Yaps Documentation
Release 0.1.4

Guillaume Baudart, Martin Hirzel, Kiran Kate, Louis Mandel, Avral

Jan 11, 2019

Contents

YAPS 3
1.1 Install e e 4
1.2 Tools . . o e e e e e e e e e e e e e e e e e 5
1.3 Documentation e e e e e e e e e e e e e e e e e e e 5
1.4 LACENSE o o e e e e e e e e 5
1.5 Contributions i e e e e e e e e e e 6
Yaps Modeling Language 7
2.1 Commentst i e 7
2.2 Data Types and Variable Declarations i v i it 7
2.3 EXPIessions v v v v i e 8
2.4 Statements e 8
25 ProgramBlocks e 9
2.6 Function Definitions L 9
Inference 11
3.1 PyStan Wrapper e e e e e e e e 11
32 Direct APTUSE e 12
For Developers 13
4.1 Documentation e e e e e e e e e e e e e 13
42 Distribution L e e e e e e e e e 13
Links 15

Yaps Documentation, Release 0.1.4

Yaps is a new surface language for programming Stan models using python syntax.

Contents 1

http://mc-stan.org
https://travis-ci.org/IBM/yaps
https://badge.fury.io/py/yaps
https://yaps.readthedocs.io/en/latest/?badge=latest

Yaps Documentation, Release 0.1.4

2 Contents

CHAPTER 1

YAPS

Yaps is a new surface language for Stan. It lets users write Stan programs using Python syntax. For example, consider

the following Stan program, which models tosses x of a coin with bias theta:

data {

int<lower=0,upper=1> x[10];
}
parameters {

real<lower=0,upper=1> theta;
}
model {

theta ~ uniform(0,1);

for (i in 1:10)

x[1] ~ bernoulli (theta);

It can be rewritten in Python has follows:

import yaps
from yaps.lib import int, real, uniform, bernoulli

@yaps .model
def coin(x: int (lower=0, upper=1)[10]):
theta: real (lower=0, upper=1l) <~ uniform(0, 1)
for i in range(l,11):
x[1] <~ bernoulli (theta)

The @yaps .model decorator indicates that the function following it is a Stan program. While being syntactically

Python, it is semantically reinterpreted as Stan.

The argument of the function corresponds to the data block. The type of the data must be declared. Here, you can

see that x is an array of 10 integers between 0 and 1 (int (lower=0,

upper=1) [10]).

Parameters are declared as variables with their type in the body of the function. Their prior can be defined using the

sampling operator <~ (or is).

http://mc-stan.org/

Yaps Documentation, Release 0.1.4

The body of the function corresponds to the Stan model. Python syntax is used for the imperative constructs of the
model, like the for loop in the example. The operator <~ is used to represent sampling and x . T [a, b] for truncated
distribution.

Note that Stan array are 1-based. The range of the loop is thus range (1, 11),thatis 1,2,... 10.

Other Stan blocks can be introduced using the with syntax of Python. For example, the previous program could also
be written as follows:

@yaps .model
def coin(x: int (lower=0, upper=1)[10]):
with parameters:
theta: real (lower=0, upper=1)
with model:
theta <~ uniform(0, 1)
for i in range(l,11):
x[1] <~ bernoulli (theta)

The corresponding Stan program can be displayed using the print function:

print (coin)

Finally, it is possible to launch Bayesian inference on the defined model applied to some data. The communication
with the Stan inference engine is based on on PyCmdStan.

flips = np.array([(o, 1, o, 0, 0, 0, 0, 0, 0, 11)
constrained_coin = coin(x=flips)
constrained_coin.sample (data=constrained_coin.data)

Note that arrays must be cast into numpy arrays (see pycmdstan documentation).

After the inference the attribute posterior of the constrained model is an object with fields for the latent model
parameters:

theta_mean = constrained_coin.posterior.theta.mean ()
print ("mean of theta: {:.3f}".format (theta_mean))

Yaps provides a lighter syntax to Stan programs. Since Yaps uses Python syntax, users can take advantage of Python
tooling for syntax highlighting, indentation, error reporting, . ..

1.1 Install

Yaps depends on the following python packages:
* astor
e graphviz
* antlr4-python3-runtime
* pycmdstan

To install Yaps and all its dependencies run:

pip install yaps

To install from source, first clone the repo, then:

4 Chapter 1. YAPS

https://pycmdstan.readthedocs.io/en/latest/

Yaps Documentation, Release 0.1.4

’pip install

By default, communication with the Stan inference engine is based on PyCmdStan. To run inference, you first need to
install CmdStan and set the CMDSTAN environment variable to point to your CmdStan directory.

’export CMDSTAN=/path/to/cmdstan

1.2 Tools

We provide a tool to compile Stan files to Yaps syntax. For instance, if path/to/coin.stan contain the Stan
model presented at the beginning, then:

’stanZyaps path/to/coin.stan

outputs:

@Qyaps.model
def stan_model (x: int (lower=0, upper=1)[10]):
theta: real
theta is uniform (0.0, 1.0)
for i in range(l, 10 + 1):
x[(1i),] is bernoulli (theta)
print (x)

Compilers from Yaps to Stan and from Stan to Yaps can also be invoked programmatically using the following func-
tions:

yaps.from_stan (code_string=None, code_file=None) # Compile a Stan model to Yaps
yaps.to_stan (code_string=None, code_file=None) # Compile a Yaps model to Stan

1.3 Documentation

The full documentation is available at https://yaps.readthedocs.io. You can find more details in the following article:

@article{2018-yaps—stan,

author = {Baudart, Guillaume and Hirzel, Martin and Kate, Kiran and Mandel, Louis_,
—and Shinnar, Avraham},

title = "{Yaps: Python Frontend to Stan}",

journal = {arXiv e-prints},

year = 2018,
month = Dec,
url = {https://arxiv.org/abs/1812.04125},

1.4 License

Yaps is distributed under the terms of the Apache 2.0 License, see LICENSE.txt

1.2. Tools 5

https://pycmdstan.readthedocs.io/en/latest/
http://mc-stan.org/users/interfaces/cmdstan
https://arxiv.org/abs/1812.04125
LICENSE.txt

Yaps Documentation, Release 0.1.4

1.5 Contributions

Yaps is still at an early phase of development and we welcome contributions. Contributors are expected to submit a
‘Developer’s Certificate of Origin’, which can be found in DCO1.1.txt.

6 Chapter 1. YAPS

DCO1.1.txt

CHAPTER 2

Yaps Modeling Language

A Yaps model is a Python function prefixed by the @yaps .model decorator.

import yaps
from yaps.lib import int, real, uniform, bernoulli

Qyaps .model
def coin(x: int (lower=0, upper=1)[10]):
theta: real (lower=0, upper=1l) <~ uniform(0, 1)
for i in range(10):
x[1i] <~ bernoulli (theta)

Types definitions, e.g., int and real, and Stan functions are defined in yaps.lib.

Below are examples of Yaps code with the corresponding Stan code.

2.1 Comments

This is a comment
x <~ Normal(0,1) # This is a comment

2.2 Data Types and Variable Declarations

Yaps # Stan

HARFAHHAAHH AR AR HA AR FAARAA A AR H AR AR HA AR A RA AR H AR A H AR AR A
x: int # int x;

X: real # real x;

x: real[l0] # real x[10];

m: matrix[6,7] [3,3] # matrix[3,3] m[6,7];

(continues on next page)

Yaps Documentation, Release 0.1.4

(continued from previous page)

N: int (lower=1) # int<lower=1> N;
log_p: real (upper=0) # real<upper=0> log_p;
rho: vector (lower=-1,upper=1) [3] # vector<lower=-1,upper=1>[3] rho;
mu: vector[7][3] # vector[7] mul[3];
mu: matrix[7,2] [15,12] # matrix[7,2] mu[l5,12];
X = w[5H] # x = w[5];
c = all, 3] # c =all,3];
a: matrix[3,2] = 0.5 * (b + c) # matrix[3,2] a = 0.5 * (b + c);
2.3 Expressions
ml: matrix[3,2] = [[1,2]1,[3,4]1,1[5,61]] # matrix[(3,2] ml = [[1,2],[3,4],[5,6]];
vX: vector[2] = [1,10].transpose # vector(2] vX = [1,10]"';
a: int[3] = {1,10,1000} # int a[3] = {1,10,100};
b: int[2,3] = {{1,2,3},{4,5,6}} # int b[2,3] = ({1,2,3},(4,5,6}};
3.0+0.14
-15
2%3+1
(x-y) /2.0
(n* (n+1)) /2
X/n
msn
3%%2 # 372
c = a.pmult (b) # c=a . b
c = a.pdiv(b) #c=a ./ b
b if a else c # ar?b:c
x[4]
x[4,:] # x[4,] or x[4,:]
2.4 Statements
target += 0.5 * y %y # target += 0.5 x y * y;
y <~ normal (mu, sigma) # y ~ normal (mu, sigma) ;
y is normal (mu, sigma) # vy ~ normal (mu,sigma);
y <~ normal(0,1).T[-0.5, 2.1] # v ~ normal (0, 1) T[-0.5, 2.1];
for n in range (1,N+1): # for (n in 1:N) {...}
while cond: # while (cond) {...}
if cond: # 1if (cond) {...}
else: # else {...}
break # break;
continue # continuey;
pass # //nothing
(continues on next page)
8 Chapter 2. Yaps Modeling Language

Yaps Documentation, Release 0.1.4

(continued from previous page)

with block:

HH FH W

Warning: range (n) in python denotes integers from 0 to n-1. In Stan indexes starts from 1 (for i in 1:n). The
correct translation for for i in 1l:nisthus for i in range (1, n+1).

2.5 Program Blocks

* The keyword arguments of the Yaps model function are Stan data.
* Yaps top-level declarations are parsed as Stan parameters.

* Yaps top-level statements define the Stan model.

def model (x: real): # data {int x;}
mu: real
X <~ normal (mu, 1) # model { x ~ normal (mu, 1)}

=

parameters {real mu;}

Yaps also supports a fully annotated syntax where blocks are introduced via python with statements

with functions: # function {...}

with transformed_data # transformed data {...}

with parameters: # parameters {...}

with transformed_parameters: # transformed parameters {...}
with model: # model (...}

with generated quantities: # generated quantities {...}

2.6 Function Definitions

User-defined functions must be defined inside the model in the functions block. Their syntax follows Python
syntax with type annotations

with functions: # funtions |
def successor(x: int) —-> int: # int successor (int x) {
return x + 1 # return x + 1;
#
#

}

2.5. Program Blocks 9

Yaps Documentation, Release 0.1.4

10 Chapter 2. Yaps Modeling Language

CHAPTER 3

Inference

By default, communication with the Stan inference engine is based on PyCmdStan. A constrained model can be
defined by passing concrete values for the data. This constrained model is linked to a PyCmdStan model. It is thus
possible to invoke the pycmdstan methods sample, run, optimize, or variational to launch the inference.
After the inference, the result is stored in the posterior attribute of the constrained model as an object with one
field for each learned parameter.

For example:

@Qyaps.model
def coin(x: int (lower=0, upper=1)[10]):
theta: real (lower=0, upper=1l) is uniform(0, 1)
for i in range (2, 11):
x[1i] is bernoulli (theta)

flips = np.array([(o, 1, o, o0, 0, 0, 0, 0, 0, 11)

constrained_coin = coin(x=flips)
constrained_coin.sample (data=constrained_coin.data)
theta_mean = constrained_coin.posterior.theta.mean ()
print ("mean of theta: ".format (theta_mean))

Errors detected by the Stan compiler and runtime are mapped to the original yaps code.

Note that this interface takes full advantage of the features offered by PyCmdStan. In particular, models are cached
and only recompiled when a change is detected even if the rest of the python script has changed.

3.1 PyStan Wrapper

Yaps also offer a limited wrapper for the PyStan interface. For instance, the inference part of the previous example
can be rewritten:

11

https://pycmdstan.readthedocs.io/en/latest/
https://pystan.readthedocs.io/en/latest/

Yaps Documentation, Release 0.1.4

fit = yaps.apply(pystan.stan, constrained_coin)
theta_mean = fit.extract () ['theta'].mean /()
print ("mean of theta: " . format (theta_mean))

The wrapper is used to map the errors back to the original yaps code.

3.2 Direct APl use

Finally it is possible to use yaps only as a compiler and rely on the existing API for PyCmdStan or PyStan. For every
decorated yaps model model, the string st r (model) contains the compiled Stan code.

Using PyCmdStan the previous example becomes:

coin_dat = {'x': np.array([1,0,1,0,1,0,0,0,0,17)}

coin_model = pycmdstan.Model (code = str(coin))

fit = coin_model.sample (data = coin_dat)

theta_mean = fit.csv['theta'].mean ()

print ("mean of theta: " format (theta_mean))

And using PyStan

coin_dat = {'x': np.array([1,0,1,0,1,0,0,0,0,17)}

fit = pystan.stan(model_code=str (coin), data=coin_dat)
theta_mean = fit.extract (permuted=True) ['theta'] .mean ()
print ("mean of theta: " . format (theta_mean))

12 Chapter 3. Inference

CHAPTER 4

For Developers

To build the parser, you need to install antlr4 before installing the package. To test your model with the Stan inference
engine, you need to install cmdstan. Then install the dependencies.

pip install nose astor graphviz antlr4-python3-runtime pycmdstan
make

export CMDSTAN='path/to/cmdstan-dir'

make test

To test the round trip on only one file, after the install:

’yaps—roundtrip path/to/file.stan

4.1 Documentation

The documentation is hosted by ReadTheDocs. To keep the README in sync with the doc:

’make doc

4.2 Distribution

To create a new distribution you need the following packages:

’pip install setuptools wheel twine

Then to build the new distribution and upload it:

make distrib
make upload

Note: you need valid PyPI credentials to upload the package.

13

http://www.antlr.org/
http://mc-stan.org/users/interfaces/cmdstan
https://yaps.readthedocs.io

Yaps Documentation, Release 0.1.4

14 Chapter 4. For Developers

CHAPTER B

Links

 Stan: http://mc-stan.org/
 PyStan: https://pystan.readthedocs.io
* PyCmdStan: https://pycmdstan.readthedocs.io

15

http://mc-stan.org/
https://pystan.readthedocs.io
https://pycmdstan.readthedocs.io

	YAPS
	Install
	Tools
	Documentation
	License
	Contributions

	Yaps Modeling Language
	Comments
	Data Types and Variable Declarations
	Expressions
	Statements
	Program Blocks
	Function Definitions

	Inference
	PyStan Wrapper
	Direct API use

	For Developers
	Documentation
	Distribution

	Links

