vaql Documentation
Release

OpenStack Foundation

March 01, 2017

Contents

YAQL: Yet Another Query Language

1.1 Quickstart e
1.2 ProjectResources,
1.3 License o v v v v i e e e e e

4.1 Introductionto YAQL
42 Installation
4.3 HowTo: Use YAQL inPython
4.4 YAQL grammar it e e e e e e e e e e e
4.5 Basic YAQL query operations

5.1 Embedding YAQL
52 REPLutility

What is YAQL

Why YAQL?

Getting started with YAQL
Usage

Language reference

6.1 Terminology e
6.2 Literals e
6.3 Keywords
6.4 Variableaccess oo
6.5 Functioncalls. oo ..
6.6 Operators i e e e e e e e e
6.7 Listexpressionso
6.8 Mapexpressions
6.9 Index expressions
6.10 Delegate exXpressions oottt e e

Customizing and extending yaql

7.1 Configuring yaql parser
7.2 Extendingyaql

Contributing

DN = =

CHAPTER 1

YAQL: Yet Another Query Language

YAQL (Yet Another Query Language) is an embeddable and extensible query language, that allows performing com-
plex queries against arbitrary objects. It has a vast and comprehensive standard library of frequently used querying
functions and can be extend even further with user-specified functions. YAQL is written in python and is distributed
via PyPL

Quickstart

Install the latest version of yaql:

’pip install yagl>=1.0.0

Run yaql REPL:

\yaql

Load a json file:

‘yaql> @load my_file.json

Check it loaded to current context, i.e. $:

‘yaql> S

Run some queries:

yvaqgl> $.customers
yaqgl> $.customers.orders
vaqgl> $.customers.where ($.age > 18)

yvaql> $.customers.groupBy ($.sex)

yvagl> $.customers.where($.orders.len() >= 1 or name = "John")

Project Resources

¢ Official Documentation

* Project status, bugs, and blueprints are tracked on Launchpad

http://yaql.readthedocs.org
https://launchpad.net/yaql

yaql Documentation, Release

License

Apache License Version 2.0 http://www.apache.org/licenses/LICENSE-2.0

2 Chapter 1. YAQL: Yet Another Query Language

http://www.apache.org/licenses/LICENSE-2.0

CHAPTER 2

What is YAQL

YAQL is a general purpose query language, that is designed to operate on objects of arbitrary complexity. YAQL has
a large standard library of functions for filtering, grouping and aggregation of data. At the same time YAQL allows
you to extend it by defining your own functions.

yaql Documentation, Release

4 Chapter 2. What is YAQL

CHAPTER 3

Why YAQL?

So why bother and create another solution for a task, that has been addressed by many before us? Obviously because
we were not satisfied with flexibility and/or quality of any existing solution. Most notably we needed a tool for json
data, that would support some complex data transformations. YAQL is a pure-python library and therefore is easily
embeddable in any python application. YAQL is designed to be human-readable and has a SQL-like feel and look. It is
inspired in part by LINQ for .NET. Since YAQL is extensible and embeddable it makes a perfect choice for becoming
the basis for your DSLs.

yaql Documentation, Release

6 Chapter 3. Why YAQL?

CHAPTER 4

Getting started with YAQL

Introduction to YAQL

YAQL (Yet Another Query Language) is an embeddable and extensible query language that allows performing com-
plex queries against arbitrary data structures. Embeddable means that you can easily integrate a YAQL query processor
in your code. Queries come from your DSLs (domain specific language), user input, JSON, and so on. YAQL has a
vast and comprehensive standard library of functions that can be used to query data of any complexity. Also, YAQL
can be extended even further with user-specified functions. YAQL is written in Python and is distributed through PyPIL.

YAQL was inspired by Microsoft LINQ for Objects and its first aim is to execute expressions on the data in memory.
A YAQL expression has the same role as an SQL query to databases: search and operate the data. In general, any
SQL query can be transformed to a YAQL expression, but YAQL can also be used for computational statements. For
example, 2 + 3*4 is a valid YAQL expression.

Moreover, in YAQL, the following operations are supported out of the box:
* Complex data queries
* Creation and transformation of lists, dicts, and arrays
e String operations
* Basic math operations
* Conditional expression
* Date and time operations (will be supported in yaql 1.1)

An interesting thing in YAQL is that everything is a function and any function can be customized or overridden. This
is true even for built-in functions. YAQL cannot call any function that was not explicitly registered to be accessible by
YAQL. The same is true for operators.

YAQL can be used in two different ways: as an independent CLI tool, and as a Python module.

Installation

You can install YAQL in two different ways:
1. Using PyPi:

pip install yagl

2. Using your system package manager (for example Ubuntu):

yaql Documentation, Release

sudo apt—-get install python-yaqgl

HowTo: Use YAQL in Python

You can operate with YAQL from Python in three easy steps:
* Create a YAQL engine
 Parse a YAQL expression

 Execute the parsed expression

Note: The engine should be created once for a set of operators and parser rules. It can be reused for all queries.

Here is an example how it can be done with the YAML file which looks like:

customers_city:

- city: New York
customer_id: 1

- city: Saint Louis
customer_id: 2

- city: Mountain View
customer_id: 3

customers:

— customer_id: 1
name: John
orders:

— order_id: 1
item: Guitar
quantity: 1

- customer_id: 2
name: Paul
orders:

— order_id: 2
item: Banjo
quantity: 2

— order_id: 3
item: Piano
quantity: 1

— customer_id: 3
name: Diana
orders:

— order_id: 4
item: Drums
quantity: 1

import yaql
import yaml

data_source = yaml.load(open('shop.yaml', 'r'))
engine = yaqgl.factory.YaqglFactory () .create()

expression = engine (
'$S.customers.orders.selectMany ($.where($.order_id = 4))")

8 Chapter 4. Getting started with YAQL

yaql Documentation, Release

order = expression.evaluate (data=data_source)

Content of the order will be the following:

‘[{u'item': u'Drums', u'order_id': 4, u'quantity': 1}]

YAQL grammar

YAQL has a very simple grammar:
¢ Three keywords as in JSON: true, false, null
¢ Numbers, such as 12 and 34.5
e Strings: ‘foo’ and “bar”
e Access to the data: $variable, $

* Binary and unary operators: 2 + 2, -1, 1 =2, $list[1]

Data access

Although YAQL expressions may be self-sufficient, the most important value of YAQL is its ability to operate on user-
passed data. Such data is placed into variables which are accessible in a YAQL expression as $<variable_name>. The
variable_name can contain numbers, English alphabetic characters, and underscore symbols. The variable_name can
be empty, in this case you will use $. Variables can be set prior to executing a YAQL expression or can be changed
during the execution of some functions.

According to the convention in YAQL, function parameters, including input data, are stored in variables like $7, $2,
and so on. The § stands for $/. For most cases, all function parameters are passed in one piece and can be accessed
using $, that is why this variable is the most used one in YAQL expressions. Besides, some functions are expected to
get a YAQL expression as one of the parameters (for example, a predicate for collection sorting). In this case, passed
expression is granted access to the data by $.

Strings

In YAQL, strings can be enclosed in “ and ‘. Both types are absolutely equal and support all standard escape symbols
including unicode code-points. In YAQL, both types of quotes are useful when you need to include one type of quotes
into the other. In addition, ‘ is used to create a string where only one escape symbol ° is possible. This is especially
suitable for regexp expressions.

If a string does not start with a digit or __ and contains only digits, _, and English letters, it is called identifier and can
be used without quotes at all. An identifier can be used as a name for function, parameter or property in $obj.property
case.

Functions
A function call has syntax of functionName(functionParameters). Brackets are necessary even if there are no parame-
ters. In YAQL, there are two types of parameters:

 Positional parameters foo (1, 2, someValue)

* Named parameters foo (paramNamel => valuel, paramName2 => 123)

4.4. YAQL grammar 9

yaql Documentation, Release

Also, a function can be called using both positional and named parameters: foo (1, false, param => null).
In this case, named arguments must be written after positional arguments. In name => value, name must be a valid
identifier and must match the name of parameter in function definition. Usually, arguments can be passed in both ways,
but named-only parameters are supported in YAQL since Python 3 supports them.

Parameters can have default values. Named parameters is a good way to pass only needed parameters and skip
arguments which can be use default values, also you can simply skip parameters in function call: foo (1,3).

In YAQL, there are three types of functions:
* Regular functions: max (1, 2)

¢ Method-like functions, which are called by specifying an object for which the function is called, followed
by a dot and a function call: stringValue.toUpper ()

» Extension methods, which can be called both ways: 1en (string), string.len ()

YAQL standard library contains hundreds of functions which belong to one of these types. Moreover, applications can
add new functions and override functions from the standard library.

Operators

YAQL supports the following types of operators out of the box:
e Arithmetic: +. -, *, /, mod
e Logical: =, /=, >=, <=, and, or, not
* Regexp operations: =~, /~
e Method call, call to the attribute: ., ?.
» Context pass: ->
¢ Indexing: []

* Membership test operations: in

Data structures

YAQL supports these types out of the box:
* Scalars

YAQL supports such types as string, int. boolean. Datetime and timespan will be available after yaql
1.1 release.

e Lists

List creation: [1, 2, value, true] Alternative syntax: list (1, 2, value, true)
List elemenets can be accesessed by index: $1ist [0]

¢ Dictionaries

Dict creation: {keyl => valuel, true => 1, 0 => false} Alternative syntax:
dict (keyl => valuel, true => 1, 0 => false) Dictionaries can be indexed by
keys: $dict [key]. Exception will be raised if the key is missing in the dictionary. Also, you
can specify value which will be returned if the key is not in the dictionary: dict.get (key,
default).

10 Chapter 4. Getting started with YAQL

yaql Documentation, Release

Note: During iteration through the dictionary, key can be called like: $.key

* (Optional) Sets

Set creation: set (1, 2, wvalue, true)

Note: YAQL is designed to keep input data unchanged. All the functions that look as if they change data, actually
return an updated copy and keep the original data unchanged. This is one reason why YAQL is thread-safe.

Basic YAQL query operations
It is obvious that we can compare YAQL with SQL as they both are designed to solve similar tasks. Here we will take

a look at the YAQL functions which have a direct equivalent with SQL.

We will use YAML from HowTo: use YAQL in Python as a data source in our examples.

Filtering

Note: Analogis SQL WHERE

The most common query to the data sets is filtering. This is a type of query which will return only elements for which
the filtering query is true. In YAQL, we use where to apply filtering queries.

yvaql> $.customers.where ($.name = John)

- customer_id: 1
name: John
orders:

— order_id: 1
item: Guitar
quantity: 1

Ordering

Note: Analogis SQL ORDER BY

It may be required to sort the data returned by some YAQL query. The orderBy clause will cause the elements in the
returned sequence to be sorted according to the default comparer for the type being sorted. For example, the following
query can be extended to sort the results based on the profession property.

vaql> $.customers.orderBy ($.name)

— customer_id: 3
name: Diana
orders:

- order_id: 4
item: Drums

4.5. Basic YAQL query operations 11

yaql Documentation, Release

quantity: 1
- customer_id: 1
name: John
orders:

— order_id: 1
item: Guitar
quantity: 1

- customer_id: 2
name: Paul
orders:

- order_id: 2
item: Banjo
quantity: 2

— order_id: 3
item: Piano
quantity: 1

Grouping

Note: Analog is SQL GROUP BY

The groupBy clause allows you to group the results according to the key you specified. Thus, it is possible to group
example json by gender.

yagl> $.customers.groupBy ($.name)

- Diana:

- customer_id: 3
name: Diana
orders:

— order_id: 4
item: Drums
quantity: 1

- Paul:

- customer_id: 2
name: Paul
orders:

- order_id: 2
item: Banjo
quantity: 2

— order_id: 3
item: Piano
quantity: 1

- John:

- customer_id: 1
name: John
orders:

- order_id: 1
item: Guitar
quantity: 1

So, here you can see the difference between groupBy and orderBy. We use the same parameter name for both
operations, but in the output for groupBy name is located in additional place before everything else.

12 Chapter 4. Getting started with YAQL

yaql Documentation, Release

Selecting

Note: Analog is SQL SELECT

The select method allows building new objects out of objects of some collection. In the following example, the
result will contain a list of name/orders pairs.

yvaql> $.customers.select ([$.name, $.orders])

- John:

- order_id: 1
item: Guitar
quantity: 1

- Paul:

- order_id: 2
item: Banijo
quantity: 2

- order_id: 3
item: Piano
quantity: 1

— Diana:

- order_id: 4
item: Drums
quantity: 1

Joining

Note: Analog is SQL JOIN

The join method creates a new collection by joining two other collections by some condition.

vagl> $.customers.join($.customers_city, $1l.customer_id = $2.customer_id, {customer=>$1|name,

- customer: John
city: New York
orders:

— order_id: 1
item: Guitar
quantity: 1

— customer: Paul
city: Saint Louis
orders:

— order_id: 2
item: Banjo
quantity: 2

- order_id: 3
item: Piano
quantity: 1

— customer: Diana
city: Mountain View
orders:

- order_id: 4
item: Drums
quantity: 1

4.5. Basic YAQL query operations 13

city=>!

yaql Documentation, Release

Take an element from collection

YAQL supports two general methods that can help you to take elements from collection skip and take.

‘yaql> $.customers.skip (1) .take (2)

- customer_id: 2
name: Paul
orders:

— order_id: 2
item: Banjo
quantity: 2

— order_id: 3
item: Piano
quantity: 1

— customer_id: 3
name: Diana
orders:

— order_id: 4
item: Drums
quantity: 1

First element of collection

The first method will return the first element of a collection.

’yaql> $.customers.first ()

- customer_id: 1
name: John
orders:

- order_id: 1
item: Guitar
quantity: 1

14 Chapter 4. Getting started with YAQL

CHAPTER 5

Usage

This section is not ready yet.

Embedding YAQL

REPL utility

15

yaql Documentation, Release

16 Chapter 5. Usage

CHAPTER 6

Language reference

YAQL is a single expression language and as such does not have any block constructs, line formatting, end of statement
marks or comments. The expression can be of any length. All whitespace characters (including newline) that are not
enclosed in quote marks are stripped. Thus, the expressions may span multiple lines.

Expressions consist of:

Literals

Keywords

Variable access

Function calls

Binary and unary operators
List expressions
Dictionary expressions
Index expressions

Delegate expressions

Terminology

YAQL - the name of the language - acronym for Yet Another Query Language
yagql - Python implementation of the YAQL language (this package)
expression - a YAQL query that takes context as an input and produces result value

context - an object that (directly or indirectly) holds all the data available to expression and all the function
implementations accessible to expression

host - the application that hosts the yaql interpreter. The host uses yaql to evaluate expressions, provides initial
data, and decides which functions are going to be available to the expression. The host has ultimate power to
customize yaql - provide additional functions, operators, decide not to use standard library or use only parts of
it, override function and operator behavior

variable - any data item that is available through the context

* function - a Python callable that is exposed to the YAQL expression and can be called either explicitly or

implicitly

17

yaql Documentation, Release

* delegate - a Python callable that is available as a context variable (in expression data rather than registered in
context)

* operator - a form of implicit function on one (unary operator) or two (binary operator) operands

* alphanumeric - consists of latin letters and digits (A-Z, a-z, 0-9)

Literals

Literals refer to fixed values in expressions. YAQL has the following literals:
* Integer literals: 123
* Floating point literals: 1.23,1.0
* Boolean and null literals represented by keywords (see below)

* String literals enclosed in either single (‘) or double () quotes: "abc", def’. The backslash () character is
used to escape characters that otherwise have a special meaning, such as newline, backslash itself, or the quote
character

* Verbatim strings enclosed in back quote characters, for example ‘abc *, are used to suppress escape sequences.
This is equivalent to r’ strings’ in Python and is especially useful for regular expressions

Keywords

Keyword is a sequence of characters that conforms to the following criteria:
* Consists of non-zero alphanumeric characters and an underscore (_)
* Doesn’t start with a digit
¢ Doesn’t start with two underscore characters (__)
* Is not enclosed in quote marks of any type
YAQL has only three predefined keywords: true, false, and null that have the value of similar JSON keywords.

There are also four keyword operators: and, or, not, in. However, this list is not fixed. The yaql host may decide to
have additional keyword operators or not to have any of the four aforementioned keywords.

All other keywords have the value of their string representation. Thus, except for the predefined keywords and opera-
tors they can be considered as string literals and can be used anywhere where string is expected. However the opposite
is not true. That is, keywords can be used as string literals but string literals cannot be used where a token is expected.

Examples:
e John + Snow - the same as "John" + "Snow"

* true + love - syntactically valid, but cannot be evaluated because there is no plus operator that accepts
boolean and string (unless you define one)

* not true - evaluates to false, not is an operator
e "foo" () -invalid expression because the function name must be a token

e John Snow - invalid expression - two tokens with no operator between them

18 Chapter 6. Language reference

yaql Documentation, Release

Variable access

Each YAQL expression is a function that takes inputs (arguments) and produces the result value (usually by doing
some computations on those inputs). Expressions get the input through a context - an object that holds all the data and
a list of functions, available for expression.

Besides the argument values, expressions may populate additional data items to the context. All these data are collec-
tively known as a variables and available to all parts of an expression (unless overwritten with another value).

The syntax for accessing variable values is $variableName where variableName is the name of the variable.
Variable names may consist of alphanumeric and underscore characters only. Unlike tokens, variable names may
start with digit, any number of underscores and even be an empty string. By convention, the first (usually the single)
function parameter is accessible through $ expression (i.e. empty string variable name) which is an alias for $1. The
usual case is to pass the main expression data in a single structure (document) and access it through the $ variable.

If the variable with given name is not provided, it is assumed to be null. There is no built-in syntax to check if a
variable exists to distinguish cases where it does not and when it is just set to null. However in the future such a
function might be added to yaql standard library.

When the yaql parser encounters the S$variable expression, it automatically translates it to the
#get_context_data ("$variable") function call. By default, the #get_context_data function returns a vari-
able value from the current context. However the yaql host may decide to override it and provide another behavior.
For example, the host may try to look up the value in an external data source (database) or throw an exception due to
a missing variable.

Function calls

The power of YAQL comes from the fact that almost everything in YAQL is a function call (explicit or implicit) and
any function may be overridden by the host. In YAQL there are two types of functions:

* explicit function - those that can be called from expressions

e implicit (system) functions - functions with predefined names that get called upon some operations. For example,
2 + 3istranslated to #operator_+ (2, 3). In this case, #operator_+ is the name of the implicit function.
However, because #operator_+ (2, 3) isnota valid YAQL expression (because of #), implicit functions
cannot be called explicitly but still can be redefined by the host.

The syntax for explicit function is:

call = funcName “(” [parameters] ”)”
funcName = token
parameters = positionalParameters |

keywordParameters |

positionalParameters ”,” keywordParameters
parameter (”,” parameter) x

expression | empty-string
keywordParameters keywordParameter (”,” keywordParameter)
keywordParameter parameterName “=>" expression
parameterName = token

positionalParameters
parameter

In simple words:
¢ The function name must be a token.

» Parameters may be positional, keyword or both. But keyword parameters may not come before positional.

6.5. Function calls 19

yaql Documentation, Release

* Positional parameters can be skipped if they have a default value, for example, foo (1,,3).

* Keyword arguments must have a token name that must match the parameter name in the function declaration.
Therefore, you must know the function signature for the right name.

Examples:
e foo(2 + 3)
* bar (hello, world)
* baz(a,b, kwparaml => c, kwparam2 => d)
Functions have ultimate control over how they can be called. In particular:

* Each parameter may (and usually does) have an associated type check. That is, the function may specify that
the expected parameter type and if it can be null.

¢ Usually, any parameters can be passed either by positional or keyword syntax. However, function declaration
may force one particular way and make it positional-only or keyword-only.

* A function may have a variable number of positional (aka *args) and/or keyword (aka **kwarg) arguments.

* In most languages, function arguments are evaluated prior to function invocation. This is not always true in
YAQL. In YAQL, a function may declare a lazy argument. In this case, it is not evaluated and the function
implementation receives a passed value as a callable or even as an AST, depending on how the parameter was
declared. Thus in YAQL there is no special syntax for lambdas. foo ($ + 1) may mean either “call foo
with value of $ + 1” or “call foo with expression $ + 1 as a parameter”. In the latter case it corresponds
to foo (lambda xargs, =*xkwargs: args[0] + 1) in Python. Actual argument interpretation de-
pends on the parameter declaration.

 Function may decide to disable keyword argument syntax altogether. For such functions, the name => expr
expression will be interpreted as a positional parameter yagl . language.utils.MappingRule (name,
expr) and the left side of => can be any expression and not just a keyword. This allows for functions like
switch($ > 0 => 1, $ <0 => -1, $ =0 => 0).

Additionally, there are three subtypes of explicit functions. Suppose that there is a declared function foo (string,
int). By default, the syntax to call it will be foo (something, 123). Butitcan be declared as a method. In this
case, the syntax is going to be something. foo (123). Because of the type checking, something.foo (123)
will work since something is a string, but not the 123 . foo (456) . Thus foo becomes a method of a string type.

A function may also be declared as being an extension method. If foo were to be declared as an extension method it
could be called both as a function (foo (string, int))and asamethod (something.foo (123)).

YAQL makes use of a full function signature to determine which function implementation needs to be executed.
This allows several overloads of the same function as long as they differ by parameter count or parameter type, or
anything else that allows unambiguous identification of the right overload from the function call expression. For
example, something.foo (123) may be resolved to a completely different implementation of foo from that in
foo (something, 123) if there are two functions with the name foo present in the context, but one of them was
declared as a function while the other as a method. If several overloads are equally suitable for the call expression, an
AmbiguousFunctionException or AmbiguousMethodException exception gets raised.

Operators

YAQL has both binary and unary operators, like most other languages do. Parentheses and => sequence are not
considered as operators and handled internally by the yaql parser. However, it is possible to configure yaql to use
sequence other than => for that purpose.

The list of available operators is not fixed and can be modified by the host. The following operators are available by
default:

20 Chapter 6. Language reference

yaql Documentation, Release

Binary operators:

Group Operators

math operators +, -, %, /, mod
comparision operators > <, >=, <=, =, /=
logical operators and, or
method/member access L2

regex operators =~ /I~

membership operator in

context passing operator | ->

Unary operators:

Group Operators
math operators +, -
logical operators | not

YAQL supports for both prefix and suffix unary operators. However, only the prefix operators are provided by default.

In YAQL there are no built-in operators. The parser is given a list of all possible operator names (symbols), their
associativity, precedence, and type, but it knows nothing about what operators are applicable for what operands. Each
time a parser recognizes the X OP Y construct and OP is a known binary operator name, it translates the expression
to #operator_OP (X, Y).Thus. 2 + 3 becomes #operator_+ (2, 3) where #operator_+ is an implicit
function with several implementations including the one for number addition and defined in standard library. The
host may override it and even completely disable it. For unary operators, OP X (or X OP for suffix unary operators)
becomes #unary_operator_OP (X).

Upon yaql parser initialization, an operator might be given an alias name. In such cases, X OP Y is translated to
*ALIAS (X, Y) and OP Xto »ALIAS (X). This decouples the operator implementation from the operator symbol.
For example, the = operator has the equal alias. The host may configure yaql to have the == operator instead of =
keeping the same alias so that operator implementation and all its consumers work equally well for the new operator
symbol. In default configuration only = and /= operators have alias names.

For information on default operators, see the YAQL standard library reference.

List expressions

List expressions have the following form:

listExpression = “["” [expressions] “]”
expressions = expression (”,” expression)

When a yaql parser encounters an expression of the form [A, B, C],ittranslatesitinto #1ist (A, B, C) (for
arbitrary number of arguments).

Default #list function implementation in standard library produces a list (tuple) comprised of given elements. However,
the host might decide to give it a different implementation.

Map expressions

Map expressions have the following form:

6.8. Map expressions 21

yaql Documentation, Release

mapExpression = “{” [mappings] “}”
mappings = mapping (”,” mapping) *
mapping n= expression “=>" expression

When a yaql parser encounters an expression of the form {A => X, B => Y}, it translates it into #map (A =>
X, B =>Y).

The default #map implementation disables the keyword arguments syntax and thus receives a variable length list of
mappings, which allows dictionary keys to be expressions rather than a keyword. It returns a (frozen) dictionary that
itself can be used as a key in another map expression. For example, { {a => b} => {[2 + 2, 2 * 2] =>
41} is a valid YAQL expression though yaql REPL utility will fail to display its output due to the fact that it is not
JSON-compatible.

Index expressions

Index expressions have the following form:

indexExpression = expression listExpression

Examples:

e [1, 2, 3110]

e Sarr[$index + 1]

e {foo => 1, bar => 2} [foo]
When a yaqgl parser encounters such an expression, it translates it into # indexer (expression, index).
The standard library provides a number of #indexer implementations for different types.

The right side of the index expression is a list expression. Therefore, an expression like $foo[1, x, null] is
also a valid YAQL expression and will be translated to #indexer ($foo, 1, x, null). However, any attempt
to evaluate such expression will result in NoMatchingFunctionException exception because there is no #indexer im-
plementation that accepts such arguments (unless the host defines one).

Delegate expressions

Delegate expressions is an optional language feature that is disabled by default. It makes possible to pass delegates
(callables) as part of the context data and invoke them from the expression. It has the same syntax as explicit function
calls with the only difference being that instead of function name (keyword) there is a non-keyword expression that
must produce the delegate.

Examples:
e $foo(l, arg => 2) -call delegate returned by $foo with parameters (1, arg => 2)
e [Sfoo, S$bar][0] (x) -thesame as $foo (x)
e foo () () -canbe writtenas (foo ()) () - foo () must return a delegate

Delegate expressions are translated into #call (callable, arguments). Thus $foo (1, 2) becomes
#call ($foo, 1, 2).

The default implementation of #call invokes the result of the evaluation of its first arguments with the given argu-
ments.

22 Chapter 6. Language reference

CHAPTER 7

Customizing and extending yaql

Configuring yaql parser

yagql has two main points of customization:

* yagql engine settings allow one to configure the query language and execution flags shared by all queries that are
processed by the same YAQL parser. This includes the list of available operators, yaql resources quotas, and
other engine parameters.

* By customizing the yaql context object, one can change the list of available functions (add new, override exist-
ing) and change naming conventions.

Engine options are supplied to the yagl.language.factory.YaglFactory class. YaqlFactory is used to create instances of
the YaqlEngine, that is the YAQL parser. This is done by calling the create method of the factory. Once the engine
is created, it captures all the factory options so that they cannot be changed for that particular parser any longer. In
general, it is recommended to have one yal engine instance per application, because construction of the parser is
an expensive operation and the parser has no internal state and thus can be reused for several queries, including in
different threads. However, the host may have several YAQL parsers for different option sets or dialects.

On the contrary, the context object is cheap to create and is mutable by design, since it holds the input data for the
query. In most cases it is a good idea to execute each query in its own context, although all such contexts might be the
children of some other, fixed context that is created just once.

Customizing operators

YaqlFactory object holds an operator table that is recognized by the parser produced by it. By default, it is prepopulated
with standard operators and most applications never need to do anything here. However, if the host wants to have some
custom operator symbol available in its expressions, this table needs to be modified. YaglFactory holds the operator
symbols and other information about the operator that is relevant to the parser, but not the implementations. The
implementations (what operators actually do) are put in the context and can be configured for each expression, but the
list of available operator symbols cannot be changed for the parser once it has been built.

Each operator in the table is represented by the tuple ‘(op_symbols, op_type, op_alias):

* op_symbols are the operator symbols. There are no limitations on how the operators can be called as long as
they do not contain whitespaces. It can be one symbol (like +), several symbols (like =~) or even a word (like
not). List/index and dictionary expressions require /] and {/ binary left associative operators to be present in the
table. Otherwise corresponding constructions will not work (and can be disabled by removing corresponding
operators from the table)

23

yaql Documentation, Release

e op_type is one of the values in yagl.language.factory.OperatorType enumeration: BI-
NARY_LEFT_ASSOCIATIVE and BINARY_RIGHT_ASSOCIATIVE for binary operators, PRE-
FIX_UNARY and SUFFIX_UNARY for unary operators, NAME_VALUE_PAIR for the keyword/mapping
pseudo-operator (that is =>, by default).

 op_alias is the alias name for the operator. See YAQL language reference on how operator aliases are used.
Aliases are optional and most operators do not have it and thus are represented by a tuple of two elements.

Operators are grouped by their precedence. Operators with a higher precedence come first in the operator table.
Operators within the same group have the same precedence. Groups are separated by an empty tuple (()).

The operator table, which is a list of tuples, is available through the operators attribute of the factory and is open for
modification. To simplify the editing, YaglFactory provides the insert_operator helper method to insert an operator
before of after some other existing operator to get the desired precedence.

Execution options

Execution options are the settings and flags that affect execution of each query and are accessible and processed by
both yaql runtime and standard library functions.

Options are passed to the create method of the YaglFactory class in a plain key-value dictionary. The factory does not
process the dictionary but rather attaches the options to the constructed engine (YAQL parser) after which they cannot
be changed. However, the engine provides a copy method that can be used to clone the engine with different execution
options.

The options that are honored by the yaql are:

e “vagl.limitlterators”: <INT> limit iterators by the given number of elements. When set, each time any function
declares its parameter to be iterator, that iterator is modified to not produce more than a given number of items.
Also, upon the expression evaluation, all the output collections and iterators are limited as well. If not set (or
set to -1) the result data is allowed to contain endless iterators that would cause errors if the result where to be
serialized (to JSON or any other format). Default is -1 (do not limit).

* “vagl.memoryQuota”: <INT> - the memory usage quota (in bytes) for all data produced by the expression (or
any part of it). Default is -1 (do not limit).

* “yagl.convertTuplesToLists”: <TruelFalse>. When set to true, yaql converts all tuples in the expression result
to lists. The default is True.

* “vagl.convertSetsToLists”: <TruelFalse>. When set to true, yaql converts all sets in the expression result to
lists. Otherwise the produced result may contain sets that are not JSON-serializable. The default is False.

* “yagl.iterableDicts”: <TruelFalse>. When set to true, dictionaries are considered to be iterable and iteration
over dictionaries produces their keys (as in Python and yaql 0.2). Defaults to False.

Consumers are free to use their own settings or use the options dictionary to provide some other environment infor-
mation to their own custom functions.

Other engine customizations

YaqglFactory class initializer has two optional parameters that can be used to further customize the YAQL parser:

* keyword_operator allows one to configure keyword/mapping symbol. The default is =>. Ability to pass named
arguments can be disabled altogether if None or empty string is provided.

* allow_delegates enables or disables delegate expression parsing. Default is False (disabled).

24 Chapter 7. Customizing and extending yaq|l

yaql Documentation, Release

Working with contexts

Context is an interface that yaql runtime uses to obtain a list of available functions and variables. Any context object
must implement yagql.language.contexts.ContextBase interface and yaql provides several such implementations rang-
ing from the yagql.language.contexts.Context class, that is a basic context implementation, to contexts that allow one
to merge several other contexts into one or link an existing context into the list of contexts.

Any context may have a parent context. Any lookup that is done in the context is also performed in its parent context,
extending all the way up its chain of contexts. During expression evaluation, yaql can create a long chain of contexts
that are all children of the context that was originally passed with the query.

Most of the yaql customizations are achieved by context manipulations. This includes:
* Overriding YAQL functions
* Building context chains and evaluating sub-expressions in different contexts
* Composing context chains from pre-built contexts
* Having custom ContextBase implementations and mixing them with regular contexts in the single chain

In fact, it is the context which provides the entry point for expression evaluation. And thus custom context implemen-
tations may completely change the way queries are evaluated.

There are three ways to create a context instance:
1. Directly instantiate one of ContextBase implementations to get an empty context
2. Call create_child_context method on any existing context object to get a child context

#. Use yaql.create_context function to creates the root context that is prepopulated with YAQL standard library func-
tions

yagql.create_context allows one to selectively disable standard library modules.

Naming conventions

Naming conventions define how Python functions and parameter names are translated into YAQL names. Conventions
are implementations of the yagl.language.conventions. Convention interface that has just two methods: one to translate
the function name and another to translate the function parameter name.

yagl has two implementations included:

* yaql.language.conventions.CamelCaseConvention’ that translates Python conventions into camel case. For ex-
ample, it will convert ‘my_func(arg_name) into myFunc(argName). This convention is used by default.

* ‘yaql.language.conventions.PythonConvention’ that leaves function and parameter names intact.

Each context, either directly or indirectly through its parent context, is configured to use some convention. When
a function is registered in the context, its name and parameters are translated with the convention methods. Also,
regardless of convention used, all trailing underscores are stripped from the names. This makes it possible to define
several Python functions that differ only by trailing underscores and get the same name in YAQL (to create several
overloads of single function). Also, this allow one to have function or parameter names that would otherwise conflict
with Python keywords.

Instance of convention class can be specified as a context initializer parameter or as a parameter of yagl.create_context
function. Child contexts created with the create_child_context method inherit their parent convention.

7.1. Configuring yaql parser 25

yaql Documentation, Release

Extending yaql

Extending yaql with new functions

For a function to become available to YAQL queries, it must be present in the provided context object. The de-
fault context implementation (yaql.language.contexts. Context) has a register_function method to register the function
implementation.

In yaq]l, all functions are represented by instances of the yaqgl.language.specs. FunctionDefinition class. FunctionDefi-
nition describes the complete function signature including:

* Function name

¢ List of parameters - instances of yagl.language.specs. ParameterDefinition
* Function payload (Python callable)

* Function type: function, method or extension method

* The flag to disable the keyword arguments syntax for the function

e Documentation string

¢ Custom function metadata (dict)

register_function method can accept either an instance of the FunctionDefinition class or a regular Python function. In
the latter case, it constructs a FunctionDefinition instance from the declaration of the function using Python introspec-
tion. Because a YAQL function signature has much more information than the Python one, yaql provides a number of
function decorators that can be used to fill the missing properties.

The decorators are located in the yagql.language.specs module. Below is the list of available function decorators:
* @name (function_name) : set function name to be function_name rather than its Python name
* @parameter (...) isused to declare the type of one of the function parameters
* @inject (...) isused to declare a hidden function parameter
* @method declares function to be YAQL method
¢ @Qextension_method declares function to be YAQL extension method
* @no_kwargs disables the keyword arguments syntax for the function

* @meta (name, value) appends the name attribute with the given value to the function metadata dictionary

Specifying function parameter types

When yagql constructs FunctionDefinition, it collects all possible information about its parameters. For each parameter,
it records its name, position, whether it is a keyword-only argument (available in Python 3), whether it is an *args or
**kwargs, and its default parameter value.

The only parameter attribute that cannot be obtained through retrospection is the parameter type. For that purpose,
yaql has a @parameter (name, type) decorator that can be used to explicitly declare the parameter type. name
must match the name of one of the function parameters, and fype must be of the yagl.language.yaqltypes.SmartType

type.

SmartType is the base class for all yaql type descriptors - classes that check if the value is compatible with the desired
type and can do type conversion between compatible types.

YAQL type system slightly differs from Python’s:

* Strings are not considered to be collections of characters

26 Chapter 7. Customizing and extending yaq|l

yaql Documentation, Release

* Booleans are not integers
* Dictionaries are not iterable
» For most of the types one can specify if the null (None) value is acceptable

yaql.language.yaqltypes module has many useful smart-type classes. The most generic smart-type for primitive types
is the PythonType class, that validates if the value is instance of a given Python type. Due to the mentioned differ-
ences between YAQL and Python type systems and because Python types have a lot of nuances (several string types,
differences between Python 2 and Python 3, separation between mutable and immutable type versions: list-tuple, set-
frozenset, dict-FrozenDict, which is missing in Python and provided by the yaql instead), yaql provides specialized
smart-types for most primitive types:

* String - str and unicode
* Integer
* Number - integer of float
e DateTime
* Sequence - fixed-size iterable collection, except for the dictionary
* Iterable - any iterable or generator
e Iterator - iterator over the iterable
And several specialized variants that enforce particular representation in the YAQL syntax:
* Keyword
* BooleanConstant
* NumericConstant
» StringConstant
It is also possible to aggregate several smart-types so that the value can be of any given type or conform to all of them:
* AnyOf
* Chain
* NotOfType
These three smart-types accept other smart-type(s) as their initializer parameter(s).

In addition to the smart-types, the second parameter of the @parameter can be a Python type. For example,
@parameter ("name", unicode) or @parameter ("name", unicode, nullable=True). In this
case the Python type is automatically wrapped in the PythonType smart-type. If nullability is not specified, yaql
tries to infer it from the parameter declaration - it is nullable only if the parameter has its default value set to None.

Lazy evaluated function parameters

All the smart-types from the previous section are for parameters that are evaluated before the function gets invoked.
But sometimes the function might need the parameter to remain unevaluated so that it can be evaluated by the function
itself, possibly with additional parameters or in a different context.

There are two possible representations of non-evaluated arguments:
* Get it as a Python callable that the function can call to do the evaluation

* Get it as a YAQL expression (AST), that can be analyzed

7.2. Extending yaql 27

yaql Documentation, Release

The first method is available through the Lambda smart-type. The parameter, which is declared as a Lambda (),
has an *args/**kwargs signature and can be called from the function: parameter (argl, arg2). If it was
declared as Lambda (with_context=True) the function may invoke it in a context, other than that which is used
for the function: parameter (new_context, argl, arg2). Lambda (method=True) specifies that the
parameter must be a method and the caller can specify the receiver object for it: parameter (receiver, argl,
arg2). Parameters can also be combined: Lambda (with_context=True, method=True) so the callable
is invoked as parameter (receiver, new_context, argl, arg2). All supplied callable arguments are
automatically published to the $/ ($), $2 and so on context variables for the context in which the callable will be
executed.

The second method is available through the YaglExpression smart-type. It also allows one to request the parameter to
be of a particular expression type rather than an arbitrary YAQL expression.

Auto-injected function parameters

Besides regular parameters, yaql also supports auto-injected (hidden) parameters. This is also known as a function
parameter dependency injection. The values of injected parameters come from the yaql runtime rather than from the
caller. Functions use injected parameters to get information on their execution environment.

Auto-injected parameters are declared using the @inJject (.. .) decorator, which has exactly the same signature as
@parameter with the only difference being that @inject checks that that the supplied smart-type is an instance of the
yagql.language.yaqltypes.HiddenParameterType class (in addition to SmartType), whereas the @parameter decorator
checks that it is not. This difference exists to clearly distinguish explicitly passed parameters from those that are
injected by the system.

yaql has the following hidden parameter smart types:
» Context - injects the current function context object

» Engine - injects YaqlEngine object that was used to parse the expression. Engine object may be used to access
execution options or to parse some other expression

* FunctionDefinition - FunctionDefinition object of the function. May be used to obtain function metadata and
doc-string

* Delegate - injects a Python callable to some other YAQL function by its name. This is a convenient way to call
one YAQL function from another without depending on its Python implementation signature and location. The
syntax is very similar to Lambda smart-type

* Super - similar to Delegate - injects callable to an overload of itself from the parent context. Useful when the
function overload wants to call its base implementation (analogous to Python’s super ())

¢ Receiver - injects a method receiver object if the function was called as a method and None otherwise. Can be
used in an extension method to distinguish the case, when it was invoked as a method rather than as a function.
Do not do it without a good reason!

* Yaglinterface - injects a convenient wrapper (Yagllnterface) around yaql functionality, which also encapsulates
many of the values above

Auto-injected parameters may appear anywhere in the function signature as they do not affect caller syntax. Imple-
mentations can add additional hidden parameters without breaking existing queries. However, it is important to call
YAQL function implementations through the yaql mechanisms (such as Delegate), rather than to call their Python
implementations directly.

Automatic parameters

In some cases there is no need to declare the parameter at all. yaql uses parameter name and default value to guess the
parameter type if it was not declared.

28 Chapter 7. Customizing and extending yaq|l

yaql Documentation, Release

If the parameter name is context or __context it will automatically be treated as if it was declared as a Context.
enginel/__engine is considered as an Engine, and yagql_interface/ __yagql_interface is considered as a YaglInterface.

The host can override this logic by providing a callable to Context’s register_function method through the parame-
ter_type_func parameter. When yaql encounters an undeclared parameter, it calls this function, passing the parameter
name as an argument, and expects it to return a smart-type for the parameter.

If the parameter_type_func callable returned None, yaql would assume that the smart type should be Python-
Type(object), that is anything, except for the None value, unless the parameter had the default value None.

Function resolution rules

Function resolution rules are used to determine the correct overload of the function when more than one overload is
present in the context. Each time a function with a given list of parameters is called yaql does the following:

1.

Walks through the chain of context objects and collects all the implementations with a given name and appro-
priate type (either functions and extension methods or methods and extensions methods, depending on the call
syntax).

All found overloads are organized into layers so that overloads from the same context will be put in the same
layer whereas overloads from different contexts are in different layers. Overloads from contexts that are closer
to the initial context have precedence over those which were obtained from the parent contexts. Also Function-
Definition may have a flag that prevents all overload lookups in the parent contexts. If the search encounters an
overload with such a flag, it does not go any further in the chain.

Scan all found overloads and exclude those, that cannot be called by the given syntax. This can happen because
the overload has more mandatory parameters than the arguments in the calling expression, or because it passes
the argument using the keyword name and no such parameter exists.

Validates laziness of overload parameters. If at least one function overload has a lazy evaluated parameter all
other overloads must have it in the same position. Violation of this rule causes an exception to be thrown.

. All the non-lazy parameters are evaluated. The result values are validated by appropriate smart-type instances

corresponding to each parameter of each overload. All the overloads that are not type-compatible with the given
arguments are excluded in each layer.

Take first non-empty layer. If no such layer exists (that is all the overloads were excluded) then throw an
exception.

If the found layer has more than one overload, then we have an ambiguity. In this case an exception is thrown
since we cannot unambiguously determine the right overload.

Otherwise, call the single overload with previously evaluated arguments.

Function development hints

Avoid side effects in your functions, unless you absolutely have to.

Do not make changes to the data structures coming from the parameters or the context. Functions that modify
the data should return the modified copy rather than touch the original.

If you need to make changes to the context, create a child context and make them there. It is usually possible to
pass the new context to other parts of the query.

Strongly prefer immutable data structures over mutable ones. Use tuple‘s rather than ‘list‘s, ‘frozenset in-
stead of set. Python does not have a built-in immutable dictionary class so yaql provides one on its own -
yagql.language.utils. FrozenDict.

Do not call Python implementation of YAQL functions directly. yaql provides plenty of ways to do so.

7.2. Extending yaql 29

yaql Documentation, Release

* Do not reuse contexts between multiple queries unless it is intentional. However all of these contexts can be
children of a single prepared context.

* Do not register all the custom functions for each query. It is better to prepare all the contexts with functions at
the beginning and then use child contexts for each query executed.

30 Chapter 7. Customizing and extending yaq|l

CHAPTER 8

Contributing

If you would like to contribute to the development of OpenStack, you must follow the steps in this page:
http://docs.openstack.org/infra/manual/developers.html

Once those steps have been completed, changes to OpenStack should be submitted for review via the Gerrit tool,
following the workflow documented at:

http://docs.openstack.org/infra/manual/developers.html#development-workflow
Pull requests submitted through GitHub will be ignored.
Bugs should be filed on Launchpad, not GitHub:

https://bugs.launchpad.net/yaql

31

http://docs.openstack.org/infra/manual/developers.html
http://docs.openstack.org/infra/manual/developers.html#development-workflow
https://bugs.launchpad.net/yaql

	YAQL: Yet Another Query Language
	Quickstart
	Project Resources
	License

	What is YAQL
	Why YAQL?
	Getting started with YAQL
	Introduction to YAQL
	Installation
	HowTo: Use YAQL in Python
	YAQL grammar
	Basic YAQL query operations

	Usage
	Embedding YAQL
	REPL utility

	Language reference
	Terminology
	Literals
	Keywords
	Variable access
	Function calls
	Operators
	List expressions
	Map expressions
	Index expressions
	Delegate expressions

	Customizing and extending yaql
	Configuring yaql parser
	Extending yaql

	Contributing

