
hyperledger-fabricdocs Documentation
Release master

hyperledger

Jun 28, 2017

Getting Started

1 Prerequisites 3
1.1 Install cURL . 3
1.2 Docker and Docker Compose . 3
1.3 Go Programming Language . 3
1.4 Node.js Runtime and NPM . 4
1.5 Windows extras . 4

2 Getting Started 5
2.1 Install Prerequisites . 5
2.2 Hyperledger Fabric Samples . 5
2.3 Tutorials . 5

3 Hyperledger Fabric Samples 7
3.1 Download Platform-specific Binaries . 7

4 Introduction 9
4.1 What is a Blockchain? . 9
4.2 Why is a Blockchain useful? . 12
4.3 What is Hyperledger Fabric? . 14
4.4 Where can I learn more? . 15

5 Hyperledger Fabric Capabilities 17
5.1 Identity management . 17
5.2 Privacy and confidentiality . 17
5.3 Efficient processing . 17
5.4 Chaincode functionality . 18
5.5 Modular design . 18

6 Hyperledger Fabric Model 19
6.1 Assets . 19
6.2 Chaincode . 19
6.3 Ledger Features . 20
6.4 Privacy through Channels . 20
6.5 Security & Membership Services . 20
6.6 Consensus . 21

7 Use Cases 23

8 Building Your First Network 25

i

8.1 Install prerequisites . 25
8.2 Want to run it now? . 25
8.3 Crypto Generator . 29
8.4 Configuration Transaction Generator . 29
8.5 Run the tools . 30
8.6 Start the network . 31
8.7 Understanding the docker-compose topology . 36
8.8 Using CouchDB . 37
8.9 A Note on Data Persistence . 39
8.10 Troubleshooting . 39

9 Writing Your First Application 41
9.1 Getting a Test Network . 41
9.2 How Applications Interact with the Network . 42
9.3 Querying the Ledger . 43
9.4 Updating the Ledger . 45
9.5 Additional Resources . 47

10 Chaincode Tutorials 49
10.1 What is Chaincode? . 49
10.2 Two Personas . 49

11 Chaincode for Developers 51
11.1 What is Chaincode? . 51
11.2 Chaincode API . 51
11.3 Simple Asset Chaincode . 51
11.4 Install Fabric Samples . 57
11.5 Download docker images . 57
11.6 Terminal 1 - Start the network . 58
11.7 Terminal 2 - Build & start the chaincode . 58
11.8 Terminal 3 - Use the chaincode . 58
11.9 Testing new chaincode . 59

12 Chaincode for Operators 61
12.1 What is Chaincode? . 61
12.2 Chaincode lifecycle . 61
12.3 Packaging . 61
12.4 System chaincode . 66

13 Videos 69

14 Best Practices 71

15 Membership Service Providers (MSP) 73
15.1 MSP Configuration . 73
15.2 How to generate MSP certificates and their signing keys? . 74
15.3 MSP setup on the peer & orderer side . 74
15.4 Channel MSP setup . 75
15.5 Best Practices . 75

16 Channel Configuration (configtx) 79
16.1 Anatomy of a configuration . 79
16.2 Configuration updates . 81
16.3 Permitted configuration groups and values . 82
16.4 Orderer system channel configuration . 83

ii

16.5 Application channel configuration . 85
16.6 Channel creation . 85

17 Channel Configuration (configtxgen) 87
17.1 Configuration Profiles . 87
17.2 Bootstrapping the orderer . 87
17.3 Creating a channel . 88
17.4 Reviewing a configuration . 88

18 Endorsement policies 91
18.1 Endorsement policy design . 91
18.2 Endorsement policy syntax in the CLI . 91
18.3 Specifying endorsement policies for a chaincode . 92
18.4 Future enhancements . 92

19 Error handling 93
19.1 General Overview . 93
19.2 Usage Instructions . 93
19.3 Displaying error messages . 94
19.4 General guidelines for error handling in Fabric . 95

20 Logging Control 97
20.1 Overview . 97
20.2 peer . 97
20.3 Go chaincodes . 98

21 Architecture Explained 101
21.1 1. System architecture . 101
21.2 2. Basic workflow of transaction endorsement . 105
21.3 3. Endorsement policies . 108
21.4 4 (post-v1). Validated ledger and PeerLedger checkpointing (pruning) 110

22 Transaction Flow 113

23 Hyperledger Fabric SDKs 117

24 Bringing up a Kafka-based Ordering Service 119
24.1 Caveat emptor . 119
24.2 Big picture . 119
24.3 Steps . 119
24.4 Additional considerations . 121
24.5 Supported Kafka versions and upgrading . 121
24.6 Debugging . 122
24.7 Example . 122

25 Channels 123

26 Ledger 125
26.1 Chain . 125
26.2 State Database . 125
26.3 Transaction Flow . 125
26.4 State Database options . 126

27 Read-Write set semantics 127
27.1 Transaction simulation and read-write set . 127
27.2 Transaction validation and updating world state using read-write set 128

iii

27.3 Example simulation and validation . 128

28 Gossip data dissemination protocol 131
28.1 Gossip protocol . 131
28.2 Gossip messaging . 131

29 Hyperledger Fabric FAQs 133
29.1 Endorsement . 133
29.2 Security & Access Control . 133
29.3 Application-side Programming Model . 134
29.4 Chaincode (Smart Contracts and Digital Assets) . 134
29.5 Identity Management (Membership Service) . 135

30 Contributions Welcome! 137
30.1 Install prerequisites . 137
30.2 Getting a Linux Foundation account . 137
30.3 Getting help . 137
30.4 Requirements and Use Cases . 138
30.5 Reporting bugs . 138
30.6 Fixing issues and working stories . 138
30.7 Making Feature/Enhancement Proposals . 138
30.8 Working with a local clone and Gerrit . 138
30.9 What makes a good change request? . 139
30.10 Communication . 140
30.11 Maintainers . 140
30.12 Legal stuff . 140

31 Maintainers 141

32 Using Jira to understand current work items 143

33 Setting up the development environment 145
33.1 Overview . 145
33.2 Prerequisites . 145
33.3 pip, behave and docker-compose . 146
33.4 Steps . 146
33.5 Building the fabric . 147
33.6 Notes . 147

34 Building the fabric 149
34.1 Running the unit tests . 149
34.2 Running Node.js Unit Tests . 149
34.3 Running Behave BDD Tests . 149

35 Building outside of Vagrant 151
35.1 Building on Z . 151
35.2 Building on Power Platform . 151

36 Configuration 153

37 Logging 155

38 Requesting a Linux Foundation Account 157
38.1 Creating a Linux Foundation ID . 157
38.2 Configuring Gerrit to Use SSH . 157
38.3 Checking Out the Source Code . 158

iv

39 Working with Gerrit 159
39.1 Git-review . 159
39.2 Sandbox project . 159
39.3 Getting deeper into Gerrit . 159
39.4 Working with a local clone of the repository . 159
39.5 Submitting a Change . 160
39.6 Adding reviewers . 161
39.7 Reviewing Using Gerrit . 161
39.8 Viewing Pending Changes . 162

40 Submitting a Change to Gerrit 163
40.1 Change Requirements . 163

41 Reviewing a Change 165

42 Gerrit Recommended Practices 167
42.1 Browsing the Git Tree . 167
42.2 Watching a Project . 167
42.3 Commit Messages . 167
42.4 Avoid Pushing Untested Work to a Gerrit Server . 168
42.5 Keeping Track of Changes . 168
42.6 Topic branches . 168
42.7 Creating a Cover Letter for a Topic . 168
42.8 Finding Available Topics . 169
42.9 Downloading or Checking Out a Change . 169
42.10 Using Draft Branches . 169
42.11 Using Sandbox Branches . 170
42.12 Updating the Version of a Change . 170
42.13 Rebasing . 171
42.14 Rebasing During a Pull . 171
42.15 Getting Better Logs from Git . 172

43 Testing 173
43.1 Unit test . 173
43.2 System test . 173

44 Coding guidelines 175
44.1 Coding Golang . 175

45 Generating gRPC code 177

46 Adding or updating Go packages 179

47 Glossary 181
47.1 Anchor Peer . 181
47.2 Block . 181
47.3 Chain . 181
47.4 Chaincode . 181
47.5 Channel . 181
47.6 Commitment . 182
47.7 Concurrency Control Version Check . 182
47.8 Configuration Block . 182
47.9 Consensus . 182
47.10 Current State . 182
47.11 Dynamic Membership . 182

v

47.12 Endorsement . 182
47.13 Endorsement policy . 183
47.14 Fabric-ca . 183
47.15 Genesis Block . 183
47.16 Gossip Protocol . 183
47.17 Initialize . 183
47.18 Install . 183
47.19 Instantiate . 183
47.20 Invoke . 183
47.21 Leading Peer . 184
47.22 Ledger . 184
47.23 Member . 184
47.24 Membership Service Provider . 184
47.25 Membership Services . 184
47.26 Ordering Service . 184
47.27 Peer . 185
47.28 Policy . 185
47.29 Proposal . 185
47.30 Query . 185
47.31 Software Development Kit (SDK) . 185
47.32 State Database . 185
47.33 System Chain . 185
47.34 Transaction . 186

48 Release Notes 187

49 Still Have Questions? 189

50 Status 191

51 License 193

vi

hyperledger-fabricdocs Documentation, Release master

Hyperledger Fabric is a platform for distributed ledger solutions, underpinned by a modular architecture delivering
high degrees of confidentiality, resiliency, flexibility and scalability. It is designed to support pluggable implementa-
tions of different components, and accommodate the complexity and intricacies that exist across the economic ecosys-
tem.

Hyperledger Fabric delivers a uniquely elastic and extensible architecture, distinguishing it from alternative blockchain
solutions. Planning for the future of enterprise blockchain requires building on top of a fully-vetted, open source
architecture; Hyperledger Fabric is your starting point.

It’s recommended for first-time users to begin by going through the Getting Started section in order to gain familiarity
with the Fabric components and the basic transaction flow. Once comfortable, continue exploring the library for
demos, technical specifications, APIs, etc.

Before diving in, watch how Fabric is Building a Blockchain for Business .

Note: This build of the docs is from the “master” branch

Getting Started 1

https://www.youtube.com/watch?v=EKa5Gh9whgU

hyperledger-fabricdocs Documentation, Release master

2 Getting Started

CHAPTER 1

Prerequisites

Install cURL

Download the cURL tool if not already installed.

Note: If you’re on Windows please see the specific note on Windows extras below.

Docker and Docker Compose

You will need the following installed on the platform on which you will be operating, or developing on (or for),
Hyperledger Fabric:

• MacOSX, *nix, or Windows 10: Docker v1.12 or greater is required.

• Older versions of Windows: Docker Toolbox - again, Docker version v1.12 or greater is required.

You can check the version of Docker you have installed with the following command from a terminal prompt:

docker --version

Note: Installing Docker for Mac or Windows, or Docker Toolbox will also install Docker Compose. If you already
had Docker installed, you should check that you have Docker Compose version 1.8 or greater installed. If not, we
recommend that you install a more recent version of Docker.

You can check the version of Docker Compose you have installed with the following command from a terminal prompt:

docker-compose --version

Go Programming Language

Hyperledger Fabric uses the Go programming language 1.7.x for many of its components.

Given that we are writing a Go chaincode program, we need to be sure that the source code is located somewhere
within the $GOPATH tree. First, you will need to check that you have set your $GOPATH environment variable.

3

https://curl.haxx.se/download.html
https://www.docker.com/products/overview
https://docs.docker.com/toolbox/toolbox_install_windows/

hyperledger-fabricdocs Documentation, Release master

If nothing is displayed when you echo $GOPATH , you will need to set it. Typically, the value will be a directory tree
child of your development workspace, if you have one, or as a child of your $HOME directory. Since we’ll be doing
a bunch of coding in Go, you might want to add the following to your ~/.bashrc :

export GOPATH=$HOME/go
export PATH=$PATH:$GOPATH/bin

Node.js Runtime and NPM

If you will be developing applications for Hyperledger Fabric leveraging the Fabric SDK for Node.js, you will need to
have version 6.9.x of Node.js installed.

Note: Node.js version 7.x is not supported at this time.

• Node.js - version 6.9.x or greater

Note: Installing Node.js will also install NPM, however it is recommended that you update the default version of
NPM installed. You can upgrade the npm tool with the following command:

npm install npm@latest -g

Windows extras

If you are developing on Windows, you may also need the following which provides a better alternative to the built-in
Windows tools:

• Git Bash

Note: On older versions of Windows, such as Windows 7, you typically get this as part of installing Docker Toolbox.
However experience has shown this to be a poor development environment with limited functionality. It is suitable to
run docker based scenarios, such as Getting Started, but you may not be able to find a suitable make command.

Note: The curl command that comes with Git and Docker Toolbox is old and does not handle properly the redirect
used in Getting Started. Make sure you install and use a newer version from the cURL downloads page

4 Chapter 1. Prerequisites

https://nodejs.org/en/download/
https://git-scm.com/downloads
https://curl.haxx.se/download.html

CHAPTER 2

Getting Started

Install Prerequisites

Before we begin, if you haven’t already done so, you may wish to check that you have all the Prerequisites installed
on the platform(s) on which you’ll be developing blockchain applications and/or operating Hyperledger Fabric.

Hyperledger Fabric Samples

We offer a set of sample applications that you may wish to install these Hyperledger Fabric Samples before starting
with the tutorials as the tutorials leverage the sample code.

Tutorials

We offer two initial tutorials to get you started with Hyperledger Fabric. The first is oriented to the Hyperledger
Fabric application developer, Writing Your First Application. It takes you through the process of writing your first
blockchain application for Hyperledger Fabric using the Hyperledger Fabric’s Node.js SDK.

The second tutorial is oriented towards the Hyperledger Fabric network operators, Building Your First Network. This
one walks you through the process of establishing a blockchain network using Hyperledger Fabric and provides a basic
sample application to test it out.

5

https://github.com/hyperledger/fabric-sdk-node

hyperledger-fabricdocs Documentation, Release master

6 Chapter 2. Getting Started

CHAPTER 3

Hyperledger Fabric Samples

Note: If you are running on Windows you will want to make use of the Git bash shell extension for the
upcoming terminal commands. Please visit the Prerequisites if you haven’t previously installed it.

If you are using Docker Toolbox on Windows 7 or macOS, you will need to use a location under C:\Users (Win-
dows 7) or /Users (macOS) when installing and running the samples.

If you are using Docker for Mac, you will need to use a location under /Users , /Volumes , /private , or /tmp
. To use a different location, please consult the Docker documentation for file sharing.

If you are using Docker for Windows, please consult the Docker documentation for shared drives and use a location
under one of the shared drives.

Determine a location on your machine where you want to place the Hyperledger Fabric samples applications repository
and open that in a terminal window. Then, execute the following commands:

git clone https://github.com/hyperledger/fabric-samples.git
cd fabric-samples

Download Platform-specific Binaries

Next, we will install the Hyperledger Fabric platform-specific binaries. To do this, execute the following command:

curl -sSL https://goo.gl/PabWJX | bash

The curl command above downloads and executes a bash script that will download and extract all of the platform-
specific binaries you will need to set up your network and place them into the cloned repo you created above. It
retrieves four platform-specific binaries:

• cryptogen ,

• configtxgen ,

• configtxlator , and

• peer

and places them in the fabric-samples/bin directory.

You may want to add that to your PATH environment variable so that these can be picked up without fully qualifying
the path to each binary. e.g.:

7

https://docs.docker.com/docker-for-mac/#file-sharing
https://docs.docker.com/docker-for-windows/#shared-drives

hyperledger-fabricdocs Documentation, Release master

export PATH=<path to fabric-samples>/bin:$PATH

Finally, the script will download the Hyperledger Fabric docker images from DockerHub into your local Docker
registry and tag them as ‘latest’.

The script lists out the docker images installed upon conclusion.

Look at the names for each image; these are the components that will ultimately comprise our Fabric network. You
will also notice that you have two instances of the same image ID - one tagged as “x86_64-1.0.0-rc1” and one tagged
as “latest”.

Note: Note that on different architectures, the x86_64 would be replaced with the string identifying your architecture.

8 Chapter 3. Hyperledger Fabric Samples

https://hub.docker.com/u/hyperledger/

CHAPTER 4

Introduction

Hyperledger Fabric is a platform for distributed ledger solutions underpinned by a modular architecture delivering high
degrees of confidentiality, resiliency, flexibility and scalability. It is designed to support pluggable implementations of
different components and accommodate the complexity and intricacies that exist across the economic ecosystem.

Hyperledger Fabric delivers a uniquely elastic and extensible architecture, distinguishing it from alternative blockchain
solutions. Planning for the future of enterprise blockchain requires building on top of a fully vetted, open-source
architecture; Hyperledger Fabric is your starting point.

We recommended first-time users begin by going through the rest of the introduction below in order to gain familiarity
with how blockchains work and with the specific features and components of Hyperledger Fabric.

Once comfortable – or if you’re already familiar with blockchain and Hyperledger Fabric – go to Getting Started and
from there explore the demos, technical specifications, APIs, etc.

What is a Blockchain?

A Distributed Ledger

At the heart of a blockchain network is a distributed ledger that records all the transactions that take place on the
network.

A blockchain ledger is often described as decentralized because it is replicated across many network participants,
each of whom collaborate in its maintenance. We’ll see that decentralization and collaboration are powerful attributes
that mirror the way businesses exchange goods and services in the real world.

9

hyperledger-fabricdocs Documentation, Release master

In addition to being decentralized and collaborative, the information recorded to a blockchain is append-only, using
cryptographic techniques that guarantee that once a transaction has been added to the ledger it cannot be modified.
This property of immutability makes it simple to determine the provenance of information because participants can
be sure information has not been changed after the fact. It’s why blockchains are sometimes described as systems of
proof.

Smart Contracts

To support the consistent update of information – and to enable a whole host of ledger functions (transacting, querying,
etc) – a blockchain network uses smart contracts to provide controlled access to the ledger.

10 Chapter 4. Introduction

hyperledger-fabricdocs Documentation, Release master

Smart contracts are not only a key mechanism for encapsulating information and keeping it simple across the network,
they can also be written to allow participants to execute certain aspects of transactions automatically.

A smart contract can, for example, be written to stipulate the cost of shipping an item that changes depending on
when it arrives. With the terms agreed to by both parties and written to the ledger, the appropriate funds change hands
automatically when the item is received.

Consensus

The process of keeping the ledger transactions synchronized across the network – to ensure that ledgers only update
when transactions are approved by the appropriate participants, and that when ledgers do update, they update with the
same transactions in the same order – is called consensus.

4.1. What is a Blockchain? 11

hyperledger-fabricdocs Documentation, Release master

We’ll learn a lot more about ledgers, smart contracts and consensus later. For now, it’s enough to think of a blockchain
as a shared, replicated transaction system which is updated via smart contracts and kept consistently synchronized
through a collaborative process called consensus.

Why is a Blockchain useful?

Today’s Systems of Record

The transactional networks of today are little more than slightly updated versions of networks that have existed since
business records have been kept. The members of a Business Network transact with each other, but they maintain
separate records of their transactions. And the things they’re transacting – whether it’s Flemish tapestries in the 16th
century or the securities of today – must have their provenance established each time they’re sold to ensure that the
business selling an item possesses a chain of title verifying their ownership of it.

What you’re left with is a business network that looks like this:

12 Chapter 4. Introduction

hyperledger-fabricdocs Documentation, Release master

Modern technology has taken this process from stone tablets and paper folders to hard drives and cloud platforms, but
the underlying structure is the same. Unified systems for managing the identity of network participants do not exist,
establishing provenance is so laborious it takes days to clear securities transactions (the world volume of which is
numbered in the many trillions of dollars), contracts must be signed and executed manually, and every database in the
system contains unique information and therefore represents a single point of failure.

It’s impossible with today’s fractured approach to information and process sharing to build a system of record that
spans a business network, even though the needs of visibility and trust are clear.

The Blockchain Difference

What if instead of the rat’s nest of inefficiencies represented by the “modern” system of transactions, business networks
had standard methods for establishing identity on the network, executing transactions, and storing data? What if
establishing the provenance of an asset could be determined by looking through a list of transactions that, once written,
cannot be changed, and can therefore be trusted?

That business network would look more like this:

4.2. Why is a Blockchain useful? 13

hyperledger-fabricdocs Documentation, Release master

This is a blockchain network. Every participant in it has their own replicated copy of the ledger. In addition to ledger
information being shared, the processes which update the ledger are also shared. Unlike today’s systems, where a
participant’s private programs are used to update their private ledgers, a blockchain system has shared programs to
update shared ledgers.

With the ability to coordinate their business network through a shared ledger, blockchain networks can reduce the
time, cost, and risk associated with private information and processing while improving trust and visibility.

You now know what blockchain is and why it’s useful. There are a lot of other details that are important, but they all
relate to these fundamental ideas of the sharing of information and processes.

What is Hyperledger Fabric?

The Linux Foundation founded Hyperledger in 2015 to advance cross-industry blockchain technologies. Rather than
declaring a single blockchain standard, it encourages a collaborative approach to developing blockchain technologies
via a community process, with intellectual property rights that encourage open development and the adoption of key
standards over time.

Hyperledger Fabric is a one of the blockchain projects within Hyperledger. Like other blockchain technologies, it has
a ledger, uses smart contracts, and is a system by which participants manage their transactions.

Where Hyperledger Fabric breaks from some other blockchain systems is that it is private and permissioned. Rather
than the “proof of work” some blockchain networks use to verify identity (allowing anyone who meets those criteria
to join the network), the members of a Fabric network enroll through a membership services provider.

Fabric also offers several pluggable options. Ledger data can be stored in multiple formats, consensus mechanisms
can be switched in and out, and different membership service providers are supported.

14 Chapter 4. Introduction

hyperledger-fabricdocs Documentation, Release master

Hyperledger Fabric also offers the ability to create channels, allowing a group of participants to create a separate ledger
of transactions. This is an especially important option for networks where some participants might be competitors and
not want every transaction they make - a special price they’re offering to some participants and not others, for example
- known to every participant. If two participants form a channel, then those participants – and no others – have copies
of the ledger for that channel.

Shared Ledger

Hyperledger Fabric has a ledger subsystem comprising two components: the world state and the transaction log.
Each participant has a copy of the ledger to every Hyperledger Fabric network they belong to.

The world state component describes the state of the ledger at a given point in time. It’s the database of the ledger. The
transaction log component records all transactions which have resulted in the current value of the world state. It’s the
update history for the world state. The ledger, then, is a combination of the world state database and the transaction
log history.

The ledger has a replaceable data store for the world state. By default, this is a LevelDB key-value store database.
The transaction log does not need to be pluggable. It simply records the before and after values of the ledger database
being used by the blockchain network.

Smart Contracts

Hyperledger Fabric smart contracts are written in chaincode and are invoked by an application external to the
blockchain when that application needs to interact with the ledger. In most cases chaincode only interacts with the
database component of the ledger, the world state (querying it, for example), and not the transaction log.

You can write chaincode in several programming languages. Currently supported languages include GOLANG and
Java with others coming soon.

Privacy

Depending on the needs of a network, participants in a Business-to-Business (B2B) network might be extremely
sensitive about how much information they share. For other networks, privacy will not be a top concern.

Hyperledger Fabric supports networks where privacy (using channels) is a key operational requirement as well as
networks that are comparatively open.

Consensus

Transactions must be written to the ledger in the order in which they occur, even though they might be between
different sets of participants within the network. For this to happen, the order of transactions must be established and a
method for rejecting bad transactions that have been inserted into the ledger in error (or maliciously) must be put into
place.

This is a thoroughly researched area of computer science, and there are many ways to achieve it, each with different
trade-offs. For example, PBFT (Practical Byzantine Fault Tolerance) can provide a mechanism for file replicas to
communicate with each other to keep each copy consistent, even in the event of corruption. Alternatively, in Bitcoin,
ordering happens through a process called mining where competing computers race to solve a cryptographic puzzle
which defines the order that all processes subsequently build upon.

Hyperledger Fabric has been designed to allow network starters to choose a consensus mechanism that best represents
the relationships that exist between participants. As with privacy, there is a spectrum of needs; from networks that are
highly structured in their relationships to those that are more peer-to-peer.

We’ll learn more about the Hyperledger Fabric consensus mechanisms, which currently include SOLO, Kafka, and
will soon extend to SBFT (Simplified Byzantine Fault Tolerance), in another document.

Where can I learn more?

Getting Started

4.4. Where can I learn more? 15

hyperledger-fabricdocs Documentation, Release master

Where you learn how to set up a sample network on your local machine. You’ll be introduced to most of the key
components within a blockchain network, learn more about how they interact with each other, and then you’ll actually
get the code and run some simple query and update transactions.

Hyperledger Fabric Model

A deeper look at the components and concepts brought up in this introduction as well as a few others and describes
how they work together in a sample transaction flow.

marbles

Where you can learn how to write a sample smart contract in GOLANG and invoke it from an application written
in JavaScript. You’ll become comfortable with the key APIs used by both smart contract developers and application
developers and ready to write your own application using the Hyperledger Fabric API reference information.

Designing a Business Network (coming soon)

Takes you through how to design a business network using a standard process. You’ll start by defining the business
network and identify the participants and the goods and services that move between them. You’ll think about the key
lifecycles and how they are impacted by the activities of the key participants. By the time you’re through, you’ll be
ready to start working with key stakeholders in your company to design a business network that uses Hyperledger
Fabric.

Best Practices (coming soon)

Deals with the practical concerns of setting up and managing a production Hyperledger Fabric blockchain. You’ll
understand the key factors to consider when planning a blockchain solution, such as compute, storage and network
requirements. You’ll also understand the key non-functional requirements, including maintainability, performance,
availability and disaster recovery.

16 Chapter 4. Introduction

CHAPTER 5

Hyperledger Fabric Capabilities

Hyperledger Fabric is a unique implementation of distributed ledger technology (DLT) that delivers enterprise-ready
network security, scalability, confidentiality and performance, in a modular blockchain architecture. The fabric delivers
the following blockchain network capabilities:

Identity management

To enable permissioned networks, Hyperledger Fabric provides a membership identity service that manages user IDs
and authenticates all participants on the network. Access control lists can be used to provide additional layers of
permission through authorization of specific network operations. For example, a specific user ID could be permitted
to invoke a chaincode application, but blocked from deploying new chaincode. One truism about Hyperledger Fabric
networks is that members know each other (identity), but they do not know what each other are doing (privacy and
confidentiality).

Privacy and confidentiality

Hyperledger Fabric enables competing business interests, and any groups that require private, confidential transac-
tions, to coexist on the same permissioned network. Private channels are restricted messaging paths that can be used
to provide transaction privacy and confidentiality for specific subsets of network members. All data, including trans-
action, member and channel information, on a channel are invisible and inaccessible to any network members not
explicitly granted access to that channel.

Efficient processing

Hyperledger Fabric assigns network roles by node type. To provide concurrency and parallelism to the network,
transaction execution is separated from transaction ordering and commitment. Executing transactions prior to ordering
them enables each peer node to process multiple transactions simultaneously. This concurrent execution increases
processing efficiency on each peer and accelerates delivery of transactions to the ordering service.

In addition to enabling parallel processing, the division of labor unburdens ordering nodes from the demands of
transaction execution and ledger maintenance, while peer nodes are freed from ordering (consensus) workloads. This
bifurcation of roles also limits the processing required for authorization and authentication; all peer nodes do not have
to trust all ordering nodes, and vice versa, so processes on one can run independently of verification by the other.

17

hyperledger-fabricdocs Documentation, Release master

Chaincode functionality

Chaincode applications encode logic that is invoked by specific types of transactions on the channel. Chaincode that
defines parameters for a change of asset ownership, for example, ensures that all transactions that transfer ownership
are subject to the same rules and requirements. System chaincode is distinguished as chaincode that defines operating
parameters for the entire channel. Lifecycle and configuration system chaincode defines the rules for the channel;
endorsement and validation system chaincode defines the requirements for endorsing and validating transactions.

Modular design

Hyperledger Fabric implements a modular architecture to provide functional choice to network designers. Specific
algorithms for identity, ordering (consensus) and encryption, for example, can be plugged in to any fabric network.
The result is a universal blockchain architecture that any industry or public domain can adopt, with the assurance
that its networks will be interoperable across market, regulatory and geographic boundaries. By contrast, current
alternatives to Hyperledger Fabric are largely partisan, constrained and industry-specific.

18 Chapter 5. Hyperledger Fabric Capabilities

CHAPTER 6

Hyperledger Fabric Model

This section outlines the key design features woven into Hyperledger Fabric that fulfill its promise of a comprehensive,
yet customizable, enterprise blockchain solution:

• Assets - Asset definitions enable the exchange of almost anything with monetary value over the network, from
whole foods to antique cars to currency futures.

• Chaincode - Chaincode execution is partitioned from transaction ordering, limiting the required levels of trust
and verification across node types, and optimizing network scalability and performance.

• Ledger Features - The immutable, shared ledger encodes the entire transaction history for each channel, and
includes SQL-like query capability for efficient auditing and dispute resolution.

• Privacy through Channels - Channels enable multi-lateral transactions with the high degrees of privacy and
confidentiality required by competing businesses and regulated industries that exchange assets on a common
network.

• Security & Membership Services - Permissioned membership provides a trusted blockchain network, where
participants know that all transactions can be detected and traced by authorized regulators and auditors.

• Consensus - Fabric’s unique approach to consensus enables the flexibility and scalability needed for the enter-
prise.

Assets

Assets can range from the tangible (real estate and hardware) to the intangible (contracts and intellectual property).
You can easily define Assets in client-side javascript and use them in your Fabric application using the included Fabric
Composer tool.

Fabric supports the ability to exchange assets using unspent transaction outputs as the inputs for subsequent trans-
actions. Assets (and asset registries) live in Fabric as a collection of key-value pairs, with state changes recorded as
transactions on a Channel ledger. Fabric allows for any asset to be represented in binary or JSON format.

Chaincode

Chaincode is software defining an asset or assets, and the transaction instructions for modifying the asset(s). In other
words, it’s the business logic. Chaincode enforces the rules for reading or altering key value pairs or other state
database information. Chaincode functions execute against the ledger current state database and are initiated through
a transaction proposal. Chaincode execution results in a set of key value writes (write set) that can be submitted to the
network and applied to the ledger on all peers.

19

https://github.com/fabric-composer/fabric-composer
https://github.com/fabric-composer/fabric-composer

hyperledger-fabricdocs Documentation, Release master

Ledger Features

The ledger is the sequenced, tamper-resistant record of all state transitions in the fabric. State transitions are a result
of chaincode invocations (‘transactions’) submitted by participating parties. Each transaction results in a set of asset
key-value pairs that are committed to the ledger as creates, updates, or deletes.

The ledger is comprised of a blockchain (‘chain’) to store the immutable, sequenced record in blocks, as well as a state
database to maintain current fabric state. There is one ledger per channel. Each peer maintains a copy of the ledger
for each channel of which they are a member.

• Query and update ledger using key-based lookups, range queries, and composite key queries

• Read-only queries using a rich query language (if using CouchDB as state database)

• Read-only history queries - Query ledger history for a key, enabling data provenance scenarios

• Transactions consist of the versions of keys/values that were read in chaincode (read set) and keys/values that
were written in chaincode (write set)

• Transactions contain signatures of every endorsing peer and are submitted to ordering service

• Transactions are ordered into blocks and are “delivered” from an ordering service to peers on a channel

• Peers validate transactions against endorsement policies and enforce the policies

• Prior to appending a block, a versioning check is performed to ensure that states for assets that were read have
not changed since chaincode execution time

• There is immutability once a transaction is validated and committed

• A channel’s ledger contains a configuration block defining policies, access control lists, and other pertinent
information

• Channel’s contain Membership Service Provider instances allowing for crypto materials to be derived from
different certificate authorities

See the Ledger topic for a deeper dive on the databases, storage structure, and “query-ability.”

Privacy through Channels

Fabric employs an immutable ledger on a per-channel basis, as well as chaincodes that can manipulate and modify the
current state of assets (i.e. update key value pairs). A ledger exists in the scope of a channel - it can be shared across
the entire network (assuming every participant is operating on one common channel) - or it can be privatized to only
include a specific set of participants.

In the latter scenario, these participants would create a separate channel and thereby isolate/segregate their transactions
and ledger. Fabric even solves scenarios that want to bridge the gap between total transparency and privacy. Chaincode
gets installed only on peers that need to access the asset states to perform reads and writes (in other words, if a
chaincode is not installed on a peer, it will not be able to properly interface with the ledger). To further obfuscate the
data, values within chaincode can be encrypted (in part or in total) using common cryptographic algorithms such as
SHA-256 before appending to the ledger.

Security & Membership Services

Hyperledger Fabric underpins a transactional network where all participants have known identities. Public Key Infras-
tructure is used to generate cryptographic certificates which are tied to organizations, network components, and end
users or client applications. As a result, data access control can be manipulated and governed on the broader network

20 Chapter 6. Hyperledger Fabric Model

hyperledger-fabricdocs Documentation, Release master

and on channel levels. This “permissioned” notion of Fabric, coupled with the existence and capabilities of channels,
helps address scenarios where privacy and confidentiality are paramount concerns.

See the Fabric CA section to better understand cryptographic implementations, and the sign, verify, authenticate
approach used in Fabric.

Consensus

In distributed ledger technology, consensus has recently become synonymous with a specific algorithm, within a
single function. However, consensus encompasses more than simply agreeing upon the order of transactions, and
this differentiation is highlighted in Hyperledger Fabric through its fundamental role in the entire transaction flow,
from proposal and endorsement, to ordering, validation and commitment. In a nutshell, consensus is defined as the
full-circle verification of the correctness of a set of transactions comprising a block.

Consensus is ultimately achieved when the order and results of a block’s transactions have met the explicit policy
criteria checks. These checks and balances take place during the lifecycle of a transaction, and include the usage of
endorsement policies to dictate which specific members must endorse a certain transaction class, as well as system
chaincodes to ensure that these policies are enforced and upheld. Prior to commitment, the peers will employ these
system chaincodes to make sure that enough endorsements are present, and that they were derived from the appropriate
entities. Moreover, a versioning check will take place during which the current state of the ledger is agreed or consented
upon, before any blocks containing transactions are appended to the ledger. This final check provides protection against
double spend operations and other threats that might compromise data integrity, and allows for functions to be executed
against non-static variables.

In addition to the multitude of endorsement, validity and versioning checks that take place, there are also ongoing
identity verifications happening in all directions of the transaction flow. Access control lists are implemented on
hierarchal layers of the network (ordering service down to channels), and payloads are repeatedly signed, verified and
authenticated as a transaction proposal passes through the different architectural components. To conclude, consensus
is not merely limited to the agreed upon order of a batch of transactions, but rather, it is an overarching characterization
that is achieved as a byproduct of the ongoing verifications that take place during a transaction’s journey from proposal
to commitment.

Check out the Transaction Flow diagram for a visual representation of consensus.

6.6. Consensus 21

hyperledger-fabricdocs Documentation, Release master

22 Chapter 6. Hyperledger Fabric Model

CHAPTER 7

Use Cases

The Hyperledger Requirements WG is documenting a number of blockchain use cases and maintaining an inventory
here.

23

https://wiki.hyperledger.org/groups/requirements/use-case-inventory

hyperledger-fabricdocs Documentation, Release master

24 Chapter 7. Use Cases

CHAPTER 8

Building Your First Network

Note: These instructions have been verified to work against the version “1.0.0-rc1” tagged docker images and the
pre-compiled setup utilities within the supplied tar file. If you run these commands with images or tools from the
current master branch, it is possible that you will see configuration and panic errors.

The build your first network (BYFN) scenario provisions a sample Fabric network consisting of two organizations,
each maintaining two peer nodes, and a “solo” ordering service.

Install prerequisites

Before we begin, if you haven’t already done so, you may wish to check that you have all the Prerequisites installed
on the platform(s) on which you’ll be developing blockchain applications and/or operating Hyperledger Fabric.

You will also need to download and install the Hyperledger Fabric Samples. You will notice that there are a number
of samples included in the fabric-samples repository. We will be using the first-network sample. Let’s
open that sub-directory now.

cd first-network

Note: The supplied commands in this documentation MUST be run from your first-network sub-directory of
the ‘‘fabric-samples‘‘repository clone. If you elect to run the commands from a different location, the various provided
scripts will be unable to find the binaries.

Want to run it now?

We provide a fully annotated script byfn.sh that leverages these docker images to quickly bootstrap a Fabric
network comprised of 4 peers representing two different organizations, and an orderer node. It will also launch a
container to run a scripted execution that will join peers to a channel, deploy and instantiate chaincode and drive
execution of transactions against the deployed chaincode.

Here’s the help text for the byfn.sh script:

./byfn.sh -h
Usage:

byfn.sh -m up|down|restart|generate [-c <channel name>] [-t <timeout>]

25

hyperledger-fabricdocs Documentation, Release master

byfn.sh -h|--help (print this message)
-m <mode> - one of 'up', 'down', 'restart' or 'generate'
- 'up' - bring up the network with docker-compose up
- 'down' - bring up the network with docker-compose up
- 'restart' - bring up the network with docker-compose up
- 'generate' - generate required certificates and genesis block

-c <channel name> - config name to use (defaults to "mychannel")
-t <timeout> - CLI timeout duration in microseconds (defaults to 10000)

Typically, one would first generate the required certificates and
genesis block, then bring up the network. e.g.:

byfn.sh -m generate -c <channelname>
byfn.sh -m up -c <channelname>

If you choose not to supply a channel name, then the script will use a default name of mychannel . The CLI timeout
parameter (specified with the -t flag) is an optional value; if you choose not to set it, then your CLI container will exit
upon conclusion of the script.

Generate Network Artifacts

Ready to give it a go? Okay then! Execute the following command. You will see a brief description as to what will
occur, along with a yes/no command line prompt. Respond with a y to execute the described action.

./byfn.sh -m generate
Generating certs and genesis block for with channel 'mychannel' and CLI timeout of
→˓'10000'
Continue (y/n)?y
proceeding ...
/Users/xxx/dev/fabric-samples/bin/cryptogen

##
Generate certificates using cryptogen tool
##
org1.example.com
2017-06-12 21:01:37.334 EDT [bccsp] GetDefault -> WARN 001 Before using BCCSP, please
→˓call InitFactories(). Falling back to bootBCCSP.
...

/Users/xxx/dev/fabric-samples/bin/configtxgen
##
######### Generating Orderer Genesis block ##############
##
2017-06-12 21:01:37.558 EDT [common/configtx/tool] main -> INFO 001 Loading
→˓configuration
2017-06-12 21:01:37.562 EDT [msp] getMspConfig -> INFO 002 intermediate certs folder
→˓not found at [/Users/xxx/dev/byfn/crypto-config/ordererOrganizations/example.com/
→˓msp/intermediatecerts]. Skipping.: [stat /Users/xxx/dev/byfn/crypto-config/
→˓ordererOrganizations/example.com/msp/intermediatecerts: no such file or directory]
...
2017-06-12 21:01:37.588 EDT [common/configtx/tool] doOutputBlock -> INFO 00b
→˓Generating genesis block
2017-06-12 21:01:37.590 EDT [common/configtx/tool] doOutputBlock -> INFO 00c Writing
→˓genesis block

###

26 Chapter 8. Building Your First Network

hyperledger-fabricdocs Documentation, Release master

Generating channel configuration transaction 'channel.tx'
###
2017-06-12 21:01:37.634 EDT [common/configtx/tool] main -> INFO 001 Loading
→˓configuration
2017-06-12 21:01:37.644 EDT [common/configtx/tool] doOutputChannelCreateTx -> INFO
→˓002 Generating new channel configtx
2017-06-12 21:01:37.645 EDT [common/configtx/tool] doOutputChannelCreateTx -> INFO
→˓003 Writing new channel tx

###
####### Generating anchor peer update for Org1MSP ##########
###
2017-06-12 21:01:37.674 EDT [common/configtx/tool] main -> INFO 001 Loading
→˓configuration
2017-06-12 21:01:37.678 EDT [common/configtx/tool] doOutputAnchorPeersUpdate -> INFO
→˓002 Generating anchor peer update
2017-06-12 21:01:37.679 EDT [common/configtx/tool] doOutputAnchorPeersUpdate -> INFO
→˓003 Writing anchor peer update

###
####### Generating anchor peer update for Org2MSP ##########
###
2017-06-12 21:01:37.700 EDT [common/configtx/tool] main -> INFO 001 Loading
→˓configuration
2017-06-12 21:01:37.704 EDT [common/configtx/tool] doOutputAnchorPeersUpdate -> INFO
→˓002 Generating anchor peer update
2017-06-12 21:01:37.704 EDT [common/configtx/tool] doOutputAnchorPeersUpdate -> INFO
→˓003 Writing anchor peer update

This first step generates all of the certificates and keys for all our various network entities, the genesis block
used to bootstrap the ordering service, and a collection of configuration transactions required to configure a Channel.

Bring Up the Network

Next, you can bring the network up with the following command. Once again, you will be prompted as to whether
you wish to continue or abort. Respond with a y :

./byfn.sh -m up
Starting with channel 'mychannel' and CLI timeout of '10000'
Continue (y/n)?y
proceeding ...
Creating network "net_byfn" with the default driver
Creating peer0.org1.example.com
Creating peer1.org1.example.com
Creating peer0.org2.example.com
Creating orderer.example.com
Creating peer1.org2.example.com
Creating cli

____ _____ _ ____ _____
/ ___| |_ _| / \ | _ \ |_ _|
___ \ | | / _ \ | |_) | | |
___) | | | / ___ \ | _ < | |

|____/ |_| /_/ _\ |_| _\ |_|

8.2. Want to run it now? 27

hyperledger-fabricdocs Documentation, Release master

Channel name : mychannel
Creating channel...

The logs will continue from there. This will launch all of the containers, and then drive a complete end-to-end
application scenario. Upon successful completion, it should report the following in your terminal window:

2017-05-16 17:08:01.366 UTC [msp] GetLocalMSP -> DEBU 004 Returning existing local MSP
2017-05-16 17:08:01.366 UTC [msp] GetDefaultSigningIdentity -> DEBU 005 Obtaining
→˓default signing identity
2017-05-16 17:08:01.366 UTC [msp/identity] Sign -> DEBU 006 Sign: plaintext:
→˓0AB1070A6708031A0C08F1E3ECC80510...6D7963631A0A0A0571756572790A0161
2017-05-16 17:08:01.367 UTC [msp/identity] Sign -> DEBU 007 Sign: digest:
→˓E61DB37F4E8B0D32C9FE10E3936BA9B8CD278FAA1F3320B08712164248285C54
Query Result: 90
2017-05-16 17:08:15.158 UTC [main] main -> INFO 008 Exiting.....
===================== Query on PEER3 on channel 'mychannel' is successful
→˓=====================

===================== All GOOD, BYFN execution completed =====================

_____ _ _ ____
| ____| | \ | | | _ \
| _| | \| | | | | |
| |___ | |\ | | |_| |
|_____| |_| _| |____/

You can scroll through these logs to see the various transactions. If you don’t get this result, then jump down to the
Troubleshooting section and let’s see whether we can help you discover what went wrong.

Bring Down the Network

Finally, let’s bring it all down so we can explore the network setup one step at a time. The following will kill your
containers, remove the crypto material and four artifacts, and delete the chaincode images from your Docker Registry.
Once again, you will be prompted to continue, respond with a y :

./byfn.sh -m down
Stopping with channel 'mychannel' and CLI timeout of '10000'
Continue (y/n)?y
proceeding ...
WARNING: The CHANNEL_NAME variable is not set. Defaulting to a blank string.
WARNING: The TIMEOUT variable is not set. Defaulting to a blank string.
Removing network net_byfn
468aaa6201ed
...
Untagged: dev-peer1.org2.example.com-mycc-1.0:latest
Deleted: sha256:ed3230614e64e1c83e510c0c282e982d2b06d148b1c498bbdcc429e2b2531e91
...

If you’d like to learn more about the underlying tooling and bootstrap mechanics, continue reading. In these next
sections we’ll walk through the various steps and requirements to build a fully-functional Fabric network.

28 Chapter 8. Building Your First Network

hyperledger-fabricdocs Documentation, Release master

Crypto Generator

We will use the cryptogen tool to generate the cryptographic material (x509 certs) for our various network entities.
These certificates are representative of identities, and they allow for sign/verify authentication to take place as our
entities communicate and transact.

How does it work?

Cryptogen consumes a file - crypto-config.yaml - that contains the network topology and allows us to generate
a set of certificates and keys for both the Organizations and the components that belong to those Organizations. Each
Organization is provisioned a unique root certificate (ca-cert), that binds specific components (peers and orderers)
to that Org. By assigning each Organization a unique CA certificate, we are mimicking a typical network where a
participating Member would use its own Certificate Authority. Transactions and communications within Fabric are
signed by an entity’s private key (keystore), and then verified by means of a public key (signcerts). You will
notice a “count” variable within this file. We use this to specify the number of peers per Organization; in our case it’s
two peers per Org. We won’t delve into the minutiae of x.509 certificates and public key infrastructure right now. If
you’re interested, you can peruse these topics on your own time.

Before running the tool, let’s take a quick look at a snippet from the crypto-config.yaml . Pay specific attention
to the “Name”, “Domain” and “Specs” parameters under the OrdererOrgs header:

OrdererOrgs:
#---
Orderer
--
- Name: Orderer

Domain: example.com
--
"Specs" - See PeerOrgs below for complete description

Specs:
- Hostname: orderer

"PeerOrgs" - Definition of organizations managing peer nodes
--
PeerOrgs:

Org1
--
- Name: Org1

Domain: org1.example.com

The naming convention for a network entity is as follows - “{{.Hostname}}.{{.Domain}}”. So using our ordering
node as a reference point, we are left with an ordering node named - orderer.example.com that is tied to an
MSP ID of Orderer . This file contains extensive documentation on the definitions and syntax. You can also refer
to the Membership Service Providers (MSP) documentation for a deeper dive on MSP.

After we run the cryptogen tool, the generated certificates and keys will be saved to a folder titled
crypto-config .

Configuration Transaction Generator

The configtxgen tool is used to create four configuration artifacts:

8.3. Crypto Generator 29

https://en.wikipedia.org/wiki/Public_key_infrastructure

hyperledger-fabricdocs Documentation, Release master

• orderer genesis block ,

• fabric channel configuration transaction ,

• and two anchor peer transactions - one for each Peer Org.

Please see Channel Configuration (configtxgen) for a complete description of the use of this tool.

The orderer block is the Genesis Block for the ordering service, and the channel transaction file is broadcast to the
orderer at Channel creation time. The anchor peer transactions, as the name might suggest, specify each Org’s Anchor
Peer on this channel.

How does it work?

Configtxgen consumes a file - configtx.yaml - that contains the definitions for the sample network. There
are three members - one Orderer Org (OrdererOrg) and two Peer Orgs (Org1 & Org2) each managing and
maintaining two peer nodes. This file also specifies a consortium - SampleConsortium - consisting of our two
Peer Orgs. Pay specific attention to the “Profiles” section at the top of this file. You will notice that we have two
unique headers. One for the orderer genesis block - TwoOrgsOrdererGenesis - and one for our channel -
TwoOrgsChannel .

These headers are important, as we will pass them in as arguments when we create our artifacts.

Note: Notice that our SampleConsortium is defined in the system-level profile and then referenced by our
channel-level profile. Channels exist within the purview of a consortium, and all consortia must be defined in the
scope of the network at large.

This file also contains two additional specifications that are worth noting. Firstly, we specify the anchor peers for each
Peer Org (peer0.org1.example.com & peer0.org2.example.com). Secondly, we point to the location
of the MSP directory for each member, in turn allowing us to store the root certificates for each Org in the orderer
genesis block. This is a critical concept. Now any network entity communicating with the ordering service can have
its digital signature verified.

Run the tools

You can manually generate the certificates/keys and the various configuration artifacts using the configtxgen and
cryptogen commands. Alternately, you could try to adapt the byfn.sh script to accomplish your objectives.

Manually generate the artifacts

You can refer to the generateCerts function in the byfn.sh script for the commands necessary to generate the
certificates that will be used for your network configuration as defined in the crypto-config.yaml file. However,
for the sake of convenience, we will also provide a reference here.

First let’s run the cryptogen tool. Our binary is in the bin directory, so we need to provide the relative path to
where the tool resides.

../bin/cryptogen generate --config=./crypto-config.yaml

You will likely see the following warning. It’s innocuous, ignore it:

[bccsp] GetDefault -> WARN 001 Before using BCCSP, please call InitFactories().
→˓Falling back to bootBCCSP.

30 Chapter 8. Building Your First Network

hyperledger-fabricdocs Documentation, Release master

Next, we need to tell the configtxgen tool where to look for the configtx.yaml file that it needs to ingest.
We will tell it look in our present working directory:

First, we need to set an environment variable to specify where configtxgen should look for the configtx.yaml
configuration file. Then, we’ll invoke the configtxgen tool which will create the orderer genesis block:

export FABRIC_CFG_PATH=$PWD
../bin/configtxgen -profile TwoOrgsOrdererGenesis -outputBlock ./channel-artifacts/
→˓genesis.block

You can ignore the log warnings regarding intermediate certificates, certificate revocation lists (crls) and MSP config-
urations. We are not using any of those in this sample network.

Next, we need to create the channel transaction artifact. Be sure to replace $CHANNEL_NAME or set CHAN-
NEL_NAME as an environment variable that can be used throughout these instructions:

export CHANNEL_NAME=mychannel

this file contains the definitions for our sample channel
../bin/configtxgen -profile TwoOrgsChannel -outputCreateChannelTx ./channel-artifacts/
→˓channel.tx -channelID $CHANNEL_NAME

Next, we will define the anchor peer for Org1 on the channel that we are constructing. Again, be sure to replace
$CHANNEL_NAME or set the environment variable for the following commands:

../bin/configtxgen -profile TwoOrgsChannel -outputAnchorPeersUpdate ./channel-
→˓artifacts/Org1MSPanchors.tx -channelID $CHANNEL_NAME -asOrg Org1MSP

Now, we will define the anchor peer for Org2 on the same channel:

../bin/configtxgen -profile TwoOrgsChannel -outputAnchorPeersUpdate ./channel-
→˓artifacts/Org2MSPanchors.tx -channelID $CHANNEL_NAME -asOrg Org2MSP

Start the network

We will leverage a docker-compose script to spin up our network. The docker-compose file references the images that
we have previously downloaded, and bootstraps the orderer with our previously generated genesis.block .

working_dir: /opt/gopath/src/github.com/hyperledger/fabric/peer
command: /bin/bash -c './scripts/script.sh ${CHANNEL_NAME}; sleep $TIMEOUT'
volumes

If left uncommented, that script will exercise all of the CLI commands when the network is started, as we describe in
the What’s happening behind the scenes? section. However, we want to go through the commands manually in order
to expose the syntax and functionality of each call.

Pass in a moderately high value for the TIMEOUT variable (specified in seconds); otherwise the CLI container, by
default, will exit after 60 seconds.

Start your network:

CHANNEL_NAME=$CHANNEL_NAME TIMEOUT=<pick_a_value> docker-compose -f docker-compose-
→˓cli.yaml up -d

If you want to see the realtime logs for your network, then do not supply the -d flag. If you let the logs stream, then
you will need to open a second terminal to execute the CLI calls.

8.6. Start the network 31

hyperledger-fabricdocs Documentation, Release master

Environment variables

For the following CLI commands against peer0.org1.example.com to work, we need to preface our commands
with the four environment variables given below. These variables for peer0.org1.example.com are baked into
the CLI container, therefore we can operate without passing them. HOWEVER, if you want to send calls to other peers
or the orderer, then you will need to provide these values accordingly. Inspect the docker-compose-base.yaml
for the specific paths:

Environment variables for PEER0

CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp
CORE_PEER_ADDRESS=peer0.org1.example.com:7051
CORE_PEER_LOCALMSPID="Org1MSP"
CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca.crt

Create & Join Channel

We will enter the CLI container using the docker exec command:

docker exec -it cli bash

If successful you should see the following:

root@0d78bb69300d:/opt/gopath/src/github.com/hyperledger/fabric/peer#

Recall that we used the configtxgen tool to generate a channel configuration artifact - channel.tx . We are going
to pass in this artifact to the orderer as part of the create channel request.

Note: Notice the -- cafile that we pass as part of this command. It is the local path to the orderer’s root cert,
allowing us to verify the TLS handshake.

We specify our channel name with the -c flag and our channel configuration transaction with the -f flag. In this
case it is channel.tx , however you can mount your own configuration transaction with a different name.

export CHANNEL_NAME=mychannel

the channel.tx file is mounted in the channel-artifacts directory within your CLI
→˓container
as a result, we pass the full path for the file
we also pass the path for the orderer ca-cert in order to verify the TLS handshake
be sure to replace the $CHANNEL_NAME variable appropriately

peer channel create -o orderer.example.com:7050 -c $CHANNEL_NAME -f ./channel-
→˓artifacts/channel.tx --tls $CORE_PEER_TLS_ENABLED --cafile /opt/gopath/src/github.
→˓com/hyperledger/fabric/peer/crypto/ordererOrganizations/example.com/orderers/
→˓orderer.example.com/msp/tlscacerts/tlsca.example.com-cert.pem

This command returns a genesis block - <channel-ID.block> - which we will use to join the channel. It contains
the configuration information specified in channel.tx .

Note: You will remain in the CLI container for the remainder of these manual commands. You must also re-
member to preface all commands with the corresponding environment variables when targeting a peer other than

32 Chapter 8. Building Your First Network

hyperledger-fabricdocs Documentation, Release master

peer0.org1.example.com .

Now let’s join peer0.org1.example.com to the channel.

By default, this joins ``peer0.org1.example.com`` only
the <channel-ID>.block was returned by the previous command

peer channel join -b <channel-ID.block>

You can make other peers join the channel as necessary by making appropriate changes in the four environment
variables.

Install & Instantiate Chaincode

Note: We will utilize a simple existing chaincode. To learn how to write your own chaincode, see the Chaincode for
Developers tutorial.

Applications interact with the blockchain ledger through chaincode . As such we need to install the chaincode on
every peer that will execute and endorse our transactions, and then instantiate the chaincode on the channel.

First, install the sample go code onto one of the four peer nodes. This command places the source code onto our peer’s
filesystem.

peer chaincode install -n mycc -v 1.0 -p github.com/hyperledger/fabric/examples/
→˓chaincode/go/chaincode_example02

Next, instantiate the chaincode on the channel. This will initialize the chaincode on the channel, set the endorsement
policy for the chaincode, and launch a chaincode container for the targeted peer. Take note of the -P argument. This is
our policy where we specify the required level of endorsement for a transaction against this chaincode to be validated.

In the command below you’ll notice that we specify our policy as -P "OR
('Org0MSP.member','Org1MSP.member')" . This means that we need “endorsement” from a peer
belonging to Org1 OR Org2 (i.e. only one endorsement). If we changed the syntax to AND then we would need two
endorsements.

be sure to replace the $CHANNEL_NAME environment variable
if you did not install your chaincode with a name of mycc, then modify that
→˓argument as well

peer chaincode instantiate -o orderer.example.com:7050 --tls $CORE_PEER_TLS_ENABLED --
→˓cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.
→˓example.com-cert.pem -C $CHANNEL_NAME -n mycc -v 1.0 -c '{"Args":["init","a", "100
→˓", "b","200"]}' -P "OR ('Org1MSP.member','Org2MSP.member')"

See the endorsement policies documentation for more details on policy implementation.

Query

Let’s query for the value of a to make sure the chaincode was properly instantiated and the state DB was populated.
The syntax for query is as follows:

8.6. Start the network 33

http://hyperledger-fabric.readthedocs.io/en/latest/endorsement-policies.html

hyperledger-fabricdocs Documentation, Release master

be sure to set the -C and -n flags appropriately

peer chaincode query -C $CHANNEL_NAME -n mycc -c '{"Args":["query","a"]}'

Invoke

Now let’s move 10 from a to b . This transaction will cut a new block and update the state DB. The syntax for invoke
is as follows:

be sure to set the -C and -n flags appropriately

peer chaincode invoke -o orderer.example.com:7050 --tls $CORE_PEER_TLS_ENABLED --
→˓cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.
→˓example.com-cert.pem -C $CHANNEL_NAME -n mycc -c '{"Args":["invoke","a","b","10"]}'

Query

Let’s confirm that our previous invocation executed properly. We initialized the key a with a value of 100 and just
removed 10 with our previous invocation. Therefore, a query against a should reveal 90 . The syntax for query is as
follows.

be sure to set the -C and -n flags appropriately

peer chaincode query -C $CHANNEL_NAME -n mycc -c '{"Args":["query","a"]}'

We should see the following:

Query Result: 90

Feel free to start over and manipulate the key value pairs and subsequent invocations.

What’s happening behind the scenes?

Note: These steps describe the scenario in which script.sh is not commented out in the docker-compose-
cli.yaml file. Clean your network with ./byfn.sh down and ensure this command is active. Then use the same
docker-compose prompt to launch your network again

• A script - script.sh - is baked inside the CLI container. The script drives the createChannel command
against the supplied channel name and uses the channel.tx file for channel configuration.

• The output of createChannel is a genesis block - <your_channel_name>.block - which gets stored
on the peers’ file systems and contains the channel configuration specified from channel.tx.

• The joinChannel command is exercised for all four peers, which takes as input the previously generated
genesis block. This command instructs the peers to join <your_channel_name> and create a chain starting
with <your_channel_name>.block .

• Now we have a channel consisting of four peers, and two organizations. This is our TwoOrgsChannel profile.

• peer0.org1.example.com and peer1.org1.example.com belong to Org1;
peer0.org2.example.com and peer1.org2.example.com belong to Org2

34 Chapter 8. Building Your First Network

hyperledger-fabricdocs Documentation, Release master

• These relationships are defined through the crypto-config.yaml and the MSP path is specified in our
docker compose.

• The anchor peers for Org1MSP (peer0.org1.example.com) and Org2MSP
(peer0.org2.example.com) are then updated. We do this by passing the Org1MSPanchors.tx and
Org2MSPanchors.tx artifacts to the ordering service along with the name of our channel.

• A chaincode - chaincode_example02 - is installed on peer0.org1.example.com and
peer0.org2.example.com

• The chaincode is then “instantiated” on peer0.org2.example.com . Instantiation adds the chaincode to
the channel, starts the container for the target peer, and initializes the key value pairs associated with the chain-
code. The initial values for this example are [”a”,”100” “b”,”200”]. This “instantiation” results in a container
by the name of dev-peer0.org2.example.com-mycc-1.0 starting.

• The instantiation also passes in an argument for the endorsement policy. The policy is defined as -P "OR
('Org1MSP.member','Org2MSP.member')" , meaning that any transaction must be endorsed by a
peer tied to Org1 or Org2.

• A query against the value of “a” is issued to peer0.org1.example.com . The chaincode was previously
installed on peer0.org1.example.com , so this will start a container for Org1 peer0 by the name of
dev-peer0.org1.example.com-mycc-1.0 . The result of the query is also returned. No write opera-
tions have occurred, so a query against “a” will still return a value of “100”.

• An invoke is sent to peer0.org1.example.com to move “10” from “a” to “b”

• The chaincode is then installed on peer1.org2.example.com

• A query is sent to peer1.org2.example.com for the value of “a”. This starts a third chaincode con-
tainer by the name of dev-peer1.org2.example.com-mycc-1.0 . A value of 90 is returned, correctly
reflecting the previous transaction during which the value for key “a” was modified by 10.

What does this demonstrate?

Chaincode MUST be installed on a peer in order for it to successfully perform read/write operations against the ledger.
Furthermore, a chaincode container is not started for a peer until an init or traditional transaction - read/write - is
performed against that chaincode (e.g. query for the value of “a”). The transaction causes the container to start. Also,
all peers in a channel maintain an exact copy of the ledger which comprises the blockchain to store the immutable,
sequenced record in blocks, as well as a state database to maintain current fabric state. This includes those peers that
do not have chaincode installed on them (like peer1.org1.example.com in the above example) . Finally, the
chaincode is accessible after it is installed (like peer1.org2.example.com in the above example) because it has
already been instantiated.

How do I see these transactions?

Check the logs for the CLI docker container.

docker logs -f cli

You should see the following output:

2017-05-16 17:08:01.366 UTC [msp] GetLocalMSP -> DEBU 004 Returning existing local MSP
2017-05-16 17:08:01.366 UTC [msp] GetDefaultSigningIdentity -> DEBU 005 Obtaining
→˓default signing identity
2017-05-16 17:08:01.366 UTC [msp/identity] Sign -> DEBU 006 Sign: plaintext:
→˓0AB1070A6708031A0C08F1E3ECC80510...6D7963631A0A0A0571756572790A0161
2017-05-16 17:08:01.367 UTC [msp/identity] Sign -> DEBU 007 Sign: digest:
→˓E61DB37F4E8B0D32C9FE10E3936BA9B8CD278FAA1F3320B08712164248285C54

8.6. Start the network 35

hyperledger-fabricdocs Documentation, Release master

Query Result: 90
2017-05-16 17:08:15.158 UTC [main] main -> INFO 008 Exiting.....
===================== Query on PEER3 on channel 'mychannel' is successful
→˓=====================

===================== All GOOD, BYFN execution completed =====================

_____ _ _ ____
| ____| | \ | | | _ \
| _| | \| | | | | |
| |___ | |\ | | |_| |
|_____| |_| _| |____/

You can scroll through these logs to see the various transactions.

How can I see the chaincode logs?

Inspect the individual chaincode containers to see the separate transactions executed against each container. Here is
the combined output from each container:

$ docker logs dev-peer0.org2.example.com-mycc-1.0
04:30:45.947 [BCCSP_FACTORY] DEBU : Initialize BCCSP [SW]
ex02 Init
Aval = 100, Bval = 200

$ docker logs dev-peer0.org1.example.com-mycc-1.0
04:31:10.569 [BCCSP_FACTORY] DEBU : Initialize BCCSP [SW]
ex02 Invoke
Query Response:{"Name":"a","Amount":"100"}
ex02 Invoke
Aval = 90, Bval = 210

$ docker logs dev-peer1.org2.example.com-mycc-1.0
04:31:30.420 [BCCSP_FACTORY] DEBU : Initialize BCCSP [SW]
ex02 Invoke
Query Response:{"Name":"a","Amount":"90"}

Understanding the docker-compose topology

The BYFN sample offers us two flavors of docker-compose files, both of which are extended from the
docker-compose-base.yaml (located in the base folder). Our first flavor, docker-compose-cli.yaml
, provides us with a CLI container, along with an orderer, four peers. We use this docker-compose for the entirety of
the instructions on this page.

Note: the remainder of this section covers a docker-compose file designed for the SDK. Refer to the Node.js SDK
repo for details on running these tests.

The second flavor, docker-compose-e2e.yaml , is constructed to run end-to-end tests using the Node.js SDK.
Aside from functioning with the SDK, its primary differentiation is that there are containers for the fabric-ca servers.
As a result, we are able to send REST calls to the organizational CAs for user registration and enrollment.

36 Chapter 8. Building Your First Network

https://github.com/hyperledger/fabric-sdk-node

hyperledger-fabricdocs Documentation, Release master

If you want to use the docker-compose-e2e.yaml without first running the byfn.sh script, then we
will need to make four slight modifications. We need to point to the private keys for our Organization’s
CA’s. You can locate these values in your crypto-config folder. For example, to locate the private key
for Org1 we would follow this path - crypto-config/peerOrganizations/org1.example.com/ca/
. The private key is a long hash value followed by _sk . The path for Org2 would be -
crypto-config/peerOrganizations/org2.example.com/ca/ .

In the docker-compose-e2e.yaml update the FABRIC_CA_SERVER_TLS_KEYFILE variable for ca0 and
ca1. You also need to edit the path that is provided in the command to start the ca server. You are providing the same
private key twice for each CA container.

Using CouchDB

The state database can be switched from the default (goleveldb) to CouchDB. The same chaincode functions are
available with CouchDB, however, there is the added ability to perform rich and complex queries against the state
database data content contingent upon the chaincode data being modeled as JSON.

To use CouchDB instead of the default database (goleveldb), follow the same procedures outlined earlier for generating
the artifacts, except when starting the network pass the couchdb docker-compose as well:

CHANNEL_NAME=$CHANNEL_NAME TIMEOUT=<pick_a_value> docker-compose -f docker-compose-
→˓cli.yaml -f docker-compose-couch.yaml up -d

chaincode_example02 should now work using CouchDB underneath.

Note: If you choose to implement mapping of the fabric-couchdb container port to a host port, please make sure you
are aware of the security implications. Mapping of the port in a development environment makes the CouchDB REST
API available, and allows the visualization of the database via the CouchDB web interface (Fauxton). Production
environments would likely refrain from implementing port mapping in order to restrict outside access to the CouchDB
containers.

You can use chaincode_example02 chaincode against the CouchDB state database using the steps outlined above,
however in order to exercise the CouchDB query capabilities you will need to use a chaincode that has data modeled
as JSON, (e.g. marbles02). You can locate the marbles02 chaincode in the fabric/examples/chaincode/go
directory.

We will follow the same process to create and join the channel as outlined in the Create & Join Channel section above.
Once you have joined your peer(s) to the channel, use the following steps to interact with the marbles02 chaincode:

• Install and instantiate the chaincode on peer0.org1.example.com :

be sure to modify the $CHANNEL_NAME variable accordingly for the instantiate command

peer chaincode install -n marbles -v 1.0 -p github.com/hyperledger/fabric/examples/
→˓chaincode/go/marbles02
peer chaincode instantiate -o orderer.example.com:7050 --tls $CORE_PEER_TLS_ENABLED --
→˓cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.
→˓example.com-cert.pem -C $CHANNEL_NAME -n marbles -v 1.0 -c '{"Args":["init"]}' -P
→˓"OR ('Org0MSP.member','Org1MSP.member')"

• Create some marbles and move them around:

be sure to modify the $CHANNEL_NAME variable accordingly

8.8. Using CouchDB 37

hyperledger-fabricdocs Documentation, Release master

peer chaincode invoke -o orderer.example.com:7050 --tls $CORE_PEER_TLS_ENABLED --
→˓cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.
→˓example.com-cert.pem -C $CHANNEL_NAME -n marbles -c '{"Args":["initMarble","marble1
→˓","blue","35","tom"]}'
peer chaincode invoke -o orderer.example.com:7050 --tls $CORE_PEER_TLS_ENABLED --
→˓cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.
→˓example.com-cert.pem -C $CHANNEL_NAME -n marbles -c '{"Args":["initMarble","marble2
→˓","red","50","tom"]}'
peer chaincode invoke -o orderer.example.com:7050 --tls $CORE_PEER_TLS_ENABLED --
→˓cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.
→˓example.com-cert.pem -C $CHANNEL_NAME -n marbles -c '{"Args":["initMarble","marble3
→˓","blue","70","tom"]}'
peer chaincode invoke -o orderer.example.com:7050 --tls $CORE_PEER_TLS_ENABLED --
→˓cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.
→˓example.com-cert.pem -C $CHANNEL_NAME -n marbles -c '{"Args":["transferMarble",
→˓"marble2","jerry"]}'
peer chaincode invoke -o orderer.example.com:7050 --tls $CORE_PEER_TLS_ENABLED --
→˓cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.
→˓example.com-cert.pem -C $CHANNEL_NAME -n marbles -c '{"Args":[
→˓"transferMarblesBasedOnColor","blue","jerry"]}'
peer chaincode invoke -o orderer.example.com:7050 --tls $CORE_PEER_TLS_ENABLED --
→˓cafile /opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/
→˓ordererOrganizations/example.com/orderers/orderer.example.com/msp/tlscacerts/tlsca.
→˓example.com-cert.pem -C $CHANNEL_NAME -n marbles -c '{"Args":["delete","marble1"]}'

• If you chose to map the CouchDB ports in docker-compose, you can now view the state database through the
CouchDB web interface (Fauxton) by opening a browser and navigating to the following URL:

http://localhost:5984/_utils

You should see a database named mychannel (or your unique channel name) and the documents inside it.

Note: For the below commands, be sure to update the $CHANNEL_NAME variable appropriately.

You can run regular queries from the CLI (e.g. reading marble2):

peer chaincode query -C $CHANNEL_NAME -n marbles -c '{"Args":["readMarble","marble2"]}
→˓'

The output should display the details of marble2 :

Query Result: {"color":"red","docType":"marble","name":"marble2","owner":"jerry","size
→˓":50}

You can retrieve the history of a specific marble - e.g. marble1 :

peer chaincode query -C $CHANNEL_NAME -n marbles -c '{"Args":["getHistoryForMarble",
→˓"marble1"]}'

The output should display the transactions on marble1 :

38 Chapter 8. Building Your First Network

hyperledger-fabricdocs Documentation, Release master

Query Result: [{"TxId":
→˓"1c3d3caf124c89f91a4c0f353723ac736c58155325f02890adebaa15e16e6464", "Value":{
→˓"docType":"marble","name":"marble1","color":"blue","size":35,"owner":"tom"}},{"TxId
→˓":"755d55c281889eaeebf405586f9e25d71d36eb3d35420af833a20a2f53a3eefd", "Value":{
→˓"docType":"marble","name":"marble1","color":"blue","size":35,"owner":"jerry"}},{
→˓"TxId":"819451032d813dde6247f85e56a89262555e04f14788ee33e28b232eef36d98f", "Value":}
→˓]

You can also perform rich queries on the data content, such as querying marble fields by owner jerry :

peer chaincode query -C $CHANNEL_NAME -n marbles -c '{"Args":["queryMarblesByOwner",
→˓"jerry"]}'

The output should display the two marbles owned by jerry :

Query Result: [{"Key":"marble2", "Record":{"color":"red","docType":"marble","name":
→˓"marble2","owner":"jerry","size":50}},{"Key":"marble3", "Record":{"color":"blue",
→˓"docType":"marble","name":"marble3","owner":"jerry","size":70}}]

A Note on Data Persistence

If data persistence is desired on the peer container or the CouchDB container, one option is to mount a directory in the
docker-host into a relevant directory in the container. For example, you may add the following two lines in the peer
container specification in the docker-compose-base.yaml file:

volumes:
- /var/hyperledger/peer0:/var/hyperledger/production

For the CouchDB container, you may add the following two lines in the CouchDB container specification:

volumes:
- /var/hyperledger/couchdb0:/opt/couchdb/data

Troubleshooting

• Always start your network fresh. Use the following command to remove artifacts, crypto, containers and chain-
code images:

./byfn.sh down

• YOU WILL SEE ERRORS IF YOU DO NOT REMOVE CONTAINERS AND IMAGES

• If you see docker errors, first check your version (should be 1.12 or above), and then try restarting your docker
process. Problems with Docker are oftentimes not immediately recognizable. For example, you may see errors
resulting from an inability to access crypto material mounted within a container.

• If they persist remove your images and start from scratch:

docker rm -f $(docker ps -aq)
docker rmi -f $(docker images -q)

• If you see errors on your create, instantiate, invoke or query commands, make sure you have properly updated
the channel name and chaincode name. There are placeholder values in the supplied sample commands.

8.9. A Note on Data Persistence 39

hyperledger-fabricdocs Documentation, Release master

• If you see the below error:

Error: Error endorsing chaincode: rpc error: code = 2 desc = Error installing
→˓chaincode code mycc:1.0(chaincode /var/hyperledger/production/chaincodes/mycc.1.0
→˓exits)

You likely have chaincode images (e.g. dev-peer1.org2.example.com-mycc-1.0 or
dev-peer0.org1.example.com-mycc-1.0) from prior runs. Remove them and try again.

docker rmi -f $(docker images | grep peer[0-9]-peer[0-9] | awk '{print $3}')

• If you see something similar to the following:

Error connecting: rpc error: code = 14 desc = grpc: RPC failed fast due to transport
→˓failure
Error: rpc error: code = 14 desc = grpc: RPC failed fast due to transport failure

Make sure you are running your network against the “1.0.0-rc1” images that have been retagged as “latest”.

If you see the below error:

[configtx/tool/localconfig] Load -> CRIT 002 Error reading configuration: Unsupported
→˓Config Type ""
panic: Error reading configuration: Unsupported Config Type ""

Then you did not set the FABRIC_CFG_PATH environment variable properly. The configtxgen tool needs this
variable in order to locate the configtx.yaml. Go back and execute an export FABRIC_CFG_PATH=$PWD , then
recreate your channel artifacts.

• To cleanup the network, use the down option:

./byfn.sh down

• If you see an error stating that you still have “active endpoints”, then prune your docker networks. This will
wipe your previous networks and start you with a fresh environment:

docker network prune

You will see the following message:

WARNING! This will remove all networks not used by at least one container.
Are you sure you want to continue? [y/N]

Select y .

• If you continue to see errors, share your logs on the # fabric-questions channel on Hyperledger Rocket Chat.

40 Chapter 8. Building Your First Network

https://chat.hyperledger.org/home

CHAPTER 9

Writing Your First Application

The goal of this document is to show the tasks and provide a baseline for writing your first application against a
Hyperledger Fabric network (a.k.a. Fabric).

At the most basic level, applications on a blockchain network are what enable users to query a ledger (asking for
specific records it contains), or to update it (adding records to it).

Our application, composed in Javascript, leverages the Node.js SDK to interact with the network (where our ledger
exists). This tutorial will guide you through the three steps involved in writing your first application.

1. Starting a test Fabric blockchain network. We need some basic components in our Fabric in order
to query and update the ledger. These components – a peer node, ordering node and Certificate Authority
– serve as the backbone of our network; we’ll also have a CLI container used for a few administrative
commands. A single script will download and launch this test network.

2. Learning the parameters of the sample smart contract our app will use. Our smart contracts
contain various functions that allow us to interact with the ledger in different ways. For example, we can
read data holistically or on a more granular level.

3. Developing the application to be able to query and update Fabric records. We provide two sample
applications – one for querying the ledger and another for updating it. Our apps will use the SDK APIs to
interact with the network and ultimately call these functions.

After completing this tutorial, you should have a basic understanding of how an application, using the Fabric SDK for
Node.js, is programmed in conjunction with a smart contract to interact with the ledger on a Fabric network.

First, let’s launch our test network...

Getting a Test Network

Visit the Prerequisites page and ensure you have the necessary dependencies installed on your machine.

Now determine a working directory where you want to clone the fabric-samples repo. Issue the clone command and
change into the fabcar subdirectory

git clone https://github.com/hyperledger/fabric-samples.git
cd fabric-samples/fabcar

This subdirectory – fabcar – contains the scripts and application code to run the sample app. Issue an ls from this
directory. You should see the following:

chaincode invoke.js network package.json query.js
→˓startFabric.sh

41

hyperledger-fabricdocs Documentation, Release master

Now use the startFabric.sh script to launch the network.

Note: The following command downloads and extracts the Fabric docker images, so it will take a few minutes to
complete.

./startFabric.sh

For the sake of brevity, we won’t delve into the details of what’s happening with this command. Here’s a quick
synopsis:

• launches a peer node, ordering node, Certificate Authority and CLI container

• creates a channel and joins the peer to the channel

• installs smart contract (i.e. chaincode) onto the peer’s file system and instantiates said chaincode on the channel;
instantiate starts a chaincdoe container

• calls the initLedger function to populate the channel ledger with 10 unique cars

Note: These operations will typically be done by an organizational or peer admin. The script uses the CLI to execute
these commands, however there is support in the SDK as well. Refer to the Hyperledger Fabric Node SDK repo for
example scripts.

Issue a docker ps command to reveal the processes started by the startFabric.sh script. You can learn more
about the details and mechanics of these operations in the Building Your First Network section. Here we’ll just focus
on the application. The following picture provides a simplistic representation of how the application interacts with the
Fabric network.

Alright, now that you’ve got a sample network and some code, let’s take a look at how the different pieces fit together.

How Applications Interact with the Network

Applications use APIs to invoke smart contracts (referred to in Fabric as “chaincode”). These smart contracts
are hosted in the network and identified by name and version. For example, our chaincode container is titled -
dev-peer0.org1.example.com-fabcar-1.0 - where the name is fabcar , the version is 1.0 and the
peer it is running against is dev-peer0.org1.example.com .

APIs are accessible with a software development kit (SDK). For purposes of this exercise, we’ll be using the Hyper-
ledger Fabric Node SDK though there is also a Java SDK and CLI that can be used to develop applications.

42 Chapter 9. Writing Your First Application

https://github.com/hyperledger/fabric-sdk-node
https://fabric-sdk-node.github.io/
https://fabric-sdk-node.github.io/

hyperledger-fabricdocs Documentation, Release master

Querying the Ledger

Queries are how you read data from the ledger. You can query for the value of a single key, multiple keys, or – if the
ledger is written in a rich data storage format like JSON – perform complex searches against it (looking for all assets
that contain certain keywords, for example).

As we said earlier, our sample network has an active chaincode container and a ledger that has been primed with 10
different cars. We also have some sample Javascript code - query.js - in the fabcar directory that can be used
to query the ledger for details on the cars.

Before we take a look at how that app works, we need to install the SDK node modules in order for our program to
function. From your fabcar directory, issue the following:

npm install

Note: You will issue all subsequent commands from the fabcar directory.

Now we can run our javascript programs. First, let’s run our query.js program to return a listing of all the cars on
the ledger. A function that will query all the cars, queryAllCars , is pre-loaded in the app, so we can simply run
the program as is:

node query.js

It should return something like this:

Query result count = 1
Response is [{"Key":"CAR0", "Record":{"colour":"blue","make":"Toyota","model":"Prius
→˓","owner":"Tomoko"}},
{"Key":"CAR1", "Record":{"colour":"red","make":"Ford","model":"Mustang","owner":
→˓"Brad"}},
{"Key":"CAR2", "Record":{"colour":"green","make":"Hyundai","model":"Tucson","owner":
→˓"Jin Soo"}},
{"Key":"CAR3", "Record":{"colour":"yellow","make":"Volkswagen","model":"Passat","owner
→˓":"Max"}},
{"Key":"CAR4", "Record":{"colour":"black","make":"Tesla","model":"S","owner":"Adriana
→˓"}},
{"Key":"CAR5", "Record":{"colour":"purple","make":"Peugeot","model":"205","owner":
→˓"Michel"}},
{"Key":"CAR6", "Record":{"colour":"white","make":"Chery","model":"S22L","owner":"Aarav
→˓"}},
{"Key":"CAR7", "Record":{"colour":"violet","make":"Fiat","model":"Punto","owner":"Pari
→˓"}},
{"Key":"CAR8", "Record":{"colour":"indigo","make":"Tata","model":"Nano","owner":
→˓"Valeria"}},

9.3. Querying the Ledger 43

hyperledger-fabricdocs Documentation, Release master

{"Key":"CAR9", "Record":{"colour":"brown","make":"Holden","model":"Barina","owner":
→˓"Shotaro"}}]

These are the 10 cars. A black Tesla Model S owned by Adriana, a red Ford Mustang owned by Brad, a violet Fiat
Punto owned by someone named Pari, and so on. The ledger is key/value based and in our implementation the key is
CAR0 through CAR9 . This will become particularly important in a moment.

Now let’s see what it looks like under the hood (if you’ll forgive the pun). Use an editor (e.g. atom or visual studio)
and open the query.js program.

The inital section of the application defines certain variables such as chaincode ID, channel name and network end-
points:

var options = {
wallet_path : path.join(__dirname, './network/creds'),
user_id: 'PeerAdmin',
channel_id: 'mychannel',
chaincode_id: 'fabcar',
network_url: 'grpc://localhost:7051',

This is the chunk where we construct our query:

// queryCar - requires 1 argument, ex: args: ['CAR4'],
// queryAllCars - requires no arguments , ex: args: [''],
const request = {

chaincodeId: options.chaincode_id,
txId: transaction_id,
fcn: 'queryAllCars',
args: ['']

We define the chaincode_id variable as fabcar – allowing us to target this specific chaincode – and then call
the queryAllCars function defined within that chaincode.

When we issued the node query.js command earlier, this specific function was called to query the ledger. How-
ever, this isn’t the only function that we can pass.

To take a look at the others, navigate to the chaincode subdirectory and open fabcar.go in your editor.
You’ll see that we have the following functions available to call - initLedger , queryCar , queryAllCars
, createCar and changeCarOwner . Let’s take a closer look at the queryAllCars function to see how it
interacts with the ledger.

func (s *SmartContract) queryAllCars(APIstub shim.ChaincodeStubInterface) sc.Response
→˓{

startKey := "CAR0"
endKey := "CAR999"

resultsIterator, err := APIstub.GetStateByRange(startKey, endKey)

The function uses the Fabric’s shim interface GetStateByRange to return ledger data between the args of
startKey and endKey . Those keys are defined as CAR0 and CAR999 respectively. Therefore, we could
theoretically create 1,000 cars (assuming the keys are tagged properly) and a queryAllCars would reveal every
one.

Below is a representation of how an app would call different functions in chaincode.

44 Chapter 9. Writing Your First Application

hyperledger-fabricdocs Documentation, Release master

We can see our queryAllCars function up there, as well as one called createCar that will allow us to update
the ledger and ultimately append a new block to the chain. But first, let’s do another query.

Go back to the query.js program and edit the constructor request to query a specific car. We’ll do this by changing
the function from queryAllCars to queryCar and passing a specific “Key” to the args parameter. Let’s use
CAR4 here. So our edited query.js program should now contain the following:

const request = {
chaincodeId: options.chaincode_id,
txId: transaction_id,
fcn: 'queryCar',
args: ['CAR4']

Save the program and navigate back to your fabcar directory. Now run the program again:

node query.js

You should see the following:

{"colour":"black","make":"Tesla","model":"S","owner":"Adriana"}

So we’ve gone from querying all cars to querying just one, Adriana’s black Tesla Model S. Using the queryCar
function, we can query against any key (e.g. CAR0) and get whatever make, model, color, and owner correspond to
that car.

Great. Now you should be comfortable with the basic query functions in the chaincode, and the handful of parameters
in the query program. Time to update the ledger...

Updating the Ledger

Now that we’ve done a few ledger queries and added a bit of code, we’re ready to update the ledger. There are a lot of
potential updates we could make, but let’s just create a new car for starters.

Ledger updates start with an application generating a transaction proposal. Just like query, a request is constructed to
identify the channel ID, function, and specific smart contract to target for the transaction. The program then calls the
channel.SendTransactionProposal API to send the transaction proposal to the peer(s) for endorsement.

The network (i.e. endorsing peer) returns a proposal response, which the application uses to build and sign a transac-
tion request. This request is sent to the ordering service by calling the channel.sendTransaction API. The
ordering service will bundle the transaction into a block and then “deliver” the block to all peers on a channel for
validation. (In our case we have only the single endorsing peer.)

9.4. Updating the Ledger 45

hyperledger-fabricdocs Documentation, Release master

Finally the application uses the eh.setPeerAddr API to connect to the peer’s event listener port, and calls
eh.registerTxEvent to register events associated with a specific transaction ID. This API allows the appli-
cation to know the fate of a transaction (i.e. successfully committed or unsuccessful). Think of it as a notification
mechanism.

Note: We don’t go into depth here on a transaction’s lifecycle. Consult the Transaction Flow documentation for
lower level details on how a transaction is ultimately committed to the ledger.

The goal with our initial invoke is to simply create a new asset (car in this case). We have a separate javascript program
- invoke.js - that we will use for these transactions. Just like query, use an editor to open the program and navigate
to the codeblock where we construct our invocation:

// createCar - requires 5 args, ex: args: ['CAR11', 'Honda', 'Accord', 'Black', 'Tom
→˓'],
// changeCarOwner - requires 2 args , ex: args: ['CAR10', 'Barry'],
// send proposal to endorser
var request = {

targets: targets,
chaincodeId: options.chaincode_id,
fcn: '',
args: [''],
chainId: options.channel_id,
txId: tx_id

You’ll see that we can call one of two functions - createCar or changeCarOwner . Let’s create a red Chevy
Volt and give it to an owner named Nick. We’re up to CAR9 on our ledger, so we’ll use CAR10 as the identifying key
here. The updated codeblock should look like this:

var request = {
targets: targets,
chaincodeId: options.chaincode_id,
fcn: 'createCar',
args: ['CAR10', 'Chevy', 'Volt', 'Red', 'Nick'],
chainId: options.channel_id,
txId: tx_id

Save it and run the program:

node invoke.js

There will be some output in the terminal about Proposal Response and Transaction ID. However, all we’re concerned
with is this message:

The transaction has been committed on peer localhost:7053

The peer emits this event notification, and our application receives it thanks to our eh.registerTxEvent API.
So now if we go back to our query.js program and call the queryCar function against an arg of CAR10 , we
should see the following:

Response is {"colour":"Red","make":"Chevy","model":"Volt","owner":"Nick"}

Finally, let’s call our last function - changeCarOwner . Nick is feeling generous and he wants to give his Chevy
Volt to a man named Barry. So, we simply edit invoke.js to reflect the following:

var request = {
targets: targets,

46 Chapter 9. Writing Your First Application

hyperledger-fabricdocs Documentation, Release master

chaincodeId: options.chaincode_id,
fcn: 'changeCarOwner',
args: ['CAR10', 'Barry'],
chainId: options.channel_id,
txId: tx_id

Execute the program again - node invoke.js - and then run the query app one final time. We are still querying
against CAR10 , so we should see:

Response is {"colour":"Red","make":"Chevy","model":"Volt","owner":"Barry"}

Additional Resources

The Hyperledger Fabric Node SDK repo is an excellent resource for deeper documentation and sample code. You can
also consult the Fabric community and component experts on Hyperledger Rocket Chat.

9.5. Additional Resources 47

https://github.com/hyperledger/fabric-sdk-node
https://chat.hyperledger.org/home

hyperledger-fabricdocs Documentation, Release master

48 Chapter 9. Writing Your First Application

CHAPTER 10

Chaincode Tutorials

What is Chaincode?

Chaincode is a program, written in Go, and eventually in other programming languages such as Java, that imple-
ments a prescribed interface. Chaincode runs in a secured Docker container isolated from the endorsing peer process.
Chaincode initializes and manages ledger state through transactions submitted by applications.

A chaincode typically handles business logic agreed to by members of the network, so it may be considered as a
“smart contract”. State created by a chaincode is scoped exclusively to that chaincode and can’t be accessed directly
by another chaincode. However, within the same network, given the appropriate permission a chaincode may invoke
another chaincode to access its state.

Two Personas

We offer two different perspectives on chaincode. One, from the perspective of an application developer developing
a blockchain application/solution entitled Chaincode for Developers, and the other, Chaincode for Operators oriented
to the blockchain network operator who is responsible for managing a blockchain network, and who would leverage
the Fabric API to install, instantiate, and upgrade chaincode, but would likely not be involved in the development of a
chaincode application.

49

https://golang.org

hyperledger-fabricdocs Documentation, Release master

50 Chapter 10. Chaincode Tutorials

CHAPTER 11

Chaincode for Developers

What is Chaincode?

Chaincode is a program, written in Go that implements a prescribed interface. Eventually, other programming lan-
guages such as Java, will be supported. Chaincode runs in a secured Docker container isolated from the endorsing
peer process. Chaincode initializes and manages the ledger state through transactions submitted by applications.

A chaincode typically handles business logic agreed to by members of the network, so it similar to a “smart contract”.
Ledger state created by a chaincode is scoped exclusively to that chaincode and can’t be accessed directly by another
chaincode. Given the appropriate permission, a chaincode may invoke another chaincode to access its state within the
same network.

In the following sections, we will explore chaincode through the eyes of an application developer. We’ll present a
simple chaincode sample application and walk through the purpose of each method in the Chaincode Shim API.

Chaincode API

Every chaincode program must implement the Chaincode interface whose methods are called in response to received
transactions. In particular the Init method is called when a chaincode receives an instantiate or upgrade
transaction so that the chaincode may perform any necessary initialization, including initialization of application state.
The Invoke method is called in response to receiving an invoke transaction to process transaction proposals.

The other interface in the chaincode “shim” APIs is the ChaincodeStubInterface which is used to access and modify
the ledger, and to make invocations between chaincodes.

In this tutorial, we will demonstrate the use of these APIs by implementing a simple chaincode application that
manages simple “assets”.

Simple Asset Chaincode

Our application is a basic sample chaincode to create assets (key-value pairs) on the ledger.

Choosing a Location for the Code

If you haven’t been doing programming in Go, you may want to make sure that you have :ref:_Golang installed and
your system properly configured.

Now, you will want to create a directory for your chaincode application as a child directory of $GOPATH/src/ .

51

https://golang.org
https://github.com/hyperledger/fabric/blob/master/core/chaincode/shim/interfaces.go#L28
https://github.com/hyperledger/fabric/blob/master/core/chaincode/shim/interfaces.go#L42

hyperledger-fabricdocs Documentation, Release master

To keep things simple, let’s use the following command:

mkdir -p $GOPATH/src/sacc && cd $GOPATH/src/sacc

Now, let’s create the source file that we’ll fill in with code:

touch sacc.go

Housekeeping

First, let’s start with some housekeeping. As with every chaincode, it implements the Chaincode interface
<https://github.com/hyperledger/fabric/blob/master/core/chaincode/shim/interfaces.go#L28>_, in particular, Init
and Invoke functions. So, let’s add the go import statements for the necessary dependencies for our chaincode.
We’ll import the chaincode shim package and the peer protobuf package.

package main

import (
"fmt"

"github.com/hyperledger/fabric/core/chaincode/shim"
"github.com/hyperledger/fabric/protos/peer"

)

Initializing the Chaincode

Next, we’ll implement the Init function.

// Init is called during chaincode instantiation to initialize any data.
func (t *SimpleAsset) Init(stub shim.ChaincodeStubInterface) peer.Response {

}

Note: Note that chaincode upgrade also calls this function. When writing a chaincode that will upgrade an existing
one, make sure to modify the Init function appropriately. In particular, provide an empty “Init” method if there’s
no “migration” or nothing to be initialized as part of the upgrade.

Next, we’ll retrieve the arguments to the Init call using the ChaincodeStubInterface.GetStringArgs
function and check for validity. In our case, we are expecting a key-value pair.

// Init is called during chaincode instantiation to initialize any
// data. Note that chaincode upgrade also calls this function to reset
// or to migrate data, so be careful to avoid a scenario where you
// inadvertently clobber your ledger's data!
func (t *SimpleAsset) Init(stub shim.ChaincodeStubInterface) peer.Response {
// Get the args from the transaction proposal
args := stub.GetStringArgs()
if len(args) != 2 {

return shim.Error("Incorrect arguments. Expecting a key and a value")
}

}

52 Chapter 11. Chaincode for Developers

https://github.com/hyperledger/fabric/blob/master/core/chaincode/shim/interfaces.go#L28

hyperledger-fabricdocs Documentation, Release master

Next, now that we have established that the call is valid, we’ll store the initial state in the ledger. To do this, we will
call ChaincodeStubInterface.PutState with the key and value passed in as the arguments. Assuming all
went well, return a peer.Response object that indicates the initialization was a success.

// Init is called during chaincode instantiation to initialize any
// data. Note that chaincode upgrade also calls this function to reset
// or to migrate data, so be careful to avoid a scenario where you
// inadvertently clobber your ledger's data!
func (t *SimpleAsset) Init(stub shim.ChaincodeStubInterface) peer.Response {

// Get the args from the transaction proposal
args := stub.GetStringArgs()
if len(args) != 2 {
return shim.Error("Incorrect arguments. Expecting a key and a value")

}

// Set up any variables or assets here by calling stub.PutState()

// We store the key and the value on the ledger
err := stub.PutState(args[0], []byte(args[1]))
if err != nil {
return shim.Error(fmt.Sprintf("Failed to create asset: %s", args[0]))

}
return shim.Success(nil)

}

Invoking the Chaincode

First, let’s add the Invoke function’s signature.

// Invoke is called per transaction on the chaincode. Each transaction is
// either a 'get' or a 'set' on the asset created by Init function. The 'set'
// method may create a new asset by specifying a new key-value pair.
func (t *SimpleAsset) Invoke(stub shim.ChaincodeStubInterface) peer.Response {

}

As with the Init function above, we need to extract the arguments from the ChaincodeStubInterface . The
Invoke function’s arguments will be the name of the chaincode application function to invoke. In our case, our
application will simply have two functions: set and get , that allow the value of an asset to be set or its current
state to be retrieved. We first call ChaincodeStubInterface.GetFunctionAndParameters to extract the
function name and the parameters to that chaincode application function.

// Invoke is called per transaction on the chaincode. Each transaction is
// either a 'get' or a 'set' on the asset created by Init function. The Set
// method may create a new asset by specifying a new key-value pair.
func (t *SimpleAsset) Invoke(stub shim.ChaincodeStubInterface) peer.Response {

// Extract the function and args from the transaction proposal
fn, args := stub.GetFunctionAndParameters()

}

Next, we’ll validate the function name as being either set or get , and invoke those chaincode application func-
tions, returning an appropriate response via the shim.Success or shim.Error functions that will serialize the
response into a gRPC protobuf message.

11.3. Simple Asset Chaincode 53

hyperledger-fabricdocs Documentation, Release master

// Invoke is called per transaction on the chaincode. Each transaction is
// either a 'get' or a 'set' on the asset created by Init function. The Set
// method may create a new asset by specifying a new key-value pair.
func (t *SimpleAsset) Invoke(stub shim.ChaincodeStubInterface) peer.Response {

// Extract the function and args from the transaction proposal
fn, args := stub.GetFunctionAndParameters()

var result string
var err error
if fn == "set" {

result, err = set(stub, args)
} else {

result, err = get(stub, args)
}
if err != nil {

return shim.Error(err.Error())
}

// Return the result as success payload
return shim.Success([]byte(result))

}

Implementing the Chaincode Application

As noted, our chaincode application implements two functions that can be invoked via the Invoke function. Let’s
implement those functions now. Note that as we mentioned above, to access the ledger’s state, we will leverage the
ChaincodeStubInterface.PutState and ChaincodeStubInterface.GetState functions of the
chaincode shim API.

// Set stores the asset (both key and value) on the ledger. If the key exists,
// it will override the value with the new one
func set(stub shim.ChaincodeStubInterface, args []string) (string, error) {

if len(args) != 2 {
return "", fmt.Errorf("Incorrect arguments. Expecting a key and a value")

}

err := stub.PutState(args[0], []byte(args[1]))
if err != nil {

return "", fmt.Errorf("Failed to set asset: %s", args[0])
}
return args[1], nil

}

// Get returns the value of the specified asset key
func get(stub shim.ChaincodeStubInterface, args []string) (string, error) {

if len(args) != 1 {
return "", fmt.Errorf("Incorrect arguments. Expecting a key")

}

value, err := stub.GetState(args[0])
if err != nil {

return "", fmt.Errorf("Failed to get asset: %s with error: %s", args[0],
→˓err)

}
if value == nil {

return "", fmt.Errorf("Asset not found: %s", args[0])

54 Chapter 11. Chaincode for Developers

hyperledger-fabricdocs Documentation, Release master

}
return string(value), nil

}

Pulling it All Together

Finally, we need to add the main function, which will call the shim.Start function. Here’s the whole chaincode
program source.

package main

import (
"fmt"

"github.com/hyperledger/fabric/core/chaincode/shim"
"github.com/hyperledger/fabric/protos/peer"

)

// SimpleAsset implements a simple chaincode to manage an asset
type SimpleAsset struct {
}

// Init is called during chaincode instantiation to initialize any
// data. Note that chaincode upgrade also calls this function to reset
// or to migrate data.
func (t *SimpleAsset) Init(stub shim.ChaincodeStubInterface) peer.Response {

// Get the args from the transaction proposal
args := stub.GetStringArgs()
if len(args) != 2 {

return shim.Error("Incorrect arguments. Expecting a key and a value")
}

// Set up any variables or assets here by calling stub.PutState()

// We store the key and the value on the ledger
err := stub.PutState(args[0], []byte(args[1]))
if err != nil {

return shim.Error(fmt.Sprintf("Failed to create asset: %s", args[0]))
}
return shim.Success(nil)

}

// Invoke is called per transaction on the chaincode. Each transaction is
// either a 'get' or a 'set' on the asset created by Init function. The Set
// method may create a new asset by specifying a new key-value pair.
func (t *SimpleAsset) Invoke(stub shim.ChaincodeStubInterface) peer.Response {

// Extract the function and args from the transaction proposal
fn, args := stub.GetFunctionAndParameters()

var result string
var err error
if fn == "set" {

result, err = set(stub, args)
} else { // assume 'get' even if fn is nil

result, err = get(stub, args)
}

11.3. Simple Asset Chaincode 55

hyperledger-fabricdocs Documentation, Release master

if err != nil {
return shim.Error(err.Error())

}

// Return the result as success payload
return shim.Success([]byte(result))

}

// Set stores the asset (both key and value) on the ledger. If the key exists,
// it will override the value with the new one
func set(stub shim.ChaincodeStubInterface, args []string) (string, error) {

if len(args) != 2 {
return "", fmt.Errorf("Incorrect arguments. Expecting a key and a value")

}

err := stub.PutState(args[0], []byte(args[1]))
if err != nil {

return "", fmt.Errorf("Failed to set asset: %s", args[0])
}
return args[1], nil

}

// Get returns the value of the specified asset key
func get(stub shim.ChaincodeStubInterface, args []string) (string, error) {

if len(args) != 1 {
return "", fmt.Errorf("Incorrect arguments. Expecting a key")

}

value, err := stub.GetState(args[0])
if err != nil {

return "", fmt.Errorf("Failed to get asset: %s with error: %s", args[0],
→˓err)

}
if value == nil {

return "", fmt.Errorf("Asset not found: %s", args[0])
}
return string(value), nil

}

// main function starts up the chaincode in the container during instantiate
func main() {

if err := shim.Start(new(SimpleAsset)); err != nil {
fmt.Printf("Error starting SimpleAsset chaincode: %s", err)

}
}

Building Chaincode

Now let’s compile your chaincode.

go build

Assuming there are no errors, now we can proceed to the next step, testing your chaincode.

56 Chapter 11. Chaincode for Developers

hyperledger-fabricdocs Documentation, Release master

Testing Using dev mode

Normally chaincodes are started and maintained by peer. However in “dev mode”, chaincode is built and started by
the user. This mode is useful during chaincode development phase for rapid code/build/run/debug cycle turnaround.

We start “dev mode” by leveraging pre-generated orderer and channel artifacts for a sample dev network. As such, the
user can immediately jump into the process of compiling chaincode and driving calls.

Install Fabric Samples

If you haven’t already done so, please install the Hyperledger Fabric Samples.

Navigate to the chaincode-docker-devmode directory of the fabric-samples clone:

cd chaincode-docker-devmode

Download docker images

We need four docker images in order for “dev mode” to run against the supplied docker compose script. If you installed
the fabric-samples repo clone and followed the instructions to download-platform-specific-binaries, then you
should have the necessary Docker images installed locally.

Note: If you choose to manually pull the images then you must retag them as latest .

Issue a docker images command to reveal your local Docker Registry. You should see something similar to
following:

docker images
REPOSITORY TAG IMAGE ID
→˓ CREATED SIZE
hyperledger/fabric-tools latest e09f38f8928d
→˓ 4 hours ago 1.32 GB
hyperledger/fabric-tools x86_64-1.0.0-rc1-snapshot-f20846c6 e09f38f8928d
→˓ 4 hours ago 1.32 GB
hyperledger/fabric-orderer latest 0df93ba35a25
→˓ 4 hours ago 179 MB
hyperledger/fabric-orderer x86_64-1.0.0-rc1-snapshot-f20846c6 0df93ba35a25
→˓ 4 hours ago 179 MB
hyperledger/fabric-peer latest 533aec3f5a01
→˓ 4 hours ago 182 MB
hyperledger/fabric-peer x86_64-1.0.0-rc1-snapshot-f20846c6 533aec3f5a01
→˓ 4 hours ago 182 MB
hyperledger/fabric-ccenv latest 4b70698a71d3
→˓ 4 hours ago 1.29 GB
hyperledger/fabric-ccenv x86_64-1.0.0-rc1-snapshot-f20846c6 4b70698a71d3
→˓ 4 hours ago 1.29 GB

Note: If you retrieved the images through the download-platform-specific-binaries, then you will see additional
images listed. However, we are only concerned with these four.

Now open three terminals and navigate to your chaincode-docker-devmode directory in each.

11.4. Install Fabric Samples 57

hyperledger-fabricdocs Documentation, Release master

Terminal 1 - Start the network

docker-compose -f docker-compose-simple.yaml up

The above starts the network with the SingleSampleMSPSolo orderer profile and launches the peer in “dev
mode”. It also launches two additional containers - one for the chaincode environment and a CLI to interact with the
chaincode. The commands for create and join channel are embedded in the CLI container, so we can jump immediately
to the chaincode calls.

Terminal 2 - Build & start the chaincode

docker exec -it chaincode bash

You should see the following:

root@d2629980e76b:/opt/gopath/src/chaincode#

Now, compile your chaincode:

cd sacc
go build

Now run the chaincode:

CORE_PEER_ADDRESS=peer:7051 CORE_CHAINCODE_ID_NAME=mycc:0 ./sacc

The chaincode is started with peer and chaincode logs indicating successful registration with the peer. Note that at this
stage the chaincode is not associated with any channel. This is done in subsequent steps using the instantiate
command.

Terminal 3 - Use the chaincode

Even though you are in --peer-chaincodedev mode, you still have to install the chaincode so the life-
cycle system chaincode can go through its checks normally. This requirement may be removed in future when in
--peer-chaincodedev mode.

We’ll leverage the CLI container to drive these calls.

docker exec -it cli bash

peer chaincode install -p chaincodedev/chaincode/sacc -n mycc -v 0
peer chaincode instantiate -n mycc -v 0 -c '{"Args":["a","10"]}' -C myc

Now issue an invoke to change the value of “a” to “20”.

peer chaincode invoke -n mycc -c '{"Args":["set", "a", "20"]}' -C myc

Finally, query a . We should see a value of 20 .

peer chaincode query -n mycc -c '{"Args":["query","a"]}' -C myc

58 Chapter 11. Chaincode for Developers

hyperledger-fabricdocs Documentation, Release master

Testing new chaincode

By default, we mount only sacc . However, you can easily test different chaincodes by adding them to the
chaincode subdirectory and relaunching your network. At this point they will be accessible in your chaincode
container.

11.9. Testing new chaincode 59

hyperledger-fabricdocs Documentation, Release master

60 Chapter 11. Chaincode for Developers

CHAPTER 12

Chaincode for Operators

What is Chaincode?

Chaincode is a program, written in Go, and eventually in other programming languages such as Java, that imple-
ments a prescribed interface. Chaincode runs in a secured Docker container isolated from the endorsing peer process.
Chaincode initializes and manages ledger state through transactions submitted by applications.

A chaincode typically handles business logic agreed to by members of the network, so it may be considered as a
“smart contract”. State created by a chaincode is scoped exclusively to that chaincode and can’t be accessed directly
by another chaincode. However, within the same network, given the appropriate permission a chaincode may invoke
another chaincode to access its state.

In the following sections, we will explore chaincode through the eyes of a blockchain network operator, Noah. For
Noah’s interests, we will focus on chaincode lifecycle operations; the process of packaging, installing, instantiating
and upgrading the chaincode as a function of the chaincode’s operational lifecycle within a blockchain network.

Chaincode lifecycle

The Hyperledger Fabric API enables interaction with the various nodes in a blockchain network - the peers, orderers
and MSPs - and it also allows one to package, install, instantiate and upgrade chaincode on the endorsing peer nodes.
The Hyperledger Fabric language-specific SDKs abstract the specifics of the Hyperledger Fabric’s API to facilitate
application development, though it can be used to manage a chaincode’s lifecycle. Additionally, the Hyperledger
Fabric’s API can be accessed directly via the CLI, which we will use in this document.

We provide four commands to manage a chaincode’s lifecycle: package , install , instantiate , and
upgrade . In a future release, we are considering adding stop and start transactions to disable and re-enable
a chaincode without having to actually uninstall it. After a chaincode has been successfully installed and instantiated,
the chaincode is active (running) and can process transactions via the invoke transaction. A chaincode may be
upgraded any time after it has been installed.

Packaging

The chaincode package consists of 3 parts:

• the chaincode, as defined by ChaincodeDeploymentSpec or CDS. The CDS defines the chaincode pack-
age in terms of the code and other properties such as name and version,

• an optional instantiation policy which can be syntactically described by the same policy used for endorsement
and described in Endorsement policies, and

61

https://golang.org

hyperledger-fabricdocs Documentation, Release master

• a set of signatures by the entities that “own” the chaincode.

The signatures serve the following purposes:

• to establish an ownership of the chaincode,

• to allow verification of the contents of the package, and

• to allow detection of package tampering.

The creator of the instantiation transaction of the chaincode on a channel is validated against the instantiation policy
of the chaincode.

Creating the package

There are two approaches to packaging chaincode. One for when you want to have multiple owners of a chaincode,
and hence need to have the chaincode package signed by multiple identities. This workflow requires that we initially
create a signed chaincode package (a SignedCDS) which is subsequently passed serially to each of the other owners
for signing.

The simpler workflow is for when you are deploying a SignedCDS that has only the signature of the identity of the
node that is issuing the install transaction.

We will address the more complex case first. However, you may skip ahead to the Installing chaincode section below
if you do not need to worry about multiple owners just yet.

To create a signed chaincode package, use the following command:

peer chaincode package -n mycc -p github.com/hyperledger/fabric/examples/chaincode/go/
→˓chaincode_example02 -v 0 -s -S -i "AND('OrgA.admin')" ccpack.out

The -s option creates a package that can be signed by multiple owners as opposed to simply creating a raw CDS.
When -s is specified, the -S option must also be specified if other owners are going to need to sign. Otherwise, the
process will create a SignedCDS that includes only the instantiation policy in addition to the CDS.

The -S option directs the process to sign the package using the MSP identified by the value of the localMspid
property in core.yaml .

The -S option is optional. However if a package is created without a signature, it cannot be signed by any other owner
using the signpackage command.

The optional -i option allows one to specify an instantiation policy for the chaincode. The instantiation policy has
the same format as an endorsement policy and specifies which identities can instantiate the chaincode. In the example
above, only the admin of OrgA is allowed to instantiate the chaincode. If no policy is provided, the default policy is
used, which only allows the admin identity of the peer’s MSP to instantiate chaincode.

Package signing

A chaincode package that was signed at creation can be handed over to other owners for inspection and signing. The
workflow supports out-of-band signing of chaincode package.

The ChaincodeDeploymentSpec may be optionally be signed by the collective owners to create a SignedChaincod-
eDeploymentSpec (or SignedCDS). The SignedCDS contains 3 elements:

1. The CDS contains the source code, the name, and version of the chaincode.

2. An instantiation policy of the chaincode, expressed as endorsement policies.

3. The list of chaincode owners, defined by means of Endorsement.

62 Chapter 12. Chaincode for Operators

https://github.com/hyperledger/fabric/blob/master/protos/peer/chaincode.proto#L78
https://github.com/hyperledger/fabric/blob/master/protos/peer/signed_cc_dep_spec.proto#L26
https://github.com/hyperledger/fabric/blob/master/protos/peer/signed_cc_dep_spec.proto#L26
https://github.com/hyperledger/fabric/blob/master/protos/peer/proposal_response.proto#L111

hyperledger-fabricdocs Documentation, Release master

Note: Note that this endorsement policy is determined out-of-band to provide proper MSP principals when the
chaincode is instantiated on some channels. If the instantiation policy is not specified, the default policy is any MSP
administrator of the channel.

Each owner endorses the ChaincodeDeploymentSpec by combining it with that owner’s identity (e.g. certificate) and
signing the combined result.

A chaincode owner can sign a previously created signed package using the following command:

peer chaincode signpackage ccpack.out signedccpack.out

Where ccpack.out and signedccpack.out are the input and output packages, respectively.
signedccpack.out contains an additional signature over the package signed using the Local MSP.

Installing chaincode

The install transaction packages a chaincode’s source code into a prescribed format called a
ChaincodeDeploymentSpec (or CDS) and installs it on a peer node that will run that chaincode.

Note: You must install the chaincode on each endorsing peer node of a channel that will run your chaincode.

When the install API is given simply a ChaincodeDeploymentSpec , it will default the instantiation policy
and include an empty owner list.

Note: Chaincode should only be installed on endorsing peer nodes of the owning members of the chaincode to protect
the confidentiality of the chaincode logic from other members on the network. Those members without the chaincode,
can’t be the endorsers of the chaincode’s transactions; that is, they can’t execute the chaincode. However, they can
still validate and commit the transactions to the ledger.

To install a chaincode, send a SignedProposal to the lifecycle system chaincode (LSCC) described in the
System Chaincode section. For example, to install the sacc sample chaincode described in section ‘Simple Asset
Chaincode‘_ using the CLI, the command would look like the following:

peer chaincode install -n asset_mgmt -v 1.0 -p sacc

The CLI internally creates the SignedChaincodeDeploymentSpec for sacc and sends it to the local peer, which calls
the Install method on the LSCC. The argument to the -p option specifies the path to the chaincode, which must
be located within the source tree of the user’s GOPATH , e.g. $GOPATH/src/sacc . See the CLI section for a
complete description of the command options.

Note that in order to install on a peer, the signature of the SignedProposal must be from 1 of the peer’s local MSP
administrators.

Instantiate

The instantiate transaction invokes the lifecycle System Chaincode (LSCC) to create and initialize
a chaincode on a channel. This is a chaincode-channel binding process: a chaincode may be bound to any number of
channels and operate on each channel individually and independently. In other words, regardless of how many other
channels on which a chaincode might be installed and instantiated, state is kept isolated to the channel to which a
transaction is submitted.

12.3. Packaging 63

https://github.com/hyperledger/fabric/blob/master/protos/peer/proposal.proto#L104

hyperledger-fabricdocs Documentation, Release master

The creator of an instantiate transaction must satisfy the instantiation policy of the chaincode included in
SignedCDS and must also be a writer on the channel, which is configured as part of the channel creation. This is
important for the security of the channel to prevent rogue entities from deploying chaincodes or tricking members to
execute chaincodes on an unbound channel.

For example, recall that the default instantiation policy is any channel MSP administrator, so the creator of a chaincode
instantiate transaction must be a member of the channel administrators. When the transaction proposal arrives at the
endorser, it verifies the creator’s signature against the instantiation policy. This is done again during the transaction
validation before committing it to the ledger.

The instantiate transaction also sets up the endorsement policy for that chaincode on the channel. The endorsement
policy describes the attestation requirements for the transaction result to be accepted by members of the channel.

For example, using the CLI to instantiate the sacc chaincode and initialize the state with john and 0 , the command
would look like the following:

peer chaincode instantiate -n sacc -v 1.0 -c '{"Args":["john","0"]}' -P "OR ('Org1.
→˓member','Org2.member')"

Note: Note the endorsement policy (CLI uses polish notation), which requires an endorsement from either member
of Org1 or Org2 for all transactions to sacc. That is, either Org1 or Org2 must sign the result of executing the Invoke
on sacc for the transactions to be valid.

After being successfully instantiated, the chaincode enters the active state on the channel and is ready to process any
transaction proposals of type ENDORSER_TRANSACTION. The transactions are processed concurrently as they
arrive at the endorsing peer.

Upgrade

A chaincode may be upgraded any time by changing its version, which is part of the SignedCDS. Other parts, such as
owners and instantiation policy are optional. However, the chaincode name must be the same; otherwise it would be
considered as a totally different chaincode.

Prior to upgrade, the new version of the chaincode must be installed on the required endorsers. Upgrade is a transaction
similar to the instantiate transaction, which binds the new version of the chaincode to the channel. Other channels
bound to the old version of the chaincode still run with the old version. In other words, the upgrade transaction
only affects one channel at a time, the channel to which the transaction is submitted.

Note: Note that since multiple versions of a chaincode may be active simultaneously, the upgrade process doesn’t
automatically remove the old versions, so user must manage this for the time being.

There’s one subtle difference with the instantiate transaction: the upgrade transaction is checked against the
current chaincode instantiation policy, not the new policy (if specified). This is to ensure that only existing members
specified in the current instantiation policy may upgrade the chaincode.

Note: Note that during upgrade, the chaincode Init function is called to perform any data related updates or
re-initialize it, so care must be taken to avoid resetting states when upgrading chaincode.

64 Chapter 12. Chaincode for Operators

https://github.com/hyperledger/fabric/blob/master/protos/common/common.proto#L42

hyperledger-fabricdocs Documentation, Release master

Stop and Start

Note that stop and start lifecycle transactions have not yet been implemented. However, you may stop a chain-
code manually by removing the chaincode container and the SignedCDS package from each of the endorsers. This is
done by deleting the chaincode’s container on each of the hosts or virtual machines on which the endorsing peer nodes
are running, and then deleting the SignedCDS from each of the endorsing peer nodes:

Note: TODO - in order to delete the CDS from the peer node, you would need to enter the peer node’s container,
first. We really need to provide a utility script that can do this.

docker rm -f <container id>
rm /var/hyperledger/production/chaincodes/<ccname>:<ccversion>

Stop would be useful in the workflow for doing upgrade in controlled manner, where a chaincode can be stopped on a
channel on all peers before issuing an upgrade.

CLI

Note: We are assessing the need to distribute platform-specific binaries for the Hyperledger Fabric peer binary. For
the time being, you can simply invoke the commands from within a running docker container.

To view the currently available CLI commands, execute the following command from within a running
fabric-peer docker container:

docker run -it hyperledger/fabric-peer bash
peer chaincode --help

Which shows output similar to the example below:

Usage:
peer chaincode [command]

Available Commands:
install Package the specified chaincode into a deployment spec and save it on

→˓the peer's path.
instantiate Deploy the specified chaincode to the network.
invoke Invoke the specified chaincode.
package Package the specified chaincode into a deployment spec.
query Query using the specified chaincode.
signpackage Sign the specified chaincode package
upgrade Upgrade chaincode.

Flags:
--cafile string Path to file containing PEM-encoded trusted certificate(s)

→˓for the ordering endpoint
-C, --chainID string The chain on which this command should be executed (default

→˓"testchainid")
-c, --ctor string Constructor message for the chaincode in JSON format

→˓(default "{}")
-E, --escc string The name of the endorsement system chaincode to be used for

→˓this chaincode
-l, --lang string Language the chaincode is written in (default "golang")
-n, --name string Name of the chaincode

12.3. Packaging 65

hyperledger-fabricdocs Documentation, Release master

-o, --orderer string Ordering service endpoint
-p, --path string Path to chaincode
-P, --policy string The endorsement policy associated to this chaincode
-t, --tid string Name of a custom ID generation algorithm (hashing and

→˓decoding) e.g. sha256base64
--tls Use TLS when communicating with the orderer endpoint

-u, --username string Username for chaincode operations when security is enabled
-v, --version string Version of the chaincode specified in install/instantiate/

→˓upgrade commands
-V, --vscc string The name of the verification system chaincode to be used

→˓for this chaincode

Global Flags:
--logging-level string Default logging level and overrides, see core.yaml

→˓for full syntax
--test.coverprofile string Done (default "coverage.cov")

Use "peer chaincode [command] --help" for more information about a command.

To facilitate its use in scripted applications, the peer command always produces a non-zero return code in the event
of command failure.

Example of chaincode commands:

peer chaincode install -n mycc -v 0 -p path/to/my/chaincode/v0
peer chaincode instantiate -n mycc -v 0 -c '{"Args":["a", "b", "c"]} -C mychannel
peer chaincode install -n mycc -v 1 -p path/to/my/chaincode/v1
peer chaincode upgrade -n mycc -v 1 -c '{"Args":["d", "e", "f"]} -C mychannel
peer chaincode query -C mychannel -n mycc -c '{"Args":["query","e"]}'
peer chaincode invoke -o orderer.example.com:7050 --tls $CORE_PEER_TLS_ENABLED --
→˓cafile $ORDERER_CA -C mychannel -n mycc -c '{"Args":["invoke","a","b","10"]}'

System chaincode

System chaincode has the same programming model except that it runs within the peer process rather than in an
isolated container like normal chaincode. Therefore, system chaincode is built into the peer executable and doesn’t
follow the same lifecycle described above. In particular, install, instantiate and upgrade do not apply to system
chaincodes.

The purpose of system chaincode is to shortcut gRPC communication cost between peer and chaincode, and tradeoff
the flexibility in management. For example, a system chaincode can only be upgraded with the peer binary. It must
also register with a fixed set of parameters compiled in and doesn’t have endorsement policies or endorsement policy
functionality.

System chaincode is used in Fabric to implement a number of system behaviors so that they can be replaced or modified
as appropriate by a system integrator.

The current list of system chaincodes:

1. LSCC Lifecycle system chaincode handles lifecycle requests described above.

2. CSCC Configuration system chaincode handles channel configuration on the peer side.

3. QSCC Query system chaincode provides ledger query APIs such as getting blocks and transactions.

4. ESCC Endorsement system chaincode handles endorsement by signing the transaction proposal response.

66 Chapter 12. Chaincode for Operators

https://github.com/hyperledger/fabric/blob/master/core/scc/importsysccs.go
https://github.com/hyperledger/fabric/tree/master/core/scc/lscc
https://github.com/hyperledger/fabric/tree/master/core/scc/cscc
https://github.com/hyperledger/fabric/tree/master/core/scc/qscc
https://github.com/hyperledger/fabric/tree/master/core/scc/escc

hyperledger-fabricdocs Documentation, Release master

5. VSCC Validation system chaincode handles the transaction validation, including checking endorsement policy
and multiversioning concurrency control.

Care must be taken when modifying or replacing these system chaincodes, especially LSCC, ESCC and VSCC since
they are in the main transaction execution path. It is worth noting that as VSCC validates a block before committing
it to the ledger, it is important that all peers in the channel compute the same validation to avoid ledger divergence
(non-determinism). So special care is needed if VSCC is modified or replaced.

12.4. System chaincode 67

https://github.com/hyperledger/fabric/tree/master/core/scc/vscc

hyperledger-fabricdocs Documentation, Release master

68 Chapter 12. Chaincode for Operators

CHAPTER 13

Videos

Refer to the Hyperledger Fabric libary on youtube. The collection contains developers demonstrating various v1
features and components such as: ledger, channels, gossip, SDK, chaincode, MSP, and more...

69

https://www.youtube.com/channel/UCCFdgCWH_1vCndMPVqQlwZw

hyperledger-fabricdocs Documentation, Release master

70 Chapter 13. Videos

CHAPTER 14

Best Practices

Coming soon...

Intended to contain best practices and configurations for MSP, networks, ordering service, channels, ACL, stress,
policies, chaincode development, functions, etc...

71

hyperledger-fabricdocs Documentation, Release master

72 Chapter 14. Best Practices

CHAPTER 15

Membership Service Providers (MSP)

The document serves to provide details on the setup and best practices for MSPs.

Membership service provider (MSP) is a component that aims to offer an abstraction of a membership operation
architecture.

In particular, MSP abstracts away all cryptographic mechanisms and protocols behind issuing and validating certifi-
cates, and user authentication. An MSP may define their own notion of identity, and the rules by which those identities
are governed (identity validation) and authenticated (signature generation and verification).

A Fabric blockchain network can be governed by one or more MSPs. In this way Fabric offers modularity of mem-
bership operations, and interoperability across different membership standards and architectures. Fabric currently
supports PKCS #11 libraries.

In the rest of this document we elaborate on the setup of the MSP implementation supported by Fabric, and discuss
best practices concerning its use.

MSP Configuration

To setup an instance of the MSP, its configuration needs to be specified locally at each peer and orderer (to enable peer,
and orderer signing), and on the channels to enable peer, orderer, client identity validation, and respective signature
verification (authentication) by and for all channel members.

Firstly, for each MSP a name needs to be specified in order to reference that MSP in the network (e.g. msp1 ,
org2 , and org3.divA). This is the name under which membership rules of an MSP representing a consortium,
organization or organization division is to be referenced in a channel. This is also referred to as the MSP Identifier or
MSP ID. MSP Identifiers are required to be unique per MSP instance. For example, shall two MSP instances with the
same identifier be detected at the system channel genesis, orderer setup will fail.

In the case of default implementation of MSP, a set of parameters need to be specified to allow for identity (certificate)
validation and signature verification. These parameters are deduced by RFC5280, and include:

• A list of self-signed (X.509) certificates to constitute the root of trust

• A list of X.509 certificates to represent intermediate CAs this provider considers for certificate validation; these
certificates ought to be certified by exactly one of the certificates in the root of trust; intermediate CAs are
optional parameters

• A list of X.509 certificates with a verifiable certificate path to exactly one of the certificates of the root of trust
to represent the administrators of this MSP; owners of these certificates are authorized to request changes to this
MSP configuration (e.g. root CAs, intermediate CAs)

73

http://www.ietf.org/rfc/rfc5280.txt

hyperledger-fabricdocs Documentation, Release master

• A list of Organizational Units that valid members of this MSP should include in their X.509 certificate; this is
an optional configuration parameter, used when, e.g., multiple organisations leverage the same root of trust, and
intermediate CAs, and have reserved an OU field for their members

• A list of certificate revocation lists (CRLs) each corresponding to exactly one of the listed (intermediate or root)
MSP Certificate Authorities; this is an optional parameter

• A list of self-signed (X.509) certificates to constitute the TLS root of trust for TLS certificate.

• A list of X.509 certificates to represent intermediate TLS CAs this provider considers; these certificates ought to
be certified by exactly one of the certificates in the TLS root of trust; intermediate CAs are optional parameters.

Valid identities for this MSP instance are required to satisfy the following conditions:

• They are in the form of X.509 certificates with a verifiable certificate path to exactly one of the root of trust
certificates

• They are not included in any CRL

• And they list one or more of the Organizational Units of the MSP configuration in the OU field of their X.509
certificate structure.

For more information on the validity of identities in the current MSP implementation we refer the reader to msp-
identity-validity-rules.

In addition to verification related parameters, for the MSP to enable the node on which it is instantiated to sign or
authenticate, one needs to specify:

• The signing key used for signing by the node, and

• The node’s X.509 certificate, that is a valid identity under the verification parameters of this MSP

It is important to note that MSP identities never expire, they can only be revoked by adding them the appropriate
CRLs. In addition, for TLS certificates, fabric does not offer support for revocation.

How to generate MSP certificates and their signing keys?

To generate X.509 certificates to feed its MSP configuration, the application can use Openssl.

Alternatively one can use cryptogen tool, whose operation is explained in Getting Started.

For fabric-ca related certificate generation, we refer the reader to the fabric-ca related documentation - Setup/ca-setup.

MSP setup on the peer & orderer side

To set up a local MSP (for either a peer or an orderer), the administrator should create a folder (e.g.
$MY_PATH/mspconfig) that contains six subfolders and a file:

1. a folder admincerts to include PEM files each corresponding to an administrator certificate

2. a folder cacerts to include PEM files each corresponding to a root CA’s certificate

3. (optional) a folder intermediatecerts to include PEM files each corresponding to an intermediate CA’s
certificate

4. (optional) a file config.yaml to include information on the considered OUs; the latter are defined
as pairs of <Certificate,OrganizationalUnitIdentifier> entries of a yaml array called
OrganizationalUnitIdentifiers , where Certificate represents the relative path to the cer-
tificate of the certificate authority (root or intermediate) that should be considered for certifying members of

74 Chapter 15. Membership Service Providers (MSP)

https://www.openssl.org/

hyperledger-fabricdocs Documentation, Release master

this organizational unit (e.g. ./cacerts/cacert.pem), and OrganizationalUnitIdentifier represents
the actual string as expected to appear in X.509 certificate OU-field (e.g. “COP”)

5. (optional) a folder crls to include the considered CRLs

6. a folder keystore to include a PEM file with the node’s signing key

7. a folder signcerts to include a PEM file with the node’s X.509 certificate

8. (optional) a folder tlscacerts to include PEM files each corresponding to a TLS root CA’s certificate

9. (optional) a folder tlsintermediatecerts to include PEM files each corresponding to an intermediate
TLS CA’s certificate

In the configuration file of the node (core.yaml file for the peer, and orderer.yaml for the orderer), one needs to specify
the path to the mspconfig folder, and the MSP Identifier of the node’s MSP. The path to the mspconfig folder is
expected to be relative to FABRIC_CFG_PATH and is provided as the value of parameter mspConfigPath for
the peer, and LocalMSPDir for the orderer. The identifier of the node’s MSP is provided as a value of parameter
localMspId for the peer and LocalMSPID for the orderer. These variables can be overriden via the environment
using the CORE prefix for peer (e.g. CORE_PEER_LOCALMSPID) and the ORDERER prefix for the orderer (e.g.
ORDERER_GENERAL_LOCALMSPID). Notice that for the orderer setup, one needs to generate, and provide to the
orderer the genesis block of the system channel. The MSP configuration needs of this block are detailed in the next
section.

Reconfiguration of a “local” MSP is only possible manually, and requires that the peer or orderer process is restarted.
In subsequent releases we aim to offer online/dynamic reconfiguration (i.e. without requiring to stop the node by using
a node managed system chaincode).

Channel MSP setup

At the genesis of the system, verification parameters of all the MSPs that appear in the network need to be specified,
and included in the system channel’s genesis block. Recall that MSP verification parameters consist of the MSP
identifier, the root of trust certificates, intermediate CA and admin certificates, as well as OU specifications and CRLs.
The system genesis block is provided to the orderers at their setup phase, and allows them to authenticate channel
creation requests. Orderers would reject the system genesis block, if the latter includes two MSPs with the same
identifier, and consequently the bootstrapping of the network would fail.

For application channels, the verification components of only the MSPs that govern a channel need to reside in the
channel’s genesis block. We emphasise that it is the responsibility of the application to ensure that correct MSP
configuration information is included in the genesis blocks (or the most recent configuration block) of a channel prior
to instructing one or more of their peers to join the channel.

When bootstrapping a channel with the help of the configtxgen tool, one can configure the channel MSPs by in-
cluding the verification parameters of MSP in the mspconfig folder, and setting that path in the relevant section in
configtx.yaml .

Reconfiguration of an MSP on the channel, including announcements of the certificate revocation lists associated to
the CAs of that MSP is achieved through the creation of a config_update object by the owner of one of the
administrator certificates of the MSP. The client application managed by the admin would then announce this update
to the channels in which this MSP appears.

Best Practices

In this section we elaborate on best practices for MSP configuration in commonly met scenarios.

1) Mapping between organizations/corporations and MSPs

15.4. Channel MSP setup 75

hyperledger-fabricdocs Documentation, Release master

We recommend that there is a one-to-one mapping between organizations and MSPs. If a different mapping type of
mapping is chosen, the following needs to be to considered:

• One organization employing various MSPs. This corresponds to the case of an organization including a
variety of divisions each represented by its MSP, either for management independence reasons, or for privacy
reasons. In this case a peer can only be owned by a single MSP, and will not recognize peers with identities from
other MSPs as peers of the same organization. The implication of this is that peers may share through gossip
organization-scoped data with a set of peers that are members of the same subdivision, and NOT with the full
set of providers constituting the actual organization.

• Multiple organizations using a single MSP. This corresponds to a case of a consortium of organisations that are
governed by similar membership architecture. One needs to know here that peers would propagate organization-
scoped messages to the peers that have an identity under the same MSP regardless of whether they belong to
the same actual organization. This is a limitation of the granularity of MSP definition, and/or of the peer’s
configuration. In future versions of Fabric, this can change as we move towards (i) an identity channel that
contains all membership related information of the network, (ii) peer notion of “trust-zone” being configurable,
where a peer’s administrator specifying at peer setup time whose MSP members should be treated by peers as
authorized to receive organization-scoped messages.

2) One organization has different divisions (say organizational units), to which it wants to grant access to
different channels.

Two ways to handle this:

• Define one MSP to accommodate membership for all organization’s members. Configuration of that MSP
would consist of a list of root CAs, intermediate CAs and admin certificates; and membership identities would
include the organizational unit (OU) a member belongs to. Policies can then be defined to capture members of
a specific OU , and these policies may constitute the read/write policies of a channel or endorsement policies
of a chaincode. A limitation of this approach is that gossip peers would consider peers with membership iden-
tities under their local MSP as members of the same organization, and would consequently gossip with them
organisation-scoped data (e.g. their status).

• Defining one MSP to represent each division. This would involve specifying for each division, a set of
certificates for root CAs, intermediate CAs, and admin Certs, such that there is no overlapping certification path
across MSPs. This would mean that, for example, a different intermediate CA per subdivision is employed.
Here the disadvantage is the management of more than one MSPs instead of one, but this circumvents the
issue present in the previous approach. One could also define one MSP for each division by leveraging an OU
extension of the MSP configuration.

3) Separating clients from peers of the same organization.

In many cases it is required that the “type” of an identity is retrievable from the identity itself (e.g. it may be needed
that endorsements are guaranteed to have derived by peers, and not clients or nodes acting solely as orderers).

There is limited support for such requirements.

One way to allow for this separation is to to create a separate intermediate CA for each node type - one for clients and
one for peers/orderers; and configure two different MSPs - one for clients and one for peers/orderers. Channels this
organization should be accessing would need to include both MSPs, while endorsement policies will leverage only the
MSP that refers to the peers. This would ultimately result in the organization being mapped to two MSP instances,
and would have certain consequences on the way peers and clients interact.

Gossip would not be drastically impacted as all peers of the same organization would still belong to one MSP. Peers
can restrict the execution of certain system chaincodes to local MSP based policies. For example, peers would only
execute “joinChannel” request if the request is signed by the admin of their local MSP who can only be a client (end-
user should be sitting at the origin of that request). We can go around this inconsistency if we accept that the only
clients to be members of a peer/orderer MSP would be the administrators of that MSP.

Another point to be considered with this approach is that peers authorize event registration requests based on mem-
bership of request originator within their local MSP. Clearly, since the originator of the request is a client, the request

76 Chapter 15. Membership Service Providers (MSP)

hyperledger-fabricdocs Documentation, Release master

originator is always doomed to belong to a different MSP than the requested peer and the peer would reject the request.

4) Admin and CA certificates.

It is important to set MSP admin certificates to be different than any of the certificates considered by the MSP for
root of trust , or intermediate CAs. This is a common (security) practice to separate the duties of management
of membership components from the issuing of new certificates, and/or validation of existing ones.

5) Blacklisting an intermediate CA.

As mentioned in previous sections, reconfiguration of an MSP is achieved by reconfiguration mechanisms (manual
reconfiguration for the local MSP instances, and via properly constructed config_update messages for MSP
instances of a channel). Clearly, there are two ways to ensure an intermediate CA considered in an MSP is no longer
considered for that MSP’s identity validation:

1. Reconfigure the MSP to no longer include the certificate of that intermediate CA in the list of trusted intermediate
CA certs. For the locally configured MSP, this would mean that the certificate of this CA is removed from the
intermediatecerts folder.

2. Reconfigure the MSP to include a CRL produced by the root of trust which denounces the mentioned interme-
diate CA’s certificate.

In the current MSP implementation we only support method (1) as it is simpler and does not require blacklisting the
no longer considered intermediate CA.

**5) CAs and TLS CAs

MSP identities’ root CAs and MSP TLS certificates’ root CAs (and relative intermediate CAs) need to be declared in
different folders. This is to avoid confusion between different classes of certificates. Fabric does not forbid to reuse
the same CAs for both MSP identities and TLS certificates but best practices suggest to avoid this in production.

15.5. Best Practices 77

hyperledger-fabricdocs Documentation, Release master

78 Chapter 15. Membership Service Providers (MSP)

CHAPTER 16

Channel Configuration (configtx)

Shared configuration for a Hyperledger Fabric blockchain network is stored in a collection configuration transactions,
one per channel. Each configuration transaction is usually referred to by the shorter name configtx.

Channel configuration has the following important properties:

1. Versioned: All elements of the configuration have an associated version which is advanced with every modifi-
cation. Further, every committed configuration receives a sequence number.

2. Permissioned: Each element of the configuration has an associated policy which governs whether or not modi-
fication to that element is permitted. Anyone with a copy of the previous configtx (and no additional info) may
verify the validity of a new config based on these policies.

3. Hierarchical: A root configuration group contains sub-groups, and each group of the hierarchy has associated
values and policies. These policies can take advantage of the hierarchy to derive policies at one level from
policies of lower levels.

Anatomy of a configuration

Configuration is stored as a transaction of type HeaderType_CONFIG in a block with no other transactions. These
blocks are referred to as Configuration Blocks, the first of which is referred to as the Genesis Block.

The proto structures for configuration are stored in fabric/protos/common/configtx.proto . The Enve-
lope of type HeaderType_CONFIG encodes a ConfigEnvelope message as the Payload data field. The
proto for ConfigEnvelope is defined as follows:

message ConfigEnvelope {
Config config = 1;
Envelope last_update = 2;

}

The last_update field is defined below in the Updates to configuration section, but is only necessary when
validating the configuration, not reading it. Instead, the currently committed configuration is stored in the config
field, containing a Config message.

message Config {
uint64 sequence = 1;
ConfigGroup channel_group = 2;

}

79

hyperledger-fabricdocs Documentation, Release master

The sequence number is incremented by one for each committed configuration. The channel_group field is
the root group which contains the configuration. The ConfigGroup structure is recursively defined, and builds a
tree of groups, each of which contains values and policies. It is defined as follows:

message ConfigGroup {
uint64 version = 1;
map<string,ConfigGroup> groups = 2;
map<string,ConfigValue> values = 3;
map<string,ConfigPolicy> policies = 4;
string mod_policy = 5;

}

Because ConfigGroup is a recursive structure, it has hierarchical arrangement. The following example is expressed
for clarity in golang notation.

// Assume the following groups are defined
var root, child1, child2, grandChild1, grandChild2, grandChild3 *ConfigGroup

// Set the following values
root.Groups["child1"] = child1
root.Groups["child2"] = child2
child1.Groups["grandChild1"] = grandChild1
child2.Groups["grandChild2"] = grandChild2
child2.Groups["grandChild3"] = grandChild3

// The resulting config structure of groups looks like:
// root:
// child1:
// grandChild1
// child2:
// grandChild2
// grandChild3

Each group defines a level in the config hierarchy, and each group has an associated set of values (indexed by string
key) and policies (also indexed by string key).

Values are defined by:

message ConfigValue {
uint64 version = 1;
bytes value = 2;
string mod_policy = 3;

}

Policies are defined by:

message ConfigPolicy {
uint64 version = 1;
Policy policy = 2;
string mod_policy = 3;

}

Note that Values, Policies, and Groups all have a version and a mod_policy . The version of an el-
ement is incremented each time that element is modified. The mod_policy is used to govern the required
signatures to modify that element. For Groups, modification is adding or removing elements to the Values,
Policies, or Groups maps (or changing the mod_policy). For Values and Policies, modification is chang-
ing the Value and Policy fields respectively (or changing the mod_policy). Each element’s mod_policy
is evaluated in the context of the current level of the config. Consider the following example mod poli-

80 Chapter 16. Channel Configuration (configtx)

hyperledger-fabricdocs Documentation, Release master

cies defined at Channel.Groups["Application"] (Here, we use the golang map reference syntax, so
Channel.Groups["Application"].Policies["policy1"] refers to the base Channel group’s
Application group’s Policies map’s policy1 policy.)

• policy1 maps to Channel.Groups["Application"].Policies["policy1"]

• Org1/policy2 maps to Channel.Groups["Application"].Groups["Org1"].Policies["policy2"]

• /Channel/policy3 maps to Channel.Policies["policy3"]

Note that if a mod_policy references a policy which does not exist, the item cannot be modified.

Configuration updates

Configuration updates are submitted as an Envelope message of type HeaderType_CONFIG_UPDATE . The
Payload data of the transaction is a marshaled ConfigUpdateEnvelope . The ConfigUpdateEnvelope
is defined as follows:

message ConfigUpdateEnvelope {
bytes config_update = 1;
repeated ConfigSignature signatures = 2;

}

The signatures field contains the set of signatures which authorizes the config update. Its message definition is:

message ConfigSignature {
bytes signature_header = 1;
bytes signature = 2;

}

The signature_header is as defined for standard transactions, while the signature is over the concatenation of
the signature_header bytes and the config_update bytes from the ConfigUpdateEnvelope message.

The ConfigUpdateEnvelope config_update bytes are a marshaled ConfigUpdate message which is
defined as follows:

message ConfigUpdate {
string channel_id = 1;
ConfigGroup read_set = 2;
ConfigGroup write_set = 3;

}

The channel_id is the channel ID the update is bound for, this is necessary to scope the signatures which support
this reconfiguration.

The read_set specifies a subset of the existing configuration, specified sparsely where only the version field
is set and no other fields must be populated. The particular ConfigValue value or ConfigPolicy policy
fields should never be set in the read_set . The ConfigGroup may have a subset of its map fields populated,
so as to reference an element deeper in the config tree. For instance, to include the Application group in the
read_set , its parent (the Channel group) must also be included in the read set, but, the Channel group does
not need to populate all of the keys, such as the Orderer group key, or any of the values or policies keys.

The write_set specifies the pieces of configuration which are modified. Because of the hierarchical nature of the
configuration, a write to an element deep in the hierarchy must contain the higher level elements in its write_set
as well. However, for any element in the write_set which is also specified in the read_set at the same version,
the element should be specified sparsely, just as in the read_set .

16.2. Configuration updates 81

hyperledger-fabricdocs Documentation, Release master

For example, given the configuration:

Channel: (version 0)
Orderer (version 0)
Appplication (version 3)

Org1 (version 2)

To submit a configuration update which modifies Org1 , the read_set would be:

Channel: (version 0)
Application: (version 3)

and the write_set would be

Channel: (version 0)
Application: (version 3)

Org1 (version 3)

When the CONFIG_UPDATE is received, the orderer computes the resulting CONFIG by doing the following:

1. Verifies the channel_id and read_set . All elements in the read_set must exist at the given versions.

2. Computes the update set by collecting all elements in the write_set which do not appear at the same version
in the read_set .

3. Verifies that each element in the update set increments the version number of the element update by exactly 1.

4. Verifies that the signature set attached to the ConfigUpdateEnvelope satisfies the mod_policy for each
element in the update set.

5. Computes a new complete version of the config by applying the update set to the current config.

6. Writes the new config into a ConfigEnvelope which includes the CONFIG_UPDATE as the
last_update field and the new config encoded in the config field, along with the incremented sequence
value.

7. Writes the new ConfigEnvelope into a Envelope of type CONFIG , and ultimately writes this as the sole
transaction in a new configuration block.

When the peer (or any other receiver for Deliver) receives this configuration block, it should verify that the config
was appropriately validated by applying the last_update message to the current config and verifying that the
orderer-computed config field contains the correct new configuration.

Permitted configuration groups and values

Any valid configuration is a subset of the following configuration. Here we use the notation
peer.<MSG> to define a ConfigValue whose value field is a marshaled proto message of name
<MSG> defined in fabric/protos/peer/configuration.proto . The notations common.<MSG>
, msp.<MSG> , and orderer.<MSG> correspond similarly, but with their messages defined in
fabric/protos/common/configuration.proto , fabric/protos/msp/mspconfig.proto , and
fabric/protos/orderer/configuration.proto respectively.

Note, that the keys {{org_name}} and {{consortium_name}} represent arbitrary names, and indicate an
element which may be repeated with different names.

&ConfigGroup{
Groups: map<string, *ConfigGroup> {

"Application":&ConfigGroup{

82 Chapter 16. Channel Configuration (configtx)

hyperledger-fabricdocs Documentation, Release master

Groups:map<String, *ConfigGroup> {
{{org_name}}:&ConfigGroup{

Values:map<string, *ConfigValue>{
"MSP":msp.MSPConfig,
"AnchorPeers":peer.AnchorPeers,

},
},

},
},
"Orderer":&ConfigGroup{

Groups:map<String, *ConfigGroup> {
{{org_name}}:&ConfigGroup{

Values:map<string, *ConfigValue>{
"MSP":msp.MSPConfig,

},
},

},

Values:map<string, *ConfigValue> {
"ConsensusType":orderer.ConsensusType,
"BatchSize":orderer.BatchSize,
"BatchTimeout":orderer.BatchTimeout,
"KafkaBrokers":orderer.KafkaBrokers,

},
},
"Consortiums":&ConfigGroup{

Groups:map<String, *ConfigGroup> {
{{consortium_name}}:&ConfigGroup{

Groups:map<string, *ConfigGroup> {
{{org_name}}:&ConfigGroup{

Values:map<string, *ConfigValue>{
"MSP":msp.MSPConfig,

},
},

},
Values:map<string, *ConfigValue> {

"ChannelCreationPolicy":common.Policy,
}

},
},

},
},

Values: map<string, *ConfigValue> {
"HashingAlgorithm":common.HashingAlgorithm,
"BlockHashingDataStructure":common.BlockDataHashingStructure,
"Consortium":common.Consortium,
"OrdererAddresses":common.OrdererAddresses,

},
}

Orderer system channel configuration

The ordering system channel needs to define ordering parameters, and consortiums for creating channels. There must
be exactly one ordering system channel for an ordering service, and it is the first channel to be created (or more

16.4. Orderer system channel configuration 83

hyperledger-fabricdocs Documentation, Release master

accurately bootstrapped). It is recommended never to define an Application section inside of the ordering system
channel genesis configuration, but may be done for testing. Note that any member with read access to the ordering
system channel may see all channel creations, so this channel’s access should be restricted.

The ordering parameters are defined as the following subset of config:

&ConfigGroup{
Groups: map<string, *ConfigGroup> {

"Orderer":&ConfigGroup{
Groups:map<String, *ConfigGroup> {

{{org_name}}:&ConfigGroup{
Values:map<string, *ConfigValue>{

"MSP":msp.MSPConfig,
},

},
},

Values:map<string, *ConfigValue> {
"ConsensusType":orderer.ConsensusType,
"BatchSize":orderer.BatchSize,
"BatchTimeout":orderer.BatchTimeout,
"KafkaBrokers":orderer.KafkaBrokers,

},
},

},

Each organization participating in ordering has a group element under the Orderer group. This group defines a
single parameter MSP which contains the cryptographic identity information for that organization. The Values of the
Orderer group determine how the ordering nodes function. They exist per channel, so orderer.BatchTimeout
for instance may be specified differently on one channel than another.

At startup, the orderer is faced with a filesystem which contains information for many channels. The orderer identifies
the system channel by identifying the channel with the consortiums group defined. The consortiums group has the
following structure.

&ConfigGroup{
Groups: map<string, *ConfigGroup> {

"Consortiums":&ConfigGroup{
Groups:map<String, *ConfigGroup> {

{{consortium_name}}:&ConfigGroup{
Groups:map<string, *ConfigGroup> {

{{org_name}}:&ConfigGroup{
Values:map<string, *ConfigValue>{

"MSP":msp.MSPConfig,
},

},
},
Values:map<string, *ConfigValue> {

"ChannelCreationPolicy":common.Policy,
}

},
},

},
},

},

Note that each consortium defines a set of members, just like the organizational members for the ordering orgs. Each
consortium also defines a ChannelCreationPolicy . This is a policy which is applied to authorize channel
creation requests. Typically, this value will be set to an ImplicitMetaPolicy requiring that the new members of

84 Chapter 16. Channel Configuration (configtx)

hyperledger-fabricdocs Documentation, Release master

the channel sign to authorize the channel creation. More details about channel creation follow later in this document.

Application channel configuration

Application configuration is for channels which are designed for application type transactions. It is defined as follows:

&ConfigGroup{
Groups: map<string, *ConfigGroup> {

"Application":&ConfigGroup{
Groups:map<String, *ConfigGroup> {

{{org_name}}:&ConfigGroup{
Values:map<string, *ConfigValue>{

"MSP":msp.MSPConfig,
"AnchorPeers":peer.AnchorPeers,

},
},

},
},

},
}

Just like with the Orderer section, each organization is encoded as a group. However, instead of only encoding
the MSP identity information, each org additionally encodes a list of AnchorPeers . This list allows the peers of
different organizations to contact each other for peer gossip networking.

The application channel encodes a copy of the orderer orgs and consensus options to allow for deterministic updating of
these parameters, so the same Orderer section from the orderer system channel configuration is included. However
from an application perspective this may be largely ignored.

Channel creation

When the orderer receives a CONFIG_UPDATE for a channel which does not exist, the orderer assumes that this must
be a channel creation request and performs the following.

1. The orderer identifies the consortium which the channel creation request is to be performed for. It does this by
looking at the Consortium value of the top level group.

2. The orderer verifies that the organizations included in the Application group are a subset of the organi-
zations included in the corresponding consortium and that the ApplicationGroup is set to version 1
.

3. The orderer verifies that if the consortium has members, that the new channel also has application members
(creation consortiums and channels with no members is useful for testing only).

4. The orderer creates a template configuration by taking the Orderer group from the ordering system channel,
and creating an Application group with the newly specified members and specifying its mod_policy to
be the ChannelCreationPolicy as specified in the consortium config. Note that the policy is evaluated
in the context of the new configuration, so a policy requiring ALL members, would require signatures from all
the new channel members, not all the members of the consortium.

5. The orderer then applies the CONFIG_UPDATE as an update to this template configuration. Because the
CONFIG_UPDATE applies modifications to the Application group (its version is 1), the config code
validates these updates against the ChannelCreationPolicy . If the channel creation contains any other
modifications, such as to an individual org’s anchor peers, the corresponding mod policy for the element will be
invoked.

16.5. Application channel configuration 85

hyperledger-fabricdocs Documentation, Release master

6. The new CONFIG transaction with the new channel config is wrapped and sent for ordering on the ordering
system channel. After ordering, the channel is created.

86 Chapter 16. Channel Configuration (configtx)

CHAPTER 17

Channel Configuration (configtxgen)

This document describe the usage for the configtxgen utility for manipulating fabric channel configuration.

For now, the tool is primarily focused on generating the genesis block for bootstrapping the orderer, but it is intended
to be enhanced in the future for generating new channel configurations as well as reconfiguring existing channels.

Configuration Profiles

The configuration parameters supplied to the configtxgen tool are primarily provided by the configtx.yaml
file. This file is located at fabric/sampleconfig/configtx.yaml in the fabric.git repository.

This configuration file is split primarily into three pieces.

1. The Profiles section. By default, this section includes some sample configurations which can be used for
development or testing scenarios, and refer to crypto material present in the fabric.git tree. These profiles can
make a good starting point for construction a real deployment profile. The configtxgen tool allows you
to specify the profile it is operating under by passing the -profile flag. Profiles may explicitly declare all
configuration, but usually inherit configuration from the defaults in (3) below.

2. The Organizations section. By default, this section includes a single reference to the sampleconfig MSP
definition. For production deployments, the sample organization should be removed, and the MSP definitions of
the network members should be referenced and defined instead. Each element in the Organizations section
should be tagged with an anchor label such as &orgName which will allow the definition to be referenced in
the Profiles sections.

3. The default sections. There are default sections for Orderer and Application configuration, these include
attributes like BatchTimeout and are generally used as the base inherited values for the profiles.

This configuration file may be edited, or, individual properties may be overridden by setting environment variables,
such as CONFIGTX_ORDERER_ORDERERTYPE=kafka . Note that the Profiles element and profile name do
not need to be specified.

Bootstrapping the orderer

After creating a configuration profile as desired, simply invoke

configtxgen -profile <profile_name>

87

hyperledger-fabricdocs Documentation, Release master

This will produce a genesis.block file in the current directory. You may optionally specify another filename by
passing in the -path parameter, or, you may skip the writing of the file by passing the dryRun parameter if you
simply wish to test parsing of the file.

Then, to utilize this genesis block, before starting the orderer, simply specify
ORDERER_GENERAL_GENESISMETHOD=file and ORDERER_GENERAL_GENESISFILE=$PWD/genesis.block
or modify the orderer.yaml file to encode these values.

Creating a channel

The tool can also output a channel creation tx by executing

configtxgen -profile <profile_name> -channelID <channel_name> -outputCreateChannelTx
→˓<tx_filename>

This will output a marshaled Envelope message which may be sent to broadcast to create a channel.

Reviewing a configuration

In addition to creating configuration, the configtxgen tool is also capable of inspecting configuration.

It supports inspecting both configuration blocks, and configuration transactions. You may use the inspect flags
-inspectBlock and -inspectChannelCreateTx respectively with the path to a file to inspect to output
a human readable (JSON) representation of the configuration.

You may even wish to combine the inspection with generation. For example:

$ build/bin/configtxgen -channelID foo -outputBlock foo.block -inspectBlock foo.block
2017/03/01 21:24:24 Loading configuration
2017/03/01 21:24:24 Checking for configtx.yaml at:
2017/03/01 21:24:24 Checking for configtx.yaml at:
2017/03/01 21:24:24 Checking for configtx.yaml at: /home/yellickj/go/src/github.com/
→˓hyperledger/fabric/common/configtx/tool
2017/03/01 21:24:24 map[orderer:map[BatchSize:map[MaxMessageCount:10 AbsoluteMaxBytes:
→˓99 MB PreferredMaxBytes:512 KB] Kafka:map[Brokers:[127.0.0.1:9092]] Organizations:
→˓<nil> OrdererType:solo Addresses:[127.0.0.1:7050] BatchTimeout:10s] application:
→˓map[Organizations:<nil>] profiles:map[SampleInsecureSolo:map[Orderer:
→˓map[BatchTimeout:10s BatchSize:map[MaxMessageCount:10 AbsoluteMaxBytes:99 MB
→˓PreferredMaxBytes:512 KB] Kafka:map[Brokers:[127.0.0.1:9092]] Organizations:<nil>
→˓OrdererType:solo Addresses:[127.0.0.1:7050]] Application:map[Organizations:<nil>]]
→˓SampleInsecureKafka:map[Orderer:map[Addresses:[127.0.0.1:7050] BatchTimeout:10s
→˓BatchSize:map[AbsoluteMaxBytes:99 MB PreferredMaxBytes:512 KB MaxMessageCount:10]
→˓Kafka:map[Brokers:[127.0.0.1:9092]] Organizations:<nil> OrdererType:kafka]
→˓Application:map[Organizations:<nil>]] SampleSingleMSPSolo:map[Orderer:
→˓map[OrdererType:solo Addresses:[127.0.0.1:7050] BatchTimeout:10s BatchSize:
→˓map[MaxMessageCount:10 AbsoluteMaxBytes:99 MB PreferredMaxBytes:512 KB] Kafka:
→˓map[Brokers:[127.0.0.1:9092]] Organizations:[map[Name:SampleOrg ID:DEFAULT MSPDir:
→˓msp BCCSP:map[Default:SW SW:map[Hash:SHA3 Security:256 FileKeyStore:map[KeyStore:
→˓<nil>]]] AnchorPeers:[map[Host:127.0.0.1 Port:7051]]]]] Application:
→˓map[Organizations:[map[Name:SampleOrg ID:DEFAULT MSPDir:msp BCCSP:map[Default:SW SW:
→˓map[Hash:SHA3 Security:256 FileKeyStore:map[KeyStore:<nil>]]] AnchorPeers:[map[Port:
→˓7051 Host:127.0.0.1]]]]]]] organizations:[map[Name:SampleOrg ID:DEFAULT MSPDir:msp
→˓BCCSP:map[Default:SW SW:map[Hash:SHA3 Security:256 FileKeyStore:map[KeyStore:<nil>
→˓]]] AnchorPeers:[map[Host:127.0.0.1 Port:7051]]]]]
2017/03/01 21:24:24 Generating genesis block

88 Chapter 17. Channel Configuration (configtxgen)

hyperledger-fabricdocs Documentation, Release master

2017/03/01 21:24:24 Writing genesis block
2017/03/01 21:24:24 Inspecting block
2017/03/01 21:24:24 Parsing genesis block
Config for channel: foo
{

"": {
"Values": {},
"Groups": {

"/Channel": {
"Values": {

"HashingAlgorithm": {
"Version": "0",
"ModPolicy": "",
"Value": {

"name": "SHA256"
}

},
"BlockDataHashingStructure": {

"Version": "0",
"ModPolicy": "",
"Value": {

"width": 4294967295
}

},
"OrdererAddresses": {

"Version": "0",
"ModPolicy": "",
"Value": {

"addresses": [
"127.0.0.1:7050"

]
}

}
},
"Groups": {

"/Channel/Orderer": {
"Values": {

"ChainCreationPolicyNames": {
"Version": "0",
"ModPolicy": "",
"Value": {

"names": [
"AcceptAllPolicy"

]
}

},
"ConsensusType": {

"Version": "0",
"ModPolicy": "",
"Value": {

"type": "solo"
}

},
"BatchSize": {

"Version": "0",
"ModPolicy": "",
"Value": {

"maxMessageCount": 10,

17.4. Reviewing a configuration 89

hyperledger-fabricdocs Documentation, Release master

"absoluteMaxBytes": 103809024,
"preferredMaxBytes": 524288

}
},
"BatchTimeout": {

"Version": "0",
"ModPolicy": "",
"Value": {

"timeout": "10s"
}

},
"IngressPolicyNames": {

"Version": "0",
"ModPolicy": "",
"Value": {

"names": [
"AcceptAllPolicy"

]
}

},
"EgressPolicyNames": {

"Version": "0",
"ModPolicy": "",
"Value": {

"names": [
"AcceptAllPolicy"

]
}

}
},
"Groups": {}

},
"/Channel/Application": {

"Values": {},
"Groups": {}

}
}

}
}

}
}

90 Chapter 17. Channel Configuration (configtxgen)

CHAPTER 18

Endorsement policies

Endorsement policies are used to instruct a peer on how to decide whether a transaction is properly endorsed. When
a peer receives a transaction, it invokes the VSCC (Validation System Chaincode) associated with the transaction’s
Chaincode as part of the transaction validation flow to determine the validity of the transaction. Recall that a trans-
action contains one or more endorsement from as many endorsing peers. VSCC is tasked to make the following
determinations: - all endorsements are valid (i.e. they are valid signatures from valid certificates over the expected
message) - there is an appropriate number of endorsements - endorsements come from the expected source(s)

Endorsement policies are a way of specifying the second and third points.

Endorsement policy design

Endorsement policies have two main components: - a principal - a threshold gate

A principal P identifies the entity whose signature is expected.

A threshold gate T takes two inputs: an integer t (the threshold) and a list of n principals or gates; this gate essentially
captures the expectation that out of those n principals or gates, t are requested to be satisfied.

For example: - T(2,'A','B','C') requests a signature from any 2 principals out of ‘A’, ‘B’ or ‘C’; -
T(1,'A',T(2,'B','C')) requests either one signature from principal A or 1 signature from B and C each.

Endorsement policy syntax in the CLI

In the CLI, a simple language is used to express policies in terms of boolean expressions over principals.

A principal is described in terms of the MSP that is tasked to validate the identity of the signer and of the role that the
signer has within that MSP. Currently, two roles are supported: member and admin. Principals are described as MSP
.ROLE , where MSP is the MSP ID that is required, and ROLE is either one of the two strings member and admin
. Examples of valid principals are 'Org0.admin' (any administrator of the Org0 MSP) or 'Org1.member'
(any member of the Org1 MSP).

The syntax of the language is:

EXPR(E[,E...])

where EXPR is either AND or OR , representing the two boolean expressions and E is either a principal (with the
syntax described above) or another nested call to EXPR .

For example: - AND('Org1.member','Org2.member','Org3.member') requests 1 signature from each
of the three principals - OR('Org1.member','Org2.member') requests 1 signature from either one of the two

91

hyperledger-fabricdocs Documentation, Release master

principals - OR('Org1.member',AND('Org2.member','Org3.member')) requests either one signature
from a member of the Org1 MSP or 1 signature from a member of the Org2 MSP and 1 signature from a member
of the Org3 MSP.

Specifying endorsement policies for a chaincode

Using this language, a chaincode deployer can request that the endorsements for a chaincode be validated against the
specified policy. NOTE - the default policy requires one signature from a member of the DEFAULT MSP). This is
used if a policy is not specified in the CLI.

The policy can be specified at deploy time using the -P switch, followed by the policy.

For example:

peer chaincode deploy -C testchainid -n mycc -p github.com/hyperledger/fabric/
→˓examples/chaincode/go/chaincode_example02 -c '{"Args":["init","a","100","b","200"]}
→˓' -P "AND('Org1.member', 'Org2.member')"

This command deploys chaincode mycc on chain testchainid with the policy
AND('Org1.member','Org2.member') .

Future enhancements

In this section we list future enhancements for endorsement policies: - alongside the existing way of identifying
principals by their relationship with an MSP, we plan to identify principals in terms of the Organization Unit (OU)
expected in their certificates; this is useful to express policies where we request signatures from any identity displaying
a valid certificate with an OU matching the one requested in the definition of the principal. - instead of the syntax
AND(.,.) we plan to move to a more intuitive syntax . AND . - we plan to expose generalized threshold gates
in the language as well alongside AND (which is the special n -out-of-n gate) and OR (which is the special 1 -out-of-n
gate)

92 Chapter 18. Endorsement policies

CHAPTER 19

Error handling

General Overview

The Fabric error handling framework can be found in the Fabric repository under common/errors. It defines a new
type of error, CallStackError, to use in place of the standard error type provided by Go.

A CallStackError consists of the following:

• Component code - a name for the general area of the code that is generating the error. Component codes should
consist of three uppercase letters. Numerics and special characters are not allowed. A set of component codes
is defined in common/errors/codes.go

• Reason code - a short code to help identify the reason the error occurred. Reason codes should consist of
three numeric values. Letters and special characters are not allowed. A set of reason codes is defined in com-
mon/error/codes.go

• Error code - the component code and reason code separated by a colon, e.g. MSP:404

• Error message - the text that describes the error. This is the same as the input provided to fmt.Errorf() and
Errors.New() . If an error has been wrapped into the current error, its message will be appended.

• Callstack - the callstack at the time the error is created. If an error has been wrapped into the current error, its
error message and callstack will be appended to retain the context of the wrapped error.

The CallStackError interface exposes the following functions:

• Error() - returns the error message with callstack appended

• Message() - returns the error message (without callstack appended)

• GetComponentCode() - returns the 3-character component code

• GetReasonCode() - returns the 3-digit reason code

• GetErrorCode() - returns the error code, which is “component:reason”

• GetStack() - returns just the callstack

• WrapError(error) - wraps the provided error into the CallStackError

Usage Instructions

The new error handling framework should be used in place of all calls to fmt.Errorf() or Errors.new() .
Using this framework will provide error codes to check against as well as the option to generate a callstack that will
be appended to the error message.

93

hyperledger-fabricdocs Documentation, Release master

Using the framework is simple and will only require an easy tweak to your code.

First, you’ll need to import github.com/hyperledger/fabric/common/errors into any file that uses this framework.

Let’s take the following as an example from core/chaincode/chaincode_support.go:

err = fmt.Errorf("Error starting container: %s", err)

For this error, we will simply call the constructor for Error and pass a component code, reason code, followed by the
error message. At the end, we then call the WrapError() function, passing along the error itself.

fmt.Errorf("Error starting container: %s", err)

becomes

errors.ErrorWithCallstack("CHA", "505", "Error starting container").WrapError(err)

You could also just leave the message as is without any problems:

errors.ErrorWithCallstack("CHA", "505", "Error starting container: %s", err)

With this usage you will be able to format the error message from the previous error into the new error, but will lose
the ability to print the callstack (if the wrapped error is a CallStackError).

A second example to highlight a scenario that involves formatting directives for parameters other than errors, while
still wrapping an error, is as follows:

fmt.Errorf("failed to get deployment payload %s - %s", canName, err)

becomes

errors.ErrorWithCallstack("CHA", "506", "Failed to get deployment payload %s",
→˓canName).WrapError(err)

Displaying error messages

Once the error has been created using the framework, displaying the error message is as simple as:

logger.Errorf(err)

or

fmt.Println(err)

or

fmt.Printf("%s\n", err)

An example from peer/common/common.go:

errors.ErrorWithCallstack("PER", "404", "Error trying to connect to local peer").
→˓WrapError(err)

would display the error message:

94 Chapter 19. Error handling

hyperledger-fabricdocs Documentation, Release master

PER:404 - Error trying to connect to local peer
Caused by: grpc: timed out when dialing

Note: The callstacks have not been displayed for this example for the sake of brevity.

General guidelines for error handling in Fabric

• If it is some sort of best effort thing you are doing, you should log the error and ignore it.

• If you are servicing a user request, you should log the error and return it.

• If the error comes from elsewhere in the Fabric, you have the choice to wrap the error or not. Typically, it’s best
to not wrap the error and simply return it as is. However, for certain cases where a utility function is called,
wrapping the error with a new component and reason code can help an end user understand where the error is
really occurring without inspecting the callstack.

• A panic should be handled within the same layer by throwing an internal error code/start a recovery process and
should not be allowed to propagate to other packages.

19.4. General guidelines for error handling in Fabric 95

hyperledger-fabricdocs Documentation, Release master

96 Chapter 19. Error handling

CHAPTER 20

Logging Control

Overview

Logging in the peer application and in the shim interface to chaincodes is programmed using facilities provided
by the github.com/op/go-logging package. This package supports

• Logging control based on the severity of the message

• Logging control based on the software module generating the message

• Different pretty-printing options based on the severity of the message

All logs are currently directed to stderr , and the pretty-printing is currently fixed. However global and module-
level control of logging by severity is provided for both users and developers. There are currently no formalized rules
for the types of information provided at each severity level, however when submitting bug reports the developers may
want to see full logs down to the DEBUG level.

In pretty-printed logs the logging level is indicated both by color and by a 4-character code, e.g, “ERRO” for ERROR,
“DEBU” for DEBUG, etc. In the logging context a module is an arbitrary name (string) given by developers to
groups of related messages. In the pretty-printed example below, the logging modules “peer”, “rest” and “main” are
generating logs.

16:47:09.634 [peer] GetLocalAddress -> INFO 033 Auto detected peer address: 9.3.158.
→˓178:7051
16:47:09.635 [rest] StartOpenchainRESTServer -> INFO 035 Initializing the REST
→˓service...
16:47:09.635 [main] serve -> INFO 036 Starting peer with id=name:"vp1" , network
→˓id=dev, address=9.3.158.178:7051, discovery.rootnode=, validator=true

An arbitrary number of logging modules can be created at runtime, therefore there is no “master list” of modules, and
logging control constructs can not check whether logging modules actually do or will exist. Also note that the logging
module system does not understand hierarchy or wildcarding: You may see module names like “foo/bar” in the code,
but the logging system only sees a flat string. It doesn’t understand that “foo/bar” is related to “foo” in any way, or
that “foo/*” might indicate all “submodules” of foo.

peer

The logging level of the peer command can be controlled from the command line for each invocation using the
--logging-level flag, for example

97

hyperledger-fabricdocs Documentation, Release master

peer node start --logging-level=debug

The default logging level for each individual peer subcommand can also be set in the core.yaml file. For example
the key logging.node sets the default level for the node subcommmand. Comments in the file also explain how
the logging level can be overridden in various ways by using environment varaibles.

Logging severity levels are specified using case-insensitive strings chosen from

CRITICAL | ERROR | WARNING | NOTICE | INFO | DEBUG

The full logging level specification for the peer is of the form

[<module>[,<module>...]=]<level>[:[<module>[,<module>...]=]<level>...]

A logging level by itself is taken as the overall default. Otherwise, overrides for individual or groups of modules can
be specified using the

<module>[,<module>...]=<level>

syntax. Examples of specifications (valid for all of --logging-level , environment variable and core.yaml set-
tings):

info - Set default to INFO
warning:main,db=debug:chaincode=info - Default WARNING; Override for
→˓main,db,chaincode
chaincode=info:main=debug:db=debug:warning - Same as above

Go chaincodes

The standard mechanism to log within a chaincode application is to integrate with the logging transport exposed to
each chaincode instance via the peer. The chaincode shim package provides APIs that allow a chaincode to create
and manage logging objects whose logs will be formatted and interleaved consistently with the shim logs.

As independently executed programs, user-provided chaincodes may technically also produce output on stdout/stderr.
While naturally useful for “devmode”, these channels are normally disabled on a production network to mitigate abuse
from broken or malicious code. However, it is possible to enable this output even for peer-managed containers (e.g.
“netmode”) on a per-peer basis via the CORE_VM_DOCKER_ATTACHSTDOUT=true configuration option.

Once enabled, each chaincode will receive its own logging channel keyed by its container-id. Any output written to
either stdout or stderr will be integrated with the peer’s log on a per-line basis. It is not recommended to enable this
for production.

API

NewLogger(name string) *ChaincodeLogger - Create a logging object for use by a chaincode

(c *ChaincodeLogger) SetLevel(level LoggingLevel) - Set the logging level of the logger

(c *ChaincodeLogger) IsEnabledFor(level LoggingLevel) bool - Return true if logs will be
generated at the given level

LogLevel(levelString string) (LoggingLevel,error) - Convert a string to a LoggingLevel

A LoggingLevel is a member of the enumeration

98 Chapter 20. Logging Control

https://github.com/hyperledger/fabric/blob/master/sampleconfig/core.yaml
https://github.com/hyperledger/fabric/blob/master/sampleconfig/core.yaml

hyperledger-fabricdocs Documentation, Release master

LogDebug, LogInfo, LogNotice, LogWarning, LogError, LogCritical

which can be used directly, or generated by passing a case-insensitive version of the strings

DEBUG, INFO, NOTICE, WARNING, ERROR, CRITICAL

to the LogLevel API.

Formatted logging at various severity levels is provided by the functions

(c *ChaincodeLogger) Debug(args ...interface{})
(c *ChaincodeLogger) Info(args ...interface{})
(c *ChaincodeLogger) Notice(args ...interface{})
(c *ChaincodeLogger) Warning(args ...interface{})
(c *ChaincodeLogger) Error(args ...interface{})
(c *ChaincodeLogger) Critical(args ...interface{})

(c *ChaincodeLogger) Debugf(format string, args ...interface{})
(c *ChaincodeLogger) Infof(format string, args ...interface{})
(c *ChaincodeLogger) Noticef(format string, args ...interface{})
(c *ChaincodeLogger) Warningf(format string, args ...interface{})
(c *ChaincodeLogger) Errorf(format string, args ...interface{})
(c *ChaincodeLogger) Criticalf(format string, args ...interface{})

The f forms of the logging APIs provide for precise control over the formatting of the logs. The non-f forms of the
APIs currently insert a space between the printed representations of the arguments, and arbitrarily choose the formats
to use.

In the current implementation, the logs produced by the shim and a ChaincodeLogger are timestamped, marked
with the logger name and severity level, and written to stderr . Note that logging level control is currently based
on the name provided when the ChaincodeLogger is created. To avoid ambiguities, all ChaincodeLogger
should be given unique names other than “shim”. The logger name will appear in all log messages created by the
logger. The shim logs as “shim”.

Go language chaincodes can also control the logging level of the chaincode shim interface through the
SetLoggingLevel API.

SetLoggingLevel(LoggingLevel level) - Control the logging level of the shim

The default logging level for the shim is LogDebug .

Below is a simple example of how a chaincode might create a private logging object logging at the LogInfo level,
and also control the amount of logging provided by the shim based on an environment variable.

var logger = shim.NewLogger("myChaincode")

func main() {

logger.SetLevel(shim.LogInfo)

logLevel, _ := shim.LogLevel(os.Getenv("SHIM_LOGGING_LEVEL"))
shim.SetLoggingLevel(logLevel)
...

}

20.3. Go chaincodes 99

hyperledger-fabricdocs Documentation, Release master

100 Chapter 20. Logging Control

CHAPTER 21

Architecture Explained

The Hyperledger Fabric architecture delivers the following advantages:

• Chaincode trust flexibility. The architecture separates trust assumptions for chaincodes (blockchain applica-
tions) from trust assumptions for ordering. In other words, the ordering service may be provided by one set of
nodes (orderers) and tolerate some of them to fail or misbehave, and the endorsers may be different for each
chaincode.

• Scalability. As the endorser nodes responsible for particular chaincode are orthogonal to the orderers, the
system may scale better than if these functions were done by the same nodes. In particular, this results when
different chaincodes specify disjoint endorsers, which introduces a partitioning of chaincodes between endorsers
and allows parallel chaincode execution (endorsement). Besides, chaincode execution, which can potentially be
costly, is removed from the critical path of the ordering service.

• Confidentiality. The architecture facilitates deployment of chaincodes that have confidentiality requirements
with respect to the content and state updates of its transactions.

• Consensus modularity. The architecture is modular and allows pluggable consensus (i.e., ordering service)
implementations.

Part I: Elements of the architecture relevant to Hyperledger Fabric v1

1. System architecture

2. Basic workflow of transaction endorsement

3. Endorsement policies

Part II: Post-v1 elements of the architecture

4. Ledger checkpointing (pruning)

1. System architecture

The blockchain is a distributed system consisting of many nodes that communicate with each other. The blockchain
runs programs called chaincode, holds state and ledger data, and executes transactions. The chaincode is the central
element as transactions are operations invoked on the chaincode. Transactions have to be “endorsed” and only endorsed
transactions may be committed and have an effect on the state. There may exist one or more special chaincodes for
management functions and parameters, collectively called system chaincodes.

1.1. Transactions

Transactions may be of two types:

101

hyperledger-fabricdocs Documentation, Release master

• Deploy transactions create new chaincode and take a program as parameter. When a deploy transaction executes
successfully, the chaincode has been installed “on” the blockchain.

• Invoke transactions perform an operation in the context of previously deployed chaincode. An invoke transaction
refers to a chaincode and to one of its provided functions. When successful, the chaincode executes the specified
function - which may involve modifying the corresponding state, and returning an output.

As described later, deploy transactions are special cases of invoke transactions, where a deploy transaction that creates
new chaincode, corresponds to an invoke transaction on a system chaincode.

Remark: This document currently assumes that a transaction either creates new chaincode or invokes an operation
provided by *one already deployed chaincode. This document does not yet describe: a) optimizations for query (read-
only) transactions (included in v1), b) support for cross-chaincode transactions (post-v1 feature).*

1.2. Blockchain datastructures

1.2.1. State

The latest state of the blockchain (or, simply, state) is modeled as a versioned key/value store (KVS), where keys are
names and values are arbitrary blobs. These entries are manipulated by the chaincodes (applications) running on the
blockchain through put and get KVS-operations. The state is stored persistently and updates to the state are logged.
Notice that versioned KVS is adopted as state model, an implementation may use actual KVSs, but also RDBMSs or
any other solution.

More formally, state s is modeled as an element of a mapping K -> (V X N) , where:

• K is a set of keys

• V is a set of values

• N is an infinite ordered set of version numbers. Injective function next: N -> N takes an element of N
and returns the next version number.

Both V and N contain a special element \bot , which is in case of N the lowest element. Initially all keys are mapped
to (\bot,\bot) . For s(k)=(v,ver) we denote v by s(k).value , and ver by s(k).version .

KVS operations are modeled as follows:

• put(k,v) , for k\in K and v\in V , takes the blockchain state s and changes it to s' such that
s'(k)=(v,next(s(k).version)) with s'(k')=s(k') for all k'!=k .

• get(k) returns s(k) .

State is maintained by peers, but not by orderers and clients.

State partitioning. Keys in the KVS can be recognized from their name to belong to a particular chaincode, in the
sense that only transaction of a certain chaincode may modify the keys belonging to this chaincode. In principle, any
chaincode can read the keys belonging to other chaincodes. Support for cross-chaincode transactions, that modify the
state belonging to two or more chaincodes is a post-v1 feature.

1.2.2 Ledger

Ledger provides a verifiable history of all successful state changes (we talk about valid transactions) and unsuccessful
attempts to change state (we talk about invalid transactions), occurring during the operation of the system.

Ledger is constructed by the ordering service (see Sec 1.3.3) as a totally ordered hashchain of blocks of (valid or
invalid) transactions. The hashchain imposes the total order of blocks in a ledger and each block contains an array of
totally ordered transactions. This imposes total order across all transactions.

102 Chapter 21. Architecture Explained

hyperledger-fabricdocs Documentation, Release master

Ledger is kept at all peers and, optionally, at a subset of orderers. In the context of an orderer we refer to the Ledger
as to OrdererLedger , whereas in the context of a peer we refer to the ledger as to PeerLedger . PeerLedger
differs from the OrdererLedger in that peers locally maintain a bitmask that tells apart valid transactions from
invalid ones (see Section XX for more details).

Peers may prune PeerLedger as described in Section XX (post-v1 feature). Orderers maintain OrdererLedger
for fault-tolerance and availability (of the PeerLedger) and may decide to prune it at anytime, provided that
properties of the ordering service (see Sec. 1.3.3) are maintained.

The ledger allows peers to replay the history of all transactions and to reconstruct the state. Therefore, state as
described in Sec 1.2.1 is an optional datastructure.

1.3. Nodes

Nodes are the communication entities of the blockchain. A “node” is only a logical function in the sense that multiple
nodes of different types can run on the same physical server. What counts is how nodes are grouped in “trust domains”
and associated to logical entities that control them.

There are three types of nodes:

1. Client or submitting-client: a client that submits an actual transaction-invocation to the endorsers, and broad-
casts transaction-proposals to the ordering service.

2. Peer: a node that commits transactions and maintains the state and a copy of the ledger (see Sec, 1.2). Besides,
peers can have a special endorser role.

3. Ordering-service-node or orderer: a node running the communication service that implements a delivery
guarantee, such as atomic or total order broadcast.

The types of nodes are explained next in more detail.

1.3.1. Client

The client represents the entity that acts on behalf of an end-user. It must connect to a peer for communicating with
the blockchain. The client may connect to any peer of its choice. Clients create and thereby invoke transactions.

As detailed in Section 2, clients communicate with both peers and the ordering service.

1.3.2. Peer

A peer receives ordered state updates in the form of blocks from the ordering service and maintain the state and the
ledger.

Peers can additionally take up a special role of an endorsing peer, or an endorser. The special function of an endors-
ing peer occurs with respect to a particular chaincode and consists in endorsing a transaction before it is committed.
Every chaincode may specify an endorsement policy that may refer to a set of endorsing peers. The policy defines the
necessary and sufficient conditions for a valid transaction endorsement (typically a set of endorsers’ signatures), as de-
scribed later in Sections 2 and 3. In the special case of deploy transactions that install new chaincode the (deployment)
endorsement policy is specified as an endorsement policy of the system chaincode.

1.3.3. Ordering service nodes (Orderers)

The orderers form the ordering service, i.e., a communication fabric that provides delivery guarantees. The ordering
service can be implemented in different ways: ranging from a centralized service (used e.g., in development and
testing) to distributed protocols that target different network and node fault models.

21.1. 1. System architecture 103

hyperledger-fabricdocs Documentation, Release master

Ordering service provides a shared communication channel to clients and peers, offering a broadcast service for mes-
sages containing transactions. Clients connect to the channel and may broadcast messages on the channel which are
then delivered to all peers. The channel supports atomic delivery of all messages, that is, message communication with
total-order delivery and (implementation specific) reliability. In other words, the channel outputs the same messages
to all connected peers and outputs them to all peers in the same logical order. This atomic communication guaran-
tee is also called total-order broadcast, atomic broadcast, or consensus in the context of distributed systems. The
communicated messages are the candidate transactions for inclusion in the blockchain state.

Partitioning (ordering service channels). Ordering service may support multiple channels similar to the topics of a
publish/subscribe (pub/sub) messaging system. Clients can connects to a given channel and can then send messages
and obtain the messages that arrive. Channels can be thought of as partitions - clients connecting to one channel
are unaware of the existence of other channels, but clients may connect to multiple channels. Even though some
ordering service implementations included with Hyperledger Fabric v1 will support multiple channels, for simplicity
of presentation, in the rest of this document, we assume ordering service consists of a single channel/topic.

Ordering service API. Peers connect to the channel provided by the ordering service, via the interface provided by
the ordering service. The ordering service API consists of two basic operations (more generally asynchronous events):

TODO add the part of the API for fetching particular blocks under client/peer specified sequence numbers.

• broadcast(blob) : a client calls this to broadcast an arbitrary message blob for dissemination over the
channel. This is also called request(blob) in the BFT context, when sending a request to a service.

• deliver(seqno,prevhash,blob) : the ordering service calls this on the peer to deliver the message
blob with the specified non-negative integer sequence number (seqno) and hash of the most recently deliv-
ered blob (prevhash). In other words, it is an output event from the ordering service. deliver() is also
sometimes called notify() in pub-sub systems or commit() in BFT systems.

Ledger and block formation. The ledger (see also Sec. 1.2.2) contains all data output by the ordering service. In a
nutshell, it is a sequence of deliver(seqno,prevhash,blob) events, which form a hash chain according to
the computation of prevhash described before.

Most of the time, for efficiency reasons, instead of outputting individual transactions (blobs), the ordering service will
group (batch) the blobs and output blocks within a single deliver event. In this case, the ordering service must
impose and convey a deterministic ordering of the blobs within each block. The number of blobs in a block may be
chosen dynamically by an ordering service implementation.

In the following, for ease of presentation, we define ordering service properties (rest of this subsection) and explain the
workflow of transaction endorsement (Section 2) assuming one blob per deliver event. These are easily extended
to blocks, assuming that a deliver event for a block corresponds to a sequence of individual deliver events for
each blob within a block, according to the above mentioned deterministic ordering of blobs within a blocs.

Ordering service properties

The guarantees of the ordering service (or atomic-broadcast channel) stipulate what happens to a broadcasted message
and what relations exist among delivered messages. These guarantees are as follows:

1. Safety (consistency guarantees): As long as peers are connected for sufficiently long periods of time to the
channel (they can disconnect or crash, but will restart and reconnect), they will see an identical series of delivered
(seqno,prevhash,blob) messages. This means the outputs (deliver() events) occur in the same
order on all peers and according to sequence number and carry identical content (blob and prevhash) for
the same sequence number. Note this is only a logical order, and a deliver(seqno,prevhash,blob)
on one peer is not required to occur in any real-time relation to deliver(seqno,prevhash,blob) that
outputs the same message at another peer. Put differently, given a particular seqno , no two correct peers
deliver different prevhash or blob values. Moreover, no value blob is delivered unless some client (peer)
actually called broadcast(blob) and, preferably, every broadcasted blob is only delivered once.

Furthermore, the deliver() event contains the cryptographic hash of the data in the previous deliver()
event (prevhash). When the ordering service implements atomic broadcast guarantees, prevhash is the
cryptographic hash of the parameters from the deliver() event with sequence number seqno-1 . This

104 Chapter 21. Architecture Explained

hyperledger-fabricdocs Documentation, Release master

establishes a hash chain across deliver() events, which is used to help verify the integrity of the ordering
service output, as discussed in Sections 4 and 5 later. In the special case of the first deliver() event,
prevhash has a default value.

2. Liveness (delivery guarantee): Liveness guarantees of the ordering service are specified by a ordering service
implementation. The exact guarantees may depend on the network and node fault model.

In principle, if the submitting client does not fail, the ordering service should guarantee that every correct peer
that connects to the ordering service eventually delivers every submitted transaction.

To summarize, the ordering service ensures the following properties:

• Agreement. For any two events at correct peers deliver(seqno,prevhash0,blob0) and
deliver(seqno,prevhash1,blob1) with the same seqno , prevhash0==prevhash1 and
blob0==blob1 ;

• Hashchain integrity. For any two events at correct peers deliver(seqno-1,prevhash0,blob0) and
deliver(seqno,prevhash,blob) , prevhash = HASH(seqno-1||prevhash0||blob0) .

• No skipping. If an ordering service outputs deliver(seqno,prevhash,blob) at a correct peer p, such
that seqno>0 , then p already delivered an event deliver(seqno-1,prevhash0,blob0) .

• No creation. Any event deliver(seqno,prevhash,blob) at a correct peer must be preceded by a
broadcast(blob) event at some (possibly distinct) peer;

• No duplication (optional, yet desirable). For any two events broadcast(blob) and
broadcast(blob') , when two events deliver(seqno0,prevhash0,blob) and
deliver(seqno1,prevhash1,blob') occur at correct peers and blob == blob' , then
seqno0==seqno1 and prevhash0==prevhash1 .

• Liveness. If a correct client invokes an event broadcast(blob) then every correct peer “eventually” issues
an event deliver(*,*,blob) , where * denotes an arbitrary value.

2. Basic workflow of transaction endorsement

In the following we outline the high-level request flow for a transaction.

Remark: Notice that the following protocol *does not assume that all transactions are deterministic, i.e., it allows for
non-deterministic transactions.*

2.1. The client creates a transaction and sends it to endorsing peers of its choice

To invoke a transaction, the client sends a PROPOSE message to a set of endorsing peers of its choice (possibly not
at the same time - see Sections 2.1.2. and 2.3.). The set of endorsing peers for a given chaincodeID is made
available to client via peer, which in turn knows the set of endorsing peers from endorsement policy (see Section 3).
For example, the transaction could be sent to all endorsers of a given chaincodeID . That said, some endorsers
could be offline, others may object and choose not to endorse the transaction. The submitting client tries to satisfy the
policy expression with the endorsers available.

In the following, we first detail PROPOSE message format and then discuss possible patterns of interaction between
submitting client and endorsers.

2.1.1. PROPOSE message format

The format of a PROPOSE message is <PROPOSE,tx,[anchor]> , where tx is a mandatory and anchor
optional argument explained in the following.

21.2. 2. Basic workflow of transaction endorsement 105

hyperledger-fabricdocs Documentation, Release master

• tx=<clientID,chaincodeID,txPayload,timestamp,clientSig> , where

– clientID is an ID of the submitting client,

– chaincodeID refers to the chaincode to which the transaction pertains,

– txPayload is the payload containing the submitted transaction itself,

– timestamp is a monotonically increasing (for every new transaction) integer maintained by the client,

– clientSig is signature of a client on other fields of tx .

The details of txPayload will differ between invoke transactions and deploy transactions (i.e., invoke transac-
tions referring to a deploy-specific system chaincode). For an invoke transaction, txPayload would consist
of two fields

– txPayload = <operation,metadata> , where

* operation denotes the chaincode operation (function) and arguments,

* metadata denotes attributes related to the invocation.

For a deploy transaction, txPayload would consist of three fields

– txPayload = <source,metadata,policies> , where

* source denotes the source code of the chaincode,

* metadata denotes attributes related to the chaincode and application,

* policies contains policies related to the chaincode that are accessible to all peers, such as the
endorsement policy. Note that endorsement policies are not supplied with txPayload in a deploy
transaction, but txPayload of a deploy contains endorsement policy ID and its parameters (see
Section 3).

• anchor contains read version dependencies, or more specifically, key-version pairs (i.e., anchor is a subset
of KxN), that binds or “anchors” the PROPOSE request to specified versions of keys in a KVS (see Section
1.2.). If the client specifies the anchor argument, an endorser endorses a transaction only upon read version
numbers of corresponding keys in its local KVS match anchor (see Section 2.2. for more details).

Cryptographic hash of tx is used by all nodes as a unique transaction identifier tid (i.e., tid=HASH(tx)). The
client stores tid in memory and waits for responses from endorsing peers.

2.1.2. Message patterns

The client decides on the sequence of interaction with endorsers. For example, a client would typically send
<PROPOSE,tx> (i.e., without the anchor argument) to a single endorser, which would then produce the ver-
sion dependencies (anchor) which the client can later on use as an argument of its PROPOSE message to other
endorsers. As another example, the client could directly send <PROPOSE,tx> (without anchor) to all endorsers
of its choice. Different patterns of communication are possible and client is free to decide on those (see also Section
2.3.).

2.2. The endorsing peer simulates a transaction and produces an endorsement
signature

On reception of a <PROPOSE,tx,[anchor]> message from a client, the endorsing peer epID first verifies the
client’s signature clientSig and then simulates a transaction. If the client specifies anchor then endorsing peer
simulates the transactions only upon read version numbers (i.e., readset as defined below) of corresponding keys
in its local KVS match those version numbers specified by anchor .

106 Chapter 21. Architecture Explained

hyperledger-fabricdocs Documentation, Release master

Simulating a transaction involves endorsing peer tentatively executing a transaction (txPayload), by invoking the
chaincode to which the transaction refers (chaincodeID) and the copy of the state that the endorsing peer locally
holds.

As a result of the execution, the endorsing peer computes read version dependencies (readset) and state updates
(writeset), also called MVCC+postimage info in DB language.

Recall that the state consists of key/value (k/v) pairs. All k/v entries are versioned, that is, every entry contains ordered
version information, which is incremented every time when the value stored under a key is updated. The peer that
interprets the transaction records all k/v pairs accessed by the chaincode, either for reading or for writing, but the peer
does not yet update its state. More specifically:

• Given state s before an endorsing peer executes a transaction, for every key k read by the transaction, pair
(k,s(k).version) is added to readset .

• Additionally, for every key k modified by the transaction to the new value v' , pair (k,v') is added to
writeset . Alternatively, v' could be the delta of the new value to previous value (s(k).value).

If a client specifies anchor in the PROPOSE message then client specified anchor must equal readset produced
by endorsing peer when simulating the transaction.

Then, the peer forwards internally tran-proposal (and possibly tx) to the part of its (peer’s) logic that endorses
a transaction, referred to as endorsing logic. By default, endorsing logic at a peer accepts the tran-proposal and
simply signs the tran-proposal . However, endorsing logic may interpret arbitrary functionality, to, e.g., interact
with legacy systems with tran-proposal and tx as inputs to reach the decision whether to endorse a transaction
or not.

If endorsing logic decides to endorse a transaction, it sends <TRANSACTION-ENDORSED,tid,tran-proposal,epSig>
message to the submitting client(tx.clientID), where:

• tran-proposal := (epID,tid,chaincodeID,txContentBlob,readset,writeset) ,

where txContentBlob is chaincode/transaction specific information. The intention is to have
txContentBlob used as some representation of tx (e.g., txContentBlob=tx.txPayload).

• epSig is the endorsing peer’s signature on tran-proposal

Else, in case the endorsing logic refuses to endorse the transaction, an endorser may send a message
(TRANSACTION-INVALID,tid,REJECTED) to the submitting client.

Notice that an endorser does not change its state in this step, the updates produced by transaction simulation in the
context of endorsement do not affect the state!

2.3. The submitting client collects an endorsement for a transaction and broadcasts
it through ordering service

The submitting client waits until it receives “enough” messages and signatures on
(TRANSACTION-ENDORSED,tid,*,*) statements to conclude that the transaction proposal is endorsed.
As discussed in Section 2.1.2., this may involve one or more round-trips of interaction with endorsers.

The exact number of “enough” depend on the chaincode endorsement policy (see also Section 3). If the endorsement
policy is satisfied, the transaction has been endorsed; note that it is not yet committed. The collection of signed
TRANSACTION-ENDORSED messages from endorsing peers which establish that a transaction is endorsed is called
an endorsement and denoted by endorsement .

If the submitting client does not manage to collect an endorsement for a transaction proposal, it abandons this trans-
action with an option to retry later.

For transaction with a valid endorsement, we now start using the ordering service. The submitting client invokes or-
dering service using the broadcast(blob) , where blob=endorsement . If the client does not have capability

21.2. 2. Basic workflow of transaction endorsement 107

hyperledger-fabricdocs Documentation, Release master

of invoking ordering service directly, it may proxy its broadcast through some peer of its choice. Such a peer must
be trusted by the client not to remove any message from the endorsement or otherwise the transaction may be
deemed invalid. Notice that, however, a proxy peer may not fabricate a valid endorsement .

2.4. The ordering service delivers a transactions to the peers

When an event deliver(seqno,prevhash,blob) occurs and a peer has applied all state updates for blobs
with sequence number lower than seqno , a peer does the following:

• It checks that the blob.endorsement is valid according to the policy of the chaincode
(blob.tran-proposal.chaincodeID) to which it refers.

• In a typical case, it also verifies that the dependencies (blob.endorsement.tran-proposal.readset
) have not been violated meanwhile. In more complex use cases, tran-proposal fields in endorsement may
differ and in this case endorsement policy (Section 3) specifies how the state evolves.

Verification of dependencies can be implemented in different ways, according to a consistency property or “isolation
guarantee” that is chosen for the state updates. Serializability is a default isolation guarantee, unless chaincode
endorsement policy specifies a different one. Serializability can be provided by requiring the version associated with
every key in the readset to be equal to that key’s version in the state, and rejecting transactions that do not satisfy
this requirement.

• If all these checks pass, the transaction is deemed valid or committed. In this case, the peer marks the transaction
with 1 in the bitmask of the PeerLedger , applies blob.endorsement.tran-proposal.writeset
to blockchain state (if tran-proposals are the same, otherwise endorsement policy logic defines the func-
tion that takes blob.endorsement).

• If the endorsement policy verification of blob.endorsement fails, the transaction is invalid and the peer
marks the transaction with 0 in the bitmask of the PeerLedger . It is important to note that invalid transactions
do not change the state.

Note that this is sufficient to have all (correct) peers have the same state after processing a deliver event (block)
with a given sequence number. Namely, by the guarantees of the ordering service, all correct peers will receive an
identical sequence of deliver(seqno,prevhash,blob) events. As the evaluation of the endorsement policy
and evaluation of version dependencies in readset are deterministic, all correct peers will also come to the same
conclusion whether a transaction contained in a blob is valid. Hence, all peers commit and apply the same sequence
of transactions and update their state in the same way.

Fig. 21.1: Illustration of the transaction flow (common-case path).

Figure 1. Illustration of one possible transaction flow (common-case path).

3. Endorsement policies

3.1. Endorsement policy specification

An endorsement policy, is a condition on what endorses a transaction. Blockchain peers have a pre-specified set of
endorsement policies, which are referenced by a deploy transaction that installs specific chaincode. Endorsement
policies can be parametrized, and these parameters can be specified by a deploy transaction.

To guarantee blockchain and security properties, the set of endorsement policies should be a set of proven policies
with limited set of functions in order to ensure bounded execution time (termination), determinism, performance and
security guarantees.

108 Chapter 21. Architecture Explained

hyperledger-fabricdocs Documentation, Release master

Dynamic addition of endorsement policies (e.g., by deploy transaction on chaincode deploy time) is very sensitive in
terms of bounded policy evaluation time (termination), determinism, performance and security guarantees. Therefore,
dynamic addition of endorsement policies is not allowed, but can be supported in future.

3.2. Transaction evaluation against endorsement policy

A transaction is declared valid only if it has been endorsed according to the policy. An invoke transaction for a
chaincode will first have to obtain an endorsement that satisfies the chaincode’s policy or it will not be committed.
This takes place through the interaction between the submitting client and endorsing peers as explained in Section 2.

Formally the endorsement policy is a predicate on the endorsement, and potentially further state that evaluates to TRUE
or FALSE. For deploy transactions the endorsement is obtained according to a system-wide policy (for example, from
the system chaincode).

An endorsement policy predicate refers to certain variables. Potentially it may refer to:

1. keys or identities relating to the chaincode (found in the metadata of the chaincode), for example, a set of
endorsers;

2. further metadata of the chaincode;

3. elements of the endorsement and endorsement.tran-proposal ;

4. and potentially more.

The above list is ordered by increasing expressiveness and complexity, that is, it will be relatively simple to support
policies that only refer to keys and identities of nodes.

The evaluation of an endorsement policy predicate must be deterministic. An endorsement shall be evaluated
locally by every peer such that a peer does not need to interact with other peers, yet all correct peers evaluate the
endorsement policy in the same way.

3.3. Example endorsement policies

The predicate may contain logical expressions and evaluates to TRUE or FALSE. Typically the condition will use
digital signatures on the transaction invocation issued by endorsing peers for the chaincode.

Suppose the chaincode specifies the endorser set E = {Alice,Bob,Charlie,Dave,Eve,Frank,George}
. Some example policies:

• A valid signature from on the same tran-proposal from all members of E.

• A valid signature from any single member of E.

• Valid signatures on the same tran-proposal from endorsing peers according to the condition (Alice OR
Bob) AND (any two of: Charlie,Dave,Eve,Frank,George) .

• Valid signatures on the same tran-proposal by any 5 out of the 7 endorsers. (More generally, for chaincode
with n > 3f endorsers, valid signatures by any 2f+1 out of the n endorsers, or by any group of more than
(n+f)/2 endorsers.)

• Suppose there is an assignment of “stake” or “weights” to the endorsers, like
{Alice=49,Bob=15,Charlie=15,Dave=10,Eve=7,Frank=3,George=1} , where the total
stake is 100: The policy requires valid signatures from a set that has a majority of the stake (i.e., a group
with combined stake strictly more than 50), such as {Alice,X} with any X different from George, or
{everyone together except Alice} . And so on.

• The assignment of stake in the previous example condition could be static (fixed in the metadata of the chain-
code) or dynamic (e.g., dependent on the state of the chaincode and be modified during the execution).

21.3. 3. Endorsement policies 109

hyperledger-fabricdocs Documentation, Release master

• Valid signatures from (Alice OR Bob) on tran-proposal1 and valid signatures from (any two
of: Charlie,Dave,Eve,Frank,George) on tran-proposal2 , where tran-proposal1 and
tran-proposal2 differ only in their endorsing peers and state updates.

How useful these policies are will depend on the application, on the desired resilience of the solution against failures
or misbehavior of endorsers, and on various other properties.

4 (post-v1). Validated ledger and PeerLedger checkpointing (prun-
ing)

4.1. Validated ledger (VLedger)

To maintain the abstraction of a ledger that contains only valid and committed transactions (that appears in Bitcoin,
for example), peers may, in addition to state and Ledger, maintain the Validated Ledger (or VLedger). This is a hash
chain derived from the ledger by filtering out invalid transactions.

The construction of the VLedger blocks (called here vBlocks) proceeds as follows. As the PeerLedger blocks may
contain invalid transactions (i.e., transactions with invalid endorsement or with invalid version dependencies), such
transactions are filtered out by peers before a transaction from a block becomes added to a vBlock. Every peer does
this by itself (e.g., by using the bitmask associated with PeerLedger). A vBlock is defined as a block without the
invalid transactions, that have been filtered out. Such vBlocks are inherently dynamic in size and may be empty. An
illustration of vBlock construction is given in the figure below.

Figure 2. Illustration of validated ledger block (vBlock) formation from ledger (PeerLedger) blocks.

vBlocks are chained together to a hash chain by every peer. More specifically, every block of a validated ledger
contains:

• The hash of the previous vBlock.

• vBlock number.

• An ordered list of all valid transactions committed by the peers since the last vBlock was computed (i.e., list of
valid transactions in a corresponding block).

• The hash of the corresponding block (in PeerLedger) from which the current vBlock is derived.

All this information is concatenated and hashed by a peer, producing the hash of the vBlock in the validated ledger.

4.2. PeerLedger Checkpointing

The ledger contains invalid transactions, which may not necessarily be recorded forever. However, peers cannot simply
discard PeerLedger blocks and thereby prune PeerLedger once they establish the corresponding vBlocks.
Namely, in this case, if a new peer joins the network, other peers could not transfer the discarded blocks (pertaining to
PeerLedger) to the joining peer, nor convince the joining peer of the validity of their vBlocks.

To facilitate pruning of the PeerLedger , this document describes a checkpointing mechanism. This mechanism es-
tablishes the validity of the vBlocks across the peer network and allows checkpointed vBlocks to replace the discarded
PeerLedger blocks. This, in turn, reduces storage space, as there is no need to store invalid transactions. It also
reduces the work to reconstruct the state for new peers that join the network (as they do not need to establish validity
of individual transactions when reconstructing the state by replaying PeerLedger , but may simply replay the state
updates contained in the validated ledger).

110 Chapter 21. Architecture Explained

hyperledger-fabricdocs Documentation, Release master

4.2.1. Checkpointing protocol

Checkpointing is performed periodically by the peers every CHK blocks, where CHK is a config-
urable parameter. To initiate a checkpoint, the peers broadcast (e.g., gossip) to other peers message
<CHECKPOINT,blocknohash,blockno,stateHash,peerSig> , where blockno is the current block-
number and blocknohash is its respective hash, stateHash is the hash of the latest state (pro-
duced by e.g., a Merkle hash) upon validation of block blockno and peerSig is peer’s signature on
(CHECKPOINT,blocknohash,blockno,stateHash) , referring to the validated ledger.

A peer collects CHECKPOINT messages until it obtains enough correctly signed messages with matching blockno
, blocknohash and stateHash to establish a valid checkpoint (see Section 4.2.2.).

Upon establishing a valid checkpoint for block number blockno with blocknohash , a peer:

• if blockno>latestValidCheckpoint.blockno , then a peer assigns
latestValidCheckpoint=(blocknohash,blockno) ,

• stores the set of respective peer signatures that constitute a valid checkpoint into the set
latestValidCheckpointProof ,

• stores the state corresponding to stateHash to latestValidCheckpointedState ,

• (optionally) prunes its PeerLedger up to block number blockno (inclusive).

4.2.2. Valid checkpoints

Clearly, the checkpointing protocol raises the following questions: When can a peer prune its ‘‘PeerLedger‘‘? How
many ‘‘CHECKPOINT‘‘ messages are “sufficiently many”?. This is defined by a checkpoint validity policy, with (at
least) two possible approaches, which may also be combined:

• Local (peer-specific) checkpoint validity policy (LCVP). A local policy at a given peer p may specify a set of
peers which peer p trusts and whose CHECKPOINT messages are sufficient to establish a valid checkpoint. For
example, LCVP at peer Alice may define that Alice needs to receive CHECKPOINT message from Bob, or from
both Charlie and Dave.

• Global checkpoint validity policy (GCVP). A checkpoint validity policy may be specified globally. This is
similar to a local peer policy, except that it is stipulated at the system (blockchain) granularity, rather than peer
granularity. For instance, GCVP may specify that:

– each peer may trust a checkpoint if confirmed by 11 different peers.

– in a specific deployment in which every orderer is collocated with a peer in the same machine (i.e., trust do-
main) and where up to f orderers may be (Byzantine) faulty, each peer may trust a checkpoint if confirmed
by f+1 different peers collocated with orderers.

21.4. 4 (post-v1). Validated ledger and PeerLedger checkpointing (pruning) 111

hyperledger-fabricdocs Documentation, Release master

112 Chapter 21. Architecture Explained

CHAPTER 22

Transaction Flow

This document outlines the transactional mechanics that take place during a standard asset exchange. The scenario
includes two clients, A and B, who are buying and selling radishes. They each have a peer on the network through
which they send their transactions and interact with the ledger.

Assumptions

This flow assumes that a channel is set up and running. The application user has registered and enrolled with the orga-
nization’s certificate authority (CA) and received back necessary cryptographic material, which is used to authenticate
to the network.

The chaincode (containing a set of key value pairs representing the initial state of the radish market) is installed on the
peers and instantiated on the channel. The chaincode contains logic defining a set of transaction instructions and the
agreed upon price for a radish. An endorsement policy has also been set for this chaincode, stating that both peerA
and peerB must endorse any transaction.

1. Client A initiates a transaction

What’s happening? - Client A is sending a request to purchase radishes. The request targets peerA and peerB , who
are respectively representative of Client A and Client B. The endorsement policy states that both peers must endorse

113

hyperledger-fabricdocs Documentation, Release master

any transaction, therefore the request goes to peerA and peerB .

Next, the transaction proposal is constructed. An application leveraging a supported SDK (node, java, python) utilizes
one of the available API’s which generates a transaction proposal. The proposal is a request to invoke a chaincode
function so that data can be read and/or written to the ledger (i.e. write new key value pairs for the assets). The SDK
serves as a shim to package the transaction proposal into the properly architected format (protocol buffer over gRPC)
and takes the user’s cryptographic credentials to produce a unique signature for this transaction proposal.

2. Endorsing peers verify signature & execute the transaction

The endorsing peers verify (1) that the transaction proposal is well formed, (2) it has not been submitted already in
the past (replay-attack protection), (3) the signature is valid (using MSP), and (4) that the submitter (Client A, in
the example) is properly authorized to perform the proposed operation on that channel (namely, each endorsing peer
ensures that the submitter satisfies the channel’s Writers policy). The endorsing peers take the transaction proposal
inputs as arguments to the invoked chaincode’s function. The chaincode is then executed against the current state
database to produce transaction results including a response value, read set, and write set. No updates are made to the
ledger at this point. The set of these values, along with the endorsing peer’s signature and a YES/NO endorsement
statement is passed back as a “proposal response” to the SDK which parses the payload for the application to consume.

{The MSP is a peer component that allows them to verify transaction requests arriving from clients and to sign
transaction results(endorsements). The *Writing policy is defined at channel creation time, and determines which user
is entitled to submit a transaction to that channel.}*

3. Proposal responses are inspected

The application verifies the endorsing peer signatures and compares the proposal responses (link to glossary term
which will contain a representation of the payload) to determine if the proposal responses are the same and if the
specified endorsement policy has been fulfilled (i.e. did peerA and peerB both endorse). The architecture is such that
even if an application chooses not to inspect responses or otherwise forwards an unendorsed transaction, the policy
will still be enforced by peers and upheld at the commit validation phase.

114 Chapter 22. Transaction Flow

hyperledger-fabricdocs Documentation, Release master

4. Client assembles endorsements into a transaction

The application “broadcasts” the transaction proposal and response within a “transaction message” to the Ordering
Service. The transaction will contain the read/write sets, the endorsing peers signatures and the Channel ID. The
Ordering Service does not need to inspect the entire content of a transaction in order to perform its operation, it simply
receives transactions from all channels in the network, orders them chronologically by channel, and creates blocks of
transactions per channel.

5. Transaction is validated and committed

The blocks of transactions are “delivered” to all peers on the channel. The transactions within the block are validated
to ensure endorsement policy is fulfilled and to ensure that there have been no changes to ledger state for read set
variables since the read set was generated by the transaction execution. Transactions in the block are tagged as being
valid or invalid.

6. Ledger updated

Each peer appends the block to the channel’s chain, and for each valid transaction the write sets are committed to
current state database. An event is emitted, to notify the client application that the transaction (invocation) has been
immutably appended to the chain, as well as notification of whether the transaction was validated or invalidated.

Note: See the swimlane diagram to better understand the server side flow and the protobuffers.

115

hyperledger-fabricdocs Documentation, Release master

116 Chapter 22. Transaction Flow

CHAPTER 23

Hyperledger Fabric SDKs

Hyperledger Fabric intends to offer a number of SDKs for a wide variety of programming languages. The first two
delivered are the Node.js and Java SDKs. We hope to provide Python and Go SDKs soon after the 1.0.0 release.

• Hyperledger Fabric Node SDK documentation.

• Hyperledger Fabric Java SDK documentation.

117

https://fabric-sdk-node.github.io/
https://github.com/hyperledger/fabric-sdk-java

hyperledger-fabricdocs Documentation, Release master

118 Chapter 23. Hyperledger Fabric SDKs

CHAPTER 24

Bringing up a Kafka-based Ordering Service

Caveat emptor

This document assumes that the reader generally knows how to set up a Kafka cluster and a ZooKeeper ensemble. The
purpose of this guide is to identify the steps you need to take so as to have a set of Hyperledger Fabric ordering service
nodes (OSNs) use your Kafka cluster and provide an ordering service to your blockchain network.

Big picture

Each channel in Fabric maps to a separate single-partition topic in Kafka. When an OSN receives transactions via the
Broadcast RPC, it checks to make sure that the broadcasting client has permissions to write on the channel, then
relays (i.e. produces) those transactions to the appropriate partition in Kafka. This partition is also consumed by the
OSN which groups the received transactions into blocks locally, persists them in its local ledger, and serves them to
receiving clients via the Deliver RPC. For low-level details, refer to the document that describes how we came to
this design – Figure 8 is a schematic representation of the process described above.

Steps

Let K and Z be the number of nodes in the Kafka cluster and the ZooKeeper ensemble respectively:

i. At a minimum, K should be set to 4. (As we will explain in Step 4 below, this is the minimum number of nodes
necessary in order to exhibit crash fault tolerance, i.e. with 4 brokers, you can have 1 broker go down, all channels
will continue to be writeable and readable, and new channels can be created.)

ii. Z will either be 3, 5, or 7. It has to be an odd number to avoid split-brain scenarios, and larger than 1 in order to
avoid single point of failures. Anything beyond 7 ZooKeeper servers is considered an overkill.

Proceed as follows:

1. Orderers: Encode the Kafka-related information in the network’s genesis block. If you are using
configtxgen , edit configtx.yaml – or pick a preset profile for the system channel’s genesis block – so
that:

1. Orderer.OrdererType is set to kafka .

b. Orderer.Kafka.Brokers contains the address of at least two of the Kafka brokers in your cluster
in IP:port notation. The list does not need to be exhaustive. (These are your seed brokers.)

119

https://docs.google.com/document/d/1vNMaM7XhOlu9tB_10dKnlrhy5d7b1u8lSY8a-kVjCO4/edit
https://docs.google.com/document/d/1vNMaM7XhOlu9tB_10dKnlrhy5d7b1u8lSY8a-kVjCO4/edit

hyperledger-fabricdocs Documentation, Release master

2. Orderers: Set the maximum block size. Each block will have at most Orderer.AbsoluteMaxBytes bytes (not
including headers), a value that you can set in configtx.yaml . Let the value you pick here be A and make note
of it – it will affect how you configure your Kafka brokers in Step 4.

3. Orderers: Create the genesis block. Use configtxgen . The settings you picked in Steps 1 and 2 above are
system-wide settings, i.e. they apply across the network for all the OSNs. Make note of the genesis block’s location.

4. Kafka cluster: Configure your Kafka brokers appropriately. Ensure that every Kafka broker has these keys
configured:

a. unclean.leader.election.enable = false – Data consistency is key in a blockchain
environment. We cannot have a channel leader chosen outside of the in-sync replica set, or we run the
risk of overwriting the offsets that the previous leader produced, and –as a result– rewrite the blockchain
that the orderers produce.

b. min.insync.replicas = M – Where you pick a value M such that 1 < M < N (see
default.replication.factor below). Data is considered committed when it is written to at
least M replicas (which are then considered in-sync and belong to the in-sync replica set, or ISR). In any
other case, the write operation returns an error. Then:

i. If up to N-M replicas – out of the N that the channel data is written to – become unavailable,
operations proceed normally. ii. If more replicas become unavailable, Kafka cannot maintain
an ISR set of M, so it stops accepting writes. Reads work without issues. The channel becomes
writeable again when M replicas get in-sync.

c. default.replication.factor = N – Where you pick a value N such that N < K. A repli-
cation factor of N means that each channel will have its data replicated to N brokers. These are the
candidates for the ISR set of a channel. As we noted in the min.insync.replicas section
above, not all of these brokers have to be available all the time. N should be set strictly smaller to K
because channel creations cannot go forward if less than N brokers are up. So if you set N = K, a single
broker going down means that no new channels can be created on the blockchain network – the crash fault
tolerance of the ordering service is non-existent.

d. message.max.bytes and replica.fetch.max.bytes should be set to a value larger than
A , the value you picked in Orderer.AbsoluteMaxBytes in Step 2 above. Add some buffer to
account for headers – 1 MiB is more than enough. The following condition applies:

Orderer.AbsoluteMaxBytes < replica.fetch.max.bytes <= message.max.bytes

(For completeness, we note that message.max.bytes should be strictly smaller to
socket.request.max.bytes which is set by default to 100 MiB. If you wish
to have blocks larger than 100 MiB you will need to edit the hard-coded value in
brokerConfig.Producer.MaxMessageBytes in fabric/orderer/kafka/config.go
and rebuild the binary from source. This is not advisable.)

e. log.retention.ms = -1 . Until the ordering service in Fabric adds support for pruning of the
Kafka logs, you should disable time-based retention and prevent segments from expiring. (Size-based
retention – see log.retention.bytes – is disabled by default in Kafka at the time of this writing,
so there’s no need to set it explicitly.)

Based on what we’ve described above, the minimum allowed values for M and N are 2 and 3 respectively.
This configuration allows for the creation of new channels to go forward, and for all channels to continue
to be writeable.

5. Orderers: Point each OSN to the genesis block. Edit General.GenesisFile in orderer.yaml so that
it points to the genesis block created in Step 3 above. (While at it, ensure all other keys in that YAML file are set
appropriately.)

6. Orderers: Adjust polling intervals and timeouts. (Optional step.)

120 Chapter 24. Bringing up a Kafka-based Ordering Service

hyperledger-fabricdocs Documentation, Release master

a. The Kafka.Retry section in the orderer.yaml file allows you to adjust the frequency of
the metadata/producer/consumer requests, as well as the socket timeouts. (These are all settings you
would expect to see in a Kafka producer or consumer.)

b. Additionally, when a new channel is created, or when an existing channel is reloaded (in case of a
just-restarted orderer), the orderer interacts with the Kafka cluster in the following ways:

a. It creates a Kafka producer (writer) for the Kafka partition that corresponds to the chan-
nel.

b. It uses that producer to post a no-op CONNECT message to that partition.

(a) It creates a Kafka consumer (reader) for that partition.

If any of these steps fail, you can adjust the frequency with which they are repeated. Specif-
ically they will be re-attempted every Kafka.Retry.ShortInterval for a total of
Kafka.Retry.ShortTotal , and then every Kafka.Retry.LongInterval for
a total of Kafka.Retry.LongTotal until they succeed. Note that the orderer will be
unable to write to or read from a channel until all of the steps above have been completed
successfully.

7. Set up the OSNs and Kafka cluster so that they communicate over SSL. (Optional step, but highly recom-
mended.) Refer to the Confluent guide for the Kafka cluster side of the equation, and set the keys under Kafka.TLS
in orderer.yaml on every OSN accordingly.

8. Bring up the nodes in the following order: ZooKeeper ensemble, Kafka cluster, ordering service nodes.

Additional considerations

1. Preferred message size. In Step 2 above (see Steps section) you can also set the preferred size of blocks by
setting the Orderer.Batchsize.PreferredMaxBytes key. Kafka offers higher throughput when dealing
with relatively small messages; aim for a value no bigger than 1 MiB.

2. Using environment variables to override settings. You can override a Kafka broker or a ZooKeeper
server’s settings by using environment variables. Replace the dots of the configuration key with underscores –
e.g. KAFKA_UNCLEAN_LEADER_ELECTION_ENABLE=false will allow you to override the default value of
unclean.leader.election.enable . The same applies to the OSNs for their local configuration, i.e. what
can be set in orderer.yaml . For example ORDERER_KAFKA_RETRY_SHORTINTERVAL=1s allows you to
override the default value for Orderer.Kafka.Retry.ShortInterval .

Supported Kafka versions and upgrading

Supported Kafka versions for v1 are 0.9 and 0.10 . (Fabric uses the sarama client library and vendors a version of
it that supports Kafka 0.9 and 0.10.)

Out of the box the Kafka version defaults to 0.9.0.1 . If you wish to use a different supported version, specify a
supported version using the Kafka.Version key in orderer.yaml .

The current supported Kafka versions are:

• Version: 0.9.0.1

• Version: 0.10.0.0

• Version: 0.10.0.1

• Version: 0.10.1.0

24.4. Additional considerations 121

http://docs.confluent.io/2.0.0/kafka/ssl.html
https://github.com/Shopify/sarama

hyperledger-fabricdocs Documentation, Release master

Debugging

Set General.LogLevel to DEBUG and Kafka.Verbose in orderer.yaml to true .

Example

Sample Docker Compose configuration files inline with the recommended settings above can be found under the
fabric/bddtests directory. Look for dc-orderer-kafka-base.yml and dc-orderer-kafka.yml .

122 Chapter 24. Bringing up a Kafka-based Ordering Service

CHAPTER 25

Channels

A Hyperledger Fabric channel is a private “subnet” of communication between two or more specific network members,
for the purpose of conducting private and confidential transactions. A channel is defined by members (organizations),
anchor peers per member, the shared ledger, chaincode application(s) and the ordering service node(s). Each transac-
tion on the network is executed on a channel, where each party must be authenticated and authorized to transact on
that channel. Each peer that joins a channel, has its own identity given by a membership services provider (MSP),
which authenticates each peer to its channel peers and services.

To create a new channel, the client SDK calls configuration system chaincode and references properties such as anchor
peer**s, and members (organizations). This request creates a **genesis block for the channel ledger, which stores
configuration information about the channel policies, members and anchor peers. When adding a new member to an
existing channel, either this genesis block, or if applicable, a more recent reconfiguration block, is shared with the new
member.

Note: See the Channel Configuration (configtx) section for more more details on the properties and proto structures
of config transactions.

The election of a leading peer for each member on a channel determines which peer communicates with the ordering
service on behalf of the member. If no leader is identified, an algorithm can be used to identify the leader. The
consensus service orders transactions and delivers them, in a block, to each leading peer, which then distributes the
block to its member peers, and across the channel, using the gossip protocol.

Although any one anchor peer can belong to multiple channels, and therefore maintain multiple ledgers, no ledger
data can pass from one channel to another. This separation of ledgers, by channel, is defined and implemented by con-
figuration chaincode, the identity membership service and the gossip data dissemination protocol. The dissemination
of data, which includes information on transactions, ledger state and channel membership, is restricted to peers with
verifiable membership on the channel. This isolation of peers and ledger data, by channel, allows network members
that require private and confidential transactions to coexist with business competitors and other restricted members,
on the same blockchain network.

123

hyperledger-fabricdocs Documentation, Release master

124 Chapter 25. Channels

CHAPTER 26

Ledger

The ledger is the sequenced, tamper-resistant record of all state transitions in the fabric. State transitions are a result
of chaincode invocations (‘transactions’) submitted by participating parties. Each transaction results in a set of asset
key-value pairs that are committed to the ledger as creates, updates, or deletes.

The ledger is comprised of a blockchain (‘chain’) to store the immutable, sequenced record in blocks, as well as a state
database to maintain current fabric state. There is one ledger per channel. Each peer maintains a copy of the ledger
for each channel of which they are a member.

Chain

The chain is a transaction log, structured as hash-linked blocks, where each block contains a sequence of N transac-
tions. The block header includes a hash of the block’s transactions, as well as a hash of the prior block’s header. In
this way, all transactions on the ledger are sequenced and cryptographically linked together. In other words, it is not
possible to tamper with the ledger data, without breaking the hash links. The hash of the latest block represents every
transaction that has come before, making it possible to ensure that all peers are in a consistent and trusted state.

The chain is stored on the peer file system (either local or attached storage), efficiently supporting the append-only
nature of the blockchain workload.

State Database

The ledger’s current state data represents the latest values for all keys ever included in the chain transaction log. Since
current state represents all latest key values known to the channel, it is sometimes referred to as World State.

Chaincode invocations execute transactions against the current state data. To make these chaincode interactions ex-
tremely efficient, the latest values of all keys are stored in a state database. The state database is simply an indexed
view into the chain’s transaction log, it can therefore be regenerated from the chain at any time. The state database
will automatically get recovered (or generated if needed) upon peer startup, before transactions are accepted.

Transaction Flow

At a high level, the transaction flow consists of a transaction proposal sent by an application client to specific endorsing
peers. The endorsing peers verify the client signature, and execute a chaincode function to simulate the transaction.
The output is the chaincode results, a set of key/value versions that were read in the chaincode (read set), and the set
of keys/values that were written in chaincode (write set). The proposal response gets sent back to the client along with
an endorsement signature.

125

hyperledger-fabricdocs Documentation, Release master

The client assembles the endorsements into a transaction payload and broadcasts it to an ordering service. The ordering
service delivers ordered transactions as blocks to all peers on a channel.

Before committal, peers will validate the transactions. First, they will check the endorsement policy to ensure that the
correct allotment of the specified peers have signed the results, and they will authenticate the signatures against the
transaction payload.

Secondly, peers will perform a versioning check against the transaction read set, to ensure data integrity and protect
against threats such as double-spending. The fabric has concurrency control whereby transactions execute in parallel
(by endorsers) to increase throughput, and upon commit (by all peers) each transaction is verified to ensure that no
other transaction has modified data it has read. In other words, it ensures that the data that was read during chaincode
execution has not changed since execution (endorsement) time, and therefore the execution results are still valid and
can be committed to the ledger state database. If the data that was read has been changed by another transaction, then
the transaction in the block is marked as invalid and is not applied to the ledger state database. The client application
is alerted, and can handle the error or retry as appropriate.

See the Transaction Flow and Read-Write set semantics topics for a deeper dive on transaction structure, concurrency
control, and the state DB.

State Database options

State database options include LevelDB and CouchDB (beta). LevelDB is the default key/value state database em-
bedded in the peer process. CouchDB is an optional alternative external state database. Like the LevelDB key/value
store, CouchDB can store any binary data that is modeled in chaincode (CouchDB attachment functionality is used in-
ternally for non-JSON binary data). But as a JSON document store, CouchDB additionally enables rich query against
the chaincode data, when chaincode values (e.g. assets) are modeled as JSON data.

Both LevelDB and CouchDB support core chaincode operations such as getting and setting a key (asset), and querying
based on keys. Keys can be queried by range, and composite keys can be modeled to enable equivalence queries against
multiple parameters. For example a composite key of (owner,asset_id) can be used to query all assets owned by a
certain entity. These key-based queries can be used for read-only queries against the ledger, as well as in transactions
that update the ledger.

If you model assets as JSON and use CouchDB, you can also perform complex rich queries against the chaincode
data values, using the CouchDB JSON query language within chaincode. These types of queries are excellent for
understanding what is on the ledger. Proposal responses for these types of queries are typically useful to the client
application, but are not typically submitted as transactions to the ordering service. In fact the fabric does not guarantee
the result set is stable between chaincode execution and commit time for rich queries, and therefore rich queries are
not appropriate for use in update transactions, unless your application can guarantee the result set is stable between
chaincode execution time and commit time, or can handle potential changes in subsequent transactions. For example,
if you perform a rich query for all assets owned by Alice and transfer them to Bob, a new asset may be assigned to
Alice by another transaction between chaincode execution time and commit time, and you would miss this ‘phantom’
item.

CouchDB runs as a separate database process alongside the peer, therefore there are additional considerations in terms
of setup, management, and operations. You may consider starting with the default embedded LevelDB, and move to
CouchDB if you require the additional complex rich queries. It is a good practice to model chaincode asset data as
JSON, so that you have the option to perform complex rich queries if needed in the future.

To enable CouchDB as the state database, configure the /fabric/sampleconfig/core.yaml stateDatabase section.

126 Chapter 26. Ledger

CHAPTER 27

Read-Write set semantics

This documents discusses the details of the current implementation about the semantics of read-write sets.

Transaction simulation and read-write set

During simulation of a transaction at an endorser , a read-write set is prepared for the transaction. The read set
contains a list of unique keys and their committed versions that the transaction reads during simulation. The write
set contains a list of unique keys (though there can be overlap with the keys present in the read set) and their new
values that the transaction writes. A delete marker is set (in the place of new value) for the key if the update performed
by the transaction is to delete the key.

Further, if the transaction writes a value multiple times for a key, only the last written value is retained. Also, if a
transaction reads a value for a key, the value in the committed state is returned even if the transaction has updated the
value for the key before issuing the read. In another words, Read-your-writes semantics are not supported.

As noted earlier, the versions of the keys are recorded only in the read set; the write set just contains the list of unique
keys and their latest values set by the transaction.

There could be various schemes for implementing versions. The minimal requirement for a versioning scheme is to
produce non-repeating identifiers for a given key. For instance, using monotonically increasing numbers for versions
can be one such scheme. In the current implementation, we use a blockchain height based versioning scheme in which
the height of the committing transaction is used as the latest version for all the keys modified by the transaction. In
this scheme, the height of a transaction is represented by a tuple (txNumber is the height of the transaction within
the block). This scheme has many advantages over the incremental number scheme - primarily, it enables other
components such as statedb, transaction simulation and validation for making efficient design choices.

Following is an illustration of an example read-write set prepared by simulation of a hypothetical transaction. For the
sake of simplicity, in the illustrations, we use the incremental numbers for representing the versions.

<TxReadWriteSet>
<NsReadWriteSet name="chaincode1">
<read-set>

<read key="K1", version="1">
<read key="K2", version="1">

</read-set>
<write-set>

<write key="K1", value="V1"
<write key="K3", value="V2"
<write key="K4", isDelete="true"

</write-set>
</NsReadWriteSet>

<TxReadWriteSet>

127

hyperledger-fabricdocs Documentation, Release master

Additionally, if the transaction performs a range query during simulation, the range query as well as its results will be
added to the read-write set as query-info .

Transaction validation and updating world state using read-write set

A committer uses the read set portion of the read-write set for checking the validity of a transaction and the write
set portion of the read-write set for updating the versions and the values of the affected keys.

In the validation phase, a transaction is considered valid if the version of each key present in the read set of the
transaction matches the version for the same key in the world state - assuming all the preceding valid transactions
(including the preceding transactions in the same block) are committed (committed-state). An additional validation is
performed if the read-write set also contains one or more query-info.

This additional validation should ensure that no key has been inserted/deleted/updated in the super range (i.e., union
of the ranges) of the results captured in the query-info(s). In other words, if we re-execute any of the range queries
(that the transaction performed during simulation) during validation on the committed-state, it should yield the same
results that were observed by the transaction at the time of simulation. This check ensures that if a transaction observes
phantom items during commit, the transaction should be marked as invalid. Note that the this phantom protection is
limited to range queries (i.e., GetStateByRange function in the chaincode) and not yet implemented for other
queries (i.e., GetQueryResult function in the chaincode). Other queries are at risk of phantoms, and should
therefore only be used in read-only transactions that are not submitted to ordering, unless the application can guarantee
the stability of the result set between simulation and validation/commit time.

If a transaction passes the validity check, the committer uses the write set for updating the world state. In the update
phase, for each key present in the write set, the value in the world state for the same key is set to the value as specified
in the write set. Further, the version of the key in the world state is changed to reflect the latest version.

Example simulation and validation

This section helps with understanding the semantics through an example scenario. For the purpose of this example,
the presence of a key, k , in the world state is represented by a tuple (k,ver,val) where ver is the latest version
of the key k having val as its value.

Now, consider a set of five transactions T1,T2,T3,T4,and T5 , all simulated on the same snapshot of the world
state. The following snippet shows the snapshot of the world state against which the transactions are simulated and
the sequence of read and write activities performed by each of these transactions.

World state: (k1,1,v1), (k2,1,v2), (k3,1,v3), (k4,1,v4), (k5,1,v5)
T1 -> Write(k1, v1'), Write(k2, v2')
T2 -> Read(k1), Write(k3, v3')
T3 -> Write(k2, v2'')
T4 -> Write(k2, v2'''), read(k2)
T5 -> Write(k6, v6'), read(k5)

Now, assume that these transactions are ordered in the sequence of T1,..,T5 (could be contained in a single block or
different blocks)

1. T1 passes validation because it does not perform any read. Further, the tuple of keys k1 and k2 in the world
state are updated to (k1,2,v1'),(k2,2,v2')

2. T2 fails validation because it reads a key, k1 , which was modified by a preceding transaction - T1

128 Chapter 27. Read-Write set semantics

hyperledger-fabricdocs Documentation, Release master

3. T3 passes the validation because it does not perform a read. Further the tuple of the key, k2 , in the world state
is updated to (k2,3,v2'')

4. T4 fails the validation because it reads a key, k2 , which was modified by a preceding transaction T1

5. T5 passes validation because it reads a key, k5, which was not modified by any of the preceding transactions

Note: Transactions with multiple read-write sets are not yet supported.

27.3. Example simulation and validation 129

hyperledger-fabricdocs Documentation, Release master

130 Chapter 27. Read-Write set semantics

CHAPTER 28

Gossip data dissemination protocol

Hyperledger Fabric optimizes blockchain network performance, security and scalability by dividing workload across
transaction execution (endorsing and committing) peers and transaction ordering nodes. This decoupling of network
operations requires a secure, reliable and scalable data dissemination protocol to ensure data integrity and consistency.
To meet these requirements, the fabric implements a gossip data dissemination protocol.

Gossip protocol

Peers leverage gossip to broadcast ledger and channel data in a scalable fashion. Gossip messaging is continuous, and
each peer on a channel is constantly receiving current and consistent ledger data, from multiple peers. Each gossiped
message is signed, thereby allowing Byzantine participants sending faked messages to be easily identified and the
distribution of the message(s) to unwanted targets to be prevented. Peers affected by delays, network partitions or
other causations resulting in missed blocks, will eventually be synced up to the current ledger state by contacting peers
in possession of these missing blocks.

The gossip-based data dissemination protocol performs three primary functions on a Fabric network:

1. Manages peer discovery and channel membership, by continually identifying available member peers, and even-
tually detecting peers that have gone offline.

2. Disseminates ledger data across all peers on a channel. Any peer with data that is out of sync with the rest of
the channel identifies the missing blocks and syncs itself by copying the correct data.

3. Bring newly connected peers up to speed by allowing peer-to-peer state transfer update of ledger data.

Gossip-based broadcasting operates by peers receiving messages from other peers on the channel, and then forwarding
these messages to a number of randomly-selected peers on the channel, where this number is a configurable constant.
Peers can also exercise a pull mechanism, rather than waiting for delivery of a message. This cycle repeats, with the
result of channel membership, ledger and state information continually being kept current and in sync. For dissem-
ination of new blocks, the leader peer on the channel pulls the data from the ordering service and initiates gossip
dissemination to peers.

Gossip messaging

Online peers indicate their availability by continually broadcasting “alive” messages, with each containing the public
key infrastructure (PKI) ID and the signature of the sender over the message. Peers maintain channel membership by
collecting these alive messages; if no peer receives an alive message from a specific peer, this “dead” peer is eventually
purged from channel membership. Because “alive” messages are cryptographically signed, malicious peers can never
impersonate other peers, as they lack a signing key authorized by a root certificate authority (CA).

131

hyperledger-fabricdocs Documentation, Release master

In addition to the automatic forwarding of received messages, a state reconciliation process synchronizes world state
across peers on each channel. Each peer continually pulls blocks from other peers on the channel, in order to repair
its own state if discrepancies are identified. Because fixed connectivity is not required to maintain gossip-based data
dissemination, the process reliably provides data consistency and integrity to the shared ledger, including tolerance for
node crashes.

Because channels are segregated, peers on one channel cannot message or share information on any other channel.
Though any peer can belong to multiple channels, partitioned messaging prevents blocks from being disseminated to
peers that are not in the channel by applying message routing policies based on peers’ channel subscriptions.

Notes:
1. Security of point-to-point messages are handled by the peer TLS layer, and do not require signatures. Peers are
authenticated by their certificates, which are assigned by a CA. Although TLS certs are also used, it is the peer
certificates that are authenticated in the gossip layer. Ledger blocks are signed by the ordering service, and then
delivered to the leader peers on a channel. 2. Authentication is governed by the membership service provider for the
peer. When the peer connects to the channel for the first time, the TLS session binds with fabric membership identity.
This essentially authenticates each peer to the connecting peer, with respect to membership in the network and
channel.

132 Chapter 28. Gossip data dissemination protocol

CHAPTER 29

Hyperledger Fabric FAQs

Endorsement

Endorsement architecture:

17. How many peers in the network need to endorse a transaction?

A. The number of peers required to endorse a transaction is driven by the endorsement policy that is specified at
chaincode deployment time.

17. Does an application client need to connect to all peers?

A. Clients only need to connect to as many peers as are required by the endorsement policy for the chaincode.

Security & Access Control

Data Privacy and Access Control:

17. How do I ensure data privacy?

A. There are various aspects to data privacy. First, you can segregate your network into channels, where each channel
represents a subset of participants that are authorized to see the data for the chaincodes that are deployed to that
channel. Second, within a channel you can restrict the input data to chaincode to the set of endorsers only, by using
visibility settings. The visibility setting will determine whether input and output chaincode data is included in the
submitted transaction, versus just output data. Third, you can hash or encrypt the data before calling chaincode. If you
hash the data then you will need a way to share the source data outside of fabric. If you encrypt the data then you will
need a way to share the decryption keys outside of fabric. Fourth, you can restrict data access to certain roles in your
organization, by building access control into the chaincode logic. Fifth, ledger data at rest can be encrypted via file
system encryption on the peer, and data in transit is encrypted via TLS.

17. Do the orderers see the transaction data?

A. No, the orderers only order transactions, they do not open the transactions. If you do not want the data to go through
the orderers at all, and you are only concerned about the input data, then you can use visibility settings. The visibility
setting will determine whether input and output chaincode data is included in the submitted transaction, versus just
output data. Therefore the input data can be private to the endorsers only. If you do not want the orderers to see
chaincode output, then you can hash or encrypt the data before calling chaincode. If you hash the data then you will
need a way to share the source data outside of fabric. If you encrypt the data then you will need a way to share the
decryption keys outside of fabric.

133

hyperledger-fabricdocs Documentation, Release master

Application-side Programming Model

Transaction execution result:

17. How do application clients know the outcome of a transaction?

A. The transaction simulation results are returned to the client by the endorser in the proposal response. If there are
multiple endorsers, the client can check that the responses are all the same, and submit the results and endorsements
for ordering and commitment. Ultimately the committing peers will validate or invalidate the transaction, and the
client becomes aware of the outcome via an event, that the SDK makes available to the application client.

Ledger queries:

17. How do I query the ledger data?

Within chaincode you can query based on keys. Keys can be queried by range, and composite keys can be modeled to
enable equivalence queries against multiple parameters. For example a composite key of (owner,asset_id) can be used
to query all assets owned by a certain entity. These key-based queries can be used for read-only queries against the
ledger, as well as in transactions that update the ledger.

If you model asset data as JSON in chaincode and use CouchDB as the state database, you can also perform complex
rich queries against the chaincode data values, using the CouchDB JSON query language within chaincode. The
application client can perform read-only queries, but these responses are not typically submitted as part of transactions
to the ordering service.

17. How do I query the historical data to understand data provenance?

A. The chaincode API GetHistoryForKey() will return history of values for a key.

Q. How to guarantee the query result is correct, especially when the peer being queried may be recovering and catching
up on block processing?

A. The client can query multiple peers, compare their block heights, compare their query results, and favor the peers
at the higher block heights.

Chaincode (Smart Contracts and Digital Assets)

• Does the fabric implementation support smart contract logic?

Yes. Chaincode is the fabric’s interpretation of the smart contract method/algorithm, with additional features.

A chaincode is programmatic code deployed on the network, where it is executed and validated by chain validators
together during the consensus process. Developers can use chaincodes to develop business contracts, asset definitions,
and collectively-managed decentralized applications.

• How do I create a business contract using the fabric?

There are generally two ways to develop business contracts: the first way is to code individual contracts into standalone
instances of chaincode; the second way, and probably the more efficient way, is to use chaincode to create decentralized
applications that manage the life cycle of one or multiple types of business contracts, and let end users instantiate
instances of contracts within these applications.

• How do I create assets using the fabric?

Users can use chaincode (for business rules) and membership service (for digital tokens) to design assets, as well as
the logic that manages them.

There are two popular approaches to defining assets in most blockchain solutions: the stateless UTXO model, where
account balances are encoded into past transaction records; and the account model, where account balances are kept
in state storage space on the ledger.

134 Chapter 29. Hyperledger Fabric FAQs

hyperledger-fabricdocs Documentation, Release master

Each approach carries its own benefits and drawbacks. This blockchain fabric does not advocate either one over the
other. Instead, one of our first requirements was to ensure that both approaches can be easily implemented with tools
available in the fabric.

• Which languages are supported for writing chaincode?

Chaincode can be written in any programming language and executed in containers inside the fabric context layer. We
are also looking into developing a templating language (such as Apache Velocity) that can either get compiled into
chaincode or have its interpreter embedded into a chaincode container.

The fabric’s first fully supported chaincode language is Golang, and support for JavaScript and Java is planned for
2016. Support for additional languages and the development of a fabric-specific templating language have been dis-
cussed, and more details will be released in the near future.

• Does the fabric have native currency?

No. However, if you really need a native currency for your chain network, you can develop your own native currency
with chaincode. One common attribute of native currency is that some amount will get transacted (the chaincode
defining that currency will get called) every time a transaction is processed on its chain.

Identity Management (Membership Service)

• What is unique about the fabric’s Membership Service module?

One of the things that makes the Membership Service module stand out from the pack is our implementation of the
latest advances in cryptography.

In addition to ensuring private, auditable transactions, our Membership Service module introduces the concept of
enrollment and transaction certificates. This innovation ensures that only verified owners can create asset tokens,
allowing an infinite number of transaction certificates to be issued through parent enrollment certificates while guar-
anteeing the private keys of asset tokens can be regenerated if lost.

Issuers also have the ability revoke transaction certificates or designate them to expire within a certain timeframe,
allowing greater control over the asset tokens they have issued.

Like most other modules on Fabric, you can always replace the default module with another membership service
option should the need arise.

• Does its Membership Service make Fabric a centralized solution?

No. The only role of the Membership Service module is to issue digital certificates to validated entities that want to
participate in the network. It does not execute transactions nor is it aware of how or when these certificates are used in
any particular network.

However, because certificates are the way networks regulate and manage their users, the module serves a central
regulatory and organizational role.

29.5. Identity Management (Membership Service) 135

hyperledger-fabricdocs Documentation, Release master

136 Chapter 29. Hyperledger Fabric FAQs

CHAPTER 30

Contributions Welcome!

We welcome contributions to the Hyperledger Project in many forms, and there’s always plenty to do!

First things first, please review the Hyperledger Project’s Code of Conduct before participating. It is important that we
keep things civil.

Install prerequisites

Before we begin, if you haven’t already done so, you may wish to check that you have all the prerequisites installed
on the platform(s) on which you’ll be developing blockchain applications and/or operating Hyperledger Fabric.

Getting a Linux Foundation account

In order to participate in the development of the Hyperledger Fabric project, you will need a Linux Foundation account.
You will need to use your LF ID to access to all the Hyperledger community development tools, including Gerrit, Jira
and the Wiki (for editing, only).

Setting up your SSH key

For Gerrit, before you can submit any change set for review, you will need to register your public SSH key. Login to
Gerrit with your LFID, and click on your name in the upper right-hand corner of your browser window and then click
‘Settings’. In the left-hand margin, you should see a link for ‘SSH Public Keys’. Copy-n-paste your public SSH key
into the window and press ‘Add’.

Getting help

If you are looking for something to work on, or need some expert assistance in debugging a problem or working out
a fix to an issue, our community is always eager to help. We hang out on Chat, IRC (#hyperledger on freenode.net)
and the mailing lists. Most of us don’t bite :grin: and will be glad to help. The only silly question is the one you don’t
ask. Questions are in fact a great way to help improve the project as they highlight where our documentation could be
clearer.

137

https://wiki.hyperledger.org/community/hyperledger-project-code-of-conduct
https://gerrit.hyperledger.org
https://jira.hyperledger.org
https://wiki.hyperledger.org/start
https://gerrit.hyperledger.org
https://help.github.com/articles/generating-an-ssh-key/
https://www.hyperledger.org/community
https://chat.hyperledger.org/channel/fabric/
http://lists.hyperledger.org/

hyperledger-fabricdocs Documentation, Release master

Requirements and Use Cases

We have a Requirements WG that is documenting use cases and from those use cases deriving requirements. If you
are interested in contributing to this effort, please feel free to join the discussion in chat.

Reporting bugs

If you are a user and you find a bug, please submit an issue using JIRA. Please try to provide sufficient information
for someone else to reproduce the issue. One of the project’s maintainers should respond to your issue within 24
hours. If not, please bump the issue with a comment and request that it be reviewed. You can also post to the
#fabric-maintainers channel in chat.

Fixing issues and working stories

Review the issues list and find something that interests you. You could also check the “help-wanted” list. It is wise
to start with something relatively straight forward and achievable, and that no one is already assigned. If no one is
assigned, then assign the issue to yourself. Please be considerate and rescind the assignment if you cannot finish in a
reasonable time, or add a comment saying that you are still actively working the issue if you need a little more time.

Making Feature/Enhancement Proposals

Review JIRA. to be sure that there isn’t already an open (or recently closed) proposal for the same function. If there
isn’t, to make a proposal we recommend that you open a JIRA Epic, Story or Improvement, whichever seems to
best fit the circumstance and link or inline a “one pager” of the proposal that states what the feature would do and,
if possible, how it might be implemented. It would help also to make a case for why the feature should be added,
such as identifying specific use case(s) for which the feature is needed and a case for what the benefit would be
should the feature be implemented. Once the JIRA issue is created, and the “one pager” either attached, inlined in the
description field, or a link to a publicly accessible document is added to the description, send an introductory email to
the hyperledger-fabric@lists.hyperledger.org mailing list linking the JIRA issue, and soliciting feedback.

Discussion of the proposed feature should be conducted in the JIRA issue itself, so that we have a consistent pattern
within our community as to where to find design discussion.

Getting the support of three or more of the Fabric maintainers for the new feature will greatly enhance the probability
that the feature’s related CRs will be merged.

Working with a local clone and Gerrit

We are using Gerrit to manage code contributions. If you are unfamiliar, please review this document before proceed-
ing.

After you have familiarized yourself with Gerrit , and maybe played around with the lf-sandbox project, you
should be ready to set up your local development environment.

Next, try building the project in your local development environment to ensure that everything is set up correctly.

The Logging Control document describes how to tweak the logging levels of various components within the Fabric.
Finally, every source file needs to include a license header: modified to include a copyright statement for the principle
author(s).

138 Chapter 30. Contributions Welcome!

https://wiki.hyperledger.org/groups/requirements/requirements-wg
https://chat.hyperledger.org/channel/requirements/
https://jira.hyperledger.org/secure/Dashboard.jspa?selectPageId=10104
https://chat.hyperledger.org/channel/fabric-maintainers
https://jira.hyperledger.org/issues/?filter=10580
https://jira.hyperledger.org/issues/?filter=10147
https://jira.hyperledger.org/secure/Dashboard.jspa?selectPageId=10104
mailto:hyperledger-fabric@lists.hyperledger.org
https://gerrit.hyperledger.org/r/#/admin/projects/fabric
https://gerrit.hyperledger.org/r/#/admin/projects/lf-sandbox,branches
https://github.com/hyperledger/fabric/blob/master/docs/source/dev-setup/headers.txt

hyperledger-fabricdocs Documentation, Release master

What makes a good change request?

• One change at a time. Not five, not three, not ten. One and only one. Why? Because it limits the blast area
of the change. If we have a regression, it is much easier to identify the culprit commit than if we have some
composite change that impacts more of the code.

• Include a link to the JIRA story for the change. Why? Because a) we want to track our velocity to better judge
what we think we can deliver and when and b) because we can justify the change more effectively. In many
cases, there should be some discussion around a proposed change and we want to link back to that from the
change itself.

• Include unit and integration tests (or changes to existing tests) with every change. This does not mean just happy
path testing, either. It also means negative testing of any defensive code that it correctly catches input errors.
When you write code, you are responsible to test it and provide the tests that demonstrate that your change does
what it claims. Why? Because without this we have no clue whether our current code base actually works.

• Unit tests should have NO external dependencies. You should be able to run unit tests in place with go test
or equivalent for the language. Any test that requires some external dependency (e.g. needs to be scripted to
run another component) needs appropriate mocking. Anything else is not unit testing, it is integration testing by
definition. Why? Because many open source developers do Test Driven Development. They place a watch on
the directory that invokes the tests automagically as the code is changed. This is far more efficient than having
to run a whole build between code changes. See this definition of unit testing for a good set of criteria to keep
in mind for writing effective unit tests.

• Minimize the lines of code per CR. Why? Maintainers have day jobs, too. If you send a 1,000 or 2,000 LOC
change, how long do you think it takes to review all of that code? Keep your changes to < 200-300 LOC, if
possible. If you have a larger change, decompose it into multiple independent changess. If you are adding a
bunch of new functions to fulfill the requirements of a new capability, add them separately with their tests, and
then write the code that uses them to deliver the capability. Of course, there are always exceptions. If you add
a small change and then add 300 LOC of tests, you will be forgiven;-) If you need to make a change that has
broad impact or a bunch of generated code (protobufs, etc.). Again, there can be exceptions.

Note: large change requests, e.g. those with more than 300 LOC are more likely than not going to receive a -2,
and you’ll be asked to refactor the change to conform with this guidance.

• Do not stack change requests (e.g. submit a CR from the same local branch as your previous CR) unless they are
related. This will minimize merge conflicts and allow changes to be merged more quickly. If you stack requests
your subsequent requests may be held up because of review comments in the preceding requests.

• Write a meaningful commit message. Include a meaningful 50 (or less) character title, followed by a blank line,
followed by a more comprehensive description of the change. Each change MUST include the JIRA identifier
corresponding to the change (e.g. [FAB-1234]). This can be in the title but should also be in the body of the
commit message.

Note that Gerrit will automatically create a hyperlink to the JIRA item.

e.g.

[FAB-1234] fix foobar() panic

Fix [FAB-1234] added a check to ensure that when foobar(foo string) is called,
that there is a non-empty string argument.

Finally, be responsive. Don’t let a change request fester with review comments such that it gets to a point that it
requires a rebase. It only further delays getting it merged and adds more work for you - to remediate the merge
conflicts.

30.9. What makes a good change request? 139

http://artofunittesting.com/definition-of-a-unit-test/

hyperledger-fabricdocs Documentation, Release master

Communication

We use RocketChat for communication and Google Hangouts™ for screen sharing between developers. Our devel-
opment planning and prioritization is done in JIRA, and we take longer running discussions/decisions to the mailing
list.

Maintainers

The project’s maintainers are responsible for reviewing and merging all patches submitted for review and they guide
the over-all technical direction of the project within the guidelines established by the Hyperledger Project’s Technical
Steering Committee (TSC).

Becoming a maintainer

This project is managed under an open governance model as described in our charter. Projects or sub-projects will
be lead by a set of maintainers. New sub-projects can designate an initial set of maintainers that will be approved
by the top-level project’s existing maintainers when the project is first approved. The project’s maintainers will,
from time-to-time, consider adding or removing a maintainer. An existing maintainer can submit a change set to the
MAINTAINERS.rst file. If there are less than eight maintainers, a majority of the existing maintainers on that project
are required to merge the change set. If there are more than eight existing maintainers, then if five or more of the
maintainers concur with the proposal, the change set is then merged and the individual is added to (or alternatively,
removed from) the maintainers group. explicit resignation, some infraction of the code of conduct or consistently
demonstrating poor judgement.

Legal stuff

Note: Each source file must include a license header for the Apache Software License 2.0. See the template of the
license header.

We have tried to make it as easy as possible to make contributions. This applies to how we handle the legal aspects of
contribution. We use the same approach—the Developer’s Certificate of Origin 1.1 (DCO)—that the Linux® Kernel
community uses to manage code contributions.

We simply ask that when submitting a patch for review, the developer must include a sign-off statement in the commit
message.

Here is an example Signed-off-by line, which indicates that the submitter accepts the DCO:

Signed-off-by: John Doe <john.doe@hisdomain.com>

You can include this automatically when you commit a change to your local git repository using git commit -s .

140 Chapter 30. Contributions Welcome!

https://chat.hyperledger.org/
https://jira.hyperledger.org
http://lists.hyperledger.org/mailman/listinfo/hyperledger-fabric
http://lists.hyperledger.org/mailman/listinfo/hyperledger-fabric
https://www.hyperledger.org/about/charter
https://wiki.hyperledger.org/community/hyperledger-project-code-of-conduct
https://github.com/hyperledger/fabric/blob/master/docs/source/dev-setup/headers.txt
https://github.com/hyperledger/fabric/blob/master/docs/source/DCO1.1.txt
http://elinux.org/Developer_Certificate_Of_Origin

CHAPTER 31

Maintainers

Name Gerrit GitHub RocketChat email
Artem Barger c0rwin c0rwin c0rwin bartem@il.ibm.com
Binh Nguyen binhn binhn binhn binhn@us.ibm.com
Chris Ferris ChristopherFerris christo4ferris cbf chris.ferris@gmail.com
Dave Enyeart denyeart denyeart dave.enyeart enyeart@us.ibm.com
Gabor Hosszu hgabre gabre hgabor gabor@digitalasset.com
Gari Singh mastersingh24 mastersingh24 garisingh gari.r.singh@gmail.com
Greg Haskins greg.haskins ghaskins ghaskins gregory.haskins@gmail.com
Jason Yellick jyellick jyellick jyellick jyellick@us.ibm.com
Jim Zhang jimthematrix jimthematrix jzhang jim_the_matrix@hotmail.com
Jonathan Levi JonathanLevi JonathanLevi JonathanLevi jonathan@hacera.com
Keith Smith smithbk smithbk smithbk bksmith@us.ibm.com
Kostas Christidis kchristidis kchristidis kostas kostas@gmail.com
Manish Sethi manish-sethi manish-sethi manish-sethi manish.sethi@gmail.com
Sheehan Anderson sheehan srderson sheehan sranderson@gmail.com
Srinivasan Muralidharan muralisr muralisrini muralisr muralisr@us.ibm.com
Tamas Blummer TamasBlummer tamasblummer tamas tamas@digitalasset.com
Yacov Manevich yacovm yacovm yacovm yacovm@il.ibm.com
Yaoguo Jiang jiangyaoguo jiangyaoguo jiangyaoguo jiangyaoguo@gmail.com

141

mailto:bartem@il.ibm.com
mailto:binhn@us.ibm.com
mailto:chris.ferris@gmail.com
mailto:enyeart@us.ibm.com
mailto:gabor@digitalasset.com
mailto:gari.r.singh@gmail.com
mailto:gregory.haskins@gmail.com
mailto:jyellick@us.ibm.com
mailto:jim_the_matrix@hotmail.com
mailto:jonathan@hacera.com
mailto:bksmith@us.ibm.com
mailto:kostas@gmail.com
mailto:manish.sethi@gmail.com
mailto:sranderson@gmail.com
mailto:muralisr@us.ibm.com
mailto:tamas@digitalasset.com
mailto:yacovm@il.ibm.com
mailto:jiangyaoguo@gmail.com

hyperledger-fabricdocs Documentation, Release master

142 Chapter 31. Maintainers

CHAPTER 32

Using Jira to understand current work items

This document has been created to give further insight into the work in progress towards the hyperledger/fabric v1
architecture based off the community roadmap. The requirements for the roadmap are being tracked in Jira.

It was determined to organize in sprints to better track and show a prioritized order of items to be implemented based
on feedback received. We’ve done this via boards. To see these boards and the priorities click on Boards -> Manage
Boards:

Fig. 32.1: Jira boards

Now on the left side of the screen click on All boards:

Fig. 32.2: Jira boards

On this page you will see all the public (and restricted) boards that have been created. If you want to see the items
with current sprint focus, click on the boards where the column labeled Visibility is All Users and the column Board
type is labeled Scrum. For example the Board Name Consensus:

143

https://jira.hyperledger.org/

hyperledger-fabricdocs Documentation, Release master

Fig. 32.3: Jira boards

When you click on Consensus under Board name you will be directed to a page that contains the following columns:

Fig. 32.4: Jira boards

The meanings to these columns are as follows:

• Backlog – list of items slated for the current sprint (sprints are defined in 2 week iterations), but are not currently
in progress

• In progress – are items currently being worked by someone in the community.

• In Review – waiting to be reviewed and merged in Gerritt

• Done – merged and complete in the sprint.

If you want to see all items in the backlog for a given feature set click on the stacked rows on the left navigation of the
screen:

Fig. 32.5: Jira boards

This shows you items slated for the current sprint at the top, and all items in the backlog at the bottom. Items are listed
in priority order.

If there is an item you are interested in working on, want more information or have questions, or if there is an item that
you feel needs to be in higher priority, please add comments directly to the Jira item. All feedback and help is very
much appreciated.

144 Chapter 32. Using Jira to understand current work items

CHAPTER 33

Setting up the development environment

Overview

Prior to the v1.0.0 release, the development environment utilized Vagrant running an Ubuntu image, which in turn
launched Docker containers as a means of ensuring a consistent experience for developers who might be working with
varying platforms, such as macOS, Windows, Linux, or whatever. Advances in Docker have enabled native support
on the most popular development platforms: macOS and Windows. Hence, we have reworked our build to take full
advantage of these advances. While we still maintain a Vagrant based approach that can be used for older versions of
macOS and Windows that Docker does not support, we strongly encourage that the non-Vagrant development setup
be used.

Note that while the Vagrant-based development setup could not be used in a cloud context, the Docker-based build
does support cloud platforms such as AWS, Azure, Google and IBM to name a few. Please follow the instructions for
Ubuntu builds, below.

Prerequisites

• Git client

• Go - 1.7 or later (for releases before v1.0, 1.6 or later)

• For macOS, Xcode must be installed

• Docker - 1.12 or later

• Docker Compose - 1.8.1 or later

• Pip

• (macOS) you may need to install gnutar, as macOS comes with bsdtar as the default, but the build uses some
gnutar flags. You can use Homebrew to install it as follows:

brew install gnu-tar --with-default-names

• (only if using Vagrant) - Vagrant - 1.7.4 or later

• (only if using Vagrant) - VirtualBox - 5.0 or later

• BIOS Enabled Virtualization - Varies based on hardware

• Note: The BIOS Enabled Virtualization may be within the CPU or Security settings of the BIOS

145

https://git-scm.com/downloads
https://golang.org/
https://itunes.apple.com/us/app/xcode/id497799835?mt=12
https://www.docker.com/products/overview
https://docs.docker.com/compose/
https://pip.pypa.io/en/stable/installing/
https://www.vagrantup.com/
https://www.virtualbox.org/

hyperledger-fabricdocs Documentation, Release master

pip, behave and docker-compose

pip install --upgrade pip
pip install behave nose docker-compose
pip install -I flask==0.10.1 python-dateutil==2.2 pytz==2014.3 pyyaml==3.10
→˓couchdb==1.0 flask-cors==2.0.1 requests==2.4.3 pyOpenSSL==16.2.0 pysha3==1.0b1
→˓grpcio==1.0.4

#PIP packages required for some behave tests
pip install urllib3 ndg-httpsclient pyasn1 ecdsa python-slugify grpcio-tools jinja2
→˓b3j0f.aop six

Steps

Set your GOPATH

Make sure you have properly setup your Host’s GOPATH environment variable. This allows for both building within
the Host and the VM.

In case you installed Go into a different location from the standard one your Go distribution assumes, make sure that
you also set GOROOT environment variable.

Note to Windows users

If you are running Windows, before running any git clone commands, run the following command.

git config --get core.autocrlf

If core.autocrlf is set to true , you must set it to false by running

git config --global core.autocrlf false

If you continue with core.autocrlf set to true , the vagrant up command will fail with the error:

./setup.sh: /bin/bash^M: bad interpreter: No such file or directory

Cloning the Fabric project

Since the Fabric project is a Go project, you’ll need to clone the Fabric repo to your $GOPATH/src directory. If your
$GOPATH has multiple path components, then you will want to use the first one. There’s a little bit of setup needed:

cd $GOPATH/src
mkdir -p github.com/hyperledger
cd github.com/hyperledger

Recall that we are using Gerrit for source control, which has its own internal git repositories. Hence, we will need
to clone from Gerrit. For brevity, the command is as follows:

git clone ssh://LFID@gerrit.hyperledger.org:29418/fabric && scp -p -P 29418
→˓LFID@gerrit.hyperledger.org:hooks/commit-msg fabric/.git/hooks/

Note: Of course, you would want to replace LFID with your own Linux Foundation ID.

146 Chapter 33. Setting up the development environment

https://github.com/golang/go/wiki/GOPATH
https://golang.org/doc/install#install

hyperledger-fabricdocs Documentation, Release master

Bootstrapping the VM using Vagrant

If you are planning on using the Vagrant developer environment, the following steps apply. Again, we recommend
against its use except for developers that are limited to older versions of macOS and Windows that are not
supported by Docker for Mac or Windows.

cd $GOPATH/src/github.com/hyperledger/fabric/devenv
vagrant up

Go get coffee... this will take a few minutes. Once complete, you should be able to ssh into the Vagrant VM just
created.

vagrant ssh

Once inside the VM, you can find the peer project under $GOPATH/src/github.com/hyperledger/fabric
. It is also mounted as /hyperledger .

Building the fabric

Once you have all the dependencies installed, and have cloned the repository, you can proceed to build and test the
fabric.

Notes

NOTE: Any time you change any of the files in your local fabric directory (under
$GOPATH/src/github.com/hyperledger/fabric), the update will be instantly available within the
VM fabric directory.

NOTE: If you intend to run the development environment behind an HTTP Proxy, you need to configure the guest
so that the provisioning process may complete. You can achieve this via the vagrant-proxyconf plugin. Install with
vagrant plugin install vagrant-proxyconf and then set the VAGRANT_HTTP_PROXY and VA-
GRANT_HTTPS_PROXY environment variables before you execute vagrant up . More details are available
here: https://github.com/tmatilai/vagrant-proxyconf/

NOTE: The first time you run this command it may take quite a while to complete (it could take 30 minutes or more
depending on your environment) and at times it may look like it’s not doing anything. As long you don’t get any error
messages just leave it alone, it’s all good, it’s just cranking.

NOTE to Windows 10 Users: There is a known problem with vagrant on Windows 10 (see mitchellh/vagrant#6754).
If the vagrant up command fails it may be because you do not have the Microsoft Visual C++ Redistributable
package installed. You can download the missing package at the following address: http://www.microsoft.com/en-us/
download/details.aspx?id=8328

33.5. Building the fabric 147

https://github.com/tmatilai/vagrant-proxyconf/
https://github.com/mitchellh/vagrant/issues/6754
http://www.microsoft.com/en-us/download/details.aspx?id=8328
http://www.microsoft.com/en-us/download/details.aspx?id=8328

hyperledger-fabricdocs Documentation, Release master

148 Chapter 33. Setting up the development environment

CHAPTER 34

Building the fabric

The following instructions assume that you have already set up your development environment.

To build the Fabric:

cd $GOPATH/src/github.com/hyperledger/fabric
make dist-clean all

Running the unit tests

Use the following sequence to run all unit tests

cd $GOPATH/src/github.com/hyperledger/fabric
make unit-test

To run a subset of tests, set the TEST_PKGS environment variable. Specify a list of packages (separated by space),
for example:

export TEST_PKGS="github.com/hyperledger/fabric/core/ledger/..."
make unit-test

To run a specific test use the -run RE flag where RE is a regular expression that matches the test case name. To run
tests with verbose output use the -v flag. For example, to run the TestGetFoo test case, change to the directory
containing the foo_test.go and call/excecute

go test -v -run=TestGetFoo

Running Node.js Unit Tests

You must also run the Node.js unit tests to insure that the Node.js client SDK is not broken by your changes. To run
the Node.js unit tests, follow the instructions here.

Running Behave BDD Tests

Note: currently, the behave tests must be run from within in the Vagrant environment. See the development environ-
ment setup instructions if you have not already set up your Vagrant environment.

149

https://github.com/hyperledger/fabric-sdk-node/blob/master/README.md

hyperledger-fabricdocs Documentation, Release master

Behave tests will setup networks of peers with different security and consensus configurations and verify that transac-
tions run properly. To run these tests

cd $GOPATH/src/github.com/hyperledger/fabric
make behave

Some of the Behave tests run inside Docker containers. If a test fails and you want to have the logs from the Docker
containers, run the tests with this option:

cd $GOPATH/src/github.com/hyperledger/fabric/bddtests
behave -D logs=Y

150 Chapter 34. Building the fabric

http://pythonhosted.org/behave/

CHAPTER 35

Building outside of Vagrant

It is possible to build the project and run peers outside of Vagrant. Generally speaking, one has to ‘translate’ the
vagrant setup file to the platform of your choice.

Building on Z

To make building on Z easier and faster, this script is provided (which is similar to the setup file provided for vagrant).
This script has been tested only on RHEL 7.2 and has some assumptions one might want to re-visit (firewall settings,
development as root user, etc.). It is however sufficient for development in a personally-assigned VM instance.

To get started, from a freshly installed OS:

sudo su
yum install git
mkdir -p $HOME/git/src/github.com/hyperledger
cd $HOME/git/src/github.com/hyperledger
git clone http://gerrit.hyperledger.org/r/fabric
source fabric/devenv/setupRHELonZ.sh

From this point, you can proceed as described above for the Vagrant development environment.

cd $GOPATH/src/github.com/hyperledger/fabric
make peer unit-test behave

Building on Power Platform

Development and build on Power (ppc64le) systems is done outside of vagrant as outlined here. For ease of setting
up the dev environment on Ubuntu, invoke this script as root. This script has been validated on Ubuntu 16.04 and
assumes certain things (like, development system has OS repositories in place, firewall setting etc) and in general can
be improvised further.

To get started on Power server installed with Ubuntu, first ensure you have properly setup your Host’s GOPATH
environment variable. Then, execute the following commands to build the fabric code:

mkdir -p $GOPATH/src/github.com/hyperledger
cd $GOPATH/src/github.com/hyperledger
git clone http://gerrit.hyperledger.org/r/fabric
sudo ./fabric/devenv/setupUbuntuOnPPC64le.sh

151

https://github.com/hyperledger/fabric/blob/master/devenv/setup.sh
https://github.com/hyperledger/fabric/tree/master/devenv/setupRHELonZ.sh
https://github.com/hyperledger/fabric/blob/master/devenv/setup.sh
https://github.com/hyperledger/fabric/tree/master/devenv/setupUbuntuOnPPC64le.sh
https://github.com/golang/go/wiki/GOPATH
https://github.com/golang/go/wiki/GOPATH

hyperledger-fabricdocs Documentation, Release master

cd $GOPATH/src/github.com/hyperledger/fabric
make dist-clean all

152 Chapter 35. Building outside of Vagrant

CHAPTER 36

Configuration

Configuration utilizes the viper and cobra libraries.

There is a core.yaml file that contains the configuration for the peer process. Many of the configuration settings can
be overridden on the command line by setting ENV variables that match the configuration setting, but by prefixing
with ‘CORE_’. For example, logging level manipulation through the environment is shown below:

CORE_PEER_LOGGING_LEVEL=CRITICAL peer

153

https://github.com/spf13/viper
https://github.com/spf13/cobra

hyperledger-fabricdocs Documentation, Release master

154 Chapter 36. Configuration

CHAPTER 37

Logging

Logging utilizes the go-logging library.

The available log levels in order of increasing verbosity are: CRITICAL | ERROR | WARNING | NOTICE | INFO |
DEBUG

See the logging-control document for instructions on tweaking the level of log messages to output when running the
various Fabric components.

155

https://github.com/op/go-logging

hyperledger-fabricdocs Documentation, Release master

156 Chapter 37. Logging

CHAPTER 38

Requesting a Linux Foundation Account

Contributions to the Fabric code base require a Linux Foundation account. Follow the steps below to create a Linux
Foundation account.

Creating a Linux Foundation ID

1. Go to the Linux Foundation ID website.

2. Select the option I need to create a Linux Foundation ID .

3. Fill out the form that appears:

4. Open your email account and look for a message with the subject line: “Validate your Linux Foundation ID
email”.

5. Open the received URL to validate your email address.

6. Verify the browser displays the message You have successfully validated your e-mail
address .

7. Access Gerrit by selecting Sign In :

8. Use your Linux Foundation ID to Sign In:

Configuring Gerrit to Use SSH

Gerrit uses SSH to interact with your Git client. A SSH private key needs to be generated on the development machine
with a matching public key on the Gerrit server.

If you already have a SSH key-pair, skip this section.

As an example, we provide the steps to generate the SSH key-pair on a Linux environment. Follow the equivalent
steps on your OS.

1. Create a key-pair, enter:

ssh-keygen -t rsa -C "John Doe john.doe@example.com"

Note: This will ask you for a password to protect the private key as it generates a unique key. Please keep this password
private, and DO NOT enter a blank password.

The generated key-pair is found in: ~/.ssh/id_rsa and ~/.ssh/id_rsa.pub .

157

https://identity.linuxfoundation.org/

hyperledger-fabricdocs Documentation, Release master

1. Add the private key in the id_rsa file in your key ring, e.g.:

ssh-add ~/.ssh/id_rsa

Once the key-pair has been generated, the public key must be added to Gerrit.

Follow these steps to add your public key id_rsa.pub to the Gerrit account:

1. Go to Gerrit.

2. Click on your account name in the upper right corner.

3. From the pop-up menu, select Settings .

4. On the left side menu, click on SSH Public Keys .

5. Paste the contents of your public key ~/.ssh/id_rsa.pub and click Add key .

Note: The id_rsa.pub file can be opened with any text editor. Ensure that all the contents of the file are selected,
copied and pasted into the Add SSH key window in Gerrit.

Note: The ssh key generation instructions operate on the assumtion that you are using the default naming. It is possible
to generate multiple ssh Keys and to name the resulting files differently. See the ssh-keygen documentation for details
on how to do that. Once you have generated non-default keys, you need to configure ssh to use the correct key for
Gerrit. In that case, you need to create a ~/.ssh/config file modeled after the one below.

host gerrit.hyperledger.org
HostName gerrit.hyperledger.org
IdentityFile ~/.ssh/id_rsa_hyperledger_gerrit
User <LFID>

where is your Linux Foundation ID and the value of IdentityFile is the name of the public key file you generated.

Warning: Potential Security Risk! Do not copy your private key ~/.ssh/id_rsa Use only the public
~/.ssh/id_rsa.pub .

Checking Out the Source Code

1. Ensure that SSH has been set up properly. See Configuring Gerrit to Use SSH for details.

2. Clone the repository with your Linux Foundation ID ():

git clone ssh://<LFID>@gerrit.hyperledger.org:29418/fabric fabric

You have successfully checked out a copy of the source code to your local machine.

158 Chapter 38. Requesting a Linux Foundation Account

https://gerrit.hyperledger.org/r/#/admin/projects/fabric
https://en.wikipedia.org/wiki/Ssh-keygen

CHAPTER 39

Working with Gerrit

Follow these instructions to collaborate on the Hyperledger Fabric Project through the Gerrit review system.

Please be sure that you are subscribed to the mailing list and of course, you can reach out on chat if you need help.

Gerrit assigns the following roles to users:

• Submitters: May submit changes for consideration, review other code changes, and make recommendations
for acceptance or rejection by voting +1 or -1, respectively.

• Maintainers: May approve or reject changes based upon feedback from reviewers voting +2 or -2, respectively.

• Builders: (e.g. Jenkins) May use the build automation infrastructure to verify the change.

Maintainers should be familiar with the review process. However, anyone is welcome to (and encouraged!) review
changes, and hence may find that document of value.

Git-review

There’s a very useful tool for working with Gerrit called git-review. This command-line tool can automate most of the
ensuing sections for you. Of course, reading the information below is also highly recommended so that you understand
what’s going on behind the scenes.

Sandbox project

We have created a sandbox project to allow developers to familiarize themselves with Gerrit and our workflows. Please
do feel free to use this project to experiment with the commands and tools, below.

Getting deeper into Gerrit

A comprehensive walk-through of Gerrit is beyond the scope of this document. There are plenty of resources available
on the Internet. A good summary can be found here. We have also provided a set of Best Practices that you may find
helpful.

Working with a local clone of the repository

To work on something, whether a new feature or a bugfix:

159

http://lists.hyperledger.org/mailman/listinfo/hyperledger-fabric
https://chat.hyperledger.org/
https://www.mediawiki.org/wiki/Gerrit/git-review
https://gerrit.hyperledger.org/r/#/admin/projects/lf-sandbox
https://www.mediawiki.org/wiki/Gerrit/Tutorial

hyperledger-fabricdocs Documentation, Release master

1. Open the Gerrit Projects page

2. Select the project you wish to work on.

3. Open a terminal window and clone the project locally using the Clone with git hook URL. Be sure that
ssh is also selected, as this will make authentication much simpler:

git clone ssh://LFID@gerrit.hyperledger.org:29418/fabric && scp -p -P 29418
→˓LFID@gerrit.hyperledger.org:hooks/commit-msg fabric/.git/hooks/

Note: if you are cloning the fabric project repository, you will want to clone it to the
$GOPATH/src/github.com/hyperledger directory so that it will build, and so that you can use it
with the Vagrant development environment.

4. Create a descriptively-named branch off of your cloned repository

cd fabric
git checkout -b issue-nnnn

5. Commit your code. For an in-depth discussion of creating an effective commit, please read this document on
submitting changes.

git commit -s -a

Then input precise and readable commit msg and submit.

6. Any code changes that affect documentation should be accompanied by corresponding changes (or additions) to
the documentation and tests. This will ensure that if the merged PR is reversed, all traces of the change will be
reversed as well.

Submitting a Change

Currently, Gerrit is the only method to submit a change for review.

Note: Please review the guidelines for making and submitting a change.

Use git review

Note: if you prefer, you can use the git-review tool instead of the following. e.g.

Add the following section to .git/config , and replace <USERNAME> with your gerrit id.

[remote "gerrit"]
url = ssh://<USERNAME>@gerrit.hyperledger.org:29418/fabric.git
fetch = +refs/heads/*:refs/remotes/gerrit/*

Then submit your change with git review .

$ cd <your code dir>
$ git review

When you update your patch, you can commit with git commit --amend , and then repeat the git review
command.

160 Chapter 39. Working with Gerrit

https://gerrit.hyperledger.org/r/#/admin/projects/

hyperledger-fabricdocs Documentation, Release master

Not Use git review

See the directions for building the source code.

When a change is ready for submission, Gerrit requires that the change be pushed to a special branch. The name of
this special branch contains a reference to the final branch where the code should reside, once accepted.

For the Hyperledger Fabric Project, the special branch is called refs/for/master .

To push the current local development branch to the gerrit server, open a terminal window at the root of your cloned
repository:

cd <your clone dir>
git push origin HEAD:refs/for/master

If the command executes correctly, the output should look similar to this:

Counting objects: 3, done.
Writing objects: 100% (3/3), 306 bytes | 0 bytes/s, done.
Total 3 (delta 0), reused 0 (delta 0)
remote: Processing changes: new: 1, refs: 1, done
remote:
remote: New Changes:
remote: https://gerrit.hyperledger.org/r/6 Test commit
remote:
To ssh://LFID@gerrit.hyperledger.org:29418/fabric

* [new branch] HEAD -> refs/for/master

The gerrit server generates a link where the change can be tracked.

Adding reviewers

Optionally, you can add reviewers to your change.

To specify a list of reviewers via the command line, add %r=reviewer@project.org to your push command.
For example:

git push origin HEAD:refs/for/master%r=rev1@email.com,r=rev2@notemail.com

Alternatively, you can auto-configure GIT to add a set of reviewers if your commits will have the same reviewers all
at the time.

To add a list of default reviewers, open the :file:.git/config file in the project directory and add the following
line in the [branch “master”] section:

[branch "master"] #.... push =
HEAD:refs/for/master%r=rev1@email.com,r=rev2@notemail.com`

Make sure to use actual email addresses instead of the @email.com and @notemail.com addressses. Don’t
forget to replace origin with your git remote name.

Reviewing Using Gerrit

• Add: This button allows the change submitter to manually add names of people who should review a change;
start typing a name and the system will auto-complete based on the list of people registered and with access to

39.6. Adding reviewers 161

hyperledger-fabricdocs Documentation, Release master

the system. They will be notified by email that you are requesting their input.

• Abandon: This button is available to the submitter only; it allows a committer to abandon a change and remove
it from the merge queue.

• Change-ID: This ID is generated by Gerrit (or system). It becomes useful when the review process determines
that your commit(s) have to be amended. You may submit a new version; and if the same Change-ID header
(and value) are present, Gerrit will remember it and present it as another version of the same change.

• Status: Currently, the example change is in review status, as indicated by “Needs Verified” in the upper-left
corner. The list of Reviewers will all emit their opinion, voting +1 if they agree to the merge, -1 if they disagree.
Gerrit users with a Maintainer role can agree to the merge or refuse it by voting +2 or -2 respectively.

Notifications are sent to the email address in your commit message’s Signed-off-by line. Visit your Gerrit dashboard,
to check the progress of your requests.

The history tab in Gerrit will show you the in-line comments and the author of the review.

Viewing Pending Changes

Find all pending changes by clicking on the All --> Changes link in the upper-left corner, or open this link.

If you collaborate in multiple projects, you may wish to limit searching to the specific branch through the search bar
in the upper-right side.

Add the filter project:fabric to limit the visible changes to only those from the Hyperledger Fabric Project.

List all current changes you submitted, or list just those changes in need of your input by clicking on My -->
Changes or open this link

162 Chapter 39. Working with Gerrit

https://gerrit.hyperledger.org/r/#/dashboard/self
https://gerrit.hyperledger.org/r/#/q/project:fabric
https://gerrit.hyperledger.org/r/#/dashboard/self

CHAPTER 40

Submitting a Change to Gerrit

Carefully review the following before submitting a change. These guidelines apply to developers that are new to open
source, as well as to experienced open source developers.

Change Requirements

This section contains guidelines for submitting code changes for review. For more information on how to submit a
change using Gerrit, please see Gerrit.

Changes are submitted as Git commits. Each commit must contain:

• a short and descriptive subject line that is 72 characters or fewer, followed by a blank line.

• a change description with your logic or reasoning for the changes, followed by a blank line

• a Signed-off-by line, followed by a colon (Signed-off-by:)

• a Change-Id identifier line, followed by a colon (Change-Id:). Gerrit won’t accept patches without this identifier.

A commit with the above details is considered well-formed.

All changes and topics sent to Gerrit must be well-formed. Informationally, commit messages must include:

• what the change does,

• why you chose that approach, and

• how you know it works – for example, which tests you ran.

Commits must build cleanly when applied in top of each other, thus avoiding breaking bisectability. Each commit
must address a single identifiable issue and must be logically self-contained.

For example: One commit fixes whitespace issues, another renames a function and a third one changes the code’s
functionality. An example commit file is illustrated below in detail:

A short description of your change with no period at the end

You can add more details here in several paragraphs, but please keep each line
width less than 80 characters. A bug fix should include the issue number.

Fix Issue # 7050.

Change-Id: IF7b6ac513b2eca5f2bab9728ebd8b7e504d3cebe1
Signed-off-by: Your Name <commit-sender@email.address>

163

hyperledger-fabricdocs Documentation, Release master

Each commit must contain the following line at the bottom of the commit message:

Signed-off-by: Your Name <your@email.address>

The name in the Signed-off-by line and your email must match the change authorship information. Make sure your
:file:.git/config is set up correctly. Always submit the full set of changes via Gerrit.

When a change is included in the set to enable other changes, but it will not be part of the final set, please let the
reviewers know this.

164 Chapter 40. Submitting a Change to Gerrit

CHAPTER 41

Reviewing a Change

1. Click on a link for incoming or outgoing review.

2. The details of the change and its current status are loaded:

• Status: Displays the current status of the change. In the example below, the status reads: Needs Verified.

• Reply: Click on this button after reviewing to add a final review message and a score, -1, 0 or +1.

• Patch Sets: If multiple revisions of a patch exist, this button enables navigation among revisions to see the
changes. By default, the most recent revision is presented.

• Download: This button brings up another window with multiple options to download or checkout the current
changeset. The button on the right copies the line to your clipboard. You can easily paste it into your git interface
to work with the patch as you prefer.

Underneath the commit information, the files that have been changed by this patch are displayed.

3. Click on a filename to review it. Select the code base to differentiate against. The default is Base and it will
generally be what is needed.

4. The review page presents the changes made to the file. At the top of the review, the presentation shows some
general navigation options. Navigate through the patch set using the arrows on the top right corner. It is possible
to go to the previous or next file in the set or to return to the main change screen. Click on the yellow sticky pad
to add comments to the whole file.

The focus of the page is on the comparison window. The changes made are presented in green on the right versus the
base version on the left. Double click to highlight the text within the actual change to provide feedback on a specific
section of the code. Press c once the code is highlighted to add comments to that section.

5. After adding the comment, it is saved as a Draft.

6. Once you have reviewed all files and provided feedback, click the green up arrow at the top right to return to the
main change page. Click the Reply button, write some final comments, and submit your score for the patch
set. Click Post to submit the review of each reviewed file, as well as your final comment and score. Gerrit
sends an email to the change-submitter and all listed reviewers. Finally, it logs the review for future reference.
All individual comments are saved as Draft until the Post button is clicked.

165

hyperledger-fabricdocs Documentation, Release master

166 Chapter 41. Reviewing a Change

CHAPTER 42

Gerrit Recommended Practices

This document presents some best practices to help you use Gerrit more effectively. The intent is to show how content
can be submitted easily. Use the recommended practices to reduce your troubleshooting time and improve participation
in the community.

Browsing the Git Tree

Visit Gerrit then select Projects --> List --> SELECT-PROJECT --> Branches . Select the branch
that interests you, click on gitweb located on the right-hand side. Now, gitweb loads your selection on the Git
web interface and redirects appropriately.

Watching a Project

Visit Gerrit, then select Settings , located on the top right corner. Select Watched Projects and then add any
projects that interest you.

Commit Messages

Gerrit follows the Git commit message format. Ensure the headers are at the bottom and don’t contain blank lines
between one another. The following example shows the format and content expected in a commit message:

Brief (no more than 50 chars) one line description.

Elaborate summary of the changes made referencing why (motivation), what was changed and how it was tested. Note
also any changes to documentation made to remain consistent with the code changes, wrapping text at 72 chars/line.

Jira: FAB-100
Change-Id: LONGHEXHASH
Signed-off-by: Your Name your.email@example.org
AnotherExampleHeader: An Example of another Value

The Gerrit server provides a precommit hook to autogenerate the Change-Id which is one time use.

Recommended reading: How to Write a Git Commit Message

167

https://gerrit.hyperledger.org/r/#/admin/projects/fabric
https://gerrit.hyperledger.org/r/#/admin/projects/fabric
http://chris.beams.io/posts/git-commit/

hyperledger-fabricdocs Documentation, Release master

Avoid Pushing Untested Work to a Gerrit Server

To avoid pushing untested work to Gerrit.

Check your work at least three times before pushing your change to Gerrit. Be mindful of what information you are
publishing.

Keeping Track of Changes

• Set Gerrit to send you emails:

• Gerrit will add you to the email distribution list for a change if a developer adds you as a reviewer, or if you
comment on a specific Patch Set.

• Opening a change in Gerrit’s review interface is a quick way to follow that change.

• Watch projects in the Gerrit projects section at Gerrit , select at least New Changes, New Patch Sets, All
Comments and Submitted Changes.

Always track the projects you are working on; also see the feedback/comments mailing list to learn and help others
ramp up.

Topic branches

Topic branches are temporary branches that you push to commit a set of logically-grouped dependent commits:

To push changes from REMOTE/master tree to Gerrit for being reviewed as a topic in TopicName use the following
command as an example:

$ git push REMOTE HEAD:refs/for/master/TopicName

The topic will show up in the review :abbr:UI and in the Open Changes List . Topic branches will disappear
from the master tree when its content is merged.

Creating a Cover Letter for a Topic

You may decide whether or not you’d like the cover letter to appear in the history.

1. To make a cover letter that appears in the history, use this command:

git commit --allow-empty

Edit the commit message, this message then becomes the cover letter. The command used doesn’t change any files in
the source tree.

2. To make a cover letter that doesn’t appear in the history follow these steps:

• Put the empty commit at the end of your commits list so it can be ignored
without having to rebase.

• Now add your commits

git commit ...
git commit ...
git commit ...

168 Chapter 42. Gerrit Recommended Practices

hyperledger-fabricdocs Documentation, Release master

• Finally, push the commits to a topic branch. The following command is an example:

git push REMOTE HEAD:refs/for/master/TopicName

If you already have commits but you want to set a cover letter, create an empty commit for the cover letter and move
the commit so it becomes the last commit on the list. Use the following command as an example:

git rebase -i HEAD~#Commits

Be careful to uncomment the commit before moving it. #Commits is the sum of the commits plus your new cover
letter.

Finding Available Topics

$ ssh -p 29418 gerrit.hyperledger.org gerrit query \ status:open project:fabric
→˓branch:master \
| grep topic: | sort -u

• gerrit.hyperledger.org Is the current URL where the project is hosted.

• status Indicates the topic’s current status: open , merged, abandoned, draft, merge conflict.

• project Refers to the current name of the project, in this case fabric.

• branch The topic is searched at this branch.

• topic The name of an specific topic, leave it blank to include them all.

• sort Sorts the found topics, in this case by update (-u).

Downloading or Checking Out a Change

In the review UI, on the top right corner, the Download link provides a list of commands and hyperlinks to checkout
or download diffs or files.

We recommend the use of the git review plugin. The steps to install git review are beyond the scope of this document.
Refer to the git review documentation for the installation process.

To check out a specific change using Git, the following command usually works:

git review -d CHANGEID

If you don’t have Git-review installed, the following commands will do the same thing:

git fetch REMOTE refs/changes/NN/CHANGEIDNN/VERSION \ && git checkout FETCH_HEAD

For example, for the 4th version of change 2464, NN is the first two digits (24):

git fetch REMOTE refs/changes/24/2464/4 \ && git checkout FETCH_HEAD

Using Draft Branches

You can use draft branches to add specific reviewers before you publishing your change. The Draft Branches are
pushed to refs/drafts/master/TopicName

42.8. Finding Available Topics 169

https://gerrit.hyperledger.org
https://wiki.openstack.org/wiki/Documentation/HowTo/FirstTimers

hyperledger-fabricdocs Documentation, Release master

The next command ensures a local branch is created:

git checkout -b BRANCHNAME

The next command pushes your change to the drafts branch under TopicName:

git push REMOTE HEAD:refs/drafts/master/TopicName

Using Sandbox Branches

You can create your own branches to develop features. The branches are pushed to the
refs/sandbox/USERNAME/BRANCHNAME location.

These commands ensure the branch is created in Gerrit’s server.

git checkout -b sandbox/USERNAME/BRANCHNAME
git push --set-upstream REMOTE HEAD:refs/heads/sandbox/USERNAME/BRANCHNAME

Usually, the process to create content is:

• develop the code,

• break the information into small commits,

• submit changes,

• apply feedback,

• rebase.

The next command pushes forcibly without review:

git push REMOTE sandbox/USERNAME/BRANCHNAME

You can also push forcibly with review:

git push REMOTE HEAD:ref/for/sandbox/USERNAME/BRANCHNAME

Updating the Version of a Change

During the review process, you might be asked to update your change. It is possible to submit multiple versions of the
same change. Each version of the change is called a patch set.

Always maintain the Change-Id that was assigned. For example, there is a list of commits, c0...c7, which were
submitted as a topic branch:

git log REMOTE/master..master

c0
...
c7

git push REMOTE HEAD:refs/for/master/SOMETOPIC

170 Chapter 42. Gerrit Recommended Practices

hyperledger-fabricdocs Documentation, Release master

After you get reviewers’ feedback, there are changes in c3 and c4 that must be fixed. If the fix requires rebasing,
rebasing changes the commit Ids, see the rebasing section for more information. However, you must keep the same
Change-Id and push the changes again:

git push REMOTE HEAD:refs/for/master/SOMETOPIC

This new push creates a patches revision, your local history is then cleared. However you can still access the history
of your changes in Gerrit on the review UI section, for each change.

It is also permitted to add more commits when pushing new versions.

Rebasing

Rebasing is usually the last step before pushing changes to Gerrit; this allows you to make the necessary Change-Ids.
The Change-Ids must be kept the same.

• squash: mixes two or more commits into a single one.

• reword: changes the commit message.

• edit: changes the commit content.

• reorder: allows you to interchange the order of the commits.

• rebase: stacks the commits on top of the master.

Rebasing During a Pull

Before pushing a rebase to your master, ensure that the history has a consecutive order.

For example, your REMOTE/master has the list of commits from a0 to a4; Then, your changes c0...c7 are on top of
a4; thus:

git log --oneline REMOTE/master..master

a0
a1
a2
a3
a4
c0
c1
...
c7

If REMOTE/master receives commits a5, a6 and a7. Pull with a rebase as follows:

git pull --rebase REMOTE master

This pulls a5-a7 and re-apply c0-c7 on top of them:

$ git log --oneline REMOTE/master..master
a0
...
a7
c0

42.13. Rebasing 171

http://git-scm.com/book/en/v2/Git-Branching-Rebasing

hyperledger-fabricdocs Documentation, Release master

c1
...
c7

Getting Better Logs from Git

Use these commands to change the configuration of Git in order to produce better logs:

git config log.abbrevCommit true

The command above sets the log to abbreviate the commits’ hash.

git config log.abbrev 5

The command above sets the abbreviation length to the last 5 characters of the hash.

git config format.pretty oneline

The command above avoids the insertion of an unnecessary line before the Author line.

To make these configuration changes specifically for the current Git user, you must add the path option --global
to config as follows:

172 Chapter 42. Gerrit Recommended Practices

CHAPTER 43

Testing

Unit test

See building the fabric for unit testing instructions.

See Unit test coverage reports

To see coverage for a package and all sub-packages, execute the test with the -cover switch:

go test ./... -cover

To see exactly which lines are not covered for a package, generate an html report with source code annotated by
coverage:

go test -coverprofile=coverage.out
go tool cover -html=coverage.out -o coverage.html

System test

[WIP] ...coming soon

This topic is intended to contain recommended test scenarios, as well as current performance numbers against a variety
of configurations.

173

https://jenkins.hyperledger.org/view/fabric/job/fabric-merge-x86_64/

hyperledger-fabricdocs Documentation, Release master

174 Chapter 43. Testing

CHAPTER 44

Coding guidelines

Coding Golang

We code in Go™ and strictly follow the best practices and will not accept any deviations. You must run the following
tools against your Go code and fix all errors and warnings: - golint - go vet - goimports

175

http://golang.org/doc/effective_go.html
https://github.com/golang/lint
https://golang.org/cmd/vet/
https://godoc.org/golang.org/x/tools/cmd/goimports

hyperledger-fabricdocs Documentation, Release master

176 Chapter 44. Coding guidelines

CHAPTER 45

Generating gRPC code

If you modify any .proto files, run the following command to generate/update the respective .pb.go files.

cd $GOPATH/src/github.com/hyperledger/fabric
make protos

177

hyperledger-fabricdocs Documentation, Release master

178 Chapter 45. Generating gRPC code

CHAPTER 46

Adding or updating Go packages

The Hyperledger Fabric Project uses Go 1.6 vendoring for package management. This means that all required packages
reside in the vendor folder within the fabric project. Go will use packages in this folder instead of the GOPATH
when the go install or go build commands are executed. To manage the packages in the vendor folder,
we use Govendor, which is installed in the Vagrant environment. The following commands can be used for package
management:

Add external packages.
govendor add +external

Add a specific package.
govendor add github.com/kardianos/osext

Update vendor packages.
govendor update +vendor

Revert back to normal GOPATH packages.
govendor remove +vendor

List package.
govendor list

Needs Review

179

https://github.com/kardianos/govendor

hyperledger-fabricdocs Documentation, Release master

180 Chapter 46. Adding or updating Go packages

CHAPTER 47

Glossary

Terminology is important, so that all Fabric users and developers agree on what we mean by each specific term. What
is chaincode, for example. So we’ll point you there, whenever you want to reassure yourself. Of course, feel free to
read the entire thing in one sitting if you like, it’s pretty enlightening!

Anchor Peer

A peer node on a channel that all other peers can discover and communicate with. Each Member on a channel has
an anchor peer (or multiple anchor peers to prevent single point of failure), allowing for peers belonging to different
Members to discover all existing peers on a channel.

Block

An ordered set of transactions that is cryptographically linked to the preceding block(s) on a channel.

Chain

The ledger’s chain is a transaction log structured as hash-linked blocks of transactions. Peers receive blocks of trans-
actions from the ordering service, mark the block’s transactions as valid or invalid based on endorsement policies and
concurrency violations, and append the block to the hash chain on the peer’s file system.

Chaincode

Chaincode is software, running on a ledger, to encode assets and the transaction instructions (business logic) for
modifying the assets.

Channel

A channel is a private blockchain overlay on a Fabric network, allowing for data isolation and confidentiality. A
channel-specific ledger is shared across the peers in the channel, and transacting parties must be properly authenticated
to a channel in order to interact with it. Channels are defined by a Configuration-Block.

181

hyperledger-fabricdocs Documentation, Release master

Commitment

Each Peer on a channel validates ordered blocks of transactions and then commits (writes/appends) the blocks to its
replica of the channel Ledger. Peers also mark each transaction in each block as valid or invalid.

Concurrency Control Version Check

Concurrency Control Version Check is a method of keeping state in sync across peers on a channel. Peers execute
transactions in parallel, and before commitment to the ledger, peers check that the data read at execution time has
not changed. If the data read for the transaction has changed between execution time and commitment time, then a
Concurrency Control Version Check violation has occurred, and the transaction is marked as invalid on the ledger and
values are not updated in the state database.

Configuration Block

Contains the configuration data defining members and policies for a system chain (ordering service) or channel. Any
configuration modifications to a channel or overall network (e.g. a member leaving or joining) will result in a new
configuration block being appended to the appropriate chain. This block will contain the contents of the genesis block,
plus the delta.

Consensus

A broader term overarching the entire transactional flow, which serves to generate an agreement on the order and to
confirm the correctness of the set of transactions constituting a block.

Current State

The current state of the ledger represents the latest values for all keys ever included in its chain transaction log. Peers
commit the latest values to ledger current state for each valid transaction included in a processed block. Since current
state represents all latest key values known to the channel, it is sometimes referred to as World State. Chaincode
executes transaction proposals against current state data.

Dynamic Membership

Fabric supports the addition/removal of members, peers, and ordering service nodes, without compromising the oper-
ationality of the overall network. Dynamic membership is critical when business relationships adjust and entities need
to be added/removed for various reasons.

Endorsement

Refers to the process where specific peer nodes execute a transaction and return a YES/NO response to the client
application that generated the transaction proposal. Chaincode applications have corresponding endorsement policies,
in which the endorsing peers are specified.

182 Chapter 47. Glossary

hyperledger-fabricdocs Documentation, Release master

Endorsement policy

Defines the peer nodes on a channel that must execute transactions attached to a specific chaincode application, and
the required combination of responses (endorsements). A policy could require that a transaction be endorsed by a
minimum number of endorsing peers, a minimum percentage of endorsing peers, or by all endorsing peers that are
assigned to a specific chaincode application. Policies can be curated based on the application and the desired level of
resilience against misbehavior (deliberate or not) by the endorsing peers. A distinct endorsement policy for install and
instantiate transactions is also required.

Fabric-ca

Fabric-ca is the default Certificate Authority component, which issues PKI-based certificates to network member
organizations and their users. The CA issues one root certificate (rootCert) to each member, one enrollment certificate
(eCert) to each authorized user, and a number of transaction certificates (tCerts) for each eCert.

Genesis Block

The configuration block that initializes a blockchain network or channel, and also serves as the first block on a chain.

Gossip Protocol

The gossip data dissemination protocol performs three functions: 1) manages peer discovery and channel membership;
2) disseminates ledger data across all peers on the channel; 3) syncs ledger state across all peers on the channel. Refer
to the Gossip topic for more details.

Initialize

A method to initialize a chaincode application.

Install

The process of placing a chaincode on a peer’s file system.

Instantiate

The process of starting a chaincode container.

Invoke

Used to call chaincode functions. Invocations are captured as transaction proposals, which then pass through a modular
flow of endorsement, ordering, validation, committal. The structure of invoke is a function and an array of arguments.

47.13. Endorsement policy 183

hyperledger-fabricdocs Documentation, Release master

Leading Peer

Each Member can own multiple peers on each channel that it subscribes to. One of these peers is serves as the leading
peer for the channel, in order to communicate with the network ordering service on behalf of the member. The ordering
service “delivers” blocks to the leading peer(s) on a channel, who then distribute them to other peers within the same
member cluster.

Ledger

A ledger is a channel’s chain and current state data which is maintained by each peer on the channel.

Member

A legally separate entity that owns a unique root certificate for the network. Network components such as peer nodes
and application clients will be linked to a member.

Membership Service Provider

The Membership Service Provider (MSP) refers to an abstract component of the system that provides credentials to
clients, and peers for them to participate in a Hyperledger Fabric network. Clients use these credentials to authenticate
their transactions, and peers use these credentials to authenticate transaction processing results (endorsements). While
strongly connected to the transaction processing components of the systems, this interface aims to have membership
services components defined, in such a way that alternate implementations of this can be smoothly plugged in without
modifying the core of transaction processing components of the system.

Membership Services

Membership Services authenticates, authorizes, and manages identities on a permissioned blockchain network. The
membership services code that runs in peers and orderers both authenticates and authorizes blockchain operations. It
is a PKI-based implementation of the Membership Services Provider (MSP) abstraction.

The fabric-ca component is an implementation of membership services to manage identities. In particular, it
handles the issuance and revocation of enrollment certificates and transaction certificates.

An enrollment certificate is a long-term identity credential; a transaction certificate is a short-term identity credential
which is both anonymous and un-linkable.

Ordering Service

A defined collective of nodes that orders transactions into a block. The ordering service exists independent of the
peer processes and orders transactions on a first-come-first-serve basis for all channel’s on the network. The ordering
service is designed to support pluggable implementations beyond the out-of-the-box SOLO and Kafka varieties. The
ordering service is a common binding for the overall network; it contains the cryptographic identity material tied to
each Member.

184 Chapter 47. Glossary

hyperledger-fabricdocs Documentation, Release master

Peer

A network entity that maintains a ledger and runs chaincode containers in order to perform read/write operations to
the ledger. Peers are owned and maintained by members.

Policy

There are policies for endorsement, validation, block committal, chaincode management and network/channel man-
agement.

Proposal

A request for endorsement that is aimed at specific peers on a channel. Each proposal is either an instantiate or an
invoke (read/write) request.

Query

A query requests the value of a key(s) against the current state.

Software Development Kit (SDK)

The Hyperledger Fabric client SDK provides a structured environment of libraries for developers to write and test
chaincode applications. The SDK is fully configurable and extensible through a standard interface. Components,
including cryptographic algorithms for signatures, logging frameworks and state stores, are easily swapped in and out
of the SDK. The SDK API uses protocol buffers over gRPC for transaction processing, membership services, node
traversal and event handling applications to communicate across the fabric. The SDK comes in multiple flavors -
Node.js, Java. and Python.

State Database

Current state data is stored in a state database for efficient reads and queries from chaincode. These databases include
levelDB and couchDB.

System Chain

Contains a configuration block defining the network at a system level. The system chain lives within the ordering
service, and similar to a channel, has an initial configuration containing information such as: MSP information,
policies, and configuration details. Any change to the overall network (e.g. a new org joining or a new ordering
node being added) will result in a new configuration block being added to the system chain.

The system chain can be thought of as the common binding for a channel or group of channels. For instance, a
collection of financial institutions may form a consortium (represented through the system chain), and then proceed to
create channels relative to their aligned and varying business agendas.

47.27. Peer 185

hyperledger-fabricdocs Documentation, Release master

Transaction

An invoke or instantiate operation. Invokes are requests to read/write data from the ledger. Instantiate is a request to
start a chaincode container on a peer.

186 Chapter 47. Glossary

CHAPTER 48

Release Notes

v1.0.0-rc1 June 23, 2017

Bug fixes, documentation and test coverage improvements, UX improvements based on user feedback and changes to
address a variety of static scan findings (unused code, static security scanning, spelling, linting and more).

Known Vulnerabilities none

Resolved Vulnerabilities https://jira.hyperledger.org/browse/FAB-4856 https://jira.hyperledger.org/browse/FAB-4848
https://jira.hyperledger.org/browse/FAB-4751 https://jira.hyperledger.org/browse/FAB-4626 https://jira.hyperledger.
org/browse/FAB-4567 https://jira.hyperledger.org/browse/FAB-3715

Known Issues & Workarounds none

Change Log

v1.0.0-beta June 8, 2017

Bug fixes, documentation and test coverage improvements, UX improvements based on user feedback and changes to
address a variety of static scan findings (unused code, static security scanning, spelling, linting and more).

Upgraded to latest version (a precursor to 1.4.0) of gRPC-go and implemented keep-alive feature for improved re-
siliency.

Added a new tool configtxlator to enable users to translate the contents of a channel configuration transaction into a
human readable form.

Known Vulnerabilities

none

Resolved Vulnerabilities

none

Known Issues & Workarounds

BCCSP content in the configtx.yaml has been removed. This change will cause a panic when running configtxgen tool
with a configtx.yaml file that includes the removed BCCSP content.

Java Chaincode support has been disabled until post 1.0.0 as it is not yet fully mature. It may be re-enabled for
experimentation by cloning the hyperledger/fabric repository, reversing this commit and building your own fork.

Change Log

v1.0.0-alpha2

The second alpha release of the v1.0.0 Hyperledger Fabric project. The code is now feature complete. From now
until the v1.0.0 release, the community is focused on documentation improvements, testing, hardening, bug fixing and
tooling. We will be releasing successive release candidates periodically as the release firms up.

187

https://github.com/hyperledger/fabric/releases/tag/v1.0.0-rc1
https://jira.hyperledger.org/browse/FAB-4856
https://jira.hyperledger.org/browse/FAB-4848
https://jira.hyperledger.org/browse/FAB-4751
https://jira.hyperledger.org/browse/FAB-4626
https://jira.hyperledger.org/browse/FAB-4567
https://jira.hyperledger.org/browse/FAB-4567
https://jira.hyperledger.org/browse/FAB-3715
https://github.com/hyperledger/fabric/blob/master/CHANGELOG.md#v100-rc1
https://github.com/hyperledger/fabric/releases/tag/v1.0.0-beta
https://github.com/grpc/grpc-go/releases/
https://github.com/hyperledger/fabric/tree/master/examples/configtxupdate
https://github.com/hyperledger/fabric/commit/a997c30
https://github.com/hyperledger/fabric/commit/29e0c40
https://github.com/hyperledger/fabric/blob/master/CHANGELOG.md#v100-beta
https://github.com/hyperledger/fabric/releases/tag/v1.0.0-alpha2

hyperledger-fabricdocs Documentation, Release master

Change Log

v1.0.0-alpha March 16, 2017

The first alpha release of the v1.0.0 Hyperledger Fabric project. The code is being made available to developers to
begin exploring the v1.0 architecture.

Change Log

v0.6-preview September 16, 2016

A developer preview release of the Hyperledger Fabric intended to exercise the release logistics and stabilize a set
of capabilities for developers to try out. This will be the last release under the original architecture. All subsequent
releases will deliver on the v1.0 architecture.

Change Log

v0.5-developer-preview June 17, 2016

A developer preview release of the Hyperledger Fabric intended to exercise the release logistics and stabilize a set of
capabilities for developers to try out.

Key features:

Permissioned blockchain with immediate finality Chaincode (aka smart contract) execution environments Docker
container (user chaincode) In-process with peer (system chaincode) Pluggable consensus with PBFT, NOOPS (devel-
opment mode), SIEVE (prototype) Event framework supports pre-defined and custom events Client SDK (Node.js),
basic REST APIs and CLIs Known Key Bugs and work in progress

• 1895 - Client SDK interfaces may crash if wrong parameter specified

• 1901 - Slow response after a few hours of stress testing

• 1911 - Missing peer event listener on the client SDK

• 889 - The attributes in the TCert are not encrypted. This work is still on-going

188 Chapter 48. Release Notes

https://github.com/hyperledger/fabric/blob/master/CHANGELOG.md#v100-alpha2-may-15-2017
https://github.com/hyperledger/fabric/releases/tag/v1.0.0-alpha
https://github.com/hyperledger/fabric/blob/master/CHANGELOG.md#v100-alpha-march-16-2017
https://github.com/hyperledger/fabric/tree/v0.6
https://github.com/hyperledger/fabric/blob/master/CHANGELOG.md#v06-preview-september-16-2016
https://github.com/hyperledger-archives/fabric/tree/v0.5-developer-preview

CHAPTER 49

Still Have Questions?

We try to maintain a comprehensive set of documentation for various audiences. However, we realize that often there
are questions that remain unanswered. For any technical questions relating to the Hyperledger Fabric project not
answered in this documentation, please use StackOverflow. If you need help finding things, please don’t hesitate to
send a note to the mailing list, or ask on RocketChat (an alternative to Slack).

189

http://stackoverflow.com/questions/tagged/hyperledger
http://lists.hyperledger.org/mailman/listinfo/hyperledger-fabric
https://chat.hyperledger.org/

hyperledger-fabricdocs Documentation, Release master

190 Chapter 49. Still Have Questions?

CHAPTER 50

Status

This project is an Active Hyperledger project. For more information on the history of this project see the Fabric wiki
page. Information on what Active entails can be found in the Hyperledger Project Lifecycle document.

191

https://wiki.hyperledger.org/projects/fabric#history
https://wiki.hyperledger.org/projects/fabric#history
https://wiki.hyperledger.org/community/project-lifecycle

hyperledger-fabricdocs Documentation, Release master

192 Chapter 50. Status

CHAPTER 51

License

The Hyperledger Project uses the Apache License Version 2.0 software license.

193

https://github.com/hyperledger/fabric/blob/master/LICENSE

	Prerequisites
	Install cURL
	Docker and Docker Compose
	Go Programming Language
	Node.js Runtime and NPM
	Windows extras

	Getting Started
	Install Prerequisites
	Hyperledger Fabric Samples
	Tutorials

	Hyperledger Fabric Samples
	Download Platform-specific Binaries

	Introduction
	What is a Blockchain?
	Why is a Blockchain useful?
	What is Hyperledger Fabric?
	Where can I learn more?

	Hyperledger Fabric Capabilities
	Identity management
	Privacy and confidentiality
	Efficient processing
	Chaincode functionality
	Modular design

	Hyperledger Fabric Model
	Assets
	Chaincode
	Ledger Features
	Privacy through Channels
	Security & Membership Services
	Consensus

	Use Cases
	Building Your First Network
	Install prerequisites
	Want to run it now?
	Crypto Generator
	Configuration Transaction Generator
	Run the tools
	Start the network
	Understanding the docker-compose topology
	Using CouchDB
	A Note on Data Persistence
	Troubleshooting

	Writing Your First Application
	Getting a Test Network
	How Applications Interact with the Network
	Querying the Ledger
	Updating the Ledger
	Additional Resources

	Chaincode Tutorials
	What is Chaincode?
	Two Personas

	Chaincode for Developers
	What is Chaincode?
	Chaincode API
	Simple Asset Chaincode
	Install Fabric Samples
	Download docker images
	Terminal 1 - Start the network
	Terminal 2 - Build & start the chaincode
	Terminal 3 - Use the chaincode
	Testing new chaincode

	Chaincode for Operators
	What is Chaincode?
	Chaincode lifecycle
	Packaging
	System chaincode

	Videos
	Best Practices
	Membership Service Providers (MSP)
	MSP Configuration
	How to generate MSP certificates and their signing keys?
	MSP setup on the peer & orderer side
	Channel MSP setup
	Best Practices

	Channel Configuration (configtx)
	Anatomy of a configuration
	Configuration updates
	Permitted configuration groups and values
	Orderer system channel configuration
	Application channel configuration
	Channel creation

	Channel Configuration (configtxgen)
	Configuration Profiles
	Bootstrapping the orderer
	Creating a channel
	Reviewing a configuration

	Endorsement policies
	Endorsement policy design
	Endorsement policy syntax in the CLI
	Specifying endorsement policies for a chaincode
	Future enhancements

	Error handling
	General Overview
	Usage Instructions
	Displaying error messages
	General guidelines for error handling in Fabric

	Logging Control
	Overview
	peer
	Go chaincodes

	Architecture Explained
	1. System architecture
	2. Basic workflow of transaction endorsement
	3. Endorsement policies
	4 (post-v1). Validated ledger and PeerLedger checkpointing (pruning)

	Transaction Flow
	Hyperledger Fabric SDKs
	Bringing up a Kafka-based Ordering Service
	Caveat emptor
	Big picture
	Steps
	Additional considerations
	Supported Kafka versions and upgrading
	Debugging
	Example

	Channels
	Ledger
	Chain
	State Database
	Transaction Flow
	State Database options

	Read-Write set semantics
	Transaction simulation and read-write set
	Transaction validation and updating world state using read-write set
	Example simulation and validation

	Gossip data dissemination protocol
	Gossip protocol
	Gossip messaging

	Hyperledger Fabric FAQs
	Endorsement
	Security & Access Control
	Application-side Programming Model
	Chaincode (Smart Contracts and Digital Assets)
	Identity Management (Membership Service)

	Contributions Welcome!
	Install prerequisites
	Getting a Linux Foundation account
	Getting help
	Requirements and Use Cases
	Reporting bugs
	Fixing issues and working stories
	Making Feature/Enhancement Proposals
	Working with a local clone and Gerrit
	What makes a good change request?
	Communication
	Maintainers
	Legal stuff

	Maintainers
	Using Jira to understand current work items
	Setting up the development environment
	Overview
	Prerequisites
	pip, behave and docker-compose
	Steps
	Building the fabric
	Notes

	Building the fabric
	Running the unit tests
	Running Node.js Unit Tests
	Running Behave BDD Tests

	Building outside of Vagrant
	Building on Z
	Building on Power Platform

	Configuration
	Logging
	Requesting a Linux Foundation Account
	Creating a Linux Foundation ID
	Configuring Gerrit to Use SSH
	Checking Out the Source Code

	Working with Gerrit
	Git-review
	Sandbox project
	Getting deeper into Gerrit
	Working with a local clone of the repository
	Submitting a Change
	Adding reviewers
	Reviewing Using Gerrit
	Viewing Pending Changes

	Submitting a Change to Gerrit
	Change Requirements

	Reviewing a Change
	Gerrit Recommended Practices
	Browsing the Git Tree
	Watching a Project
	Commit Messages
	Avoid Pushing Untested Work to a Gerrit Server
	Keeping Track of Changes
	Topic branches
	Creating a Cover Letter for a Topic
	Finding Available Topics
	Downloading or Checking Out a Change
	Using Draft Branches
	Using Sandbox Branches
	Updating the Version of a Change
	Rebasing
	Rebasing During a Pull
	Getting Better Logs from Git

	Testing
	Unit test
	System test

	Coding guidelines
	Coding Golang

	Generating gRPC code
	Adding or updating Go packages
	Glossary
	Anchor Peer
	Block
	Chain
	Chaincode
	Channel
	Commitment
	Concurrency Control Version Check
	Configuration Block
	Consensus
	Current State
	Dynamic Membership
	Endorsement
	Endorsement policy
	Fabric-ca
	Genesis Block
	Gossip Protocol
	Initialize
	Install
	Instantiate
	Invoke
	Leading Peer
	Ledger
	Member
	Membership Service Provider
	Membership Services
	Ordering Service
	Peer
	Policy
	Proposal
	Query
	Software Development Kit (SDK)
	State Database
	System Chain
	Transaction

	Release Notes
	Still Have Questions?
	Status
	License

