status

Completed

37.3 Project Management Links

PRs following the release of Matplotlib 3.4

• remove duplicated (vendored) cmaps from matpltolib (cubehelix in #3149 and turbo in #3137)

• stop registering colormaps from cmocean #3175

• add a visible deprecation warning for unprefixed cmocean maps (#3214)

• document the deprecation above #3207

• bugfix an undesirable side effect from #3175 #3212

GH issue with the initial discussion #3165

The new package’s home is https://github.com/yt-project/cmyt

193

https://github.com/yt-project/yt/pull/3149
https://github.com/yt-project/yt/pull/3137
https://github.com/yt-project/yt/pull/3175
https://github.com/yt-project/yt/pull/3214
https://github.com/yt-project/yt/pull/3207
https://github.com/yt-project/yt/pull/3212
https://github.com/yt-project/yt/issues/3165
https://github.com/yt-project/cmyt

yt Enhancement Proposals Documentation, Release 1.0

37.4 Detailed Description

An undocumented behaviour change in Matplotlib 3.4.0 made naming collisions in cmaps fatal. Registering a new
cmap with a previously registered name will not work any more, and cause the program to crash. Up to yt 3.6, we’ve
been automatically registering cmaps from various sources. Most notably: - yt itself - IDL - cmocean

All of the cmaps in questions are (or used to be) registered with bare names, i.e. without a dedicated prefix. This means
that if any of our cmaps’ names is used in the future release of Matplotlib, importing yt will fail with a ValueError.

Good practice is in fact to register cmaps under a custom “namespace” (prefix) that is guaranted to never collide with
matplotlib native colormpas. This is what is currently done in cmocean itself (prefixing with "cmo.") as well as, for
instance cmasher (prefixing with "cmr.").

Since migrating away from the fragile current registration method requires a structural change anyway, I propose we
seize the opportunity to make yt native cmaps easier to use from outside the framework (to footnote: it is actually
already doable but it requires loading the entire package) and export them into a small, lightweight, easy to maintain
and install package.

Such a package would be a hard dependency of yt itself.

In case this proposal is accepted, the exact prefix used is up for discussion. I can propose 1) cmy. pros: perfectly fits
the dominant convention, cons: doesn’t look like yt 1) yt. pros: dead simple, best at “brand” reinforcement, cons:
doesn’t align with the dominant convention 1) cmyt. pros: has “yt” _and_ “cm” in the name, cons: one char more
that the dominant convention

My personal preference goes to cmyt., and I’m going with it as the proposed package name in the following.

NOTE: the fate of IDL orignated colormaps currently registered and vendored by yt is not clear. They could be ported
as yet another package (and maybe made a hard dep to yt too ?), or be included in the first package (not my favourite
option).

37.5 Backwards Compatibility

Forcing people to add prefixes everywhere is not (yet ?) necessary, but the practice should be encouraged nevertheless.
One way to bridge the gap between current “malpractice” and a more stable usage in yt would be to perfom reregistra-
tions of cmyt’s cmaps without a prefix (similarly to what was previously done with cmocean, though in an error-safe
way).

Maybe this could be done silently in yt 4.0 (to save our users as much of a migration burden as possible), then raise
visible deprecation warnings starting from yt 4.1, and finally be completely deprecated in yt 4.2 or yt 4.3 .

37.6 Alternatives

• Perform structural changes in how yt registers its own cmaps (necessary) without making

the result a new package (not necessary, but offers some additional benefits).

• Perform the necessary changes on yt side, export the cmaps into a separate package but keep them in the main
package too (code duplication, not my cup of tea).

194 Chapter 37. YTEP-0040: a yt-baked colormap package

https://matplotlib.org/cmocean/
https://cmasher.readthedocs.io

CHAPTER 38

YTEP-1000: GitHub Migration

38.1 Abstract

Created: March 25, 2017 Author: Lots of folks

The primary source code and project management for yt should be moved from bitbucket to github, and as a result,
from mercurial to git. This document outlines a timeline, conversion and import mechanism, and how to manage this
transition.

38.2 Status

Completed

The yt steering committee has evaluated the broad strokes, and it was presented to the yt community at the beginning
of March. There were no objections, and this document is to be iterated on to decide on the migration strategy and
timeline.

38.3 Project Management Links

• Mailing list message describing the situation: http://lists.spacepope.org/pipermail/yt-dev-spacepope.org/
2017-March/006792.html

38.4 Detailed Description

As discussed in the email to yt-dev, we should move from BitBucket to GitHub as a result of the pervasive network
effect of GitHub and its impact on the community of yt developers.

The process of migration needs to be planned to minimize disruption to developer and user workflow. It will proceed
in roughly three stages.

195

http://lists.spacepope.org/pipermail/yt-dev-spacepope.org/2017-March/006792.html
http://lists.spacepope.org/pipermail/yt-dev-spacepope.org/2017-March/006792.html

yt Enhancement Proposals Documentation, Release 1.0

38.4.1 Stage 1

A clone is created on GitHub, and this is evaluated by the developers. The specifics of the conversion procedures
(specifically, things like any branch filtering, tag conversions, embedding of hashes and so on) will be examined. A
few particular items of note are that the changeset hashes in commit messages and issues are of particular interest.
Any commit messsage filtering or file size reduction will be considered. This clone will not be final, and will not be
open for pull requests, changes, etc. It will be a one-way and one-time sync.

Whatever methods are used to do this conversion will be written in this YTEP.

An example using fast-export can be found at http://github.com/yt-project/yt_fast_export . This includes git notes for
each changeset hash, but they must be pulled specifically using git fetch origin “refs/notes/*:refs/notes/*” .

Possible timeline: Starting April 10, 2017

To Do items during this stage:

• Create initial clone (this can be done manually)

• Test migration of issues to GitHub (1:1 mapping of numbers)

• Set up Jenkins jobs using git and GitHub plugins

• Rewrite yt update

• Update documentation

• Update slack bot

• Migrate supplemental repositories to GitHub

38.4.2 Stage 2

This is a brief stage, during which we wind down PRs from the Bitbucket repository. All PRs will be either accepted
or declined. All PRs that are declined that are still “in progress” will need to be converted to github pull requests, the
process for which will be documented. The simplest mechanism will be through hg export and git import, which will
squash patches.

Possible timeline: Starting May 1, 2017. This stage is contingent on the Stage 1 To-Do’s being completed, but should
be roughly three weeks after Stage 1 is entered.

To Do items during this stage:

• Accept or decline all PRs on BitBucket. Those PRs that are not accepted by the conclusion will need to be
moved to GitHub

• Switch infrastructure over to GitHub

• Open up PRs on GitHub and begin code review there

• Migrate users (ask for their GH handle) and their access levels

38.4.3 Stage 3

This is the final stage. At this point, the switch will be flipped, and no more PRs or code review will be accepted on
BitBucket.

Possible timeline: Starting May 15, 2017. This stage is contingent on the Stage 2 To-Do’s being completed, but should
be roughly two weeks after Stage 2 is entered.

To Do items during this stage:

196 Chapter 38. YTEP-1000: GitHub Migration

http://github.com/yt-project/yt_fast_export

yt Enhancement Proposals Documentation, Release 1.0

• None that I can think of.

Once Stage 3 has been completed, the bitbucket repository will be marked read-only.

38.4.4 Progress and Notes

During the course of the stages, we will update this YTEP with notes on conversion processes, etc.

38.5 Backwards Compatibility

This will almost certainly not break internal APIs other than those identified in the “todo” section above, which are all
related to project maintenance like updating and so on.

The developer workflow will break, but we are attempting to mitigate that through this YTEP.

Finally, the documentation (identified as needing to be updated) will be updated to reflect the new normal.

38.5. Backwards Compatibility 197

yt Enhancement Proposals Documentation, Release 1.0

198 Chapter 38. YTEP-1000: GitHub Migration

CHAPTER 39

YTEP-3000: Let’s all start using yt 3.0!

39.1 Abstract

Created: October 30, 2013 Author: Matthew Turk

This is a YTEP suggesting we all start using yt 3.0 for development, and where the blockers to adoption are enumer-
ated.

39.2 Status

Completed

39.3 Project Management Links

Basically all the project management links up to this point have been talking about this.

39.4 Detailed Description

This YTEP outlines the items necessary to be implemented before yt 3.0 can be released, and before we can attempt
to move development and day-to-day usage for developers to the 3.0 codebase.

There are essentially three categories of work items: release blockers, necessary features to migrate usage and devel-
opment, and feature parity requirements.

Several developers have expressed that a major blocker is concluding work they have begun on yt 2.6 and the 2.x
branch; this document is meant to supplement that, rather than replace it.

199

yt Enhancement Proposals Documentation, Release 1.0

39.4.1 Release Blockers

These are components that need implementing before yt 3.0 can be released. This is not the same as reaching a
“complete” implementation; the important work is to ensure that subsequent API breakages are minimal. We are
tracking these on the yt-3.0 Trello Board.

• Merging unitrefactor; waiting only on documentation and rebranding merge at this time. (YTEP-0011 and
YTEP-0017.)

• De-astroification of yt and renaming of generic objects which has been mostly accomplished in the rebranding
bookmark.

• Removing dict-like access to static output (YTEP-0018), not yet compelted in the rebranding bookmark.

• Considerable amount of documentation, which is being worked on.

I do not believe there are any other blockers to yt 3.0.

39.4.2 Necessary Features

These are items that are necessary for developers to migrate from using and developing yt 2.6 to yt 3.0.

This is intentionally left mostly empty, as items from “feature parity” will be migrated up.

• field_cuts (which is a related to cut_region, which has been mostly implemented.)

39.4.3 Feature Parity

These are items that existed in yt 2.6 that do not exist in yt 3.0 yet.

• A handful of hierarchy attributes have not yet been implemented.

• A few frontends still need polishing during the port, including Chombo, Pluto, NMSU-ART, and GDF. These
are small items but will need assistance from individual frontend maintainers.

• The sidecar storage has not been ported.

• Boolean regions have not been implemented. They can likely be implemented in the same manner as
cut_region has been.

39.5 Backwards Compatibility

This does not add any new backwards incompatible items, it is merely a call to action.

39.6 Alternatives

Call a mulligan, start over?

200 Chapter 39. YTEP-3000: Let’s all start using yt 3.0!

https://trello.com/b/Y5XV4Hod/yt-3-0

CHAPTER 40

YTEP-9999: YTEP Template

To write a YTEP, copy this template to the next numerical number, add it to the repository, and issue a pull request.
Discussion of the YTEP will occur either on the mailing list (for large-scale changes) or in the PR itself (small items,
such as formatting).

This document has been patterned after the Matplotlib Enhancement Proposal Template (found here.)

40.1 Abstract

Created: November 25, 2012 Author: Your Name

This section should contain one or two sentences describing the proposed change. It should not contain detailed design
information, but it can contain background information.

This should contain a date

40.2 Status

Status should be one of the following:

1. Proposed

2. Completed

3. In Progress

4. Declined

YTEPs do not need to pass through every stage.

201

https://github.com/matplotlib/matplotlib/wiki/MEPTemplate

yt Enhancement Proposals Documentation, Release 1.0

40.3 Project Management Links

Any external links to:

• Pull requests

• Related issues in the bug tracker

• Previous implementations

• Mailing list discussions or Google Docs

40.4 Detailed Description

Here is where you should write detailed description of what the YTEP proposes. This needs to include:

• Background

• Nature of the problem

• Nature of the solution

• How will the solution be implemented * Brief outline of the code needed to implement this * Code examples of
using the solution, in appropriate * How will the solution be tested?

• What are any stumbling points

• What is the proposed method for reaching out to the community about this?

40.5 Backwards Compatibility

This section should outline backwards compatibility issues. In particular, it should focus on those issues that will
appear to the main scripting API: will this break old scripts? Will it break internal uses of the API?

40.6 Alternatives

This section is optional.

What other means are there to accomplishing the goals of this YTEP, and why is this the best option?

202 Chapter 40. YTEP-9999: YTEP Template

Bibliography

[DA2012] Dehnen W., Aly H., 2012, MNRAS, 425, 1068

[PricePaper] http://adsabs.harvard.edu/abs/2012JCoPh.231..759P

[SPLASHPaper] http://adsabs.harvard.edu/doi/10.1071/AS07022

203

http://adsabs.harvard.edu/abs/2012MNRAS.425.1068D
http://adsabs.harvard.edu/abs/2012JCoPh.231..759P
http://adsabs.harvard.edu/doi/10.1071/AS07022

	YTEP-0000: Project Governance
	YTEP-0001: IO Chunking
	YTEP-0002: Profile Plotter
	YTEP-0003: Standardizing field names
	YTEP-0005: Octrees for Fluids and Particles
	YTEP-0006: Periodicity
	YTEP-0007: Automatic Pull Requests’ validation
	YTEP-0008: Release Schedule
	YTEP-0009: AMRKDTree for Data Sources
	YTEP-0010: Refactoring for Volume Rendering and Movie Generation
	YTEP-0011: Symbol units in yt
	YTEP-0012: Halo Redesign
	YTEP-0013: Deposited Particle Fields
	YTEP-0014: Field Filters
	YTEP-0015: Transfer Function Refactor
	YTEP-0016: Volume Traversal
	YTEP-0017: Domain-Specific Output Types
	YTEP-0018: Changing dict-like access to Static Output
	YTEP-0019: Reduce items in main import
	YTEP-0020: Removing PlotCollection
	YTEP-0021: Particle-Only Plots
	YTEP-0022: Benchmarks
	YTEP-0023: yt Community Code of Conduct
	YTEP-0024: Alternative Smoothing Kernels
	YTEP-0025: The ytdata Frontend
	YTEP-0026: NumPy-like Operations
	YTEP-0027: Non-Spatial Data
	YTEP-0028: Alternative Unit Systems
	YTEP-0029: Extension Packages
	YTEP-0031: Unstructured Mesh
	YTEP-0032: Removing the global octree mesh for particle data
	YTEP-0033: Dropping Python2 Support
	YTEP-0034: yt FITS Image Standard
	YTEP-0036: Converting from Nose to Pytest
	YTEP-0037: Code styling
	YTEP-0039: Rich Terminal User Interface
	YTEP-0040: a yt-baked colormap package
	YTEP-1000: GitHub Migration
	YTEP-3000: Let’s all start using yt 3.0!
	YTEP-9999: YTEP Template
	Bibliography

