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Welcome to the Yann Toolbox. It is a toolbox for building and learning convolutional neural networks, built on top of
theano. This toolbox is a homage to Prof. Yann LeCun, one of the earliest poineers of CNNs. To setup the toolbox
refer the Installation Guide guide. Once setup, you may start with the Quick Start guide or try your hand at the
Tutorials and the guide to Getting Started. A user base discussion group is setup on gitter and also on google groups.

If you are here for the theano-tensorflow migration tool, click [here](http:://www.tf-lenet.readthedocs.io).

Warning: Yann is currently under its early phases and is presently undergoing massive development. Expect a
lot of changes. Unittests are only starting to be written, therefore the coverage and travis build passes are not to be
completely trusted. The toolbox will be formalized in the future but at this moment, the authorship, coverage and
maintanence of the toolbox is under extremely limited manpower.

Note: While, there are more formal and wholesome toolboxes that are similar and have a much larger userbase such
as Lasagne, Keras, Blocks and Caffe, this toolbox is designed differently. This is much simpler and versatile. Yann is
designed as a supplement to an upcoming beginner’s book on Convolutional Neural Networks and also the toolbox of
choice for a introductory course on deep learning for computer vision.

Because of this reason, Yann is specifically designed to be intuitive and easy to use for beginners. That does not
compromise Yann of any of its core purpose - to be able to build CNNs in a plug and play fashion. It is still a good
choice for a toolbox for running pre-trained models and build complicated, non-vannilla CNN architectures that are
not easy to build with the other toolboxes. It is also a good choice for researchers and industrial scientists, who want
to quickly prototype networks and test them before developing production scale models.
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CHAPTER 1

Getting Started

The following will help you get quickly acquinted with Yann.

Installation Guide

Yann is built on top of Theano. Theano and all its pre-requisites are mandatory. Once theano and its pre-requisites are
setup you may setup and run this toolbox. Theano setup is documented in the theano toolbox documentation. Yann is
built with theanoo 0.8 but should be forward compatible unless theano makes a drastic release.

Quick fire Installation

Now before going through the full-fledged installation procedure, you can run through the entire installation in one
command that will install the basics required to run the toolbox. To install the toolbox quickly do the following:

pip install git+git://github.com/ragavvenkatesan/yann.git

If it showed any errors, install numpy first. skdata has some issue that requires numpy installed first. If you use
anaconda, just install the numpy and scipy using conda install instead of pip install. This will setup the
toolbox for all intentions and purposes.

Verify that the installation of theano is indeed version 0.9 or greater by doing the following in a python shell

import theano
theano.__version__

If the version was not 0.9, you can install 0.9 by doing the following:

pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git

For a full-fledged installation procedure, don’t do the above but run through the following set of instructions. If you
want to install all other supporting features like datasets, visualizers and others, do the following:
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pip install -r requirements_full.txt
pip install git+git://github.com/ragavvenkatesan/yann.git

Full installation

Dependencies

Python + pip / conda

Yann needs Python 2.7. Please install it for your OS.. Some modules that are required don’t come with
default python. But don’t worry python comes with a package installer called pip. You can use pip to
install additional packages.

For a headache free installation, the anaconda distribution of python is very strongly recommended be-
cause it comes with a lot of goodies pre-packaged.

C compiler

You need a C compiler, not because yann needs C, but theano and probably numpy requires C compilers.
Make sure that your OS has one. Apple osX or macOS users, if you are using Cuda and cuDNN, prefer
using command line tools 7.x+. 8 doesn’t work with cuDNN at the moment of writing this documentation.
You can download older versions of xcode and command line tools here.

numpy/scipy

Numpy 1.6 and Scipy 0.11 are needed for yann. Make sure these work well with a blas system. Prefer
Intel MKL for blas, which is also availabe from anaconda. MKL is free for students and researchers and
is available for a small price for others.

If you use pip use

pip install numpy
pip install scipy

to install these. If you use anaconda, use

conda install mkl
conda install numpy
conda install scipy

to set these up. If not, yann installer will pip install numpy scipy anyway as part of its require-
ments.

Theano

Once all the pre-requisites are setup, install theano version 0.8 or higher.

The following .theanorc configuration can be used as a sample normally, but you may choose other options. As
an example one can use the following:

4 Chapter 1. Getting Started
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[global]
floatX=float32
device=cuda0
optimizer_including=cudnn
mode = FAST_RUN

[nvcc]
nvcc.fastmath=True
allow_gc=False

[cuda]
root=/usr/local/cuda/

[blas]
ldflags = -lmkl

[lib]
cnmem = 0.5

If you use the libgpuarray backend instead of the CUDA backend, use device=cuda0 or whichever device you
want to run on. If you are using CUDA backed use device=gpu0. Refer theano documentation for more on this.

Optional Dependencies

These are some optional dependencies that yann doesn’t use directly but are used by yann’s dependencies like theano.
I highly recommend these before installing theano.

Cuda

This is an optional dependency. If you need the capability of a Nvidia GPU, you will need a suitable
CUDA toolkit and drivers. If you do not have this dependency installed, you won’t be able to run the code
on Nvidia GPUs.Some compoenents of the code depend on cuDNN for speeding things up, so cuDNN is
highly recommended although optional. Nvidia has the awesome cuDNN library that is free as long as
you register as a developer. If you didn’t install CUDA, you can still run the toolbox, but it will be much
slower running on a CPU.

Libgpuarray

libgpuarray is now fully supported, cuda backend is strongly recommended for macOS, but for the Pascal
architecture of GPUs, libgpuarray seems to be performing much better. This is also an optional but
highly recommended tool

Additional Dependencies

Yann also needs the following as additional dependencies that opens up additional features.

Networkx

For those who are networking geeks, a neural network is a directed acyclic graph. So Yann internally
has the ability for every network to create a networkx style graph and do things with it if you need.

1.1. Installation Guide 5
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Networkx is a tremendously popular tool for network realted tasks and we are still exploring and testing
its capabilities. This might only ever be used for visualization of network purposes, but some researcher
somewhere might use this once in the future networks get sophisticated, we never know. This is an
optional dependency, not having this dependency doesn’t affect the toolbox, except for the purposes it is
needed for.

You can install networkx as follows:

pip install networkx

skdata

Used as a port for datasets. This is Needed if you are using some common benchmark datasets. Although this is an
additional dependency, skdata is the core of the datasets module and most datasets in this toolbox are ported through
skdata unless you have matlab. Work is on-going in integrating with fuel and other ports.

Install by using the following command:

pip install skdata

progressbar

Yann uses progressbar for aesthetic printing. You can install it easily by using

pip install progressbar

If you don’t have progressbar, yann will simply ignore it and print progress on terminal.

Dependencies for visualization

Theano needs pydot and graphviz for visualization. We use theano’s visualization for printing theano
functions as shown here.

These visualizations are highly useful during debugging. If you want the capability of producing these
for your networks, install the dependencises using the following commands:

apt-get install graphviz
pip install graphviz
pip install pydot pydot-ng

Not needed now, but might need in future. Yann will switch from openCV to matplotlib or browser
matplotlib for visualization. Install it by

pip insall matplotlib

cPickle, gzip and hdf5py

Most often the case is that cPickle and gzip these come with the python installation, if not please install
them. Yann uses these for saving down models and such.

For datasets, at the moment, yann uses cpickle. In the future, yann will migrate to hdf5 for datasets. We
don’t use hdf5py at the moment. Install hdf5py by running either,
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conda install h5py

or,

pip install h5py

Yann Toolbox Setup

Finally to install the toolbox run,

pip install git+git://github.com/ragavvenkatesan/yann.git

If you have already setup the toolbox and want to just update to the bleeding-edge use,

pip install --upgrade git+git://github.com/ragavvenkatesan/yann.git

If you want to build by yourself you may clone from git and then run using setuptools. Ensure that you have setuptools
installed first.

pip install git setuptools

Once you are done, you clone the repository from git.

git clone http://github.com/ragavvenkatesan/yann

Once cloned, enter the directory and run installer.

cd yann
python setup.py install

You can run a bunch of tests ( working on it ) by running the following code:

python setup.py test

Tutorials

If you are here for the first time you might want to consider doing the Quick Start instead of doing the tutorials. The
tutorials are meant for those who have initial practice or experience with the toolbox and its structure. If you’d just
want to see the codes or run the examples for testing or other such purposes you could follow this tutorial/API. I
recommend going through the tutorial just in case though.

Logistic Regression.

Tutorial for logistic regression is basically the Quick Start guide. Please follow the tutorial there. A full working code
is presented in the following.

Notes

This code contains one method that explains how to build a logistic regression classifier for the MNIST dataset using
the yann toolbox.

1.2. Tutorials 7
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For a more interactive tutorial refer the notebook at yann/pantry/tutorials/notebooks/Logistic Regression.ipynb

pantry.tutorials.log_reg.log_reg(dataset)
This function is a demo example of logistic regression.

Multi-layer Neural Network.

By virture of being here, it is assumed that you have gone through the Quick Start. Let us take this one step further
and create a neural network with two hidden layers. We begin as usual by importing the network class and creating
the input layer.

from yann.network import network
net = network()
dataset_params = { "dataset": "_datasets/_dataset_xxxxxx", "id": 'mnist', "n_classes
→˓" : 10 }
net.add_layer(type = "input", id ="input", dataset_init_args = dataset_params)

Instead of connecting this to a classfier as we saw in the Quick Start , let us add a couple of fully connected hidden
layers. Hidden layers can be created using layer type = dot_product.

net.add_layer (type = "dot_product",
origin ="input",
id = "dot_product_1",
num_neurons = 800,
regularize = True,
activation ='relu')

net.add_layer (type = "dot_product",
origin ="dot_product_1",
id = "dot_product_2",
num_neurons = 800,
regularize = True,
activation ='relu')

Notice the parameters passed. num_neurons is the number of nodes in the layer. Notice also how we modularized
the layers by using the id parameter. origin represents which layer will be the input to the new layer. By default
yann assumes all layers are input serially and chooses the last added layer to be the input. Using origin, one can
create various types of architectures. Infact any directed acyclic graphs (DAGs) that could be hand-drawn could be
implemented. Let us now add a classifier and an objective layer to this.

net.add_layer ( type = "classifier",
id = "softmax",
origin = "dot_product_2",
num_classes = 10,
activation = 'softmax',
)

net.add_layer ( type = "objective",
id = "nll",
origin = "softmax",
)

Again notice that we have supplied a lot more arguments than before. Refer the API for more details. Let us create
our own optimizer module this time instead of using the yann default. For any module in yann, the initialization
can be done using the add_module method. The add_module method typically takes input type which in this
case is optimizer and a set of intitliazation parameters which in our case is params = optimizer_params.

8 Chapter 1. Getting Started
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Any module params, which in this case is the optimizer_params is a dictionary of relevant options. A typical
optimizer setup is:

optimizer_params = {
"momentum_type" : 'polyak',
"momentum_params" : (0.9, 0.95, 30),
"regularization" : (0.0001, 0.0002),
"optimizer_type" : 'rmsprop',
"id" : 'polyak-rms'

}
net.add_module ( type = 'optimizer', params = optimizer_params )

We have now successfully added a Polyak momentum with RmsProp back propagation with some 𝐿1 and 𝐿2 co-
efficients that will be applied to the layers for which we passed as argument regularize = True. For more
options of parameters on optimizer refer to the optimizer documentation . This optimizer will therefore solve the
following error:

𝑒(w2,w1,w𝜎) = 𝜎(d2(d1(x,w1),w2)w𝜎) + 0.0001(|w2|+ |w1|+ |w𝜎|) + 0.0002(||w2||+ ||w1||+ ||w𝜎||)

where 𝑒 is the error, 𝜎(.) is the sigmoid layer and 𝑑𝑖(.) is the ith layer of the network. Once we are done, we can cook,
train and test as usual:

learning_rates = (0.05, 0.01, 0.001)

net.cook( optimizer = 'polyak-rms',
objective_layer = 'nll',
datastream = 'mnist',
classifier = 'softmax',
)

net.train( epochs = (20, 20),
validate_after_epochs = 2,
training_accuracy = True,
learning_rates = learning_rates,
show_progress = True,
early_terminate = True)

The learning_rate, supplied here is a tuple. The first indicates a annealing of a linear rate, the second is the initial
learning rate of the first era, and the third value is the leanring rate of the second era. Accordingly, epochs takes in a
tuple with number of epochs for each era.

This time, let us not let it run the forty epochs, let us cancel in the middle after some epochs by hitting ^c. Once it
stops lets immediately test and demonstrate that the net retains the parameters as updated as possible. Once done,
lets run net.test().

Some new arguments are introduced here and they are for the most part easy to understand in context. epoch
represents a tuple which is the number of epochs of training and number of epochs of fine tuning epochs after that.
There could be several of these stages of finer tuning. Yann uses the term ‘era’ to represent each set of epochs running
with one learning rate. show_progress will print a progress bar for each epoch. validate_after_epochs
will perform validation after such many epochs on a different validation dataset. The full code for this tutorial with
additional commentary can be found in the file pantry.tutorials.mlp.py. If you have toolbox cloned or
downloaded or just the tutorials downloaded, Run the code as,

from pantry.tutorials.mlp import mlp
mlp(dataset = 'some dataset created')

or simply,

1.2. Tutorials 9
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python pantry/tutorials/mlp.py

from the toolbox root or path added to toolbox. The __init__ program has all the required tools to create or load
an already created dataset. Optionally as command line argument you can provide the location to the dataset.

pantry.tutorials.mlp.mlp(dataset, verbose=1)
This method is a tutorial on building a two layer multi-layer neural network. The built network is mnist->800-
>800->10 .It optimizes with polyak momentum and rmsprop.

Parameters dataset – an already created dataset.

Autoencoder Network.

By virture of being here, it is assumed that you have gone through the Quick Start.

Todo

Code is done, but text needs to be written in.

The full code for this tutorial with additional commentary can be found in the file pantry.tutorials.
autoencoder.py. If you have toolbox cloned or downloaded or just the tutorials downloaded, Run the code
as,

Todo

• Need a validation and testing thats better than just measuring rmse. Can’t find something great.

Notes

This code contains two methods.

1. A shallow autoencoder with just one layer.

2. A Convolutional-Deconvolutional autoencoder that uses a deconv layer.

Both these methods are setup for MNIST dataset.

pantry.tutorials.autoencoder.convolutional_autoencoder(dataset=None, verbose=1)
This function is a demo example of a deep convolutional autoencoder. This is an example code. You should
study this code rather than merely run it. This is also an example for using the deconvolutional layer or the
transposed fractional stride convolutional layers.

Parameters

• dataset – Supply a dataset.

• verbose – Similar to the rest of the dataset.

pantry.tutorials.autoencoder.shallow_autoencoder(dataset=None, verbose=1)
This function is a demo example of a sparse shallow autoencoder. This is an example code. You should study
this code rather than merely run it.

Parameters

• dataset – Supply a dataset.

• verbose – Similar to the rest of the dataset.

10 Chapter 1. Getting Started
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Convolutional Neural Network.

By virture of being here, it is assumed that you have gone through the Quick Start.

Building a convolutional neural network is just as similar as an MLNN. The convolutional-pooling layer or convpool
layer could be added using the following statement:

net.add_layer ( type = "conv_pool",
origin = "input",
id = "conv_pool_1",
num_neurons = 40,
filter_size = (5,5),
pool_size = (2,2),
activation = ('maxout', 'maxout', 2),
batch_norm = True,
regularize = True,
verbose = verbose

)

Here the layer has 40 filters each 5X5 followed by batch normalization followed by a maxpooling of 2X2 all with
stride 1. The activation used is maxout with maxout by 2. A simpler relu layer could be added thus,

net.add_layer ( type = "conv_pool",
origin = "input",
id = "conv_pool_1",
num_neurons = 40,
filter_size = (5,5),
pool_size = (2,2),
activation = 'relu',
verbose = verbose
)

Refer to the APIs for more details on the convpool layer. It is often useful to visualize the filters learnt in a CNN, so we
introduce the visualizer module here along with the CNN tutorial. The visualizer can be setup using the add_module
method of net object.

net.add_module ( type = 'visualizer',
params = visualizer_params,
verbose = verbose

)

where the visualizer_params is a dictionary of the following format.

visualizer_params = {
"root" : 'lenet5',
"frequency" : 1,
"sample_size": 144,
"rgb_filters": True,
"debug_functions" : False,
"debug_layers": False,
"id" : 'main'

}

root is the location where the visualizations are saved, frequency is the number of epochs for which visualizations
are saved down, sample_size number of images are saved each time. rgb_filtersmake the filters save in color.
Along with the activities of each layer for the exact same images as the data itself, the filters of neural network are also
saved down. For more options of parameters on visualizer refer to the visualizer documentation .

1.2. Tutorials 11

http://yann.readthedocs.io/en/master/yann/modules/visualizer.html


yann Documentation, Release 1.0rc1

The full code for this tutorial with additional commentary can be found in the file pantry.tutorials.lenet.
py. This tutorial runs a CNN for the lenet dataset. If you have toolbox cloned or downloaded or just the tutorials
downloaded, Run the code using,

Notes

This code contains three methods.

1. A modern reincarnation of LeNet5 for MNIST.

2. The same Lenet with batchnorms 2.a. Batchnorm before activations. 2.b. Batchnorm after activations.

All these methods are setup for MNIST dataset.

Todo

Add detailed comments.

pantry.tutorials.lenet.lenet5(dataset=None, verbose=1)
This function is a demo example of lenet5 from the infamous paper by Yann LeCun. This is an example code.
You should study this code rather than merely run it.

Warning: This is not the exact implementation but a modern re-incarnation.

Parameters

• dataset – Supply a dataset.

• verbose – Similar to the rest of the dataset.

pantry.tutorials.lenet.lenet_maxout_batchnorm_after_activation(dataset=None,
verbose=1)

This is a version with nesterov momentum and rmsprop instead of the typical sgd. This also has maxout acti-
vations for convolutional layers, dropouts on the last convolutional layer and the other dropout layers and this
also applies batch norm to all the layers. The difference though is that we use the batch_norm layer to apply
batch norm that applies batch norm after the activation fo the previous layer. So we just spice things up and add
a bit of steroids to lenet5(). This also introduces a visualizer module usage.

Parameters

• dataset – Supply a dataset.

• verbose – Similar to the rest of the dataset.

pantry.tutorials.lenet.lenet_maxout_batchnorm_before_activation(dataset=None,
verbose=1)

This is a version with nesterov momentum and rmsprop instead of the typical sgd. This also has maxout activa-
tions for convolutional layers, dropouts on the last convolutional layer and the other dropout layers and this also
applies batch norm to all the layers. The batch norm is applied by using the batch_norm = True parame-
ters in all layers. This batch norm is applied before activation as is used in the original version of the paper. So
we just spice things up and add a bit of steroids to lenet5(). This also introduces a visualizer module usage.

Parameters

• dataset – Supply a dataset.

• verbose – Similar to the rest of the dataset.

12 Chapter 1. Getting Started
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Generative Adversarial Networks.

By virture of being here, it is assumed that you have gone through the Quick Start.

Todo

Code is done, but text needs to be written in. This code/tutorial will also explain how the network class is setup because
to implement a GAN, we need to inherit the network class out and re-write some of the methods.

The full code for this tutorial with additional commentary can be found in the file pantry.tutorials.gan.py.
If you have toolbox cloned or downloaded or just the tutorials downloaded, Run the code as, Referenced from

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. “Generative adversarial nets.” In Advances in Neural Information

Processing Systems, pp. 2672-2680. 2014.

Notes

This file contains several GAN implementations:

1. Shallow GAN setup for MNIST

2. Shallow Wasserstein GAN setup for MNIST*

3. Deep GAN (Ian Goodfellow’s original implementation) setup for MNIST

4. DCGAN (Chintala et al.) setup for CIFAR 10

5. LS - DCGAN setup for CIFAR 10

Todos:

• Convert the DCGANs for CELEBA.

• WGAN doesn’t work properly because of clipping.

• Check that DCGANs strides are properly setup.

pantry.tutorials.gan.deep_deconvolutional_gan(dataset, regularize=True,
batch_norm=True, dropout_rate=0.5,
verbose=1)

This function is a demo example of a generative adversarial network. This is an example code. You should
study this code rather than merely run it. This method uses a few deconvolutional layers. This method is setup
to produce images of size 32X32.

Parameters

• dataset – Supply a dataset.

• regularize – True (default) supplied to layer arguments

• batch_norm – True (default) supplied to layer arguments

• dropout_rate – None (default) supplied to layer arguments

• verbose – Similar to the rest of the dataset.

Returns A Network object.

Return type net

1.2. Tutorials 13
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Notes

This method is setup for Cifar 10.

pantry.tutorials.gan.deep_deconvolutional_lsgan(dataset, regularize=True,
batch_norm=True, dropout_rate=0.5,
verbose=1)

This function is a demo example of a generative adversarial network. This is an example code. You should study
this code rather than merely run it. This method uses a few deconvolutional layers as was used in the DCGAN
paper. This method is setup to produce images of size 32X32.

Parameters

• dataset – Supply a dataset.

• regularize – True (default) supplied to layer arguments

• batch_norm – True (default) supplied to layer arguments

• dropout_rate – None (default) supplied to layer arguments

• verbose – Similar to the rest of the dataset.

Returns A Network object.

Return type net

Notes

This method is setupfor SVHN / CIFAR10. This is an implementation of th least squares GAN with a = 0, b = 1
and c= 1 (equation 9) [1] Least Squares Generative Adversarial Networks, Xudong Mao, Qing Li, Haoran Xie,
Raymond Y.K. Lau, Zhen Wang

pantry.tutorials.gan.deep_gan_mnist(dataset, verbose=1)
This function is a demo example of a generative adversarial network. This is an example code. You should
study this code rather than merely run it.

Parameters

• dataset – Supply a dataset.

• verbose – Similar to the rest of the dataset.

Returns A Network object.

Return type net

Notes

This network here mimics Ian Goodfellow’s original code and implementation for MNIST adapted from his
source code: https://github.com/goodfeli/adversarial/blob/master/mnist.yaml .It might not be a perfect repli-
caiton, but I tried as best as I could.

This method is setup for MNIST

pantry.tutorials.gan.shallow_gan_mnist(dataset=None, verbose=1)
This function is a demo example of a generative adversarial network. This is an example code. You should
study this code rather than merely run it.

Parameters

14 Chapter 1. Getting Started
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• dataset – Supply a dataset.

• verbose – Similar to the rest of the dataset.

Notes

This method is setup for MNIST.

pantry.tutorials.gan.shallow_wgan_mnist(dataset=None, verbose=1)
This function is a demo example of a Wasserstein generative adversarial network. This is an example code. You
should study this code rather than merely run it.

Parameters

• dataset – Supply a dataset.

• verbose – Similar to the rest of the dataset.

Notes

This method is setup for MNIST. Everything in this code is the same as the shallow GAN class except for the
loss functions.

Todo

This is not verified. There is some trouble in weight clipping.

Batch Normalization.

Batch normalization has become one important operation in faster and stable learning of neural networks. In batch
norm we do the following:

𝑥 = (
𝑥− 𝜇𝑏

𝜎𝑏
)𝛾 + 𝛽

The 𝑥 is the input (and the output) of this operation, 𝜇𝑏 and 𝜎𝑏 are the mean and the variance of the minibatch of
𝑥 supplied. 𝛾 and 𝛽 are learnt using back propagation. This will also store a running mean and a running variance,
which is used during inference time.

By default batch normalization can be performed on convolution and dot product layers using the argument
batch_norm = True supplied to the yann.network.add_layer method. This will apply the batch nor-
malization before the activation and after the core layer operation.

While this is the technique that was described in the original batch normalization paper[1]. Some modern networks
such as the Residual network [2],[3] use a re-orderd version of layer operations that require the batch norm to be applied
post-activation. This is particularly used when using ReLU or Maxout networks[4][5]. Therefore we also provide a
layer type batch_norm, that could create a layer that simply does batch normalization on the input supplied. These
layers could be used to create a post-activation batch normalization.

This tutorial demonstrates the use of both these techniques using the same architecutre of networks used in the Con-
volutional Neural Network. tutorial. The codes for these can be found in the following module methods in pantry.
tutorials.
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References

Notes

This code contains three methods.

1. A modern reincarnation of LeNet5 for MNIST.

2. The same Lenet with batchnorms 2.a. Batchnorm before activations. 2.b. Batchnorm after activations.

All these methods are setup for MNIST dataset.

Todo

Add detailed comments.

pantry.tutorials.lenet.lenet5(dataset=None, verbose=1)
This function is a demo example of lenet5 from the infamous paper by Yann LeCun. This is an example code.
You should study this code rather than merely run it.

Warning: This is not the exact implementation but a modern re-incarnation.

Parameters

• dataset – Supply a dataset.

• verbose – Similar to the rest of the dataset.

pantry.tutorials.lenet.lenet_maxout_batchnorm_after_activation(dataset=None,
verbose=1)

This is a version with nesterov momentum and rmsprop instead of the typical sgd. This also has maxout acti-
vations for convolutional layers, dropouts on the last convolutional layer and the other dropout layers and this
also applies batch norm to all the layers. The difference though is that we use the batch_norm layer to apply
batch norm that applies batch norm after the activation fo the previous layer. So we just spice things up and add
a bit of steroids to lenet5(). This also introduces a visualizer module usage.

Parameters

• dataset – Supply a dataset.

• verbose – Similar to the rest of the dataset.

pantry.tutorials.lenet.lenet_maxout_batchnorm_before_activation(dataset=None,
verbose=1)

This is a version with nesterov momentum and rmsprop instead of the typical sgd. This also has maxout activa-
tions for convolutional layers, dropouts on the last convolutional layer and the other dropout layers and this also
applies batch norm to all the layers. The batch norm is applied by using the batch_norm = True parame-
ters in all layers. This batch norm is applied before activation as is used in the original version of the paper. So
we just spice things up and add a bit of steroids to lenet5(). This also introduces a visualizer module usage.

Parameters

• dataset – Supply a dataset.

• verbose – Similar to the rest of the dataset.
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Cooking a matlab dataset for Yann.

By virture of being here, it is assumed that you have gone through the Quick Start.

This tutorial will help you convert a dataset from matlab workspace to yann. To begin let us acquire Google’s Street
View House Numbers dataset in Matlab [1]. Download from the url three .mat files: test_32x32.mat, train_32x32.mat
and extra_32x32.mat. Once downloaded we need to divide this mat dump of data into training, testing and val-
idation minibatches appropriately as used by yann. This can be accomplished by the steps outlined in the code
yann\pantry\matlab\make_svhn.m. This will create data with 500 samples per mini batch with 56 train-
ing batches, 42 testing batches and 28 validation batches.

Once the mat files are setup appropriately, they are ready for yann to load and convert them into yann data. In case
of data that is not form svhn, you can open one of the ‘batch’ files in matlab to understand how the data is spread.
Typically, the x variable is vectorized images, in this case 500X3072 (500 images per batch, 32*32*3 pixels per
image). y is an integer vector labels going from 0-10 in this case.

References

To convert the code into yann, we can use the setup_dataset module at yann.utils.dataset.py file.
Simply call the initializer as,

dataset = setup_dataset(dataset_init_args = data_params,
save_directory = save_directory,
preprocess_init_args = preprocess_params,
verbose = 3 )

where, data_params contains information about the dataset thusly,

data_params = {
"source" : 'matlab',
# "name" : 'yann_svhn', # some name.
"location" : location, # some location to load

→˓from.
"height" : 32,
"width" : 32,
"channels" : 3,
"batches2test" : 42,
"batches2train" : 56,
"batches2validate" : 28,
"mini_batch_size" : 500 }

and the preprocess_params contains information on how to process the images thusly,

preprocess_params = {
"normalize" : True,
"ZCA" : False,
"grayscale" : False,
"zero_mean" : False,

}

save_directory is simply a location to save the yann dataset. Customarialy, it is save_directory =
'_datasets'

The full code for this tutorial with additional commentary can be found in the file pantry.tutorials.
mat2yann.py.

If you have toolbox cloned or downloaded or just the tutorials downloaded, Run the code using,
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pantry.tutorials.mat2yann.cook_svhn_normalized(location, verbose=1, **kwargs)
This method demonstrates how to cook a dataset for yann from matlab. Refer to the pantry/matlab/
setup_svhn.m file first to setup the dataset and make it ready for use with yann.

Parameters

• location – provide the location where the dataset is created and stored. Refer to pre-
pare_svhn.m file to understand how to prepare a dataset.

• save_directory – which directory to save the cooked dataset onto.

• dataset_parms – default is the dictionary. Refer to setup_dataset

• preprocess_params – default is the dictionary. Refer to setup_dataset.

Notes

By default, this will create a dataset that is not mean-subtracted.

class yann.utils.dataset.setup_dataset(dataset_init_args, save_directory=’_datasets’, ver-
bose=1, **kwargs)

The setup_dataset class is used to create and assemble datasets that are friendly to the Yann toolbox.

Todo

images option for the source. skdata pascal isn’t working imagenet dataset and coco needs to be
setup.

Parameters

• dataset_init_args – is a dictonary of the form:

data_init_args = {

"source" : <where to get the dataset from>
'pkl' : A theano tutorial style 'pkl' file.
'skdata' : Download and setup from skdata
'matlab' : Data is created and is being used from

→˓Matlab
'images-only' : Data is created from a directory

→˓of images. This
will be an unsupervised dataset with no

→˓labels.
"name" : necessary only for skdata

supports

* ``'mnist'``

* ``'mnist_noise1'``

* ``'mnist_noise2'``

* ``'mnist_noise3'``

* ``'mnist_noise4'``

* ``'mnist_noise5'``

* ``'mnist_noise6'``

* ``'mnist_bg_images'``

* ``'mnist_bg_rand'``

* ``'mnist_rotated'``

* ``'mnist_rotated_bg'``.

* ``'cifar10'``

* ``'caltech101'``
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* ``'caltech256'``

Refer to original paper by Hugo Larochelle [1] for these
→˓dataset details.

"location" : necessary for 'pkl' and 'matlab'
→˓and

'images-only'
"mini_batch_size" : 500, # some batch size
"mini_batches_per_batch" : (100, 20, 20), # trianing,

→˓testing, validation
"batches2train" : 1, # number of files will be

→˓created.
"batches2test" : 1,
"batches2validate" : 1,
"height" : 28, # After pre-processing
"width" : 28,
"channels" : 1 , # color (3) or grayscale (1)

→˓...

}

• preprocess_init_args – provide preprocessing arguments. This is a dictionary:

args = {
"normalize" : <bool> True for normalize across batches
"GCN" : True for global contrast normalization
"ZCA" : True, kind of like a PCA representation (not

→˓fully tested)
"grayscale" : Convert the image to grayscale

}

• save_directory – <string> a location where the dataset is going to be saved.

Notes

Yann toolbox takes datasets in a .pkl format. The dataset requires a directory structure such as the following:

location/_dataset_XXXXX
|_ data_params.pkl
|_ train

|_ batch_0.pkl
|_ batch_1.pkl
.
.
.

|_ valid
|_ batch_0.pkl
|_ batch_1.pkl
.
.
.

|_ test
|_ batch_0.pkl
|_ batch_1.pkl
.
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.

.

The location id (XXXXX) is generated by this class file. The five digits that are produced is the unique id of the
dataset.

The file data_params.pkl contains one variable dataset_args used by datastream.

Todo

Do tutorials for the following:

• Loading pre-trained VGG-19 net

• AlexNet

• GoogleNet

• ResNet

Structure of the Yann network

The core of the yann toolbox and its operations are built around the yann.network.network class, which
is present in the file yann/network.py. The above figure shows the organization of the yann.network.
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network class. The add_xxxx() methods add either a layer or module as nomenclature states. The network
class can hold various layers and modules in various connections and architecture that are added using the add_
methods.

Verbose

Throughout the toolbox, various methods take an argument called verbose as input. verbose is by default al-
ways 2. verbose = 1 implies a silent run and therefore the code doesn’t print anything unless absolutely needed.
verbose=2 prints quite the standard amount of information and verbose==3, which is friendly when being used
for debugging prints annoyingly too much information.

Initializing a network class

A network pbject can quite simply be initialized by calling

from yann.network import network
net = network()

Each layer takes in as argument While prepping the network for learning, we can (or may) need only certain modules
and layers. The process of preparing the network by selecting and building the training, testing and validation parts of
network is called cooking.

The above figure shows a cooked network. The objects that are in gray and are shaded are uncooked parts of the
network. Once cooked, the network is ready for training and testing all by using other methods within the network.
The network class also has several properties such as layers, which is a dictionary of the layers that are added to it and
params, which is a dictionary of all the parameters. All layers and modules contain a property called id through which
they are referred.
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CHAPTER 2

Quick Start

The easiest way to get going with Yann is to follow this quick start guide. If you are not satisfied and want a more
detailed introduction to the toolbox, you may refer to the Tutorials and the Structure of the Yann network. This tutorial
was also presented in CSE591 at ASU and the video of the presentation is available. A more detailed Jupyter Notebook
version of this tutorial is available here.

To install in a quick fashion without much dependencies run the follwing command:

pip install git+git://github.com/ragavvenkatesan/yann.git

If there was an error with installing skdata, you might want to install numpy and scipy independently first and
then run the above command. Note that this installer, does not enable a lot of options of the toolbox for which you
need to go through the complete install described at the Installation Guide page.

Verify that the installation of theano is indeed version 0.9 or greater by doing the following in a python shell

import theano
theano.__version__

If the version was not 0.9, you can install 0.9 by doing the following:

pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git

The start and the end of Yann toolbox is the network module. The yann.network. network object is where all
the magic happens. Start by importing network and creating a network object in a python shell.

from yann.network import network
net = network()

Voila! We have thus created a new network. The network doesn’t have any layers or modules in it. It be seen verified
by probing into net.layers property of the net object.

net.layers

This will produce an output which is essentially an empty dictionary {}. Let’s add some layers! The toolbox comes
with a port to skdata the MNIST dataset of handwritten characters can be built using this port.
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To cook a mnist dataset for yann run the following code:

from yann.special.datasets import cook_mnist
cook_mnist()

Running this code will print a statement to the following effect >>Dataset xxxxx is created. The five digits
marked xxxxx in the statement is the codeword for the dataset. The actual dataset is located now at _datasets/
_dataset_xxxxx/ from the directory from where this code was called. Mnist dataset is created and stored at this
dataset in a format that is configured for yann to work with. Refer to the Tutorials on how to convert your own dataset
for yann.

The first layer that we need to add to our network now is an input layer. Every ‘‘input‘‘layer requries a dataset to be
associated with it. Let us create this layer.

dataset_params = { "dataset": "_datasets/_dataset_xxxxx", "n_classes" : 10 }
net.add_layer(type = "input", dataset_init_args = dataset_params)

This piece of code creates and adds a new datastream module to the net and wires up the newly added input
layer with this datastream. Confirm this by checking net.datastream. Let us now build a classifier
layer. The default classifier that yann is setup with is the logistic regression classifier. Refer to Toolbox Documentation
or Tutorials for other types of layers. Let us create a this classifier layer for now.

net.add_layer(type = "classifier" , num_classes = 10)
net.add_layer(type = "objective")

The layer objective creates the loss function from the classifier that can be used as a learning metric. It also
provides a scope for other modules such as the optimizer module. Refer Structure of the Yann network and Toolbox
Documentation for more details on modules. Now that our network is created and constructed we can see that the net
objects have layers populated.

net.layers
>>{'1': <yann.network.layers.classifier_layer object at 0x7eff9a7d0050>, '0':

<yann.network.layers.input_layer object at 0x7effa410d6d0>, '2':
<yann.network.layers.objective_layer object at 0x7eff9a71b210>}

The keys of the dictionary such as '1', '0' and '2' are the id of the layer. We could have created a layer with a
custom id by supplying an id argument to the add_layer method. To get a better idea of how the network looks
like, you can use the pretty_print mehtod in yann.

net.pretty_print()

Now our network is finally ready to be trained. Before training, we need to build an optimizer and other tools, but
for now let us use the default ones. Once all of this is done, yann requires that the network be ‘cooked’. For more
details on cooking refer Structure of the Yann network. For now let us imagine that cooking a network will finalize the
wiring, architecture, cache and prepare the first batch of data, prepare the modules and in general prepare the network
for training using back propagation.

net.cook()

Cooking would take a few seconds and might print what it is doing along the way. Once cooked, we may notice for
instance that the network has a optimizer module.

net.optimizer
>>{'main': <yann.network.modules.optimizer object at 0x7eff9a7c1b10>}

To train the model that we have just cooked, we can use the train function that becomes available to us once the
network is cooked.
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net.train()

This will print a progress for each epoch and will show validation accuracy after each epoch on a validation set that is
independent from the training set. By default the training might run for 40 epochs: 20 on a higher learning rate and 20
more on a fine tuning learning rate.

Every layer also has an layer.output object. The output can be probed by using the layer_activity
method as long as it is directly or in-directly associated with a datastream module through an input layer and the
network was cooked. Let us observe the activity of the input layer for trial. Once trained we can observe this output.
The layer activity will just be a numpy array of numbers, so let us print its shape instead.

net.layer_activity(id = '0').shape
net.layers['0'].output_shape

The second line of code will verify the output we produced in the first line. An interesting layer output is the output
of the objective layer, which will give us the current negative log likelihood of the network, the one that we are
trying to minimize.

net.layer_activity(id = '2')
>>array(0.3926551938056946, dtype=float32)

Once we are done training, we can run the network feedforward on the testing set to produce a generalization perfor-
mance result.

net.test()

Congratualations, you now know how to use the yann toolbox successfully. A full-fledge code of the logistic regression
that we implemented here can be found here . That piece of code also has in-commentary that discusses briefly other
options that could be supplied to some of the function calls we made here that explain the processes better.

Hope you liked this quick start guide to the Yann toolbox and have fun!

Toolbox Documentation

Yann toolbox is divided into different parts and written in many files. Below is an index of all files and the API
documentations.

network - The network module

yann.network.py contains the definition for the base network class. It is pretty much the most accessible part
of this toolbox and forms the structure of the toolbox itself. Any experiment using this toolbox will have to begin and
end with using the network class:

class yann.network.network(verbose=2, **kwargs)
Todo:

Class definition for the class network:

All network properties, network variables and functionalities are initialized using this class and are contained
by the network object. The network.__init__ method initializes the network class. The network.
__init___ function has many purposes depending on the arguments supplied.

Provide any or all of the following arguments. Appropriate errors will be thrown if the parameters are not
supplied correctly.
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Todo

•posteriors in a classifier layers is not really a probability. Need to fix this.

Parameters

• verbose – Similar to any 3-level verbose in the toolbox.

• type – option takes only ‘classifier’ for now. Will add ‘encoders’ and others later

• borrow – Check theano's borrow. Default is True.

Returns network object with parameters setup.

Return type yann.network.network

add_layer(type, verbose=2, **kwargs)

Todo

Need to add the following: * Inception Layer. * LSTM layer. * ...

Parameters

• type – <string> options include ‘input’ or ‘data’ - which indicates an input layer.
‘conv_pool’ or ‘convolution’ - indicates a convolutional - pooling layer ‘deconv’ or ‘de-
convolution’ - indicates a fractional stride convoltuion layer ‘dot_product’ or ‘hidden’ or
‘mlp’ or ‘fully_connected’ - indicates a hidden fully connected layer ‘classifier’ or ‘soft-
max’ or ‘output’ or ‘label’ - indicates a classifier layer ‘objective’ or ‘loss’ or ‘energy’ - a
layer that creates a loss function ‘merge’ or ‘join’ - a layer that merges two layers. ‘flatten’
- a layer that produces a flattened output of a block data. ‘random’ - a layer that produces
random numbers. ‘rotate’ - a layer that rotate the input images. ‘tensor’ - a layer that
converts the input tensor as an input layer. From now on everything is optional args..

• id – <string> how to identify the layer by. Default is just layer number that starts with 0.

• origin – id will use the output of that layer as input to the new layer. Default is the last
layer created. This variable for input type of layers is not a layer, but a datastream id.
For merge layer, this is a tuple of two layer ids.

• verbose – similar to the rest of the toolbox.

• mean_subtract – if True we will subtract the mean from each image, else not.

• num_neurons – number of neurons in the layer

• dataset – <string> Location to the dataset. used when layer type is input.

• activation – String, takes options that are listed in activations Needed for layers
that use activations. Some activations also take support parameters, for instance maxout
takes maxout type and size, softmax takes an option temperature. Refer to the module
activations to know more.

• stride – tuple (int , int). Used as convolution stride. Default (1,1)

• batch_norm – If provided will be used, default is False.
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• border_mode – Refer to border_mode variable in yann.core.conv, module
conv

• pool_size – Subsample size, default is (1,1).

• pool_type – Refer to pool for details. {‘max’, ‘sum’, ‘mean’, ‘max_same_size’}

• learnable – Default is True, if True we backprop on that layer. If False Layer is
obstinate.

• shape – tuple of shape to unflatten to ( height, width, channels ) in case layer was an
unflatten layer

• input_params – Supply params or initializations from a pre-trained system.

• dropout_rate – If you want to dropout this layer’s output provide the output.

• regularize – True is you want to apply regularization, False if not.

• num_classes – int number of classes to classify.

• objective – objective provided by classifier nll-negative log likelihood, cce-
categorical cross entropy, bce-binary cross entropy, hinge-hinge loss . For classifier
layer.

• dataset_init_args – same as for the dataset module. In fact this argument is needed
only when dataset module is not setup.

• datastream_id – When using input layer or during objective layer, use this to identify
which datastream to take data from.

• regularizer – Default is (0.001, 0.001) coeffients for L1, L2 regulaizer coeffi-
cients.

• error – merge layers take an option called 'error' which can be None or others
which are methods in yann.core.errors.

• angle – Takes value between [0,1] to capture the angle between [0,180] degrees Default
is None. If None is specified, random number is generated from a uniform distriibution
between 0 and 1.

• layer_type – If value supply, else it is default 'discriminator'. For other
layers, if the layer class takes an argument type, supply that argument here as
layer_type. merge layer for instance will use this arugment as its type argument.

add_module(type, params=None, verbose=2)
Use this function to add a module to the net.

Parameters

• type – which module to add. Options are 'resultor', 'visualizer',
'optimizer' 'datastream'

• params – If the type was 'resultor' params is a dictionary of the form:

params = {
"root" : "<root directory to save stuff inside>"
"results" : "<results_file_name>.txt",
"errors" : "<error_file_name>.txt",
"costs" : "<cost_file_name>.txt",
"confusion": "<confusion_file_name>.txt",
"network" : "<network_save_file_name>.pkl"
"id" : id of the resultor

}
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While the filenames are optional, root must be provided. If a particular file is not pro-
vided, that value will not be saved. This value is supplied to setup the resultor module of
:mod: network.

If the type was 'visualizer' params is a dictionary of the form:

parmas = {
"root" : location to save the visualizations
"frequency" : <integer>, after how many epochs do you

→˓need to
visualize. Default value is 1import os

"sample_size" : <integer, prefer squares>, simply save
→˓down random

images from the datasets also saves down
→˓activations

for the same images also. Default value
→˓is 16

"rgb_filters" : <bool> flag. if True 3D-RGB CNN filters
→˓are rendered.

Default value is False
"id" : id of the visualizer

}

If the type was 'optimizer' params is a dictionary of the form:

params = {
"momentum_type" : <option> takes 'false' <no

→˓momentum>, 'polyak'
and 'nesterov'. Default value is

→˓'polyak'
"momentum_params" : (<value in [0,1]>, <value in [0,1]>,

→˓ <int>),
(momentum coeffient at start, at

→˓end, at what
epoch to end momentum increase).

→˓Default is
the tuple (0.5, 0.95,50)

"learning_rate" : (initial_learning_rate, fine_tuning_
→˓learning_rate,

annealing_decay_rate). Default is
→˓the tuple

(0.1,0.001,0.005)
"regularization" : (l1_coeff, l2_coeff). Default is (0.

→˓001, 0.001)
"optimizer_type": <option>, takes 'sgd', 'adagrad',

→˓'rmsprop', 'adam'.
Default is 'rmsprop'

"objective_function": <option>, takes
'nll'-negative log likelihood,
'cce'-categorical cross entropy,
'bce'-binary cross entropy.
Default is 'nll'

"id" : id of the optimizer
}

If the type was ``'datastream' params is a dictionary of the form:
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params = {
"dataset": <location>
"svm" : False or True

``svm`` if ``True``, a one-hot label set will
→˓also be setup.

"n_classes": <int>
``n_classes`` if ``svm`` is ``True``, we need to

→˓know how
many ``n_classes`` are present.

"id": id of the datastream
}

• verbose – Similar to rest of the toolbox.

cook(verbose=2, **kwargs)
This function builds the backprop network, and makes the trainer, tester and validator theano functions.
The trainer builds the trainers for a particular objective layer and optimizer.

Parameters

• optimizer – Supply which optimizer to use. Default is last optimizer created.

• datastream – Supply which datastream to use. Default is the last datastream created.

• visualizer – Supply a visualizer to cook with. Default is the last visualizer created.

• classifier_layer – supply the layer of classifier. Default is the last classifier layer
created.

• objective_layers – Supply a list of layer ids of layers that has the objective function.
Default is last objective layer created if no classifier is provided.

• objective_weights – Supply a list of weights to be multiplied by each value of the
objective layers. Default is 1.

• active_layers – Supply a list of active layers. If this parameter is supplied all
'learnabile' of all layers will be ignored and only these layers will be trained. By
default, all the learnable layers are used.

• verbose – Similar to the rest of the toolbox.

deactivate_layer(id, verbose=2)
This method will remove a layer’s parameters from the active_layer dictionary.

Parameters

• id – Layer which you want to de activate.

• verbose – as usual.

Notes

If the network was cooked, it would have to be re-cooked after deactivation.

get_params(verbose=2)
This method returns a dictionary of layer weights and bias in numpy format.

Parameters verbose – Blah..

Returns A dictionary of parameters.

Return type OrderedDict
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layer_activity(id, index=0, verbose=2)
Use this function to visualize or print out the outputs of each layer. I don’t know why this might be useful,
but its fun to check this out I guess. This will only work after the dataset is initialized.

Parameters

• id – id of the layer that you want to visualize the output for.

• index – Which batch of data should I use for producing the outputs. Default is 0

pretty_print(verbose=2)
This method is used to pretty print the network’s connections This is going to be deprecated with the use
of visualizer module.

print_status(epoch, print_lr=False, verbose=2)
This function prints the cost of the current epoch, learning rate and momentum of the network at the
moment. This also calls the resultor to process results.

Todo

This needs to to go to visualizer.

Parameters

• verbose – Just as always.

• epoch – Which epoch are we at ?

save_params(epoch=0, verbose=2)
This method will save down a list of network parameters

Parameters

• verbose – As usual

• epoch – epoch.

test(show_progress=True, verbose=2)
This function is used for producing the testing accuracy.

Parameters verbose – As usual

train(verbose=2, **kwargs)
Training function of the network. Calling this will begin training.

Parameters

• epochs – (num_epochs for each learning rate... ) to train Default is
(20, 20)

• validate_after_epochs – 1, after how many epochs do you want to validate ?

• save_after_epochs – 1, Save network after that many epochs of training.

• show_progress – default is True, will display a clean progressbar. If verbose is 3
or more - False

• early_terminate – True will allow early termination.

• learning_rates – (annealing_rate, learning_rates ... ) length must be one more than
epochs Default is (0.05, 0.01, 0.001)

30 Chapter 2. Quick Start



yann Documentation, Release 1.0rc1

validate(epoch=0, training_accuracy=False, show_progress=False, verbose=2)
Method is use to run validation. It will also load the validation dataset.

Parameters

• verbose – Just as always

• show_progress – Display progressbar ?

• training_accuracy – Do you want to print accuracy on the training set as well ?

visualize(epoch=0, verbose=2)
This method will use the cooked visualizer to save down the visualizations

Parameters epoch – supply the epoch number ( used to create directories to save

visualize_activities(epoch=0, verbose=2)
This method will save down all layer activities for the correct epoch.

Parameters

• epoch – What epoch is being running now.

• verbose – As always.

visualize_filters(epoch=0, verbose=2)
This method will save down all layer filters for the correct epoch.

Parameters

• epoch – What epoch is being running now.

• verbose – As always.

layers - Contains the definitions of all the types of layers.

The module yann.layers contains the definition for the different types of layers that are accessible in yann. It
contains various layers including:

• abstract.layer

• input.input_layer

• fully_connected.dropout_dot_product_layer and fully_connected.
dot_product_layer

• conv_pool.dropout_conv_pool_layer_2d and conv_pool.conv_pool_layer_2d

• ouput.classifier_layer

• output.objective_layer

• merge.merge_layer

• flatten.flatten_layer

• flatten.unflatten_layer

• random.random_layer

• batch_norm.batch_norm_layer_2d and batch_norm.dropout_batch_norm_layer_2d

• batch_norm.batch_norm_layer_1d and batch_norm.dropout_batch_norm_layer_1d

All these are inherited classes from layer class, which is abstract.

Specific layers that can be used are
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abstract - abstraction class

The file yann.layers.abstract.py contains the definition for the abstract layer:

Todo

• LSTM / GRN layers

• An Embed layer that is going to create a new embedding space for two layer’s activations to project on to the
same space and minimize its distances.

class yann.layers.abstract.layer(id, type, verbose=2)
Prototype for what a layer should look like. Every layer should inherit from this. This is a template class do
not use this directly, you need to use a specific type of layer which again will be called by yann.network.
network.add_layer

Parameters

• id – String

• origin – String id

• type – string- 'classifier', 'dot-product', 'objective', 'conv_pool',
'input' .. .

Notes

Use self.type, self.origin, self.destination‘‘, self.output, self.inference self.
output_shape for outside calls and purposes.

get_params(borrow=True, verbose=2)
This method returns the parameters of the layer in a numpy ndarray format.

Parameters

• borrow – Theano borrow, default is True.

• verbose – As always

Notes

This is a slow method, because we are taking the values out of GPU. Ordinarily, I should
have used get_value( borrow = True ), but I can’t do this because some parameters are
theano.tensor.var.TensorVariable which needs to be run through eval.

print_layer(prefix=’ ‘, nest=True, last=True, verbose=2)
Print information about the layer

Parameters

• nest – If True will print the tree from here on. If False it will print only this layer.

• prefix – Is what prefix you want to add to the network print command.
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input - input layer classes

The file yann.layers.input.py contains the definition for the input lyer modules.

class yann.layers.input.dropout_input_layer(mini_batch_size, id, x, dropout_rate=0.5,
height=28, width=28, channels=1,
mean_subtract=False, rng=None, verbose=2)

Creates a new input_layer. The layer doesn’t do much except to take the networks’ x and reshapes it into images.
This is needed because yann dataset module assumes data in vectorized image formats as used in mnist - theano
tutorials.

This class also creates a branch between a mean subtracted and non-mean subtracted input. It always assumes
as default to use the non-mean subtracted input but if mean_subtract flag is provided, it will use the other
option.

Parameters

• x – theano.tensor variable with rows are vectorized images. if None, will create a new
one.

• mini_batch_size – Number of images in the data variable.

• height – Height of each image.

• width – Width of each image.

• channels – Number of channels in each image.

• mean_subtract – Defauly is False.

• verbose – Similar to all of the toolbox.

Notes

Use input_layer.output to continue onwards with the network input_layer.output_shape will
tell you the output size.

class yann.layers.input.dropout_tensor_layer(id, input, input_shape, rng=None,
dropout_rate=0.5, verbose=2)

This converts a theano tensor or a shared value into a layer. Simply the value becomes the layer’s outptus.

Parameters

• input – some tensor

• input_shape – shape of the tensor

• dropout_rate – default is 0.5, typically.

• rng – Random number generator

• verbose – Similar to all of the toolbox.

Notes

Use input_layer.output to continue onwards with the network input_layer.output_shape will
tell you the output size.

class yann.layers.input.input_layer(mini_batch_size, x, id=-1, height=28, width=28, chan-
nels=1, mean_subtract=False, verbose=2)

reshapes it into images. This is needed because yann dataset module assumes data in vectorized image formats
as used in mnist - theano tutorials.
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This class also creates a branch between a mean subtracted and non-mean subtracted input. It always assumes
as default to use the non-mean subtracted input but if mean_subtract flag is provided, it will use the other
option.

Parameters

• x – theano.tensor variable with rows are vectorized images.

• y – theano.tensor variable

• one_hot_y – theano.tensor variable

• mini_batch_size – Number of images in the data variable.

• height – Height of each image.

• width – Width of each image.

• id – Supply a layer id

• channels – Number of channels in each image.

• mean_subtract – Defauly is False.

• verbose – Similar to all of the toolbox.

Notes

Use input_layer.output to continue onwards with the network input_layer.output_shape will
tell you the output size. Use input_layer.x, input_layer.y and input_layer_one_hot_y ten-
sors for connections.

class yann.layers.input.tensor_layer(id, input, input_shape, verbose=2)
This converts a theano tensor or a shared value into a layer. Simply the value becomes the layer’s outptus.

Parameters

• input – some tensor

• input_shape – shape of the tensor

• verbose – Similar to all of the toolbox.

Notes

Use input_layer.output to continue onwards with the network input_layer.output_shape will
tell you the output size.

fully_connected - fully connected layer classes

The file yann.layers.fully_connected.py contains the definition for the fc layers.

class yann.layers.fully_connected.dot_product_layer(input, num_neurons, input_shape,
id, rng=None, input_params=None,
borrow=True, activation=’relu’,
batch_norm=True, verbose=2)

This class is the typical neural hidden layer and batch normalization layer. It is called by the add_layer
method in network class.

Parameters
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• input – An input theano.tensor variable. Even theano.shared will work
as long as they are in the following shape mini_batch_size, height, width,
channels

• verbose – similar to the rest of the toolbox.

• num_neurons – number of neurons in the layer

• input_shape – (mini_batch_size, input_size) theano shared

• batch_norm – If provided will be used, default is False.

• rng – typically numpy.random.

• borrow – theano borrow, typicall True.

• activation – String, takes options that are listed in activations Needed for layers
that use activations. Some activations also take support parameters, for instance maxout
takes maxout type and size, softmax takes an option temperature. Refer to the module
activations to know more.

• input_params – Supply params or initializations from a pre-trained system.

Notes

Use dot_product_layer.output and dot_product_layer.output_shape from this class. L1
and L2 are also public and can also can be used for regularization. The class also has in public w, b and alpha
which are also a list in params, another property of this class.

L2 = None
Ioffe, Sergey, and Christian Szegedy. “Batch normalization – Accelerating deep network training by re-
ducing internal covariate shift.” arXiv preprint arXiv:1502.03167 (2015).

class yann.layers.fully_connected.dropout_dot_product_layer(input, num_neurons,
input_shape, id,
dropout_rate=0.5,
rng=None, in-
put_params=None,
borrow=True, ac-
tivation=’relu’,
batch_norm=True,
verbose=2)

This class is the typical dropout neural hidden layer and batch normalization layer. Called by the add_layer
method in network class.

Parameters

• input – An input theano.tensor variable. Even theano.shared will work
as long as they are in the following shape mini_batch_size, height, width,
channels

• verbose – similar to the rest of the toolbox.

• num_neurons – number of neurons in the layer

• input_shape – (mini_batch_size, input_size)

• batch_norm – If provided will be used, default is False.

• rng – typically numpy.random.

• borrow – theano borrow, typicall True.
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• activation – String, takes options that are listed in activations Needed for layers
that use activations. Some activations also take support parameters, for instance maxout
takes maxout type and size, softmax takes an option temperature. Refer to the module
activations to know more.

• input_params – Supply params or initializations from a pre-trained system.

• dropout_rate – 0.5 is the default.

Notes

Use dropout_dot_product_layer.output and dropout_dot_product_layer.
output_shape from this class. L1 and L2 are also public and can also can be used for regularization. The
class also has in public w, b and alpha which are also a list in params, another property of this class.

conv_pool - conv pool layer classes

The file yann.layers.conv_pool.py contains the definition for the conv pool layers.

Todo

• Need to the deconvolutional-unpooling layer.

• Something is still not good about the convolutional batch norm layer.

class yann.layers.conv_pool.conv_pool_layer_2d(input, nkerns, input_shape, id, fil-
ter_shape=(3, 3), poolsize=(2, 2),
pooltype=’max’, batch_norm=False,
border_mode=’valid’, stride=(1, 1),
rng=None, borrow=True, activa-
tion=’relu’, input_params=None, ver-
bose=2)

This class is the typical 2D convolutional pooling and batch normalizationlayer. It is called by the add_layer
method in network class.

Parameters

• input – An input theano.tensor variable. Even theano.shared will work
as long as they are in the following shape mini_batch_size, height, width,
channels

• verbose – similar to the rest of the toolbox.

• nkerns – number of neurons in the layer

• input_shape – (mini_batch_size, channels, height, width)

• filter_shape – (<int>,<int>)

• pool_size – Subsample size, default is (1,1).

• pool_type – Refer to pool for details. {‘max’, ‘sum’, ‘mean’, ‘max_same_size’}

• batch_norm – If provided will be used, default is False.

• border_mode – Refer to border_mode variable in yann.core.conv, module conv

• stride – tuple (int , int). Used as convolution stride. Default (1,1)
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• rng – typically numpy.random.

• borrow – theano borrow, typicall True.

• activation – String, takes options that are listed in activations Needed for layers
that use activations. Some activations also take support parameters, for instance maxout
takes maxout type and size, softmax takes an option temperature. Refer to the module
activations to know more.

• input_params – Supply params or initializations from a pre-trained system.

Notes

Use conv_pool_layer_2d.output and conv_pool_layer_2d.output_shape from this class.
L1 and L2 are also public and can also can be used for regularization. The class also has in public w, b, gamam,
beta,‘‘running_mean‘‘ and running_var which are also a list in params, another property of this class.

print_layer(prefix=’ ‘, nest=False, last=True)
Print information about the layer

class yann.layers.conv_pool.deconv_layer_2d(input, nkerns, input_shape, id, out-
put_shape, filter_shape=(3, 3), poolsize=(1,
1), pooltype=’max’, batch_norm=False,
border_mode=’valid’, stride=(1, 1),
rng=None, borrow=True, activation=’relu’,
input_params=None, verbose=2)

This class is the typical 2D convolutional pooling and batch normalizationlayer. It is called by the add_layer
method in network class.

Parameters

• input – An input theano.tensor variable. Even theano.shared will work
as long as they are in the following shape mini_batch_size, height, width,
channels

• verbose – similar to the rest of the toolbox.

• nkerns – number of neurons in the layer

• input_shape – (mini_batch_size, channels, height, width)

• filter_shape – (<int>,<int>)

• pool_size – Subsample size, default is (1,1). Right now does not take a pooling.

• pool_type – Refer to pool for details. {‘max’, ‘sum’, ‘mean’, ‘max_same_size’}

• batch_norm – If provided will be used, default is False.

• border_mode – Refer to border_mode variable in yann.core.conv, module conv

• stride – tuple (int , int). Used as convolution stride. Default (1,1)

• rng – typically numpy.random.

• borrow – theano borrow, typicall True.

• activation – String, takes options that are listed in activations Needed for layers
that use activations. Some activations also take support parameters, for instance maxout
takes maxout type and size, softmax takes an option temperature. Refer to the module
activations to know more.

• input_params – Supply params or initializations from a pre-trained system.
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Notes

Use conv_pool_layer_2d.output and conv_pool_layer_2d.output_shape from this class.
L1 and L2 are also public and can also can be used for regularization. The class also has in public w, b, gamam,
beta,‘‘running_mean‘‘ and running_var which are also a list in params, another property of this class.

print_layer(prefix=’ ‘, nest=False, last=True)
Print information about the layer

class yann.layers.conv_pool.dropout_conv_pool_layer_2d(input, nkerns, input_shape,
id, dropout_rate=0.5, fil-
ter_shape=(3, 3), pool-
size=(2, 2), pooltype=’max’,
batch_norm=True, bor-
der_mode=’valid’, stride=(1,
1), rng=None, borrow=True,
activation=’relu’, in-
put_params=None, ver-
bose=2)

This class is the typical 2D convolutional pooling and batch normalizationlayer. It is called by the add_layer
method in network class.

Parameters

• input – An input theano.tensor variable. Even theano.shared will work
as long as they are in the following shape mini_batch_size, height, width,
channels

• verbose – similar to the rest of the toolbox.

• nkerns – number of neurons in the layer

• input_shape – (mini_batch_size, channels, height, width)

• filter_shape – (<int>,<int>)

• pool_size – Subsample size, default is (1,1).

• pool_type – Refer to pool for details. {‘max’, ‘sum’, ‘mean’, ‘max_same_size’}

• batch_norm – If provided will be used, default is False.

• border_mode – Refer to border_mode variable in yann.core.conv, module conv

• stride – tuple (int , int). Used as convolution stride. Default (1,1)

• rng – typically numpy.random.

• borrow – theano borrow, typicall True.

• activation – String, takes options that are listed in activations Needed for layers
that use activations. Some activations also take support parameters, for instance maxout
takes maxout type and size, softmax takes an option temperature. Refer to the module
activations to know more.

• input_params – Supply params or initializations from a pre-trained system.

Notes

Use conv_pool_layer_2d.output and conv_pool_layer_2d.output_shape from this class.
L1 and L2 are also public and can also can be used for regularization. The class also has in public w, b and
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alpha which are also a list in params, another property of this class.

class yann.layers.conv_pool.dropout_deconv_layer_2d(input, nkerns, input_shape, id,
output_shape, dropout_rate=0.5,
filter_shape=(3, 3), poolsize=(1, 1),
pooltype=’max’, batch_norm=True,
border_mode=’valid’, stride=(1, 1),
rng=None, borrow=True, activa-
tion=’relu’, input_params=None,
verbose=2)

This class is the typical 2D deconvolutional and batch normalization layer. It is called by the add_layer
method in network class.

Parameters

• input – An input theano.tensor variable. Even theano.shared will work
as long as they are in the following shape mini_batch_size, height, width,
channels

• verbose – similar to the rest of the toolbox.

• nkerns – number of neurons in the layer

• input_shape – (mini_batch_size, channels, height, width)

• filter_shape – (<int>,<int>)

• pool_size – Subsample size, default is (1,1).

• pool_type – Refer to pool for details. {‘max’, ‘sum’, ‘mean’, ‘max_same_size’}

• batch_norm – If provided will be used, default is False.

• border_mode – Refer to border_mode variable in yann.core.conv, module conv

• stride – tuple (int , int). Used as convolution stride. Default (1,1)

• rng – typically numpy.random.

• borrow – theano borrow, typicall True.

• activation – String, takes options that are listed in activations Needed for layers
that use activations. Some activations also take support parameters, for instance maxout
takes maxout type and size, softmax takes an option temperature. Refer to the module
activations to know more.

• input_params – Supply params or initializations from a pre-trained system.

Notes

Use conv_pool_layer_2d.output and conv_pool_layer_2d.output_shape from this class.
L1 and L2 are also public and can also can be used for regularization. The class also has in public w, b and
alpha which are also a list in params, another property of this class.

merge - merge layer classes

The file yann.layers.merge.py contains the definition for the merge layers.
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class yann.layers.merge.dropout_merge_layer(x, input_shape, id=-1, error=’rmse’, rng=None,
dropout_rate=0.5, verbose=2)

This is a dropotu merge layer. This takes two layer inputs and produces an error between them if the type
argument supplied was 'error'. It does other things too accordingly.

Parameters

• x – a list of inputs (lenght must be two basically)

• input_shape – List of the shapes of all inputs.

• type – 'error' creates an error layer. other options are 'sum' and 'concatenate'

• error – If the type was 'error', then this variable is used. options include, 'rmse',
'l2', 'l1',‘‘’cross_entropy’‘‘.

class yann.layers.merge.merge_layer(x, input_shape, id=-1, type=’error’, error=’rmse’, in-
put_type=’layer’, verbose=2)

This is a merge layer. This takes two layer inputs and produces an error between them if the type argument
supplied was 'error'. It does other things too accordingly.

Parameters

• x – a list of inputs (lenght must be two basically)

• input_shape – List of the shapes of all inputs.

• type – 'error' creates an error layer. other options are 'sum', 'batch' and
'concatenate'

• error – If the type was 'error', then this variable is used. options include, 'rmse',
'l2', 'l1',‘‘’cross_entropy’‘‘.

• input_type – If this argument was 'tensor', we simply merge the ouptus, if this was
not provided or was 'layer', this merges the outputs of the two layers.

Notes

'concatenate' concatenates the outputs on the channels where as 'batch' concatenates across the
batches. It will increase the batchsize.

loss(type=None)
This method will return the cost function of the merge layer. This can be used by the optimizer module for
instance to acquire a symbolic loss function that tries to minimize the distance between the two layers.

Parameters

• y – symbolic theano.ivector variable of labels to calculate loss from.

• type – options None - Simple error ‘log’ - log loss

Returns loss value.

Return type theano symbolic variable

output_shape = None
if len(input_shape) == 2 – self.num_neurons = self.output_shape[-1] elif len(input_shape) == 4:

self.num_neurons = self.output_shape[1]
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flatten - flatten layer classes

The file yann.layers.flatten.py contains the definition for the flatten layers.

class yann.layers.flatten.flatten_layer(input, input_shape, id=-1, verbose=2)
This is a flatten layer. This takes a square layer and flatten it.

Parameters

• input – output of some layer.

• id – id of the layer

• verbose – as usual

class yann.layers.flatten.unflatten_layer(input, shape, input_shape, id=-1, verbose=2)
This is an unflatten layer. This takes a flattened input and unflattens it.

Parameters

• input – output of some layer.

• shape – shape to unflatten.

• id – id of the layer

• verbose – as usual.

output - output layer classes

The file yann.layers.output.py contains the definition for the conv pool layers.

class yann.layers.output.classifier_layer(input, input_shape, id, num_classes=10,
rng=None, input_params=None, borrow=True,
activation=’softmax’, verbose=2)

This class is the typical classifier layer. It should be called by the add_layer method in network class.

Parameters

• input – An input theano.tensor variable. Even theano.shared will work
as long as they are in the following shape mini_batch_size, height, width,
channels

• verbose – similar to the rest of the toolbox.

• input_shape – (mini_batch_size, features)

• num_classes – number of classes to classify into

• filter_shape – (<int>,<int>)

• batch_norm – <bool> (Not active yet. Will be implemented in near future.)

• rng – typically numpy.random.

• borrow – theano borrow, typicall True.

• rng – typically numpy.random.

• activation – String, takes options that are listed in activations Needed for layers
that use activations. Some activations also take support parameters, for instance maxout
takes maxout type and size, softmax takes an option temperature. Refer to the module
activations to know more. Default is ‘softmax’

• input_params – Supply params or initializations from a pre-trained system.
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Notes

Use classifier_layer.output and classifier_layer.output_shape from this class. L1 and
L2 are also public and can also can be used for regularization. The class also has in public w, b and alpha
which are also a list in params, another property of this class.

errors(y)
This function returns a count of wrong predictions.

Parameters y – datastreamer’s y variable, that has the lables.

Returns number of wrong predictions.

Return type theano variable

get_params(borrow=True, verbose=2)
This method returns the parameters of the layer in a numpy ndarray format.

Parameters

• borrow – Theano borrow, default is True.

• verbose – As always

Notes

This is a slow method, because we are taking the values out of GPU. Ordinarily, I should
have used get_value( borrow = True ), but I can’t do this because some parameters are
theano.tensor.var.TensorVariable which needs to be run through eval.

loss(y, type)
This method will return the cost function of the classifier layer. This can be used by the optimizer module
for instance to acquire a symbolic loss function.

Parameters

• y – symbolic theano.ivector variable of labels to calculate loss from.

• type – options ‘nll’ - negative log likelihood, ‘cce’ - categorical cross entropy, ‘bce’ -
binary cross entropy, ‘hinge’ - max-margin hinge loss.

Returns loss value.

Return type theano symbolic variable

class yann.layers.output.objective_layer(id, loss, labels=None, objective=’nll’, L1=None,
L2=None, l1_coeff=0.001, l2_coeff=0.001, ver-
bose=2)

This class is an objective layer. It just has a wrapper for loss function. I need this because I am making objective
as a loss layer.

Parameters

• loss – yann.network.layers.classifier_layer.loss() method, or some
thenao variable if other types of objective layers.

• labels – theano.shared variable of labels.

• objective – 'nll', 'cce', 'nll' or ''bce'' or 'hinge' for classifier kayers.
'value'. Value will just use the value as an objective and minimizes that. depends on
what is the classifier layer being used.

Each have their own options. This is usually a string.
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• L1 – Symbolic weight of the L1 added together

• L2 – Sumbolic L2 of the weights added together

• l1_coeff – Coefficient to weight L1 by.

• l2_coeff – Coefficient to weight L2 by.

• verbose – Similar to the rest of the toolbox.

Todo

The loss method needs to change in input.

Notes

Use objective_layer.output and from this class.

random - random layer classes

The file yann.layers.random.py contains the definition for the merge layers.

class yann.layers.random.random_layer(num_neurons, id=-1, distribution=’binomial’, ver-
bose=2, options=None)

This is a random generation layer.

Parameters

• num_neurons – List of the shapes of all inputs.

• distribution – 'binomial', 'uniform', 'normal' 'gaussian'

• limits – tuple for uniform

• mu – mean for gaussian

• sigma – variance for gaussian

• p – if type is 'binomial' supply a p variable. Default is 0.5

• id – Supply a layer id

• num_neurons – Supply the output shape of the layer desired.

• verbose – As always

transform - transform layers

The file yann.layers.transform.py contains the definition for the transformation layers. This code is used
to rotate the images given some angles between [0,1].

Obliging License, credit and conditions for Lasagne: Some part of the file was directly reproduced from the Lasagne
code base.

Author: Anchit Agarwal
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LICENSE

Copyright (c) 2014-2015 Lasagne contributors

Lasagne uses a shared copyright model: each contributor holds copyright over their contributions to Lasagne. The
project versioning records all such contribution and copyright details. By contributing to the Lasagne repository
through pull-request, comment, or otherwise, the contributor releases their content to the license and copyright terms
herein.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

class yann.layers.transform.dropout_rotate_layer(input, input_shape, id, rng=None,
dropout_rate=0.5, angle=None, bor-
row=True, verbose=2)

This class is the typical dropout neural hidden layer and batch normalization layer. Called by the add_layer
method in network class.

Parameters

• input – An input theano.tensor variable. Even theano.shared will work as
long as they are in the following shape mini_batch_size, channels, height,
width

• verbose – similar to the rest of the toolbox.

• input_shape – (mini_batch_size, input_size)

• angle – value from [0,1]

• borrow – theano borrow, typically True.

• rng – typically numpy.random.

• dropout_rate – 0.5 is the default.

Notes

Use dropout_rotate_layer.output and dropout_rotate_layer.output_shape from this
class.

class yann.layers.transform.rotate_layer(input, input_shape, id, angle=None, borrow=True,
verbose=2)

This is a rotate layer. This takes a layer and an angle (rotation normalized in [0,1]) as input and rotates the batch
of images by the specified rotation parameter.

Parameters
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• input – An input theano.tensor variable. Even theano.shared will work as
long as they are in the following shape mini_batch_size, channels, height,
width

• verbose – similar to the rest of the toolbox.

• input_shape – (mini_batch_size, input_size)

• angle – value from [0,1]

• borrow – theano borrow, typically True.

• input_params – Supply params or initializations from a pre-trained system.

batch_norm - Batch normalization layer classes

The file yann.layers.batch_norm.py contains the definition for the batch norm layers. Batch norm can by
default be applied to convolution and fully connected layers by sullying an argument batch_norm = True, in the
layer arguments. But this in-built method applies batch norm prior to layer activation. Some architectures including
ResNet involves batch norms after the activations of the layer. Therefore there is a need for an independent batch norm
layer that simply applies batch norm for some outputs. The layers in this module can do that.

There are four classes in this file. Two for one-dimensions and two for two-dimnensions.

Todo

• Need to the deconvolutional-unpooling layer.

• Something is still not good about the convolutional batch norm layer.

class yann.layers.batch_norm.batch_norm_layer_1d(input, input_shape, id, rng=None, bor-
row=True, input_params=None, ver-
bose=2)

This class is the typical 1D batchnorm layer. It is called by the add_layer method in network class.

Parameters

• input – An input theano.tensor variable. Even theano.shared will work
as long as they are in the following shape mini_batch_size, height, width,
channels

• verbose – similar to the rest of the toolbox.

• input_shape – (mini_batch_size, channels, height, width)

• rng – typically numpy.random.

• borrow – theano borrow, typicall True.

• input_params – Supply params or initializations from a pre-trained system.

class yann.layers.batch_norm.batch_norm_layer_2d(input, input_shape, id, rng=None, bor-
row=True, input_params=None, ver-
bose=2)

This class is the typical 2D batchnorm layer. It is called by the add_layer method in network class.

Parameters

• input – An input theano.tensor variable. Even theano.shared will work
as long as they are in the following shape mini_batch_size, height, width,
channels

2.1. Toolbox Documentation 45



yann Documentation, Release 1.0rc1

• verbose – similar to the rest of the toolbox.

• input_shape – (mini_batch_size, channels, height, width)

• rng – typically numpy.random.

• borrow – theano borrow, typicall True.

• input_params – Supply params or initializations from a pre-trained system.

class yann.layers.batch_norm.dropout_batch_norm_layer_1d(input, input_shape, id,
rng=None, borrow=True,
input_params=None,
dropout_rate=0, ver-
bose=2)

This class is the typical 1D batchnorm layer. It is called by the add_layer method in network class.

Parameters

• input – An input theano.tensor variable. Even theano.shared will work
as long as they are in the following shape mini_batch_size, height, width,
channels

• verbose – similar to the rest of the toolbox.

• input_shape – (mini_batch_size, channels, height, width)

• borrow – theano borrow, typicall True.

• dropout_rate – bernoulli probabilty to dropoutby

• input_params – Supply params or initializations from a pre-trained system.

class yann.layers.batch_norm.dropout_batch_norm_layer_2d(input, input_shape, id,
rng=None, borrow=True,
input_params=None,
dropout_rate=0, ver-
bose=2)

This class is the typical 2D batchnorm layer. It is called by the add_layer method in network class.

Parameters

• input – An input theano.tensor variable. Even theano.shared will work
as long as they are in the following shape mini_batch_size, height, width,
channels

• verbose – similar to the rest of the toolbox.

• input_shape – (mini_batch_size, channels, height, width)

• borrow – theano borrow, typicall True.

• dropout_rate – bernoulli probabilty to dropoutby

• input_params – Supply params or initializations from a pre-trained system.

modules - Modules that are external to the network which the network uses

The module yann.modules contains the definition for the network modules. It contains various modules in-
cluding:

• visualizer is used to produce network visualizations. It will take the activities, filters and data from a
network and produce activations.

• resultor is used to save down network results.
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• optimizer is the backbone of the SGD and optimization.

• dataset is the module that creates, loads, caches and feeds data to the network.

optimizer - optimizer class

The file yann.modules.optimizer.py contains the definition for the optimizer:

class yann.modules.optimizer.optimizer(optimizer_init_args, verbose=1)
Optimizer is an important module of the toolbox. Optimizer creates the protocols required for learning. yann‘s
optimizer supports the following optimization techniques:

•Stochastic Gradient Descent

•AdaGrad [1]

•RmsProp [2]

•Adam [3]

•Adadelta [4]

Optimizer also supports the following momentum techniques:

•Polyak [5]

•Nesterov [6]

Parameters

• verbose – Similar to any 3-level verbose in the toolbox.

• optimizer_init_args – optimizer_init_args is a dictionary like:

optimizer_params = {
"momentum_type" : <option> 'false' <no momentum>, 'polyak',

→˓'nesterov'.
Default value is 'false'

"momentum_params" : (<option in range [0,1]>, <option in range
→˓[0,1]>, <int>)

(momentum coeffient at start,at end,
at what epoch to end momentum increase)
Default is the tuple (0.5, 0.95,50)

"optimizer_type" : <option>, 'sgd', 'adagrad', 'rmsprop', 'adam
→˓'.

Default is 'sgd'
"id" : id of the optimizer

}

Returns Optimizer object

Return type yann.modules.optimizer

calculate_gradients(params, objective, verbose=1)
This method initializes the gradients.

Parameters

• params – Supply learnable active parameters of a network.

• objective – supply a theano graph connecting the params to a loss

• verbose – Just as always
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Notes

Once this is setup, optimizer.gradients are available

create_updates(verbose=1)
This basically creates all the updates and update functions which trainers can iterate upon.

Parameters verbose – Just as always

datastream - datastream class

The file yann.modules.datastream.py contains the definition for the datastream:

class yann.modules.datastream.datastream(dataset_init_args, borrow=True, verbose=1)
This module initializes the dataset to the network class and provides all dataset related functionalities. It also
provides for dynamically loading and caching dataset batches. :mod: add_layer will use this to initialize.

Parameters

• dataset_init_args – Is a dictionary of the form:

• borrow – Theano’s borrow. Default value is True.

dataset_init_args = {
"dataset": <location>
"svm" : False or True

``svm`` if ``True``, a one-hot label set will
→˓also be setup.

"n_classes": <int>
``n_classes`` if ``svm`` is ``True``, we need to

→˓know how
many ``n_classes`` are present.

"id": id of the datastream
}

• verbose – Similar to verbose throughout the toolbox.

Returns A dataset module object that has the details of loader and other things.

Return type dataset

Todo

•Datastream should work with Fuel perhaps ?

•Support HDf5 perhaps

initialize_dataset(verbose=1)
Load the initial training batch of data on to data_x and data_y variables and create shared memories.

Todo

I am assuming that training has the largest number of data. This is immaterial when caching but during
set_data routine, I need to be careful.

Parameters verbose – Toolbox style verbose.
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load_data(type=’train’, batch=0, verbose=2)
Will load the data from the file and will return the data. The important thing to note is that all the datasets
in :mod: yann all require a y or a variable to predict. In case of auto-encoder for instance, the thing to
predict is the image itself. Setup dataset thusly.

Parameters

• type – train, test or valid. default is train

• batch – Supply an integer

• verbose – Simliar to verbose in toolbox.

Todo

Create and load dataset for type = ‘x’

Returns data_x, data_y

Return type numpy.ndarray

one_hot_labels(y, verbose=1)
Function takes in labels and returns a one-hot encoding. Used for max-margin loss. :param y: Labels to
be encoded.n_classes :param verbose: Typical as in the rest of the toolbox.

Notes

self.n_classes: Number of unique classes in the labels.

This could be found out using the following: .. code-block: python

import numpy n_classes = len(numpy.unique(y))

This might be potentially dangerous in case of cached dataset. Although this is the default if
n_classes is not provided as input to this module, I discourage anyone from using this.

Returns one-hot encoded label list.

Return type numpy ndarray

set_data(type=’train’, batch=0, verbose=2)
This can work only after network is cooked.

Parameters

• batch – which batch of data to load and set

• verbose – as usual

visualizer - visualizer class

The file yann.modules.visualizer.py contains the definition for the visualizer:

yann.modules.visualizer.save_images(imgs, prefix, is_color, verbose=2)
This functions produces a visualiation of the filters.

Parameters
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• imgs – images of shape .. [num_imgs, height, width, channels] Note the change in order.
it can also be in lots of other shapes and they will be reshaped and saved as images.

• prefix – address to save the image to

• is_color – If the image is color or not. True only if image shape is of color images.

• verbose – As Always

class yann.modules.visualizer.visualizer(visualizer_init_args, verbose=2)
Visualizer saves down images to visualize. The initilizer only initializes the directories for storing visuals. Three
types of visualizations are saved down:

•filters of each layer

•activations of each layer

•raw images to check the activations against

Parameters

• verbose – Similar to any 3-level verbose in the toolbox.

• visualizer_init_args – visualer_params is a dictionary of the form:

visualizer_init_args = {
"root" : <location to save the visualizations at>,
"frequency" : <integer>, after how many epochs do you need to

visualize. Default value is 1
"sample_size": <integer, prefer squares>, simply save down

→˓random
images from the datasets saves down

→˓activations for the
same images also. Default value is 16

"rgb_filters": <bool> flag. if True a 3D-RGB rendition of the
→˓CNN

filters is rendered. Default value is False.
"debug_functions" : <bool> visualize train and test and other

→˓theano functions.
default is False. Needs pydot and dv2viz

→˓to be installed.
"debug_layers" : <bool> Will print layer activities from input

→˓to that layer
output. ( this is almost always useless

→˓because test debug
function will combine all these layers and

→˓print directly.)
"id" : id of the visualizer

}

Returns A visualizer object.

Return type yann.modules.visualizer

initialize(batch_size, verbose=2)
Function that cooks the visualizer for some dataset.

Parameters

• batch_size – form dataset

• verbose – as always
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theano_function_visualizer(function, short_variable_names=False, format=’pdf’, ver-
bose=2)

This basically prints a visualization of any theano function using the in-built theano visualizer. It will save
both a interactive html file and a plain old png file. This is just a wrapper to theano’s visualization tools.

Parameters

• function – theano function to print

• short_variable_names – If True will print variables in short.

• format – Any pydot supported format. Default is ‘pdf’

• verbose – As usual.

visualize_activities(layer_activities, epoch, index=0, verbose=2)
This method saves down all activities.

Parameters

• layer_activities – network’s layer_activities as created

• epoch – what epoch are we running currently.

• verbose – as always

visualize_filters(layers, epoch, index=0, verbose=2)
This method saves down all activities.

Parameters

• layers – network’s layer dictionary

• epoch – what epoch are we running currently.

• verbose – as always

visualize_images(imgs, loc=None, verbose=2)
Visualize the images in the dataset. Assumes that the data in the tensor variable imgs is in shape
(batch_size, height, width, channels). Assumes that batchsize does not change.

Parameters

• imgs – tensor of data

• verbose – as usual.

resultor - resultor class

The file yann.modules.resultor.py contains the definition for the resultor:

class yann.modules.resultor.resultor(resultor_init_args, verbose=1)
Resultor of the network saves down resultor. The initilizer initializes the directories for storing results.

Parameters

• verbose – Similar to any 3-level verbose in the toolbox.

• resultor_init_args – resultor_init_args is a dictionary of the form

resultor_init_args = {
"root" : "<root directory to save stuff inside>",
"results" : "<results_file_name>.txt",
"errors" : "<error_file_name>.txt",
"costs" : "<cost_file_name>.txt",
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"learning_rate" : "<learning_rate_file_name>.txt"
"momentum" : <momentum_file_name>.txt
"visualize" : <bool>
"save_confusion" : <bool>
"id" : id of the resultor

}

While the filenames are optional, rootmust be provided. If a particular file is not provided,
that value will not be saved.

Returns A resultor object

Return type yann.modules.resultor

Todo

Remove the input file names, assume file names as default.

print_confusion(epoch=0, train=None, valid=None, test=None, verbose=2)
This method will print the confusion matrix down in files.

Parameters

• epoch – This is used merely to create a directory for each epoch so that there is a copy.

• train – training confusion matrix as gained by the validate method.

• valid – validation confusion amtrix as gained by the validate method.

• test – testing confusion matrix as gained by the test method.

• verbose – As usual.

process_results(cost, lr, mom, params=None, verbose=2)
This method will print results and also write them down in the appropriate files.

Parameters

• cost – Cost, is a float

• lr – Learning Rate, is a float

• mom – Momentum, is a float.

update_plot(verbose=2)

Todo

This method should update the open plots with costs and other values. Ideally, a browser based system
should be implemented, such as using mpl3d or using bokeh. This system should open opne browser
where it should update realtime the cost of training, validation and testing accuracies per epoch, display
the visualizations of filters, some indication of the weight of gradient trained, confusion matrices, learning
rate and momentum plots etc.

core - Core module contains the fundamentals operations of the toolbox

The module core contains the work horse of the yann toolbox. These are very fundamental operations that are not
needed to be known by or used by a user, but other modules in the toolbox will use these constantly.
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conv - Definitions for all convolution functions.

The file yann.core.conv.py contains the definition for all the convolution functions available. yann.core.
conv.py is one file that contains all the convolution operators. It contains two functions for performing either 2d
convolution (conv2d) or 3d convolution (conv3d).

These functions shall be called by every convolution layer from yann.layers.py

Todo

• Add 3D convolution support from theano.

• Add Masked convolution support.

class yann.core.conv.convolver_2d(input, filters, subsample, filter_shape, image_shape, bor-
der_mode=’valid’, verbose=1)

Class that performs convolution

This class basically performs convolution. These ouputs can be probed using the convolution layer if needed.
This keeps things simple.

Parameters

• input – This variable should either thenao.tensor4 (theano.matrix reshaped
also works) variable or an output from a pervious layer which is a theano.tensor4
convolved with a theano.shared. The input should be of shape (batchsize,
channels, height, width). For those who have tried pylearn2 or such, this
is called bc01 format.

• fitlers – This variable should be theano.shared variables of filter weights
could even be a filter bank. filters should be of shape (nchannels, nkerns,
filter_height, filter_width). nchannles is the number of input channels
and nkerns is the number of kernels or output channels.

• subsample – Stride Tuple of (int, int).

• filter_shape – This variable should be a tuple or an array: [nkerns, nchannles,
filter_height, filter_width]

• image_shape – This variable should a tuple or an array: [batchsize, channels,
height, width] image_shape[1] must be equal to filter_shape[1]

• border_mode – The input to this can be either 'same' or other theano defaults

Notes

•conv2d.out output, Output that could be provided as output to the next layer or to other convolutional
layer options. The size of the outut depends on border mode and subsample operation performed.

•conv2d.out_shp: (int, int), A tuple (height, width) of all feature maps

The options for border_mode input which at the moment of writing this doc are

•'valid' - apply filter wherever it completely overlaps with the input. Generates output of shape input
shape - filter shape + 1

•'full'- apply filter wherever it partly overlaps with the input. Generates output of shape input
shape + filter shape - 1
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•'half': pad input with a symmetric border of filter rows // 2 rows and filter columns
// 2 columns, then perform a valid convolution. For filters with an odd number of rows and columns,
this leads to the output shape being equal to the input shape.

•<int>: pad input with a symmetric border of zeros of the given width, then perform a valid convolution.

•(<int1>, <int2>): pad input with a symmetric border of int1 rows and int2 columns, then per-
form a valid convolution.

Refer to theano documentation’s convolution page for more details on this. Basically cuDNN is used for same
because at the moment of writing this funciton, theano.conv2d doesn’t support‘‘same‘‘ convolutions on the
GPU. For everything else, theano default will be used.

Todo

Implement border_mode = 'same' for libgpuarray backend. As of now only supports CUDA backend.

Need to something about this. With V0.10 of theano, I cannot use cuda.dnn for same convolution.

class yann.core.conv.deconvolver_2d(input, filters, subsample, filter_shape, image_shape, out-
put_shape, border_mode=’valid’, verbose=1)

class that performs deconvolution

This class basically performs convolution.

Parameters

• input – This variable should either thenao.tensor4 (theano.matrix reshaped
also works) variable or an output from a pervious layer which is a theano.tensor4
convolved with a theano.shared. The input should be of shape (batchsize,
channels, height, width). For those who have tried pylearn2 or such, this
is called bc01 format.

• fitlers – This variable should be theano.shared variables of filter weights
could even be a filter bank. filters should be of shape (nchannels, nkerns,
filter_height, filter_width). nchannles is the number of input channels
and nkerns is the number of kernels or output channels.

• subsample – Stride Tuple of (int, int).

• filter_shape – This variable should be a tuple or an array: [nkerns, nchannles,
filter_height, filter_width]

• image_shape – This variable should a tuple or an array: [batchsize, channels,
height, width] image_shape[1] must be equal to filter_shape[1]

• output_shape – Request a size of output of image required. This variable should a tuple.

• border_mode – The input to this can be either 'same' or other theano defaults

Notes

•conv2d.out output, Output that could be provided as output to the next layer or to other convolutional
layer options. The size of the outut depends on border mode and subsample operation performed.

•conv2d.out_shp: (int, int), A tuple (height, width) of all feature maps

The options for border_mode input which at the moment of writing this doc are
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•'valid' - apply filter wherever it completely overlaps with the input. Generates output of shape input
shape - filter shape + 1

•'full'- apply filter wherever it partly overlaps with the input. Generates output of shape input
shape + filter shape - 1

•'half': pad input with a symmetric border of filter rows // 2 rows and filter columns
// 2 columns, then perform a valid convolution. For filters with an odd number of rows and columns,
this leads to the output shape being equal to the input shape.

•<int>: pad input with a symmetric border of zeros of the given width, then perform a valid convolution.

•(<int1>, <int2>): pad input with a symmetric border of int1 rows and int2 columns, then per-
form a valid convolution.

Refer to theano documentation’s convolution page for more details on this. Basically cuDNN is used for same
because at the moment of writing this funciton, theano.conv2d doesn’t support‘‘same‘‘ convolutions on the
GPU. For everything else, theano default will be used.

Todo

Implement border_mode = 'same' and full for libgpuarray backend. As of now only supports CUDA
backend.

Need to something about this. With V0.10 of theano, I cannot use cuda.dnn for same convolution.

Right now deconvolution works only with border_mode = 'valid'

pool - Definitions for all Pooling functions.

The file yann.core.pool.py contains the definition for all the Pooling functions available.

Todo

• Need to support max_rand_pool and rand_pool

class yann.core.pool.pooler_2d(input, ds, img_shp, mode=’max’, ignore_border=True, verbose=1)
function that performs pooling

Parameters

• input – This variable should either thenao.tensor4 (theano.matrix reshaped
also works) variable or an output from a pervious layer which is a theano.tensor4
convolved with a theano.shared. The input should be of shape (batchsize,
channels, height, width). For those who have tried pylearn2 or such, this is
called bc01 format.

• img_shp – This variable should a tuple or an array: [batchsize, channels,
height, width]

• ds – tuple of pool sizes for rows and columns. (pool height, pool width)

• mode – {‘max’, ‘sum’, ‘mean’, ‘max_same_size’} Operation executed on each window.
max and sum

– if max_same_size we do maxpooling with output is the same size.

– if max we do do maxpooling with output being downsampled. Output size will be
(batchsize, channels, height/ds[0], width/ds[1]).
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– if mean we do do meanpooling with output being downsampled. Output size will be
(batchsize, channels, height/ds[0], width/ds[1]).

– if sum we do do sum pooling with output being downsampled. Output size will be
(batchsize, channels, height/ds[0], width/ds[1]).

• ignore_border – (default is False) Consider theano’s documentation. It is directly
supplied to theano’s pool module.

activations - Definitions for all activations functions.

The file yann.core.activations.py contains the definition for all the activation functions available.

You can import all these functions and supply the fuctions as arguments to functions that use activation variable
as an input. Refer to the mnist example in the modelzoo for how to do this. It contains various activations as defined
below:

yann.core.activations.Abs(x)
Absolute value Units.

Applies point-wise absolute value to the input supplied.

Parameters x – could be a theano.tensor or a theano.shared or numpy arrays or
python lists.

Returns returns a absolute output of the same shape as the input.

Return type same as input

yann.core.activations.Elu(x, alpha=1)
Exponential Linear Units.

Applies point-wise ela to the input supplied. alpha is defualt to 0. Supplying a value to alpha would make
this a leay Elu.

Notes

Reference :Clevert, Djork-Arne, Thomas Unterthiner, and Sepp Hochreiter. “Fast and accurate deep
network learning by exponential linear units (elus).” arXiv preprint arXiv:1511.07289 (2015).

Parameters

• x – could be a theano.tensor or a theano.shared or numpy arrays or python
lists.

• alpha – should be a float. Default is 1.

Returns returns a point-wise rectified output.

Return type same as input

yann.core.activations.Maxout(x, maxout_size, input_size, type=’maxout’, dimension=1)
Function performs the maxout activation. You can import all these functions and supply the fuctions as argu-
ments to functions that use activation variable as an input. Refer to the mnist example in the modelzoo for
how to do this.

Parameters
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• x – could be a theano.tensor or a theano.shared or numpy arrays or python
lists. Size of the argument must strictly be windowed runnable through stride. Second
dimension must be the channels to maxout from

• maxout_size – is the size of the window to stride through

• input_size – is number of nodes in the input

• dimension – If 1 perform MLP layer maxout, input must be two dimensional. If 2
perform CNN layer maxout, input must be four dimensional.

• type – If maxout perform, [1] If meanout or mixedout perform, meanout or mixed
out respectively from [2]

Returns

1. theano.tensor4 output, Output that could be provided

as output to the next layer or to other convolutional layer options. the size of the
output depends on border mode and subsample operation performed.

(a) tuple, Number of feature maps after maxout is applied

Return type theano.tensor4

yann.core.activations.ReLU(x, alpha=0)
Rectified Linear Units.

Applies point-wise rectification to the input supplied. alpha is defualt to 0. Supplying a value to alpha
would make this a leay ReLU.

Notes

Reference: Nair, Vinod, and Geoffrey E. Hinton. “Rectified linear units improve restricted boltzmann
machines.” Proceedings of the 27th International Conference on Machine Learning (ICML-10). 2010.

Parameters

• x – could be a theano.tensor or a theano.shared or numpy arrays or python
lists.

• alpha – should be a float.

Returns returns a point-wise rectified output.

Return type same as input

yann.core.activations.Sigmoid(x)
Sigmoid Units.

Applies point-wise sigmoid to the input supplied.

Parameters x – could be a theano.tensor or a theano.shared or numpy arrays or
python lists.

Returns returns a point-wise sigmoid output of the same shape as the input.

Return type same as input
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yann.core.activations.Softmax(x, temp=1)
Softmax Units.

Applies row-wise softmax to the input supplied.

Parameters

• x – could be a theano.tensor or a theano.shared or numpy arrays or python
lists.

• temp – temperature of type float. Mainly used during distillation, normal softmax prefer
T=1.

Notes

Refer [3] for details.

Returns returns a row-wise softmax output of the same shape as the input.

Return type same as input

yann.core.activations.Squared(x)
Squared Units.

Applies point-wise squaring to the input supplied.

Parameters x – could be a theano.tensor or a theano.shared or numpy arrays or
python lists.

Returns returns a squared output of the same shape as the input.

Return type same as input

yann.core.activations.Tanh(x)
Tanh Units.

Applies point-wise hyperbolic tangent to the input supplied.

Parameters x – could be a theano.tensor or a theano.shared or numpy arrays or
python lists.

Returns returns a point-wise hyperbolic tangent output.

Return type same as input

errors - Definitions for all point-wise error functions.

The file yann.core.errors.py contains the definition for all the point-wise error functions available.

yann.core.errors.cross_entropy(a, b)
This function produces a point-wise cross entropy error between a and b

Parameters

• a – first input

• b – second input

Returns Computational graph with the error.

Return type theano shared variable

yann.core.errors.l1(a, b)
This function produces a point-wise L1 error between a and b
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Parameters

• a – first input

• b – second input

Returns Computational graph with the error.

Return type theano shared variable

yann.core.errors.rmse(a, b)
This function produces a point-wise root mean squared error error between a and b

Parameters

• a – first input

• b – second input

Returns Computational graph with the error.

Return type theano shared variable

operators - Definitions for all basic operators written for yann .

The file yann.core.operators.py contains the definition for all the operators written specifically for yann.
Typically yann’s fundamental operators come from theano or numpy. This is needed only for explicit operators not
available clearly elsewhere.

yann.core.operators.copy_params(source, destination, borrow=True, verbose=2)
Internal function that copies paramters maintaining theano shared nature.

Parameters

• source – Source

• destination – destination

Notes

Was using deep copy to do this. This seems faster. But can I use theano.clone ?

utils - utilities that can be used as enhancement for the toolbox’s functionality

Many additional utilities are provided with this toolbox. They are divided into different modules and written in many
files. Below is an index of all files and their documentations.

dataset - provides a nice port to benchmark and matlab-based datasets

The file yann.utils.dataset.py contains the definition for the dataset ports. It contains support to various
benchmark datasets through skdata. There is also support to a dataset that can be imported from matlab.

Todo

• None of the PASCAL dataset retrievers from skdata is working. This need to be coded in.

• Need a method to create dataset from a directory of images. - prepare for imagenet and coco.

• See if support can be made for fuel.
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yann.utils.dataset.create_shared_memory_dataset(data_xy, borrow=True, verbose=1,
**kwargs)

This function creates a shared theano memory to be used for dataset purposes.

Parameters

• data_xy – [data_x, data_y] that will be assigned to shared_x and shared_y
on output.

• borrow – default value is True. This is a theano shared memory type variabe.

• verbose – Similar to verbose everywhere else.

• svm – default is False. If True, we also return a shared_svm_y for max-margin type
last layer.

Returns

shared_x, shared_y is svm is False. If not, ‘‘shared_x, shared_y, shared_svm_y‘‘

Return type theano.shared

yann.utils.dataset.download_data(url, location)

yann.utils.dataset.load_cifar100()
Function that downloads the cifar 100 dataset and returns the dataset in full

TODO: Need to implement this.

yann.utils.dataset.load_data_mat(height, width, channels, location, batch=0, type_set=’train’,
load_z=False)

Use this code if the data was created in matlab in the right format and needed to be loaded. The way to create is
to have variables x, y, zwith z being an optional data to load. x is assumed to be the data in matrix double
format with rows being each image in vectorized fashion and y is assumed to be lables in int or double.

The files are stored in the following format: loc/type/batch_0.mat. This code needs scipy to run.

Parameters

• height – The height of each image in the dataset.

• width – The width of each image in the dataset.

• channels – 3 if RGB, 1 if grayscale and so on.

• location – Location of the dataset.

• batch – if multi batch, then how many batches of data is present if not use 1

Returns Tuple (data_x, data_y) if requested, also (data_x,data_y,data_z)

Return type float32 tuple

Todo

Need to add preprocessing in this.

yann.utils.dataset.load_images_only(batch_size, location, n_train_images, n_test_images,
n_valid_images, rand_perm, batch=1, type_set=’train’,
height=218, width=178, channels=3, verbose=False)

Function that downloads the dataset and returns the dataset in full.

Parameters
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• mini_batch_size – What is the size of the batch.

• n_train_images – number of training images.

• n_test_images – number of testing images.

• n_valid_images – number of validating images.

• rand_perm – Create a random permutation list of images to be sampled to batches.

• type_set – What dataset you need, test, train or valid.

• height – Height of the image

• width – Width of the image.

• verbose – similar to dataset.

Returns data_x

Return type list

yann.utils.dataset.load_skdata_caltech101(batch_size, n_train_images, n_test_images,
n_valid_images, rand_perm, batch=1,
type_set=’train’, height=256, width=256,
verbose=False)

Function that downloads the dataset from skdata and returns the dataset in part

Parameters

• batch_size – What is the size of the batch.

• n_train_images – number of training images.

• n_test_images – number of testing images.

• n_valid_images – number of validating images.

• rand_perm – Create a random permutation list of images to be sampled to batches.

• type_set – What dataset you need, test, train or valid.

• height – Height of the image

• width – Width of the image.

• verbose – similar to dataset.

Todo

This is not a finished function.

Returns [(train_x, train_y, train_y),(valid_x, valid_y, valid_y),
(test_x, test_y, test_y)]

Return type list

yann.utils.dataset.load_skdata_caltech256(batch_size, n_train_images, n_test_images,
n_valid_images, rand_perm, batch=1,
type_set=’train’, height=256, width=256,
verbose=False)

Function that downloads the dataset from skdata and returns the dataset in part

Parameters
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• mini_batch_size – What is the size of the batch.

• n_train_images – number of training images.

• n_test_images – number of testing images.

• n_valid_images – number of validating images.

• rand_perm – Create a random permutation list of images to be sampled to batches.

• type_set – What dataset you need, test, train or valid.

• height – Height of the image

• width – Width of the image.

• verbose – similar to dataset.

Todo

This is not a finished function.

Returns [(train_x, train_y, train_y),(valid_x, valid_y, valid_y),
(test_x, test_y, test_y)]

Return type list

yann.utils.dataset.load_skdata_cifar10()
Function that downloads the dataset from skdata and returns the dataset in full

Returns [(train_x, train_y, train_y),(valid_x, valid_y, valid_y),
(test_x, test_y, test_y)]

Return type list

yann.utils.dataset.load_skdata_mnist()
Function that downloads the dataset from skdata and returns the dataset in full

Returns [(train_x, train_y, train_y),(valid_x, valid_y, valid_y),
(test_x, test_y, test_y)]

Return type list

yann.utils.dataset.load_skdata_mnist_bg_images()
Function that downloads the dataset from skdata and returns the dataset in full

Returns [(train_x, train_y, train_y),(valid_x, valid_y, valid_y),
(test_x, test_y, test_y)]

Return type list

yann.utils.dataset.load_skdata_mnist_bg_rand()
Function that downloads the dataset from skdata and returns the dataset in full

Returns [(train_x, train_y, train_y),(valid_x, valid_y, valid_y),
(test_x, test_y, test_y)]

Return type list

yann.utils.dataset.load_skdata_mnist_noise1()
Function that downloads the dataset from skdata and returns the dataset in full

Returns [(train_x, train_y, train_y),(valid_x, valid_y, valid_y),
(test_x, test_y, test_y)]
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Return type list

yann.utils.dataset.load_skdata_mnist_noise2()
Function that downloads the dataset from skdata and returns the dataset in full

Returns [(train_x, train_y, train_y),(valid_x, valid_y, valid_y),
(test_x, test_y, test_y)]

Return type list

yann.utils.dataset.load_skdata_mnist_noise3()
Function that downloads the dataset from skdata and returns the dataset in full

Returns [(train_x, train_y, train_y),(valid_x, valid_y, valid_y),
(test_x, test_y, test_y)]

Return type list

yann.utils.dataset.load_skdata_mnist_noise4()
Function that downloads the dataset from skdata and returns the dataset in full

Returns [(train_x, train_y, train_y),(valid_x, valid_y, valid_y),
(test_x, test_y, test_y)]

Return type list

yann.utils.dataset.load_skdata_mnist_noise5()
Function that downloads the dataset from skdata and returns the dataset in full

Returns [(train_x, train_y, train_y),(valid_x, valid_y, valid_y),
(test_x, test_y, test_y)]

Return type list

yann.utils.dataset.load_skdata_mnist_noise6()
Function that downloads the dataset from skdata and returns the dataset in full

Returns [(train_x, train_y, train_y),(valid_x, valid_y, valid_y),
(test_x, test_y, test_y)]

Return type list

yann.utils.dataset.load_skdata_mnist_rotated()
Function that downloads the dataset from skdata and returns the dataset in full

Returns [(train_x, train_y, train_y),(valid_x, valid_y, valid_y),
(test_x, test_y, test_y)]

Return type list

yann.utils.dataset.load_skdata_mnist_rotated_bg()
Function that downloads the dataset from skdata and returns the dataset in full

Returns [(train_x, train_y, train_y),(valid_x, valid_y, valid_y),
(test_x, test_y, test_y)]

Return type list

yann.utils.dataset.pickle_dataset(loc, batch, data)
Function that stores down an object as a pickle file given its filename and obj

Parameters

• loc – Provide location to save as a string

• batch – provide a batch number to save the file as
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• data – Pass the data that needs to be picked down. Could also be a tuple

class yann.utils.dataset.setup_dataset(dataset_init_args, save_directory=’_datasets’, ver-
bose=1, **kwargs)

The setup_dataset class is used to create and assemble datasets that are friendly to the Yann toolbox.

Todo

images option for the source. skdata pascal isn’t working imagenet dataset and coco needs to be
setup.

Parameters

• dataset_init_args – is a dictonary of the form:

data_init_args = {

"source" : <where to get the dataset from>
'pkl' : A theano tutorial style 'pkl' file.
'skdata' : Download and setup from skdata
'matlab' : Data is created and is being used from

→˓Matlab
'images-only' : Data is created from a directory

→˓of images. This
will be an unsupervised dataset with no

→˓labels.
"name" : necessary only for skdata

supports

* ``'mnist'``

* ``'mnist_noise1'``

* ``'mnist_noise2'``

* ``'mnist_noise3'``

* ``'mnist_noise4'``

* ``'mnist_noise5'``

* ``'mnist_noise6'``

* ``'mnist_bg_images'``

* ``'mnist_bg_rand'``

* ``'mnist_rotated'``

* ``'mnist_rotated_bg'``.

* ``'cifar10'``

* ``'caltech101'``

* ``'caltech256'``

Refer to original paper by Hugo Larochelle [1] for these
→˓dataset details.

"location" : necessary for 'pkl' and 'matlab'
→˓and

'images-only'
"mini_batch_size" : 500, # some batch size
"mini_batches_per_batch" : (100, 20, 20), # trianing,

→˓testing, validation
"batches2train" : 1, # number of files will be

→˓created.
"batches2test" : 1,
"batches2validate" : 1,
"height" : 28, # After pre-processing
"width" : 28,
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"channels" : 1 , # color (3) or grayscale (1)
→˓...

}

• preprocess_init_args – provide preprocessing arguments. This is a dictionary:

args = {
"normalize" : <bool> True for normalize across batches
"GCN" : True for global contrast normalization
"ZCA" : True, kind of like a PCA representation (not

→˓fully tested)
"grayscale" : Convert the image to grayscale

}

• save_directory – <string> a location where the dataset is going to be saved.

Notes

Yann toolbox takes datasets in a .pkl format. The dataset requires a directory structure such as the following:

location/_dataset_XXXXX
|_ data_params.pkl
|_ train

|_ batch_0.pkl
|_ batch_1.pkl
.
.
.

|_ valid
|_ batch_0.pkl
|_ batch_1.pkl
.
.
.

|_ test
|_ batch_0.pkl
|_ batch_1.pkl
.
.
.

The location id (XXXXX) is generated by this class file. The five digits that are produced is the unique id of the
dataset.

The file data_params.pkl contains one variable dataset_args used by datastream.

dataset_location()
Use this function that return the location of dataset.

yann.utils.dataset.shuffle(data, verbose=1)
Method shuffles the dataset with x and y

Parameters data – Either a tuple of a nd array. If tuple, will assume x and y.

Returns Shuffled version of the same.

Return type data
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Notes

Obnly tuple works at the moment.

graph - provides a nice port to networkx methods related to Yann

The file yann.utils.graph.py contains the definition for the networkx ports. If networkx was installed,
each network class also creates a networkx.DiGraph within itself which is accessible through net = network(),
net.graph. In each layer some representative nodes (max limited) will be added to this graph and can be seen at
net.graph.nodes(). Its attributes will be layer prorperties such as type, output_shape and so on.

yann.utils.graph has some ports that uses this networkx graph.

This includes: draw_network which draws the network.

The documentation follows:

yann.utils.graph.draw_network(graph, filename=’network.pdf’, show=False, verbose=2)
This is a simple wrapper to the networkx_draw.

Parameters

• graph – Supply a networkx graph object. NNs are all DiGraphs.

• filename – what file to save down as. Will add ‘.png’ to the end.

• verbose – Do I even have to talk about this ?

Notes

Takes any format that networkx plotter takes. This is not ready to be used. Still buggy sometimes. Rudra is
working on developing this further internally. This is slow at the moment.

pickle - provides a way to save the network’ parameters as a pickle file.

The file yann.utils.pickle.py contains the definition for the pickle methods. Use pickle method in the file
to save the params down as a pickle file. Note that this only saves the parameters down and not the architecture or
optimizers or other modules. The id of the layers will also be saved along as dictionary keys so you can use them to
create a network.

The documentation follows:

yann.utils.pickle.load(infile, verbose=2)
This method loads a pickled network and returns the parameters.

Parameters infile – Filename of the network pickled by this pickle method.

Returns A dictionary of parameters.

Return type params

yann.utils.pickle.pickle(net, filename, verbose=2)
This method saves the weights of all the layers.

Parameters

• net – A yann network object

• filename – What is the name of the file to pickle the network as.
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• verbose – Blah..

yann.utils.pickle.shared_params(params, verbose=2)
This will convert a loaded set of parameters to shared variables that could be passed as input_params to the
add_layer method.

Parameters params – List from get_params method.

raster - provides a visualization for rasterizing images.

The file yann.utils.raster.py contains the definition for the rasters. This code is not mine and is lifted from
theano utils. This code is used to remove the dependency on now out-dated pylearn2 library. Yann uses pylearn2’s
make_viewer to create images that are raster. Migrating to this tile_raster_images from theano tutorials. Obliging
License, credit and conditions for Theano Deep Learning Tutorials: This entire file was completely and directly
reproduced from the theano deep learning tutorials.

Copyright (c) 2010–2015, Deep Learning Tutorials Development Team All rights reserved. This code is used to
remove the dependency on now out-dated pylearn2 library. Yann uses pylearn2’s make_viewer to create images that
are raster. Migrating to this tile_raster_images from theano tutorials.

Obliging License, credit and conditions for Theano Deep Learning Tutorials: This entire file was completely and
directly reproduced from the theano deep learnign tutorials.

LICENSE

Copyright (c) 2010–2015, Deep Learning Tutorials Development Team All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of Theano nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ‘’AS IS” AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT HOLDERS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEM-
PLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUB-
STITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOW-
EVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

yann.utils.raster.scale_to_unit_interval(ndar, eps=1e-08)
Scales all values in the ndarray ndar to be between 0 and 1

yann.utils.raster.tile_raster_images(X, img_shape, tile_shape, tile_spacing=(0,
0), scale_rows_to_unit_interval=True, out-
put_pixel_vals=True)

Transform an array with one flattened image per row, into an array in which images are reshaped and layed out
like tiles on a floor. This function is useful for visualizing datasets whose rows are images, and also columns of
matrices for transforming those rows (such as the first layer of a neural net). :type X: a 2-D ndarray or a tuple
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of 4 channels, elements of which can be 2-D ndarrays or None; :param X: a 2-D array in which every row is a
flattened image. :type img_shape: tuple; (height, width) :param img_shape: the original shape of each image
:type tile_shape: tuple; (rows, cols) :param tile_shape: the number of images to tile (rows, cols) :param out-
put_pixel_vals: if output should be pixel values (i.e. int8 values) or floats :param scale_rows_to_unit_interval:
if the values need to be scaled before being plotted to [0,1] or not :returns: array suitable for viewing as an
image. (See:Image.fromarray.) :rtype: a 2-d array with same dtype as X.

special - contains tools for special types of networks

This module contains tools for special types of networks. Most special types of networks involve inheriting the main
network class and re-writing a new class for different types of networks

gan - provides a inherited network class for a gan network.

The file yann.special.gan.py contains the definition for gan-style network. Any GAN network can be built
using this class. It is basically an inherited network from the yann.network file. Support for the implementation from

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. “Generative adversarial nets.” In Advances in Neural Information Processing Systems, pp. 2672-
2680. 2014.

Todo

There seems to be something wrong with the fine-tuning update. Code crashes after a call to _new_era. This needs
debugging and fixing.

class yann.special.gan.gan(verbose=2, **kwargs)
This class is inherited from the network class and has its own methods modified in support of gan networks.

Todo

Sumith Chintala says that its better to seperate generator and dataset when training discriminator. Do that.

in __init__ kwargs = kwargs is not a good option Check its working.

Parameters as the network class (Same) –

cook(objective_layers, discriminator_layers, generator_layers, game_layers, softmax_layer=None,
classifier_layers=None, optimizer_params=None, verbose=2, **kwargs)

This function builds the backprop network, and makes the trainer, tester and validator theano functions.
The trainer builds the trainers for a particular objective layer and optimizer.

Parameters

• optimizer_params – Supply optimizer_params.

• datastream – Supply which datastream to use. Default is the last datastream created.

• visualizer – Supply a visualizer to cook with.

• objective_layers – Supply a tuple of layer ids of layers that have the objective
functions (classification, discriminator, generator)

• classifier – supply the classifier layer of the discriminator.

• discriminator – supply the discriminator layer of the data stream.
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• generator – supply the last generator layer.

• generator_layers – list or tuple of all generator layers

• discriminator_layers – list or tuple of all discriminator layers

• classifier_layers – list or tuple of all classifier layers

• game_layers – list or tuple of two layers. The first is D(G(z)) and the second is D(x)

• verbose – Similar to the rest of the toolbox.

cook_discriminator(optimizer_params, verbose=2)
This method cooks the real optimizer.

Parameters verbose – as always

cook_generator(optimizer_params, verbose=2)
This method cooks the fake optimizer.

Parameters verbose – as always

cook_softmax_optimizer(optimizer_params, verbose=2)
This method cooks the softmax optimizer.

Parameters verbose – as always

initialize_train(verbose=2)
Internal function that creates a train methods for the GAN network

Parameters verbose – as always

print_status(epoch, verbose=2)
This function prints the costs of the current epoch, learning rate and momentum of the network at the
moment.

Todo

This needs to to go to visualizer.

Parameters

• verbose – Just as always.

• epoch – Which epoch are we at ?

train(verbose, **kwargs)
Training function of the network. Calling this will begin training.

Parameters

• epochs – (num_epochs for each learning rate... ) to train Default is
(20, 20)

• validate_after_epochs – 1, after how many epochs do you want to validate ?

• show_progress – default is True, will display a clean progressbar. If verbose is 3
or more - False

• early_terminate – True will allow early termination.

• k – how many discriminator updates for every generator update.
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• learning_rates – (annealing_rate, learning_rates ... ) length must be one more than
epochs Default is (0.05, 0.01, 0.001)

• save_after_epochs – 1, Save network after that many epochs of training.

• pre_train_discriminator – If you want to pre-train the discriminator to make it
stay ahead of the generator for making predictions. This will only train the softmax layer
loss and not the fake or real loss.

validate(epoch=0, training_accuracy=False, show_progress=False, verbose=2)
Method is use to run validation. It will also load the validation dataset.

Parameters

• verbose – Just as always

• show_progress – Display progressbar ?

• training_accuracy – Do you want to print accuracy on the training set as well ?

datasets - provides quick methods to produce common datasets.

The file yann.special.datasets.py contains the definition for some methods that can produce quickly some
datasets. Some of them include :

• cook_mnist

• cook_cifar10

• ...

class yann.special.datasets.combine_split_datasets(loc, verbose=1, **kwargs)
This will combine two split datasets into one.

Todo

Extend it for non-split datasets also.

Parameters

• loc – A tuple of a list of locations of two dataset to be blended.

• verbose – As always

Notes

At this moment, mini_batches_per_batch and mini_batch_size of both datasets must be the same. This only
splits the train data with shot. The test and valid hold both. This is designed for the incremental learning. New
labels are created in one shot labels for the second datasets. This does not assume that labels are shared between
the two datasets.

combine(verbose=1)
Thie method runs the combine.

Parameters verbose – As Always

dataset_location()
Use this function that return the location of dataset.
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load_data(n_batches_1, n_batches_2, type=’train’, batch=0, verbose=2)
Will load the data from the file and will return the data. Will supply two batches one from each set
respectively.

Parameters

• type – train, test or valid. default is train

• batch – Supply an integer

• n_batches_1 – Number of batches in dataset 1

• n_batches_2 – Number of batches in dataset 2

• verbose – Simliar to verbose in toolbox.

Todo

Create and load dataset for type = ‘x’

Returns data_x, data_y

Return type numpy.ndarray

save_data(data_x, data_y, type=’train’, batch=0, verbose=2)
Saves down a batch of data.

yann.special.datasets.cook_caltech101(verbose=1, **kwargs)
Wrapper to cook cifar10 dataset. Will take as input,

Parameters

• save_directory – which directory to save the cooked dataset onto.

• dataset_parms – default is the dictionary. Refer to setup_dataset

• preprocess_params – default is the dictionary. Refer to setup_dataset

yann.special.datasets.cook_caltech256(verbose=1, **kwargs)
Wrapper to cook cifar10 dataset. Will take as input,

Parameters

• save_directory – which directory to save the cooked dataset onto.

• dataset_parms – default is the dictionary. Refer to setup_dataset

• preprocess_params – default is the dictionary. Refer to setup_dataset

yann.special.datasets.cook_celeba_normalized_zero_mean(verbose=1, loca-
tion=’_data/celebA’,
**kwargs)

Wrapper to cook Celeb-A dataset in preparation for GANs. Will take as input,

Parameters

• location – Location where celebA was downloaded using yann.specials.
datasets.download_celebA

• save_directory – which directory to save the cooked dataset onto.

• dataset_parms – default is the dictionary. Refer to setup_dataset

• preprocess_params – default is the dictionary. Refer to setup_dataset
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yann.special.datasets.cook_cifar10(verbose=1, **kwargs)
Wrapper to cook cifar10 dataset. Will take as input,

Parameters

• save_directory – which directory to save the cooked dataset onto.

• dataset_parms – default is the dictionary. Refer to setup_dataset

• preprocess_params – default is the dictionary. Refer to setup_dataset

yann.special.datasets.cook_cifar10_normalized(verbose=1, **kwargs)
Wrapper to cook cifar10 dataset. Will take as input,

Parameters

• save_directory – which directory to save the cooked dataset onto.

• dataset_parms – default is the dictionary. Refer to setup_dataset

• preprocess_params – default is the dictionary. Refer to setup_dataset

yann.special.datasets.cook_cifar10_normalized_zero_mean(verbose=1, **kwargs)
Wrapper to cook cifar10 dataset. Will take as input,

Parameters

• save_directory – which directory to save the cooked dataset onto.

• dataset_parms – default is the dictionary. Refer to setup_dataset

• preprocess_params – default is the dictionary. Refer to setup_dataset

yann.special.datasets.cook_mnist(verbose=1, **kwargs)
Wrapper to cook mnist dataset. Will take as input,

Parameters

• save_directory – which directory to save the cooked dataset onto.

• dataset_parms – default is the dictionary. Refer to setup_dataset

• preprocess_params – default is the dictionary. Refer to setup_dataset

Notes

By default, this will create a dataset that is not mean-subtracted.

yann.special.datasets.cook_mnist_multi_load(verbose=1, **kwargs)
Testing code, mainly. Wrapper to cook mnist dataset. Will take as input,

Parameters

• save_directory – which directory to save the cooked dataset onto.

• dataset_parms – default is the dictionary. Refer to setup_dataset

• preprocess_params – default is the dictionary. Refer to setup_dataset

Notes

This just creates a data_params that loads multiple batches without cache. I use this to test the cahcing
working on datastream module.
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yann.special.datasets.cook_mnist_normalized(verbose=1, **kwargs)
Wrapper to cook mnist dataset. Will take as input,

Parameters

• save_directory – which directory to save the cooked dataset onto.

• dataset_parms – default is the dictionary. Refer to setup_dataset

• preprocess_params – default is the dictionary. Refer to setup_dataset

Notes

By default, this will create a dataset that is not mean-subtracted.

yann.special.datasets.cook_mnist_normalized_zero_mean(verbose=1, **kwargs)
Wrapper to cook mnist dataset. Will take as input,

Parameters

• save_directory – which directory to save the cooked dataset onto.

• dataset_parms – default is the dictionary. Refer to setup_dataset

• preprocess_params – default is the dictionary. Refer to setup_dataset

yann.special.datasets.download_celebA(data_dir=’celebA’)
This method downloads celebA dataset into directory _data/data_dir.

Parameters data_dir – Location to save the data.

class yann.special.datasets.mix_split_datasets(loc, verbose=1, **kwargs)
Everything is the same, except, labels are mixed.

class yann.special.datasets.split_all(dataset_init_args, save_directory=’_datasets’, ver-
bose=0, **kwargs)

Inheriting from the setup dataset. The new methods added will include the split.

class yann.special.datasets.split_continual(dataset_init_args, save_directory=’_datasets’,
verbose=0, n_classes=10, **kwargs)

Inheriting from the setup dataset. This method will produce datasets setup for continual learning systems.

class yann.special.datasets.split_only_train(dataset_init_args, save_directory=’_datasets’,
verbose=0, **kwargs)

Inheriting from the split dataset. The new methods added will include the split.

The story behind Yann

I am Ragav Venkatesan, the creator of Yann. I started building convolutional neural networks in early 2015. I began
with theano and started following and implementing their tutorials. As I started reading new papers and coding new
technologies, I slowly integrated them into what was soon developing into a toolbox. My lab mates at Visual Repre-
sentaiton and Processing Group also started getting into CNN research and started using my toolbox so I formalized it
and hosted it on GitHub. Originally it was a completely unstructured and completely demodularized toolbox and went
with the name ‘samosa’. The original codebase still exists in older commits on the git. This toolbox still at its core is
still the theano tutorials from which it was built.

After considerable effort being put in to make this toolbox modular, and testing it out and after using the toolbox on
some of my own research. This toolbox, which began as a pet project is something that I am now proud to share with
the rest of DL community with.
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This toolbox is also used with the course CSE 591 at ASU in Spring of 2017. With more features being added into the
toolbox, I figured I would clean it up, formalize it and write some good documentation so that interested people could
use it after. Thus after being rechristened as Yann, this toolbox was born.

Warning: This is a personal toolbox that I wrote as a project for myself. I promise nothing. Although I try to
make sure everything is perfectly working. I encourage anyone to use it, contribute to it and write on top of it with
that caveat. I still have a lot of code to be written - unittests, optimizers, pre-trained models, dataset ports and for
all of these I would really appreciate contributors and help.

Tip: I am working on tutorials and quickstart guides for this toolbox. As such, I try to go in detail in these tutorials,
but I am assuming a pre-requisite training and knowledge on CNNs and Neural Neworks. If you are here looking
for a tutorial for those and are disappointed with the material here, please read Prof. Yoshua Bengio’s book on Deep
Learning, or read the examples from theano tutorials. Theano tutorials also will help understand theano which is the
backend I used for this toolbox. As the course begins, I will add more tutorials with notes that will make this more
useful and interactive.

What is in the toolbox ?

This toolbox started with the beautiful theano tutorials. The code that is here in yann has the following popular features
that all deep net toolboxes seem to have. Among many others there are:

• CNNs with easy architecture management: Because layers can take origins as inputs, pretty much any archi-
tecture that can be drawn on a blackboard can be constructed using this toolbox.

• Dataset handling capabilities: Features to setup data as simple matlab files that can be loaded in python and
run in batches for training. Alternatively, there is also a wrapper to skdata’s dataset interface and future plans
for adding the Fuel interface also. As of now, directt ports through skdata to cifar10, mnist, extended mnists
for Hugo Larochelle , caltech101, caltech256. More to be added soon.

• Data visualization capabilities: Visualize the activities of select images (or random) from the train set on each
layer after select number of epochs of training. Also view filters after select number of epochs. I find this very
effective for my understanding.

• Techniques from recent publications: This is where things change a lot and for someone who is getting into
deep learning fresh without much theoretical machine learning it would be really helpful. With only a few flags
and parameters, one could switch entire optimization methods, including gradient descent, adaGrad, rmsProp
add momentums like Polyak Momentum, Nesterov’s accelerated gradients etc. One switch converts the whole
networks into a max-margin formulation from a softmax formulation. All of these options are plug and play or
more like add and cook. Most new methods that are recently published and are added including but not limited
to:

– Dropouts[1]

– adaGrad[2]

– Polyak Momentum[3]

– Nesterov’s Accelerated Gradients [4]

– rmsProp [5]

– *Adam [8]

– Maxout and Mixed out Networks [6]
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– *FitNets and MentorNets[9,15]

– VGG-19 [10]

– *Inception Module [11]

– Batch Normalization [12]

– ReLU / ELU and other activations supported through theano [13,14]

– Generative Adversarial Networks [16]

Those marked * are not fully tested yet.

References

License

Yann Release: Yann V 1.0rc1

The MIT License

Copyright (c) [2015 - 2016] Ragav Venkatesan

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice, the credits below and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Credits and copyright attributions to other sources:

• First and foremost, this toolbox was develoepd largely by adding functionality to the amazing theano tutorials .
The theano tutorial today looks much different from what it was when yann was developed on top of it. Although
yann looks completely different now being its own entity, one can still find some philosophy and structure of the
theano tutorial code embedded here and there in the toolbox. Therefore enormous credit is due to theano tutorial
and theano developers for this toolbox. A lot of developement issues with this toolbox was solved also due to
the incredible customer support that was provided by the theano developers at their google groups forum and
the issues section of the theano github page. Copyright (c) 2008–2016, Theano Development Team All rights
reserved.

• The dropouts part of the code was adapted from Misha Denil’s Dropout code. The code at the moment does not
look at all like the code that Misa Denil originally had, but it was developed from his code and therefore requires
that due credit be assigned and acknowledgement provided. Refer to license here . Including his copyright notice
here. Copyright (C) 2012 Misha Denil

• Ofcourse, this toolbox contains code from numpy, Contains code from NumPy, Copyright (c) 2005-2011,
NumPy Developers. All rights reserved.
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• Lasagne played a signnificant role in the developement of yann. Part of the intention in begining to develop
yann was that Lasagne was getting too large for the authors to keep up. Lasagne therefore insipired some of the
aspects of this toolbox. One of the contributors who submitted the rotate layer, used code re-distributed from
Lasagne toolbox as well. So, in honoring their license, Copyright (c) 2014-2016 Lasagne contributors.

• Credit is also due to developers of skdata, progressbar, networkx and developers of all the other dependencies
that helping in the creating of this toolbox. Go team OpenSource!

Indices of functions and modules

• genindex

• modindex
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