

Welcome to Yampy

Yampy (pronounced “Yam Pie”) is a Python wrapper for Yammer’s RESTful API.

See the Quickstart guide for information on getting up and running
quickly. You’ll find details in the API documentation. If you want to
contribute to Yampy, please read the Contributing guide first.

Contents

	Quickstart guide
	Authentication

	Making requests

	API documentation
	Authenticator object

	Yammer object

	MessagesAPI object

	RelationshipsAPI object

	UsersAPI object

	GroupsAPI object

	TopicsAPI object

	Client object

	GenericModel object

	Errors

	Contributing guide
	Quick overview

	Requirements

	Development environment setup

	Running tests

	Development process

Indices and tables

	Index

	Search Page

Quickstart guide

Authentication

The Yammer API requires you to authenticate via OAuth 2, so you’ll need a
client_id and client_secret which you will be given when you register
your application with Yammer here: http://www.yammer.com/client_applications

To authenticate your application:

	Build a yampy.Authenticator using the client_id and
client_secret you were given when you registered your application:

import yampy

authenticator = yampy.Authenticator(client_id=MY_CLIENT_ID,
 client_secret=MY_CLIENT_SECRET)

	Send your user to the authorization URL where they can grant your application
access to their Yammer account. You can construct the authorization URL using
the Authenticator, specifying the URL you want Yammer to return the user
to when they are finished:

redirect_uri = "http://example.com/auth/callback"
auth_url = authenticator.authorization_url(redirect_uri=redirect_uri)

	Once the user has authorized or denied your application, they will be sent to
the redirect_url you specified. If the user has granted your application
permission, a code parameter will be given in the query string. If
something went wrong an error parameter will be passed instead. See the
authentication section of the Yammer API documentation [https://developer.yammer.com/authentication/] for more information.

Assuming everything went well, you can use the Authenticator to exchange
your code for an access token:

access_token = authenticator.fetch_access_token(code)

If you require user and network information – for example, if you want to
store the Yammer user ID in your application’s user model – then you can use
the fetch_access_data method instead:

access_data = authenticator.fetch_access_data(code)

access_token = access_data.access_token.token

user_info = access_data.user
network_info = access_data.network

Making requests

Once you have an access token you can create a yampy.Yammer instance
and start making requests to the API:

import yampy

yammer = yampy.Yammer(access_token=access_token)

Messages

You can make message-related requests [https://developer.yammer.com/restapi/#rest-messages] using the messages
property on your Yammer instance. These are just a few examples, see the
yampy.apis.MessagesAPI class for details:

import yampy

yammer = yampy.Yammer(access_token=access_token)

Get a list of messages
yammer.messages.all()
yammer.messages.from_my_feed()
yammer.messages.from_user(a_user)

Post a new messages
yammer.messages.create("Hello developers", group_id=developers_group_id,
 topics=["Python", "API", "Yammer"])

Delete a message
yammer.messages.delete(a_message)

Like messages
yammer.messages.like(a_message)
yammer.messages.unlike(a_message)

Users

You can make user-related requests [https://developer.yammer.com/restapi/#rest-users] using the users
property on your Yammer instance. These are just a few examples, see the
yampy.apis.UsersAPI class for details:

import yampy

yammer = yampy.Yammer(access_token=access_token)

Get a list of users
yammer.users.all()
yammer.users.in_group(a_group_id)

Find a specific user
yammer.users.find(a_user_id)
yammer.users.find_by_email("user@example.com")

Find the logged in user
yammer.users.find_current()

Create a new user
yammer.users.create("user@example.org", full_name="John Doe")

Update a user
yammer.users.update(a_user, summary="An example user")

Suspend and delete users
yammer.users.suspend(a_user)
yammer.users.delete(a_user)

Groups

You can make group-related requests using the ``groups`
property on your Yammer instance. These are just a few examples, see the
yampy.apis.GroupsAPI class for details:

import yampy

yammer = yampy.Yammer(access_token=access_token)

Get a list of all groups in your network
yammer.groups.all()
Get a list of all groups of current user
yammer.groups.all(mine=True)

View a specific group
yammer.groups.find(a_group_id)

Get members of specific group
yammer.groups.members(a_group_id)

Join a specific group
yammer.groups.join(a_group_id)

Leave a specific group
yammer.groups.leave(a_group_id)

Create a new group
yammer.groups.create("My new group", private=True)

delete a group
yammer.groups.delete(a_group_id)

Other API endpoints

For other endpoints in the Yammer REST API, you will need to use Yampy’s HTTP
API. Use the client property on your Yammer instance.

For example, to get a list of org chart relationships you would make this HTTP
request:

GET https://www.yammer.com/api/v1/relationships.json?access_token=...

You can do this easily with the Yampy client:

yammer = yampy.Yammer(access_token)
yammer.client.get("/relationships")

See the REST API documentation [https://developer.yammer.com/restapi/] for a
full list of API endpoints, and the yampy.client.Client class for details of
the Python interface.

API documentation

Authenticator object

	
class yampy.Authenticator(client_id, client_secret, oauth_dialog_url=None, oauth_base_url=None, proxies=None)

	Responsible for authenticating users against the Yammer API.

The OAuth2 authentication process involves several steps:

	Send the user to the URL returned by authorization_url. They can use
this page to grant your application access to their account.

	Yammer redirects them to the redirect_uri you provided with a code
that can be exchanged for an access token.

	Exchange the code for an access token using the fetch_access_token
method.

	
__init__(client_id, client_secret, oauth_dialog_url=None, oauth_base_url=None, proxies=None)

	Initializes a new Authenticator. The client_id and client_secret
identify your application, you acquire them when registering your
application with Yammer. See http://www.yammer.com/client_applications

Keyword arguments can be used to modify the URLs generated in this
class, e.g. to avoid hitting the live API from a client application’s
test suite. Pass None to use the default URLs.

	oauth_dialog_url – The URL the user must visit to authorize the
application. Used by the authorization_url method.

	oauth_base_url – The base URL for OAuth API requests, e.g. token
exchange. Used by fetch_access_data or fetch_access_token.

	proxies – provide a proxies dictionary to be used by the client.

	
authorization_url(redirect_uri)

	Returns the URL the user needs to visit to grant your application
access to their Yammer account. When they are done they will be
redirected to the redirect_uri you provide with a code that can be
exchanged for an access token.

	
fetch_access_data(code)

	Returns the complete response from the Yammer API access token request.
This is a dict with “user”, “network” and “access_token” keys.

You can access the token itself as: response.access_token.token

If you only intend to make use of the token, you can use the
fetch_access_token method instead for convenience.

	
fetch_access_token(code)

	Convenience method to exchange a code for an access token, discarding
the other user and network data that the Yammer API returns with the
access token.

If you require user and network information, you should use the
fetch_access_data method instead.

Yammer object

	
class yampy.Yammer(access_token=None, base_url=None, proxies=None)

	Main entry point for accessing the Yammer API.

Essentially this is just a Factory class that provides instances of various
classes that interact directly with the API. For example, the messages
method returns a MessagesAPI object.

	
__init__(access_token=None, base_url=None, proxies=None)

	Initialize a new Yammer instance.

	access_token identifies the current user. You can acquire an
access token using an yampy.Authenticator.

	base_url defaults to the live Yammer API. Provide a different
base URL to make requests against some other server, e.g. a fake
in your application’s test suite.

	
client

	Returns a yampy.client.Client object which can be used to make
HTTP requests to any of the Yammer REST API endpoints.

You should use this if there isn’t a more specific interface available
for the request you want to make, e.g. if you want to request users you
should use the users method instead of the client method.

	
current_network(include_suspended=None)

	Get details on the networks available to this user

	
groups

	Returns a yampy.apis.GroupsAPI object which can be used to call
the Yammer API’s user-related endpoints.

	
messages

	Returns a yampy.apis.MessagesAPI object which can be used to
call the Yammer API’s message-related endpoints.

	
relationships

	Returns a yampy.apis.RelationshipsAPI object which can be used to call
the Yammer API’s relations endpoints.

	
topics

	Returns a yampy.apis.TopicsAPI object which can be used to
call the Yammer API’s topic-related endpoints.

	
users

	Returns a yampy.apis.UsersAPI object which can be used to call
the Yammer API’s user-related endpoints.

MessagesAPI object

	
class yampy.apis.MessagesAPI(client)

	Provides an interface for accessing the message related endpoints of the
Yammer API. You should not instantiate this class directly; use the
yampy.Yammer.messages() method instead.

	
__init__(client)

	Initializes a new MessagesAPI that will use the given client object
to make HTTP requests.

	
about_topic(topic_id)

	Returns the messages about a topic

	
all(older_than=None, newer_than=None, limit=None, threaded=None)

	Returns public messages from the current user’s network.

Customize the response using the keyword arguments:

	older_than – Only fetch messages older than this message ID.

	newer_than – Only fetch messages newer than this message ID.

	limit – Only fetch this many messages.

	threaded – Set to True to only receive the first message of
each thread, or to "extended" to recieve the first and two newest
messages from each thread.

	
create(body, group_id=None, replied_to_id=None, direct_to_id=None, topics=[], broadcast=None, open_graph_object={})

	Posts a new message to Yammer. Returns the new message in the same
format as the various message listing methods (all(),
sent(), etc.).

The following keyword arguments are supported:

	group_id – Send this message to the group identified by group_id.

	replied_to_id – This message is a reply to the message
identified by replied_to_id.

	direct_to_id – Send this as a direct message to the user
identified by direct_to_id.

	topics – A list of topics for the message. Topics should be
given as strings. There cannot be more than 20 topics for one message.

	broadcast – Set this to True to send a broadcast message. Only
network admins have permission to send broadcast messages.

	open_graph_object – A dict describing an open graph object to
attach to the message. It supports the following keys:

	url (required)

	title

	image

	description

	object_type

	site_name

	fetch (set to True to derive other OG data from the URL)

	meta (for custom structured data)

	
delete(message_id)

	Deletes the message identified by message_id.

	
email(message_id)

	Emails the message identified by message_id to the authenticated user.

	
find(message_id)

	Returns the message identified by the given message_id.

	
from_followed_conversations(older_than=None, newer_than=None, limit=None, threaded=None)

	Returns messages from users the current user follows, or groups
the current user belongs to.

See the all() method for a description of the keyword arguments.

	
from_group(group_id, older_than=None, newer_than=None, limit=None, threaded=None)

	Returns messages from specific group, specified with group_id.

See the all() method for a description of the keyword arguments.

	
from_my_feed(older_than=None, newer_than=None, limit=None, threaded=None)

	Returns messages from the current user’s feed. This will either
correspond to from_top_conversations() or
from_followed_conversations() depending on the user’s settings.

See the all() method for a description of the keyword arguments.

	
from_top_conversations(older_than=None, newer_than=None, limit=None, threaded=None)

	Returns messages from the current user’s top conversations.

See the all() method for a description of the keyword arguments.

	
from_user(user_id, older_than=None, newer_than=None, limit=None, threaded=None)

	Returns messages that were posted by the user identified by user_id.

See the all() method for a description of the keyword arguments.

	
in_thread(thread_id, older_than=None, newer_than=None, limit=None, threaded=None)

	Returns messages that belong to the thread identified by thread_id.

See the all() method for a description of the keyword arguments.

	
like(message_id)

	The current user likes the message identified by message_id.

	
private(older_than=None, newer_than=None, limit=None, threaded=None)

	Returns of the private messages received by the current user.

See the all() method for a description of the keyword arguments.

	
received(older_than=None, newer_than=None, limit=None, threaded=None)

	Returns messages received by the current user.

See the all() method for a description of the keyword arguments.

	
sent(older_than=None, newer_than=None, limit=None, threaded=None)

	Returns of the current user’s sent messages.

See the all() method for a description of the keyword arguments.

	
unlike(message_id)

	Removes the current user’s “like” from the message identified by
message_id.

RelationshipsAPI object

	
class yampy.apis.RelationshipsAPI(client)

	Provides an interface for accessing the relations related endpoints of the
Yammer API. You should not instantiate this class directly; use the
yampy.Yammer.relationships() method instead.

	
__init__(client)

	Initializes a new RelationshipsAPI that will use the given client object
to make HTTP requests.

	
all(user_id=None)

	Returns the relationships for the current user or the user specified

UsersAPI object

	
class yampy.apis.UsersAPI(client)

	Provides an interface for accessing the user related endpoints of the
Yammer API. You should not instantiate this class directly; use the
yampy.Yammer.users() method instead.

	
__init__(client)

	Initializes a new UsersAPI that will use the given client object
to make HTTP requests.

	
all(page=None, letter=None, sort_by=None, reverse=None)

	Returns all the users in the current user’s network.

Customize the response using the keyword arguments:

	page – Enable pagination, and return the nth page of 50 users.

	letter – Only return users whose username begins with this letter.

	sort_by – Sort users by “messages” or “followers” (default order is
alphabetical by username).

	reverse – Reverse sort order.

	
create(email_address, full_name=None, job_title=None, location=None, im=None, work_telephone=None, work_extension=None, mobile_telephone=None, significant_other=None, kids_names=None, interests=None, summary=None, expertise=None, education=None, previous_companies=None)

	Creates a new user.

Most of the parameter names are self explanatory, and accept strings. A
few expect specific formats:

	im – Provide instant messages details as a dict with provider
and username keys, e.g.
{"provider": "gtalk", "username": "me@gmail.com"}

	education – Provide education details as a list of dicts. Each
dict should have the keys: school, degree, description,
start_year and end_year.

	previous_companies – Provide previous employment details as a
list of dicts. Each dict should have the keys: company,
position, start_year, end_year.

	
delete(user_id)

	Delete the user identified by user_id.

	
find(user_id)

	Returns the user identified by the given user_id.

	
find_by_email(email_address)

	Returns the user identified by the given email_address.

	
find_current(include_group_memberships=None, include_followed_users=None, include_followed_tags=None)

	Returns the current user.

	
in_group(group_id, page=None)

	Returns all the users belonging to the group identified by the given
group_id.

Use the page parameter to enable pagination and retrieve a specific
page of users.

	
suspend(user_id)

	Suspend the user identified by user_id.

	
update(user_id, full_name=None, job_title=None, location=None, im=None, work_telephone=None, work_extension=None, mobile_telephone=None, significant_other=None, kids_names=None, interests=None, summary=None, expertise=None, education=None, previous_companies=None)

	Updates the user identified by the given user_id.

For more information on parameter formats, see the create()
method.

GroupsAPI object

	
class yampy.apis.GroupsAPI(client)

	Provides an interface for accessing the groups related endpoints of the
Yammer API. You should not instantiate this class directly; use the
yampy.Yammer.groups() method instead.

	
__init__(client)

	Initializes a new GroupsAPI that will use the given client object
to make HTTP requests.

	
all(mine=None, reverse=None)

	Returns all the groups in the current user’s network.

Customize the response using the keyword arguments:

	mine – Only return group of current user.

	reverse – return group in descending order by name.

	
create(name, private=False)

	Create a group.

Return Group info

	
delete(group_id)

	Delete a group.

Return True if success

	
find(group_id)

	Returns the group identified by the given group_id.

	
join(group_id)

	Join the group identified by the given group_id.

Return True

	
leave(group_id)

	Leave the group identified by the given group_id.

Return True

	
members(group_id, page=None, reverse=None)

	Returns the group identified by the given group_id.

Customize the response using the keyword arguments:

	page – Enable pagination, and return the nth page of 50 users.

TopicsAPI object

	
class yampy.apis.TopicsAPI(client)

	Provides an interface for accessing the topics related endpoints of the
Yammer API. You should not instantiate this class directly; use the
yampy.Yammer.topics() method instead.

	
__init__(client)

	Initializes a new TopicsAPI that will use the given client object
to make HTTP requests.

	
topic(topic_id)

	Returns the users that have used the topic specified by the numeric topic_id.

Client object

	
class yampy.client.Client(access_token=None, base_url=None, proxies=None)

	A client for the Yammer API.

	
__init__(access_token=None, base_url=None, proxies=None)

	

	
delete(path, **kwargs)

	Makes an HTTP DELETE request to the Yammer API.

The path should be the path of an API endpoint, e.g. “/messages/123”

	
get(path, **kwargs)

	Makes an HTTP GET request to the Yammer API. Any keyword arguments will
be converted to query string parameters.

The path should be the path of an API endpoint, e.g. “/messages”

	
post(path, **kwargs)

	Makes an HTTP POST request to the Yammer API. Any keyword arguments
will be sent as the body of the request.

The path should be the path of an API endpoint, e.g. “/messages”

	
put(path, **kwargs)

	Makes an HTTP PUT request to the Yammer API. Any keyword arguments will
be sent as the body of the request.

The path should be the path of an API endpoint, e.g. “/users/123”

GenericModel object

	
class yampy.models.GenericModel

	A dict subclass that provides access to its members as if they were
attributes.

Note that an attribute that has the same name as one of dict’s existing
method (keys, items, etc.) will not be accessible as an attribute.

	
classmethod from_json(json_string)

	Parses the given json_string, returning GenericModel instances instead
of dicts.

Errors

Exception classes representing error responses from the Yammer API.

	
exception yampy.errors.InvalidAccessTokenError

	Raised when a request is made with an access token that has expired or has
been revoked by the user.

	
exception yampy.errors.InvalidEducationRecordError

	Raised when creating a user with an education record that doesn’t include
all of the requried information.

	
exception yampy.errors.InvalidMessageError

	Super class for the various kinds of errors that can occur when creating
a message.

	
exception yampy.errors.InvalidOpenGraphObjectError

	Raised when an invalid Open Graph object is attached to a new message.

	
exception yampy.errors.InvalidPreviousCompanyRecord

	Raised when creating a user with a previous_companies record that doesn’t
include all of the required fields.

	
exception yampy.errors.InvalidUserError

	Super class for the various kinds of errors that can occur when creating
a user.

	
exception yampy.errors.NotFoundError

	Raised when the Yammer API responds with an HTTP 404 Not Found error.

	
exception yampy.errors.RateLimitExceededError

	Raised when a request is rejected because the rate limit has been
exceeded.

	
exception yampy.errors.ResponseError

	Raised when the Yammer API responds with an HTTP error, and there
isn’t a more specific subclass that represents the situation.

	
exception yampy.errors.TooManyTopicsError

	Raised when a message cannot be created because too many topics have been
specified.

	
exception yampy.errors.UnauthorizedError

	Raised when the Yammer API responds with an HTTP 401 Unauthorized error.
This may mean that the access token you are using is invalid.

Contributing guide

Quick overview

We love pull requests. Here’s a quick overview of the process (detail below):

	Fork the GitHub repository [https://www.github.com/yammer/yam-python].

	Run the tests. We only take pull requests with passing tests, so start with a
clean slate.

	Add a test for your new code. Only refactoring and documentation changes
require no new tests. If you are adding functionality of fixing a bug, we
need a test!

	Make the test pass.

	Push to your fork and submit a pull request.

At this point you’re waiting on us. We may suggest some changes or improvements
or alternatives. Once we approve, we will merge your branch in.

Some things that will increase the chance that your pull request is accepted:

	Follow PEP 8 [http://www.python.org/dev/peps/pep-00008/].

	Use Pythonic idioms.

	Include tests which fail without your code and pass with it.

	Update the documentation, the surrounding code, examples elsewhere, guides,
whatever is affected by your contribution.

Requirements

Please remember this is open-source, so don’t commit any passwords or API keys.
Those should go in environment variables.

Development environment setup

Fork the repo and clone the app:

git clone git@github.com:[GIT_USERNAME]/yam-python.git

Create a virtualenv:

cd yam-python
virtualenv ENV
source ENV/bin/activate

Install the development dependencies in your virtualenv:

pip install -r requirements_dev.txt

When you’ve finished working on Yampy, deactivate the virtualenv:

deactivate

Running tests

Run the whole test suite with:

nosetests

You can also pass the name of a module, class, or a path to a directory or
file:

nosetests tests.apis.messages_test.MessagesAPICreateTest
nosetests tests/apis
nosetests tests/apis/messages_test.py

There is also a live integration test suite. This shouldn’t be run frequently
during development, but is useful for checking that the assumptions made in the
client still match the live API. Since it is run against the live API and posts
real messages, it requires an access token and shouldn’t be run against an
account that you are actively using. Run the live integration tests with:

YAMMER_ACCESS_TOKEN=abc123xyz nosetests livetests

Development process

For details and screenshots of the feature branch code review process, read
this blog post [http://robots.thoughtbot.com/post/2831837714/feature-branch-code-reviews].

 Python Module Index

 y

 		 	

 		
 y	

 	[image: -]
 	
 yampy	

 	
 	
 yampy.apis	

 	
 	
 yampy.client	

 	
 	
 yampy.errors	

 	
 	
 yampy.models	

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | Y

_

 	
 	__init__() (yampy.apis.GroupsAPI method)

 	(yampy.Authenticator method)

 	(yampy.Yammer method)

 	(yampy.apis.MessagesAPI method)

 	(yampy.apis.RelationshipsAPI method)

 	(yampy.apis.TopicsAPI method)

 	(yampy.apis.UsersAPI method)

 	(yampy.client.Client method)

A

 	
 	about_topic() (yampy.apis.MessagesAPI method)

 	all() (yampy.apis.GroupsAPI method)

 	(yampy.apis.MessagesAPI method)

 	(yampy.apis.RelationshipsAPI method)

 	(yampy.apis.UsersAPI method)

 	
 	Authenticator (class in yampy)

 	authorization_url() (yampy.Authenticator method)

C

 	
 	Client (class in yampy.client)

 	client (yampy.Yammer attribute)

 	create() (yampy.apis.GroupsAPI method)

 	(yampy.apis.MessagesAPI method)

 	(yampy.apis.UsersAPI method)

 	
 	current_network() (yampy.Yammer method)

D

 	
 	delete() (yampy.apis.GroupsAPI method)

 	(yampy.apis.MessagesAPI method)

 	(yampy.apis.UsersAPI method)

 	(yampy.client.Client method)

E

 	
 	email() (yampy.apis.MessagesAPI method)

F

 	
 	fetch_access_data() (yampy.Authenticator method)

 	fetch_access_token() (yampy.Authenticator method)

 	find() (yampy.apis.GroupsAPI method)

 	(yampy.apis.MessagesAPI method)

 	(yampy.apis.UsersAPI method)

 	find_by_email() (yampy.apis.UsersAPI method)

 	
 	find_current() (yampy.apis.UsersAPI method)

 	from_followed_conversations() (yampy.apis.MessagesAPI method)

 	from_group() (yampy.apis.MessagesAPI method)

 	from_json() (yampy.models.GenericModel class method)

 	from_my_feed() (yampy.apis.MessagesAPI method)

 	from_top_conversations() (yampy.apis.MessagesAPI method)

 	from_user() (yampy.apis.MessagesAPI method)

G

 	
 	GenericModel (class in yampy.models)

 	get() (yampy.client.Client method)

 	
 	groups (yampy.Yammer attribute)

 	GroupsAPI (class in yampy.apis)

I

 	
 	in_group() (yampy.apis.UsersAPI method)

 	in_thread() (yampy.apis.MessagesAPI method)

 	InvalidAccessTokenError

 	InvalidEducationRecordError

 	
 	InvalidMessageError

 	InvalidOpenGraphObjectError

 	InvalidPreviousCompanyRecord

 	InvalidUserError

J

 	
 	join() (yampy.apis.GroupsAPI method)

L

 	
 	leave() (yampy.apis.GroupsAPI method)

 	
 	like() (yampy.apis.MessagesAPI method)

M

 	
 	members() (yampy.apis.GroupsAPI method)

 	
 	messages (yampy.Yammer attribute)

 	MessagesAPI (class in yampy.apis)

N

 	
 	NotFoundError

P

 	
 	post() (yampy.client.Client method)

 	
 	private() (yampy.apis.MessagesAPI method)

 	put() (yampy.client.Client method)

R

 	
 	RateLimitExceededError

 	received() (yampy.apis.MessagesAPI method)

 	
 	relationships (yampy.Yammer attribute)

 	RelationshipsAPI (class in yampy.apis)

 	ResponseError

S

 	
 	sent() (yampy.apis.MessagesAPI method)

 	
 	suspend() (yampy.apis.UsersAPI method)

T

 	
 	TooManyTopicsError

 	topic() (yampy.apis.TopicsAPI method)

 	
 	topics (yampy.Yammer attribute)

 	TopicsAPI (class in yampy.apis)

U

 	
 	UnauthorizedError

 	unlike() (yampy.apis.MessagesAPI method)

 	
 	update() (yampy.apis.UsersAPI method)

 	users (yampy.Yammer attribute)

 	UsersAPI (class in yampy.apis)

Y

 	
 	Yammer (class in yampy)

 	yampy (module), [1]

 	yampy.apis (module), [1], [2], [3], [4]

 	
 	yampy.client (module)

 	yampy.errors (module)

 	yampy.models (module)

 nav.xhtml

 Table of Contents

 		Welcome to Yampy

 		Quickstart guide

 		Authentication

 		Making requests

 		Messages

 		Users

 		Groups

 		Other API endpoints

 		API documentation

 		Authenticator object

 		Yammer object

 		MessagesAPI object

 		RelationshipsAPI object

 		UsersAPI object

 		GroupsAPI object

 		TopicsAPI object

 		Client object

 		GenericModel object

 		Errors

 		Contributing guide

 		Quick overview

 		Requirements

 		Development environment setup

 		Running tests

 		Development process

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

