kbdwtchdg Documentation
Release 0.9

Philipp Rathmanner

Aug 31,2017






Contents

Overview 1
What Can kbdwtchdg Do? 3
How to Use 5

Acknowledgements 7







CHAPTER 1

Overview

A watchdog running V-USB on an Attiny85 that identifies itself as a USB keyboard and sends keyboard strokes.



http://www.obdev.at/vusb/

kbdwtchdg Documentation, Release 0.9

2 Chapter 1. Overview



CHAPTER 2

What Can kbdwtchdg Do?

WTCHDG Mode

In WTCHDG mode, kbdwtchdg listens for the capslock trigger to occur during WTCHDG_INTERVAL. If no trigger
occurs, the text is written. If a trigger occurs, the timer is reset.

Non-WTCHDG Mode

After receiving the capslock trigger and waiting for DELAY time the text is written.

Initial Writing

If first_start is set the text is written after INITIAL_DELAY after power up.




kbdwtchdg Documentation, Release 0.9

|
[first_start

wait INITIAL_DELAY (not first_start) and WTCHDG
|

wait DELAY

writing
red LED

Mo capslock trigger

in WTCHDG_INTERWAL WTCHDG

(monitoring_wamingl after WTCHDG_INTERVAL * WARMING _THRESHOLD monitoring "—— capslock trigger,
b_fellow and green LED J_‘__ capslock trigger, B green LED reset timer
T———  resettimer _—

4 Chapter 2. What Can kbdwtchdg Do?



CHAPTER 3

How to Use

The repo contains an AtmelStudio 7 project file that is preconfigured for kbdwtchdg.




kbdwtchdg Documentation, Release 0.9

6 Chapter 3. How to Use



CHAPTER 4

Acknowledgements

The code of this project is based on Frank Zhao’s USB business card and built based on Dovydas R.’s circuit diagram
for usb_pass_input_with_buttons.

This documentation was built using antiweb

Project setup

Hardware preparation

Before programming your Attiny85 to run kbdwtchdg you need to build your circuit. We built our project according
to the following diagram:



http://www.instructables.com/id/USB-PCB-Business-Card/
https://github.com/Dovydas-R/usb_pass_input_with_buttons
http://antiweb.readthedocs.io

kbdwtchdg Documentation, Release 0.9

WCC

2z
R1

470 RED LED

S 5D
P — | ¥

— a0 eREENLED
[ +— {>0—IGND
i
[ (ADCO)PES
! =5 GND (ADCZPE3 [

zE s
GND
2 WHITED- g .[ eocnre | £
= vee 5

ATtiny85

)
(ADCI)PEA
)

3 GREEM D+ (OCP)PET
5D - a7 YELLOWLED

(AREF)PED > 5D

usB

4 BLACK

GND

Tile  Kndwtcheg

Author
Dowydas R. & Philipp R

Document

Revigion Date Sheets
10 14.08.2017 10f1

Below you can find our suggested layout for the soldering:

This is the finished ATtiny85 board:

Below is an example photo of the connections on the AVR Dragon programmer:

8 Chapter 4. Acknowledgements



kbdwtchdg Documentation, Release 0.9

AtmelStudio 7

There is an AtmelStudio 7 project file inside the repository (kbdwtchdg.atsln). It is preconfigured to use the kbdwtchdg
folder as its project folder. After you made sure all your wires are connected and you selected your programmer (you
can check that by reading the voltage and device signature in Tools -> Device Programming) you can build the project
using Build/Build kbdwtchdg. After that, you need to set the correct fuses. Go to Device Programming -> Fuses and
set EXTENDED, HIGH and LOW to the following values. All the fuses will be set correctly after clicking program:

4.1. Project setup 9



kbdwtchdg Documentation, Release 0.9

AVR Dragon (004200017136) - Device Programming ? 2
Tool Device Interface Device signature Target Voltage
AVR Dragon v | ATtiny85 - Apply| | 0x1E930B 50V 53
Interface settings Fuse Name Value |
Tool information I\ECIEXTETN. DED.SELFPRGEN  [C]
(¥ HIGH.RSTDISBL ] E
Device information (FIHIGH.DWEN 0
Oscillator calibration (&) HIGH.SPIEN
Mermories (@ HIGHWDTCON O
| Fuses | (¥ HIGH.EESAVE
’ ' (#)HIGH.BODLEVEL - e v
Lock bits |,,|/'| fo e T ] b
Production file Fuse Register  Value
EXTEMDED  (OxFF
HIGH 0=D3
Low OxE2
Copy to clipboard
Auto read
Werify after programming Program ] [ Verify ] [ Read ]

Starting cperation read registers
Reading register EXTENDED...OK
Reading register HIGH...OK
Reading register LOW...0K

Read registers...OK

B Read registers..OK

If there are no errors you can proceed to load the project onto your Microcontroller using Debug -> Start without
Debugging (Ctrl+Alt+F5).

h A

For problems concerning V-USB, please take a look at their Troubleshooting site.

Configuring the Project

See Variables.

Source code

main() function

The main () function consists of four important parts:
* The setup calls to initiate a connection,
* The WTCHDG mode, which will write text in a specific interval if not reset by capslock.
* The waiting mode, which will write text on start up and after a capslock trigger.

* a function called usbPol1l () ; which will keep the connection alive

10 Chapter 4. Acknowledgements


http://vusb.wikidot.com/troubleshooting

kbdwtchdg Documentation, Release 0.9

int main ()
{

uint8_t calibrationvValue = eeprom_read_byte(0); /# calibration value from last_
wtime +/

if (calibrationValue != 0xFF)
{
OSCCAL = calibrationValue;

setup_timer();

sei(); // enable global interrupt

stdout = smystdout; // set default stream

// initialize report (I never assume it's initialized to 0 automatically)
keyboard_report_reset () ;

wdt_disable(); // disable ATtiny85's internal watchdog (no connection to our,
—wtchdg)
// good habit if you don't use it

// enforce USB re-enumeration by pretending to disconnect and reconnect
usbDeviceDisconnect () ;

_delay_ms (250);

usbDeviceConnect () ;

// initialize various modules
usbInit ();

State state;
if (first_start)
{
state = init_delay; // do a first start
activate_led (LED_YELLOW); // activate yellow led on startup
}
else // skip the first_start
{
if (WTICHDG) // we are in WTCHDG mode
{
state = monitoring; // skip initial state and writing state, go to monitoring
}
else
{
state = idle; // skip initial and writing state, go to idle

while (1) // main loop, do forever

{
// check the current state to choose the next appropriate state in the chain
switch (state)

{
case init_delay: // perform a delay using INITIAL DELAY

if (!delay_started)
{

4.2. Source code 11




kbdwtchdg Documentation, Release 0.9

start_delay () ;

if (timer_count >= (begin_delay + INITIAL_DELAY)) // initial delay at_,
—~first start

{

state = writing;
}
break;

case delay: // capsloock has been triggered, perform a delay

// starting the delay before writing
if (!delay_started) // dont't enter if the delay interval already started
{
start_delay () ;

if (timer_count >= (begin_delay + DELAY)) // delay after capslock trigger
state = writing;

}
break;

case monitoring: // while in monitoring state, check for capslock triggers
activate_led (LED_GREEN) ;
state = check_trigger (state);
if (timer_count > WARNING_INTERVAL)
{
state = monitoring_warning; // go to monitoring warning
}
break;
case monitoring warning:

activate_2_leds (LED_GREEN, LED_YELLOW); // 2 LEDs, indicate warning

state = check_trigger (state); // check if user has sent trigger to reset,,
—timer

if (timer_count > WTCHDG_INTERVAL) // no trigger in interval
{

state = writing; // write after interval has passed in WTCHDG mode
}

break;
case writing: // print out our text, proceed to next state
write();
if (WTCHDG) // we are in WTCHDG mode
{

state = monitoring;

else

12 Chapter 4. Acknowledgements




kbdwtchdg Documentation, Release 0.9

state = idle;
}

break;
case idle: // wait for capslock trigger

activate_led (LED_GREEN); // Turn on Green LED to indicate idle state
state = check_trigger (state);
break;

} // switch

// perform usb related background tasks
usbPoll(); // this needs to be called at least once every 10 ms
// this is also called in send_report_once

} // while
return 0;

Variables

The user can edit the following variables to adjust kbdwtchdg:

//USER VARIABLES
#define WICHDG 1 // Change between two modes. If 1, WICHDG mode is active
// (press capslock at least "THRESHOLD" times in the defined interval,
//otherwise write TEXT).
//If 0, waiting mode 1is active (press capslock > THRESHOLD to write,
< TEXT) .
#define WTCHDG_INTERVAL 3000 // Set interval for WTCHDG mode (in 1/100 seconds)

#define WARNING_THRESHOLD 0.8 // Percentage (given between 0 and 1) of WTCHDG_INTERVAL
// after which monitoring_warning state is entered

#define BLINK_INTERVAL 25 //set interval for blinking LED
#define DELAY 600 // delay (in 1/100th of seconds) to wait after pressing capslock
// before writing string; max: ~ 5.8%10"9 years

// has no effect in WTCHDG mode

#define INITIAI_DELAY 300 //Delay (in 1/100th of seconds) after power
// before writing string; max: ~ 5.8+10"9 years

uint8_t first_start = 1; //set to 1 if you want kbdwtchdg to write
//on power up. Otherwise set to 0

#define THRESHOLD 3 //pressing capslock more than 3 times triggers the counter
#define TEXT PSTR("Hello World! This is kbdwatchdog!\n") //Text to be written

#define INTER KEY DELAY 100 // delay between key presses in milliseconds
//comment out whole definition if no delay is desired

4.2. Source code 13




kbdwtchdg Documentation, Release 0.9

// Defining the bits to set LED outputs:

#define LED _RED (1 << PB3) //Turn on red led on PB3
#define LED_GREEN (1 << PB4) //Turn on green led on PB4
#define LED_YELLOW (1 << PB0) //Turn on yellow led on PBO

// End of USER VARIABLES

Timer setup

To perform our delays without using _delay_ms (which would prevent our ATtiny85 from talking to the computer).
We use interrupts which are caused by t imer0 in CTC mode:

volatile uint64_t timer_count = 0;
volatile uint64_t wtchdg_blink;
volatile uint64_t begin_delay;
volatile uint8_t delay_started = 0;

typedef enum state { init_delay, writing, idle, monitoring, monitoring_warning, delay,,
—} State;

void setup_timer ()

{
DDRB = OUTPUT_BITS; // Setting the output bits
TCCROA |= (1 << WGMO01l); // Configure timer(O to CTC mode
TIMSK |= (1 << OCIEOQOA); // Enable CTC interrupt

OCROA = F_CPU/1024 x 0.01 - 1; // Get the value to compare our timer with

TCCROB |= (1 << CS02)| (1 << CsS00); // 1024 Prescaler

For more information on which bits need to be set, consider looking at the Datasheet

The following function called start_delay initiates the delay after which text is being written.

void start_delay ()

{
activate_led (LED_YELLOW); // Turn on Yellow LED to indicate waiting state

begin_delay = timer_count; // remember beginning of delay interval
delay_started = 1; // delay interval has started

Interrupt

The following function is called every 1/100 seconds by t imer0, it will continue counting to its maximum if not
reset.

ISR (TIMO_COMPA_vect)
{

timer_count++; // counting up until reset

14 Chapter 4. Acknowledgements


http://www.atmel.com/images/atmel-2586-avr-8-bit-microcontroller-attiny25-attiny45-attiny85_datasheet.pdf

kbdwtchdg Documentation, Release 0.9

wtchdg_blink++; // counting up until reset

Capslock counter

When an output report is received (in our case the LED status of capslock is the only possible output report) the
blink_count of capslock is being raised.

usbMsgLen_t usbFunctionWrite (uint8_t + data, uchar len)

{
if (data[0O] != LED_state)

{
// increment count when LED has toggled

blink_count = blink_count < 10 ? blink_count + 1 : blink_count;

LED_state = datal[0];

return 1; // 1 byte read

Activating/toggling an LED

We are turning off all LEDs by doing a bitwise & between the current PORTB register and the negation of turning on
the three LEDs. Afterwards one or two specific LEDs are turned on by a bitwise |:

void activate_led (uint8_t led)
{
// turn all LEDs off

PORTB &= ~ (LED_YELLOW LED_GREEN) ;

| LED_RED
// turn on specific LED
PORTB |= (led);

void activate_2_leds (uint8_t ledl, uint8_t led2)
{

// turn all LEDs off

PORTB &= ~ (LED_YELLOW | LED_RED | LED_GREEN);

// turn on 2 LEDs
PORTB |= ((ledl) | (led2));

Writing Procedure

The writing prodecure consists of turning the RED LED on (to indicate writing) and writing the defined text.

Afterwards timer_count” “and " “blink_count arereset,delay startet and first_start are setto
false (0).

e timer_count is set to 0 so the timer restarts

4.2. Source code 15



kbdwtchdg Documentation, Release 0.9

* blink_count needs to be reset to 0 so we can start counting again
* delay_startedis set to false (0) because the delay already finished

e first_start needs to be set to false (0), as the initial delay/first start has already finished

void write ()

{
activate_led (LED_RED); // Turn red LED on to represent writing state
printf_P (TEXT); // Printing our TEXT
reset_timer();

first_start = 0; // no first start anymore
delay_started = 0; // reset delay interval

Delay Keystrokes

To set a delay between the key presses, the following function will call a delay of 5ms and then usbPol1 () ;. This
sequence is being repeated until the defined delay is reached.

void delay_keystrokes (uint64_t ms)
{
const uint8_t milliseconds = 5;
uint64_t loop_count
uint64_t i;

ms/milliseconds; // get the amount of loops necessary

// a delay bigger than 10ms would kill the connection, so we split
// the delay up into little delays that do not harm our connection
for (i = 0; 1 <= loop_count; i++)
{

_delay_ms(milliseconds);

usbPoll () ;

ASCII to Keycode

To get appropriate keycodes we can send to the computer, each ASCII character needs to be converted to its corre-
sponding keycode:

// translates ASCII to appropriate keyboard report, taking into consideration the_
—status of caps lock
void ASCII_to_keycode (uint8_t ascii)
{
keyboard_report.keycode[0] = 0x00;
keyboard_report.modifier = 0x00;

// see scancode.doc appendix C

// delay between the keystrokes
#ifdef INTER _KEY DELAY

delay_keystrokes (INTER_KEY_DELAY) ;
#endif

16 Chapter 4. Acknowledgements




kbdwtchdg Documentation, Release 0.9

if (ascii >= 'A' && ascii <= '7z2")
{
keyboard_report.keycode[0] = 4

+ ascii - 'A'; // set letter

if (bit_is_set (LED_state, 1)) // if caps is on

{
keyboard_report.modifier = 0
}
else
{

keyboard_report.modifier

}
else if (ascii >= 'a' && ascii <=
{

keyboard_report.keycode[0] = 4

x00; // no shift

_BV(l); // hold shift // hold shift

'Z')

+ ascii - 'a'; // set letter

if (bit_is_set (LED_state, 1)) // if caps is on

{

keyboard_report.modifier =

}

else
{
keyboard_report.modifier = 0
}
}
else if (ascii >= '0' && ascii <=

{
keyboard_report.modifier = 0x00
if (ascii == '0")
{
keyboard_report.keycode[0] =
}
else
{
keyboard_report.keycode[0] =

}
else
{
switch (ascii) // convert ascii
{
case '!':
keyboard_report.modifier =
keyboard_report.keycode[0] =
break;
case '@':
keyboard_report.modifier =
keyboard_report.keycode[0] =
break;
case '#':
keyboard_report.modifier =
keyboard_report.keycode[0] =
break;
case 'S$S':
keyboard_report.modifier =
keyboard_report.keycode[0] =
break;
case '%

_BV(l); // hold shift // hold shift

x00; // no shift

v9v)

’

0x27;

30 + ascii - '"1"';

to keycode according to documentation

_BV(1l); // hold shift

_BV(1l); // hold shift

_BV(1l); // hold shift

_BV(1); // hold shift

4.2. Source code

17




kbdwtchdg Documentation, Release 0.9
keyboard_report.modifier = _BV(1l); // hold shift
keyboard_report.keycode[0] = 29 + 5;
break;
case '"':
keyboard_report.modifier = _BV(1l); // hold shift
keyboard_report.keycode[0] = 29 + 6;
break;
case '&':
keyboard_report.modifier = _BV(1l); // hold shift
keyboard_report.keycode[0] = 29 + 7;
break;
case 'x':
keyboard_report.modifier = _BV(1l); // hold shift
keyboard_report.keycode[0] = 29 + 8;
break;
case ' (':
keyboard_report.modifier = _BV(1); // hold shift
keyboard_report.keycode[0] = 29 + 9;
break;
case ') ':
keyboard_report.modifier = _BV(1l); // hold shift
keyboard_report.keycode[0] = 0x27;
break;
case '~':
keyboard_report.modifier = _BV(1l); // hold shift
// fall through
case ' ':
keyboard_report.keycode[0] = 0x35;
break;
case '_':
keyboard_report.modifier = _BV(1l); // hold shift
// fall through
case '—-':
keyboard_report.keycode[0] = 0x2D;
break;
case '+':
keyboard_report.modifier = _BV(1l); // hold shift
// fall through
case '="':
keyboard_report.keycode[0] = O0x2E;
break;
case '{':
keyboard_report.modifier = _BV(1l); // hold shift
// fall through
case '[':
keyboard_report.keycode[0] = 0x2F;
break;
case '}':
keyboard_report.modifier = _BV(1l); // hold shift
// fall through
case ']':
keyboard_report.keycode[0] = 0x30;
break;
case '|':
keyboard_report.modifier = _BV(l); // hold shift
// fall through
case '\\':
keyboard_report.keycode[0] = 0x31;

18

Chapter 4. Acknowledgements




kbdwtchdg Documentation, Release 0.9

break;

case ':':

keyboard_report.modifier = _BV(1l); // hold shift
// fall through

case ';':

keyboard_report.keycode[0] = 0x33;

break;

case '"':

keyboard_report.modifier = _BV(1l); // hold shift
// fall through

case '\'':

keyboard_report.keycode[0] = 0x34;

break;

case '<':

keyboard_report.modifier = _BV(1l); // hold shift
// fall through

case ', ':

keyboard_report.keycode[0] = 0x36;

break;

case '>':

keyboard_report.modifier = _BV(1l); // hold shift
// fall through

case '.':

keyboard_report.keycode[0] = 0x37;

break;

case '?':

keyboard_report.modifier = _BV(1l); // hold shift
// fall through

case '/':

keyboard_report.keycode[0] = 0x38;

break;

case ' ':

keyboard_report.keycode[0] = 0x2C;

break;

case '\t':

keyboard_report.keycode[0] = 0x2B; // tab

break;

case '\n':

keyboard_report.keycode[0] = 0x28; // enter
break;

case '\b':

keyboard_report.keycode[0] = 0x2A; // backspace

HID Report Descriptor

The ATtiny85 Microcontroller needs some definitions to be recognized as a HID (Human Interface Device), or key-
board. Those definitions are stored inside the usbHidReportDescriptor. The descriptor defines which kind of
device your ATtiny85 pretends to be and which keys are available. It gives the user the ability to define many different
aspects of a HID. More information on HIDs: USB.org

// USB HID report descriptor for boot protocol keyboard
// see HIDI1_ 11.pdf appendix B section 1
// USB_CFG_HID_REPORT DESCRIPTOR LENGTH is defined in usbconfig

4.2. Source code 19



http://www.usb.org/developers/hidpage/

kbdwtchdg Documentation, Release 0.9

PROGMEM char usbHidReportDescriptor [USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH] = {
0x05, 0x01, // USAGE_PAGE (Generic Desktop)
0x09, 0x06, // USAGE (Keyboard)
Oxal, 0x01, // COLLECTION (Application)
0x75, 0x01, //  REPORT_SIZE (1)
0x95, 0x08, // REPORT_COUNT (8)
0x05, 0x07, // USAGE_PAGE (Keyboard) (Key Codes)
0x19, 0xeO, // USAGE_MINIMUM (Keyboard LeftControl) (224)
0x29, Oxe7, // USAGE_MAXIMUM (Keyboard Right GUI) (231)
0x15, 0x00, // LOGICAI_MINIMUM (0)
0x25, 0x01, //  LOGICAIL MAXIMUM (1)
0x81, 0x02, // INPUT (Data,Var,Abs) ; Modifier byte
0x95, 0x01, // REPORT_COUNT (1)
0x75, 0x08, //  REPORT _SIZE (8)
0x81, 0x03, // INPUT (Cnst,Var,Abs) ; Reserved byte
0x95, 0x05, // REPORT_COUNT (5)
0x75, 0x01, //  REPORT_SIZE (1)
0x05, 0x08, // USAGE_PAGE (LEDs)
0x19, 0x01, // USAGE_MINIMUM (Num Lock)
0x29, 0x05, //  USAGE_MAXIMUM (Kana)
0x91, 0x02, // OUTPUT (Data,Var,Abs) ; LED report
0x95, 0x01, // REPORT_COUNT (1)
0x75, 0x03, //  REPORT_SIZE (3)
0x91, 0x03, // OUTPUT (Cnst,Var,Abs) ; LED report padding
0x95, 0x06, // REPORT_COUNT (6)
0x75, 0x08, //  REPORT_SIZE (8)
0x15, 0x00, // LOGICAI _MINIMUM (0)
0x25, 0x65, //  LOGICAL MAXIMUM (101)
0x05, 0x07, // USAGE_PAGE (Keyboard) (Key Codes)
0x19, 0x00, // USAGE_MINIMUM (Reserved (no event,,
—~indicated)) (0)
0x29, 0x65, // USAGE_MAXIMUM (Keyboard Application) (101)
0x81, 0x00, // INPUT (Data,Ary,Abs)
0xcO // END_COLLECTION

}i

// data structure for boot protocol keyboard report
// see HIDI_11.pdf appendix B section 1
typedef struct {
uint8_t modifier;
uint8_t reserved;
uint8_t keycode[6];
} keyboard_report_t;

// global variables

static keyboard_report_t keyboard_report;

#define keyboard report_reset () keyboard report.modifier=0;keyboard report.reserved=0;
—keyboard_report.keycode[0]=0; keyboard_report.keycode[1]=0;keyboard _report.

—keycode [2]=0; keyboard_report.keycode[3]=0; keyboard_report.keycode [4]=0;keyboard_
—report.keycode[5]=0;

static uint8_t idle_rate = 500 / 4; // see HIDI_11.pdf sect 7.2.4

static uint8_t protocol_version = 0; // see HIDI_11.pdf sect 7.2.6

static uint8_t LED_state = 0; // see HIDI 11.pdf appendix B section 1

static uint8_t blink _count = 0; // keep track of how many times caps lock have toggled

20 Chapter 4. Acknowledgements




kbdwtchdg Documentation, Release 0.9

USB Setup Function

The following function is called to receive reports and process them.

// see http://vusb.wikidot.com/driver—api

// constants are found in usbdrv.h

usbMsgLen_t usbFunctionSetup (uint8_t datal[8])

{
// see HIDI1_11.pdf sect 7.2 and http://vusb.wikidot.com/driver—api
usbRequest_t *rg = (void «*)data;

if ((rg->bmRequestType & USBRQ_TYPE_MASK) != USBRQ_TYPE_CLASS)
return 0; // ignore request if it's not a class specific request

// see HID1_11.pdf sect 7.2
switch (rg->bRequest)
{
case USBRQ HID_ GET_IDLE:
usbMsgPtr = &idle_rate; // send data starting from this byte
return 1; // send 1 byte
case USBRQ HID_SET IDLE:
idle_rate = rg->wValue.bytes[1l]; // read in idle rate
return 0; // send nothing
case USBRQ HID_GET_PROTOCOL:
usbMsgPtr = &protocol_version; // send data starting from this byte
return 1; // send 1 byte
case USBRQ HID_SET_ PROTOCOL:
protocol_version = rg->wValue.bytes[1l];
return 0; // send nothing
case USBRQ HID_ GET_REPORT:
usbMsgPtr = &keyboard_report; // send the report data
return sizeof (keyboard_report);
case USBRQ_ HID_SET_REPORT:
if (rg->wlLength.word == 1) // check data is available
{

// 1 byte, we don't check report type (it can only be output or feature)

// we never implemented "feature" reports so it can't be feature
// so assume "output" reports
// this means set LED status
// since it's the only one in the descriptor
return USB_NO_MSG; // send nothing but call usbFunctionWrite
}
else // no data or do not understand data, ignore
{
return 0; // send nothing
}
default: // do not understand data, ignore
return 0; // send nothing

Oscillator Calibration

Calibrating Attiny85’s integrated Oscillator to 8.25 MHz:

// section copied from EasyLogger
/+ Calibrate the RC oscillator to 8.25 MHz. The core clock of 16.5 MHz is

4.2. Source code

21




kbdwtchdg Documentation, Release 0.9

derived from the 66 MHz peripheral clock by dividing. Our timing reference
is the Start Of Frame signal (a single SEO bit) available immediately after
a USB RESET. We first do a binary search for the OSCCAL value and then
optimize this value with a neighboorhod search.
This algorithm may also be used to calibrate the RC oscillator directly to
12 MHz (no PLL involved, can therefore be used on almost ALL AVRs), but this
* is wide outside the spec for the OSCCAL value and the required precision for
* the 12 MHz clock! Use the RC oscillator calibrated to 12 MHz for
* experimental purposes only!
*/
static void calibrateOscillator (void)

{

Xk % %

%

*

uchar step = 128;

uchar trialvValue = 0, optimumValue;

int x, optimumDev, targetValue = (unsigned) (1499 % (double)F_CPU / 10.5e6_,
-+ 0.5);

/#* do a binary search: x/

do{
OSCCAL = trialValue + step;
x = usbMeasureFrameLength(); /* proportional to current real frequency #*/
if (x < targetValue) /* frequency still too low #*/
trialvValue += step;
step >>= 1;

}while (step > 0);
/+* We have a precision of +/- 1 for optimum OSCCAL here #*/
/+ now do a neighborhood search for optimum value #*/
optimumValue = trialValue;
optimumDev = x; /#* this is certainly far away from optimum */
for (OSCCAL = trialValue - 1; OSCCAL <= trialValue + 1; OSCCAL++) {
x = usbMeasureFrameLength () - targetValue;
if(x < 0)
X = —-X;
if(x < optimumDev) {
optimumbDev = x;
optimumvValue = OSCCAL;

}

OSCCAL = optimumValue;
}
/%
Note: This calibration algorithm may try OSCCAL values of up to 192 even if
the optimum value is far below 192. It may therefore exceed the allowed clock
frequency of the CPU in low voltage designs!
You may replace this search algorithm with any other algorithm you like if
you have additional constraints such as a maximum CPU clock.
For version 5.x RC oscillators (those with a split range of 2x128 steps, e.g.
ATTiny25, ATTiny45, ATTiny85), it may be useful to search for the optimum in
both regions.
*/

void usbEventResetReady (void)
{
calibrateOscillator();
eeprom_update_byte (0, OSCCAL) ; /* store the calibrated value in EEPROM x/

22 Chapter 4. Acknowledgements



kbdwtchdg Documentation, Release 0.9

Background tasks

Performing obligatory background tasks:

void send_report_once ()

{

// perform usb background tasks until the report can be sent, then send it

while (1)
{
usbPoll(); // this needs to be called at least once every 10 ms

if (usbInterruptIsReady())
{

usbSetInterrupt (¢keyboard_report, sizeof (keyboard_report)); // send

break;

// see http://vusb.wikidot.com/driver-api

// stdio's stream will use this funct to type out characters in a string
void type_out_char (uint8_t ascii, FILE *stream)
{

ASCII_to_keycode (ascii);

send_report_once();

keyboard_report_reset (); // release keys

send_report_once();

static FILE mystdout = FDEV_SETUP_STREAM (type_out_char, NULL, _FDEV_SETUP_WRITE) ;

—setup writing stream

/7

Definitions

The following libraries need to be included:

#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/wdt.h>
#include <avr/pgmspace.h>
#include <avr/eeprom.h>
#include <stdio.h>

#include "usbdrv/usbdrv.h"
#include "usbdrv/usbconfig.h"

#define F_CPU 16500000L //Defining a CPU Frequency of 16.5 MHz
#include <util/delay.h>

4.2. Source code

23




kbdwtchdg Documentation, Release 0.9

Copyright

J *
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Copyright by Frank Zhao (http://www.frank-zhao.com), Philipp Rathmanner (https://
—github.com/Yarmek) and Christian Eitner (https://github.com/7enderhead)
*/

//The code of this project is based on Frank Zhao's USB business card(http://www.
—instructables.com/id/USB-PCB-Business—Card/)

//and built based on Dovydas R.'s circuit diagram for "usb_pass_input_with_buttons
— " (https://github.com/Dovydas—-R/usb_pass_input_with buttons) .

Extract documentation

A tool called antiweb can extract . rst files for use with Sphinx from comments in your code.

Installation

Youcanuse pip install antiweb to get the latest version of antiweb.

Usage

You need to set special directives inside your comments. Those are being interpreted by antiweb.
To generate the .rst file, navigate to the folder where main. c (or your source file) is located and type:
antiweb <source file> <options>

In this case antiweb main.c. That will generate a file called main.rst which can then be used by Sphinx for
documentation.

More information

If you want to learn more about antiweb and its usage, click here.

Changelog

¢ 11.08.2017: Initial commit

24 Chapter 4. Acknowledgements



https://github.com/7enderhead/antiweb
http://sphinx-doc.org/
http://antiweb.readthedocs.io/en/latest/getting_started.html
http://antiweb.readthedocs.io/en/latest/

kbdwtchdg Documentation, Release 0.9

16.08.2017: re-organizing folder structure
adapting GPL
17.08.2017: added pictures and diagrams

added documentation
21.08.2017: Added antiweb how-to
23.08.2017: Added WTCHDG mode
28.08.2017: Added state indicator

new state diagrams
reworked main() with switch statement

30.08.2017: Added inter-key-delay

Added documentation for settig the fuses

4.4. Changelog

25



	Overview
	What Can kbdwtchdg Do?
	How to Use
	Acknowledgements

