

yEd UML tutorial

Examples of various types of UML diagrams created using yEd graph editor.

Setup

	yEd Setup

	Loading palettes

Diagrams

	Common

	Activity Diagram

	Class Diagram

Note

Tip sections with headers like 14.3.3.1 StateMachineExtension refers to
UML 2.5 standard [http://www.omg.org/spec/UML/2.5/].

Setup

Installation

yEd can be downloaded and installed from official site:

	Downloads [http://www.yworks.com/downloads#yEd]

Line intersection

By default line intersection is not marked:

[image: _images/intersection-default.png]
To change it go to File -> Preferences:

[image: _images/preferences.png]
Choose Display:

[image: _images/display.png]
Change Bridge Style:

[image: _images/bridge-style.png]
Result:

[image: _images/intersection-new.png]

Loading yEd palettes

Download

To load palettes download/clone this repo with palettes directory:

> git clone https://github.com/ruslo/yed-uml
> cd yed-uml
[yed-uml]> ls -d palettes
palettes/

Loading into yEd

Follow these steps for each palette to load them all into yEd.

Go to Edit -> Manage Palette...:

[image: _images/manage-palette.png]
Click Import Section:

[image: _images/import-section.png]
Find palettes directory and load file:

[image: _images/open.png]
Move palette up so it will be easier to access it:

[image: _images/move-up.png]
After palette reach the top click Close:

[image: _images/close.png]
New palette is loaded and can be used:

[image: _images/new-palette.png]

Comment (note symbol)

7.2.4 Notation

A Comment is shown as a rectangle with the upper right corner bent (this is
also known as a “note symbol”). The rectangle contains the body of the
Comment. The connection to each annotatedElement is shown by a separate
dashed line. The dashed line connecting the note symbol to the
annotatedElement(s) may be suppressed if it is clear from the context,
or not important in this diagram.

[image: _images/note.png]

Activity Diagram

Actions

15.2.4 Notation

The notations for ActivityNodes are illustrated below. This notation is
discussed in more detail in the following sub clauses (and in Clause 16 for
Actions).

16.2.4.1 Actions

Actions are notated as round-cornered rectangles, as shown in Figure 16.2.
The name of the action or other description of it may appear in the symbol.

[image: _images/action.png]

Activity Edge

15.2.4 Notation

An ActivityEdge (whether a ControlFlow or ObjectFlow) is notated by an open
arrowhead line connecting two ActivityNodes. If the edge has a name, it is
notated near the arrow. Guards are shown as text in square brackets near
tail of the line.

[image: _images/activity-edge.png]
[image: _images/activity-edge-yes.png]
[image: _images/activity-edge-no.png]
[image: _images/activity-edge-guard.png]

Decision Nodes

15.3.4.3 Merge Nodes and Decision Nodes

The notation for both MergeNodes and DecisionNodes is a diamond-shaped
symbol

15.3.4.3 Merge Nodes and Decision Nodes

A decisionInput on a DecisionNode is notated in a note symbol attached to
the DecisionNode symbol, with the keyword «decisionInput», as shown in
Figure 15.33

[image: _images/decision-two.png]
[image: _images/decision-yes-no.png]
[image: _images/decision-remainder.png]

Initial Node

15.3.4.1 Initial and Final Nodes

InitialNodes are notated as a solid circle

[image: _images/initial-node.png]

Final Nodes

15.3.4.1 Initial and Final Nodes

ActivityFinalNodes are notated as a solid circle within a hollow circle, as
shown in Figure 15.28. This can be thought of as a goal notated as
“bull’s eye,” or target.

[image: _images/final-node.png]

Note

It’s not possible to create this as one element so it’s separated to
“Final Node (internal)” and “Final Node (external).

Object Nodes

15.4.4.1 Object Nodes

ObjectNodes are notated as rectangles

[image: _images/object-node.png]

Example

[image: _images/example.png]

Links

See also

UML Activity Diagrams: Reference [https://msdn.microsoft.com/en-us/library/dd409360.aspx]

Class Diagram

Class

9.2.4.1 Classifiers

The default notation for a Classifier is a solid-outline rectangle containing
the Classifier’s name, and with compartments separated by horizontal lines
below the name. The name of the Classifier should be centered in boldface.
For those languages that distinguish between uppercase and lowercase
characters, Classifier names should begin with an uppercase character.

class Foo { /* ... */ };

[image: _images/simple-class.png]
class A {
 public:
 int foo;
 bool boo;

 float bar();
 double baz(int val, bool cond);
};

[image: _images/attributes-methods-class.png]

10.4.4 Notation

An Interface may be designated using the default notation for Classifier (see
9.2.4) with the keyword «interface».

9.2.4.1 Classifiers

If the default notation is used for a Classifier, a keyword corresponding to
the metaclass of the Classifier shall be shown in guillemets above the name.

class Foo {
 public:
 virtual bool foo();
};

[image: _images/interface-class.png]

9.2.4.1 Classifiers

The name of an abstract Classifier is shown in italics, where permitted by
the font in use. Alternatively or in addition, an abstract Classifier may be
shown using the textual annotation {abstract} after or below its name .

class A {
 public:
 virtual void boo(int x) =0;
};

[image: _images/abstract-class.png]

9.2.4.1 Classifiers

Any compartment which contains notation for Features may show those Features
grouped under the literals public, private and protected, representing their
visibility . The visibility literals are left-justified in the compartment
with the Features’ notation appearing indented beneath them. The groups may
appear in any order. Visibility grouping is optional: a conforming tool need
not support it.

class A {
 public:
 int boo;

 private:
 bool foo;

 public:
 void bar();

 private:
 void baz();
};

[image: _images/visibility-literals.png]

Generalization

9.2.4.2 Other elements

A Generalization is shown as a line with a hollow triangle as an arrowhead
between the symbols representing the involved Classifiers. The arrowhead
points to the symbol representing the general Classifier.

class Foo { /* ... */ };
class Boo { /* ... */ };

class Bar: public Foo, public Boo { /* ... */ };

[image: _images/generalization.png]

Usage

7.7.4 Notation

A Dependency is shown as a dashed arrow between two model Elements. The model
Element at the tail of the arrow (the client) depends on the model Element
at the arrowhead (the supplier). The arrow may be labeled with an optional
keyword or stereotype and an optional name (see Figure 7.18).

7.7.4 Notation

A Usage is shown as a Dependency with a «use» keyword attached to it.

class Foo {
 public:
 void foo();
};

class Boo {
 public:
 void boo(Foo& x) {
 return x.foo();
 }
};

[image: _images/usage.png]

Factory

class Foo { /* ... */ };

class Boo {
 public:
 Foo* make_foo() {
 return new Foo();
 }
};

[image: _images/factory.png]

See also

Abstract Factory Design Pattern [http://www.uml-diagrams.org/design-pattern-abstract-factory-uml-class-diagram-example.html]

Realization

7.7.4 Notation

A Realization is shown as a dashed line with a triangular arrowhead at the
end that corresponds to the realized Element.

class Foo {
 public:
 virtual void foo() =0;
};

class Boo: public Foo {
 public:
 virtual void foo() { /* ... */ }
};

[image: _images/realization.png]

Composition

11.5.4 Notation

Any Association may be drawn as a diamond (larger than a terminator on a
line) with a solid line for each Association memberEnd connecting the diamond
to the Classifier that is the end’s type.

11.5.4 Notation

An Association end is the connection between the line depicting an
Association and the icon (often a box) depicting the connected Classifier. A
name string may be placed near the end of the line to show the name of the
Association end.

11.5.4 Notation

A binary Association may have one end with aggregation =
AggregationKind::shared or aggregation = AggregationKind::composite. When one
end has aggregation = AggregationKind::shared a hollow diamond is added as a
terminal adornment at the end of the Association line opposite the end marked
with aggregation = AggregationKind::shared. The diamond shall be noticeably
smaller than the diamond notation for Associations. An Association with
aggregation = AggregationKind::composite likewise has a diamond at the
corresponding end, but differs in having the diamond filled in.

9.5.3 Semantics

Indicates that the Property is aggregated compositely, i.e., the composite
object has responsibility for the existence and storage of the composed
objects

9.5.3 Semantics

Composite aggregation is a strong form of aggregation that requires a part
object be included in at most one composite object at a time. If a composite
object is deleted, all of its part instances that are objects are deleted
with it.

11.5.3.1 Associations

The multiplicities at the other ends of the association determine the number
of instances in each partition. So, for example, 0..1 means there is at most
one instance per qualifier value.

11.5.4 Notation

An Association end is the connection between the line depicting an
Association and the icon (often a box) depicting the connected Classifier. A
name string may be placed near the end of the line to show the name of the
Association end. The name is optional and suppressible.

class A { /* ... */ };

class B {
 public:
 int x;
 bool y;

 A a[4];
};

[image: _images/composition.png]

See also

UML Association Reference [http://www.uml-diagrams.org/association-reference.html]

Aggregation

class B;

class A {
 public:
 A(B& b): b_(b) {}

 private:
 B& b_;
};

class B {
 public:
 void add(A& a) {
 a_.push_back(&a);
 }

 private:
 std::vector<A*> a_;
};

[image: _images/aggregation.png]

Index

 _static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_images/usage.png

_images/realization.png

_images/new-palette.png
Fle Edt View Layost Took Grouping Windows Help ;’

[wanemedo x| O o R
oe M Towe—

-yes

-
® [o |
e

Modern Nodes

| Edge Types
Group Hodes.

LELE

Computer Network.
unL
Flowchart
Betn

—
Current Elements

LeLEPBE)

_static/comment.png

_images/manage-palette.png
¥ Undo CtrleZ.
M Redo CtrlsY.
e o culex

Edit | View Layout Tools Grouping Windows Help.

Qa8 5HneME e P

B ooy ciec
Copy to System Ciipbosrd
B Poste
Pastento Seected Group
Duplcate
Add Child
Delete
Convertto Label
Convertto Node
Align Nodes
SelectAll
UnselectAll
Raie Seection
Lower Selecton
Find.. c
Find Net "
Find Previous
@ _Manage Palete..
Manage Custom Properis..
Propeties Mapper..
@ cirlael

@ propertie..

_static/down.png

_images/object-node.png

_images/example.png
Do something

«DecisionInput>

A>B+3

[no]

Iyes]

Use it

_images/decision-two.png

_images/interface-class.png
<<interface>>

Foo

+ foo(): bool

_images/open.png
File Edit View Layout Tools Grouping Windows Help

BOEP +RRE VN Q Q- [~ e P

Flerame: ity dagram graphml
Netorkies of type: [l supported fes (% graphm, %, %vsx)

_images/action.png
This is an action

_images/move-up.png
File Edit View Layout Tools Grouping Windows Help

BOEG +RRE 0N Qe HleMH~ e P
Y omaneso x|

Avalable Paett Sectons
ity dogram

e

@ Computer Network

@ Current Eements

3 Edoe Types

@ Entity Relatonship

Q Fowchart

3 Group Nodes

@ Modern Nodes

@ people

3 Shape Nodes

(@ Shimiane Nodes and Table Nodes

Qum ity dogram

_images/display.png
Brrerence:, o i -

Generl D=7y | Etor Backoround | Moduies | soap ines | G|
orow Sclected Semerts On Top

Edge Path Cip.

Paint Nodes over Edges
Paint Detaiks Threshold

Bridge style
Bridge Scaing

Crossing Determination Mode.

N = .
ot verscse Tagr

Hierarchy Aware Context Views
Maximum Number of Nodes n Context Views (51

] (oo (smBcocton] (moaction] ambockoms|

_images/intersection-new.png
Fle Edt Viw Lyout Took Grouping Windows Help -
BODB +RBX 0N QQQ QR [R[ESMHES @ P
[vonamedo+ x| arem

_images/activity-edge-no.png
—trol—>

nav.xhtml

 Table of Contents

 		yEd UML tutorial

 		yEd Setup

 		Installation

 		Line intersection

 		Loading palettes

 		Download

 		Loading into yEd

 		Common

 		Activity Diagram

 		Actions

 		Activity Edge

 		Decision Nodes

 		Initial Node

 		Final Nodes

 		Object Nodes

 		Example

 		Links

 		Class Diagram

 		Class

 		Generalization

 		Usage

 		Factory

 		Realization

 		Composition

 		Aggregation

_images/close.png
File Edit View Layout Tools Grouping Windows Help

BOEG +RRE 0N Qe HleMH~ e P
[wnnamedo x| o

ity dogram
e

@ Computer Network
@ Current Eements
3 Edoe Types

@ Entity Relatonship
Q Fowchart

3 Group Nodes

@ Modern Nodes

@ people

3 Shape Nodes

(@ Shimiane Nodes and Table Nodes 3 Entty Reltionship
Qum 9 Curent Eements

_images/aggregation.png

_images/intersection-default.png
File Edit View Layout Tools Grouping Windows Help

ROHE +RBN VN QA QR O~ e P
[Y unnamedo x| avE

_images/activity-edge-yes.png
—lyes]—>

_images/activity-edge.png

_images/final-node.png

_images/initial-node.png

_images/factory.png

_images/bridge-style.png
Brrerence:, o i - .-

Generl| Deply | Edtor | Backoround Modkies | Soap ines | G
orow Sclected Semerts On Top

Edge Path Cip.

Paint Nodes over Edges
Paint Detaiks Threshold

Bridge style
Bridge Scaing
Crossing Determination Mode

S e .
ot verscse Tagr

Hierarchy Aware Context Views
Maximum Number of Nodes n Context Views (51

T o | e

_images/preferences.png
DN QRQAQQR H[RS HE P @ P

P

Pe LT O

_images/attributes-methods-class.png
+ foo: int
+ boo: bool

+ bar(): float
+ baz(val: int, cond: bool): double

_images/simple-class.png
Foo

_images/composition.png
+x:int
+: bool

>

_images/visibility-literals.png
A

public
boo: int
private

foo: bool

public
bar()

private
baz)

_images/note.png

_images/decision-remainder.png
Calculate remainder
of division by 3 and
store it to A

_images/activity-edge-guard.png

_images/import-section.png
File Edit View Layout Tools Grouping Windows Help

Avalable Palette Sections ———————

Displayed Palette Sectons ——————

FEC]
@ Computer Network

@ Current Eements

3 Edoe Types

@ Entity Relatonship

Q Fowchart

3 Group Nodes

@ Modern Nodes

@ people

3 Shape Nodes

(@ Shimiane Nodes and Table Nodes
Gum

2]
<]

3 Shape Nodes

3 Modern odes

3 Edoe Types

3 Group Nodes.

3 Shimiane Nodes and Table Nodes
Q people

@ Computer Network
gum

Q Fowchart

9 e

@ ety Reltionship
3 Curent Eements

[+
3]

_images/abstract-class.png
A
{abstract}

+ boo(x: int)

_images/decision-yes-no.png
«DecisionInput>

A>B+3

_images/generalization.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/down-pressed.png

_static/ajax-loader.gif

