

Welcome to yail’s documentation!

Contents:

	Readme

	Installation

	Usage

	API

	Contributing

Indices and tables

	Index

	Module Index

	Search Page

yail

[image: PyPI]
 [https://pypi.python.org/pypi/yail][image: conda-forge]
 [https://anaconda.org/conda-forge/yail][image: Travis CI]
 [https://travis-ci.org/jakirkham/yail][image: Read the Docs]
 [https://yail.readthedocs.io/en/latest/?badge=latest][image: Coveralls]
 [https://coveralls.io/github/jakirkham/yail][image: License]
Yet Another Iterator Library for Python.

	Free software: BSD 3-Clause

	Documentation: https://yail.readthedocs.io.

Features

	TODO

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the nanshe-org/nanshe-cookiecutter [https://github.com/nanshe-org/nanshe-cookiecutter] project template.

Installation

Stable release

To install yail, run this command in your terminal:

$ pip install yail

This is the preferred method to install yail, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for yail can be downloaded from the Github repo [https://github.com/jakirkham/yail].

You can either clone the public repository:

$ git clone git://github.com/jakirkham/yail

Or download the tarball [https://github.com/jakirkham/yail/tarball/master]:

$ curl -OL https://github.com/jakirkham/yail/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use yail in a project:

import yail

API

	yail package
	Submodules
	yail.core module

yail package

Submodules

	yail.core module

yail.core module

	
yail.core.cycles(seq, n=1)

	Cycles through the sequence n-times.

Basically the same as itertools.cycle except that this sets
an upper limit on how many cycles will be done.

Note

If n is None, this is identical to itertools.cycle.

	Parameters:	
	seq (iterable) – The sequence to grab items from.

	n (integral) – Number of times to cycle through.

	Returns:	The cycled sequence generator.

	Return type:	generator

Examples

>>> list(cycles([1, 2, 3], 2))
[1, 2, 3, 1, 2, 3]

	
yail.core.disperse(seq)

	Similar to range except that it recursively proceeds through the given
range in such a way that values that follow each other are preferably
not only non-sequential, but fairly different. This does not always
work with small ranges, but works nicely with large ranges.

	Parameters:	
	a (int) – the lower bound of the range

	b (int) – the upper bound of the range

	Returns:	
	a generator that can be used to iterate

	through the sequence.

	Return type:	result(generator)

Examples

>>> list(disperse(range(10)))
[0, 5, 8, 3, 9, 4, 6, 1, 7, 2]

	
yail.core.duplicate(seq, n=1)

	Gets each element multiple times.

Like itertools.repeat this will repeat each element n-times.
However, it will do this for each element of the sequence.

	Parameters:	
	seq (iterable) – The sequence to grab items from.

	n (integral) – Number of repeats for each element.

	Returns:	A generator of repeated elements.

	Return type:	generator

Examples

>>> list(duplicate([1, 2, 3], 2))
[1, 1, 2, 2, 3, 3]

	
yail.core.empty()

	Creates an empty iterator.

Examples

>>> list(empty())
[]

	
yail.core.generator(it)

	Creates a generator type from the iterable.

	Parameters:	it (iterable) – An iterable to make a generator.

	Returns:	A generator made from the iterable.

	Return type:	generator

Examples

>>> generator(range(5))
<generator object generator at 0x...>

>>> list(generator(range(5)))
[0, 1, 2, 3, 4]

	
yail.core.indices(*sizes)

	Iterates over a length/shape.

Takes a size or sizes (unpacked shape) and iterates through all
combinations of the indices.

	Parameters:	*sizes (int) – list of sizes to iterate over.

	Returns:	an iterator over the sizes.

	Return type:	iterable

Examples

>>> list(indices(3, 2))
[(0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1)]

	
yail.core.pad(seq, before=0, after=0, fill=None)

	Pads a sequence by a fill value before and/or after.

Pads the sequence before and after using the fill value provided
by fill up to the lengths specified by before and
after. If either before or after is None, pad
the fill value infinitely on the respective end.

Note

If before``is ``None, the sequence will only be the fill
value.

	Parameters:	
	seq (iterable) – Sequence to pad.

	before (integral) – Amount to pad before.

	after (integral) – Amount to pad after.

	fill (any) – Some value to pad with.

	Returns:	A sequence that has been padded.

	Return type:	iterable

Examples

>>> list(pad(range(2, 4), before=1, after=2, fill=0))
[0, 2, 3, 0, 0]

	
yail.core.single(val)

	Creates an iterator with a single value.

	Parameters:	val (any) – Single value to add to the iterator.

	Returns:	An iterable yielding the single value.

	Return type:	iterable

Examples

>>> list(single(1))
[1]

	
yail.core.sliding_window_filled(seq, n, pad_before=False, pad_after=False, fillvalue=None)

	A sliding window with optional padding on either end..

	Parameters:	
	seq (iter) – an iterator or something that can
be turned into an iterator

	n (int) – number of generators to create as
lagged

	pad_before (bool) – whether to continue zipping along
the longest generator

	pad_after (bool) – whether to continue zipping along
the longest generator

	fillvalue – value to use to fill generators
shorter than the longest.

	Returns:	
	a generator object that will return

	values from each iterator.

	Return type:	generator object

Examples

>>> list(sliding_window_filled(range(5), 2))
[(0, 1), (1, 2), (2, 3), (3, 4)]

>>> list(sliding_window_filled(range(5), 2, pad_after=True))
[(0, 1), (1, 2), (2, 3), (3, 4), (4, None)]

>>> list(sliding_window_filled(range(5), 2, pad_before=True, pad_after=True))
[(None, 0), (0, 1), (1, 2), (2, 3), (3, 4), (4, None)]

	
yail.core.split(n, seq)

	Splits the sequence around element n.

Provides 3 ``iterable``s in return.

	Everything before the n-th value.

	An iterable with just the n-th value.

	Everything after the n-th value.

	Parameters:	
	n (integral) – Index to split the iterable at.

	seq (iterable) – The sequence to split.

	Returns:	
	Each portion of the iterable

	around the index.

	Return type:	tuple of ``iterable``s

Examples

>>> list(map(tuple, split(2, range(5))))
[(0, 1), (2,), (3, 4)]

>>> list(map(tuple, split(2, [10, 20, 30, 40, 50])))
[(10, 20), (30,), (40, 50)]

	
yail.core.subrange(start, stop=None, step=None, substep=None)

	Generates start and stop values for each subrange.

	Parameters:	
	start (int) – First value in range (or last if only
specified value)

	stop (int) – Last value in range

	step (int) – Step between each range

	substep (int) – Step within each range

	Yields:	range – A subrange within the larger range.

Examples

>>> list(map(list, subrange(5)))
[[0], [1], [2], [3], [4]]

>>> list(map(list, subrange(0, 12, 3, 2)))
[[0, 2], [3, 5], [6, 8], [9, 11]]

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/jakirkham/yail/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

yail could always use more documentation, whether as part of the
official yail docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/jakirkham/yail/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up yail for local development.

	Fork the yail repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/yail.git

	Install your local copy into an environment. Assuming you have conda installed, this is how you set up your fork for local development (on Windows drop source). Replace “<some version>” with the Python version used for testing.:

$ conda create -n yailenv python="<some version>"
$ source activate yailenv
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions:

$ flake8 yail tests
$ python setup.py test or py.test

To get flake8, just conda install it into your environment.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.4, 3.5, and 3.6. Check
https://travis-ci.org/jakirkham/yail/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_yail

 Python Module Index

 y

 		 	

 		
 y	

 	[image: -]
 	
 yail	

 	
 	
 yail.core	

Index

 C
 | D
 | E
 | G
 | I
 | P
 | S
 | Y

C

 	
 	cycles() (in module yail.core)

D

 	
 	disperse() (in module yail.core)

 	
 	duplicate() (in module yail.core)

E

 	
 	empty() (in module yail.core)

G

 	
 	generator() (in module yail.core)

I

 	
 	indices() (in module yail.core)

P

 	
 	pad() (in module yail.core)

S

 	
 	single() (in module yail.core)

 	sliding_window_filled() (in module yail.core)

 	
 	split() (in module yail.core)

 	subrange() (in module yail.core)

Y

 	
 	yail (module)

 	
 	yail.core (module)

History

0.1.0 (2016-10-20)

	First release on PyPI.

Credits

Development Lead

	John Kirkham <kirkhamj@janelia.hhmi.org>

Contributors

None yet. Why not be the first?

 _static/comment-close.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

_static/file.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Welcome to yail's documentation!

 		Readme

 		Features

 		Credits

 		Installation

 		Stable release

 		From sources

 		Usage

 		API

 		yail package

 		Submodules

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		Tips

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

