

Scrapy 1.5 中文文档

本文涵盖了所有你想了解的Scrapy知识。

获取帮助

可以尝试以下途径来解决你遇到的问题

	Try the FAQ – it’s got answers to some common questions.

	Looking for specific information? Try the Index or Module Index.

	Ask or search questions in StackOverflow using the scrapy tag [https://stackoverflow.com/tags/scrapy].

	Ask or search questions in the Scrapy subreddit [https://www.reddit.com/r/scrapy/].

	Search for questions on the archives of the scrapy-users mailing list [https://groups.google.com/forum/#!forum/scrapy-users].

	Ask a question in the #scrapy IRC channel,

	Report bugs with Scrapy in our issue tracker [https://github.com/scrapy/scrapy/issues].

开始

	Scrapy 概览

	Understand what Scrapy is and how it can help you.

	安装指南

	Get Scrapy installed on your computer.

	Scrapy 教程

	Write your first Scrapy project.

	Examples

	Learn more by playing with a pre-made Scrapy project.

Basic concepts

	Command line tool

	Learn about the command-line tool used to manage your Scrapy project.

	Spiders

	Write the rules to crawl your websites.

	Selectors

	Extract the data from web pages using XPath.

	Scrapy shell

	Test your extraction code in an interactive environment.

	Items

	Define the data you want to scrape.

	Item Loaders

	Populate your items with the extracted data.

	Item Pipeline

	Post-process and store your scraped data.

	Feed exports

	Output your scraped data using different formats and storages.

	Requests and Responses

	Understand the classes used to represent HTTP requests and responses.

	Link Extractors

	Convenient classes to extract links to follow from pages.

	Settings

	Learn how to configure Scrapy and see all available settings.

	Exceptions

	See all available exceptions and their meaning.

Built-in services

	Logging

	Learn how to use Python’s builtin logging on Scrapy.

	Stats Collection

	Collect statistics about your scraping crawler.

	Sending e-mail

	Send email notifications when certain events occur.

	Telnet Console

	Inspect a running crawler using a built-in Python console.

	Web Service

	Monitor and control a crawler using a web service.

Solving specific problems

	Frequently Asked Questions

	Get answers to most frequently asked questions.

	Debugging Spiders

	Learn how to debug common problems of your scrapy spider.

	Spiders Contracts

	Learn how to use contracts for testing your spiders.

	Common Practices

	Get familiar with some Scrapy common practices.

	Broad Crawls

	Tune Scrapy for crawling a lot domains in parallel.

	Using your browser’s Developer Tools for scraping

	Learn how to scrape with your browser’s developer tools.

	Debugging memory leaks

	Learn how to find and get rid of memory leaks in your crawler.

	Downloading and processing files and images

	Download files and/or images associated with your scraped items.

	Deploying Spiders

	Deploying your Scrapy spiders and run them in a remote server.

	AutoThrottle extension

	Adjust crawl rate dynamically based on load.

	Benchmarking

	Check how Scrapy performs on your hardware.

	Jobs: pausing and resuming crawls

	Learn how to pause and resume crawls for large spiders.

Extending Scrapy

	Architecture overview

	Understand the Scrapy architecture.

	Downloader Middleware

	Customize how pages get requested and downloaded.

	Spider Middleware

	Customize the input and output of your spiders.

	Extensions

	Extend Scrapy with your custom functionality

	Core API

	Use it on extensions and middlewares to extend Scrapy functionality

	Signals

	See all available signals and how to work with them.

	Item Exporters

	Quickly export your scraped items to a file (XML, CSV, etc).

Scrapy 概览

Scrapy是一个用于爬行web站点和提取结构化数据的应用程序框架，可用于各种有用的应用程序，如数据挖掘、信息处理或历史档案。

Even though Scrapy was originally designed for web scraping [https://en.wikipedia.org/wiki/Web_scraping], it can also be
used to extract data using APIs (such as Amazon Associates Web Services [https://affiliate-program.amazon.com/gp/advertising/api/detail/main.html]) or
as a general purpose web crawler.

Walk-through of an example spider

In order to show you what Scrapy brings to the table, we’ll walk you through an
example of a Scrapy Spider using the simplest way to run a spider.

Here’s the code for a spider that scrapes famous quotes from website
http://quotes.toscrape.com, following the pagination:

import scrapy

class QuotesSpider(scrapy.Spider):
 name = "quotes"
 start_urls = [
 'http://quotes.toscrape.com/tag/humor/',
]

 def parse(self, response):
 for quote in response.css('div.quote'):
 yield {
 'text': quote.css('span.text::text').extract_first(),
 'author': quote.xpath('span/small/text()').extract_first(),
 }

 next_page = response.css('li.next a::attr("href")').extract_first()
 if next_page is not None:
 yield response.follow(next_page, self.parse)

Put this in a text file, name it to something like quotes_spider.py
and run the spider using the runspider command:

scrapy runspider quotes_spider.py -o quotes.json

When this finishes you will have in the quotes.json file a list of the
quotes in JSON format, containing text and author, looking like this (reformatted
here for better readability):

[{
 "author": "Jane Austen",
 "text": "\u201cThe person, be it gentleman or lady, who has not pleasure in a good novel, must be intolerably stupid.\u201d"
},
{
 "author": "Groucho Marx",
 "text": "\u201cOutside of a dog, a book is man's best friend. Inside of a dog it's too dark to read.\u201d"
},
{
 "author": "Steve Martin",
 "text": "\u201cA day without sunshine is like, you know, night.\u201d"
},
...]

What just happened?

When you ran the command scrapy runspider quotes_spider.py, Scrapy looked for a
Spider definition inside it and ran it through its crawler engine.

The crawl started by making requests to the URLs defined in the start_urls
attribute (in this case, only the URL for quotes in humor category)
and called the default callback method parse, passing the response object as
an argument. In the parse callback, we loop through the quote elements
using a CSS Selector, yield a Python dict with the extracted quote text and author,
look for a link to the next page and schedule another request using the same
parse method as callback.

Here you notice one of the main advantages about Scrapy: requests are
scheduled and processed asynchronously. This
means that Scrapy doesn’t need to wait for a request to be finished and
processed, it can send another request or do other things in the meantime. This
also means that other requests can keep going even if some request fails or an
error happens while handling it.

While this enables you to do very fast crawls (sending multiple concurrent
requests at the same time, in a fault-tolerant way) Scrapy also gives you
control over the politeness of the crawl through a few settings. You can do things like setting a download delay between
each request, limiting amount of concurrent requests per domain or per IP, and
even using an auto-throttling extension that tries
to figure out these automatically.

Note

This is using feed exports to generate the
JSON file, you can easily change the export format (XML or CSV, for example) or the
storage backend (FTP or Amazon S3 [https://aws.amazon.com/s3/], for example). You can also write an
item pipeline to store the items in a database.

What else?

You’ve seen how to extract and store items from a website using Scrapy, but
this is just the surface. Scrapy provides a lot of powerful features for making
scraping easy and efficient, such as:

	Built-in support for selecting and extracting data
from HTML/XML sources using extended CSS selectors and XPath expressions,
with helper methods to extract using regular expressions.

	An interactive shell console (IPython aware) for trying
out the CSS and XPath expressions to scrape data, very useful when writing or
debugging your spiders.

	Built-in support for generating feed exports in
multiple formats (JSON, CSV, XML) and storing them in multiple backends (FTP,
S3, local filesystem)

	Robust encoding support and auto-detection, for dealing with foreign,
non-standard and broken encoding declarations.

	Strong extensibility support, allowing you to plug
in your own functionality using signals and a
well-defined API (middlewares, extensions, and
pipelines).

	Wide range of built-in extensions and middlewares for handling:

	cookies and session handling

	HTTP features like compression, authentication, caching

	user-agent spoofing

	robots.txt

	crawl depth restriction

	and more

	A Telnet console for hooking into a Python
console running inside your Scrapy process, to introspect and debug your
crawler

	Plus other goodies like reusable spiders to crawl sites from Sitemaps [https://www.sitemaps.org/index.html] and
XML/CSV feeds, a media pipeline for automatically downloading images (or any other media) associated with the scraped
items, a caching DNS resolver, and much more!

What’s next?

The next steps for you are to install Scrapy,
follow through the tutorial to learn how to create
a full-blown Scrapy project and join the community [https://scrapy.org/community/]. Thanks for your
interest!

安装指南

安装 Scrapy

Scrapy 运行在 Python 2.7 和 Python 3.4 或更高版本
under CPython (default Python implementation) and PyPy (starting with PyPy 5.9).

If you’re using Anaconda [https://docs.anaconda.com/anaconda/] or Miniconda [https://conda.io/docs/user-guide/install/index.html], you can install the package from
the conda-forge [https://conda-forge.org/] channel, which has up-to-date packages for Linux, Windows
and OS X.

To install Scrapy using conda, run:

conda install -c conda-forge scrapy

Alternatively, if you’re already familiar with installation of Python packages,
you can install Scrapy and its dependencies from PyPI with:

pip install Scrapy

Note that sometimes this may require solving compilation issues for some Scrapy
dependencies depending on your operating system, so be sure to check the
Platform specific installation notes.

We strongly recommend that you install Scrapy in a dedicated virtualenv,
to avoid conflicting with your system packages.

For more detailed and platform specifics instructions, read on.

Things that are good to know

Scrapy is written in pure Python and depends on a few key Python packages (among others):

	lxml [http://lxml.de/], an efficient XML and HTML parser

	parsel [https://pypi.python.org/pypi/parsel], an HTML/XML data extraction library written on top of lxml,

	w3lib [https://pypi.python.org/pypi/w3lib], a multi-purpose helper for dealing with URLs and web page encodings

	twisted [https://twistedmatrix.com/], an asynchronous networking framework

	cryptography [https://cryptography.io/] and pyOpenSSL [https://pypi.python.org/pypi/pyOpenSSL], to deal with various network-level security needs

The minimal versions which Scrapy is tested against are:

	Twisted 14.0

	lxml 3.4

	pyOpenSSL 0.14

Scrapy may work with older versions of these packages
but it is not guaranteed it will continue working
because it’s not being tested against them.

Some of these packages themselves depends on non-Python packages
that might require additional installation steps depending on your platform.
Please check platform-specific guides below.

In case of any trouble related to these dependencies,
please refer to their respective installation instructions:

	lxml installation [http://lxml.de/installation.html]

	cryptography installation [https://cryptography.io/en/latest/installation/]

Using a virtual environment (recommended)

TL;DR: We recommend installing Scrapy inside a virtual environment
on all platforms.

Python packages can be installed either globally (a.k.a system wide),
or in user-space. We do not recommend installing scrapy system wide.

Instead, we recommend that you install scrapy within a so-called
“virtual environment” (virtualenv [https://virtualenv.pypa.io]).
Virtualenvs allow you to not conflict with already-installed Python
system packages (which could break some of your system tools and scripts),
and still install packages normally with pip (without sudo and the likes).

To get started with virtual environments, see virtualenv installation instructions [https://virtualenv.pypa.io/en/stable/installation/].
To install it globally (having it globally installed actually helps here),
it should be a matter of running:

$ [sudo] pip install virtualenv

Check this user guide [https://virtualenv.pypa.io/en/stable/userguide/] on how to create your virtualenv.

Note

If you use Linux or OS X, virtualenvwrapper [https://virtualenvwrapper.readthedocs.io/en/latest/install.html] is a handy tool to create virtualenvs.

Once you have created a virtualenv, you can install scrapy inside it with pip,
just like any other Python package.
(See platform-specific guides
below for non-Python dependencies that you may need to install beforehand).

Python virtualenvs can be created to use Python 2 by default, or Python 3 by default.

	If you want to install scrapy with Python 3, install scrapy within a Python 3 virtualenv.

	And if you want to install scrapy with Python 2, install scrapy within a Python 2 virtualenv.

Platform specific installation notes

Windows

Though it’s possible to install Scrapy on Windows using pip, we recommend you
to install Anaconda [https://docs.anaconda.com/anaconda/] or Miniconda [https://conda.io/docs/user-guide/install/index.html] and use the package from the
conda-forge [https://conda-forge.org/] channel, which will avoid most installation issues.

Once you’ve installed Anaconda [https://docs.anaconda.com/anaconda/] or Miniconda [https://conda.io/docs/user-guide/install/index.html], install Scrapy with:

conda install -c conda-forge scrapy

Ubuntu 14.04 or above

Scrapy is currently tested with recent-enough versions of lxml,
twisted and pyOpenSSL, and is compatible with recent Ubuntu distributions.
But it should support older versions of Ubuntu too, like Ubuntu 14.04,
albeit with potential issues with TLS connections.

Don’t use the python-scrapy package provided by Ubuntu, they are
typically too old and slow to catch up with latest Scrapy.

To install scrapy on Ubuntu (or Ubuntu-based) systems, you need to install
these dependencies:

sudo apt-get install python-dev python-pip libxml2-dev libxslt1-dev zlib1g-dev libffi-dev libssl-dev

	python-dev, zlib1g-dev, libxml2-dev and libxslt1-dev
are required for lxml

	libssl-dev and libffi-dev are required for cryptography

If you want to install scrapy on Python 3, you’ll also need Python 3 development headers:

sudo apt-get install python3 python3-dev

Inside a virtualenv,
you can install Scrapy with pip after that:

pip install scrapy

Note

The same non-Python dependencies can be used to install Scrapy in Debian
Jessie (8.0) and above.

Mac OS X

Building Scrapy’s dependencies requires the presence of a C compiler and
development headers. On OS X this is typically provided by Apple’s Xcode
development tools. To install the Xcode command line tools open a terminal
window and run:

xcode-select --install

There’s a known issue [https://github.com/pypa/pip/issues/2468] that
prevents pip from updating system packages. This has to be addressed to
successfully install Scrapy and its dependencies. Here are some proposed
solutions:

	(Recommended) Don’t use system python, install a new, updated version
that doesn’t conflict with the rest of your system. Here’s how to do it using
the homebrew [https://brew.sh/] package manager:

	Install homebrew [https://brew.sh/] following the instructions in https://brew.sh/

	Update your PATH variable to state that homebrew packages should be
used before system packages (Change .bashrc to .zshrc accordantly
if you’re using zsh [https://www.zsh.org/] as default shell):

echo "export PATH=/usr/local/bin:/usr/local/sbin:$PATH" >> ~/.bashrc

	Reload .bashrc to ensure the changes have taken place:

source ~/.bashrc

	Install python:

brew install python

	Latest versions of python have pip bundled with them so you won’t need
to install it separately. If this is not the case, upgrade python:

brew update; brew upgrade python

	(Optional) Install Scrapy inside an isolated python environment.

This method is a workaround for the above OS X issue, but it’s an overall
good practice for managing dependencies and can complement the first method.

virtualenv [https://virtualenv.pypa.io] is a tool you can use to create virtual environments in python.
We recommended reading a tutorial like
http://docs.python-guide.org/en/latest/dev/virtualenvs/ to get started.

After any of these workarounds you should be able to install Scrapy:

pip install Scrapy

PyPy

We recommend using the latest PyPy version. The version tested is 5.9.0.
For PyPy3, only Linux installation was tested.

Most scrapy dependencides now have binary wheels for CPython, but not for PyPy.
This means that these dependecies will be built during installation.
On OS X, you are likely to face an issue with building Cryptography dependency,
solution to this problem is described
here [https://github.com/pyca/cryptography/issues/2692#issuecomment-272773481],
that is to brew install openssl and then export the flags that this command
recommends (only needed when installing scrapy). Installing on Linux has no special
issues besides installing build dependencies.
Installing scrapy with PyPy on Windows is not tested.

You can check that scrapy is installed correctly by running scrapy bench.
If this command gives errors such as
TypeError: ... got 2 unexpected keyword arguments, this means
that setuptools was unable to pick up one PyPy-specific dependency.
To fix this issue, run pip install 'PyPyDispatcher>=2.1.0'.

Scrapy 教程

In this tutorial, we’ll assume that Scrapy is already installed on your system.
If that’s not the case, see 安装指南.

 Examples

Examples

The best way to learn is with examples, and Scrapy is no exception. For this
reason, there is an example Scrapy project named quotesbot [https://github.com/scrapy/quotesbot], that you can use to
play and learn more about Scrapy. It contains two spiders for
http://quotes.toscrape.com, one using CSS selectors and another one using XPath
expressions.

The quotesbot [https://github.com/scrapy/quotesbot] project is available at: https://github.com/scrapy/quotesbot.
You can find more information about it in the project’s README.

If you’re familiar with git, you can checkout the code. Otherwise you can
download the project as a zip file by clicking
here [https://github.com/scrapy/quotesbot/archive/master.zip].

 Command line tool

Command line tool

New in version 0.10.

Scrapy is controlled through the scrapy command-line tool, to be referred
here as the “Scrapy tool” to differentiate it from the sub-commands, which we
just call “commands” or “Scrapy commands”.

The Scrapy tool provides several commands, for multiple purposes, and each one
accepts a different set of arguments and options.

(The scrapy deploy command has been removed in 1.0 in favor of the
standalone scrapyd-deploy. See Deploying your project [https://scrapyd.readthedocs.io/en/latest/deploy.html].)

Configuration settings

Scrapy will look for configuration parameters in ini-style scrapy.cfg files
in standard locations:

	/etc/scrapy.cfg or c:\scrapy\scrapy.cfg (system-wide),

	~/.config/scrapy.cfg ($XDG_CONFIG_HOME) and ~/.scrapy.cfg ($HOME)
for global (user-wide) settings, and

	scrapy.cfg inside a scrapy project’s root (see next section).

Settings from these files are merged in the listed order of preference:
user-defined values have higher priority than system-wide defaults
and project-wide settings will override all others, when defined.

Scrapy also understands, and can be configured through, a number of environment
variables. Currently these are:

	SCRAPY_SETTINGS_MODULE (see Designating the settings)

	SCRAPY_PROJECT

	SCRAPY_PYTHON_SHELL (see Scrapy shell)

Default structure of Scrapy projects

Before delving into the command-line tool and its sub-commands, let’s first
understand the directory structure of a Scrapy project.

Though it can be modified, all Scrapy projects have the same file
structure by default, similar to this:

scrapy.cfg
myproject/
 __init__.py
 items.py
 middlewares.py
 pipelines.py
 settings.py
 spiders/
 __init__.py
 spider1.py
 spider2.py
 ...

The directory where the scrapy.cfg file resides is known as the project
root directory. That file contains the name of the python module that defines
the project settings. Here is an example:

[settings]
default = myproject.settings

Using the scrapy tool

You can start by running the Scrapy tool with no arguments and it will print
some usage help and the available commands:

Scrapy X.Y - no active project

Usage:
 scrapy <command> [options] [args]

Available commands:
 crawl Run a spider
 fetch Fetch a URL using the Scrapy downloader
[...]

The first line will print the currently active project if you’re inside a
Scrapy project. In this example it was run from outside a project. If run from inside
a project it would have printed something like this:

Scrapy X.Y - project: myproject

Usage:
 scrapy <command> [options] [args]

[...]

Creating projects

The first thing you typically do with the scrapy tool is create your Scrapy
project:

scrapy startproject myproject [project_dir]

That will create a Scrapy project under the project_dir directory.
If project_dir wasn’t specified, project_dir will be the same as myproject.

Next, you go inside the new project directory:

cd project_dir

And you’re ready to use the scrapy command to manage and control your
project from there.

Controlling projects

You use the scrapy tool from inside your projects to control and manage
them.

For example, to create a new spider:

scrapy genspider mydomain mydomain.com

Some Scrapy commands (like crawl) must be run from inside a Scrapy
project. See the commands reference below for more
information on which commands must be run from inside projects, and which not.

Also keep in mind that some commands may have slightly different behaviours
when running them from inside projects. For example, the fetch command will use
spider-overridden behaviours (such as the user_agent attribute to override
the user-agent) if the url being fetched is associated with some specific
spider. This is intentional, as the fetch command is meant to be used to
check how spiders are downloading pages.

Available tool commands

This section contains a list of the available built-in commands with a
description and some usage examples. Remember, you can always get more info
about each command by running:

scrapy <command> -h

And you can see all available commands with:

scrapy -h

There are two kinds of commands, those that only work from inside a Scrapy
project (Project-specific commands) and those that also work without an active
Scrapy project (Global commands), though they may behave slightly different
when running from inside a project (as they would use the project overridden
settings).

Global commands:

	startproject

	genspider

	settings

	runspider

	shell

	fetch

	view

	version

Project-only commands:

	crawl

	check

	list

	edit

	parse

	bench

startproject

	Syntax: scrapy startproject <project_name> [project_dir]

	Requires project: no

Creates a new Scrapy project named project_name, under the project_dir
directory.
If project_dir wasn’t specified, project_dir will be the same as project_name.

Usage example:

$ scrapy startproject myproject

genspider

	Syntax: scrapy genspider [-t template] <name> <domain>

	Requires project: no

Create a new spider in the current folder or in the current project’s spiders folder, if called from inside a project. The <name> parameter is set as the spider’s name, while <domain> is used to generate the allowed_domains and start_urls spider’s attributes.

Usage example:

$ scrapy genspider -l
Available templates:
 basic
 crawl
 csvfeed
 xmlfeed

$ scrapy genspider example example.com
Created spider 'example' using template 'basic'

$ scrapy genspider -t crawl scrapyorg scrapy.org
Created spider 'scrapyorg' using template 'crawl'

This is just a convenience shortcut command for creating spiders based on
pre-defined templates, but certainly not the only way to create spiders. You
can just create the spider source code files yourself, instead of using this
command.

crawl

	Syntax: scrapy crawl <spider>

	Requires project: yes

Start crawling using a spider.

Usage examples:

$ scrapy crawl myspider
[... myspider starts crawling ...]

check

	Syntax: scrapy check [-l] <spider>

	Requires project: yes

Run contract checks.

Usage examples:

$ scrapy check -l
first_spider
 * parse
 * parse_item
second_spider
 * parse
 * parse_item

$ scrapy check
[FAILED] first_spider:parse_item
>>> 'RetailPricex' field is missing

[FAILED] first_spider:parse
>>> Returned 92 requests, expected 0..4

list

	Syntax: scrapy list

	Requires project: yes

List all available spiders in the current project. The output is one spider per
line.

Usage example:

$ scrapy list
spider1
spider2

edit

	Syntax: scrapy edit <spider>

	Requires project: yes

Edit the given spider using the editor defined in the EDITOR environment
variable or (if unset) the :setting:`EDITOR` setting.

This command is provided only as a convenience shortcut for the most common
case, the developer is of course free to choose any tool or IDE to write and
debug spiders.

Usage example:

$ scrapy edit spider1

fetch

	Syntax: scrapy fetch <url>

	Requires project: no

Downloads the given URL using the Scrapy downloader and writes the contents to
standard output.

The interesting thing about this command is that it fetches the page how the
spider would download it. For example, if the spider has a USER_AGENT
attribute which overrides the User Agent, it will use that one.

So this command can be used to “see” how your spider would fetch a certain page.

If used outside a project, no particular per-spider behaviour would be applied
and it will just use the default Scrapy downloader settings.

Supported options:

	--spider=SPIDER: bypass spider autodetection and force use of specific spider

	--headers: print the response’s HTTP headers instead of the response’s body

	--no-redirect: do not follow HTTP 3xx redirects (default is to follow them)

Usage examples:

$ scrapy fetch --nolog http://www.example.com/some/page.html
[... html content here ...]

$ scrapy fetch --nolog --headers http://www.example.com/
{'Accept-Ranges': ['bytes'],
 'Age': ['1263 '],
 'Connection': ['close '],
 'Content-Length': ['596'],
 'Content-Type': ['text/html; charset=UTF-8'],
 'Date': ['Wed, 18 Aug 2010 23:59:46 GMT'],
 'Etag': ['"573c1-254-48c9c87349680"'],
 'Last-Modified': ['Fri, 30 Jul 2010 15:30:18 GMT'],
 'Server': ['Apache/2.2.3 (CentOS)']}

view

	Syntax: scrapy view <url>

	Requires project: no

Opens the given URL in a browser, as your Scrapy spider would “see” it.
Sometimes spiders see pages differently from regular users, so this can be used
to check what the spider “sees” and confirm it’s what you expect.

Supported options:

	--spider=SPIDER: bypass spider autodetection and force use of specific spider

	--no-redirect: do not follow HTTP 3xx redirects (default is to follow them)

Usage example:

$ scrapy view http://www.example.com/some/page.html
[... browser starts ...]

shell

	Syntax: scrapy shell [url]

	Requires project: no

Starts the Scrapy shell for the given URL (if given) or empty if no URL is
given. Also supports UNIX-style local file paths, either relative with
./ or ../ prefixes or absolute file paths.
See Scrapy shell for more info.

Supported options:

	--spider=SPIDER: bypass spider autodetection and force use of specific spider

	-c code: evaluate the code in the shell, print the result and exit

	--no-redirect: do not follow HTTP 3xx redirects (default is to follow them);
this only affects the URL you may pass as argument on the command line;
once you are inside the shell, fetch(url) will still follow HTTP redirects by default.

Usage example:

$ scrapy shell http://www.example.com/some/page.html
[... scrapy shell starts ...]

$ scrapy shell --nolog http://www.example.com/ -c '(response.status, response.url)'
(200, 'http://www.example.com/')

shell follows HTTP redirects by default
$ scrapy shell --nolog http://httpbin.org/redirect-to?url=http%3A%2F%2Fexample.com%2F -c '(response.status, response.url)'
(200, 'http://example.com/')

you can disable this with --no-redirect
(only for the URL passed as command line argument)
$ scrapy shell --no-redirect --nolog http://httpbin.org/redirect-to?url=http%3A%2F%2Fexample.com%2F -c '(response.status, response.url)'
(302, 'http://httpbin.org/redirect-to?url=http%3A%2F%2Fexample.com%2F')

parse

	Syntax: scrapy parse <url> [options]

	Requires project: yes

Fetches the given URL and parses it with the spider that handles it, using the
method passed with the --callback option, or parse if not given.

Supported options:

	--spider=SPIDER: bypass spider autodetection and force use of specific spider

	--a NAME=VALUE: set spider argument (may be repeated)

	--callback or -c: spider method to use as callback for parsing the
response

	--meta or -m: additional request meta that will be passed to the callback
request. This must be a valid json string. Example: –meta=’{“foo” : “bar”}’

	--pipelines: process items through pipelines

	--rules or -r: use CrawlSpider
rules to discover the callback (i.e. spider method) to use for parsing the
response

	--noitems: don’t show scraped items

	--nolinks: don’t show extracted links

	--nocolour: avoid using pygments to colorize the output

	--depth or -d: depth level for which the requests should be followed
recursively (default: 1)

	--verbose or -v: display information for each depth level

Usage example:

$ scrapy parse http://www.example.com/ -c parse_item
[... scrapy log lines crawling example.com spider ...]

>>> STATUS DEPTH LEVEL 1 <<<
Scraped Items --
[{'name': u'Example item',
 'category': u'Furniture',
 'length': u'12 cm'}]

Requests ---
[]

settings

	Syntax: scrapy settings [options]

	Requires project: no

Get the value of a Scrapy setting.

If used inside a project it’ll show the project setting value, otherwise it’ll
show the default Scrapy value for that setting.

Example usage:

$ scrapy settings --get BOT_NAME
scrapybot
$ scrapy settings --get DOWNLOAD_DELAY
0

runspider

	Syntax: scrapy runspider <spider_file.py>

	Requires project: no

Run a spider self-contained in a Python file, without having to create a
project.

Example usage:

$ scrapy runspider myspider.py
[... spider starts crawling ...]

version

	Syntax: scrapy version [-v]

	Requires project: no

Prints the Scrapy version. If used with -v it also prints Python, Twisted
and Platform info, which is useful for bug reports.

bench

New in version 0.17.

	Syntax: scrapy bench

	Requires project: no

Run a quick benchmark test. Benchmarking.

Custom project commands

You can also add your custom project commands by using the
:setting:`COMMANDS_MODULE` setting. See the Scrapy commands in
scrapy/commands [https://github.com/scrapy/scrapy/tree/master/scrapy/commands] for examples on how to implement your commands.

COMMANDS_MODULE

Default: '' (empty string)

A module to use for looking up custom Scrapy commands. This is used to add custom
commands for your Scrapy project.

Example:

COMMANDS_MODULE = 'mybot.commands'

Register commands via setup.py entry points

Note

This is an experimental feature, use with caution.

You can also add Scrapy commands from an external library by adding a
scrapy.commands section in the entry points of the library setup.py
file.

The following example adds my_command command:

from setuptools import setup, find_packages

setup(name='scrapy-mymodule',
 entry_points={
 'scrapy.commands': [
 'my_command=my_scrapy_module.commands:MyCommand',
],
 },
)

 Spiders

Spiders

Spiders are classes which define how a certain site (or a group of sites) will be
scraped, including how to perform the crawl (i.e. follow links) and how to
extract structured data from their pages (i.e. scraping items). In other words,
Spiders are the place where you define the custom behaviour for crawling and
parsing pages for a particular site (or, in some cases, a group of sites).

For spiders, the scraping cycle goes through something like this:

	You start by generating the initial Requests to crawl the first URLs, and
specify a callback function to be called with the response downloaded from
those requests.

The first requests to perform are obtained by calling the
start_requests() method which (by default)
generates Request for the URLs specified in the
start_urls and the
parse method as callback function for the
Requests.

	In the callback function, you parse the response (web page) and return either
dicts with extracted data, Item objects,
Request objects, or an iterable of these objects.
Those Requests will also contain a callback (maybe
the same) and will then be downloaded by Scrapy and then their
response handled by the specified callback.

	In callback functions, you parse the page contents, typically using
Selectors (but you can also use BeautifulSoup, lxml or whatever
mechanism you prefer) and generate items with the parsed data.

	Finally, the items returned from the spider will be typically persisted to a
database (in some Item Pipeline) or written to
a file using Feed exports.

Even though this cycle applies (more or less) to any kind of spider, there are
different kinds of default spiders bundled into Scrapy for different purposes.
We will talk about those types here.

scrapy.Spider

	
class scrapy.spiders.Spider

	This is the simplest spider, and the one from which every other spider
must inherit (including spiders that come bundled with Scrapy, as well as spiders
that you write yourself). It doesn’t provide any special functionality. It just
provides a default start_requests() implementation which sends requests from
the start_urls spider attribute and calls the spider’s method parse
for each of the resulting responses.

	
name

	A string which defines the name for this spider. The spider name is how
the spider is located (and instantiated) by Scrapy, so it must be
unique. However, nothing prevents you from instantiating more than one
instance of the same spider. This is the most important spider attribute
and it’s required.

If the spider scrapes a single domain, a common practice is to name the
spider after the domain, with or without the TLD [https://en.wikipedia.org/wiki/Top-level_domain]. So, for example, a
spider that crawls mywebsite.com would often be called
mywebsite.

Note

In Python 2 this must be ASCII only.

	
allowed_domains

	An optional list of strings containing domains that this spider is
allowed to crawl. Requests for URLs not belonging to the domain names
specified in this list (or their subdomains) won’t be followed if
OffsiteMiddleware is enabled.

Let’s say your target url is https://www.example.com/1.html,
then add 'example.com' to the list.

	
start_urls

	A list of URLs where the spider will begin to crawl from, when no
particular URLs are specified. So, the first pages downloaded will be those
listed here. The subsequent Request will be generated successively from data
contained in the start URLs.

	
custom_settings

	A dictionary of settings that will be overridden from the project wide
configuration when running this spider. It must be defined as a class
attribute since the settings are updated before instantiation.

For a list of available built-in settings see:
Built-in settings reference.

	
crawler

	This attribute is set by the from_crawler() class method after
initializating the class, and links to the
Crawler object to which this spider instance is
bound.

Crawlers encapsulate a lot of components in the project for their single
entry access (such as extensions, middlewares, signals managers, etc).
See Crawler API to know more about them.

	
settings

	Configuration for running this spider. This is a
Settings instance, see the
Settings topic for a detailed introduction on this subject.

	
logger

	Python logger created with the Spider’s name. You can use it to
send log messages through it as described on
Logging from Spiders.

	
from_crawler(crawler, *args, **kwargs)

	This is the class method used by Scrapy to create your spiders.

You probably won’t need to override this directly because the default
implementation acts as a proxy to the __init__() method, calling
it with the given arguments args and named arguments kwargs.

Nonetheless, this method sets the crawler and settings
attributes in the new instance so they can be accessed later inside the
spider’s code.

	Parameters

	
	crawler (Crawler instance) – crawler to which the spider will be bound

	args (list) – arguments passed to the __init__() method

	kwargs (dict) – keyword arguments passed to the __init__() method

	
start_requests()

	This method must return an iterable with the first Requests to crawl for
this spider. It is called by Scrapy when the spider is opened for
scraping. Scrapy calls it only once, so it is safe to implement
start_requests() as a generator.

The default implementation generates Request(url, dont_filter=True)
for each url in start_urls.

If you want to change the Requests used to start scraping a domain, this is
the method to override. For example, if you need to start by logging in using
a POST request, you could do:

class MySpider(scrapy.Spider):
 name = 'myspider'

 def start_requests(self):
 return [scrapy.FormRequest("http://www.example.com/login",
 formdata={'user': 'john', 'pass': 'secret'},
 callback=self.logged_in)]

 def logged_in(self, response):
 # here you would extract links to follow and return Requests for
 # each of them, with another callback
 pass

	
parse(response)

	This is the default callback used by Scrapy to process downloaded
responses, when their requests don’t specify a callback.

The parse method is in charge of processing the response and returning
scraped data and/or more URLs to follow. Other Requests callbacks have
the same requirements as the Spider class.

This method, as well as any other Request callback, must return an
iterable of Request and/or
dicts or Item objects.

	Parameters

	response (Response) – the response to parse

	
log(message[, level, component])

	Wrapper that sends a log message through the Spider’s logger,
kept for backwards compatibility. For more information see
Logging from Spiders.

	
closed(reason)

	Called when the spider closes. This method provides a shortcut to
signals.connect() for the :signal:`spider_closed` signal.

Let’s see an example:

import scrapy

class MySpider(scrapy.Spider):
 name = 'example.com'
 allowed_domains = ['example.com']
 start_urls = [
 'http://www.example.com/1.html',
 'http://www.example.com/2.html',
 'http://www.example.com/3.html',
]

 def parse(self, response):
 self.logger.info('A response from %s just arrived!', response.url)

Return multiple Requests and items from a single callback:

import scrapy

class MySpider(scrapy.Spider):
 name = 'example.com'
 allowed_domains = ['example.com']
 start_urls = [
 'http://www.example.com/1.html',
 'http://www.example.com/2.html',
 'http://www.example.com/3.html',
]

 def parse(self, response):
 for h3 in response.xpath('//h3').extract():
 yield {"title": h3}

 for url in response.xpath('//a/@href').extract():
 yield scrapy.Request(url, callback=self.parse)

Instead of start_urls you can use start_requests() directly;
to give data more structure you can use Items:

import scrapy
from myproject.items import MyItem

class MySpider(scrapy.Spider):
 name = 'example.com'
 allowed_domains = ['example.com']

 def start_requests(self):
 yield scrapy.Request('http://www.example.com/1.html', self.parse)
 yield scrapy.Request('http://www.example.com/2.html', self.parse)
 yield scrapy.Request('http://www.example.com/3.html', self.parse)

 def parse(self, response):
 for h3 in response.xpath('//h3').extract():
 yield MyItem(title=h3)

 for url in response.xpath('//a/@href').extract():
 yield scrapy.Request(url, callback=self.parse)

Spider arguments

Spiders can receive arguments that modify their behaviour. Some common uses for
spider arguments are to define the start URLs or to restrict the crawl to
certain sections of the site, but they can be used to configure any
functionality of the spider.

Spider arguments are passed through the crawl command using the
-a option. For example:

scrapy crawl myspider -a category=electronics

Spiders can access arguments in their __init__ methods:

import scrapy

class MySpider(scrapy.Spider):
 name = 'myspider'

 def __init__(self, category=None, *args, **kwargs):
 super(MySpider, self).__init__(*args, **kwargs)
 self.start_urls = ['http://www.example.com/categories/%s' % category]
 # ...

The default __init__ method will take any spider arguments
and copy them to the spider as attributes.
The above example can also be written as follows:

import scrapy

class MySpider(scrapy.Spider):
 name = 'myspider'

 def start_requests(self):
 yield scrapy.Request('http://www.example.com/categories/%s' % self.category)

Keep in mind that spider arguments are only strings.
The spider will not do any parsing on its own.
If you were to set the start_urls attribute from the command line,
you would have to parse it on your own into a list
using something like
ast.literal_eval [https://docs.python.org/library/ast.html#ast.literal_eval]
or json.loads [https://docs.python.org/library/json.html#json.loads]
and then set it as an attribute.
Otherwise, you would cause iteration over a start_urls string
(a very common python pitfall)
resulting in each character being seen as a separate url.

A valid use case is to set the http auth credentials
used by HttpAuthMiddleware
or the user agent
used by UserAgentMiddleware:

scrapy crawl myspider -a http_user=myuser -a http_pass=mypassword -a user_agent=mybot

Spider arguments can also be passed through the Scrapyd schedule.json API.
See Scrapyd documentation [https://scrapyd.readthedocs.io/en/latest/].

Generic Spiders

Scrapy comes with some useful generic spiders that you can use to subclass
your spiders from. Their aim is to provide convenient functionality for a few
common scraping cases, like following all links on a site based on certain
rules, crawling from Sitemaps [https://www.sitemaps.org/index.html], or parsing an XML/CSV feed.

For the examples used in the following spiders, we’ll assume you have a project
with a TestItem declared in a myproject.items module:

import scrapy

class TestItem(scrapy.Item):
 id = scrapy.Field()
 name = scrapy.Field()
 description = scrapy.Field()

CrawlSpider

	
class scrapy.spiders.CrawlSpider

	This is the most commonly used spider for crawling regular websites, as it
provides a convenient mechanism for following links by defining a set of rules.
It may not be the best suited for your particular web sites or project, but
it’s generic enough for several cases, so you can start from it and override it
as needed for more custom functionality, or just implement your own spider.

Apart from the attributes inherited from Spider (that you must
specify), this class supports a new attribute:

	
rules

	Which is a list of one (or more) Rule objects. Each Rule
defines a certain behaviour for crawling the site. Rules objects are
described below. If multiple rules match the same link, the first one
will be used, according to the order they’re defined in this attribute.

This spider also exposes an overrideable method:

	
parse_start_url(response)

	This method is called for the start_urls responses. It allows to parse
the initial responses and must return either an
Item object, a Request
object, or an iterable containing any of them.

Crawling rules

	
class scrapy.spiders.Rule(link_extractor, callback=None, cb_kwargs=None, follow=None, process_links=None, process_request=None)

	link_extractor is a Link Extractor object which
defines how links will be extracted from each crawled page.

callback is a callable or a string (in which case a method from the spider
object with that name will be used) to be called for each link extracted with
the specified link_extractor. This callback receives a response as its first
argument and must return a list containing Item and/or
Request objects (or any subclass of them).

Warning

When writing crawl spider rules, avoid using parse as
callback, since the CrawlSpider uses the parse method
itself to implement its logic. So if you override the parse method,
the crawl spider will no longer work.

cb_kwargs is a dict containing the keyword arguments to be passed to the
callback function.

follow is a boolean which specifies if links should be followed from each
response extracted with this rule. If callback is None follow defaults
to True, otherwise it defaults to False.

process_links is a callable, or a string (in which case a method from the
spider object with that name will be used) which will be called for each list
of links extracted from each response using the specified link_extractor.
This is mainly used for filtering purposes.

process_request is a callable, or a string (in which case a method from
the spider object with that name will be used) which will be called with
every request extracted by this rule, and must return a request or None (to
filter out the request).

CrawlSpider example

Let’s now take a look at an example CrawlSpider with rules:

import scrapy
from scrapy.spiders import CrawlSpider, Rule
from scrapy.linkextractors import LinkExtractor

class MySpider(CrawlSpider):
 name = 'example.com'
 allowed_domains = ['example.com']
 start_urls = ['http://www.example.com']

 rules = (
 # Extract links matching 'category.php' (but not matching 'subsection.php')
 # and follow links from them (since no callback means follow=True by default).
 Rule(LinkExtractor(allow=('category\.php',), deny=('subsection\.php',))),

 # Extract links matching 'item.php' and parse them with the spider's method parse_item
 Rule(LinkExtractor(allow=('item\.php',)), callback='parse_item'),
)

 def parse_item(self, response):
 self.logger.info('Hi, this is an item page! %s', response.url)
 item = scrapy.Item()
 item['id'] = response.xpath('//td[@id="item_id"]/text()').re(r'ID: (\d+)')
 item['name'] = response.xpath('//td[@id="item_name"]/text()').extract()
 item['description'] = response.xpath('//td[@id="item_description"]/text()').extract()
 return item

This spider would start crawling example.com’s home page, collecting category
links, and item links, parsing the latter with the parse_item method. For
each item response, some data will be extracted from the HTML using XPath, and
an Item will be filled with it.

XMLFeedSpider

	
class scrapy.spiders.XMLFeedSpider

	XMLFeedSpider is designed for parsing XML feeds by iterating through them by a
certain node name. The iterator can be chosen from: iternodes, xml,
and html. It’s recommended to use the iternodes iterator for
performance reasons, since the xml and html iterators generate the
whole DOM at once in order to parse it. However, using html as the
iterator may be useful when parsing XML with bad markup.

To set the iterator and the tag name, you must define the following class
attributes:

	
iterator

	A string which defines the iterator to use. It can be either:

	'iternodes' - a fast iterator based on regular expressions

	'html' - an iterator which uses Selector.
Keep in mind this uses DOM parsing and must load all DOM in memory
which could be a problem for big feeds

	'xml' - an iterator which uses Selector.
Keep in mind this uses DOM parsing and must load all DOM in memory
which could be a problem for big feeds

It defaults to: 'iternodes'.

	
itertag

	A string with the name of the node (or element) to iterate in. Example:

itertag = 'product'

	
namespaces

	A list of (prefix, uri) tuples which define the namespaces
available in that document that will be processed with this spider. The
prefix and uri will be used to automatically register
namespaces using the
register_namespace() method.

You can then specify nodes with namespaces in the itertag
attribute.

Example:

class YourSpider(XMLFeedSpider):

 namespaces = [('n', 'http://www.sitemaps.org/schemas/sitemap/0.9')]
 itertag = 'n:url'
 # ...

Apart from these new attributes, this spider has the following overrideable
methods too:

	
adapt_response(response)

	A method that receives the response as soon as it arrives from the spider
middleware, before the spider starts parsing it. It can be used to modify
the response body before parsing it. This method receives a response and
also returns a response (it could be the same or another one).

	
parse_node(response, selector)

	This method is called for the nodes matching the provided tag name
(itertag). Receives the response and an
Selector for each node. Overriding this
method is mandatory. Otherwise, you spider won’t work. This method
must return either a Item object, a
Request object, or an iterable containing any of
them.

	
process_results(response, results)

	This method is called for each result (item or request) returned by the
spider, and it’s intended to perform any last time processing required
before returning the results to the framework core, for example setting the
item IDs. It receives a list of results and the response which originated
those results. It must return a list of results (Items or Requests).

XMLFeedSpider example

These spiders are pretty easy to use, let’s have a look at one example:

from scrapy.spiders import XMLFeedSpider
from myproject.items import TestItem

class MySpider(XMLFeedSpider):
 name = 'example.com'
 allowed_domains = ['example.com']
 start_urls = ['http://www.example.com/feed.xml']
 iterator = 'iternodes' # This is actually unnecessary, since it's the default value
 itertag = 'item'

 def parse_node(self, response, node):
 self.logger.info('Hi, this is a <%s> node!: %s', self.itertag, ''.join(node.extract()))

 item = TestItem()
 item['id'] = node.xpath('@id').extract()
 item['name'] = node.xpath('name').extract()
 item['description'] = node.xpath('description').extract()
 return item

Basically what we did up there was to create a spider that downloads a feed from
the given start_urls, and then iterates through each of its item tags,
prints them out, and stores some random data in an Item.

CSVFeedSpider

	
class scrapy.spiders.CSVFeedSpider

	This spider is very similar to the XMLFeedSpider, except that it iterates
over rows, instead of nodes. The method that gets called in each iteration
is parse_row().

	
delimiter

	A string with the separator character for each field in the CSV file
Defaults to ',' (comma).

	
quotechar

	A string with the enclosure character for each field in the CSV file
Defaults to '"' (quotation mark).

	
headers

	A list of the column names in the CSV file.

	
parse_row(response, row)

	Receives a response and a dict (representing each row) with a key for each
provided (or detected) header of the CSV file. This spider also gives the
opportunity to override adapt_response and process_results methods
for pre- and post-processing purposes.

CSVFeedSpider example

Let’s see an example similar to the previous one, but using a
CSVFeedSpider:

from scrapy.spiders import CSVFeedSpider
from myproject.items import TestItem

class MySpider(CSVFeedSpider):
 name = 'example.com'
 allowed_domains = ['example.com']
 start_urls = ['http://www.example.com/feed.csv']
 delimiter = ';'
 quotechar = "'"
 headers = ['id', 'name', 'description']

 def parse_row(self, response, row):
 self.logger.info('Hi, this is a row!: %r', row)

 item = TestItem()
 item['id'] = row['id']
 item['name'] = row['name']
 item['description'] = row['description']
 return item

SitemapSpider

	
class scrapy.spiders.SitemapSpider

	SitemapSpider allows you to crawl a site by discovering the URLs using
Sitemaps [https://www.sitemaps.org/index.html].

It supports nested sitemaps and discovering sitemap urls from
robots.txt [http://www.robotstxt.org/].

	
sitemap_urls

	A list of urls pointing to the sitemaps whose urls you want to crawl.

You can also point to a robots.txt [http://www.robotstxt.org/] and it will be parsed to extract
sitemap urls from it.

	
sitemap_rules

	A list of tuples (regex, callback) where:

	regex is a regular expression to match urls extracted from sitemaps.
regex can be either a str or a compiled regex object.

	callback is the callback to use for processing the urls that match
the regular expression. callback can be a string (indicating the
name of a spider method) or a callable.

For example:

sitemap_rules = [('/product/', 'parse_product')]

Rules are applied in order, and only the first one that matches will be
used.

If you omit this attribute, all urls found in sitemaps will be
processed with the parse callback.

	
sitemap_follow

	A list of regexes of sitemap that should be followed. This is is only
for sites that use Sitemap index files [https://www.sitemaps.org/protocol.html#index] that point to other sitemap
files.

By default, all sitemaps are followed.

	
sitemap_alternate_links

	Specifies if alternate links for one url should be followed. These
are links for the same website in another language passed within
the same url block.

For example:

<url>
 <loc>http://example.com/</loc>
 <xhtml:link rel="alternate" hreflang="de" href="http://example.com/de"/>
</url>

With sitemap_alternate_links set, this would retrieve both URLs. With
sitemap_alternate_links disabled, only http://example.com/ would be
retrieved.

Default is sitemap_alternate_links disabled.

SitemapSpider examples

Simplest example: process all urls discovered through sitemaps using the
parse callback:

from scrapy.spiders import SitemapSpider

class MySpider(SitemapSpider):
 sitemap_urls = ['http://www.example.com/sitemap.xml']

 def parse(self, response):
 pass # ... scrape item here ...

Process some urls with certain callback and other urls with a different
callback:

from scrapy.spiders import SitemapSpider

class MySpider(SitemapSpider):
 sitemap_urls = ['http://www.example.com/sitemap.xml']
 sitemap_rules = [
 ('/product/', 'parse_product'),
 ('/category/', 'parse_category'),
]

 def parse_product(self, response):
 pass # ... scrape product ...

 def parse_category(self, response):
 pass # ... scrape category ...

Follow sitemaps defined in the robots.txt [http://www.robotstxt.org/] file and only follow sitemaps
whose url contains /sitemap_shop:

from scrapy.spiders import SitemapSpider

class MySpider(SitemapSpider):
 sitemap_urls = ['http://www.example.com/robots.txt']
 sitemap_rules = [
 ('/shop/', 'parse_shop'),
]
 sitemap_follow = ['/sitemap_shops']

 def parse_shop(self, response):
 pass # ... scrape shop here ...

Combine SitemapSpider with other sources of urls:

from scrapy.spiders import SitemapSpider

class MySpider(SitemapSpider):
 sitemap_urls = ['http://www.example.com/robots.txt']
 sitemap_rules = [
 ('/shop/', 'parse_shop'),
]

 other_urls = ['http://www.example.com/about']

 def start_requests(self):
 requests = list(super(MySpider, self).start_requests())
 requests += [scrapy.Request(x, self.parse_other) for x in self.other_urls]
 return requests

 def parse_shop(self, response):
 pass # ... scrape shop here ...

 def parse_other(self, response):
 pass # ... scrape other here ...

 Selectors

Selectors

When you’re scraping web pages, the most common task you need to perform is
to extract data from the HTML source. There are several libraries available to
achieve this:

	BeautifulSoup [https://www.crummy.com/software/BeautifulSoup/] is a very popular web scraping library among Python
programmers which constructs a Python object based on the structure of the
HTML code and also deals with bad markup reasonably well, but it has one
drawback: it’s slow.

	lxml [http://lxml.de/] is an XML parsing library (which also parses HTML) with a pythonic
API based on ElementTree [https://docs.python.org/2/library/xml.etree.elementtree.html]. (lxml is not part of the Python standard
library.)

Scrapy comes with its own mechanism for extracting data. They’re called
selectors because they “select” certain parts of the HTML document specified
either by XPath [https://www.w3.org/TR/xpath] or CSS [https://www.w3.org/TR/selectors] expressions.

XPath [https://www.w3.org/TR/xpath] is a language for selecting nodes in XML documents, which can also be
used with HTML. CSS [https://www.w3.org/TR/selectors] is a language for applying styles to HTML documents. It
defines selectors to associate those styles with specific HTML elements.

Scrapy selectors are built over the lxml [http://lxml.de/] library, which means they’re very
similar in speed and parsing accuracy.

This page explains how selectors work and describes their API which is very
small and simple, unlike the lxml [http://lxml.de/] API which is much bigger because the
lxml [http://lxml.de/] library can be used for many other tasks, besides selecting markup
documents.

For a complete reference of the selectors API see
Selector reference

Using selectors

Constructing selectors

Scrapy selectors are instances of Selector class
constructed by passing text or TextResponse
object. It automatically chooses the best parsing rules (XML vs HTML) based on
input type:

>>> from scrapy.selector import Selector
>>> from scrapy.http import HtmlResponse

Constructing from text:

>>> body = '<html><body>good</body></html>'
>>> Selector(text=body).xpath('//span/text()').extract()
[u'good']

Constructing from response:

>>> response = HtmlResponse(url='http://example.com', body=body)
>>> Selector(response=response).xpath('//span/text()').extract()
[u'good']

For convenience, response objects expose a selector on .selector attribute,
it’s totally OK to use this shortcut when possible:

>>> response.selector.xpath('//span/text()').extract()
[u'good']

Using selectors

To explain how to use the selectors we’ll use the Scrapy shell (which
provides interactive testing) and an example page located in the Scrapy
documentation server:

https://doc.scrapy.org/en/latest/_static/selectors-sample1.html

Here’s its HTML code:

First, let’s open the shell:

scrapy shell https://doc.scrapy.org/en/latest/_static/selectors-sample1.html

Then, after the shell loads, you’ll have the response available as response
shell variable, and its attached selector in response.selector attribute.

Since we’re dealing with HTML, the selector will automatically use an HTML parser.

So, by looking at the HTML code of that
page, let’s construct an XPath for selecting the text inside the title tag:

>>> response.selector.xpath('//title/text()')
[<Selector (text) xpath=//title/text()>]

Querying responses using XPath and CSS is so common that responses include two
convenience shortcuts: response.xpath() and response.css():

>>> response.xpath('//title/text()')
[<Selector (text) xpath=//title/text()>]
>>> response.css('title::text')
[<Selector (text) xpath=//title/text()>]

As you can see, .xpath() and .css() methods return a
SelectorList instance, which is a list of new
selectors. This API can be used for quickly selecting nested data:

>>> response.css('img').xpath('@src').extract()
[u'image1_thumb.jpg',
 u'image2_thumb.jpg',
 u'image3_thumb.jpg',
 u'image4_thumb.jpg',
 u'image5_thumb.jpg']

To actually extract the textual data, you must call the selector .extract()
method, as follows:

>>> response.xpath('//title/text()').extract()
[u'Example website']

If you want to extract only first matched element, you can call the selector .extract_first()

>>> response.xpath('//div[@id="images"]/a/text()').extract_first()
u'Name: My image 1 '

It returns None if no element was found:

>>> response.xpath('//div[@id="not-exists"]/text()').extract_first() is None
True

A default return value can be provided as an argument, to be used instead of None:

>>> response.xpath('//div[@id="not-exists"]/text()').extract_first(default='not-found')
'not-found'

Notice that CSS selectors can select text or attribute nodes using CSS3
pseudo-elements:

>>> response.css('title::text').extract()
[u'Example website']

Now we’re going to get the base URL and some image links:

>>> response.xpath('//base/@href').extract()
[u'http://example.com/']

>>> response.css('base::attr(href)').extract()
[u'http://example.com/']

>>> response.xpath('//a[contains(@href, "image")]/@href').extract()
[u'image1.html',
 u'image2.html',
 u'image3.html',
 u'image4.html',
 u'image5.html']

>>> response.css('a[href*=image]::attr(href)').extract()
[u'image1.html',
 u'image2.html',
 u'image3.html',
 u'image4.html',
 u'image5.html']

>>> response.xpath('//a[contains(@href, "image")]/img/@src').extract()
[u'image1_thumb.jpg',
 u'image2_thumb.jpg',
 u'image3_thumb.jpg',
 u'image4_thumb.jpg',
 u'image5_thumb.jpg']

>>> response.css('a[href*=image] img::attr(src)').extract()
[u'image1_thumb.jpg',
 u'image2_thumb.jpg',
 u'image3_thumb.jpg',
 u'image4_thumb.jpg',
 u'image5_thumb.jpg']

Nesting selectors

The selection methods (.xpath() or .css()) return a list of selectors
of the same type, so you can call the selection methods for those selectors
too. Here’s an example:

>>> links = response.xpath('//a[contains(@href, "image")]')
>>> links.extract()
[u'Name: My image 1
',
 u'Name: My image 2
',
 u'Name: My image 3
',
 u'Name: My image 4
',
 u'Name: My image 5
']

>>> for index, link in enumerate(links):
... args = (index, link.xpath('@href').extract(), link.xpath('img/@src').extract())
... print 'Link number %d points to url %s and image %s' % args

Link number 0 points to url [u'image1.html'] and image [u'image1_thumb.jpg']
Link number 1 points to url [u'image2.html'] and image [u'image2_thumb.jpg']
Link number 2 points to url [u'image3.html'] and image [u'image3_thumb.jpg']
Link number 3 points to url [u'image4.html'] and image [u'image4_thumb.jpg']
Link number 4 points to url [u'image5.html'] and image [u'image5_thumb.jpg']

Using selectors with regular expressions

Selector also has a .re() method for extracting
data using regular expressions. However, unlike using .xpath() or
.css() methods, .re() returns a list of unicode strings. So you
can’t construct nested .re() calls.

Here’s an example used to extract image names from the HTML code above:

>>> response.xpath('//a[contains(@href, "image")]/text()').re(r'Name:\s*(.*)')
[u'My image 1',
 u'My image 2',
 u'My image 3',
 u'My image 4',
 u'My image 5']

There’s an additional helper reciprocating .extract_first() for .re(),
named .re_first(). Use it to extract just the first matching string:

>>> response.xpath('//a[contains(@href, "image")]/text()').re_first(r'Name:\s*(.*)')
u'My image 1'

Working with relative XPaths

Keep in mind that if you are nesting selectors and use an XPath that starts
with /, that XPath will be absolute to the document and not relative to the
Selector you’re calling it from.

For example, suppose you want to extract all <p> elements inside <div>
elements. First, you would get all <div> elements:

>>> divs = response.xpath('//div')

At first, you may be tempted to use the following approach, which is wrong, as
it actually extracts all <p> elements from the document, not only those
inside <div> elements:

>>> for p in divs.xpath('//p'): # this is wrong - gets all <p> from the whole document
... print p.extract()

This is the proper way to do it (note the dot prefixing the .//p XPath):

>>> for p in divs.xpath('.//p'): # extracts all <p> inside
... print p.extract()

Another common case would be to extract all direct <p> children:

>>> for p in divs.xpath('p'):
... print p.extract()

For more details about relative XPaths see the Location Paths [https://www.w3.org/TR/xpath#location-paths] section in the
XPath specification.

Variables in XPath expressions

XPath allows you to reference variables in your XPath expressions, using
the $somevariable syntax. This is somewhat similar to parameterized
queries or prepared statements in the SQL world where you replace
some arguments in your queries with placeholders like ?,
which are then substituted with values passed with the query.

Here’s an example to match an element based on its “id” attribute value,
without hard-coding it (that was shown previously):

>>> # `$val` used in the expression, a `val` argument needs to be passed
>>> response.xpath('//div[@id=$val]/a/text()', val='images').extract_first()
u'Name: My image 1 '

Here’s another example, to find the “id” attribute of a <div> tag containing
five <a> children (here we pass the value 5 as an integer):

>>> response.xpath('//div[count(a)=$cnt]/@id', cnt=5).extract_first()
u'images'

All variable references must have a binding value when calling .xpath()
(otherwise you’ll get a ValueError: XPath error: exception).
This is done by passing as many named arguments as necessary.

parsel [https://parsel.readthedocs.io/], the library powering Scrapy selectors, has more details and examples
on XPath variables [https://parsel.readthedocs.io/en/latest/usage.html#variables-in-xpath-expressions].

Using EXSLT extensions

Being built atop lxml [http://lxml.de/], Scrapy selectors also support some EXSLT [http://exslt.org/] extensions
and come with these pre-registered namespaces to use in XPath expressions:

	prefix

	namespace

	usage

	re

	http://exslt.org/regular-expressions

	regular expressions [http://exslt.org/regexp/index.html]

	set

	http://exslt.org/sets

	set manipulation [http://exslt.org/set/index.html]

Regular expressions

The test() function, for example, can prove quite useful when XPath’s
starts-with() or contains() are not sufficient.

Example selecting links in list item with a “class” attribute ending with a digit:

>>> from scrapy import Selector
>>> doc = """
... <div>
...
... <li class="item-0">first item
... <li class="item-1">second item
... <li class="item-inactive">third item
... <li class="item-1">fourth item
... <li class="item-0">fifth item
...
... </div>
... """
>>> sel = Selector(text=doc, type="html")
>>> sel.xpath('//li//@href').extract()
[u'link1.html', u'link2.html', u'link3.html', u'link4.html', u'link5.html']
>>> sel.xpath('//li[re:test(@class, "item-\d$")]//@href').extract()
[u'link1.html', u'link2.html', u'link4.html', u'link5.html']
>>>

Warning

C library libxslt doesn’t natively support EXSLT regular
expressions so lxml [http://lxml.de/]’s implementation uses hooks to Python’s re module.
Thus, using regexp functions in your XPath expressions may add a small
performance penalty.

Set operations

These can be handy for excluding parts of a document tree before
extracting text elements for example.

Example extracting microdata (sample content taken from http://schema.org/Product)
with groups of itemscopes and corresponding itemprops:

>>> doc = """
... <div itemscope itemtype="http://schema.org/Product">
... Kenmore White 17" Microwave
...
... <div itemprop="aggregateRating"
... itemscope itemtype="http://schema.org/AggregateRating">
... Rated 3.5/5
... based on 11 customer reviews
... </div>
...
... <div itemprop="offers" itemscope itemtype="http://schema.org/Offer">
... $55.00
... <link itemprop="availability" href="http://schema.org/InStock" />In stock
... </div>
...
... Product description:
... 0.7 cubic feet countertop microwave.
... Has six preset cooking categories and convenience features like
... Add-A-Minute and Child Lock.
...
... Customer reviews:
...
... <div itemprop="review" itemscope itemtype="http://schema.org/Review">
... Not a happy camper -
... by Ellie,
... <meta itemprop="datePublished" content="2011-04-01">April 1, 2011
... <div itemprop="reviewRating" itemscope itemtype="http://schema.org/Rating">
... <meta itemprop="worstRating" content = "1">
... 1/
... 5stars
... </div>
... The lamp burned out and now I have to replace
... it.
... </div>
...
... <div itemprop="review" itemscope itemtype="http://schema.org/Review">
... Value purchase -
... by Lucas,
... <meta itemprop="datePublished" content="2011-03-25">March 25, 2011
... <div itemprop="reviewRating" itemscope itemtype="http://schema.org/Rating">
... <meta itemprop="worstRating" content = "1"/>
... 4/
... 5stars
... </div>
... Great microwave for the price. It is small and
... fits in my apartment.
... </div>
... ...
... </div>
... """
>>> sel = Selector(text=doc, type="html")
>>> for scope in sel.xpath('//div[@itemscope]'):
... print "current scope:", scope.xpath('@itemtype').extract()
... props = scope.xpath('''
... set:difference(./descendant::*/@itemprop,
... .//*[@itemscope]/*/@itemprop)''')
... print " properties:", props.extract()
... print

current scope: [u'http://schema.org/Product']
 properties: [u'name', u'aggregateRating', u'offers', u'description', u'review', u'review']

current scope: [u'http://schema.org/AggregateRating']
 properties: [u'ratingValue', u'reviewCount']

current scope: [u'http://schema.org/Offer']
 properties: [u'price', u'availability']

current scope: [u'http://schema.org/Review']
 properties: [u'name', u'author', u'datePublished', u'reviewRating', u'description']

current scope: [u'http://schema.org/Rating']
 properties: [u'worstRating', u'ratingValue', u'bestRating']

current scope: [u'http://schema.org/Review']
 properties: [u'name', u'author', u'datePublished', u'reviewRating', u'description']

current scope: [u'http://schema.org/Rating']
 properties: [u'worstRating', u'ratingValue', u'bestRating']

>>>

Here we first iterate over itemscope elements, and for each one,
we look for all itemprops elements and exclude those that are themselves
inside another itemscope.

Some XPath tips

Here are some tips that you may find useful when using XPath
with Scrapy selectors, based on this post from ScrapingHub’s blog [https://blog.scrapinghub.com/2014/07/17/xpath-tips-from-the-web-scraping-trenches/].
If you are not much familiar with XPath yet,
you may want to take a look first at this XPath tutorial [http://www.zvon.org/comp/r/tut-XPath_1.html].

Using text nodes in a condition

When you need to use the text content as argument to an XPath string function [https://www.w3.org/TR/xpath/#section-String-Functions],
avoid using .//text() and use just . instead.

This is because the expression .//text() yields a collection of text elements – a node-set.
And when a node-set is converted to a string, which happens when it is passed as argument to
a string function like contains() or starts-with(), it results in the text for the first element only.

Example:

>>> from scrapy import Selector
>>> sel = Selector(text='Click here to go to the Next Page')

Converting a node-set to string:

>>> sel.xpath('//a//text()').extract() # take a peek at the node-set
[u'Click here to go to the ', u'Next Page']
>>> sel.xpath("string(//a[1]//text())").extract() # convert it to string
[u'Click here to go to the ']

A node converted to a string, however, puts together the text of itself plus of all its descendants:

>>> sel.xpath("//a[1]").extract() # select the first node
[u'Click here to go to the Next Page']
>>> sel.xpath("string(//a[1])").extract() # convert it to string
[u'Click here to go to the Next Page']

So, using the .//text() node-set won’t select anything in this case:

>>> sel.xpath("//a[contains(.//text(), 'Next Page')]").extract()
[]

But using the . to mean the node, works:

>>> sel.xpath("//a[contains(., 'Next Page')]").extract()
[u'Click here to go to the Next Page']

Beware of the difference between //node[1] and (//node)[1]

//node[1] selects all the nodes occurring first under their respective parents.

(//node)[1] selects all the nodes in the document, and then gets only the first of them.

Example:

>>> from scrapy import Selector
>>> sel = Selector(text="""
....: <ul class="list">
....: 1
....: 2
....: 3
....:
....: <ul class="list">
....: 4
....: 5
....: 6
....: """)
>>> xp = lambda x: sel.xpath(x).extract()

This gets all first elements under whatever it is its parent:

>>> xp("//li[1]")
[u'1', u'4']

And this gets the first element in the whole document:

>>> xp("(//li)[1]")
[u'1']

This gets all first elements under an parent:

>>> xp("//ul/li[1]")
[u'1', u'4']

And this gets the first element under an parent in the whole document:

>>> xp("(//ul/li)[1]")
[u'1']

When querying by class, consider using CSS

Because an element can contain multiple CSS classes, the XPath way to select elements
by class is the rather verbose:

*[contains(concat(' ', normalize-space(@class), ' '), ' someclass ')]

If you use @class='someclass' you may end up missing elements that have
other classes, and if you just use contains(@class, 'someclass') to make up
for that you may end up with more elements that you want, if they have a different
class name that shares the string someclass.

As it turns out, Scrapy selectors allow you to chain selectors, so most of the time
you can just select by class using CSS and then switch to XPath when needed:

>>> from scrapy import Selector
>>> sel = Selector(text='<div class="hero shout"><time datetime="2014-07-23 19:00">Special date</time></div>')
>>> sel.css('.shout').xpath('./time/@datetime').extract()
[u'2014-07-23 19:00']

This is cleaner than using the verbose XPath trick shown above. Just remember
to use the . in the XPath expressions that will follow.

Built-in Selectors reference

Selector objects

	
class scrapy.selector.Selector(response=None, text=None, type=None)

	An instance of Selector is a wrapper over response to select
certain parts of its content.

response is an HtmlResponse or an
XmlResponse object that will be used for selecting and
extracting data.

text is a unicode string or utf-8 encoded text for cases when a
response isn’t available. Using text and response together is
undefined behavior.

type defines the selector type, it can be "html", "xml" or None (default).

If type is None, the selector automatically chooses the best type
based on response type (see below), or defaults to "html" in case it
is used together with text.

If type is None and a response is passed, the selector type is
inferred from the response type as follows:

	"html" for HtmlResponse type

	"xml" for XmlResponse type

	"html" for anything else

Otherwise, if type is set, the selector type will be forced and no
detection will occur.

	
xpath(query)

	Find nodes matching the xpath query and return the result as a
SelectorList instance with all elements flattened. List
elements implement Selector interface too.

query is a string containing the XPATH query to apply.

Note

For convenience, this method can be called as response.xpath()

	
css(query)

	Apply the given CSS selector and return a SelectorList instance.

query is a string containing the CSS selector to apply.

In the background, CSS queries are translated into XPath queries using
cssselect [https://pypi.python.org/pypi/cssselect/] library and run .xpath() method.

Note

For convenience this method can be called as response.css()

	
extract()

	Serialize and return the matched nodes as a list of unicode strings.
Percent encoded content is unquoted.

	
re(regex)

	
Apply the given regex and return a list of unicode strings with the
matches.

regex can be either a compiled regular expression or a string which
will be compiled to a regular expression using re.compile(regex)

Note

Note that re() and re_first() both decode HTML entities (except < and &).

	
register_namespace(prefix, uri)

	Register the given namespace to be used in this Selector.
Without registering namespaces you can’t select or extract data from
non-standard namespaces. See examples below.

	
remove_namespaces()

	Remove all namespaces, allowing to traverse the document using
namespace-less xpaths. See example below.

	
__nonzero__()

	Returns True if there is any real content selected or False
otherwise. In other words, the boolean value of a Selector is
given by the contents it selects.

SelectorList objects

	
class scrapy.selector.SelectorList

	The SelectorList class is a subclass of the builtin list
class, which provides a few additional methods.

	
xpath(query)

	Call the .xpath() method for each element in this list and return
their results flattened as another SelectorList.

query is the same argument as the one in Selector.xpath()

	
css(query)

	Call the .css() method for each element in this list and return
their results flattened as another SelectorList.

query is the same argument as the one in Selector.css()

	
extract()

	Call the .extract() method for each element in this list and return
their results flattened, as a list of unicode strings.

	
re()

	Call the .re() method for each element in this list and return
their results flattened, as a list of unicode strings.

Selector examples on HTML response

Here’s a couple of Selector examples to illustrate several concepts.
In all cases, we assume there is already a Selector instantiated with
a HtmlResponse object like this:

sel = Selector(html_response)

	Select all <h1> elements from an HTML response body, returning a list of
Selector objects (ie. a SelectorList object):

sel.xpath("//h1")

	Extract the text of all <h1> elements from an HTML response body,
returning a list of unicode strings:

sel.xpath("//h1").extract() # this includes the h1 tag
sel.xpath("//h1/text()").extract() # this excludes the h1 tag

	Iterate over all <p> tags and print their class attribute:

for node in sel.xpath("//p"):
 print node.xpath("@class").extract()

Selector examples on XML response

Here’s a couple of examples to illustrate several concepts. In both cases we
assume there is already a Selector instantiated with an
XmlResponse object like this:

sel = Selector(xml_response)

	Select all <product> elements from an XML response body, returning a list
of Selector objects (ie. a SelectorList object):

sel.xpath("//product")

	Extract all prices from a Google Base XML feed [https://support.google.com/merchants/answer/160589?hl=en&ref_topic=2473799] which requires registering
a namespace:

sel.register_namespace("g", "http://base.google.com/ns/1.0")
sel.xpath("//g:price").extract()

Removing namespaces

When dealing with scraping projects, it is often quite convenient to get rid of
namespaces altogether and just work with element names, to write more
simple/convenient XPaths. You can use the
Selector.remove_namespaces() method for that.

Let’s show an example that illustrates this with GitHub blog atom feed.

First, we open the shell with the url we want to scrape:

$ scrapy shell https://github.com/blog.atom

Once in the shell we can try selecting all <link> objects and see that it
doesn’t work (because the Atom XML namespace is obfuscating those nodes):

>>> response.xpath("//link")
[]

But once we call the Selector.remove_namespaces() method, all
nodes can be accessed directly by their names:

>>> response.selector.remove_namespaces()
>>> response.xpath("//link")
[<Selector xpath='//link' data=u'<link xmlns="http://www.w3.org/2005/Atom'>,
 <Selector xpath='//link' data=u'<link xmlns="http://www.w3.org/2005/Atom'>,
 ...

If you wonder why the namespace removal procedure isn’t always called by default
instead of having to call it manually, this is because of two reasons, which, in order
of relevance, are:

	Removing namespaces requires to iterate and modify all nodes in the
document, which is a reasonably expensive operation to perform for all
documents crawled by Scrapy

	There could be some cases where using namespaces is actually required, in
case some element names clash between namespaces. These cases are very rare
though.

 Items

Items

The main goal in scraping is to extract structured data from unstructured
sources, typically, web pages. Scrapy spiders can return the extracted data
as Python dicts. While convenient and familiar, Python dicts lack structure:
it is easy to make a typo in a field name or return inconsistent data,
especially in a larger project with many spiders.

To define common output data format Scrapy provides the Item class.
Item objects are simple containers used to collect the scraped data.
They provide a dictionary-like [https://docs.python.org/2/library/stdtypes.html#dict] API with a convenient syntax for declaring
their available fields.

Various Scrapy components use extra information provided by Items:
exporters look at declared fields to figure out columns to export,
serialization can be customized using Item fields metadata, trackref
tracks Item instances to help find memory leaks
(see Debugging memory leaks with trackref), etc.

Declaring Items

Items are declared using a simple class definition syntax and Field
objects. Here is an example:

import scrapy

class Product(scrapy.Item):
 name = scrapy.Field()
 price = scrapy.Field()
 stock = scrapy.Field()
 last_updated = scrapy.Field(serializer=str)

Note

Those familiar with Django [https://www.djangoproject.com/] will notice that Scrapy Items are
declared similar to Django Models [https://docs.djangoproject.com/en/dev/topics/db/models/], except that Scrapy Items are much
simpler as there is no concept of different field types.

Item Fields

Field objects are used to specify metadata for each field. For
example, the serializer function for the last_updated field illustrated in
the example above.

You can specify any kind of metadata for each field. There is no restriction on
the values accepted by Field objects. For this same
reason, there is no reference list of all available metadata keys. Each key
defined in Field objects could be used by a different component, and
only those components know about it. You can also define and use any other
Field key in your project too, for your own needs. The main goal of
Field objects is to provide a way to define all field metadata in one
place. Typically, those components whose behaviour depends on each field use
certain field keys to configure that behaviour. You must refer to their
documentation to see which metadata keys are used by each component.

It’s important to note that the Field objects used to declare the item
do not stay assigned as class attributes. Instead, they can be accessed through
the Item.fields attribute.

Working with Items

Here are some examples of common tasks performed with items, using the
Product item declared above. You will
notice the API is very similar to the dict API [https://docs.python.org/2/library/stdtypes.html#dict].

Creating items

>>> product = Product(name='Desktop PC', price=1000)
>>> print product
Product(name='Desktop PC', price=1000)

Getting field values

>>> product['name']
Desktop PC
>>> product.get('name')
Desktop PC

>>> product['price']
1000

>>> product['last_updated']
Traceback (most recent call last):
 ...
KeyError: 'last_updated'

>>> product.get('last_updated', 'not set')
not set

>>> product['lala'] # getting unknown field
Traceback (most recent call last):
 ...
KeyError: 'lala'

>>> product.get('lala', 'unknown field')
'unknown field'

>>> 'name' in product # is name field populated?
True

>>> 'last_updated' in product # is last_updated populated?
False

>>> 'last_updated' in product.fields # is last_updated a declared field?
True

>>> 'lala' in product.fields # is lala a declared field?
False

Setting field values

>>> product['last_updated'] = 'today'
>>> product['last_updated']
today

>>> product['lala'] = 'test' # setting unknown field
Traceback (most recent call last):
 ...
KeyError: 'Product does not support field: lala'

Accessing all populated values

To access all populated values, just use the typical dict API [https://docs.python.org/2/library/stdtypes.html#dict]:

>>> product.keys()
['price', 'name']

>>> product.items()
[('price', 1000), ('name', 'Desktop PC')]

Other common tasks

Copying items:

>>> product2 = Product(product)
>>> print product2
Product(name='Desktop PC', price=1000)

>>> product3 = product2.copy()
>>> print product3
Product(name='Desktop PC', price=1000)

Creating dicts from items:

>>> dict(product) # create a dict from all populated values
{'price': 1000, 'name': 'Desktop PC'}

Creating items from dicts:

>>> Product({'name': 'Laptop PC', 'price': 1500})
Product(price=1500, name='Laptop PC')

>>> Product({'name': 'Laptop PC', 'lala': 1500}) # warning: unknown field in dict
Traceback (most recent call last):
 ...
KeyError: 'Product does not support field: lala'

Extending Items

You can extend Items (to add more fields or to change some metadata for some
fields) by declaring a subclass of your original Item.

For example:

class DiscountedProduct(Product):
 discount_percent = scrapy.Field(serializer=str)
 discount_expiration_date = scrapy.Field()

You can also extend field metadata by using the previous field metadata and
appending more values, or changing existing values, like this:

class SpecificProduct(Product):
 name = scrapy.Field(Product.fields['name'], serializer=my_serializer)

That adds (or replaces) the serializer metadata key for the name field,
keeping all the previously existing metadata values.

Item objects

	
class scrapy.item.Item([arg])

	Return a new Item optionally initialized from the given argument.

Items replicate the standard dict API [https://docs.python.org/2/library/stdtypes.html#dict], including its constructor. The
only additional attribute provided by Items is:

	
fields

	A dictionary containing all declared fields for this Item, not only
those populated. The keys are the field names and the values are the
Field objects used in the Item declaration.

Field objects

	
class scrapy.item.Field([arg])

	The Field class is just an alias to the built-in dict [https://docs.python.org/2/library/stdtypes.html#dict] class and
doesn’t provide any extra functionality or attributes. In other words,
Field objects are plain-old Python dicts. A separate class is used
to support the item declaration syntax
based on class attributes.

 Item Loaders

Item Loaders

Item Loaders provide a convenient mechanism for populating scraped Items. Even though Items can be populated using their own
dictionary-like API, Item Loaders provide a much more convenient API for
populating them from a scraping process, by automating some common tasks like
parsing the raw extracted data before assigning it.

In other words, Items provide the container of
scraped data, while Item Loaders provide the mechanism for populating that
container.

Item Loaders are designed to provide a flexible, efficient and easy mechanism
for extending and overriding different field parsing rules, either by spider,
or by source format (HTML, XML, etc) without becoming a nightmare to maintain.

Using Item Loaders to populate items

To use an Item Loader, you must first instantiate it. You can either
instantiate it with a dict-like object (e.g. Item or dict) or without one, in
which case an Item is automatically instantiated in the Item Loader constructor
using the Item class specified in the ItemLoader.default_item_class
attribute.

Then, you start collecting values into the Item Loader, typically using
Selectors. You can add more than one value to
the same item field; the Item Loader will know how to “join” those values later
using a proper processing function.

Here is a typical Item Loader usage in a Spider, using
the Product item declared in the Items
chapter:

from scrapy.loader import ItemLoader
from myproject.items import Product

def parse(self, response):
 l = ItemLoader(item=Product(), response=response)
 l.add_xpath('name', '//div[@class="product_name"]')
 l.add_xpath('name', '//div[@class="product_title"]')
 l.add_xpath('price', '//p[@id="price"]')
 l.add_css('stock', 'p#stock]')
 l.add_value('last_updated', 'today') # you can also use literal values
 return l.load_item()

By quickly looking at that code, we can see the name field is being
extracted from two different XPath locations in the page:

	//div[@class="product_name"]

	//div[@class="product_title"]

In other words, data is being collected by extracting it from two XPath
locations, using the add_xpath() method. This is the
data that will be assigned to the name field later.

Afterwards, similar calls are used for price and stock fields
(the latter using a CSS selector with the add_css() method),
and finally the last_update field is populated directly with a literal value
(today) using a different method: add_value().

Finally, when all data is collected, the ItemLoader.load_item() method is
called which actually returns the item populated with the data
previously extracted and collected with the add_xpath(),
add_css(), and add_value() calls.

Input and Output processors

An Item Loader contains one input processor and one output processor for each
(item) field. The input processor processes the extracted data as soon as it’s
received (through the add_xpath(), add_css() or
add_value() methods) and the result of the input processor is
collected and kept inside the ItemLoader. After collecting all data, the
ItemLoader.load_item() method is called to populate and get the populated
Item object. That’s when the output processor is
called with the data previously collected (and processed using the input
processor). The result of the output processor is the final value that gets
assigned to the item.

Let’s see an example to illustrate how the input and output processors are
called for a particular field (the same applies for any other field):

l = ItemLoader(Product(), some_selector)
l.add_xpath('name', xpath1) # (1)
l.add_xpath('name', xpath2) # (2)
l.add_css('name', css) # (3)
l.add_value('name', 'test') # (4)
return l.load_item() # (5)

So what happens is:

	Data from xpath1 is extracted, and passed through the input processor of
the name field. The result of the input processor is collected and kept in
the Item Loader (but not yet assigned to the item).

	Data from xpath2 is extracted, and passed through the same input
processor used in (1). The result of the input processor is appended to the
data collected in (1) (if any).

	This case is similar to the previous ones, except that the data is extracted
from the css CSS selector, and passed through the same input
processor used in (1) and (2). The result of the input processor is appended to the
data collected in (1) and (2) (if any).

	This case is also similar to the previous ones, except that the value to be
collected is assigned directly, instead of being extracted from a XPath
expression or a CSS selector.
However, the value is still passed through the input processors. In this
case, since the value is not iterable it is converted to an iterable of a
single element before passing it to the input processor, because input
processor always receive iterables.

	The data collected in steps (1), (2), (3) and (4) is passed through
the output processor of the name field.
The result of the output processor is the value assigned to the name
field in the item.

It’s worth noticing that processors are just callable objects, which are called
with the data to be parsed, and return a parsed value. So you can use any
function as input or output processor. The only requirement is that they must
accept one (and only one) positional argument, which will be an iterator.

Note

Both input and output processors must receive an iterator as their
first argument. The output of those functions can be anything. The result of
input processors will be appended to an internal list (in the Loader)
containing the collected values (for that field). The result of the output
processors is the value that will be finally assigned to the item.

If you want to use a plain function as a processor, make sure it receives
self as the first argument:

def lowercase_processor(self, values):
 for v in values:
 yield v.lower()

class MyItemLoader(ItemLoader):
 name_in = lowercase_processor

This is because whenever a function is assigned as a class variable, it becomes
a method and would be passed the instance as the the first argument when being
called. See this answer on stackoverflow [https://stackoverflow.com/a/35322635] for more details.

The other thing you need to keep in mind is that the values returned by input
processors are collected internally (in lists) and then passed to output
processors to populate the fields.

Last, but not least, Scrapy comes with some commonly used processors built-in for convenience.

Declaring Item Loaders

Item Loaders are declared like Items, by using a class definition syntax. Here
is an example:

from scrapy.loader import ItemLoader
from scrapy.loader.processors import TakeFirst, MapCompose, Join

class ProductLoader(ItemLoader):

 default_output_processor = TakeFirst()

 name_in = MapCompose(unicode.title)
 name_out = Join()

 price_in = MapCompose(unicode.strip)

 # ...

As you can see, input processors are declared using the _in suffix while
output processors are declared using the _out suffix. And you can also
declare a default input/output processors using the
ItemLoader.default_input_processor and
ItemLoader.default_output_processor attributes.

Declaring Input and Output Processors

As seen in the previous section, input and output processors can be declared in
the Item Loader definition, and it’s very common to declare input processors
this way. However, there is one more place where you can specify the input and
output processors to use: in the Item Field
metadata. Here is an example:

import scrapy
from scrapy.loader.processors import Join, MapCompose, TakeFirst
from w3lib.html import remove_tags

def filter_price(value):
 if value.isdigit():
 return value

class Product(scrapy.Item):
 name = scrapy.Field(
 input_processor=MapCompose(remove_tags),
 output_processor=Join(),
)
 price = scrapy.Field(
 input_processor=MapCompose(remove_tags, filter_price),
 output_processor=TakeFirst(),
)

>>> from scrapy.loader import ItemLoader
>>> il = ItemLoader(item=Product())
>>> il.add_value('name', [u'Welcome to my', u'website'])
>>> il.add_value('price', [u'€', u'1000'])
>>> il.load_item()
{'name': u'Welcome to my website', 'price': u'1000'}

The precedence order, for both input and output processors, is as follows:

	Item Loader field-specific attributes: field_in and field_out (most
precedence)

	Field metadata (input_processor and output_processor key)

	Item Loader defaults: ItemLoader.default_input_processor() and
ItemLoader.default_output_processor() (least precedence)

See also: Reusing and extending Item Loaders.

Item Loader Context

The Item Loader Context is a dict of arbitrary key/values which is shared among
all input and output processors in the Item Loader. It can be passed when
declaring, instantiating or using Item Loader. They are used to modify the
behaviour of the input/output processors.

For example, suppose you have a function parse_length which receives a text
value and extracts a length from it:

def parse_length(text, loader_context):
 unit = loader_context.get('unit', 'm')
 # ... length parsing code goes here ...
 return parsed_length

By accepting a loader_context argument the function is explicitly telling
the Item Loader that it’s able to receive an Item Loader context, so the Item
Loader passes the currently active context when calling it, and the processor
function (parse_length in this case) can thus use them.

There are several ways to modify Item Loader context values:

	By modifying the currently active Item Loader context
(context attribute):

loader = ItemLoader(product)
loader.context['unit'] = 'cm'

	On Item Loader instantiation (the keyword arguments of Item Loader
constructor are stored in the Item Loader context):

loader = ItemLoader(product, unit='cm')

	On Item Loader declaration, for those input/output processors that support
instantiating them with an Item Loader context. MapCompose is one of
them:

class ProductLoader(ItemLoader):
 length_out = MapCompose(parse_length, unit='cm')

ItemLoader objects

	
class scrapy.loader.ItemLoader([item, selector, response,]**kwargs)

	Return a new Item Loader for populating the given Item. If no item is
given, one is instantiated automatically using the class in
default_item_class.

When instantiated with a selector or a response parameters
the ItemLoader class provides convenient mechanisms for extracting
data from web pages using selectors.

	Parameters

	
	item (Item object) – The item instance to populate using subsequent calls to
add_xpath(), add_css(),
or add_value().

	selector (Selector object) – The selector to extract data from, when using the
add_xpath() (resp. add_css()) or replace_xpath()
(resp. replace_css()) method.

	response (Response object) – The response used to construct the selector using the
default_selector_class, unless the selector argument is given,
in which case this argument is ignored.

The item, selector, response and the remaining keyword arguments are
assigned to the Loader context (accessible through the context attribute).

ItemLoader instances have the following methods:

	
get_value(value, *processors, **kwargs)

	Process the given value by the given processors and keyword
arguments.

Available keyword arguments:

	Parameters

	re (str or compiled regex) – a regular expression to use for extracting data from the
given value using extract_regex() method,
applied before processors

Examples:

>>> from scrapy.loader.processors import TakeFirst
>>> loader.get_value(u'name: foo', TakeFirst(), unicode.upper, re='name: (.+)')
'FOO`

	
add_value(field_name, value, *processors, **kwargs)

	Process and then add the given value for the given field.

The value is first passed through get_value() by giving the
processors and kwargs, and then passed through the
field input processor and its result
appended to the data collected for that field. If the field already
contains collected data, the new data is added.

The given field_name can be None, in which case values for
multiple fields may be added. And the processed value should be a dict
with field_name mapped to values.

Examples:

loader.add_value('name', u'Color TV')
loader.add_value('colours', [u'white', u'blue'])
loader.add_value('length', u'100')
loader.add_value('name', u'name: foo', TakeFirst(), re='name: (.+)')
loader.add_value(None, {'name': u'foo', 'sex': u'male'})

	
replace_value(field_name, value, *processors, **kwargs)

	Similar to add_value() but replaces the collected data with the
new value instead of adding it.

	
get_xpath(xpath, *processors, **kwargs)

	Similar to ItemLoader.get_value() but receives an XPath instead of a
value, which is used to extract a list of unicode strings from the
selector associated with this ItemLoader.

	Parameters

	
	xpath (str) – the XPath to extract data from

	re (str or compiled regex) – a regular expression to use for extracting data from the
selected XPath region

Examples:

HTML snippet: <p class="product-name">Color TV</p>
loader.get_xpath('//p[@class="product-name"]')
HTML snippet: <p id="price">the price is $1200</p>
loader.get_xpath('//p[@id="price"]', TakeFirst(), re='the price is (.*)')

	
add_xpath(field_name, xpath, *processors, **kwargs)

	Similar to ItemLoader.add_value() but receives an XPath instead of a
value, which is used to extract a list of unicode strings from the
selector associated with this ItemLoader.

See get_xpath() for kwargs.

	Parameters

	xpath (str) – the XPath to extract data from

Examples:

HTML snippet: <p class="product-name">Color TV</p>
loader.add_xpath('name', '//p[@class="product-name"]')
HTML snippet: <p id="price">the price is $1200</p>
loader.add_xpath('price', '//p[@id="price"]', re='the price is (.*)')

	
replace_xpath(field_name, xpath, *processors, **kwargs)

	Similar to add_xpath() but replaces collected data instead of
adding it.

	
get_css(css, *processors, **kwargs)

	Similar to ItemLoader.get_value() but receives a CSS selector
instead of a value, which is used to extract a list of unicode strings
from the selector associated with this ItemLoader.

	Parameters

	
	css (str) – the CSS selector to extract data from

	re (str or compiled regex) – a regular expression to use for extracting data from the
selected CSS region

Examples:

HTML snippet: <p class="product-name">Color TV</p>
loader.get_css('p.product-name')
HTML snippet: <p id="price">the price is $1200</p>
loader.get_css('p#price', TakeFirst(), re='the price is (.*)')

	
add_css(field_name, css, *processors, **kwargs)

	Similar to ItemLoader.add_value() but receives a CSS selector
instead of a value, which is used to extract a list of unicode strings
from the selector associated with this ItemLoader.

See get_css() for kwargs.

	Parameters

	css (str) – the CSS selector to extract data from

Examples:

HTML snippet: <p class="product-name">Color TV</p>
loader.add_css('name', 'p.product-name')
HTML snippet: <p id="price">the price is $1200</p>
loader.add_css('price', 'p#price', re='the price is (.*)')

	
replace_css(field_name, css, *processors, **kwargs)

	Similar to add_css() but replaces collected data instead of
adding it.

	
load_item()

	Populate the item with the data collected so far, and return it. The
data collected is first passed through the output processors to get the final value to assign to each
item field.

	
nested_xpath(xpath)

	Create a nested loader with an xpath selector.
The supplied selector is applied relative to selector associated
with this ItemLoader. The nested loader shares the Item
with the parent ItemLoader so calls to add_xpath(),
add_value(), replace_value(), etc. will behave as expected.

	
nested_css(css)

	Create a nested loader with a css selector.
The supplied selector is applied relative to selector associated
with this ItemLoader. The nested loader shares the Item
with the parent ItemLoader so calls to add_xpath(),
add_value(), replace_value(), etc. will behave as expected.

	
get_collected_values(field_name)

	Return the collected values for the given field.

	
get_output_value(field_name)

	Return the collected values parsed using the output processor, for the
given field. This method doesn’t populate or modify the item at all.

	
get_input_processor(field_name)

	Return the input processor for the given field.

	
get_output_processor(field_name)

	Return the output processor for the given field.

ItemLoader instances have the following attributes:

	
item

	The Item object being parsed by this Item Loader.

	
context

	The currently active Context of this
Item Loader.

	
default_item_class

	An Item class (or factory), used to instantiate items when not given in
the constructor.

	
default_input_processor

	The default input processor to use for those fields which don’t specify
one.

	
default_output_processor

	The default output processor to use for those fields which don’t specify
one.

	
default_selector_class

	The class used to construct the selector of this
ItemLoader, if only a response is given in the constructor.
If a selector is given in the constructor this attribute is ignored.
This attribute is sometimes overridden in subclasses.

	
selector

	The Selector object to extract data from.
It’s either the selector given in the constructor or one created from
the response given in the constructor using the
default_selector_class. This attribute is meant to be
read-only.

Nested Loaders

When parsing related values from a subsection of a document, it can be
useful to create nested loaders. Imagine you’re extracting details from
a footer of a page that looks something like:

Example:

<footer>
 Like Us
 Follow Us
 Email Us
</footer>

Without nested loaders, you need to specify the full xpath (or css) for each value
that you wish to extract.

Example:

loader = ItemLoader(item=Item())
load stuff not in the footer
loader.add_xpath('social', '//footer/a[@class = "social"]/@href')
loader.add_xpath('email', '//footer/a[@class = "email"]/@href')
loader.load_item()

Instead, you can create a nested loader with the footer selector and add values
relative to the footer. The functionality is the same but you avoid repeating
the footer selector.

Example:

loader = ItemLoader(item=Item())
load stuff not in the footer
footer_loader = loader.nested_xpath('//footer')
footer_loader.add_xpath('social', 'a[@class = "social"]/@href')
footer_loader.add_xpath('email', 'a[@class = "email"]/@href')
no need to call footer_loader.load_item()
loader.load_item()

You can nest loaders arbitrarily and they work with either xpath or css selectors.
As a general guideline, use nested loaders when they make your code simpler but do
not go overboard with nesting or your parser can become difficult to read.

Reusing and extending Item Loaders

As your project grows bigger and acquires more and more spiders, maintenance
becomes a fundamental problem, especially when you have to deal with many
different parsing rules for each spider, having a lot of exceptions, but also
wanting to reuse the common processors.

Item Loaders are designed to ease the maintenance burden of parsing rules,
without losing flexibility and, at the same time, providing a convenient
mechanism for extending and overriding them. For this reason Item Loaders
support traditional Python class inheritance for dealing with differences of
specific spiders (or groups of spiders).

Suppose, for example, that some particular site encloses their product names in
three dashes (e.g. ---Plasma TV---) and you don’t want to end up scraping
those dashes in the final product names.

Here’s how you can remove those dashes by reusing and extending the default
Product Item Loader (ProductLoader):

from scrapy.loader.processors import MapCompose
from myproject.ItemLoaders import ProductLoader

def strip_dashes(x):
 return x.strip('-')

class SiteSpecificLoader(ProductLoader):
 name_in = MapCompose(strip_dashes, ProductLoader.name_in)

Another case where extending Item Loaders can be very helpful is when you have
multiple source formats, for example XML and HTML. In the XML version you may
want to remove CDATA occurrences. Here’s an example of how to do it:

from scrapy.loader.processors import MapCompose
from myproject.ItemLoaders import ProductLoader
from myproject.utils.xml import remove_cdata

class XmlProductLoader(ProductLoader):
 name_in = MapCompose(remove_cdata, ProductLoader.name_in)

And that’s how you typically extend input processors.

As for output processors, it is more common to declare them in the field metadata,
as they usually depend only on the field and not on each specific site parsing
rule (as input processors do). See also:
Declaring Input and Output Processors.

There are many other possible ways to extend, inherit and override your Item
Loaders, and different Item Loaders hierarchies may fit better for different
projects. Scrapy only provides the mechanism; it doesn’t impose any specific
organization of your Loaders collection - that’s up to you and your project’s
needs.

Available built-in processors

Even though you can use any callable function as input and output processors,
Scrapy provides some commonly used processors, which are described below. Some
of them, like the MapCompose (which is typically used as input
processor) compose the output of several functions executed in order, to
produce the final parsed value.

Here is a list of all built-in processors:

	
class scrapy.loader.processors.Identity

	The simplest processor, which doesn’t do anything. It returns the original
values unchanged. It doesn’t receive any constructor arguments, nor does it
accept Loader contexts.

Example:

>>> from scrapy.loader.processors import Identity
>>> proc = Identity()
>>> proc(['one', 'two', 'three'])
['one', 'two', 'three']

	
class scrapy.loader.processors.TakeFirst

	Returns the first non-null/non-empty value from the values received,
so it’s typically used as an output processor to single-valued fields.
It doesn’t receive any constructor arguments, nor does it accept Loader contexts.

Example:

>>> from scrapy.loader.processors import TakeFirst
>>> proc = TakeFirst()
>>> proc(['', 'one', 'two', 'three'])
'one'

	
class scrapy.loader.processors.Join(separator=u' ')

	Returns the values joined with the separator given in the constructor, which
defaults to u' '. It doesn’t accept Loader contexts.

When using the default separator, this processor is equivalent to the
function: u' '.join

Examples:

>>> from scrapy.loader.processors import Join
>>> proc = Join()
>>> proc(['one', 'two', 'three'])
u'one two three'
>>> proc = Join('
')
>>> proc(['one', 'two', 'three'])
u'one
two
three'

	
class scrapy.loader.processors.Compose(*functions, **default_loader_context)

	A processor which is constructed from the composition of the given
functions. This means that each input value of this processor is passed to
the first function, and the result of that function is passed to the second
function, and so on, until the last function returns the output value of
this processor.

By default, stop process on None value. This behaviour can be changed by
passing keyword argument stop_on_none=False.

Example:

>>> from scrapy.loader.processors import Compose
>>> proc = Compose(lambda v: v[0], str.upper)
>>> proc(['hello', 'world'])
'HELLO'

Each function can optionally receive a loader_context parameter. For
those which do, this processor will pass the currently active Loader
context through that parameter.

The keyword arguments passed in the constructor are used as the default
Loader context values passed to each function call. However, the final
Loader context values passed to functions are overridden with the currently
active Loader context accessible through the ItemLoader.context()
attribute.

	
class scrapy.loader.processors.MapCompose(*functions, **default_loader_context)

	A processor which is constructed from the composition of the given
functions, similar to the Compose processor. The difference with
this processor is the way internal results are passed among functions,
which is as follows:

The input value of this processor is iterated and the first function is
applied to each element. The results of these function calls (one for each element)
are concatenated to construct a new iterable, which is then used to apply the
second function, and so on, until the last function is applied to each
value of the list of values collected so far. The output values of the last
function are concatenated together to produce the output of this processor.

Each particular function can return a value or a list of values, which is
flattened with the list of values returned by the same function applied to
the other input values. The functions can also return None in which
case the output of that function is ignored for further processing over the
chain.

This processor provides a convenient way to compose functions that only
work with single values (instead of iterables). For this reason the
MapCompose processor is typically used as input processor, since
data is often extracted using the
extract() method of selectors, which returns a list of unicode strings.

The example below should clarify how it works:

>>> def filter_world(x):
... return None if x == 'world' else x
...
>>> from scrapy.loader.processors import MapCompose
>>> proc = MapCompose(filter_world, unicode.upper)
>>> proc([u'hello', u'world', u'this', u'is', u'scrapy'])
[u'HELLO, u'THIS', u'IS', u'SCRAPY']

As with the Compose processor, functions can receive Loader contexts, and
constructor keyword arguments are used as default context values. See
Compose processor for more info.

	
class scrapy.loader.processors.SelectJmes(json_path)

	Queries the value using the json path provided to the constructor and returns the output.
Requires jmespath (https://github.com/jmespath/jmespath.py) to run.
This processor takes only one input at a time.

Example:

>>> from scrapy.loader.processors import SelectJmes, Compose, MapCompose
>>> proc = SelectJmes("foo") #for direct use on lists and dictionaries
>>> proc({'foo': 'bar'})
'bar'
>>> proc({'foo': {'bar': 'baz'}})
{'bar': 'baz'}

Working with Json:

>>> import json
>>> proc_single_json_str = Compose(json.loads, SelectJmes("foo"))
>>> proc_single_json_str('{"foo": "bar"}')
u'bar'
>>> proc_json_list = Compose(json.loads, MapCompose(SelectJmes('foo')))
>>> proc_json_list('[{"foo":"bar"}, {"baz":"tar"}]')
[u'bar']

 Scrapy shell

Scrapy shell

The Scrapy shell is an interactive shell where you can try and debug your
scraping code very quickly, without having to run the spider. It’s meant to be
used for testing data extraction code, but you can actually use it for testing
any kind of code as it is also a regular Python shell.

The shell is used for testing XPath or CSS expressions and see how they work
and what data they extract from the web pages you’re trying to scrape. It
allows you to interactively test your expressions while you’re writing your
spider, without having to run the spider to test every change.

Once you get familiarized with the Scrapy shell, you’ll see that it’s an
invaluable tool for developing and debugging your spiders.

Configuring the shell

If you have IPython [https://ipython.org/] installed, the Scrapy shell will use it (instead of the
standard Python console). The IPython [https://ipython.org/] console is much more powerful and
provides smart auto-completion and colorized output, among other things.

We highly recommend you install IPython [https://ipython.org/], specially if you’re working on
Unix systems (where IPython [https://ipython.org/] excels). See the IPython installation guide [https://ipython.org/install.html]
for more info.

Scrapy also has support for bpython [https://www.bpython-interpreter.org/], and will try to use it where IPython [https://ipython.org/]
is unavailable.

Through scrapy’s settings you can configure it to use any one of
ipython, bpython or the standard python shell, regardless of which
are installed. This is done by setting the SCRAPY_PYTHON_SHELL environment
variable; or by defining it in your scrapy.cfg:

[settings]
shell = bpython

Launch the shell

To launch the Scrapy shell you can use the shell command like
this:

scrapy shell <url>

Where the <url> is the URL you want to scrape.

shell also works for local files. This can be handy if you want
to play around with a local copy of a web page. shell understands
the following syntaxes for local files:

UNIX-style
scrapy shell ./path/to/file.html
scrapy shell ../other/path/to/file.html
scrapy shell /absolute/path/to/file.html

File URI
scrapy shell file:///absolute/path/to/file.html

Note

When using relative file paths, be explicit and prepend them
with ./ (or ../ when relevant).
scrapy shell index.html will not work as one might expect (and
this is by design, not a bug).

Because shell favors HTTP URLs over File URIs,
and index.html being syntactically similar to example.com,
shell will treat index.html as a domain name and trigger
a DNS lookup error:

$ scrapy shell index.html
[... scrapy shell starts ...]
[... traceback ...]
twisted.internet.error.DNSLookupError: DNS lookup failed:
address 'index.html' not found: [Errno -5] No address associated with hostname.

shell will not test beforehand if a file called index.html
exists in the current directory. Again, be explicit.

Using the shell

The Scrapy shell is just a regular Python console (or IPython [https://ipython.org/] console if you
have it available) which provides some additional shortcut functions for
convenience.

Available Shortcuts

	shelp() - print a help with the list of available objects and shortcuts

	fetch(url[, redirect=True]) - fetch a new response from the given
URL and update all related objects accordingly. You can optionaly ask for
HTTP 3xx redirections to not be followed by passing redirect=False

	fetch(request) - fetch a new response from the given request and
update all related objects accordingly.

	view(response) - open the given response in your local web browser, for
inspection. This will add a <base> tag [https://developer.mozilla.org/en-US/docs/Web/HTML/Element/base] to the response body in order
for external links (such as images and style sheets) to display properly.
Note, however, that this will create a temporary file in your computer,
which won’t be removed automatically.

Available Scrapy objects

The Scrapy shell automatically creates some convenient objects from the
downloaded page, like the Response object and the
Selector objects (for both HTML and XML
content).

Those objects are:

	crawler - the current Crawler object.

	spider - the Spider which is known to handle the URL, or a
Spider object if there is no spider found for
the current URL

	request - a Request object of the last fetched
page. You can modify this request using replace()
or fetch a new request (without leaving the shell) using the fetch
shortcut.

	response - a Response object containing the last
fetched page

	settings - the current Scrapy settings

Example of shell session

Here’s an example of a typical shell session where we start by scraping the
https://scrapy.org page, and then proceed to scrape the https://reddit.com
page. Finally, we modify the (Reddit) request method to POST and re-fetch it
getting an error. We end the session by typing Ctrl-D (in Unix systems) or
Ctrl-Z in Windows.

Keep in mind that the data extracted here may not be the same when you try it,
as those pages are not static and could have changed by the time you test this.
The only purpose of this example is to get you familiarized with how the Scrapy
shell works.

First, we launch the shell:

scrapy shell 'https://scrapy.org' --nolog

Then, the shell fetches the URL (using the Scrapy downloader) and prints the
list of available objects and useful shortcuts (you’ll notice that these lines
all start with the [s] prefix):

[s] Available Scrapy objects:
[s] scrapy scrapy module (contains scrapy.Request, scrapy.Selector, etc)
[s] crawler <scrapy.crawler.Crawler object at 0x7f07395dd690>
[s] item {}
[s] request <GET https://scrapy.org>
[s] response <200 https://scrapy.org/>
[s] settings <scrapy.settings.Settings object at 0x7f07395dd710>
[s] spider <DefaultSpider 'default' at 0x7f0735891690>
[s] Useful shortcuts:
[s] fetch(url[, redirect=True]) Fetch URL and update local objects (by default, redirects are followed)
[s] fetch(req) Fetch a scrapy.Request and update local objects
[s] shelp() Shell help (print this help)
[s] view(response) View response in a browser

>>>

After that, we can start playing with the objects:

>>> response.xpath('//title/text()').extract_first()
'Scrapy | A Fast and Powerful Scraping and Web Crawling Framework'

>>> fetch("https://reddit.com")

>>> response.xpath('//title/text()').extract()
['reddit: the front page of the internet']

>>> request = request.replace(method="POST")

>>> fetch(request)

>>> response.status
404

>>> from pprint import pprint

>>> pprint(response.headers)
{'Accept-Ranges': ['bytes'],
 'Cache-Control': ['max-age=0, must-revalidate'],
 'Content-Type': ['text/html; charset=UTF-8'],
 'Date': ['Thu, 08 Dec 2016 16:21:19 GMT'],
 'Server': ['snooserv'],
 'Set-Cookie': ['loid=KqNLou0V9SKMX4qb4n; Domain=reddit.com; Max-Age=63071999; Path=/; expires=Sat, 08-Dec-2018 16:21:19 GMT; secure',
 'loidcreated=2016-12-08T16%3A21%3A19.445Z; Domain=reddit.com; Max-Age=63071999; Path=/; expires=Sat, 08-Dec-2018 16:21:19 GMT; secure',
 'loid=vi0ZVe4NkxNWdlH7r7; Domain=reddit.com; Max-Age=63071999; Path=/; expires=Sat, 08-Dec-2018 16:21:19 GMT; secure',
 'loidcreated=2016-12-08T16%3A21%3A19.459Z; Domain=reddit.com; Max-Age=63071999; Path=/; expires=Sat, 08-Dec-2018 16:21:19 GMT; secure'],
 'Vary': ['accept-encoding'],
 'Via': ['1.1 varnish'],
 'X-Cache': ['MISS'],
 'X-Cache-Hits': ['0'],
 'X-Content-Type-Options': ['nosniff'],
 'X-Frame-Options': ['SAMEORIGIN'],
 'X-Moose': ['majestic'],
 'X-Served-By': ['cache-cdg8730-CDG'],
 'X-Timer': ['S1481214079.394283,VS0,VE159'],
 'X-Ua-Compatible': ['IE=edge'],
 'X-Xss-Protection': ['1; mode=block']}
>>>

Invoking the shell from spiders to inspect responses

Sometimes you want to inspect the responses that are being processed in a
certain point of your spider, if only to check that response you expect is
getting there.

This can be achieved by using the scrapy.shell.inspect_response function.

Here’s an example of how you would call it from your spider:

import scrapy

class MySpider(scrapy.Spider):
 name = "myspider"
 start_urls = [
 "http://example.com",
 "http://example.org",
 "http://example.net",
]

 def parse(self, response):
 # We want to inspect one specific response.
 if ".org" in response.url:
 from scrapy.shell import inspect_response
 inspect_response(response, self)

 # Rest of parsing code.

When you run the spider, you will get something similar to this:

2014-01-23 17:48:31-0400 [scrapy.core.engine] DEBUG: Crawled (200) <GET http://example.com> (referer: None)
2014-01-23 17:48:31-0400 [scrapy.core.engine] DEBUG: Crawled (200) <GET http://example.org> (referer: None)
[s] Available Scrapy objects:
[s] crawler <scrapy.crawler.Crawler object at 0x1e16b50>
...

>>> response.url
'http://example.org'

Then, you can check if the extraction code is working:

>>> response.xpath('//h1[@class="fn"]')
[]

Nope, it doesn’t. So you can open the response in your web browser and see if
it’s the response you were expecting:

>>> view(response)
True

Finally you hit Ctrl-D (or Ctrl-Z in Windows) to exit the shell and resume the
crawling:

>>> ^D
2014-01-23 17:50:03-0400 [scrapy.core.engine] DEBUG: Crawled (200) <GET http://example.net> (referer: None)
...

Note that you can’t use the fetch shortcut here since the Scrapy engine is
blocked by the shell. However, after you leave the shell, the spider will
continue crawling where it stopped, as shown above.

 Item Pipeline

Item Pipeline

After an item has been scraped by a spider, it is sent to the Item Pipeline
which processes it through several components that are executed sequentially.

Each item pipeline component (sometimes referred as just “Item Pipeline”) is a
Python class that implements a simple method. They receive an item and perform
an action over it, also deciding if the item should continue through the
pipeline or be dropped and no longer processed.

Typical uses of item pipelines are:

	cleansing HTML data

	validating scraped data (checking that the items contain certain fields)

	checking for duplicates (and dropping them)

	storing the scraped item in a database

Writing your own item pipeline

Each item pipeline component is a Python class that must implement the following method:

	
process_item(self, item, spider)

	This method is called for every item pipeline component. process_item()
must either: return a dict with data, return an Item
(or any descendant class) object, return a Twisted Deferred [https://twistedmatrix.com/documents/current/core/howto/defer.html] or raise
DropItem exception. Dropped items are no longer
processed by further pipeline components.

	Parameters

	
	item (Item object or a dict) – the item scraped

	spider (Spider object) – the spider which scraped the item

Additionally, they may also implement the following methods:

	
open_spider(self, spider)

	This method is called when the spider is opened.

	Parameters

	spider (Spider object) – the spider which was opened

	
close_spider(self, spider)

	This method is called when the spider is closed.

	Parameters

	spider (Spider object) – the spider which was closed

	
from_crawler(cls, crawler)

	If present, this classmethod is called to create a pipeline instance
from a Crawler. It must return a new instance
of the pipeline. Crawler object provides access to all Scrapy core
components like settings and signals; it is a way for pipeline to
access them and hook its functionality into Scrapy.

	Parameters

	crawler (Crawler object) – crawler that uses this pipeline

Item pipeline example

Price validation and dropping items with no prices

Let’s take a look at the following hypothetical pipeline that adjusts the
price attribute for those items that do not include VAT
(price_excludes_vat attribute), and drops those items which don’t
contain a price:

from scrapy.exceptions import DropItem

class PricePipeline(object):

 vat_factor = 1.15

 def process_item(self, item, spider):
 if item['price']:
 if item['price_excludes_vat']:
 item['price'] = item['price'] * self.vat_factor
 return item
 else:
 raise DropItem("Missing price in %s" % item)

Write items to a JSON file

The following pipeline stores all scraped items (from all spiders) into a
single items.jl file, containing one item per line serialized in JSON
format:

import json

class JsonWriterPipeline(object):

 def open_spider(self, spider):
 self.file = open('items.jl', 'w')

 def close_spider(self, spider):
 self.file.close()

 def process_item(self, item, spider):
 line = json.dumps(dict(item)) + "\n"
 self.file.write(line)
 return item

Note

The purpose of JsonWriterPipeline is just to introduce how to write
item pipelines. If you really want to store all scraped items into a JSON
file you should use the Feed exports.

Write items to MongoDB

In this example we’ll write items to MongoDB [https://www.mongodb.org/] using pymongo [https://api.mongodb.org/python/current/].
MongoDB address and database name are specified in Scrapy settings;
MongoDB collection is named after item class.

The main point of this example is to show how to use from_crawler()
method and how to clean up the resources properly.:

import pymongo

class MongoPipeline(object):

 collection_name = 'scrapy_items'

 def __init__(self, mongo_uri, mongo_db):
 self.mongo_uri = mongo_uri
 self.mongo_db = mongo_db

 @classmethod
 def from_crawler(cls, crawler):
 return cls(
 mongo_uri=crawler.settings.get('MONGO_URI'),
 mongo_db=crawler.settings.get('MONGO_DATABASE', 'items')
)

 def open_spider(self, spider):
 self.client = pymongo.MongoClient(self.mongo_uri)
 self.db = self.client[self.mongo_db]

 def close_spider(self, spider):
 self.client.close()

 def process_item(self, item, spider):
 self.db[self.collection_name].insert_one(dict(item))
 return item

Take screenshot of item

This example demonstrates how to return Deferred [https://twistedmatrix.com/documents/current/core/howto/defer.html] from process_item() method.
It uses Splash [https://splash.readthedocs.io/en/stable/] to render screenshot of item url. Pipeline
makes request to locally running instance of Splash [https://splash.readthedocs.io/en/stable/]. After request is downloaded
and Deferred callback fires, it saves item to a file and adds filename to an item.

import scrapy
import hashlib
from urllib.parse import quote

class ScreenshotPipeline(object):
 """Pipeline that uses Splash to render screenshot of
 every Scrapy item."""

 SPLASH_URL = "http://localhost:8050/render.png?url={}"

 def process_item(self, item, spider):
 encoded_item_url = quote(item["url"])
 screenshot_url = self.SPLASH_URL.format(encoded_item_url)
 request = scrapy.Request(screenshot_url)
 dfd = spider.crawler.engine.download(request, spider)
 dfd.addBoth(self.return_item, item)
 return dfd

 def return_item(self, response, item):
 if response.status != 200:
 # Error happened, return item.
 return item

 # Save screenshot to file, filename will be hash of url.
 url = item["url"]
 url_hash = hashlib.md5(url.encode("utf8")).hexdigest()
 filename = "{}.png".format(url_hash)
 with open(filename, "wb") as f:
 f.write(response.body)

 # Store filename in item.
 item["screenshot_filename"] = filename
 return item

Duplicates filter

A filter that looks for duplicate items, and drops those items that were
already processed. Let’s say that our items have a unique id, but our spider
returns multiples items with the same id:

from scrapy.exceptions import DropItem

class DuplicatesPipeline(object):

 def __init__(self):
 self.ids_seen = set()

 def process_item(self, item, spider):
 if item['id'] in self.ids_seen:
 raise DropItem("Duplicate item found: %s" % item)
 else:
 self.ids_seen.add(item['id'])
 return item

Activating an Item Pipeline component

To activate an Item Pipeline component you must add its class to the
:setting:`ITEM_PIPELINES` setting, like in the following example:

ITEM_PIPELINES = {
 'myproject.pipelines.PricePipeline': 300,
 'myproject.pipelines.JsonWriterPipeline': 800,
}

The integer values you assign to classes in this setting determine the
order in which they run: items go through from lower valued to higher
valued classes. It’s customary to define these numbers in the 0-1000 range.

 Feed exports

Feed exports

New in version 0.10.

One of the most frequently required features when implementing scrapers is
being able to store the scraped data properly and, quite often, that means
generating an “export file” with the scraped data (commonly called “export
feed”) to be consumed by other systems.

Scrapy provides this functionality out of the box with the Feed Exports, which
allows you to generate a feed with the scraped items, using multiple
serialization formats and storage backends.

Serialization formats

For serializing the scraped data, the feed exports use the Item exporters. These formats are supported out of the box:

	JSON

	JSON lines

	CSV

	XML

But you can also extend the supported format through the
:setting:`FEED_EXPORTERS` setting.

JSON

	:setting:`FEED_FORMAT`: json

	Exporter used: JsonItemExporter

	See this warning if you’re using JSON with
large feeds.

JSON lines

	:setting:`FEED_FORMAT`: jsonlines

	Exporter used: JsonLinesItemExporter

CSV

	:setting:`FEED_FORMAT`: csv

	Exporter used: CsvItemExporter

	To specify columns to export and their order use
:setting:`FEED_EXPORT_FIELDS`. Other feed exporters can also use this
option, but it is important for CSV because unlike many other export
formats CSV uses a fixed header.

XML

	:setting:`FEED_FORMAT`: xml

	Exporter used: XmlItemExporter

Pickle

	:setting:`FEED_FORMAT`: pickle

	Exporter used: PickleItemExporter

Marshal

	:setting:`FEED_FORMAT`: marshal

	Exporter used: MarshalItemExporter

Storages

When using the feed exports you define where to store the feed using a URI [https://en.wikipedia.org/wiki/Uniform_Resource_Identifier]
(through the :setting:`FEED_URI` setting). The feed exports supports multiple
storage backend types which are defined by the URI scheme.

The storages backends supported out of the box are:

	Local filesystem

	FTP

	S3 (requires botocore [https://github.com/boto/botocore] or boto [https://github.com/boto/boto])

	Standard output

Some storage backends may be unavailable if the required external libraries are
not available. For example, the S3 backend is only available if the botocore [https://github.com/boto/botocore]
or boto [https://github.com/boto/boto] library is installed (Scrapy supports boto [https://github.com/boto/boto] only on Python 2).

Storage URI parameters

The storage URI can also contain parameters that get replaced when the feed is
being created. These parameters are:

	%(time)s - gets replaced by a timestamp when the feed is being created

	%(name)s - gets replaced by the spider name

Any other named parameter gets replaced by the spider attribute of the same
name. For example, %(site_id)s would get replaced by the spider.site_id
attribute the moment the feed is being created.

Here are some examples to illustrate:

	Store in FTP using one directory per spider:

	ftp://user:password@ftp.example.com/scraping/feeds/%(name)s/%(time)s.json

	Store in S3 using one directory per spider:

	s3://mybucket/scraping/feeds/%(name)s/%(time)s.json

Storage backends

Local filesystem

The feeds are stored in the local filesystem.

	URI scheme: file

	Example URI: file:///tmp/export.csv

	Required external libraries: none

Note that for the local filesystem storage (only) you can omit the scheme if
you specify an absolute path like /tmp/export.csv. This only works on Unix
systems though.

FTP

The feeds are stored in a FTP server.

	URI scheme: ftp

	Example URI: ftp://user:pass@ftp.example.com/path/to/export.csv

	Required external libraries: none

S3

The feeds are stored on Amazon S3 [https://aws.amazon.com/s3/].

	URI scheme: s3

	Example URIs:

	s3://mybucket/path/to/export.csv

	s3://aws_key:aws_secret@mybucket/path/to/export.csv

	Required external libraries: botocore [https://github.com/boto/botocore] (Python 2 and Python 3) or boto [https://github.com/boto/boto] (Python 2 only)

The AWS credentials can be passed as user/password in the URI, or they can be
passed through the following settings:

	:setting:`AWS_ACCESS_KEY_ID`

	:setting:`AWS_SECRET_ACCESS_KEY`

Standard output

The feeds are written to the standard output of the Scrapy process.

	URI scheme: stdout

	Example URI: stdout:

	Required external libraries: none

Settings

These are the settings used for configuring the feed exports:

	:setting:`FEED_URI` (mandatory)

	:setting:`FEED_FORMAT`

	:setting:`FEED_STORAGES`

	:setting:`FEED_EXPORTERS`

	:setting:`FEED_STORE_EMPTY`

	:setting:`FEED_EXPORT_ENCODING`

	:setting:`FEED_EXPORT_FIELDS`

	:setting:`FEED_EXPORT_INDENT`

FEED_URI

Default: None

The URI of the export feed. See Storage backends for
supported URI schemes.

This setting is required for enabling the feed exports.

FEED_FORMAT

The serialization format to be used for the feed. See
Serialization formats for possible values.

FEED_EXPORT_ENCODING

Default: None

The encoding to be used for the feed.

If unset or set to None (default) it uses UTF-8 for everything except JSON output,
which uses safe numeric encoding (\uXXXX sequences) for historic reasons.

Use utf-8 if you want UTF-8 for JSON too.

FEED_EXPORT_FIELDS

Default: None

A list of fields to export, optional.
Example: FEED_EXPORT_FIELDS = ["foo", "bar", "baz"].

Use FEED_EXPORT_FIELDS option to define fields to export and their order.

When FEED_EXPORT_FIELDS is empty or None (default), Scrapy uses fields
defined in dicts or Item subclasses a spider is yielding.

If an exporter requires a fixed set of fields (this is the case for
CSV export format) and FEED_EXPORT_FIELDS
is empty or None, then Scrapy tries to infer field names from the
exported data - currently it uses field names from the first item.

FEED_EXPORT_INDENT

Default: 0

Amount of spaces used to indent the output on each level. If FEED_EXPORT_INDENT
is a non-negative integer, then array elements and object members will be pretty-printed
with that indent level. An indent level of 0 (the default), or negative,
will put each item on a new line. None selects the most compact representation.

Currently implemented only by JsonItemExporter
and XmlItemExporter, i.e. when you are exporting
to .json or .xml.

FEED_STORE_EMPTY

Default: False

Whether to export empty feeds (ie. feeds with no items).

FEED_STORAGES

Default: {}

A dict containing additional feed storage backends supported by your project.
The keys are URI schemes and the values are paths to storage classes.

FEED_STORAGES_BASE

Default:

{
 '': 'scrapy.extensions.feedexport.FileFeedStorage',
 'file': 'scrapy.extensions.feedexport.FileFeedStorage',
 'stdout': 'scrapy.extensions.feedexport.StdoutFeedStorage',
 's3': 'scrapy.extensions.feedexport.S3FeedStorage',
 'ftp': 'scrapy.extensions.feedexport.FTPFeedStorage',
}

A dict containing the built-in feed storage backends supported by Scrapy. You
can disable any of these backends by assigning None to their URI scheme in
:setting:`FEED_STORAGES`. E.g., to disable the built-in FTP storage backend
(without replacement), place this in your settings.py:

FEED_STORAGES = {
 'ftp': None,
}

FEED_EXPORTERS

Default: {}

A dict containing additional exporters supported by your project. The keys are
serialization formats and the values are paths to Item exporter classes.

FEED_EXPORTERS_BASE

Default:

{
 'json': 'scrapy.exporters.JsonItemExporter',
 'jsonlines': 'scrapy.exporters.JsonLinesItemExporter',
 'jl': 'scrapy.exporters.JsonLinesItemExporter',
 'csv': 'scrapy.exporters.CsvItemExporter',
 'xml': 'scrapy.exporters.XmlItemExporter',
 'marshal': 'scrapy.exporters.MarshalItemExporter',
 'pickle': 'scrapy.exporters.PickleItemExporter',
}

A dict containing the built-in feed exporters supported by Scrapy. You can
disable any of these exporters by assigning None to their serialization
format in :setting:`FEED_EXPORTERS`. E.g., to disable the built-in CSV exporter
(without replacement), place this in your settings.py:

FEED_EXPORTERS = {
 'csv': None,
}

 Requests and Responses

Requests and Responses

Scrapy uses Request and Response objects for crawling web
sites.

Typically, Request objects are generated in the spiders and pass
across the system until they reach the Downloader, which executes the request
and returns a Response object which travels back to the spider that
issued the request.

Both Request and Response classes have subclasses which add
functionality not required in the base classes. These are described
below in Request subclasses and
Response subclasses.

Request objects

	
class scrapy.http.Request(url[, callback, method='GET', headers, body, cookies, meta, encoding='utf-8', priority=0, dont_filter=False, errback, flags])

	A Request object represents an HTTP request, which is usually
generated in the Spider and executed by the Downloader, and thus generating
a Response.

	Parameters

	
	url (string) – the URL of this request

	callback (callable) – the function that will be called with the response of this
request (once its downloaded) as its first parameter. For more information
see Passing additional data to callback functions below.
If a Request doesn’t specify a callback, the spider’s
parse() method will be used.
Note that if exceptions are raised during processing, errback is called instead.

	method (string) – the HTTP method of this request. Defaults to 'GET'.

	meta (dict) – the initial values for the Request.meta attribute. If
given, the dict passed in this parameter will be shallow copied.

	body (str or unicode) – the request body. If a unicode is passed, then it’s encoded to
str using the encoding passed (which defaults to utf-8). If
body is not given, an empty string is stored. Regardless of the
type of this argument, the final value stored will be a str (never
unicode or None).

	headers (dict) – the headers of this request. The dict values can be strings
(for single valued headers) or lists (for multi-valued headers). If
None is passed as value, the HTTP header will not be sent at all.

	cookies (dict or list) – the request cookies. These can be sent in two forms.

	Using a dict:

request_with_cookies = Request(url="http://www.example.com",
 cookies={'currency': 'USD', 'country': 'UY'})

	Using a list of dicts:

request_with_cookies = Request(url="http://www.example.com",
 cookies=[{'name': 'currency',
 'value': 'USD',
 'domain': 'example.com',
 'path': '/currency'}])

The latter form allows for customizing the domain and path
attributes of the cookie. This is only useful if the cookies are saved
for later requests.

When some site returns cookies (in a response) those are stored in the
cookies for that domain and will be sent again in future requests. That’s
the typical behaviour of any regular web browser. However, if, for some
reason, you want to avoid merging with existing cookies you can instruct
Scrapy to do so by setting the dont_merge_cookies key to True in the
Request.meta.

Example of request without merging cookies:

request_with_cookies = Request(url="http://www.example.com",
 cookies={'currency': 'USD', 'country': 'UY'},
 meta={'dont_merge_cookies': True})

For more info see CookiesMiddleware.

	encoding (string) – the encoding of this request (defaults to 'utf-8').
This encoding will be used to percent-encode the URL and to convert the
body to str (if given as unicode).

	priority (int) – the priority of this request (defaults to 0).
The priority is used by the scheduler to define the order used to process
requests. Requests with a higher priority value will execute earlier.
Negative values are allowed in order to indicate relatively low-priority.

	dont_filter (boolean) – indicates that this request should not be filtered by
the scheduler. This is used when you want to perform an identical
request multiple times, to ignore the duplicates filter. Use it with
care, or you will get into crawling loops. Default to False.

	errback (callable) – a function that will be called if any exception was
raised while processing the request. This includes pages that failed
with 404 HTTP errors and such. It receives a Twisted Failure [https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html] instance
as first parameter.
For more information,
see Using errbacks to catch exceptions in request processing below.

	flags (list) – Flags sent to the request, can be used for logging or similar purposes.

	
url

	A string containing the URL of this request. Keep in mind that this
attribute contains the escaped URL, so it can differ from the URL passed in
the constructor.

This attribute is read-only. To change the URL of a Request use
replace().

	
method

	A string representing the HTTP method in the request. This is guaranteed to
be uppercase. Example: "GET", "POST", "PUT", etc

	
headers

	A dictionary-like object which contains the request headers.

	
body

	A str that contains the request body.

This attribute is read-only. To change the body of a Request use
replace().

	
meta

	A dict that contains arbitrary metadata for this request. This dict is
empty for new Requests, and is usually populated by different Scrapy
components (extensions, middlewares, etc). So the data contained in this
dict depends on the extensions you have enabled.

See Request.meta special keys for a list of special meta keys
recognized by Scrapy.

This dict is shallow copied [https://docs.python.org/2/library/copy.html] when the request is cloned using the
copy() or replace() methods, and can also be accessed, in your
spider, from the response.meta attribute.

	
copy()

	Return a new Request which is a copy of this Request. See also:
Passing additional data to callback functions.

	
replace([url, method, headers, body, cookies, meta, encoding, dont_filter, callback, errback])

	Return a Request object with the same members, except for those members
given new values by whichever keyword arguments are specified. The
attribute Request.meta is copied by default (unless a new value
is given in the meta argument). See also
Passing additional data to callback functions.

Passing additional data to callback functions

The callback of a request is a function that will be called when the response
of that request is downloaded. The callback function will be called with the
downloaded Response object as its first argument.

Example:

def parse_page1(self, response):
 return scrapy.Request("http://www.example.com/some_page.html",
 callback=self.parse_page2)

def parse_page2(self, response):
 # this would log http://www.example.com/some_page.html
 self.logger.info("Visited %s", response.url)

In some cases you may be interested in passing arguments to those callback
functions so you can receive the arguments later, in the second callback. You
can use the Request.meta attribute for that.

Here’s an example of how to pass an item using this mechanism, to populate
different fields from different pages:

def parse_page1(self, response):
 item = MyItem()
 item['main_url'] = response.url
 request = scrapy.Request("http://www.example.com/some_page.html",
 callback=self.parse_page2)
 request.meta['item'] = item
 yield request

def parse_page2(self, response):
 item = response.meta['item']
 item['other_url'] = response.url
 yield item

Using errbacks to catch exceptions in request processing

The errback of a request is a function that will be called when an exception
is raise while processing it.

It receives a Twisted Failure [https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html] instance as first parameter and can be
used to track connection establishment timeouts, DNS errors etc.

Here’s an example spider logging all errors and catching some specific
errors if needed:

import scrapy

from scrapy.spidermiddlewares.httperror import HttpError
from twisted.internet.error import DNSLookupError
from twisted.internet.error import TimeoutError, TCPTimedOutError

class ErrbackSpider(scrapy.Spider):
 name = "errback_example"
 start_urls = [
 "http://www.httpbin.org/", # HTTP 200 expected
 "http://www.httpbin.org/status/404", # Not found error
 "http://www.httpbin.org/status/500", # server issue
 "http://www.httpbin.org:12345/", # non-responding host, timeout expected
 "http://www.httphttpbinbin.org/", # DNS error expected
]

 def start_requests(self):
 for u in self.start_urls:
 yield scrapy.Request(u, callback=self.parse_httpbin,
 errback=self.errback_httpbin,
 dont_filter=True)

 def parse_httpbin(self, response):
 self.logger.info('Got successful response from {}'.format(response.url))
 # do something useful here...

 def errback_httpbin(self, failure):
 # log all failures
 self.logger.error(repr(failure))

 # in case you want to do something special for some errors,
 # you may need the failure's type:

 if failure.check(HttpError):
 # these exceptions come from HttpError spider middleware
 # you can get the non-200 response
 response = failure.value.response
 self.logger.error('HttpError on %s', response.url)

 elif failure.check(DNSLookupError):
 # this is the original request
 request = failure.request
 self.logger.error('DNSLookupError on %s', request.url)

 elif failure.check(TimeoutError, TCPTimedOutError):
 request = failure.request
 self.logger.error('TimeoutError on %s', request.url)

Request.meta special keys

The Request.meta attribute can contain any arbitrary data, but there
are some special keys recognized by Scrapy and its built-in extensions.

Those are:

	:reqmeta:`dont_redirect`

	:reqmeta:`dont_retry`

	:reqmeta:`handle_httpstatus_list`

	:reqmeta:`handle_httpstatus_all`

	:reqmeta:`dont_merge_cookies`

	:reqmeta:`cookiejar`

	:reqmeta:`dont_cache`

	:reqmeta:`redirect_urls`

	:reqmeta:`bindaddress`

	:reqmeta:`dont_obey_robotstxt`

	:reqmeta:`download_timeout`

	:reqmeta:`download_maxsize`

	:reqmeta:`download_latency`

	:reqmeta:`download_fail_on_dataloss`

	:reqmeta:`proxy`

	ftp_user (See :setting:`FTP_USER` for more info)

	ftp_password (See :setting:`FTP_PASSWORD` for more info)

	:reqmeta:`referrer_policy`

	:reqmeta:`max_retry_times`

bindaddress

The IP of the outgoing IP address to use for the performing the request.

download_timeout

The amount of time (in secs) that the downloader will wait before timing out.
See also: :setting:`DOWNLOAD_TIMEOUT`.

download_latency

The amount of time spent to fetch the response, since the request has been
started, i.e. HTTP message sent over the network. This meta key only becomes
available when the response has been downloaded. While most other meta keys are
used to control Scrapy behavior, this one is supposed to be read-only.

download_fail_on_dataloss

Whether or not to fail on broken responses. See:
:setting:`DOWNLOAD_FAIL_ON_DATALOSS`.

max_retry_times

The meta key is used set retry times per request. When initialized, the
:reqmeta:`max_retry_times` meta key takes higher precedence over the
:setting:`RETRY_TIMES` setting.

Request subclasses

Here is the list of built-in Request subclasses. You can also subclass
it to implement your own custom functionality.

FormRequest objects

The FormRequest class extends the base Request with functionality for
dealing with HTML forms. It uses lxml.html forms [http://lxml.de/lxmlhtml.html#forms] to pre-populate form
fields with form data from Response objects.

	
class scrapy.http.FormRequest(url[, formdata, ...])

	The FormRequest class adds a new argument to the constructor. The
remaining arguments are the same as for the Request class and are
not documented here.

	Parameters

	formdata (dict or iterable of tuples) – is a dictionary (or iterable of (key, value) tuples)
containing HTML Form data which will be url-encoded and assigned to the
body of the request.

The FormRequest objects support the following class method in
addition to the standard Request methods:

	
classmethod from_response(response[, formname=None, formid=None, formnumber=0, formdata=None, formxpath=None, formcss=None, clickdata=None, dont_click=False, ...])

	Returns a new FormRequest object with its form field values
pre-populated with those found in the HTML <form> element contained
in the given response. For an example see
Using FormRequest.from_response() to simulate a user login.

The policy is to automatically simulate a click, by default, on any form
control that looks clickable, like a <input type="submit">. Even
though this is quite convenient, and often the desired behaviour,
sometimes it can cause problems which could be hard to debug. For
example, when working with forms that are filled and/or submitted using
javascript, the default from_response() behaviour may not be the
most appropriate. To disable this behaviour you can set the
dont_click argument to True. Also, if you want to change the
control clicked (instead of disabling it) you can also use the
clickdata argument.

Caution

Using this method with select elements which have leading
or trailing whitespace in the option values will not work due to a
bug in lxml [https://bugs.launchpad.net/lxml/+bug/1665241], which should be fixed in lxml 3.8 and above.

	Parameters

	
	response (Response object) – the response containing a HTML form which will be used
to pre-populate the form fields

	formname (string) – if given, the form with name attribute set to this value will be used.

	formid (string) – if given, the form with id attribute set to this value will be used.

	formxpath (string) – if given, the first form that matches the xpath will be used.

	formcss (string) – if given, the first form that matches the css selector will be used.

	formnumber (integer) – the number of form to use, when the response contains
multiple forms. The first one (and also the default) is 0.

	formdata (dict) – fields to override in the form data. If a field was
already present in the response <form> element, its value is
overridden by the one passed in this parameter. If a value passed in
this parameter is None, the field will not be included in the
request, even if it was present in the response <form> element.

	clickdata (dict) – attributes to lookup the control clicked. If it’s not
given, the form data will be submitted simulating a click on the
first clickable element. In addition to html attributes, the control
can be identified by its zero-based index relative to other
submittable inputs inside the form, via the nr attribute.

	dont_click (boolean) – If True, the form data will be submitted without
clicking in any element.

The other parameters of this class method are passed directly to the
FormRequest constructor.

New in version 0.10.3: The formname parameter.

New in version 0.17: The formxpath parameter.

New in version 1.1.0: The formcss parameter.

New in version 1.1.0: The formid parameter.

Request usage examples

Using FormRequest to send data via HTTP POST

If you want to simulate a HTML Form POST in your spider and send a couple of
key-value fields, you can return a FormRequest object (from your
spider) like this:

return [FormRequest(url="http://www.example.com/post/action",
 formdata={'name': 'John Doe', 'age': '27'},
 callback=self.after_post)]

Using FormRequest.from_response() to simulate a user login

It is usual for web sites to provide pre-populated form fields through <input
type="hidden"> elements, such as session related data or authentication
tokens (for login pages). When scraping, you’ll want these fields to be
automatically pre-populated and only override a couple of them, such as the
user name and password. You can use the FormRequest.from_response()
method for this job. Here’s an example spider which uses it:

import scrapy

class LoginSpider(scrapy.Spider):
 name = 'example.com'
 start_urls = ['http://www.example.com/users/login.php']

 def parse(self, response):
 return scrapy.FormRequest.from_response(
 response,
 formdata={'username': 'john', 'password': 'secret'},
 callback=self.after_login
)

 def after_login(self, response):
 # check login succeed before going on
 if "authentication failed" in response.body:
 self.logger.error("Login failed")
 return

 # continue scraping with authenticated session...

Response objects

	
class scrapy.http.Response(url[, status=200, headers=None, body=b'', flags=None, request=None])

	A Response object represents an HTTP response, which is usually
downloaded (by the Downloader) and fed to the Spiders for processing.

	Parameters

	
	url (string) – the URL of this response

	status (integer) – the HTTP status of the response. Defaults to 200.

	headers (dict) – the headers of this response. The dict values can be strings
(for single valued headers) or lists (for multi-valued headers).

	body (bytes) – the response body. To access the decoded text as str (unicode
in Python 2) you can use response.text from an encoding-aware
Response subclass,
such as TextResponse.

	flags (list) – is a list containing the initial values for the
Response.flags attribute. If given, the list will be shallow
copied.

	request (Request object) – the initial value of the Response.request attribute.
This represents the Request that generated this response.

	
url

	A string containing the URL of the response.

This attribute is read-only. To change the URL of a Response use
replace().

	
status

	An integer representing the HTTP status of the response. Example: 200,
404.

	
headers

	A dictionary-like object which contains the response headers. Values can
be accessed using get() to return the first header value with the
specified name or getlist() to return all header values with the
specified name. For example, this call will give you all cookies in the
headers:

response.headers.getlist('Set-Cookie')

	
body

	The body of this Response. Keep in mind that Response.body
is always a bytes object. If you want the unicode version use
TextResponse.text (only available in TextResponse
and subclasses).

This attribute is read-only. To change the body of a Response use
replace().

	
request

	The Request object that generated this response. This attribute is
assigned in the Scrapy engine, after the response and the request have passed
through all Downloader Middlewares.
In particular, this means that:

	HTTP redirections will cause the original request (to the URL before
redirection) to be assigned to the redirected response (with the final
URL after redirection).

	Response.request.url doesn’t always equal Response.url

	This attribute is only available in the spider code, and in the
Spider Middlewares, but not in
Downloader Middlewares (although you have the Request available there by
other means) and handlers of the :signal:`response_downloaded` signal.

	
meta

	A shortcut to the Request.meta attribute of the
Response.request object (ie. self.request.meta).

Unlike the Response.request attribute, the Response.meta
attribute is propagated along redirects and retries, so you will get
the original Request.meta sent from your spider.

See also

Request.meta attribute

	
flags

	A list that contains flags for this response. Flags are labels used for
tagging Responses. For example: ‘cached’, ‘redirected’, etc. And
they’re shown on the string representation of the Response (__str__
method) which is used by the engine for logging.

	
copy()

	Returns a new Response which is a copy of this Response.

	
replace([url, status, headers, body, request, flags, cls])

	Returns a Response object with the same members, except for those members
given new values by whichever keyword arguments are specified. The
attribute Response.meta is copied by default.

	
urljoin(url)

	Constructs an absolute url by combining the Response’s url with
a possible relative url.

This is a wrapper over urlparse.urljoin [https://docs.python.org/2/library/urlparse.html#urlparse.urljoin], it’s merely an alias for
making this call:

urlparse.urljoin(response.url, url)

Response subclasses

Here is the list of available built-in Response subclasses. You can also
subclass the Response class to implement your own functionality.

TextResponse objects

	
class scrapy.http.TextResponse(url[, encoding[, ...]])

	TextResponse objects adds encoding capabilities to the base
Response class, which is meant to be used only for binary data,
such as images, sounds or any media file.

TextResponse objects support a new constructor argument, in
addition to the base Response objects. The remaining functionality
is the same as for the Response class and is not documented here.

	Parameters

	encoding (string) – is a string which contains the encoding to use for this
response. If you create a TextResponse object with a unicode
body, it will be encoded using this encoding (remember the body attribute
is always a string). If encoding is None (default value), the
encoding will be looked up in the response headers and body instead.

TextResponse objects support the following attributes in addition
to the standard Response ones:

	
text

	Response body, as unicode.

The same as response.body.decode(response.encoding), but the
result is cached after the first call, so you can access
response.text multiple times without extra overhead.

Note

unicode(response.body) is not a correct way to convert response
body to unicode: you would be using the system default encoding
(typically ascii) instead of the response encoding.

	
encoding

	A string with the encoding of this response. The encoding is resolved by
trying the following mechanisms, in order:

	the encoding passed in the constructor encoding argument

	the encoding declared in the Content-Type HTTP header. If this
encoding is not valid (ie. unknown), it is ignored and the next
resolution mechanism is tried.

	the encoding declared in the response body. The TextResponse class
doesn’t provide any special functionality for this. However, the
HtmlResponse and XmlResponse classes do.

	the encoding inferred by looking at the response body. This is the more
fragile method but also the last one tried.

	
selector

	A Selector instance using the response as
target. The selector is lazily instantiated on first access.

TextResponse objects support the following methods in addition to
the standard Response ones:

	
xpath(query)

	A shortcut to TextResponse.selector.xpath(query):

response.xpath('//p')

	
css(query)

	A shortcut to TextResponse.selector.css(query):

response.css('p')

	
body_as_unicode()

	The same as text, but available as a method. This method is
kept for backwards compatibility; please prefer response.text.

HtmlResponse objects

	
class scrapy.http.HtmlResponse(url[, ...])

	The HtmlResponse class is a subclass of TextResponse
which adds encoding auto-discovering support by looking into the HTML meta
http-equiv [https://www.w3schools.com/TAGS/att_meta_http_equiv.asp] attribute. See TextResponse.encoding.

XmlResponse objects

	
class scrapy.http.XmlResponse(url[, ...])

	The XmlResponse class is a subclass of TextResponse which
adds encoding auto-discovering support by looking into the XML declaration
line. See TextResponse.encoding.

 Link Extractors

Link Extractors

Link extractors are objects whose only purpose is to extract links from web
pages (scrapy.http.Response objects) which will be eventually
followed.

There is scrapy.linkextractors.LinkExtractor available
in Scrapy, but you can create your own custom Link Extractors to suit your
needs by implementing a simple interface.

The only public method that every link extractor has is extract_links,
which receives a Response object and returns a list
of scrapy.link.Link objects. Link extractors are meant to be
instantiated once and their extract_links method called several times
with different responses to extract links to follow.

Link extractors are used in the CrawlSpider
class (available in Scrapy), through a set of rules, but you can also use it in
your spiders, even if you don’t subclass from
CrawlSpider, as its purpose is very simple: to
extract links.

Built-in link extractors reference

Link extractors classes bundled with Scrapy are provided in the
scrapy.linkextractors module.

The default link extractor is LinkExtractor, which is the same as
LxmlLinkExtractor:

from scrapy.linkextractors import LinkExtractor

There used to be other link extractor classes in previous Scrapy versions,
but they are deprecated now.

LxmlLinkExtractor

	
class scrapy.linkextractors.lxmlhtml.LxmlLinkExtractor(allow=(), deny=(), allow_domains=(), deny_domains=(), deny_extensions=None, restrict_xpaths=(), restrict_css=(), tags=('a', 'area'), attrs=('href',), canonicalize=False, unique=True, process_value=None, strip=True)

	LxmlLinkExtractor is the recommended link extractor with handy filtering
options. It is implemented using lxml’s robust HTMLParser.

	Parameters

	
	allow (a regular expression (or list of)) – a single regular expression (or list of regular expressions)
that the (absolute) urls must match in order to be extracted. If not
given (or empty), it will match all links.

	deny (a regular expression (or list of)) – a single regular expression (or list of regular expressions)
that the (absolute) urls must match in order to be excluded (ie. not
extracted). It has precedence over the allow parameter. If not
given (or empty) it won’t exclude any links.

	allow_domains (str or list) – a single value or a list of string containing
domains which will be considered for extracting the links

	deny_domains (str or list) – a single value or a list of strings containing
domains which won’t be considered for extracting the links

	deny_extensions (list) – a single value or list of strings containing
extensions that should be ignored when extracting links.
If not given, it will default to the
IGNORED_EXTENSIONS list defined in the
scrapy.linkextractors [https://github.com/scrapy/scrapy/blob/master/scrapy/linkextractors/__init__.py] package.

	restrict_xpaths (str or list) – is an XPath (or list of XPath’s) which defines
regions inside the response where links should be extracted from.
If given, only the text selected by those XPath will be scanned for
links. See examples below.

	restrict_css (str or list) – a CSS selector (or list of selectors) which defines
regions inside the response where links should be extracted from.
Has the same behaviour as restrict_xpaths.

	tags (str or list) – a tag or a list of tags to consider when extracting links.
Defaults to ('a', 'area').

	attrs (list) – an attribute or list of attributes which should be considered when looking
for links to extract (only for those tags specified in the tags
parameter). Defaults to ('href',)

	canonicalize (boolean) – canonicalize each extracted url (using
w3lib.url.canonicalize_url). Defaults to False.
Note that canonicalize_url is meant for duplicate checking;
it can change the URL visible at server side, so the response can be
different for requests with canonicalized and raw URLs. If you’re
using LinkExtractor to follow links it is more robust to
keep the default canonicalize=False.

	unique (boolean) – whether duplicate filtering should be applied to extracted
links.

	process_value (callable) – a function which receives each value extracted from
the tag and attributes scanned and can modify the value and return a
new one, or return None to ignore the link altogether. If not
given, process_value defaults to lambda x: x.

For example, to extract links from this code:

Link text

You can use the following function in process_value:

def process_value(value):
 m = re.search("javascript:goToPage\('(.*?)'", value)
 if m:
 return m.group(1)

	strip (boolean) – whether to strip whitespaces from extracted attributes.
According to HTML5 standard, leading and trailing whitespaces
must be stripped from href attributes of <a>, <area>
and many other elements, src attribute of , <iframe>
elements, etc., so LinkExtractor strips space chars by default.
Set strip=False to turn it off (e.g. if you’re extracting urls
from elements or attributes which allow leading/trailing whitespaces).

 Settings

Settings

The Scrapy settings allows you to customize the behaviour of all Scrapy
components, including the core, extensions, pipelines and spiders themselves.

The infrastructure of the settings provides a global namespace of key-value mappings
that the code can use to pull configuration values from. The settings can be
populated through different mechanisms, which are described below.

The settings are also the mechanism for selecting the currently active Scrapy
project (in case you have many).

For a list of available built-in settings see: Built-in settings reference.

Designating the settings

When you use Scrapy, you have to tell it which settings you’re using. You can
do this by using an environment variable, SCRAPY_SETTINGS_MODULE.

The value of SCRAPY_SETTINGS_MODULE should be in Python path syntax, e.g.
myproject.settings. Note that the settings module should be on the
Python import search path [https://docs.python.org/2/tutorial/modules.html#the-module-search-path].

Populating the settings

Settings can be populated using different mechanisms, each of which having a
different precedence. Here is the list of them in decreasing order of
precedence:

	Command line options (most precedence)

	Settings per-spider

	Project settings module

	Default settings per-command

	Default global settings (less precedence)

The population of these settings sources is taken care of internally, but a
manual handling is possible using API calls. See the
Settings API topic for reference.

These mechanisms are described in more detail below.

1. Command line options

Arguments provided by the command line are the ones that take most precedence,
overriding any other options. You can explicitly override one (or more)
settings using the -s (or --set) command line option.

Example:

scrapy crawl myspider -s LOG_FILE=scrapy.log

2. Settings per-spider

Spiders (See the Spiders chapter for reference) can define their
own settings that will take precedence and override the project ones. They can
do so by setting their custom_settings attribute:

class MySpider(scrapy.Spider):
 name = 'myspider'

 custom_settings = {
 'SOME_SETTING': 'some value',
 }

3. Project settings module

The project settings module is the standard configuration file for your Scrapy
project, it’s where most of your custom settings will be populated. For a
standard Scrapy project, this means you’ll be adding or changing the settings
in the settings.py file created for your project.

4. Default settings per-command

Each Scrapy tool command can have its own default
settings, which override the global default settings. Those custom command
settings are specified in the default_settings attribute of the command
class.

5. Default global settings

The global defaults are located in the scrapy.settings.default_settings
module and documented in the Built-in settings reference section.

How to access settings

In a spider, the settings are available through self.settings:

class MySpider(scrapy.Spider):
 name = 'myspider'
 start_urls = ['http://example.com']

 def parse(self, response):
 print("Existing settings: %s" % self.settings.attributes.keys())

Note

The settings attribute is set in the base Spider class after the spider
is initialized. If you want to use the settings before the initialization
(e.g., in your spider’s __init__() method), you’ll need to override the
from_crawler() method.

Settings can be accessed through the scrapy.crawler.Crawler.settings
attribute of the Crawler that is passed to from_crawler method in
extensions, middlewares and item pipelines:

class MyExtension(object):
 def __init__(self, log_is_enabled=False):
 if log_is_enabled:
 print("log is enabled!")

 @classmethod
 def from_crawler(cls, crawler):
 settings = crawler.settings
 return cls(settings.getbool('LOG_ENABLED'))

The settings object can be used like a dict (e.g.,
settings['LOG_ENABLED']), but it’s usually preferred to extract the setting
in the format you need it to avoid type errors, using one of the methods
provided by the Settings API.

Rationale for setting names

Setting names are usually prefixed with the component that they configure. For
example, proper setting names for a fictional robots.txt extension would be
ROBOTSTXT_ENABLED, ROBOTSTXT_OBEY, ROBOTSTXT_CACHEDIR, etc.

Built-in settings reference

Here’s a list of all available Scrapy settings, in alphabetical order, along
with their default values and the scope where they apply.

The scope, where available, shows where the setting is being used, if it’s tied
to any particular component. In that case the module of that component will be
shown, typically an extension, middleware or pipeline. It also means that the
component must be enabled in order for the setting to have any effect.

AWS_ACCESS_KEY_ID

Default: None

The AWS access key used by code that requires access to Amazon Web services [https://aws.amazon.com/],
such as the S3 feed storage backend.

AWS_SECRET_ACCESS_KEY

Default: None

The AWS secret key used by code that requires access to Amazon Web services [https://aws.amazon.com/],
such as the S3 feed storage backend.

AWS_ENDPOINT_URL

Default: None

Endpoint URL used for S3-like self-hosted storage. Storage like Minio or s3.scality.

AWS_USE_SSL

Default: None

Use this option if you want to disable SSL connection for communication with S3 or S3-like storage.
By default SSL will be used.

AWS_VERIFY

Default: None

Verify SSL connection between Scrapy and S3 or S3-like storage. By default SSL verification will occur.

BOT_NAME

Default: 'scrapybot'

The name of the bot implemented by this Scrapy project (also known as the
project name). This will be used to construct the User-Agent by default, and
also for logging.

It’s automatically populated with your project name when you create your
project with the startproject command.

CONCURRENT_ITEMS

Default: 100

Maximum number of concurrent items (per response) to process in parallel in the
Item Processor (also known as the Item Pipeline).

CONCURRENT_REQUESTS

Default: 16

The maximum number of concurrent (ie. simultaneous) requests that will be
performed by the Scrapy downloader.

CONCURRENT_REQUESTS_PER_DOMAIN

Default: 8

The maximum number of concurrent (ie. simultaneous) requests that will be
performed to any single domain.

See also: AutoThrottle extension and its
:setting:`AUTOTHROTTLE_TARGET_CONCURRENCY` option.

CONCURRENT_REQUESTS_PER_IP

Default: 0

The maximum number of concurrent (ie. simultaneous) requests that will be
performed to any single IP. If non-zero, the
:setting:`CONCURRENT_REQUESTS_PER_DOMAIN` setting is ignored, and this one is
used instead. In other words, concurrency limits will be applied per IP, not
per domain.

This setting also affects :setting:`DOWNLOAD_DELAY` and
AutoThrottle extension: if :setting:`CONCURRENT_REQUESTS_PER_IP`
is non-zero, download delay is enforced per IP, not per domain.

DEFAULT_ITEM_CLASS

Default: 'scrapy.item.Item'

The default class that will be used for instantiating items in the the
Scrapy shell.

DEFAULT_REQUEST_HEADERS

Default:

{
 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
 'Accept-Language': 'en',
}

The default headers used for Scrapy HTTP Requests. They’re populated in the
DefaultHeadersMiddleware.

DEPTH_LIMIT

Default: 0

Scope: scrapy.spidermiddlewares.depth.DepthMiddleware

The maximum depth that will be allowed to crawl for any site. If zero, no limit
will be imposed.

DEPTH_PRIORITY

Default: 0

Scope: scrapy.spidermiddlewares.depth.DepthMiddleware

An integer that is used to adjust the request priority based on its depth:

	if zero (default), no priority adjustment is made from depth

	a positive value will decrease the priority, i.e. higher depth
requests will be processed later ; this is commonly used when doing
breadth-first crawls (BFO)

	a negative value will increase priority, i.e., higher depth requests
will be processed sooner (DFO)

See also: Does Scrapy crawl in breadth-first or depth-first order? about tuning Scrapy for BFO or DFO.

Note

This setting adjusts priority in the opposite way compared to
other priority settings :setting:`REDIRECT_PRIORITY_ADJUST`
and :setting:`RETRY_PRIORITY_ADJUST`.

DEPTH_STATS_VERBOSE

Default: False

Scope: scrapy.spidermiddlewares.depth.DepthMiddleware

Whether to collect verbose depth stats. If this is enabled, the number of
requests for each depth is collected in the stats.

DNSCACHE_ENABLED

Default: True

Whether to enable DNS in-memory cache.

DNSCACHE_SIZE

Default: 10000

DNS in-memory cache size.

DNS_TIMEOUT

Default: 60

Timeout for processing of DNS queries in seconds. Float is supported.

DOWNLOADER

Default: 'scrapy.core.downloader.Downloader'

The downloader to use for crawling.

DOWNLOADER_HTTPCLIENTFACTORY

Default: 'scrapy.core.downloader.webclient.ScrapyHTTPClientFactory'

Defines a Twisted protocol.ClientFactory class to use for HTTP/1.0
connections (for HTTP10DownloadHandler).

Note

HTTP/1.0 is rarely used nowadays so you can safely ignore this setting,
unless you use Twisted<11.1, or if you really want to use HTTP/1.0
and override :setting:`DOWNLOAD_HANDLERS_BASE` for http(s) scheme
accordingly, i.e. to
'scrapy.core.downloader.handlers.http.HTTP10DownloadHandler'.

DOWNLOADER_CLIENTCONTEXTFACTORY

Default: 'scrapy.core.downloader.contextfactory.ScrapyClientContextFactory'

Represents the classpath to the ContextFactory to use.

Here, “ContextFactory” is a Twisted term for SSL/TLS contexts, defining
the TLS/SSL protocol version to use, whether to do certificate verification,
or even enable client-side authentication (and various other things).

Note

Scrapy default context factory does NOT perform remote server
certificate verification. This is usually fine for web scraping.

If you do need remote server certificate verification enabled,
Scrapy also has another context factory class that you can set,
'scrapy.core.downloader.contextfactory.BrowserLikeContextFactory',
which uses the platform’s certificates to validate remote endpoints.
This is only available if you use Twisted>=14.0.

If you do use a custom ContextFactory, make sure it accepts a method
parameter at init (this is the OpenSSL.SSL method mapping
:setting:`DOWNLOADER_CLIENT_TLS_METHOD`).

DOWNLOADER_CLIENT_TLS_METHOD

Default: 'TLS'

Use this setting to customize the TLS/SSL method used by the default
HTTP/1.1 downloader.

This setting must be one of these string values:

	'TLS': maps to OpenSSL’s TLS_method() (a.k.a SSLv23_method()),
which allows protocol negotiation, starting from the highest supported
by the platform; default, recommended

	'TLSv1.0': this value forces HTTPS connections to use TLS version 1.0 ;
set this if you want the behavior of Scrapy<1.1

	'TLSv1.1': forces TLS version 1.1

	'TLSv1.2': forces TLS version 1.2

	'SSLv3': forces SSL version 3 (not recommended)

Note

We recommend that you use PyOpenSSL>=0.13 and Twisted>=0.13
or above (Twisted>=14.0 if you can).

DOWNLOADER_MIDDLEWARES

Default:: {}

A dict containing the downloader middlewares enabled in your project, and their
orders. For more info see Activating a downloader middleware.

DOWNLOADER_MIDDLEWARES_BASE

Default:

{
 'scrapy.downloadermiddlewares.robotstxt.RobotsTxtMiddleware': 100,
 'scrapy.downloadermiddlewares.httpauth.HttpAuthMiddleware': 300,
 'scrapy.downloadermiddlewares.downloadtimeout.DownloadTimeoutMiddleware': 350,
 'scrapy.downloadermiddlewares.defaultheaders.DefaultHeadersMiddleware': 400,
 'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': 500,
 'scrapy.downloadermiddlewares.retry.RetryMiddleware': 550,
 'scrapy.downloadermiddlewares.ajaxcrawl.AjaxCrawlMiddleware': 560,
 'scrapy.downloadermiddlewares.redirect.MetaRefreshMiddleware': 580,
 'scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware': 590,
 'scrapy.downloadermiddlewares.redirect.RedirectMiddleware': 600,
 'scrapy.downloadermiddlewares.cookies.CookiesMiddleware': 700,
 'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware': 750,
 'scrapy.downloadermiddlewares.stats.DownloaderStats': 850,
 'scrapy.downloadermiddlewares.httpcache.HttpCacheMiddleware': 900,
}

A dict containing the downloader middlewares enabled by default in Scrapy. Low
orders are closer to the engine, high orders are closer to the downloader. You
should never modify this setting in your project, modify
:setting:`DOWNLOADER_MIDDLEWARES` instead. For more info see
Activating a downloader middleware.

DOWNLOADER_STATS

Default: True

Whether to enable downloader stats collection.

DOWNLOAD_DELAY

Default: 0

The amount of time (in secs) that the downloader should wait before downloading
consecutive pages from the same website. This can be used to throttle the
crawling speed to avoid hitting servers too hard. Decimal numbers are
supported. Example:

DOWNLOAD_DELAY = 0.25 # 250 ms of delay

This setting is also affected by the :setting:`RANDOMIZE_DOWNLOAD_DELAY`
setting (which is enabled by default). By default, Scrapy doesn’t wait a fixed
amount of time between requests, but uses a random interval between 0.5 * :setting:`DOWNLOAD_DELAY` and 1.5 * :setting:`DOWNLOAD_DELAY`.

When :setting:`CONCURRENT_REQUESTS_PER_IP` is non-zero, delays are enforced
per ip address instead of per domain.

You can also change this setting per spider by setting download_delay
spider attribute.

DOWNLOAD_HANDLERS

Default: {}

A dict containing the request downloader handlers enabled in your project.
See :setting:`DOWNLOAD_HANDLERS_BASE` for example format.

DOWNLOAD_HANDLERS_BASE

Default:

{
 'file': 'scrapy.core.downloader.handlers.file.FileDownloadHandler',
 'http': 'scrapy.core.downloader.handlers.http.HTTPDownloadHandler',
 'https': 'scrapy.core.downloader.handlers.http.HTTPDownloadHandler',
 's3': 'scrapy.core.downloader.handlers.s3.S3DownloadHandler',
 'ftp': 'scrapy.core.downloader.handlers.ftp.FTPDownloadHandler',
}

A dict containing the request download handlers enabled by default in Scrapy.
You should never modify this setting in your project, modify
:setting:`DOWNLOAD_HANDLERS` instead.

You can disable any of these download handlers by assigning None to their
URI scheme in :setting:`DOWNLOAD_HANDLERS`. E.g., to disable the built-in FTP
handler (without replacement), place this in your settings.py:

DOWNLOAD_HANDLERS = {
 'ftp': None,
}

DOWNLOAD_TIMEOUT

Default: 180

The amount of time (in secs) that the downloader will wait before timing out.

Note

This timeout can be set per spider using download_timeout
spider attribute and per-request using :reqmeta:`download_timeout`
Request.meta key.

DOWNLOAD_MAXSIZE

Default: 1073741824 (1024MB)

The maximum response size (in bytes) that downloader will download.

If you want to disable it set to 0.

Note

This size can be set per spider using download_maxsize
spider attribute and per-request using :reqmeta:`download_maxsize`
Request.meta key.

This feature needs Twisted >= 11.1.

DOWNLOAD_WARNSIZE

Default: 33554432 (32MB)

The response size (in bytes) that downloader will start to warn.

If you want to disable it set to 0.

Note

This size can be set per spider using download_warnsize
spider attribute and per-request using :reqmeta:`download_warnsize`
Request.meta key.

This feature needs Twisted >= 11.1.

DOWNLOAD_FAIL_ON_DATALOSS

Default: True

Whether or not to fail on broken responses, that is, declared
Content-Length does not match content sent by the server or chunked
response was not properly finish. If True, these responses raise a
ResponseFailed([_DataLoss]) error. If False, these responses
are passed through and the flag dataloss is added to the response, i.e.:
'dataloss' in response.flags is True.

Optionally, this can be set per-request basis by using the
:reqmeta:`download_fail_on_dataloss` Request.meta key to False.

Note

A broken response, or data loss error, may happen under several
circumstances, from server misconfiguration to network errors to data
corruption. It is up to the user to decide if it makes sense to process
broken responses considering they may contain partial or incomplete content.
If :setting:`RETRY_ENABLED` is True and this setting is set to True,
the ResponseFailed([_DataLoss]) failure will be retried as usual.

DUPEFILTER_CLASS

Default: 'scrapy.dupefilters.RFPDupeFilter'

The class used to detect and filter duplicate requests.

The default (RFPDupeFilter) filters based on request fingerprint using
the scrapy.utils.request.request_fingerprint function. In order to change
the way duplicates are checked you could subclass RFPDupeFilter and
override its request_fingerprint method. This method should accept
scrapy Request object and return its fingerprint
(a string).

You can disable filtering of duplicate requests by setting
:setting:`DUPEFILTER_CLASS` to 'scrapy.dupefilters.BaseDupeFilter'.
Be very careful about this however, because you can get into crawling loops.
It’s usually a better idea to set the dont_filter parameter to
True on the specific Request that should not be
filtered.

DUPEFILTER_DEBUG

Default: False

By default, RFPDupeFilter only logs the first duplicate request.
Setting :setting:`DUPEFILTER_DEBUG` to True will make it log all duplicate requests.

EDITOR

Default: vi (on Unix systems) or the IDLE editor (on Windows)

The editor to use for editing spiders with the edit command.
Additionally, if the EDITOR environment variable is set, the edit
command will prefer it over the default setting.

EXTENSIONS

Default:: {}

A dict containing the extensions enabled in your project, and their orders.

EXTENSIONS_BASE

Default:

{
 'scrapy.extensions.corestats.CoreStats': 0,
 'scrapy.extensions.telnet.TelnetConsole': 0,
 'scrapy.extensions.memusage.MemoryUsage': 0,
 'scrapy.extensions.memdebug.MemoryDebugger': 0,
 'scrapy.extensions.closespider.CloseSpider': 0,
 'scrapy.extensions.feedexport.FeedExporter': 0,
 'scrapy.extensions.logstats.LogStats': 0,
 'scrapy.extensions.spiderstate.SpiderState': 0,
 'scrapy.extensions.throttle.AutoThrottle': 0,
}

A dict containing the extensions available by default in Scrapy, and their
orders. This setting contains all stable built-in extensions. Keep in mind that
some of them need to be enabled through a setting.

For more information See the extensions user guide
and the list of available extensions.

FEED_TEMPDIR

The Feed Temp dir allows you to set a custom folder to save crawler
temporary files before uploading with FTP feed storage and
Amazon S3.

FTP_PASSIVE_MODE

Default: True

Whether or not to use passive mode when initiating FTP transfers.

FTP_PASSWORD

Default: "guest"

The password to use for FTP connections when there is no "ftp_password"
in Request meta.

Note

Paraphrasing RFC 1635 [https://tools.ietf.org/html/rfc1635], although it is common to use either the password
“guest” or one’s e-mail address for anonymous FTP,
some FTP servers explicitly ask for the user’s e-mail address
and will not allow login with the “guest” password.

FTP_USER

Default: "anonymous"

The username to use for FTP connections when there is no "ftp_user"
in Request meta.

ITEM_PIPELINES

Default: {}

A dict containing the item pipelines to use, and their orders. Order values are
arbitrary, but it is customary to define them in the 0-1000 range. Lower orders
process before higher orders.

Example:

ITEM_PIPELINES = {
 'mybot.pipelines.validate.ValidateMyItem': 300,
 'mybot.pipelines.validate.StoreMyItem': 800,
}

ITEM_PIPELINES_BASE

Default: {}

A dict containing the pipelines enabled by default in Scrapy. You should never
modify this setting in your project, modify :setting:`ITEM_PIPELINES` instead.

LOG_ENABLED

Default: True

Whether to enable logging.

LOG_ENCODING

Default: 'utf-8'

The encoding to use for logging.

LOG_FILE

Default: None

File name to use for logging output. If None, standard error will be used.

LOG_FORMAT

Default: '%(asctime)s [%(name)s] %(levelname)s: %(message)s'

String for formatting log messsages. Refer to the Python logging documentation [https://docs.python.org/2/library/logging.html#logrecord-attributes] for the whole list of available
placeholders.

LOG_DATEFORMAT

Default: '%Y-%m-%d %H:%M:%S'

String for formatting date/time, expansion of the %(asctime)s placeholder
in :setting:`LOG_FORMAT`. Refer to the Python datetime documentation [https://docs.python.org/2/library/datetime.html#strftime-and-strptime-behavior] for the whole list of available
directives.

LOG_LEVEL

Default: 'DEBUG'

Minimum level to log. Available levels are: CRITICAL, ERROR, WARNING,
INFO, DEBUG. For more info see Logging.

LOG_STDOUT

Default: False

If True, all standard output (and error) of your process will be redirected
to the log. For example if you print 'hello' it will appear in the Scrapy
log.

LOG_SHORT_NAMES

Default: False

If True, the logs will just contain the root path. If it is set to False
then it displays the component responsible for the log output

MEMDEBUG_ENABLED

Default: False

Whether to enable memory debugging.

MEMDEBUG_NOTIFY

Default: []

When memory debugging is enabled a memory report will be sent to the specified
addresses if this setting is not empty, otherwise the report will be written to
the log.

Example:

MEMDEBUG_NOTIFY = ['user@example.com']

MEMUSAGE_ENABLED

Default: True

Scope: scrapy.extensions.memusage

Whether to enable the memory usage extension. This extension keeps track of
a peak memory used by the process (it writes it to stats). It can also
optionally shutdown the Scrapy process when it exceeds a memory limit
(see :setting:`MEMUSAGE_LIMIT_MB`), and notify by email when that happened
(see :setting:`MEMUSAGE_NOTIFY_MAIL`).

See Memory usage extension.

MEMUSAGE_LIMIT_MB

Default: 0

Scope: scrapy.extensions.memusage

The maximum amount of memory to allow (in megabytes) before shutting down
Scrapy (if MEMUSAGE_ENABLED is True). If zero, no check will be performed.

See Memory usage extension.

MEMUSAGE_CHECK_INTERVAL_SECONDS

New in version 1.1.

Default: 60.0

Scope: scrapy.extensions.memusage

The Memory usage extension
checks the current memory usage, versus the limits set by
:setting:`MEMUSAGE_LIMIT_MB` and :setting:`MEMUSAGE_WARNING_MB`,
at fixed time intervals.

This sets the length of these intervals, in seconds.

See Memory usage extension.

MEMUSAGE_NOTIFY_MAIL

Default: False

Scope: scrapy.extensions.memusage

A list of emails to notify if the memory limit has been reached.

Example:

MEMUSAGE_NOTIFY_MAIL = ['user@example.com']

See Memory usage extension.

MEMUSAGE_WARNING_MB

Default: 0

Scope: scrapy.extensions.memusage

The maximum amount of memory to allow (in megabytes) before sending a warning
email notifying about it. If zero, no warning will be produced.

NEWSPIDER_MODULE

Default: ''

Module where to create new spiders using the genspider command.

Example:

NEWSPIDER_MODULE = 'mybot.spiders_dev'

RANDOMIZE_DOWNLOAD_DELAY

Default: True

If enabled, Scrapy will wait a random amount of time (between 0.5 * :setting:`DOWNLOAD_DELAY` and 1.5 * :setting:`DOWNLOAD_DELAY`) while fetching requests from the same
website.

This randomization decreases the chance of the crawler being detected (and
subsequently blocked) by sites which analyze requests looking for statistically
significant similarities in the time between their requests.

The randomization policy is the same used by wget [https://www.gnu.org/software/wget/manual/wget.html] --random-wait option.

If :setting:`DOWNLOAD_DELAY` is zero (default) this option has no effect.

REACTOR_THREADPOOL_MAXSIZE

Default: 10

The maximum limit for Twisted Reactor thread pool size. This is common
multi-purpose thread pool used by various Scrapy components. Threaded
DNS Resolver, BlockingFeedStorage, S3FilesStore just to name a few. Increase
this value if you’re experiencing problems with insufficient blocking IO.

REDIRECT_MAX_TIMES

Default: 20

Defines the maximum times a request can be redirected. After this maximum the
request’s response is returned as is. We used Firefox default value for the
same task.

REDIRECT_PRIORITY_ADJUST

Default: +2

Scope: scrapy.downloadermiddlewares.redirect.RedirectMiddleware

Adjust redirect request priority relative to original request:

	a positive priority adjust (default) means higher priority.

	a negative priority adjust means lower priority.

RETRY_PRIORITY_ADJUST

Default: -1

Scope: scrapy.downloadermiddlewares.retry.RetryMiddleware

Adjust retry request priority relative to original request:

	a positive priority adjust means higher priority.

	a negative priority adjust (default) means lower priority.

ROBOTSTXT_OBEY

Default: False

Scope: scrapy.downloadermiddlewares.robotstxt

If enabled, Scrapy will respect robots.txt policies. For more information see
RobotsTxtMiddleware.

Note

While the default value is False for historical reasons,
this option is enabled by default in settings.py file generated
by scrapy startproject command.

SCHEDULER

Default: 'scrapy.core.scheduler.Scheduler'

The scheduler to use for crawling.

SCHEDULER_DEBUG

Default: False

Setting to True will log debug information about the requests scheduler.
This currently logs (only once) if the requests cannot be serialized to disk.
Stats counter (scheduler/unserializable) tracks the number of times this happens.

Example entry in logs:

1956-01-31 00:00:00+0800 [scrapy.core.scheduler] ERROR: Unable to serialize request:
<GET http://example.com> - reason: cannot serialize <Request at 0x9a7c7ec>
(type Request)> - no more unserializable requests will be logged
(see 'scheduler/unserializable' stats counter)

SCHEDULER_DISK_QUEUE

Default: 'scrapy.squeues.PickleLifoDiskQueue'

Type of disk queue that will be used by scheduler. Other available types are
scrapy.squeues.PickleFifoDiskQueue, scrapy.squeues.MarshalFifoDiskQueue,
scrapy.squeues.MarshalLifoDiskQueue.

SCHEDULER_MEMORY_QUEUE

Default: 'scrapy.squeues.LifoMemoryQueue'

Type of in-memory queue used by scheduler. Other available type is:
scrapy.squeues.FifoMemoryQueue.

SCHEDULER_PRIORITY_QUEUE

Default: 'queuelib.PriorityQueue'

Type of priority queue used by scheduler.

SPIDER_CONTRACTS

Default:: {}

A dict containing the spider contracts enabled in your project, used for
testing spiders. For more info see Spiders Contracts.

SPIDER_CONTRACTS_BASE

Default:

{
 'scrapy.contracts.default.UrlContract' : 1,
 'scrapy.contracts.default.ReturnsContract': 2,
 'scrapy.contracts.default.ScrapesContract': 3,
}

A dict containing the scrapy contracts enabled by default in Scrapy. You should
never modify this setting in your project, modify :setting:`SPIDER_CONTRACTS`
instead. For more info see Spiders Contracts.

You can disable any of these contracts by assigning None to their class
path in :setting:`SPIDER_CONTRACTS`. E.g., to disable the built-in
ScrapesContract, place this in your settings.py:

SPIDER_CONTRACTS = {
 'scrapy.contracts.default.ScrapesContract': None,
}

SPIDER_LOADER_CLASS

Default: 'scrapy.spiderloader.SpiderLoader'

The class that will be used for loading spiders, which must implement the
SpiderLoader API.

SPIDER_LOADER_WARN_ONLY

New in version 1.3.3.

Default: False

By default, when scrapy tries to import spider classes from :setting:`SPIDER_MODULES`,
it will fail loudly if there is any ImportError exception.
But you can choose to silence this exception and turn it into a simple
warning by setting SPIDER_LOADER_WARN_ONLY = True.

Note

Some scrapy commands run with this setting to True
already (i.e. they will only issue a warning and will not fail)
since they do not actually need to load spider classes to work:
scrapy runspider <runspider>,
scrapy settings <settings>,
scrapy startproject <startproject>,
scrapy version <version>.

SPIDER_MIDDLEWARES

Default:: {}

A dict containing the spider middlewares enabled in your project, and their
orders. For more info see Activating a spider middleware.

SPIDER_MIDDLEWARES_BASE

Default:

{
 'scrapy.spidermiddlewares.httperror.HttpErrorMiddleware': 50,
 'scrapy.spidermiddlewares.offsite.OffsiteMiddleware': 500,
 'scrapy.spidermiddlewares.referer.RefererMiddleware': 700,
 'scrapy.spidermiddlewares.urllength.UrlLengthMiddleware': 800,
 'scrapy.spidermiddlewares.depth.DepthMiddleware': 900,
}

A dict containing the spider middlewares enabled by default in Scrapy, and
their orders. Low orders are closer to the engine, high orders are closer to
the spider. For more info see Activating a spider middleware.

SPIDER_MODULES

Default: []

A list of modules where Scrapy will look for spiders.

Example:

SPIDER_MODULES = ['mybot.spiders_prod', 'mybot.spiders_dev']

STATS_CLASS

Default: 'scrapy.statscollectors.MemoryStatsCollector'

The class to use for collecting stats, who must implement the
Stats Collector API.

STATS_DUMP

Default: True

Dump the Scrapy stats (to the Scrapy log) once the spider
finishes.

For more info see: Stats Collection.

STATSMAILER_RCPTS

Default: [] (empty list)

Send Scrapy stats after spiders finish scraping. See
StatsMailer for more info.

TELNETCONSOLE_ENABLED

Default: True

A boolean which specifies if the telnet console
will be enabled (provided its extension is also enabled).

TELNETCONSOLE_PORT

Default: [6023, 6073]

The port range to use for the telnet console. If set to None or 0, a
dynamically assigned port is used. For more info see
Telnet Console.

TEMPLATES_DIR

Default: templates dir inside scrapy module

The directory where to look for templates when creating new projects with
startproject command and new spiders with genspider
command.

The project name must not conflict with the name of custom files or directories
in the project subdirectory.

URLLENGTH_LIMIT

Default: 2083

Scope: spidermiddlewares.urllength

The maximum URL length to allow for crawled URLs. For more information about
the default value for this setting see: https://boutell.com/newfaq/misc/urllength.html

USER_AGENT

Default: "Scrapy/VERSION (+https://scrapy.org)"

The default User-Agent to use when crawling, unless overridden.

Settings documented elsewhere:

The following settings are documented elsewhere, please check each specific
case to see how to enable and use them.

 Exceptions

Exceptions

Built-in Exceptions reference

Here’s a list of all exceptions included in Scrapy and their usage.

DropItem

	
exception scrapy.exceptions.DropItem

	

The exception that must be raised by item pipeline stages to stop processing an
Item. For more information see Item Pipeline.

CloseSpider

	
exception scrapy.exceptions.CloseSpider(reason='cancelled')

	This exception can be raised from a spider callback to request the spider to be
closed/stopped. Supported arguments:

	Parameters

	reason (str) – the reason for closing

For example:

def parse_page(self, response):
 if 'Bandwidth exceeded' in response.body:
 raise CloseSpider('bandwidth_exceeded')

DontCloseSpider

	
exception scrapy.exceptions.DontCloseSpider

	

This exception can be raised in a :signal:`spider_idle` signal handler to
prevent the spider from being closed.

IgnoreRequest

	
exception scrapy.exceptions.IgnoreRequest

	

This exception can be raised by the Scheduler or any downloader middleware to
indicate that the request should be ignored.

NotConfigured

	
exception scrapy.exceptions.NotConfigured

	

This exception can be raised by some components to indicate that they will
remain disabled. Those components include:

	Extensions

	Item pipelines

	Downloader middlewares

	Spider middlewares

The exception must be raised in the component’s __init__ method.

NotSupported

	
exception scrapy.exceptions.NotSupported

	

This exception is raised to indicate an unsupported feature.

 Logging

Logging

Note

scrapy.log has been deprecated alongside its functions in favor of
explicit calls to the Python standard logging. Keep reading to learn more
about the new logging system.

Scrapy uses Python’s builtin logging system [https://docs.python.org/3/library/logging.html] for event logging. We’ll
provide some simple examples to get you started, but for more advanced
use-cases it’s strongly suggested to read thoroughly its documentation.

Logging works out of the box, and can be configured to some extent with the
Scrapy settings listed in Logging settings.

Scrapy calls scrapy.utils.log.configure_logging() to set some reasonable
defaults and handle those settings in Logging settings when
running commands, so it’s recommended to manually call it if you’re running
Scrapy from scripts as described in Run Scrapy from a script.

Log levels

Python’s builtin logging defines 5 different levels to indicate the severity of a
given log message. Here are the standard ones, listed in decreasing order:

	logging.CRITICAL - for critical errors (highest severity)

	logging.ERROR - for regular errors

	logging.WARNING - for warning messages

	logging.INFO - for informational messages

	logging.DEBUG - for debugging messages (lowest severity)

How to log messages

Here’s a quick example of how to log a message using the logging.WARNING
level:

import logging
logging.warning("This is a warning")

There are shortcuts for issuing log messages on any of the standard 5 levels,
and there’s also a general logging.log method which takes a given level as
argument. If needed, the last example could be rewritten as:

import logging
logging.log(logging.WARNING, "This is a warning")

On top of that, you can create different “loggers” to encapsulate messages. (For
example, a common practice is to create different loggers for every module).
These loggers can be configured independently, and they allow hierarchical
constructions.

The previous examples use the root logger behind the scenes, which is a top level
logger where all messages are propagated to (unless otherwise specified). Using
logging helpers is merely a shortcut for getting the root logger
explicitly, so this is also an equivalent of the last snippets:

import logging
logger = logging.getLogger()
logger.warning("This is a warning")

You can use a different logger just by getting its name with the
logging.getLogger function:

import logging
logger = logging.getLogger('mycustomlogger')
logger.warning("This is a warning")

Finally, you can ensure having a custom logger for any module you’re working on
by using the __name__ variable, which is populated with current module’s
path:

import logging
logger = logging.getLogger(__name__)
logger.warning("This is a warning")

See also

	Module logging, HowTo [https://docs.python.org/2/howto/logging.html]

	Basic Logging Tutorial

	Module logging, Loggers [https://docs.python.org/2/library/logging.html#logger-objects]

	Further documentation on loggers

Logging from Spiders

Scrapy provides a logger within each Spider
instance, which can be accessed and used like this:

import scrapy

class MySpider(scrapy.Spider):

 name = 'myspider'
 start_urls = ['https://scrapinghub.com']

 def parse(self, response):
 self.logger.info('Parse function called on %s', response.url)

That logger is created using the Spider’s name, but you can use any custom
Python logger you want. For example:

import logging
import scrapy

logger = logging.getLogger('mycustomlogger')

class MySpider(scrapy.Spider):

 name = 'myspider'
 start_urls = ['https://scrapinghub.com']

 def parse(self, response):
 logger.info('Parse function called on %s', response.url)

Logging configuration

Loggers on their own don’t manage how messages sent through them are displayed.
For this task, different “handlers” can be attached to any logger instance and
they will redirect those messages to appropriate destinations, such as the
standard output, files, emails, etc.

By default, Scrapy sets and configures a handler for the root logger, based on
the settings below.

Logging settings

These settings can be used to configure the logging:

	:setting:`LOG_FILE`

	:setting:`LOG_ENABLED`

	:setting:`LOG_ENCODING`

	:setting:`LOG_LEVEL`

	:setting:`LOG_FORMAT`

	:setting:`LOG_DATEFORMAT`

	:setting:`LOG_STDOUT`

	:setting:`LOG_SHORT_NAMES`

The first couple of settings define a destination for log messages. If
:setting:`LOG_FILE` is set, messages sent through the root logger will be
redirected to a file named :setting:`LOG_FILE` with encoding
:setting:`LOG_ENCODING`. If unset and :setting:`LOG_ENABLED` is True, log
messages will be displayed on the standard error. Lastly, if
:setting:`LOG_ENABLED` is False, there won’t be any visible log output.

:setting:`LOG_LEVEL` determines the minimum level of severity to display, those
messages with lower severity will be filtered out. It ranges through the
possible levels listed in Log levels.

:setting:`LOG_FORMAT` and :setting:`LOG_DATEFORMAT` specify formatting strings
used as layouts for all messages. Those strings can contain any placeholders
listed in logging’s logrecord attributes docs [https://docs.python.org/2/library/logging.html#logrecord-attributes] and
datetime’s strftime and strptime directives [https://docs.python.org/2/library/datetime.html#strftime-and-strptime-behavior]
respectively.

If :setting:`LOG_SHORT_NAMES` is set, then the logs will not display the scrapy
component that prints the log. It is unset by default, hence logs contain the
scrapy component responsible for that log output.

Command-line options

There are command-line arguments, available for all commands, that you can use
to override some of the Scrapy settings regarding logging.

	
	--logfile FILE

	Overrides :setting:`LOG_FILE`

	
	--loglevel/-L LEVEL

	Overrides :setting:`LOG_LEVEL`

	
	--nolog

	Sets :setting:`LOG_ENABLED` to False

See also

	Module logging.handlers [https://docs.python.org/2/library/logging.handlers.html]

	Further documentation on available handlers

Advanced customization

Because Scrapy uses stdlib logging module, you can customize logging using
all features of stdlib logging.

For example, let’s say you’re scraping a website which returns many
HTTP 404 and 500 responses, and you want to hide all messages like this:

2016-12-16 22:00:06 [scrapy.spidermiddlewares.httperror] INFO: Ignoring
response <500 http://quotes.toscrape.com/page/1-34/>: HTTP status code
is not handled or not allowed

The first thing to note is a logger name - it is in brackets:
[scrapy.spidermiddlewares.httperror]. If you get just [scrapy] then
:setting:`LOG_SHORT_NAMES` is likely set to True; set it to False and re-run
the crawl.

Next, we can see that the message has INFO level. To hide it
we should set logging level for scrapy.spidermiddlewares.httperror
higher than INFO; next level after INFO is WARNING. It could be done
e.g. in the spider’s __init__ method:

import logging
import scrapy

class MySpider(scrapy.Spider):
 # ...
 def __init__(self, *args, **kwargs):
 logger = logging.getLogger('scrapy.spidermiddlewares.httperror')
 logger.setLevel(logging.WARNING)
 super().__init__(*args, **kwargs)

If you run this spider again then INFO messages from
scrapy.spidermiddlewares.httperror logger will be gone.

scrapy.utils.log module

 Stats Collection

Stats Collection

Scrapy provides a convenient facility for collecting stats in the form of
key/values, where values are often counters. The facility is called the Stats
Collector, and can be accessed through the stats
attribute of the Crawler API, as illustrated by the examples in
the Common Stats Collector uses section below.

However, the Stats Collector is always available, so you can always import it
in your module and use its API (to increment or set new stat keys), regardless
of whether the stats collection is enabled or not. If it’s disabled, the API
will still work but it won’t collect anything. This is aimed at simplifying the
stats collector usage: you should spend no more than one line of code for
collecting stats in your spider, Scrapy extension, or whatever code you’re
using the Stats Collector from.

Another feature of the Stats Collector is that it’s very efficient (when
enabled) and extremely efficient (almost unnoticeable) when disabled.

The Stats Collector keeps a stats table per open spider which is automatically
opened when the spider is opened, and closed when the spider is closed.

Common Stats Collector uses

Access the stats collector through the stats
attribute. Here is an example of an extension that access stats:

class ExtensionThatAccessStats(object):

 def __init__(self, stats):
 self.stats = stats

 @classmethod
 def from_crawler(cls, crawler):
 return cls(crawler.stats)

Set stat value:

stats.set_value('hostname', socket.gethostname())

Increment stat value:

stats.inc_value('custom_count')

Set stat value only if greater than previous:

stats.max_value('max_items_scraped', value)

Set stat value only if lower than previous:

stats.min_value('min_free_memory_percent', value)

Get stat value:

>>> stats.get_value('custom_count')
1

Get all stats:

>>> stats.get_stats()
{'custom_count': 1, 'start_time': datetime.datetime(2009, 7, 14, 21, 47, 28, 977139)}

Available Stats Collectors

Besides the basic StatsCollector there are other Stats Collectors
available in Scrapy which extend the basic Stats Collector. You can select
which Stats Collector to use through the :setting:`STATS_CLASS` setting. The
default Stats Collector used is the MemoryStatsCollector.

MemoryStatsCollector

	
class scrapy.statscollectors.MemoryStatsCollector

	A simple stats collector that keeps the stats of the last scraping run (for
each spider) in memory, after they’re closed. The stats can be accessed
through the spider_stats attribute, which is a dict keyed by spider
domain name.

This is the default Stats Collector used in Scrapy.

	
spider_stats

	A dict of dicts (keyed by spider name) containing the stats of the last
scraping run for each spider.

DummyStatsCollector

	
class scrapy.statscollectors.DummyStatsCollector

	A Stats collector which does nothing but is very efficient (because it does
nothing). This stats collector can be set via the :setting:`STATS_CLASS`
setting, to disable stats collect in order to improve performance. However,
the performance penalty of stats collection is usually marginal compared to
other Scrapy workload like parsing pages.

 Sending e-mail

Sending e-mail

Although Python makes sending e-mails relatively easy via the smtplib [https://docs.python.org/2/library/smtplib.html]
library, Scrapy provides its own facility for sending e-mails which is very
easy to use and it’s implemented using Twisted non-blocking IO [https://twistedmatrix.com/documents/current/core/howto/defer-intro.html], to avoid
interfering with the non-blocking IO of the crawler. It also provides a
simple API for sending attachments and it’s very easy to configure, with a few
settings.

Quick example

There are two ways to instantiate the mail sender. You can instantiate it using
the standard constructor:

from scrapy.mail import MailSender
mailer = MailSender()

Or you can instantiate it passing a Scrapy settings object, which will respect
the settings:

mailer = MailSender.from_settings(settings)

And here is how to use it to send an e-mail (without attachments):

mailer.send(to=["someone@example.com"], subject="Some subject", body="Some body", cc=["another@example.com"])

MailSender class reference

MailSender is the preferred class to use for sending emails from Scrapy, as it
uses Twisted non-blocking IO [https://twistedmatrix.com/documents/current/core/howto/defer-intro.html], like the rest of the framework.

	
class scrapy.mail.MailSender(smtphost=None, mailfrom=None, smtpuser=None, smtppass=None, smtpport=None)

	
	Parameters

	
	smtphost (str or bytes) – the SMTP host to use for sending the emails. If omitted, the
:setting:`MAIL_HOST` setting will be used.

	mailfrom (str) – the address used to send emails (in the From: header).
If omitted, the :setting:`MAIL_FROM` setting will be used.

	smtpuser – the SMTP user. If omitted, the :setting:`MAIL_USER`
setting will be used. If not given, no SMTP authentication will be
performed.

	smtppass (str or bytes) – the SMTP pass for authentication.

	smtpport (int) – the SMTP port to connect to

	smtptls (boolean) – enforce using SMTP STARTTLS

	smtpssl (boolean) – enforce using a secure SSL connection

	
classmethod from_settings(settings)

	Instantiate using a Scrapy settings object, which will respect
these Scrapy settings.

	Parameters

	settings (scrapy.settings.Settings object) – the e-mail recipients

	
send(to, subject, body, cc=None, attachs=(), mimetype='text/plain', charset=None)

	Send email to the given recipients.

	Parameters

	
	to (str or list of str) – the e-mail recipients

	subject (str) – the subject of the e-mail

	cc (str or list of str) – the e-mails to CC

	body (str) – the e-mail body

	attachs (iterable) – an iterable of tuples (attach_name, mimetype,
file_object) where attach_name is a string with the name that will
appear on the e-mail’s attachment, mimetype is the mimetype of the
attachment and file_object is a readable file object with the
contents of the attachment

	mimetype (str) – the MIME type of the e-mail

	charset (str) – the character encoding to use for the e-mail contents

Mail settings

These settings define the default constructor values of the MailSender
class, and can be used to configure e-mail notifications in your project without
writing any code (for those extensions and code that uses MailSender).

MAIL_FROM

Default: 'scrapy@localhost'

Sender email to use (From: header) for sending emails.

MAIL_HOST

Default: 'localhost'

SMTP host to use for sending emails.

MAIL_PORT

Default: 25

SMTP port to use for sending emails.

MAIL_USER

Default: None

User to use for SMTP authentication. If disabled no SMTP authentication will be
performed.

MAIL_PASS

Default: None

Password to use for SMTP authentication, along with :setting:`MAIL_USER`.

MAIL_TLS

Default: False

Enforce using STARTTLS. STARTTLS is a way to take an existing insecure connection, and upgrade it to a secure connection using SSL/TLS.

MAIL_SSL

Default: False

Enforce connecting using an SSL encrypted connection

 Telnet Console

Telnet Console

Scrapy comes with a built-in telnet console for inspecting and controlling a
Scrapy running process. The telnet console is just a regular python shell
running inside the Scrapy process, so you can do literally anything from it.

The telnet console is a built-in Scrapy extension which comes enabled by default, but you can also
disable it if you want. For more information about the extension itself see
Telnet console extension.

How to access the telnet console

The telnet console listens in the TCP port defined in the
:setting:`TELNETCONSOLE_PORT` setting, which defaults to 6023. To access
the console you need to type:

telnet localhost 6023
>>>

You need the telnet program which comes installed by default in Windows, and
most Linux distros.

Available variables in the telnet console

The telnet console is like a regular Python shell running inside the Scrapy
process, so you can do anything from it including importing new modules, etc.

However, the telnet console comes with some default variables defined for
convenience:

	Shortcut

	Description

	crawler

	the Scrapy Crawler (scrapy.crawler.Crawler object)

	engine

	Crawler.engine attribute

	spider

	the active spider

	slot

	the engine slot

	extensions

	the Extension Manager (Crawler.extensions attribute)

	stats

	the Stats Collector (Crawler.stats attribute)

	settings

	the Scrapy settings object (Crawler.settings attribute)

	est

	print a report of the engine status

	prefs

	for memory debugging (see Debugging memory leaks)

	p

	a shortcut to the pprint.pprint [https://docs.python.org/library/pprint.html#pprint.pprint] function

	hpy

	for memory debugging (see Debugging memory leaks)

Telnet console usage examples

Here are some example tasks you can do with the telnet console:

View engine status

You can use the est() method of the Scrapy engine to quickly show its state
using the telnet console:

telnet localhost 6023
>>> est()
Execution engine status

time()-engine.start_time : 8.62972998619
engine.has_capacity() : False
len(engine.downloader.active) : 16
engine.scraper.is_idle() : False
engine.spider.name : followall
engine.spider_is_idle(engine.spider) : False
engine.slot.closing : False
len(engine.slot.inprogress) : 16
len(engine.slot.scheduler.dqs or []) : 0
len(engine.slot.scheduler.mqs) : 92
len(engine.scraper.slot.queue) : 0
len(engine.scraper.slot.active) : 0
engine.scraper.slot.active_size : 0
engine.scraper.slot.itemproc_size : 0
engine.scraper.slot.needs_backout() : False

Pause, resume and stop the Scrapy engine

To pause:

telnet localhost 6023
>>> engine.pause()
>>>

To resume:

telnet localhost 6023
>>> engine.unpause()
>>>

To stop:

telnet localhost 6023
>>> engine.stop()
Connection closed by foreign host.

Telnet Console signals

	
scrapy.extensions.telnet.update_telnet_vars(telnet_vars)

	Sent just before the telnet console is opened. You can hook up to this
signal to add, remove or update the variables that will be available in the
telnet local namespace. In order to do that, you need to update the
telnet_vars dict in your handler.

	Parameters

	telnet_vars (dict) – the dict of telnet variables

Telnet settings

These are the settings that control the telnet console’s behaviour:

TELNETCONSOLE_PORT

Default: [6023, 6073]

The port range to use for the telnet console. If set to None or 0, a
dynamically assigned port is used.

TELNETCONSOLE_HOST

Default: '127.0.0.1'

The interface the telnet console should listen on

 Web Service

Web Service

webservice has been moved into a separate project.

It is hosted at:

https://github.com/scrapy-plugins/scrapy-jsonrpc

 Frequently Asked Questions

Frequently Asked Questions

How does Scrapy compare to BeautifulSoup or lxml?

BeautifulSoup [https://www.crummy.com/software/BeautifulSoup/] and lxml [http://lxml.de/] are libraries for parsing HTML and XML. Scrapy is
an application framework for writing web spiders that crawl web sites and
extract data from them.

Scrapy provides a built-in mechanism for extracting data (called
selectors) but you can easily use BeautifulSoup [https://www.crummy.com/software/BeautifulSoup/]
(or lxml [http://lxml.de/]) instead, if you feel more comfortable working with them. After
all, they’re just parsing libraries which can be imported and used from any
Python code.

In other words, comparing BeautifulSoup [https://www.crummy.com/software/BeautifulSoup/] (or lxml [http://lxml.de/]) to Scrapy is like
comparing jinja2 [http://jinja.pocoo.org/] to Django [https://www.djangoproject.com/].

Can I use Scrapy with BeautifulSoup?

Yes, you can.
As mentioned above, BeautifulSoup [https://www.crummy.com/software/BeautifulSoup/] can be used
for parsing HTML responses in Scrapy callbacks.
You just have to feed the response’s body into a BeautifulSoup object
and extract whatever data you need from it.

Here’s an example spider using BeautifulSoup API, with lxml as the HTML parser:

from bs4 import BeautifulSoup
import scrapy

class ExampleSpider(scrapy.Spider):
 name = "example"
 allowed_domains = ["example.com"]
 start_urls = (
 'http://www.example.com/',
)

 def parse(self, response):
 # use lxml to get decent HTML parsing speed
 soup = BeautifulSoup(response.text, 'lxml')
 yield {
 "url": response.url,
 "title": soup.h1.string
 }

Note

BeautifulSoup supports several HTML/XML parsers.
See BeautifulSoup’s official documentation [https://www.crummy.com/software/BeautifulSoup/bs4/doc/#specifying-the-parser-to-use] on which ones are available.

What Python versions does Scrapy support?

Scrapy is supported under Python 2.7 and Python 3.4+
under CPython (default Python implementation) and PyPy (starting with PyPy 5.9).
Python 2.6 support was dropped starting at Scrapy 0.20.
Python 3 support was added in Scrapy 1.1.
PyPy support was added in Scrapy 1.4, PyPy3 support was added in Scrapy 1.5.

Note

For Python 3 support on Windows, it is recommended to use
Anaconda/Miniconda as outlined in the installation guide.

Did Scrapy “steal” X from Django?

Probably, but we don’t like that word. We think Django [https://www.djangoproject.com/] is a great open source
project and an example to follow, so we’ve used it as an inspiration for
Scrapy.

We believe that, if something is already done well, there’s no need to reinvent
it. This concept, besides being one of the foundations for open source and free
software, not only applies to software but also to documentation, procedures,
policies, etc. So, instead of going through each problem ourselves, we choose
to copy ideas from those projects that have already solved them properly, and
focus on the real problems we need to solve.

We’d be proud if Scrapy serves as an inspiration for other projects. Feel free
to steal from us!

Does Scrapy work with HTTP proxies?

Yes. Support for HTTP proxies is provided (since Scrapy 0.8) through the HTTP
Proxy downloader middleware. See
HttpProxyMiddleware.

How can I scrape an item with attributes in different pages?

See Passing additional data to callback functions.

Scrapy crashes with: ImportError: No module named win32api

You need to install pywin32 [https://sourceforge.net/projects/pywin32/] because of this Twisted bug [https://twistedmatrix.com/trac/ticket/3707].

How can I simulate a user login in my spider?

See Using FormRequest.from_response() to simulate a user login.

Does Scrapy crawl in breadth-first or depth-first order?

By default, Scrapy uses a LIFO [https://en.wikipedia.org/wiki/Stack_(abstract_data_type)] queue for storing pending requests, which
basically means that it crawls in DFO order [https://en.wikipedia.org/wiki/Depth-first_search]. This order is more convenient
in most cases. If you do want to crawl in true BFO order [https://en.wikipedia.org/wiki/Breadth-first_search], you can do it by
setting the following settings:

DEPTH_PRIORITY = 1
SCHEDULER_DISK_QUEUE = 'scrapy.squeues.PickleFifoDiskQueue'
SCHEDULER_MEMORY_QUEUE = 'scrapy.squeues.FifoMemoryQueue'

My Scrapy crawler has memory leaks. What can I do?

See Debugging memory leaks.

Also, Python has a builtin memory leak issue which is described in
Leaks without leaks.

How can I make Scrapy consume less memory?

See previous question.

Can I use Basic HTTP Authentication in my spiders?

Yes, see HttpAuthMiddleware.

Why does Scrapy download pages in English instead of my native language?

Try changing the default Accept-Language [https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4] request header by overriding the
:setting:`DEFAULT_REQUEST_HEADERS` setting.

Where can I find some example Scrapy projects?

See Examples.

Can I run a spider without creating a project?

Yes. You can use the runspider command. For example, if you have a
spider written in a my_spider.py file you can run it with:

scrapy runspider my_spider.py

See runspider command for more info.

I get “Filtered offsite request” messages. How can I fix them?

Those messages (logged with DEBUG level) don’t necessarily mean there is a
problem, so you may not need to fix them.

Those messages are thrown by the Offsite Spider Middleware, which is a spider
middleware (enabled by default) whose purpose is to filter out requests to
domains outside the ones covered by the spider.

For more info see:
OffsiteMiddleware.

What is the recommended way to deploy a Scrapy crawler in production?

See Deploying Spiders.

Can I use JSON for large exports?

It’ll depend on how large your output is. See this warning in JsonItemExporter
documentation.

Can I return (Twisted) deferreds from signal handlers?

Some signals support returning deferreds from their handlers, others don’t. See
the Built-in signals reference to know which ones.

What does the response status code 999 means?

999 is a custom response status code used by Yahoo sites to throttle requests.
Try slowing down the crawling speed by using a download delay of 2 (or
higher) in your spider:

class MySpider(CrawlSpider):

 name = 'myspider'

 download_delay = 2

 # [... rest of the spider code ...]

Or by setting a global download delay in your project with the
:setting:`DOWNLOAD_DELAY` setting.

Can I call pdb.set_trace() from my spiders to debug them?

Yes, but you can also use the Scrapy shell which allows you to quickly analyze
(and even modify) the response being processed by your spider, which is, quite
often, more useful than plain old pdb.set_trace().

For more info see Invoking the shell from spiders to inspect responses.

Simplest way to dump all my scraped items into a JSON/CSV/XML file?

To dump into a JSON file:

scrapy crawl myspider -o items.json

To dump into a CSV file:

scrapy crawl myspider -o items.csv

To dump into a XML file:

scrapy crawl myspider -o items.xml

For more information see Feed exports

What’s this huge cryptic __VIEWSTATE parameter used in some forms?

The __VIEWSTATE parameter is used in sites built with ASP.NET/VB.NET. For
more info on how it works see this page [http://search.cpan.org/~ecarroll/HTML-TreeBuilderX-ASP_NET-0.09/lib/HTML/TreeBuilderX/ASP_NET.pm]. Also, here’s an example spider [https://github.com/AmbientLighter/rpn-fas/blob/master/fas/spiders/rnp.py]
which scrapes one of these sites.

What’s the best way to parse big XML/CSV data feeds?

Parsing big feeds with XPath selectors can be problematic since they need to
build the DOM of the entire feed in memory, and this can be quite slow and
consume a lot of memory.

In order to avoid parsing all the entire feed at once in memory, you can use
the functions xmliter and csviter from scrapy.utils.iterators
module. In fact, this is what the feed spiders (see Spiders) use
under the cover.

Does Scrapy manage cookies automatically?

Yes, Scrapy receives and keeps track of cookies sent by servers, and sends them
back on subsequent requests, like any regular web browser does.

For more info see Requests and Responses and CookiesMiddleware.

How can I see the cookies being sent and received from Scrapy?

Enable the :setting:`COOKIES_DEBUG` setting.

How can I instruct a spider to stop itself?

Raise the CloseSpider exception from a callback. For
more info see: CloseSpider.

How can I prevent my Scrapy bot from getting banned?

See Avoiding getting banned.

Should I use spider arguments or settings to configure my spider?

Both spider arguments and settings
can be used to configure your spider. There is no strict rule that mandates to
use one or the other, but settings are more suited for parameters that, once
set, don’t change much, while spider arguments are meant to change more often,
even on each spider run and sometimes are required for the spider to run at all
(for example, to set the start url of a spider).

To illustrate with an example, assuming you have a spider that needs to log
into a site to scrape data, and you only want to scrape data from a certain
section of the site (which varies each time). In that case, the credentials to
log in would be settings, while the url of the section to scrape would be a
spider argument.

I’m scraping a XML document and my XPath selector doesn’t return any items

You may need to remove namespaces. See Removing namespaces.

 Debugging Spiders

Debugging Spiders

This document explains the most common techniques for debugging spiders.
Consider the following scrapy spider below:

import scrapy
from myproject.items import MyItem

class MySpider(scrapy.Spider):
 name = 'myspider'
 start_urls = (
 'http://example.com/page1',
 'http://example.com/page2',
)

 def parse(self, response):
 # collect `item_urls`
 for item_url in item_urls:
 yield scrapy.Request(item_url, self.parse_item)

 def parse_item(self, response):
 item = MyItem()
 # populate `item` fields
 # and extract item_details_url
 yield scrapy.Request(item_details_url, self.parse_details, meta={'item': item})

 def parse_details(self, response):
 item = response.meta['item']
 # populate more `item` fields
 return item

Basically this is a simple spider which parses two pages of items (the
start_urls). Items also have a details page with additional information, so we
use the meta functionality of Request to pass a
partially populated item.

Parse Command

The most basic way of checking the output of your spider is to use the
parse command. It allows to check the behaviour of different parts
of the spider at the method level. It has the advantage of being flexible and
simple to use, but does not allow debugging code inside a method.

In order to see the item scraped from a specific url:

$ scrapy parse --spider=myspider -c parse_item -d 2 <item_url>
[... scrapy log lines crawling example.com spider ...]

>>> STATUS DEPTH LEVEL 2 <<<
Scraped Items --
[{'url': <item_url>}]

Requests ---
[]

Using the --verbose or -v option we can see the status at each depth level:

$ scrapy parse --spider=myspider -c parse_item -d 2 -v <item_url>
[... scrapy log lines crawling example.com spider ...]

>>> DEPTH LEVEL: 1 <<<
Scraped Items --
[]

Requests ---
[<GET item_details_url>]

>>> DEPTH LEVEL: 2 <<<
Scraped Items --
[{'url': <item_url>}]

Requests ---
[]

Checking items scraped from a single start_url, can also be easily achieved
using:

$ scrapy parse --spider=myspider -d 3 'http://example.com/page1'

Scrapy Shell

While the parse command is very useful for checking behaviour of a
spider, it is of little help to check what happens inside a callback, besides
showing the response received and the output. How to debug the situation when
parse_details sometimes receives no item?

Fortunately, the shell is your bread and butter in this case (see
Invoking the shell from spiders to inspect responses):

from scrapy.shell import inspect_response

def parse_details(self, response):
 item = response.meta.get('item', None)
 if item:
 # populate more `item` fields
 return item
 else:
 inspect_response(response, self)

See also: Invoking the shell from spiders to inspect responses.

Open in browser

Sometimes you just want to see how a certain response looks in a browser, you
can use the open_in_browser function for that. Here is an example of how
you would use it:

from scrapy.utils.response import open_in_browser

def parse_details(self, response):
 if "item name" not in response.body:
 open_in_browser(response)

open_in_browser will open a browser with the response received by Scrapy at
that point, adjusting the base tag [https://www.w3schools.com/tags/tag_base.asp] so that images and styles are displayed
properly.

Logging

Logging is another useful option for getting information about your spider run.
Although not as convenient, it comes with the advantage that the logs will be
available in all future runs should they be necessary again:

def parse_details(self, response):
 item = response.meta.get('item', None)
 if item:
 # populate more `item` fields
 return item
 else:
 self.logger.warning('No item received for %s', response.url)

For more information, check the Logging section.

 Spiders Contracts

Spiders Contracts

New in version 0.15.

Note

This is a new feature (introduced in Scrapy 0.15) and may be subject
to minor functionality/API updates. Check the release notes to
be notified of updates.

Testing spiders can get particularly annoying and while nothing prevents you
from writing unit tests the task gets cumbersome quickly. Scrapy offers an
integrated way of testing your spiders by the means of contracts.

This allows you to test each callback of your spider by hardcoding a sample url
and check various constraints for how the callback processes the response. Each
contract is prefixed with an @ and included in the docstring. See the
following example:

def parse(self, response):
 """ This function parses a sample response. Some contracts are mingled
 with this docstring.

 @url http://www.amazon.com/s?field-keywords=selfish+gene
 @returns items 1 16
 @returns requests 0 0
 @scrapes Title Author Year Price
 """

This callback is tested using three built-in contracts:

	
class scrapy.contracts.default.UrlContract

	This contract (@url) sets the sample url used when checking other
contract conditions for this spider. This contract is mandatory. All
callbacks lacking this contract are ignored when running the checks:

@url url

	
class scrapy.contracts.default.ReturnsContract

	This contract (@returns) sets lower and upper bounds for the items and
requests returned by the spider. The upper bound is optional:

@returns item(s)|request(s) [min [max]]

	
class scrapy.contracts.default.ScrapesContract

	This contract (@scrapes) checks that all the items returned by the
callback have the specified fields:

@scrapes field_1 field_2 ...

Use the check command to run the contract checks.

Custom Contracts

If you find you need more power than the built-in scrapy contracts you can
create and load your own contracts in the project by using the
:setting:`SPIDER_CONTRACTS` setting:

SPIDER_CONTRACTS = {
 'myproject.contracts.ResponseCheck': 10,
 'myproject.contracts.ItemValidate': 10,
}

Each contract must inherit from scrapy.contracts.Contract and can
override three methods:

	
class scrapy.contracts.Contract(method, *args)

	
	Parameters

	
	method (function) – callback function to which the contract is associated

	args (list) – list of arguments passed into the docstring (whitespace
separated)

	
adjust_request_args(args)

	This receives a dict as an argument containing default arguments
for request object. Request is used by default,
but this can be changed with the request_cls attribute.
If multiple contracts in chain have this attribute defined, the last one is used.

Must return the same or a modified version of it.

	
pre_process(response)

	This allows hooking in various checks on the response received from the
sample request, before it’s being passed to the callback.

	
post_process(output)

	This allows processing the output of the callback. Iterators are
converted listified before being passed to this hook.

Here is a demo contract which checks the presence of a custom header in the
response received. Raise scrapy.exceptions.ContractFail in order to
get the failures pretty printed:

from scrapy.contracts import Contract
from scrapy.exceptions import ContractFail

class HasHeaderContract(Contract):
 """ Demo contract which checks the presence of a custom header
 @has_header X-CustomHeader
 """

 name = 'has_header'

 def pre_process(self, response):
 for header in self.args:
 if header not in response.headers:
 raise ContractFail('X-CustomHeader not present')

 Common Practices

Common Practices

This section documents common practices when using Scrapy. These are things
that cover many topics and don’t often fall into any other specific section.

Run Scrapy from a script

You can use the API to run Scrapy from a script, instead of
the typical way of running Scrapy via scrapy crawl.

Remember that Scrapy is built on top of the Twisted
asynchronous networking library, so you need to run it inside the Twisted reactor.

The first utility you can use to run your spiders is
scrapy.crawler.CrawlerProcess. This class will start a Twisted reactor
for you, configuring the logging and setting shutdown handlers. This class is
the one used by all Scrapy commands.

Here’s an example showing how to run a single spider with it.

import scrapy
from scrapy.crawler import CrawlerProcess

class MySpider(scrapy.Spider):
 # Your spider definition
 ...

process = CrawlerProcess({
 'USER_AGENT': 'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1)'
})

process.crawl(MySpider)
process.start() # the script will block here until the crawling is finished

Make sure to check CrawlerProcess documentation to get
acquainted with its usage details.

If you are inside a Scrapy project there are some additional helpers you can
use to import those components within the project. You can automatically import
your spiders passing their name to CrawlerProcess, and
use get_project_settings to get a Settings
instance with your project settings.

What follows is a working example of how to do that, using the testspiders [https://github.com/scrapinghub/testspiders]
project as example.

from scrapy.crawler import CrawlerProcess
from scrapy.utils.project import get_project_settings

process = CrawlerProcess(get_project_settings())

'followall' is the name of one of the spiders of the project.
process.crawl('followall', domain='scrapinghub.com')
process.start() # the script will block here until the crawling is finished

There’s another Scrapy utility that provides more control over the crawling
process: scrapy.crawler.CrawlerRunner. This class is a thin wrapper
that encapsulates some simple helpers to run multiple crawlers, but it won’t
start or interfere with existing reactors in any way.

Using this class the reactor should be explicitly run after scheduling your
spiders. It’s recommended you use CrawlerRunner
instead of CrawlerProcess if your application is
already using Twisted and you want to run Scrapy in the same reactor.

Note that you will also have to shutdown the Twisted reactor yourself after the
spider is finished. This can be achieved by adding callbacks to the deferred
returned by the CrawlerRunner.crawl method.

Here’s an example of its usage, along with a callback to manually stop the
reactor after MySpider has finished running.

from twisted.internet import reactor
import scrapy
from scrapy.crawler import CrawlerRunner
from scrapy.utils.log import configure_logging

class MySpider(scrapy.Spider):
 # Your spider definition
 ...

configure_logging({'LOG_FORMAT': '%(levelname)s: %(message)s'})
runner = CrawlerRunner()

d = runner.crawl(MySpider)
d.addBoth(lambda _: reactor.stop())
reactor.run() # the script will block here until the crawling is finished

See also

Twisted Reactor Overview [https://twistedmatrix.com/documents/current/core/howto/reactor-basics.html].

Running multiple spiders in the same process

By default, Scrapy runs a single spider per process when you run scrapy
crawl. However, Scrapy supports running multiple spiders per process using
the internal API.

Here is an example that runs multiple spiders simultaneously:

import scrapy
from scrapy.crawler import CrawlerProcess

class MySpider1(scrapy.Spider):
 # Your first spider definition
 ...

class MySpider2(scrapy.Spider):
 # Your second spider definition
 ...

process = CrawlerProcess()
process.crawl(MySpider1)
process.crawl(MySpider2)
process.start() # the script will block here until all crawling jobs are finished

Same example using CrawlerRunner:

import scrapy
from twisted.internet import reactor
from scrapy.crawler import CrawlerRunner
from scrapy.utils.log import configure_logging

class MySpider1(scrapy.Spider):
 # Your first spider definition
 ...

class MySpider2(scrapy.Spider):
 # Your second spider definition
 ...

configure_logging()
runner = CrawlerRunner()
runner.crawl(MySpider1)
runner.crawl(MySpider2)
d = runner.join()
d.addBoth(lambda _: reactor.stop())

reactor.run() # the script will block here until all crawling jobs are finished

Same example but running the spiders sequentially by chaining the deferreds:

from twisted.internet import reactor, defer
from scrapy.crawler import CrawlerRunner
from scrapy.utils.log import configure_logging

class MySpider1(scrapy.Spider):
 # Your first spider definition
 ...

class MySpider2(scrapy.Spider):
 # Your second spider definition
 ...

configure_logging()
runner = CrawlerRunner()

@defer.inlineCallbacks
def crawl():
 yield runner.crawl(MySpider1)
 yield runner.crawl(MySpider2)
 reactor.stop()

crawl()
reactor.run() # the script will block here until the last crawl call is finished

See also

Run Scrapy from a script.

Distributed crawls

Scrapy doesn’t provide any built-in facility for running crawls in a distribute
(multi-server) manner. However, there are some ways to distribute crawls, which
vary depending on how you plan to distribute them.

If you have many spiders, the obvious way to distribute the load is to setup
many Scrapyd instances and distribute spider runs among those.

If you instead want to run a single (big) spider through many machines, what
you usually do is partition the urls to crawl and send them to each separate
spider. Here is a concrete example:

First, you prepare the list of urls to crawl and put them into separate
files/urls:

http://somedomain.com/urls-to-crawl/spider1/part1.list
http://somedomain.com/urls-to-crawl/spider1/part2.list
http://somedomain.com/urls-to-crawl/spider1/part3.list

Then you fire a spider run on 3 different Scrapyd servers. The spider would
receive a (spider) argument part with the number of the partition to
crawl:

curl http://scrapy1.mycompany.com:6800/schedule.json -d project=myproject -d spider=spider1 -d part=1
curl http://scrapy2.mycompany.com:6800/schedule.json -d project=myproject -d spider=spider1 -d part=2
curl http://scrapy3.mycompany.com:6800/schedule.json -d project=myproject -d spider=spider1 -d part=3

Avoiding getting banned

Some websites implement certain measures to prevent bots from crawling them,
with varying degrees of sophistication. Getting around those measures can be
difficult and tricky, and may sometimes require special infrastructure. Please
consider contacting commercial support [https://scrapy.org/support/] if in doubt.

Here are some tips to keep in mind when dealing with these kinds of sites:

	rotate your user agent from a pool of well-known ones from browsers (google
around to get a list of them)

	disable cookies (see :setting:`COOKIES_ENABLED`) as some sites may use
cookies to spot bot behaviour

	use download delays (2 or higher). See :setting:`DOWNLOAD_DELAY` setting.

	if possible, use Google cache [http://www.googleguide.com/cached_pages.html] to fetch pages, instead of hitting the sites
directly

	use a pool of rotating IPs. For example, the free Tor project [https://www.torproject.org/] or paid
services like ProxyMesh [https://proxymesh.com/]. An open source alternative is scrapoxy [https://scrapoxy.io/], a
super proxy that you can attach your own proxies to.

	use a highly distributed downloader that circumvents bans internally, so you
can just focus on parsing clean pages. One example of such downloaders is
Crawlera [https://scrapinghub.com/crawlera]

If you are still unable to prevent your bot getting banned, consider contacting
commercial support [https://scrapy.org/support/].

 Broad Crawls

Broad Crawls

Scrapy defaults are optimized for crawling specific sites. These sites are
often handled by a single Scrapy spider, although this is not necessary or
required (for example, there are generic spiders that handle any given site
thrown at them).

In addition to this “focused crawl”, there is another common type of crawling
which covers a large (potentially unlimited) number of domains, and is only
limited by time or other arbitrary constraint, rather than stopping when the
domain was crawled to completion or when there are no more requests to perform.
These are called “broad crawls” and is the typical crawlers employed by search
engines.

These are some common properties often found in broad crawls:

	they crawl many domains (often, unbounded) instead of a specific set of sites

	they don’t necessarily crawl domains to completion, because it would be
impractical (or impossible) to do so, and instead limit the crawl by time or
number of pages crawled

	they are simpler in logic (as opposed to very complex spiders with many
extraction rules) because data is often post-processed in a separate stage

	they crawl many domains concurrently, which allows them to achieve faster
crawl speeds by not being limited by any particular site constraint (each site
is crawled slowly to respect politeness, but many sites are crawled in
parallel)

As said above, Scrapy default settings are optimized for focused crawls, not
broad crawls. However, due to its asynchronous architecture, Scrapy is very
well suited for performing fast broad crawls. This page summarizes some things
you need to keep in mind when using Scrapy for doing broad crawls, along with
concrete suggestions of Scrapy settings to tune in order to achieve an
efficient broad crawl.

Increase concurrency

Concurrency is the number of requests that are processed in parallel. There is
a global limit and a per-domain limit.

The default global concurrency limit in Scrapy is not suitable for crawling
many different domains in parallel, so you will want to increase it. How much
to increase it will depend on how much CPU you crawler will have available. A
good starting point is 100, but the best way to find out is by doing some
trials and identifying at what concurrency your Scrapy process gets CPU
bounded. For optimum performance, you should pick a concurrency where CPU usage
is at 80-90%.

To increase the global concurrency use:

CONCURRENT_REQUESTS = 100

Increase Twisted IO thread pool maximum size

Currently Scrapy does DNS resolution in a blocking way with usage of thread
pool. With higher concurrency levels the crawling could be slow or even fail
hitting DNS resolver timeouts. Possible solution to increase the number of
threads handling DNS queries. The DNS queue will be processed faster speeding
up establishing of connection and crawling overall.

To increase maximum thread pool size use:

REACTOR_THREADPOOL_MAXSIZE = 20

Setup your own DNS

If you have multiple crawling processes and single central DNS, it can act
like DoS attack on the DNS server resulting to slow down of entire network or
even blocking your machines. To avoid this setup your own DNS server with
local cache and upstream to some large DNS like OpenDNS or Verizon.

Reduce log level

When doing broad crawls you are often only interested in the crawl rates you
get and any errors found. These stats are reported by Scrapy when using the
INFO log level. In order to save CPU (and log storage requirements) you
should not use DEBUG log level when preforming large broad crawls in
production. Using DEBUG level when developing your (broad) crawler may be
fine though.

To set the log level use:

LOG_LEVEL = 'INFO'

Disable cookies

Disable cookies unless you really need. Cookies are often not needed when
doing broad crawls (search engine crawlers ignore them), and they improve
performance by saving some CPU cycles and reducing the memory footprint of your
Scrapy crawler.

To disable cookies use:

COOKIES_ENABLED = False

Disable retries

Retrying failed HTTP requests can slow down the crawls substantially, specially
when sites causes are very slow (or fail) to respond, thus causing a timeout
error which gets retried many times, unnecessarily, preventing crawler capacity
to be reused for other domains.

To disable retries use:

RETRY_ENABLED = False

Reduce download timeout

Unless you are crawling from a very slow connection (which shouldn’t be the
case for broad crawls) reduce the download timeout so that stuck requests are
discarded quickly and free up capacity to process the next ones.

To reduce the download timeout use:

DOWNLOAD_TIMEOUT = 15

Disable redirects

Consider disabling redirects, unless you are interested in following them. When
doing broad crawls it’s common to save redirects and resolve them when
revisiting the site at a later crawl. This also help to keep the number of
request constant per crawl batch, otherwise redirect loops may cause the
crawler to dedicate too many resources on any specific domain.

To disable redirects use:

REDIRECT_ENABLED = False

Enable crawling of “Ajax Crawlable Pages”

Some pages (up to 1%, based on empirical data from year 2013) declare
themselves as ajax crawlable [https://developers.google.com/webmasters/ajax-crawling/docs/getting-started]. This means they provide plain HTML
version of content that is usually available only via AJAX.
Pages can indicate it in two ways:

	by using #! in URL - this is the default way;

	by using a special meta tag - this way is used on
“main”, “index” website pages.

Scrapy handles (1) automatically; to handle (2) enable
AjaxCrawlMiddleware:

AJAXCRAWL_ENABLED = True

When doing broad crawls it’s common to crawl a lot of “index” web pages;
AjaxCrawlMiddleware helps to crawl them correctly.
It is turned OFF by default because it has some performance overhead,
and enabling it for focused crawls doesn’t make much sense.

 Using your browser’s Developer Tools for scraping

Using your browser’s Developer Tools for scraping

Here is a general guide on how to use your browser’s Developer Tools
to ease the scraping process. Today almost all browsers come with
built in Developer Tools [https://en.wikipedia.org/wiki/Web_development_tools] and although we will use Firefox in this
guide, the concepts are applicable to any other browser.

In this guide we’ll introduce the basic tools to use from a browser’s
Developer Tools by scraping quotes.toscrape.com [http://quotes.toscrape.com].

Caveats with inspecting the live browser DOM

Since Developer Tools operate on a live browser DOM, what you’ll actually see
when inspecting the page source is not the original HTML, but a modified one
after applying some browser clean up and executing Javascript code. Firefox,
in particular, is known for adding <tbody> elements to tables. Scrapy, on
the other hand, does not modify the original page HTML, so you won’t be able to
extract any data if you use <tbody> in your XPath expressions.

Therefore, you should keep in mind the following things:

	Disable Javascript while inspecting the DOM looking for XPaths to be
used in Scrapy (in the Developer Tools settings click Disable JavaScript)

	Never use full XPath paths, use relative and clever ones based on attributes
(such as id, class, width, etc) or any identifying features like
contains(@href, 'image').

	Never include <tbody> elements in your XPath expressions unless you
really know what you’re doing

Inspecting a website

By far the most handy feature of the Developer Tools is the Inspector
feature, which allows you to inspect the underlying HTML code of
any webpage. To demonstrate the Inspector, let’s look at the
quotes.toscrape.com [http://quotes.toscrape.com]-site.

On the site we have a total of ten quotes from various authors with specific
tags, as well as the Top Ten Tags. Let’s say we want to extract all the quotes
on this page, without any meta-information about authors, tags, etc.

Instead of viewing the whole source code for the page, we can simply right click
on a quote and select Inspect Element (Q), which opens up the Inspector.
In it you should see something like this:

[image: Firefox's Inspector-tool]
The interesting part for us is this:

<div class="quote" itemscope="" itemtype="http://schema.org/CreativeWork">
 (...)
 (...)
 <div class="tags">(...)</div>
</div>

If you hover over the first div directly above the span tag highlighted
in the screenshot, you’ll see that the corresponding section of the webpage gets
highlighted as well. So now we have a section, but we can’t find our quote text
anywhere.

The advantage of the Inspector is that it automatically expands and collapses
sections and tags of a webpage, which greatly improves readability. You can
expand and collapse a tag by clicking on the arrow in front of it or by double
clicking directly on the tag. If we expand the span tag with the class=
"text" we will see the quote-text we clicked on. The Inspector lets you
copy XPaths to selected elements. Let’s try it out: Right-click on the span
tag, select Copy > XPath and paste it in the scrapy shell like so:

$ scrapy shell "http://quotes.toscrape.com/"
(...)
>>> response.xpath('/html/body/div/div[2]/div[1]/div[1]/span[1]/text()').getall()
['"The world as we have created it is a process of our thinking. It cannot be changed without changing our thinking.”]

Adding text() at the end we are able to extract the first quote with this
basic selector. But this XPath is not really that clever. All it does is
go down a desired path in the source code starting from html. So let’s
see if we can refine our XPath a bit:

If we check the Inspector again we’ll see that directly beneath our
expanded div tag we have nine identical div tags, each with the
same attributes as our first. If we expand any of them, we’ll see the same
structure as with our first quote: Two span tags and one div tag. We can
expand each span tag with the class="text" inside our div tags and
see each quote:

<div class="quote" itemscope="" itemtype="http://schema.org/CreativeWork">

 “The world as we have created it is a process of our thinking. It cannot be changed without changing our thinking.”

 (...)
 <div class="tags">(...)</div>
</div>

With this knowledge we can refine our XPath: Instead of a path to follow,
we’ll simply select all span tags with the class="text" by using
the has-class-extension [https://parsel.readthedocs.io/en/latest/usage.html#other-xpath-extensions]:

 >>> response.xpath('//span[has-class("text")]/text()').getall()
['"The world as we have created it is a process of our thinking. It cannot be changed without changing our thinking.”,
 '“It is our choices, Harry, that show what we truly are, far more than our abilities.”',
 '“There are only two ways to live your life. One is as though nothing is a miracle. The other is as though everything is a miracle.”',
 (...)]

And with one simple, cleverer XPath we are able to extract all quotes from
the page. We could have constructed a loop over our first XPath to increase
the number of the last div, but this would have been unnecessarily
complex and by simply constructing an XPath with has-class("text")
we were able to extract all quotes in one line.

The Inspector has a lot of other helpful features, such as searching in the
source code or directly scrolling to an element you selected. Let’s demonstrate
a use case:

Say you want to find the Next button on the page. Type Next into the
search bar on the top right of the Inspector. You should get two results.
The first is a li tag with the class="text", the second the text
of an a tag. Right click on the a tag and select Scroll into View.
If you hover over the tag, you’ll see the button highlighted. From here
we could easily create a Link Extractor to
follow the pagination. On a simple site such as this, there may not be
the need to find an element visually but the Scroll into View function
can be quite useful on complex sites.

Note that the search bar can also be used to search for and test CSS
selectors. For example, you could search for span.text to find
all quote texts. Instead of a full text search, this searches for
exactly the span tag with the class="text" in the page.

The Network-tool

While scraping you may come across dynamic webpages where some parts
of the page are loaded dynamically through multiple requests. While
this can be quite tricky, the Network-tool in the Developer Tools
greatly facilitates this task. To demonstrate the Network-tool, let’s
take a look at the page quotes.toscrape.com/scroll.

The page is quite similar to the basic quotes.toscrape.com [http://quotes.toscrape.com]-page,
but instead of the above-mentioned Next button, the page
automatically loads new quotes when you scroll to the bottom. We
could go ahead and try out different XPaths directly, but instead
we’ll check another quite useful command from the scrapy shell:

$ scrapy shell "quotes.toscrape.com/scroll"
(...)
>>> view(response)

A browser window should open with the webpage but with one
crucial difference: Instead of the quotes we just see a greenish
bar with the word Loading....

[image: Response from quotes.toscrape.com/scroll]
The view(response) command let’s us view the response our
shell or later our spider receives from the server. Here we see
that some basic template is loaded which includes the title,
the login-button and the footer, but the quotes are missing. This
tells us that the quotes are being loaded from a different request
than quotes.toscrape/scroll.

If you click on the Network tab, you will probably only see
two entries. The first thing we do is enable persistent logs by
clicking on Persist Logs. If this option is disabled, the
log is automatically cleared each time you navigate to a different
page. Enabling this option is a good default, since it gives us
control on when to clear the logs.

If we reload the page now, you’ll see the log get populated with six
new requests.

[image: Network tab with persistent logs and requests]
Here we see every request that has been made when reloading the page
and can inspect each request and its response. So let’s find out
where our quotes are coming from:

First click on the request with the name scroll. On the right
you can now inspect the request. In Headers you’ll find details
about the request headers, such as the URL, the method, the IP-address,
and so on. We’ll ignore the other tabs and click directly on Reponse.

What you should see in the Preview pane is the rendered HTML-code,
that is exactly what we saw when we called view(response) in the
shell. Accordingly the type of the request in the log is html.
The other requests have types like css or js, but what
interests us is the one request called quotes?page=1 with the
type json.

If we click on this request, we see that the request URL is
http://quotes.toscrape.com/api/quotes?page=1 and the response
is a JSON-object that contains our quotes. We can also right-click
on the request and open Open in new tab to get a better overview.

[image: JSON-object returned from the quotes.toscrape API]
With this response we can now easily parse the JSON-object and
also request each page to get every quote on the site:

import scrapy
import json

class QuoteSpider(scrapy.Spider):
 name = 'quote'
 allowed_domains = ['quotes.toscrape.com']
 page = 1
 start_urls = ['http://quotes.toscrape.com/api/quotes?page=1]

 def parse(self, response):
 data = json.loads(response.text)
 for quote in data["quotes"]:
 yield {"quote": quote["text"]}
 if data["has_next"]:
 self.page += 1
 url = "http://quotes.toscrape.com/api/quotes?page={}".format(self.page)
 yield scrapy.Request(url=url, callback=self.parse)

This spider starts at the first page of the quotes-API. With each
response, we parse the response.text and assign it to data.
This lets us operate on the JSON-object like on a Python dictionary.
We iterate through the quotes and print out the quote["text"].
If the handy has_next element is true (try loading
quotes.toscrape.com/api/quotes?page=10 [http://quotes.toscrape.com/api/quotes?page=10] in your browser or a
page-number greater than 10), we increment the page attribute
and yield a new request, inserting the incremented page-number
into our url.

You can see that with a few inspections in the Network-tool we
were able to easily replicate the dynamic requests of the scrolling
functionality of the page. Crawling dynamic pages can be quite
daunting and pages can be very complex, but it (mostly) boils down
to identifying the correct request and replicating it in your spider.

 Debugging memory leaks

Debugging memory leaks

In Scrapy, objects such as Requests, Responses and Items have a finite
lifetime: they are created, used for a while, and finally destroyed.

From all those objects, the Request is probably the one with the longest
lifetime, as it stays waiting in the Scheduler queue until it’s time to process
it. For more info see Architecture overview.

As these Scrapy objects have a (rather long) lifetime, there is always the risk
of accumulating them in memory without releasing them properly and thus causing
what is known as a “memory leak”.

To help debugging memory leaks, Scrapy provides a built-in mechanism for
tracking objects references called trackref,
and you can also use a third-party library called Guppy for more advanced memory debugging (see below for more
info). Both mechanisms must be used from the Telnet Console.

Common causes of memory leaks

It happens quite often (sometimes by accident, sometimes on purpose) that the
Scrapy developer passes objects referenced in Requests (for example, using the
meta attribute or the request callback function)
and that effectively bounds the lifetime of those referenced objects to the
lifetime of the Request. This is, by far, the most common cause of memory leaks
in Scrapy projects, and a quite difficult one to debug for newcomers.

In big projects, the spiders are typically written by different people and some
of those spiders could be “leaking” and thus affecting the rest of the other
(well-written) spiders when they get to run concurrently, which, in turn,
affects the whole crawling process.

The leak could also come from a custom middleware, pipeline or extension that
you have written, if you are not releasing the (previously allocated) resources
properly. For example, allocating resources on :signal:`spider_opened`
but not releasing them on :signal:`spider_closed` may cause problems if
you’re running multiple spiders per process.

Too Many Requests?

By default Scrapy keeps the request queue in memory; it includes
Request objects and all objects
referenced in Request attributes (e.g. in meta).
While not necessarily a leak, this can take a lot of memory. Enabling
persistent job queue could help keeping memory usage
in control.

Debugging memory leaks with trackref

trackref is a module provided by Scrapy to debug the most common cases of
memory leaks. It basically tracks the references to all live Requests,
Responses, Item and Selector objects.

You can enter the telnet console and inspect how many objects (of the classes
mentioned above) are currently alive using the prefs() function which is an
alias to the print_live_refs() function:

telnet localhost 6023

>>> prefs()
Live References

ExampleSpider 1 oldest: 15s ago
HtmlResponse 10 oldest: 1s ago
Selector 2 oldest: 0s ago
FormRequest 878 oldest: 7s ago

As you can see, that report also shows the “age” of the oldest object in each
class. If you’re running multiple spiders per process chances are you can
figure out which spider is leaking by looking at the oldest request or response.
You can get the oldest object of each class using the
get_oldest() function (from the telnet console).

Which objects are tracked?

The objects tracked by trackrefs are all from these classes (and all its
subclasses):

	scrapy.http.Request

	scrapy.http.Response

	scrapy.item.Item

	scrapy.selector.Selector

	scrapy.spiders.Spider

A real example

Let’s see a concrete example of a hypothetical case of memory leaks.
Suppose we have some spider with a line similar to this one:

return Request("http://www.somenastyspider.com/product.php?pid=%d" % product_id,
 callback=self.parse, meta={referer: response})

That line is passing a response reference inside a request which effectively
ties the response lifetime to the requests’ one, and that would definitely
cause memory leaks.

Let’s see how we can discover the cause (without knowing it
a-priori, of course) by using the trackref tool.

After the crawler is running for a few minutes and we notice its memory usage
has grown a lot, we can enter its telnet console and check the live
references:

>>> prefs()
Live References

SomenastySpider 1 oldest: 15s ago
HtmlResponse 3890 oldest: 265s ago
Selector 2 oldest: 0s ago
Request 3878 oldest: 250s ago

The fact that there are so many live responses (and that they’re so old) is
definitely suspicious, as responses should have a relatively short lifetime
compared to Requests. The number of responses is similar to the number
of requests, so it looks like they are tied in a some way. We can now go
and check the code of the spider to discover the nasty line that is
generating the leaks (passing response references inside requests).

Sometimes extra information about live objects can be helpful.
Let’s check the oldest response:

>>> from scrapy.utils.trackref import get_oldest
>>> r = get_oldest('HtmlResponse')
>>> r.url
'http://www.somenastyspider.com/product.php?pid=123'

If you want to iterate over all objects, instead of getting the oldest one, you
can use the scrapy.utils.trackref.iter_all() function:

>>> from scrapy.utils.trackref import iter_all
>>> [r.url for r in iter_all('HtmlResponse')]
['http://www.somenastyspider.com/product.php?pid=123',
 'http://www.somenastyspider.com/product.php?pid=584',
...

Too many spiders?

If your project has too many spiders executed in parallel,
the output of prefs() can be difficult to read.
For this reason, that function has a ignore argument which can be used to
ignore a particular class (and all its subclases). For
example, this won’t show any live references to spiders:

>>> from scrapy.spiders import Spider
>>> prefs(ignore=Spider)

scrapy.utils.trackref module

Here are the functions available in the trackref module.

	
class scrapy.utils.trackref.object_ref

	Inherit from this class (instead of object) if you want to track live
instances with the trackref module.

	
scrapy.utils.trackref.print_live_refs(class_name, ignore=NoneType)

	Print a report of live references, grouped by class name.

	Parameters

	ignore (class or classes tuple) – if given, all objects from the specified class (or tuple of
classes) will be ignored.

	
scrapy.utils.trackref.get_oldest(class_name)

	Return the oldest object alive with the given class name, or None if
none is found. Use print_live_refs() first to get a list of all
tracked live objects per class name.

	
scrapy.utils.trackref.iter_all(class_name)

	Return an iterator over all objects alive with the given class name, or
None if none is found. Use print_live_refs() first to get a list
of all tracked live objects per class name.

Debugging memory leaks with Guppy

trackref provides a very convenient mechanism for tracking down memory
leaks, but it only keeps track of the objects that are more likely to cause
memory leaks (Requests, Responses, Items, and Selectors). However, there are
other cases where the memory leaks could come from other (more or less obscure)
objects. If this is your case, and you can’t find your leaks using trackref,
you still have another resource: the Guppy library [https://pypi.python.org/pypi/guppy].
If you’re using Python3, see Debugging memory leaks with muppy.

If you use pip, you can install Guppy with the following command:

pip install guppy

The telnet console also comes with a built-in shortcut (hpy) for accessing
Guppy heap objects. Here’s an example to view all Python objects available in
the heap using Guppy:

>>> x = hpy.heap()
>>> x.bytype
Partition of a set of 297033 objects. Total size = 52587824 bytes.
 Index Count % Size % Cumulative % Type
 0 22307 8 16423880 31 16423880 31 dict
 1 122285 41 12441544 24 28865424 55 str
 2 68346 23 5966696 11 34832120 66 tuple
 3 227 0 5836528 11 40668648 77 unicode
 4 2461 1 2222272 4 42890920 82 type
 5 16870 6 2024400 4 44915320 85 function
 6 13949 5 1673880 3 46589200 89 types.CodeType
 7 13422 5 1653104 3 48242304 92 list
 8 3735 1 1173680 2 49415984 94 _sre.SRE_Pattern
 9 1209 0 456936 1 49872920 95 scrapy.http.headers.Headers
<1676 more rows. Type e.g. '_.more' to view.>

You can see that most space is used by dicts. Then, if you want to see from
which attribute those dicts are referenced, you could do:

>>> x.bytype[0].byvia
Partition of a set of 22307 objects. Total size = 16423880 bytes.
 Index Count % Size % Cumulative % Referred Via:
 0 10982 49 9416336 57 9416336 57 '.__dict__'
 1 1820 8 2681504 16 12097840 74 '.__dict__', '.func_globals'
 2 3097 14 1122904 7 13220744 80
 3 990 4 277200 2 13497944 82 "['cookies']"
 4 987 4 276360 2 13774304 84 "['cache']"
 5 985 4 275800 2 14050104 86 "['meta']"
 6 897 4 251160 2 14301264 87 '[2]'
 7 1 0 196888 1 14498152 88 "['moduleDict']", "['modules']"
 8 672 3 188160 1 14686312 89 "['cb_kwargs']"
 9 27 0 155016 1 14841328 90 '[1]'
<333 more rows. Type e.g. '_.more' to view.>

As you can see, the Guppy module is very powerful but also requires some deep
knowledge about Python internals. For more info about Guppy, refer to the
Guppy documentation [http://guppy-pe.sourceforge.net/].

Debugging memory leaks with muppy

If you’re using Python 3, you can use muppy from Pympler [https://pypi.org/project/Pympler/].

If you use pip, you can install muppy with the following command:

pip install Pympler

Here’s an example to view all Python objects available in
the heap using muppy:

>>> from pympler import muppy
>>> all_objects = muppy.get_objects()
>>> len(all_objects)
28667
>>> from pympler import summary
>>> suml = summary.summarize(all_objects)
>>> summary.print_(suml)
 types | # objects | total size
==================================== | =========== | ============
 <class 'str | 9822 | 1.10 MB
 <class 'dict | 1658 | 856.62 KB
 <class 'type | 436 | 443.60 KB
 <class 'code | 2974 | 419.56 KB
 <class '_io.BufferedWriter | 2 | 256.34 KB
 <class 'set | 420 | 159.88 KB
 <class '_io.BufferedReader | 1 | 128.17 KB
 <class 'wrapper_descriptor | 1130 | 88.28 KB
 <class 'tuple | 1304 | 86.57 KB
 <class 'weakref | 1013 | 79.14 KB
 <class 'builtin_function_or_method | 958 | 67.36 KB
 <class 'method_descriptor | 865 | 60.82 KB
 <class 'abc.ABCMeta | 62 | 59.96 KB
 <class 'list | 446 | 58.52 KB
 <class 'int | 1425 | 43.20 KB

For more info about muppy, refer to the muppy documentation [https://pythonhosted.org/Pympler/muppy.html].

Leaks without leaks

Sometimes, you may notice that the memory usage of your Scrapy process will
only increase, but never decrease. Unfortunately, this could happen even
though neither Scrapy nor your project are leaking memory. This is due to a
(not so well) known problem of Python, which may not return released memory to
the operating system in some cases. For more information on this issue see:

	Python Memory Management [http://www.evanjones.ca/python-memory.html]

	Python Memory Management Part 2 [http://www.evanjones.ca/python-memory-part2.html]

	Python Memory Management Part 3 [http://www.evanjones.ca/python-memory-part3.html]

The improvements proposed by Evan Jones, which are detailed in this paper [http://www.evanjones.ca/memoryallocator/],
got merged in Python 2.5, but this only reduces the problem, it doesn’t fix it
completely. To quote the paper:

Unfortunately, this patch can only free an arena if there are no more
objects allocated in it anymore. This means that fragmentation is a large
issue. An application could have many megabytes of free memory, scattered
throughout all the arenas, but it will be unable to free any of it. This is
a problem experienced by all memory allocators. The only way to solve it is
to move to a compacting garbage collector, which is able to move objects in
memory. This would require significant changes to the Python interpreter.

To keep memory consumption reasonable you can split the job into several
smaller jobs or enable persistent job queue
and stop/start spider from time to time.

 Downloading and processing files and images

Downloading and processing files and images

Scrapy provides reusable item pipelines for
downloading files attached to a particular item (for example, when you scrape
products and also want to download their images locally). These pipelines share
a bit of functionality and structure (we refer to them as media pipelines), but
typically you’ll either use the Files Pipeline or the Images Pipeline.

Both pipelines implement these features:

	Avoid re-downloading media that was downloaded recently

	Specifying where to store the media (filesystem directory, Amazon S3 bucket,
Google Cloud Storage bucket)

The Images Pipeline has a few extra functions for processing images:

	Convert all downloaded images to a common format (JPG) and mode (RGB)

	Thumbnail generation

	Check images width/height to make sure they meet a minimum constraint

The pipelines also keep an internal queue of those media URLs which are currently
being scheduled for download, and connect those responses that arrive containing
the same media to that queue. This avoids downloading the same media more than
once when it’s shared by several items.

Using the Files Pipeline

The typical workflow, when using the FilesPipeline goes like
this:

	In a Spider, you scrape an item and put the URLs of the desired into a
file_urls field.

	The item is returned from the spider and goes to the item pipeline.

	When the item reaches the FilesPipeline, the URLs in the
file_urls field are scheduled for download using the standard
Scrapy scheduler and downloader (which means the scheduler and downloader
middlewares are reused), but with a higher priority, processing them before other
pages are scraped. The item remains “locked” at that particular pipeline stage
until the files have finish downloading (or fail for some reason).

	When the files are downloaded, another field (files) will be populated
with the results. This field will contain a list of dicts with information
about the downloaded files, such as the downloaded path, the original
scraped url (taken from the file_urls field) , and the file checksum.
The files in the list of the files field will retain the same order of
the original file_urls field. If some file failed downloading, an
error will be logged and the file won’t be present in the files field.

Using the Images Pipeline

Using the ImagesPipeline is a lot like using the FilesPipeline,
except the default field names used are different: you use image_urls for
the image URLs of an item and it will populate an images field for the information
about the downloaded images.

The advantage of using the ImagesPipeline for image files is that you
can configure some extra functions like generating thumbnails and filtering
the images based on their size.

The Images Pipeline uses Pillow [https://github.com/python-pillow/Pillow] for thumbnailing and normalizing images to
JPEG/RGB format, so you need to install this library in order to use it.
Python Imaging Library [http://www.pythonware.com/products/pil/] (PIL) should also work in most cases, but it is known
to cause troubles in some setups, so we recommend to use Pillow [https://github.com/python-pillow/Pillow] instead of
PIL.

Enabling your Media Pipeline

To enable your media pipeline you must first add it to your project
:setting:`ITEM_PIPELINES` setting.

For Images Pipeline, use:

ITEM_PIPELINES = {'scrapy.pipelines.images.ImagesPipeline': 1}

For Files Pipeline, use:

ITEM_PIPELINES = {'scrapy.pipelines.files.FilesPipeline': 1}

Note

You can also use both the Files and Images Pipeline at the same time.

Then, configure the target storage setting to a valid value that will be used
for storing the downloaded images. Otherwise the pipeline will remain disabled,
even if you include it in the :setting:`ITEM_PIPELINES` setting.

For the Files Pipeline, set the :setting:`FILES_STORE` setting:

FILES_STORE = '/path/to/valid/dir'

For the Images Pipeline, set the :setting:`IMAGES_STORE` setting:

IMAGES_STORE = '/path/to/valid/dir'

Supported Storage

File system is currently the only officially supported storage, but there are
also support for storing files in Amazon S3 [https://aws.amazon.com/s3/] and Google Cloud Storage [https://cloud.google.com/storage/].

File system storage

The files are stored using a SHA1 hash [https://en.wikipedia.org/wiki/SHA_hash_functions] of their URLs for the file names.

For example, the following image URL:

http://www.example.com/image.jpg

Whose SHA1 hash is:

3afec3b4765f8f0a07b78f98c07b83f013567a0a

Will be downloaded and stored in the following file:

<IMAGES_STORE>/full/3afec3b4765f8f0a07b78f98c07b83f013567a0a.jpg

Where:

	<IMAGES_STORE> is the directory defined in :setting:`IMAGES_STORE` setting
for the Images Pipeline.

	full is a sub-directory to separate full images from thumbnails (if
used). For more info see Thumbnail generation for images.

Amazon S3 storage

:setting:`FILES_STORE` and :setting:`IMAGES_STORE` can represent an Amazon S3
bucket. Scrapy will automatically upload the files to the bucket.

For example, this is a valid :setting:`IMAGES_STORE` value:

IMAGES_STORE = 's3://bucket/images'

You can modify the Access Control List (ACL) policy used for the stored files,
which is defined by the :setting:`FILES_STORE_S3_ACL` and
:setting:`IMAGES_STORE_S3_ACL` settings. By default, the ACL is set to
private. To make the files publicly available use the public-read
policy:

IMAGES_STORE_S3_ACL = 'public-read'

For more information, see canned ACLs [https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html#canned-acl] in the Amazon S3 Developer Guide.

Because Scrapy uses boto / botocore internally you can also use other S3-like storages. Storages like
self-hosted Minio [https://github.com/minio/minio] or s3.scality [https://s3.scality.com/]. All you need to do is set endpoint option in you Scrapy settings:

AWS_ENDPOINT_URL = 'http://minio.example.com:9000'

For self-hosting you also might feel the need not to use SSL and not to verify SSL connection:

AWS_USE_SSL = False # or True (None by default)
AWS_VERIFY = False # or True (None by default)

Google Cloud Storage

:setting:`FILES_STORE` and :setting:`IMAGES_STORE` can represent a Google Cloud Storage
bucket. Scrapy will automatically upload the files to the bucket. (requires google-cloud-storage [https://cloud.google.com/storage/docs/reference/libraries#client-libraries-install-python])

For example, these are valid :setting:`IMAGES_STORE` and :setting:`GCS_PROJECT_ID` settings:

IMAGES_STORE = 'gs://bucket/images/'
GCS_PROJECT_ID = 'project_id'

For information about authentication, see this documentation [https://cloud.google.com/docs/authentication/production].

You can modify the Access Control List (ACL) policy used for the stored files,
which is defined by the :setting:`FILES_STORE_GCS_ACL` and
:setting:`IMAGES_STORE_GCS_ACL` settings. By default, the ACL is set to
'' (empty string) which means that Cloud Storage applies the bucket’s default object ACL to the object.
To make the files publicly available use the publicRead
policy:

IMAGES_STORE_GCS_ACL = 'publicRead'

For more information, see Predefined ACLs [https://cloud.google.com/storage/docs/access-control/lists#predefined-acl] in the Google Cloud Platform Developer Guide.

Usage example

In order to use a media pipeline first, enable it.

Then, if a spider returns a dict with the URLs key (file_urls or
image_urls, for the Files or Images Pipeline respectively), the pipeline will
put the results under respective key (files or images).

If you prefer to use Item, then define a custom item with the
necessary fields, like in this example for Images Pipeline:

import scrapy

class MyItem(scrapy.Item):

 # ... other item fields ...
 image_urls = scrapy.Field()
 images = scrapy.Field()

If you want to use another field name for the URLs key or for the results key,
it is also possible to override it.

For the Files Pipeline, set :setting:`FILES_URLS_FIELD` and/or
:setting:`FILES_RESULT_FIELD` settings:

FILES_URLS_FIELD = 'field_name_for_your_files_urls'
FILES_RESULT_FIELD = 'field_name_for_your_processed_files'

For the Images Pipeline, set :setting:`IMAGES_URLS_FIELD` and/or
:setting:`IMAGES_RESULT_FIELD` settings:

IMAGES_URLS_FIELD = 'field_name_for_your_images_urls'
IMAGES_RESULT_FIELD = 'field_name_for_your_processed_images'

If you need something more complex and want to override the custom pipeline
behaviour, see Extending the Media Pipelines.

If you have multiple image pipelines inheriting from ImagePipeline and you want
to have different settings in different pipelines you can set setting keys
preceded with uppercase name of your pipeline class. E.g. if your pipeline is
called MyPipeline and you want to have custom IMAGES_URLS_FIELD you define
setting MYPIPELINE_IMAGES_URLS_FIELD and your custom settings will be used.

Additional features

File expiration

The Image Pipeline avoids downloading files that were downloaded recently. To
adjust this retention delay use the :setting:`FILES_EXPIRES` setting (or
:setting:`IMAGES_EXPIRES`, in case of Images Pipeline), which
specifies the delay in number of days:

120 days of delay for files expiration
FILES_EXPIRES = 120

30 days of delay for images expiration
IMAGES_EXPIRES = 30

The default value for both settings is 90 days.

If you have pipeline that subclasses FilesPipeline and you’d like to have
different setting for it you can set setting keys preceded by uppercase
class name. E.g. given pipeline class called MyPipeline you can set setting key:

MYPIPELINE_FILES_EXPIRES = 180

and pipeline class MyPipeline will have expiration time set to 180.

Thumbnail generation for images

The Images Pipeline can automatically create thumbnails of the downloaded
images.

In order use this feature, you must set :setting:`IMAGES_THUMBS` to a dictionary
where the keys are the thumbnail names and the values are their dimensions.

For example:

IMAGES_THUMBS = {
 'small': (50, 50),
 'big': (270, 270),
}

When you use this feature, the Images Pipeline will create thumbnails of the
each specified size with this format:

<IMAGES_STORE>/thumbs/<size_name>/<image_id>.jpg

Where:

	<size_name> is the one specified in the :setting:`IMAGES_THUMBS`
dictionary keys (small, big, etc)

	<image_id> is the SHA1 hash [https://en.wikipedia.org/wiki/SHA_hash_functions] of the image url

Example of image files stored using small and big thumbnail names:

<IMAGES_STORE>/full/63bbfea82b8880ed33cdb762aa11fab722a90a24.jpg
<IMAGES_STORE>/thumbs/small/63bbfea82b8880ed33cdb762aa11fab722a90a24.jpg
<IMAGES_STORE>/thumbs/big/63bbfea82b8880ed33cdb762aa11fab722a90a24.jpg

The first one is the full image, as downloaded from the site.

Filtering out small images

When using the Images Pipeline, you can drop images which are too small, by
specifying the minimum allowed size in the :setting:`IMAGES_MIN_HEIGHT` and
:setting:`IMAGES_MIN_WIDTH` settings.

For example:

IMAGES_MIN_HEIGHT = 110
IMAGES_MIN_WIDTH = 110

Note

The size constraints don’t affect thumbnail generation at all.

It is possible to set just one size constraint or both. When setting both of
them, only images that satisfy both minimum sizes will be saved. For the
above example, images of sizes (105 x 105) or (105 x 200) or (200 x 105) will
all be dropped because at least one dimension is shorter than the constraint.

By default, there are no size constraints, so all images are processed.

Allowing redirections

By default media pipelines ignore redirects, i.e. an HTTP redirection
to a media file URL request will mean the media download is considered failed.

To handle media redirections, set this setting to True:

MEDIA_ALLOW_REDIRECTS = True

Extending the Media Pipelines

See here the methods that you can override in your custom Files Pipeline:

	
class scrapy.pipelines.files.FilesPipeline

	
	
get_media_requests(item, info)

	As seen on the workflow, the pipeline will get the URLs of the images to
download from the item. In order to do this, you can override the
get_media_requests() method and return a Request for each
file URL:

def get_media_requests(self, item, info):
 for file_url in item['file_urls']:
 yield scrapy.Request(file_url)

Those requests will be processed by the pipeline and, when they have finished
downloading, the results will be sent to the
item_completed() method, as a list of 2-element tuples.
Each tuple will contain (success, file_info_or_error) where:

	success is a boolean which is True if the image was downloaded
successfully or False if it failed for some reason

	file_info_or_error is a dict containing the following keys (if success
is True) or a Twisted Failure [https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html] if there was a problem.

	url - the url where the file was downloaded from. This is the url of
the request returned from the get_media_requests()
method.

	path - the path (relative to :setting:`FILES_STORE`) where the file
was stored

	checksum - a MD5 hash [https://en.wikipedia.org/wiki/MD5] of the image contents

The list of tuples received by item_completed() is
guaranteed to retain the same order of the requests returned from the
get_media_requests() method.

Here’s a typical value of the results argument:

[(True,
 {'checksum': '2b00042f7481c7b056c4b410d28f33cf',
 'path': 'full/0a79c461a4062ac383dc4fade7bc09f1384a3910.jpg',
 'url': 'http://www.example.com/files/product1.pdf'}),
 (False,
 Failure(...))]

By default the get_media_requests() method returns None which
means there are no files to download for the item.

	
item_completed(results, item, info)

	The FilesPipeline.item_completed() method called when all file
requests for a single item have completed (either finished downloading, or
failed for some reason).

The item_completed() method must return the
output that will be sent to subsequent item pipeline stages, so you must
return (or drop) the item, as you would in any pipeline.

Here is an example of the item_completed() method where we
store the downloaded file paths (passed in results) in the file_paths
item field, and we drop the item if it doesn’t contain any files:

from scrapy.exceptions import DropItem

def item_completed(self, results, item, info):
 file_paths = [x['path'] for ok, x in results if ok]
 if not file_paths:
 raise DropItem("Item contains no files")
 item['file_paths'] = file_paths
 return item

By default, the item_completed() method returns the item.

See here the methods that you can override in your custom Images Pipeline:

	
class scrapy.pipelines.images.ImagesPipeline

	
The ImagesPipeline is an extension of the FilesPipeline,
customizing the field names and adding custom behavior for images.

	
get_media_requests(item, info)

	Works the same way as FilesPipeline.get_media_requests() method,
but using a different field name for image urls.

Must return a Request for each image URL.

	
item_completed(results, item, info)

	The ImagesPipeline.item_completed() method is called when all image
requests for a single item have completed (either finished downloading, or
failed for some reason).

Works the same way as FilesPipeline.item_completed() method,
but using a different field names for storing image downloading results.

By default, the item_completed() method returns the item.

Custom Images pipeline example

Here is a full example of the Images Pipeline whose methods are examplified
above:

import scrapy
from scrapy.pipelines.images import ImagesPipeline
from scrapy.exceptions import DropItem

class MyImagesPipeline(ImagesPipeline):

 def get_media_requests(self, item, info):
 for image_url in item['image_urls']:
 yield scrapy.Request(image_url)

 def item_completed(self, results, item, info):
 image_paths = [x['path'] for ok, x in results if ok]
 if not image_paths:
 raise DropItem("Item contains no images")
 item['image_paths'] = image_paths
 return item

 Deploying Spiders

Deploying Spiders

This section describes the different options you have for deploying your Scrapy
spiders to run them on a regular basis. Running Scrapy spiders in your local
machine is very convenient for the (early) development stage, but not so much
when you need to execute long-running spiders or move spiders to run in
production continuously. This is where the solutions for deploying Scrapy
spiders come in.

Popular choices for deploying Scrapy spiders are:

	Scrapyd (open source)

	Scrapy Cloud (cloud-based)

Deploying to a Scrapyd Server

Scrapyd [https://github.com/scrapy/scrapyd] is an open source application to run Scrapy spiders. It provides
a server with HTTP API, capable of running and monitoring Scrapy spiders.

To deploy spiders to Scrapyd, you can use the scrapyd-deploy tool provided by
the scrapyd-client [https://github.com/scrapy/scrapyd-client] package. Please refer to the scrapyd-deploy
documentation [https://scrapyd.readthedocs.io/en/latest/deploy.html] for more information.

Scrapyd is maintained by some of the Scrapy developers.

Deploying to Scrapy Cloud

Scrapy Cloud [https://scrapinghub.com/scrapy-cloud] is a hosted, cloud-based service by Scrapinghub [https://scrapinghub.com/],
the company behind Scrapy.

Scrapy Cloud removes the need to setup and monitor servers
and provides a nice UI to manage spiders and review scraped items,
logs and stats.

To deploy spiders to Scrapy Cloud you can use the shub [https://doc.scrapinghub.com/shub.html] command line tool.
Please refer to the Scrapy Cloud documentation [https://doc.scrapinghub.com/scrapy-cloud.html] for more information.

Scrapy Cloud is compatible with Scrapyd and one can switch between
them as needed - the configuration is read from the scrapy.cfg file
just like scrapyd-deploy.

 AutoThrottle extension

AutoThrottle extension

This is an extension for automatically throttling crawling speed based on load
of both the Scrapy server and the website you are crawling.

Design goals

	be nicer to sites instead of using default download delay of zero

	automatically adjust scrapy to the optimum crawling speed, so the user
doesn’t have to tune the download delays to find the optimum one.
The user only needs to specify the maximum concurrent requests
it allows, and the extension does the rest.

How it works

AutoThrottle extension adjusts download delays dynamically to make spider send
:setting:`AUTOTHROTTLE_TARGET_CONCURRENCY` concurrent requests on average
to each remote website.

It uses download latency to compute the delays. The main idea is the
following: if a server needs latency seconds to respond, a client
should send a request each latency/N seconds to have N requests
processed in parallel.

Instead of adjusting the delays one can just set a small fixed
download delay and impose hard limits on concurrency using
:setting:`CONCURRENT_REQUESTS_PER_DOMAIN` or
:setting:`CONCURRENT_REQUESTS_PER_IP` options. It will provide a similar
effect, but there are some important differences:

	because the download delay is small there will be occasional bursts
of requests;

	often non-200 (error) responses can be returned faster than regular
responses, so with a small download delay and a hard concurrency limit
crawler will be sending requests to server faster when server starts to
return errors. But this is an opposite of what crawler should do - in case
of errors it makes more sense to slow down: these errors may be caused by
the high request rate.

AutoThrottle doesn’t have these issues.

Throttling algorithm

AutoThrottle algorithm adjusts download delays based on the following rules:

	spiders always start with a download delay of
:setting:`AUTOTHROTTLE_START_DELAY`;

	when a response is received, the target download delay is calculated as
latency / N where latency is a latency of the response,
and N is :setting:`AUTOTHROTTLE_TARGET_CONCURRENCY`.

	download delay for next requests is set to the average of previous
download delay and the target download delay;

	latencies of non-200 responses are not allowed to decrease the delay;

	download delay can’t become less than :setting:`DOWNLOAD_DELAY` or greater
than :setting:`AUTOTHROTTLE_MAX_DELAY`

Note

The AutoThrottle extension honours the standard Scrapy settings for
concurrency and delay. This means that it will respect
:setting:`CONCURRENT_REQUESTS_PER_DOMAIN` and
:setting:`CONCURRENT_REQUESTS_PER_IP` options and
never set a download delay lower than :setting:`DOWNLOAD_DELAY`.

In Scrapy, the download latency is measured as the time elapsed between
establishing the TCP connection and receiving the HTTP headers.

Note that these latencies are very hard to measure accurately in a cooperative
multitasking environment because Scrapy may be busy processing a spider
callback, for example, and unable to attend downloads. However, these latencies
should still give a reasonable estimate of how busy Scrapy (and ultimately, the
server) is, and this extension builds on that premise.

Settings

The settings used to control the AutoThrottle extension are:

	:setting:`AUTOTHROTTLE_ENABLED`

	:setting:`AUTOTHROTTLE_START_DELAY`

	:setting:`AUTOTHROTTLE_MAX_DELAY`

	:setting:`AUTOTHROTTLE_TARGET_CONCURRENCY`

	:setting:`AUTOTHROTTLE_DEBUG`

	:setting:`CONCURRENT_REQUESTS_PER_DOMAIN`

	:setting:`CONCURRENT_REQUESTS_PER_IP`

	:setting:`DOWNLOAD_DELAY`

For more information see How it works.

AUTOTHROTTLE_ENABLED

Default: False

Enables the AutoThrottle extension.

AUTOTHROTTLE_START_DELAY

Default: 5.0

The initial download delay (in seconds).

AUTOTHROTTLE_MAX_DELAY

Default: 60.0

The maximum download delay (in seconds) to be set in case of high latencies.

AUTOTHROTTLE_TARGET_CONCURRENCY

New in version 1.1.

Default: 1.0

Average number of requests Scrapy should be sending in parallel to remote
websites.

By default, AutoThrottle adjusts the delay to send a single
concurrent request to each of the remote websites. Set this option to
a higher value (e.g. 2.0) to increase the throughput and the load on remote
servers. A lower AUTOTHROTTLE_TARGET_CONCURRENCY value
(e.g. 0.5) makes the crawler more conservative and polite.

Note that :setting:`CONCURRENT_REQUESTS_PER_DOMAIN`
and :setting:`CONCURRENT_REQUESTS_PER_IP` options are still respected
when AutoThrottle extension is enabled. This means that if
AUTOTHROTTLE_TARGET_CONCURRENCY is set to a value higher than
:setting:`CONCURRENT_REQUESTS_PER_DOMAIN` or
:setting:`CONCURRENT_REQUESTS_PER_IP`, the crawler won’t reach this number
of concurrent requests.

At every given time point Scrapy can be sending more or less concurrent
requests than AUTOTHROTTLE_TARGET_CONCURRENCY; it is a suggested
value the crawler tries to approach, not a hard limit.

AUTOTHROTTLE_DEBUG

Default: False

Enable AutoThrottle debug mode which will display stats on every response
received, so you can see how the throttling parameters are being adjusted in
real time.

 Benchmarking

Benchmarking

New in version 0.17.

Scrapy comes with a simple benchmarking suite that spawns a local HTTP server
and crawls it at the maximum possible speed. The goal of this benchmarking is
to get an idea of how Scrapy performs in your hardware, in order to have a
common baseline for comparisons. It uses a simple spider that does nothing and
just follows links.

To run it use:

scrapy bench

You should see an output like this:

2016-12-16 21:18:48 [scrapy.utils.log] INFO: Scrapy 1.2.2 started (bot: quotesbot)
2016-12-16 21:18:48 [scrapy.utils.log] INFO: Overridden settings: {'CLOSESPIDER_TIMEOUT': 10, 'ROBOTSTXT_OBEY': True, 'SPIDER_MODULES': ['quotesbot.spiders'], 'LOGSTATS_INTERVAL': 1, 'BOT_NAME': 'quotesbot', 'LOG_LEVEL': 'INFO', 'NEWSPIDER_MODULE': 'quotesbot.spiders'}
2016-12-16 21:18:49 [scrapy.middleware] INFO: Enabled extensions:
['scrapy.extensions.closespider.CloseSpider',
 'scrapy.extensions.logstats.LogStats',
 'scrapy.extensions.telnet.TelnetConsole',
 'scrapy.extensions.corestats.CoreStats']
2016-12-16 21:18:49 [scrapy.middleware] INFO: Enabled downloader middlewares:
['scrapy.downloadermiddlewares.robotstxt.RobotsTxtMiddleware',
 'scrapy.downloadermiddlewares.httpauth.HttpAuthMiddleware',
 'scrapy.downloadermiddlewares.downloadtimeout.DownloadTimeoutMiddleware',
 'scrapy.downloadermiddlewares.defaultheaders.DefaultHeadersMiddleware',
 'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware',
 'scrapy.downloadermiddlewares.retry.RetryMiddleware',
 'scrapy.downloadermiddlewares.redirect.MetaRefreshMiddleware',
 'scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware',
 'scrapy.downloadermiddlewares.redirect.RedirectMiddleware',
 'scrapy.downloadermiddlewares.cookies.CookiesMiddleware',
 'scrapy.downloadermiddlewares.stats.DownloaderStats']
2016-12-16 21:18:49 [scrapy.middleware] INFO: Enabled spider middlewares:
['scrapy.spidermiddlewares.httperror.HttpErrorMiddleware',
 'scrapy.spidermiddlewares.offsite.OffsiteMiddleware',
 'scrapy.spidermiddlewares.referer.RefererMiddleware',
 'scrapy.spidermiddlewares.urllength.UrlLengthMiddleware',
 'scrapy.spidermiddlewares.depth.DepthMiddleware']
2016-12-16 21:18:49 [scrapy.middleware] INFO: Enabled item pipelines:
[]
2016-12-16 21:18:49 [scrapy.core.engine] INFO: Spider opened
2016-12-16 21:18:49 [scrapy.extensions.logstats] INFO: Crawled 0 pages (at 0 pages/min), scraped 0 items (at 0 items/min)
2016-12-16 21:18:50 [scrapy.extensions.logstats] INFO: Crawled 70 pages (at 4200 pages/min), scraped 0 items (at 0 items/min)
2016-12-16 21:18:51 [scrapy.extensions.logstats] INFO: Crawled 134 pages (at 3840 pages/min), scraped 0 items (at 0 items/min)
2016-12-16 21:18:52 [scrapy.extensions.logstats] INFO: Crawled 198 pages (at 3840 pages/min), scraped 0 items (at 0 items/min)
2016-12-16 21:18:53 [scrapy.extensions.logstats] INFO: Crawled 254 pages (at 3360 pages/min), scraped 0 items (at 0 items/min)
2016-12-16 21:18:54 [scrapy.extensions.logstats] INFO: Crawled 302 pages (at 2880 pages/min), scraped 0 items (at 0 items/min)
2016-12-16 21:18:55 [scrapy.extensions.logstats] INFO: Crawled 358 pages (at 3360 pages/min), scraped 0 items (at 0 items/min)
2016-12-16 21:18:56 [scrapy.extensions.logstats] INFO: Crawled 406 pages (at 2880 pages/min), scraped 0 items (at 0 items/min)
2016-12-16 21:18:57 [scrapy.extensions.logstats] INFO: Crawled 438 pages (at 1920 pages/min), scraped 0 items (at 0 items/min)
2016-12-16 21:18:58 [scrapy.extensions.logstats] INFO: Crawled 470 pages (at 1920 pages/min), scraped 0 items (at 0 items/min)
2016-12-16 21:18:59 [scrapy.core.engine] INFO: Closing spider (closespider_timeout)
2016-12-16 21:18:59 [scrapy.extensions.logstats] INFO: Crawled 518 pages (at 2880 pages/min), scraped 0 items (at 0 items/min)
2016-12-16 21:19:00 [scrapy.statscollectors] INFO: Dumping Scrapy stats:
{'downloader/request_bytes': 229995,
 'downloader/request_count': 534,
 'downloader/request_method_count/GET': 534,
 'downloader/response_bytes': 1565504,
 'downloader/response_count': 534,
 'downloader/response_status_count/200': 534,
 'finish_reason': 'closespider_timeout',
 'finish_time': datetime.datetime(2016, 12, 16, 16, 19, 0, 647725),
 'log_count/INFO': 17,
 'request_depth_max': 19,
 'response_received_count': 534,
 'scheduler/dequeued': 533,
 'scheduler/dequeued/memory': 533,
 'scheduler/enqueued': 10661,
 'scheduler/enqueued/memory': 10661,
 'start_time': datetime.datetime(2016, 12, 16, 16, 18, 49, 799869)}
2016-12-16 21:19:00 [scrapy.core.engine] INFO: Spider closed (closespider_timeout)

That tells you that Scrapy is able to crawl about 3000 pages per minute in the
hardware where you run it. Note that this is a very simple spider intended to
follow links, any custom spider you write will probably do more stuff which
results in slower crawl rates. How slower depends on how much your spider does
and how well it’s written.

In the future, more cases will be added to the benchmarking suite to cover
other common scenarios.

 Jobs: pausing and resuming crawls

Jobs: pausing and resuming crawls

Sometimes, for big sites, it’s desirable to pause crawls and be able to resume
them later.

Scrapy supports this functionality out of the box by providing the following
facilities:

	a scheduler that persists scheduled requests on disk

	a duplicates filter that persists visited requests on disk

	an extension that keeps some spider state (key/value pairs) persistent
between batches

Job directory

To enable persistence support you just need to define a job directory through
the JOBDIR setting. This directory will be for storing all required data to
keep the state of a single job (ie. a spider run). It’s important to note that
this directory must not be shared by different spiders, or even different
jobs/runs of the same spider, as it’s meant to be used for storing the state of
a single job.

How to use it

To start a spider with persistence supported enabled, run it like this:

scrapy crawl somespider -s JOBDIR=crawls/somespider-1

Then, you can stop the spider safely at any time (by pressing Ctrl-C or sending
a signal), and resume it later by issuing the same command:

scrapy crawl somespider -s JOBDIR=crawls/somespider-1

Keeping persistent state between batches

Sometimes you’ll want to keep some persistent spider state between pause/resume
batches. You can use the spider.state attribute for that, which should be a
dict. There’s a built-in extension that takes care of serializing, storing and
loading that attribute from the job directory, when the spider starts and
stops.

Here’s an example of a callback that uses the spider state (other spider code
is omitted for brevity):

def parse_item(self, response):
 # parse item here
 self.state['items_count'] = self.state.get('items_count', 0) + 1

Persistence gotchas

There are a few things to keep in mind if you want to be able to use the Scrapy
persistence support:

Cookies expiration

Cookies may expire. So, if you don’t resume your spider quickly the requests
scheduled may no longer work. This won’t be an issue if you spider doesn’t rely
on cookies.

Request serialization

Requests must be serializable by the pickle module, in order for persistence
to work, so you should make sure that your requests are serializable.

The most common issue here is to use lambda functions on request callbacks that
can’t be persisted.

So, for example, this won’t work:

def some_callback(self, response):
 somearg = 'test'
 return scrapy.Request('http://www.example.com', callback=lambda r: self.other_callback(r, somearg))

def other_callback(self, response, somearg):
 print "the argument passed is:", somearg

But this will:

def some_callback(self, response):
 somearg = 'test'
 return scrapy.Request('http://www.example.com', callback=self.other_callback, meta={'somearg': somearg})

def other_callback(self, response):
 somearg = response.meta['somearg']
 print "the argument passed is:", somearg

If you wish to log the requests that couldn’t be serialized, you can set the
:setting:`SCHEDULER_DEBUG` setting to True in the project’s settings page.
It is False by default.

 Architecture overview

Architecture overview

This document describes the architecture of Scrapy and how its components
interact.

Overview

The following diagram shows an overview of the Scrapy architecture with its
components and an outline of the data flow that takes place inside the system
(shown by the red arrows). A brief description of the components is included
below with links for more detailed information about them. The data flow is
also described below.

Data flow

[image: Scrapy architecture]
The data flow in Scrapy is controlled by the execution engine, and goes like
this:

	The Engine gets the initial Requests to crawl from the
Spider.

	The Engine schedules the Requests in the
Scheduler and asks for the
next Requests to crawl.

	The Scheduler returns the next Requests
to the Engine.

	The Engine sends the Requests to the
Downloader, passing through the
Downloader Middlewares (see
process_request()).

	Once the page finishes downloading the
Downloader generates a Response (with
that page) and sends it to the Engine, passing through the
Downloader Middlewares (see
process_response()).

	The Engine receives the Response from the
Downloader and sends it to the
Spider for processing, passing
through the Spider Middleware (see
process_spider_input()).

	The Spider processes the Response and returns
scraped items and new Requests (to follow) to the
Engine, passing through the
Spider Middleware (see
process_spider_output()).

	The Engine sends processed items to
Item Pipelines, then send processed Requests to
the Scheduler and asks for possible next Requests
to crawl.

	The process repeats (from step 1) until there are no more requests from the
Scheduler.

Components

Scrapy Engine

The engine is responsible for controlling the data flow between all components
of the system, and triggering events when certain actions occur. See the
Data Flow section above for more details.

Scheduler

The Scheduler receives requests from the engine and enqueues them for feeding
them later (also to the engine) when the engine requests them.

Downloader

The Downloader is responsible for fetching web pages and feeding them to the
engine which, in turn, feeds them to the spiders.

Spiders

Spiders are custom classes written by Scrapy users to parse responses and
extract items (aka scraped items) from them or additional requests to
follow. For more information see Spiders.

Item Pipeline

The Item Pipeline is responsible for processing the items once they have been
extracted (or scraped) by the spiders. Typical tasks include cleansing,
validation and persistence (like storing the item in a database). For more
information see Item Pipeline.

Downloader middlewares

Downloader middlewares are specific hooks that sit between the Engine and the
Downloader and process requests when they pass from the Engine to the
Downloader, and responses that pass from Downloader to the Engine.

Use a Downloader middleware if you need to do one of the following:

	process a request just before it is sent to the Downloader
(i.e. right before Scrapy sends the request to the website);

	change received response before passing it to a spider;

	send a new Request instead of passing received response to a spider;

	pass response to a spider without fetching a web page;

	silently drop some requests.

For more information see Downloader Middleware.

Spider middlewares

Spider middlewares are specific hooks that sit between the Engine and the
Spiders and are able to process spider input (responses) and output (items and
requests).

Use a Spider middleware if you need to

	post-process output of spider callbacks - change/add/remove requests or items;

	post-process start_requests;

	handle spider exceptions;

	call errback instead of callback for some of the requests based on response
content.

For more information see Spider Middleware.

Event-driven networking

Scrapy is written with Twisted [https://twistedmatrix.com/trac/], a popular event-driven networking framework
for Python. Thus, it’s implemented using a non-blocking (aka asynchronous) code
for concurrency.

For more information about asynchronous programming and Twisted see these
links:

	Introduction to Deferreds in Twisted [https://twistedmatrix.com/documents/current/core/howto/defer-intro.html]

	Twisted - hello, asynchronous programming [http://jessenoller.com/2009/02/11/twisted-hello-asynchronous-programming/]

	Twisted Introduction - Krondo [http://krondo.com/an-introduction-to-asynchronous-programming-and-twisted/]

 Downloader Middleware

Downloader Middleware

The downloader middleware is a framework of hooks into Scrapy’s
request/response processing. It’s a light, low-level system for globally
altering Scrapy’s requests and responses.

Activating a downloader middleware

To activate a downloader middleware component, add it to the
:setting:`DOWNLOADER_MIDDLEWARES` setting, which is a dict whose keys are the
middleware class paths and their values are the middleware orders.

Here’s an example:

DOWNLOADER_MIDDLEWARES = {
 'myproject.middlewares.CustomDownloaderMiddleware': 543,
}

The :setting:`DOWNLOADER_MIDDLEWARES` setting is merged with the
:setting:`DOWNLOADER_MIDDLEWARES_BASE` setting defined in Scrapy (and not meant
to be overridden) and then sorted by order to get the final sorted list of
enabled middlewares: the first middleware is the one closer to the engine and
the last is the one closer to the downloader. In other words,
the process_request()
method of each middleware will be invoked in increasing
middleware order (100, 200, 300, …) and the process_response() method
of each middleware will be invoked in decreasing order.

To decide which order to assign to your middleware see the
:setting:`DOWNLOADER_MIDDLEWARES_BASE` setting and pick a value according to
where you want to insert the middleware. The order does matter because each
middleware performs a different action and your middleware could depend on some
previous (or subsequent) middleware being applied.

If you want to disable a built-in middleware (the ones defined in
:setting:`DOWNLOADER_MIDDLEWARES_BASE` and enabled by default) you must define it
in your project’s :setting:`DOWNLOADER_MIDDLEWARES` setting and assign None
as its value. For example, if you want to disable the user-agent middleware:

DOWNLOADER_MIDDLEWARES = {
 'myproject.middlewares.CustomDownloaderMiddleware': 543,
 'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware': None,
}

Finally, keep in mind that some middlewares may need to be enabled through a
particular setting. See each middleware documentation for more info.

Writing your own downloader middleware

Each middleware component is a Python class that defines one or
more of the following methods:

	
class scrapy.downloadermiddlewares.DownloaderMiddleware

	
Note

Any of the downloader middleware methods may also return a deferred.

	
process_request(request, spider)

	This method is called for each request that goes through the download
middleware.

process_request() should either: return None, return a
Response object, return a Request
object, or raise IgnoreRequest.

If it returns None, Scrapy will continue processing this request, executing all
other middlewares until, finally, the appropriate downloader handler is called
the request performed (and its response downloaded).

If it returns a Response object, Scrapy won’t bother
calling any other process_request() or process_exception() methods,
or the appropriate download function; it’ll return that response. The process_response()
methods of installed middleware is always called on every response.

If it returns a Request object, Scrapy will stop calling
process_request methods and reschedule the returned request. Once the newly returned
request is performed, the appropriate middleware chain will be called on
the downloaded response.

If it raises an IgnoreRequest exception, the
process_exception() methods of installed downloader middleware will be called.
If none of them handle the exception, the errback function of the request
(Request.errback) is called. If no code handles the raised exception, it is
ignored and not logged (unlike other exceptions).

	Parameters

	
	request (Request object) – the request being processed

	spider (Spider object) – the spider for which this request is intended

	
process_response(request, response, spider)

	process_response() should either: return a Response
object, return a Request object or
raise a IgnoreRequest exception.

If it returns a Response (it could be the same given
response, or a brand-new one), that response will continue to be processed
with the process_response() of the next middleware in the chain.

If it returns a Request object, the middleware chain is
halted and the returned request is rescheduled to be downloaded in the future.
This is the same behavior as if a request is returned from process_request().

If it raises an IgnoreRequest exception, the errback
function of the request (Request.errback) is called. If no code handles the raised
exception, it is ignored and not logged (unlike other exceptions).

	Parameters

	
	request (is a Request object) – the request that originated the response

	response (Response object) – the response being processed

	spider (Spider object) – the spider for which this response is intended

	
process_exception(request, exception, spider)

	Scrapy calls process_exception() when a download handler
or a process_request() (from a downloader middleware) raises an
exception (including an IgnoreRequest exception)

process_exception() should return: either None,
a Response object, or a Request object.

If it returns None, Scrapy will continue processing this exception,
executing any other process_exception() methods of installed middleware,
until no middleware is left and the default exception handling kicks in.

If it returns a Response object, the process_response()
method chain of installed middleware is started, and Scrapy won’t bother calling
any other process_exception() methods of middleware.

If it returns a Request object, the returned request is
rescheduled to be downloaded in the future. This stops the execution of
process_exception() methods of the middleware the same as returning a
response would.

	Parameters

	
	request (is a Request object) – the request that generated the exception

	exception (an Exception object) – the raised exception

	spider (Spider object) – the spider for which this request is intended

	
from_crawler(cls, crawler)

	If present, this classmethod is called to create a middleware instance
from a Crawler. It must return a new instance
of the middleware. Crawler object provides access to all Scrapy core
components like settings and signals; it is a way for middleware to
access them and hook its functionality into Scrapy.

	Parameters

	crawler (Crawler object) – crawler that uses this middleware

Built-in downloader middleware reference

This page describes all downloader middleware components that come with
Scrapy. For information on how to use them and how to write your own downloader
middleware, see the downloader middleware usage guide.

For a list of the components enabled by default (and their orders) see the
:setting:`DOWNLOADER_MIDDLEWARES_BASE` setting.

CookiesMiddleware

	
class scrapy.downloadermiddlewares.cookies.CookiesMiddleware

	This middleware enables working with sites that require cookies, such as
those that use sessions. It keeps track of cookies sent by web servers, and
send them back on subsequent requests (from that spider), just like web
browsers do.

The following settings can be used to configure the cookie middleware:

	:setting:`COOKIES_ENABLED`

	:setting:`COOKIES_DEBUG`

Multiple cookie sessions per spider

New in version 0.15.

There is support for keeping multiple cookie sessions per spider by using the
:reqmeta:`cookiejar` Request meta key. By default it uses a single cookie jar
(session), but you can pass an identifier to use different ones.

For example:

for i, url in enumerate(urls):
 yield scrapy.Request(url, meta={'cookiejar': i},
 callback=self.parse_page)

Keep in mind that the :reqmeta:`cookiejar` meta key is not “sticky”. You need to keep
passing it along on subsequent requests. For example:

def parse_page(self, response):
 # do some processing
 return scrapy.Request("http://www.example.com/otherpage",
 meta={'cookiejar': response.meta['cookiejar']},
 callback=self.parse_other_page)

COOKIES_ENABLED

Default: True

Whether to enable the cookies middleware. If disabled, no cookies will be sent
to web servers.

Notice that despite the value of :setting:`COOKIES_ENABLED` setting if
Request.:reqmeta:`meta['dont_merge_cookies'] <dont_merge_cookies>`
evaluates to True the request cookies will not be sent to the
web server and received cookies in Response will
not be merged with the existing cookies.

For more detailed information see the cookies parameter in
Request.

COOKIES_DEBUG

Default: False

If enabled, Scrapy will log all cookies sent in requests (ie. Cookie
header) and all cookies received in responses (ie. Set-Cookie header).

Here’s an example of a log with :setting:`COOKIES_DEBUG` enabled:

2011-04-06 14:35:10-0300 [scrapy.core.engine] INFO: Spider opened
2011-04-06 14:35:10-0300 [scrapy.downloadermiddlewares.cookies] DEBUG: Sending cookies to: <GET http://www.diningcity.com/netherlands/index.html>
 Cookie: clientlanguage_nl=en_EN
2011-04-06 14:35:14-0300 [scrapy.downloadermiddlewares.cookies] DEBUG: Received cookies from: <200 http://www.diningcity.com/netherlands/index.html>
 Set-Cookie: JSESSIONID=B~FA4DC0C496C8762AE4F1A620EAB34F38; Path=/
 Set-Cookie: ip_isocode=US
 Set-Cookie: clientlanguage_nl=en_EN; Expires=Thu, 07-Apr-2011 21:21:34 GMT; Path=/
2011-04-06 14:49:50-0300 [scrapy.core.engine] DEBUG: Crawled (200) <GET http://www.diningcity.com/netherlands/index.html> (referer: None)
[...]

DefaultHeadersMiddleware

	
class scrapy.downloadermiddlewares.defaultheaders.DefaultHeadersMiddleware

	This middleware sets all default requests headers specified in the
:setting:`DEFAULT_REQUEST_HEADERS` setting.

DownloadTimeoutMiddleware

	
class scrapy.downloadermiddlewares.downloadtimeout.DownloadTimeoutMiddleware

	This middleware sets the download timeout for requests specified in the
:setting:`DOWNLOAD_TIMEOUT` setting or download_timeout
spider attribute.

Note

You can also set download timeout per-request using
:reqmeta:`download_timeout` Request.meta key; this is supported
even when DownloadTimeoutMiddleware is disabled.

HttpAuthMiddleware

	
class scrapy.downloadermiddlewares.httpauth.HttpAuthMiddleware

	This middleware authenticates all requests generated from certain spiders
using Basic access authentication [https://en.wikipedia.org/wiki/Basic_access_authentication] (aka. HTTP auth).

To enable HTTP authentication from certain spiders, set the http_user
and http_pass attributes of those spiders.

Example:

from scrapy.spiders import CrawlSpider

class SomeIntranetSiteSpider(CrawlSpider):

 http_user = 'someuser'
 http_pass = 'somepass'
 name = 'intranet.example.com'

 # .. rest of the spider code omitted ...

HttpCacheMiddleware

	
class scrapy.downloadermiddlewares.httpcache.HttpCacheMiddleware

	This middleware provides low-level cache to all HTTP requests and responses.
It has to be combined with a cache storage backend as well as a cache policy.

Scrapy ships with three HTTP cache storage backends:

	Filesystem storage backend (default)

	DBM storage backend

	LevelDB storage backend

You can change the HTTP cache storage backend with the :setting:`HTTPCACHE_STORAGE`
setting. Or you can also implement your own storage backend.

Scrapy ships with two HTTP cache policies:

	RFC2616 policy

	Dummy policy (default)

You can change the HTTP cache policy with the :setting:`HTTPCACHE_POLICY`
setting. Or you can also implement your own policy.

You can also avoid caching a response on every policy using :reqmeta:`dont_cache` meta key equals True.

Dummy policy (default)

This policy has no awareness of any HTTP Cache-Control directives.
Every request and its corresponding response are cached. When the same
request is seen again, the response is returned without transferring
anything from the Internet.

The Dummy policy is useful for testing spiders faster (without having
to wait for downloads every time) and for trying your spider offline,
when an Internet connection is not available. The goal is to be able to
“replay” a spider run exactly as it ran before.

In order to use this policy, set:

	:setting:`HTTPCACHE_POLICY` to scrapy.extensions.httpcache.DummyPolicy

RFC2616 policy

This policy provides a RFC2616 compliant HTTP cache, i.e. with HTTP
Cache-Control awareness, aimed at production and used in continuous
runs to avoid downloading unmodified data (to save bandwidth and speed up crawls).

what is implemented:

	Do not attempt to store responses/requests with no-store cache-control directive set

	Do not serve responses from cache if no-cache cache-control directive is set even for fresh responses

	Compute freshness lifetime from max-age cache-control directive

	Compute freshness lifetime from Expires response header

	Compute freshness lifetime from Last-Modified response header (heuristic used by Firefox)

	Compute current age from Age response header

	Compute current age from Date header

	Revalidate stale responses based on Last-Modified response header

	Revalidate stale responses based on ETag response header

	Set Date header for any received response missing it

	Support max-stale cache-control directive in requests

This allows spiders to be configured with the full RFC2616 cache policy,
but avoid revalidation on a request-by-request basis, while remaining
conformant with the HTTP spec.

Example:

Add Cache-Control: max-stale=600 to Request headers to accept responses that
have exceeded their expiration time by no more than 600 seconds.

See also: RFC2616, 14.9.3

what is missing:

	Pragma: no-cache support https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9.1

	Vary header support https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.6

	Invalidation after updates or deletes https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.10

	… probably others ..

In order to use this policy, set:

	:setting:`HTTPCACHE_POLICY` to scrapy.extensions.httpcache.RFC2616Policy

Filesystem storage backend (default)

File system storage backend is available for the HTTP cache middleware.

In order to use this storage backend, set:

	:setting:`HTTPCACHE_STORAGE` to scrapy.extensions.httpcache.FilesystemCacheStorage

Each request/response pair is stored in a different directory containing
the following files:

	request_body - the plain request body

	request_headers - the request headers (in raw HTTP format)

	response_body - the plain response body

	response_headers - the request headers (in raw HTTP format)

	meta - some metadata of this cache resource in Python repr() format
(grep-friendly format)

	pickled_meta - the same metadata in meta but pickled for more
efficient deserialization

The directory name is made from the request fingerprint (see
scrapy.utils.request.fingerprint), and one level of subdirectories is
used to avoid creating too many files into the same directory (which is
inefficient in many file systems). An example directory could be:

/path/to/cache/dir/example.com/72/72811f648e718090f041317756c03adb0ada46c7

DBM storage backend

New in version 0.13.

A DBM [https://en.wikipedia.org/wiki/Dbm] storage backend is also available for the HTTP cache middleware.

By default, it uses the anydbm [https://docs.python.org/2/library/anydbm.html] module, but you can change it with the
:setting:`HTTPCACHE_DBM_MODULE` setting.

In order to use this storage backend, set:

	:setting:`HTTPCACHE_STORAGE` to scrapy.extensions.httpcache.DbmCacheStorage

LevelDB storage backend

New in version 0.23.

A LevelDB [https://github.com/google/leveldb] storage backend is also available for the HTTP cache middleware.

This backend is not recommended for development because only one process can
access LevelDB databases at the same time, so you can’t run a crawl and open
the scrapy shell in parallel for the same spider.

In order to use this storage backend:

	set :setting:`HTTPCACHE_STORAGE` to scrapy.extensions.httpcache.LeveldbCacheStorage

	install LevelDB python bindings [https://pypi.python.org/pypi/leveldb] like pip install leveldb

HTTPCache middleware settings

The HttpCacheMiddleware can be configured through the following
settings:

HTTPCACHE_ENABLED

New in version 0.11.

Default: False

Whether the HTTP cache will be enabled.

Changed in version 0.11: Before 0.11, :setting:`HTTPCACHE_DIR` was used to enable cache.

HTTPCACHE_EXPIRATION_SECS

Default: 0

Expiration time for cached requests, in seconds.

Cached requests older than this time will be re-downloaded. If zero, cached
requests will never expire.

Changed in version 0.11: Before 0.11, zero meant cached requests always expire.

HTTPCACHE_DIR

Default: 'httpcache'

The directory to use for storing the (low-level) HTTP cache. If empty, the HTTP
cache will be disabled. If a relative path is given, is taken relative to the
project data dir. For more info see: Default structure of Scrapy projects.

HTTPCACHE_IGNORE_HTTP_CODES

New in version 0.10.

Default: []

Don’t cache response with these HTTP codes.

HTTPCACHE_IGNORE_MISSING

Default: False

If enabled, requests not found in the cache will be ignored instead of downloaded.

HTTPCACHE_IGNORE_SCHEMES

New in version 0.10.

Default: ['file']

Don’t cache responses with these URI schemes.

HTTPCACHE_STORAGE

Default: 'scrapy.extensions.httpcache.FilesystemCacheStorage'

The class which implements the cache storage backend.

HTTPCACHE_DBM_MODULE

New in version 0.13.

Default: 'anydbm'

The database module to use in the DBM storage backend. This setting is specific to the DBM backend.

HTTPCACHE_POLICY

New in version 0.18.

Default: 'scrapy.extensions.httpcache.DummyPolicy'

The class which implements the cache policy.

HTTPCACHE_GZIP

New in version 1.0.

Default: False

If enabled, will compress all cached data with gzip.
This setting is specific to the Filesystem backend.

HTTPCACHE_ALWAYS_STORE

New in version 1.1.

Default: False

If enabled, will cache pages unconditionally.

A spider may wish to have all responses available in the cache, for
future use with Cache-Control: max-stale, for instance. The
DummyPolicy caches all responses but never revalidates them, and
sometimes a more nuanced policy is desirable.

This setting still respects Cache-Control: no-store directives in responses.
If you don’t want that, filter no-store out of the Cache-Control headers in
responses you feedto the cache middleware.

HTTPCACHE_IGNORE_RESPONSE_CACHE_CONTROLS

New in version 1.1.

Default: []

List of Cache-Control directives in responses to be ignored.

Sites often set “no-store”, “no-cache”, “must-revalidate”, etc., but get
upset at the traffic a spider can generate if it respects those
directives. This allows to selectively ignore Cache-Control directives
that are known to be unimportant for the sites being crawled.

We assume that the spider will not issue Cache-Control directives
in requests unless it actually needs them, so directives in requests are
not filtered.

HttpCompressionMiddleware

	
class scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware

	This middleware allows compressed (gzip, deflate) traffic to be
sent/received from web sites.

This middleware also supports decoding brotli-compressed [https://www.ietf.org/rfc/rfc7932.txt] responses,
provided brotlipy [https://pypi.python.org/pypi/brotlipy] is installed.

HttpCompressionMiddleware Settings

COMPRESSION_ENABLED

Default: True

Whether the Compression middleware will be enabled.

HttpProxyMiddleware

New in version 0.8.

	
class scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware

	This middleware sets the HTTP proxy to use for requests, by setting the
proxy meta value for Request objects.

Like the Python standard library modules urllib [https://docs.python.org/2/library/urllib.html] and urllib2 [https://docs.python.org/2/library/urllib2.html], it obeys
the following environment variables:

	http_proxy

	https_proxy

	no_proxy

You can also set the meta key proxy per-request, to a value like
http://some_proxy_server:port or http://username:password@some_proxy_server:port.
Keep in mind this value will take precedence over http_proxy/https_proxy
environment variables, and it will also ignore no_proxy environment variable.

RedirectMiddleware

	
class scrapy.downloadermiddlewares.redirect.RedirectMiddleware

	This middleware handles redirection of requests based on response status.

The urls which the request goes through (while being redirected) can be found
in the redirect_urls Request.meta key.

The RedirectMiddleware can be configured through the following
settings (see the settings documentation for more info):

	:setting:`REDIRECT_ENABLED`

	:setting:`REDIRECT_MAX_TIMES`

If Request.meta has dont_redirect
key set to True, the request will be ignored by this middleware.

If you want to handle some redirect status codes in your spider, you can
specify these in the handle_httpstatus_list spider attribute.

For example, if you want the redirect middleware to ignore 301 and 302
responses (and pass them through to your spider) you can do this:

class MySpider(CrawlSpider):
 handle_httpstatus_list = [301, 302]

The handle_httpstatus_list key of Request.meta can also be used to specify which response codes to
allow on a per-request basis. You can also set the meta key
handle_httpstatus_all to True if you want to allow any response code
for a request.

RedirectMiddleware settings

REDIRECT_ENABLED

New in version 0.13.

Default: True

Whether the Redirect middleware will be enabled.

REDIRECT_MAX_TIMES

Default: 20

The maximum number of redirections that will be followed for a single request.

MetaRefreshMiddleware

	
class scrapy.downloadermiddlewares.redirect.MetaRefreshMiddleware

	This middleware handles redirection of requests based on meta-refresh html tag.

The MetaRefreshMiddleware can be configured through the following
settings (see the settings documentation for more info):

	:setting:`METAREFRESH_ENABLED`

	:setting:`METAREFRESH_MAXDELAY`

This middleware obey :setting:`REDIRECT_MAX_TIMES` setting, :reqmeta:`dont_redirect`
and :reqmeta:`redirect_urls` request meta keys as described for RedirectMiddleware

MetaRefreshMiddleware settings

METAREFRESH_ENABLED

New in version 0.17.

Default: True

Whether the Meta Refresh middleware will be enabled.

METAREFRESH_MAXDELAY

Default: 100

The maximum meta-refresh delay (in seconds) to follow the redirection.
Some sites use meta-refresh for redirecting to a session expired page, so we
restrict automatic redirection to the maximum delay.

RetryMiddleware

	
class scrapy.downloadermiddlewares.retry.RetryMiddleware

	A middleware to retry failed requests that are potentially caused by
temporary problems such as a connection timeout or HTTP 500 error.

Failed pages are collected on the scraping process and rescheduled at the
end, once the spider has finished crawling all regular (non failed) pages.
Once there are no more failed pages to retry, this middleware sends a signal
(retry_complete), so other extensions could connect to that signal.

The RetryMiddleware can be configured through the following
settings (see the settings documentation for more info):

	:setting:`RETRY_ENABLED`

	:setting:`RETRY_TIMES`

	:setting:`RETRY_HTTP_CODES`

If Request.meta has dont_retry key
set to True, the request will be ignored by this middleware.

RetryMiddleware Settings

RETRY_ENABLED

New in version 0.13.

Default: True

Whether the Retry middleware will be enabled.

RETRY_TIMES

Default: 2

Maximum number of times to retry, in addition to the first download.

Maximum number of retries can also be specified per-request using
:reqmeta:`max_retry_times` attribute of Request.meta.
When initialized, the :reqmeta:`max_retry_times` meta key takes higher
precedence over the :setting:`RETRY_TIMES` setting.

RETRY_HTTP_CODES

Default: [500, 502, 503, 504, 522, 524, 408]

Which HTTP response codes to retry. Other errors (DNS lookup issues,
connections lost, etc) are always retried.

In some cases you may want to add 400 to :setting:`RETRY_HTTP_CODES` because
it is a common code used to indicate server overload. It is not included by
default because HTTP specs say so.

RobotsTxtMiddleware

	
class scrapy.downloadermiddlewares.robotstxt.RobotsTxtMiddleware

	This middleware filters out requests forbidden by the robots.txt exclusion
standard.

To make sure Scrapy respects robots.txt make sure the middleware is enabled
and the :setting:`ROBOTSTXT_OBEY` setting is enabled.

If Request.meta has
dont_obey_robotstxt key set to True
the request will be ignored by this middleware even if
:setting:`ROBOTSTXT_OBEY` is enabled.

DownloaderStats

	
class scrapy.downloadermiddlewares.stats.DownloaderStats

	Middleware that stores stats of all requests, responses and exceptions that
pass through it.

To use this middleware you must enable the :setting:`DOWNLOADER_STATS`
setting.

UserAgentMiddleware

	
class scrapy.downloadermiddlewares.useragent.UserAgentMiddleware

	Middleware that allows spiders to override the default user agent.

In order for a spider to override the default user agent, its user_agent
attribute must be set.

AjaxCrawlMiddleware

	
class scrapy.downloadermiddlewares.ajaxcrawl.AjaxCrawlMiddleware

	Middleware that finds ‘AJAX crawlable’ page variants based
on meta-fragment html tag. See
https://developers.google.com/webmasters/ajax-crawling/docs/getting-started
for more info.

Note

Scrapy finds ‘AJAX crawlable’ pages for URLs like
'http://example.com/!#foo=bar' even without this middleware.
AjaxCrawlMiddleware is necessary when URL doesn’t contain '!#'.
This is often a case for ‘index’ or ‘main’ website pages.

AjaxCrawlMiddleware Settings

AJAXCRAWL_ENABLED

New in version 0.21.

Default: False

Whether the AjaxCrawlMiddleware will be enabled. You may want to
enable it for broad crawls.

HttpProxyMiddleware settings

HTTPPROXY_ENABLED

Default: True

Whether or not to enable the HttpProxyMiddleware.

HTTPPROXY_AUTH_ENCODING

Default: "latin-1"

The default encoding for proxy authentication on HttpProxyMiddleware.

 Spider Middleware

Spider Middleware

The spider middleware is a framework of hooks into Scrapy’s spider processing
mechanism where you can plug custom functionality to process the responses that
are sent to Spiders for processing and to process the requests
and items that are generated from spiders.

Activating a spider middleware

To activate a spider middleware component, add it to the
:setting:`SPIDER_MIDDLEWARES` setting, which is a dict whose keys are the
middleware class path and their values are the middleware orders.

Here’s an example:

SPIDER_MIDDLEWARES = {
 'myproject.middlewares.CustomSpiderMiddleware': 543,
}

The :setting:`SPIDER_MIDDLEWARES` setting is merged with the
:setting:`SPIDER_MIDDLEWARES_BASE` setting defined in Scrapy (and not meant to
be overridden) and then sorted by order to get the final sorted list of enabled
middlewares: the first middleware is the one closer to the engine and the last
is the one closer to the spider. In other words,
the process_spider_input()
method of each middleware will be invoked in increasing
middleware order (100, 200, 300, …), and the
process_spider_output() method
of each middleware will be invoked in decreasing order.

To decide which order to assign to your middleware see the
:setting:`SPIDER_MIDDLEWARES_BASE` setting and pick a value according to where
you want to insert the middleware. The order does matter because each
middleware performs a different action and your middleware could depend on some
previous (or subsequent) middleware being applied.

If you want to disable a builtin middleware (the ones defined in
:setting:`SPIDER_MIDDLEWARES_BASE`, and enabled by default) you must define it
in your project :setting:`SPIDER_MIDDLEWARES` setting and assign None as its
value. For example, if you want to disable the off-site middleware:

SPIDER_MIDDLEWARES = {
 'myproject.middlewares.CustomSpiderMiddleware': 543,
 'scrapy.spidermiddlewares.offsite.OffsiteMiddleware': None,
}

Finally, keep in mind that some middlewares may need to be enabled through a
particular setting. See each middleware documentation for more info.

Writing your own spider middleware

Each middleware component is a Python class that defines one or more of the
following methods:

	
class scrapy.spidermiddlewares.SpiderMiddleware

	
	
process_spider_input(response, spider)

	This method is called for each response that goes through the spider
middleware and into the spider, for processing.

process_spider_input() should return None or raise an
exception.

If it returns None, Scrapy will continue processing this response,
executing all other middlewares until, finally, the response is handed
to the spider for processing.

If it raises an exception, Scrapy won’t bother calling any other spider
middleware process_spider_input() and will call the request
errback. The output of the errback is chained back in the other
direction for process_spider_output() to process it, or
process_spider_exception() if it raised an exception.

	Parameters

	
	response (Response object) – the response being processed

	spider (Spider object) – the spider for which this response is intended

	
process_spider_output(response, result, spider)

	This method is called with the results returned from the Spider, after
it has processed the response.

process_spider_output() must return an iterable of
Request, dict or Item
objects.

	Parameters

	
	response (Response object) – the response which generated this output from the
spider

	result (an iterable of Request, dict
or Item objects) – the result returned by the spider

	spider (Spider object) – the spider whose result is being processed

	
process_spider_exception(response, exception, spider)

	This method is called when a spider or process_spider_input()
method (from other spider middleware) raises an exception.

process_spider_exception() should return either None or an
iterable of Request, dict or
Item objects.

If it returns None, Scrapy will continue processing this exception,
executing any other process_spider_exception() in the following
middleware components, until no middleware components are left and the
exception reaches the engine (where it’s logged and discarded).

If it returns an iterable the process_spider_output() pipeline
kicks in, and no other process_spider_exception() will be called.

	Parameters

	
	response (Response object) – the response being processed when the exception was
raised

	exception (Exception [https://docs.python.org/2/library/exceptions.html#exceptions.Exception] object) – the exception raised

	spider (Spider object) – the spider which raised the exception

	
process_start_requests(start_requests, spider)

	
New in version 0.15.

This method is called with the start requests of the spider, and works
similarly to the process_spider_output() method, except that it
doesn’t have a response associated and must return only requests (not
items).

It receives an iterable (in the start_requests parameter) and must
return another iterable of Request objects.

Note

When implementing this method in your spider middleware, you
should always return an iterable (that follows the input one) and
not consume all start_requests iterator because it can be very
large (or even unbounded) and cause a memory overflow. The Scrapy
engine is designed to pull start requests while it has capacity to
process them, so the start requests iterator can be effectively
endless where there is some other condition for stopping the spider
(like a time limit or item/page count).

	Parameters

	
	start_requests (an iterable of Request) – the start requests

	spider (Spider object) – the spider to whom the start requests belong

	
from_crawler(cls, crawler)

	If present, this classmethod is called to create a middleware instance
from a Crawler. It must return a new instance
of the middleware. Crawler object provides access to all Scrapy core
components like settings and signals; it is a way for middleware to
access them and hook its functionality into Scrapy.

	Parameters

	crawler (Crawler object) – crawler that uses this middleware

Built-in spider middleware reference

This page describes all spider middleware components that come with Scrapy. For
information on how to use them and how to write your own spider middleware, see
the spider middleware usage guide.

For a list of the components enabled by default (and their orders) see the
:setting:`SPIDER_MIDDLEWARES_BASE` setting.

DepthMiddleware

	
class scrapy.spidermiddlewares.depth.DepthMiddleware

	DepthMiddleware is used for tracking the depth of each Request inside the
site being scraped. It works by setting request.meta[‘depth’] = 0 whenever
there is no value previously set (usually just the first Request) and
incrementing it by 1 otherwise.

It can be used to limit the maximum depth to scrape, control Request
priority based on their depth, and things like that.

The DepthMiddleware can be configured through the following
settings (see the settings documentation for more info):

	:setting:`DEPTH_LIMIT` - The maximum depth that will be allowed to
crawl for any site. If zero, no limit will be imposed.

	:setting:`DEPTH_STATS_VERBOSE` - Whether to collect the number of
requests for each depth.

	:setting:`DEPTH_PRIORITY` - Whether to prioritize the requests based on
their depth.

HttpErrorMiddleware

	
class scrapy.spidermiddlewares.httperror.HttpErrorMiddleware

	Filter out unsuccessful (erroneous) HTTP responses so that spiders don’t
have to deal with them, which (most of the time) imposes an overhead,
consumes more resources, and makes the spider logic more complex.

According to the HTTP standard [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html], successful responses are those whose
status codes are in the 200-300 range.

If you still want to process response codes outside that range, you can
specify which response codes the spider is able to handle using the
handle_httpstatus_list spider attribute or
:setting:`HTTPERROR_ALLOWED_CODES` setting.

For example, if you want your spider to handle 404 responses you can do
this:

class MySpider(CrawlSpider):
 handle_httpstatus_list = [404]

The handle_httpstatus_list key of Request.meta can also be used to specify which response codes to
allow on a per-request basis. You can also set the meta key handle_httpstatus_all
to True if you want to allow any response code for a request.

Keep in mind, however, that it’s usually a bad idea to handle non-200
responses, unless you really know what you’re doing.

For more information see: HTTP Status Code Definitions [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html].

HttpErrorMiddleware settings

HTTPERROR_ALLOWED_CODES

Default: []

Pass all responses with non-200 status codes contained in this list.

HTTPERROR_ALLOW_ALL

Default: False

Pass all responses, regardless of its status code.

OffsiteMiddleware

	
class scrapy.spidermiddlewares.offsite.OffsiteMiddleware

	Filters out Requests for URLs outside the domains covered by the spider.

This middleware filters out every request whose host names aren’t in the
spider’s allowed_domains attribute.
All subdomains of any domain in the list are also allowed.
E.g. the rule www.example.org will also allow bob.www.example.org
but not www2.example.com nor example.com.

When your spider returns a request for a domain not belonging to those
covered by the spider, this middleware will log a debug message similar to
this one:

DEBUG: Filtered offsite request to 'www.othersite.com': <GET http://www.othersite.com/some/page.html>

To avoid filling the log with too much noise, it will only print one of
these messages for each new domain filtered. So, for example, if another
request for www.othersite.com is filtered, no log message will be
printed. But if a request for someothersite.com is filtered, a message
will be printed (but only for the first request filtered).

If the spider doesn’t define an
allowed_domains attribute, or the
attribute is empty, the offsite middleware will allow all requests.

If the request has the dont_filter attribute
set, the offsite middleware will allow the request even if its domain is not
listed in allowed domains.

RefererMiddleware

	
class scrapy.spidermiddlewares.referer.RefererMiddleware

	Populates Request Referer header, based on the URL of the Response which
generated it.

RefererMiddleware settings

REFERER_ENABLED

New in version 0.15.

Default: True

Whether to enable referer middleware.

REFERRER_POLICY

New in version 1.4.

Default: 'scrapy.spidermiddlewares.referer.DefaultReferrerPolicy'

Referrer Policy [https://www.w3.org/TR/referrer-policy] to apply when populating Request “Referer” header.

Note

You can also set the Referrer Policy per request,
using the special "referrer_policy" Request.meta key,
with the same acceptable values as for the REFERRER_POLICY setting.

Acceptable values for REFERRER_POLICY

	either a path to a scrapy.spidermiddlewares.referer.ReferrerPolicy
subclass — a custom policy or one of the built-in ones (see classes below),

	or one of the standard W3C-defined string values,

	or the special "scrapy-default".

	String value

	Class name (as a string)

	"scrapy-default" (default)

	scrapy.spidermiddlewares.referer.DefaultReferrerPolicy

	“no-referrer” [https://www.w3.org/TR/referrer-policy/#referrer-policy-no-referrer]

	scrapy.spidermiddlewares.referer.NoReferrerPolicy

	“no-referrer-when-downgrade” [https://www.w3.org/TR/referrer-policy/#referrer-policy-no-referrer-when-downgrade]

	scrapy.spidermiddlewares.referer.NoReferrerWhenDowngradePolicy

	“same-origin” [https://www.w3.org/TR/referrer-policy/#referrer-policy-same-origin]

	scrapy.spidermiddlewares.referer.SameOriginPolicy

	“origin” [https://www.w3.org/TR/referrer-policy/#referrer-policy-origin]

	scrapy.spidermiddlewares.referer.OriginPolicy

	“strict-origin” [https://www.w3.org/TR/referrer-policy/#referrer-policy-strict-origin]

	scrapy.spidermiddlewares.referer.StrictOriginPolicy

	“origin-when-cross-origin” [https://www.w3.org/TR/referrer-policy/#referrer-policy-origin-when-cross-origin]

	scrapy.spidermiddlewares.referer.OriginWhenCrossOriginPolicy

	“strict-origin-when-cross-origin” [https://www.w3.org/TR/referrer-policy/#referrer-policy-strict-origin-when-cross-origin]

	scrapy.spidermiddlewares.referer.StrictOriginWhenCrossOriginPolicy

	“unsafe-url” [https://www.w3.org/TR/referrer-policy/#referrer-policy-unsafe-url]

	scrapy.spidermiddlewares.referer.UnsafeUrlPolicy

Warning

Scrapy’s default referrer policy — just like “no-referrer-when-downgrade” [https://www.w3.org/TR/referrer-policy/#referrer-policy-no-referrer-when-downgrade],
the W3C-recommended value for browsers — will send a non-empty
“Referer” header from any http(s):// to any https:// URL,
even if the domain is different.

“same-origin” [https://www.w3.org/TR/referrer-policy/#referrer-policy-same-origin] may be a better choice if you want to remove referrer
information for cross-domain requests.

Note

“no-referrer-when-downgrade” policy is the W3C-recommended default,
and is used by major web browsers.

However, it is NOT Scrapy’s default referrer policy (see DefaultReferrerPolicy).

Warning

“unsafe-url” policy is NOT recommended.

UrlLengthMiddleware

	
class scrapy.spidermiddlewares.urllength.UrlLengthMiddleware

	Filters out requests with URLs longer than URLLENGTH_LIMIT

The UrlLengthMiddleware can be configured through the following
settings (see the settings documentation for more info):

	:setting:`URLLENGTH_LIMIT` - The maximum URL length to allow for crawled URLs.

 Extensions

Extensions

The extensions framework provides a mechanism for inserting your own
custom functionality into Scrapy.

Extensions are just regular classes that are instantiated at Scrapy startup,
when extensions are initialized.

Extension settings

Extensions use the Scrapy settings to manage their
settings, just like any other Scrapy code.

It is customary for extensions to prefix their settings with their own name, to
avoid collision with existing (and future) extensions. For example, a
hypothetic extension to handle Google Sitemaps [https://en.wikipedia.org/wiki/Sitemaps] would use settings like
GOOGLESITEMAP_ENABLED, GOOGLESITEMAP_DEPTH, and so on.

Loading & activating extensions

Extensions are loaded and activated at startup by instantiating a single
instance of the extension class. Therefore, all the extension initialization
code must be performed in the class constructor (__init__ method).

To make an extension available, add it to the :setting:`EXTENSIONS` setting in
your Scrapy settings. In :setting:`EXTENSIONS`, each extension is represented
by a string: the full Python path to the extension’s class name. For example:

EXTENSIONS = {
 'scrapy.extensions.corestats.CoreStats': 500,
 'scrapy.extensions.telnet.TelnetConsole': 500,
}

As you can see, the :setting:`EXTENSIONS` setting is a dict where the keys are
the extension paths, and their values are the orders, which define the
extension loading order. The :setting:`EXTENSIONS` setting is merged with the
:setting:`EXTENSIONS_BASE` setting defined in Scrapy (and not meant to be
overridden) and then sorted by order to get the final sorted list of enabled
extensions.

As extensions typically do not depend on each other, their loading order is
irrelevant in most cases. This is why the :setting:`EXTENSIONS_BASE` setting
defines all extensions with the same order (0). However, this feature can
be exploited if you need to add an extension which depends on other extensions
already loaded.

Available, enabled and disabled extensions

Not all available extensions will be enabled. Some of them usually depend on a
particular setting. For example, the HTTP Cache extension is available by default
but disabled unless the :setting:`HTTPCACHE_ENABLED` setting is set.

Disabling an extension

In order to disable an extension that comes enabled by default (ie. those
included in the :setting:`EXTENSIONS_BASE` setting) you must set its order to
None. For example:

EXTENSIONS = {
 'scrapy.extensions.corestats.CoreStats': None,
}

Writing your own extension

Each extension is a Python class. The main entry point for a Scrapy extension
(this also includes middlewares and pipelines) is the from_crawler
class method which receives a Crawler instance. Through the Crawler object
you can access settings, signals, stats, and also control the crawling behaviour.

Typically, extensions connect to signals and perform
tasks triggered by them.

Finally, if the from_crawler method raises the
NotConfigured exception, the extension will be
disabled. Otherwise, the extension will be enabled.

Sample extension

Here we will implement a simple extension to illustrate the concepts described
in the previous section. This extension will log a message every time:

	a spider is opened

	a spider is closed

	a specific number of items are scraped

The extension will be enabled through the MYEXT_ENABLED setting and the
number of items will be specified through the MYEXT_ITEMCOUNT setting.

Here is the code of such extension:

import logging
from scrapy import signals
from scrapy.exceptions import NotConfigured

logger = logging.getLogger(__name__)

class SpiderOpenCloseLogging(object):

 def __init__(self, item_count):
 self.item_count = item_count
 self.items_scraped = 0

 @classmethod
 def from_crawler(cls, crawler):
 # first check if the extension should be enabled and raise
 # NotConfigured otherwise
 if not crawler.settings.getbool('MYEXT_ENABLED'):
 raise NotConfigured

 # get the number of items from settings
 item_count = crawler.settings.getint('MYEXT_ITEMCOUNT', 1000)

 # instantiate the extension object
 ext = cls(item_count)

 # connect the extension object to signals
 crawler.signals.connect(ext.spider_opened, signal=signals.spider_opened)
 crawler.signals.connect(ext.spider_closed, signal=signals.spider_closed)
 crawler.signals.connect(ext.item_scraped, signal=signals.item_scraped)

 # return the extension object
 return ext

 def spider_opened(self, spider):
 logger.info("opened spider %s", spider.name)

 def spider_closed(self, spider):
 logger.info("closed spider %s", spider.name)

 def item_scraped(self, item, spider):
 self.items_scraped += 1
 if self.items_scraped % self.item_count == 0:
 logger.info("scraped %d items", self.items_scraped)

Built-in extensions reference

General purpose extensions

Log Stats extension

	
class scrapy.extensions.logstats.LogStats

	

Log basic stats like crawled pages and scraped items.

Core Stats extension

	
class scrapy.extensions.corestats.CoreStats

	

Enable the collection of core statistics, provided the stats collection is
enabled (see Stats Collection).

Telnet console extension

	
class scrapy.extensions.telnet.TelnetConsole

	

Provides a telnet console for getting into a Python interpreter inside the
currently running Scrapy process, which can be very useful for debugging.

The telnet console must be enabled by the :setting:`TELNETCONSOLE_ENABLED`
setting, and the server will listen in the port specified in
:setting:`TELNETCONSOLE_PORT`.

Memory usage extension

	
class scrapy.extensions.memusage.MemoryUsage

	

Note

This extension does not work in Windows.

Monitors the memory used by the Scrapy process that runs the spider and:

	sends a notification e-mail when it exceeds a certain value

	closes the spider when it exceeds a certain value

The notification e-mails can be triggered when a certain warning value is
reached (:setting:`MEMUSAGE_WARNING_MB`) and when the maximum value is reached
(:setting:`MEMUSAGE_LIMIT_MB`) which will also cause the spider to be closed
and the Scrapy process to be terminated.

This extension is enabled by the :setting:`MEMUSAGE_ENABLED` setting and
can be configured with the following settings:

	:setting:`MEMUSAGE_LIMIT_MB`

	:setting:`MEMUSAGE_WARNING_MB`

	:setting:`MEMUSAGE_NOTIFY_MAIL`

	:setting:`MEMUSAGE_CHECK_INTERVAL_SECONDS`

Memory debugger extension

	
class scrapy.extensions.memdebug.MemoryDebugger

	

An extension for debugging memory usage. It collects information about:

	objects uncollected by the Python garbage collector

	objects left alive that shouldn’t. For more info, see Debugging memory leaks with trackref

To enable this extension, turn on the :setting:`MEMDEBUG_ENABLED` setting. The
info will be stored in the stats.

Close spider extension

	
class scrapy.extensions.closespider.CloseSpider

	

Closes a spider automatically when some conditions are met, using a specific
closing reason for each condition.

The conditions for closing a spider can be configured through the following
settings:

	:setting:`CLOSESPIDER_TIMEOUT`

	:setting:`CLOSESPIDER_ITEMCOUNT`

	:setting:`CLOSESPIDER_PAGECOUNT`

	:setting:`CLOSESPIDER_ERRORCOUNT`

CLOSESPIDER_TIMEOUT

Default: 0

An integer which specifies a number of seconds. If the spider remains open for
more than that number of second, it will be automatically closed with the
reason closespider_timeout. If zero (or non set), spiders won’t be closed by
timeout.

CLOSESPIDER_ITEMCOUNT

Default: 0

An integer which specifies a number of items. If the spider scrapes more than
that amount and those items are passed by the item pipeline, the
spider will be closed with the reason closespider_itemcount.
Requests which are currently in the downloader queue (up to
:setting:`CONCURRENT_REQUESTS` requests) are still processed.
If zero (or non set), spiders won’t be closed by number of passed items.

CLOSESPIDER_PAGECOUNT

New in version 0.11.

Default: 0

An integer which specifies the maximum number of responses to crawl. If the spider
crawls more than that, the spider will be closed with the reason
closespider_pagecount. If zero (or non set), spiders won’t be closed by
number of crawled responses.

CLOSESPIDER_ERRORCOUNT

New in version 0.11.

Default: 0

An integer which specifies the maximum number of errors to receive before
closing the spider. If the spider generates more than that number of errors,
it will be closed with the reason closespider_errorcount. If zero (or non
set), spiders won’t be closed by number of errors.

StatsMailer extension

	
class scrapy.extensions.statsmailer.StatsMailer

	

This simple extension can be used to send a notification e-mail every time a
domain has finished scraping, including the Scrapy stats collected. The email
will be sent to all recipients specified in the :setting:`STATSMAILER_RCPTS`
setting.

Debugging extensions

Stack trace dump extension

	
class scrapy.extensions.debug.StackTraceDump

	

Dumps information about the running process when a SIGQUIT [https://en.wikipedia.org/wiki/SIGQUIT] or SIGUSR2 [https://en.wikipedia.org/wiki/SIGUSR1_and_SIGUSR2]
signal is received. The information dumped is the following:

	engine status (using scrapy.utils.engine.get_engine_status())

	live references (see Debugging memory leaks with trackref)

	stack trace of all threads

After the stack trace and engine status is dumped, the Scrapy process continues
running normally.

This extension only works on POSIX-compliant platforms (ie. not Windows),
because the SIGQUIT [https://en.wikipedia.org/wiki/SIGQUIT] and SIGUSR2 [https://en.wikipedia.org/wiki/SIGUSR1_and_SIGUSR2] signals are not available on Windows.

There are at least two ways to send Scrapy the SIGQUIT [https://en.wikipedia.org/wiki/SIGQUIT] signal:

	By pressing Ctrl-while a Scrapy process is running (Linux only?)

	By running this command (assuming <pid> is the process id of the Scrapy
process):

kill -QUIT <pid>

Debugger extension

	
class scrapy.extensions.debug.Debugger

	

Invokes a Python debugger [https://docs.python.org/2/library/pdb.html] inside a running Scrapy process when a SIGUSR2 [https://en.wikipedia.org/wiki/SIGUSR1_and_SIGUSR2]
signal is received. After the debugger is exited, the Scrapy process continues
running normally.

For more info see Debugging in Python.

This extension only works on POSIX-compliant platforms (ie. not Windows).

 Core API

Core API

New in version 0.15.

This section documents the Scrapy core API, and it’s intended for developers of
extensions and middlewares.

Crawler API

The main entry point to Scrapy API is the Crawler
object, passed to extensions through the from_crawler class method. This
object provides access to all Scrapy core components, and it’s the only way for
extensions to access them and hook their functionality into Scrapy.

The Extension Manager is responsible for loading and keeping track of installed
extensions and it’s configured through the :setting:`EXTENSIONS` setting which
contains a dictionary of all available extensions and their order similar to
how you configure the downloader middlewares.

	
class scrapy.crawler.Crawler(spidercls, settings)

	The Crawler object must be instantiated with a
scrapy.spiders.Spider subclass and a
scrapy.settings.Settings object.

	
settings

	The settings manager of this crawler.

This is used by extensions & middlewares to access the Scrapy settings
of this crawler.

For an introduction on Scrapy settings see Settings.

For the API see Settings class.

	
signals

	The signals manager of this crawler.

This is used by extensions & middlewares to hook themselves into Scrapy
functionality.

For an introduction on signals see Signals.

For the API see SignalManager class.

	
stats

	The stats collector of this crawler.

This is used from extensions & middlewares to record stats of their
behaviour, or access stats collected by other extensions.

For an introduction on stats collection see Stats Collection.

For the API see StatsCollector class.

	
extensions

	The extension manager that keeps track of enabled extensions.

Most extensions won’t need to access this attribute.

For an introduction on extensions and a list of available extensions on
Scrapy see Extensions.

	
engine

	The execution engine, which coordinates the core crawling logic
between the scheduler, downloader and spiders.

Some extension may want to access the Scrapy engine, to inspect or
modify the downloader and scheduler behaviour, although this is an
advanced use and this API is not yet stable.

	
spider

	Spider currently being crawled. This is an instance of the spider class
provided while constructing the crawler, and it is created after the
arguments given in the crawl() method.

	
crawl(*args, **kwargs)

	Starts the crawler by instantiating its spider class with the given
args and kwargs arguments, while setting the execution engine in
motion.

Returns a deferred that is fired when the crawl is finished.

Settings API

	
scrapy.settings.SETTINGS_PRIORITIES

	Dictionary that sets the key name and priority level of the default
settings priorities used in Scrapy.

Each item defines a settings entry point, giving it a code name for
identification and an integer priority. Greater priorities take more
precedence over lesser ones when setting and retrieving values in the
Settings class.

SETTINGS_PRIORITIES = {
 'default': 0,
 'command': 10,
 'project': 20,
 'spider': 30,
 'cmdline': 40,
}

For a detailed explanation on each settings sources, see:
Settings.

SpiderLoader API

	
class scrapy.loader.SpiderLoader

	This class is in charge of retrieving and handling the spider classes
defined across the project.

Custom spider loaders can be employed by specifying their path in the
:setting:`SPIDER_LOADER_CLASS` project setting. They must fully implement
the scrapy.interfaces.ISpiderLoader interface to guarantee an
errorless execution.

	
from_settings(settings)

	This class method is used by Scrapy to create an instance of the class.
It’s called with the current project settings, and it loads the spiders
found recursively in the modules of the :setting:`SPIDER_MODULES`
setting.

	Parameters

	settings (Settings instance) – project settings

	
load(spider_name)

	Get the Spider class with the given name. It’ll look into the previously
loaded spiders for a spider class with name spider_name and will raise
a KeyError if not found.

	Parameters

	spider_name (str) – spider class name

	
list()

	Get the names of the available spiders in the project.

	
find_by_request(request)

	List the spiders’ names that can handle the given request. Will try to
match the request’s url against the domains of the spiders.

	Parameters

	request (Request instance) – queried request

Signals API

Stats Collector API

There are several Stats Collectors available under the
scrapy.statscollectors module and they all implement the Stats
Collector API defined by the StatsCollector
class (which they all inherit from).

	
class scrapy.statscollectors.StatsCollector

	
	
get_value(key, default=None)

	Return the value for the given stats key or default if it doesn’t exist.

	
get_stats()

	Get all stats from the currently running spider as a dict.

	
set_value(key, value)

	Set the given value for the given stats key.

	
set_stats(stats)

	Override the current stats with the dict passed in stats argument.

	
inc_value(key, count=1, start=0)

	Increment the value of the given stats key, by the given count,
assuming the start value given (when it’s not set).

	
max_value(key, value)

	Set the given value for the given key only if current value for the
same key is lower than value. If there is no current value for the
given key, the value is always set.

	
min_value(key, value)

	Set the given value for the given key only if current value for the
same key is greater than value. If there is no current value for the
given key, the value is always set.

	
clear_stats()

	Clear all stats.

The following methods are not part of the stats collection api but instead
used when implementing custom stats collectors:

	
open_spider(spider)

	Open the given spider for stats collection.

	
close_spider(spider)

	Close the given spider. After this is called, no more specific stats
can be accessed or collected.

 Signals

Signals

Scrapy uses signals extensively to notify when certain events occur. You can
catch some of those signals in your Scrapy project (using an extension, for example) to perform additional tasks or extend Scrapy
to add functionality not provided out of the box.

Even though signals provide several arguments, the handlers that catch them
don’t need to accept all of them - the signal dispatching mechanism will only
deliver the arguments that the handler receives.

You can connect to signals (or send your own) through the
Signals API.

Here is a simple example showing how you can catch signals and perform some action:

from scrapy import signals
from scrapy import Spider

class DmozSpider(Spider):
 name = "dmoz"
 allowed_domains = ["dmoz.org"]
 start_urls = [
 "http://www.dmoz.org/Computers/Programming/Languages/Python/Books/",
 "http://www.dmoz.org/Computers/Programming/Languages/Python/Resources/",
]

 @classmethod
 def from_crawler(cls, crawler, *args, **kwargs):
 spider = super(DmozSpider, cls).from_crawler(crawler, *args, **kwargs)
 crawler.signals.connect(spider.spider_closed, signal=signals.spider_closed)
 return spider

 def spider_closed(self, spider):
 spider.logger.info('Spider closed: %s', spider.name)

 def parse(self, response):
 pass

Deferred signal handlers

Some signals support returning Twisted deferreds [https://twistedmatrix.com/documents/current/core/howto/defer.html] from their handlers, see
the Built-in signals reference below to know which ones.

Built-in signals reference

Here’s the list of Scrapy built-in signals and their meaning.

engine_started

	
scrapy.signals.engine_started()

	Sent when the Scrapy engine has started crawling.

This signal supports returning deferreds from their handlers.

Note

This signal may be fired after the :signal:`spider_opened` signal,
depending on how the spider was started. So don’t rely on this signal
getting fired before :signal:`spider_opened`.

engine_stopped

	
scrapy.signals.engine_stopped()

	Sent when the Scrapy engine is stopped (for example, when a crawling
process has finished).

This signal supports returning deferreds from their handlers.

item_scraped

	
scrapy.signals.item_scraped(item, response, spider)

	Sent when an item has been scraped, after it has passed all the
Item Pipeline stages (without being dropped).

This signal supports returning deferreds from their handlers.

	Parameters

	
	item (dict or Item object) – the item scraped

	spider (Spider object) – the spider which scraped the item

	response (Response object) – the response from where the item was scraped

item_dropped

	
scrapy.signals.item_dropped(item, response, exception, spider)

	Sent after an item has been dropped from the Item Pipeline
when some stage raised a DropItem exception.

This signal supports returning deferreds from their handlers.

	Parameters

	
	item (dict or Item object) – the item dropped from the Item Pipeline

	spider (Spider object) – the spider which scraped the item

	response (Response object) – the response from where the item was dropped

	exception (DropItem exception) – the exception (which must be a
DropItem subclass) which caused the item
to be dropped

item_error

	
scrapy.signals.item_error(item, response, spider, failure)

	Sent when a Item Pipeline generates an error (ie. raises
an exception), except DropItem exception.

This signal supports returning deferreds from their handlers.

	Parameters

	
	item (dict or Item object) – the item dropped from the Item Pipeline

	response (Response object) – the response being processed when the exception was raised

	spider (Spider object) – the spider which raised the exception

	failure (Failure [https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html] object) – the exception raised as a Twisted Failure [https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html] object

spider_closed

	
scrapy.signals.spider_closed(spider, reason)

	Sent after a spider has been closed. This can be used to release per-spider
resources reserved on :signal:`spider_opened`.

This signal supports returning deferreds from their handlers.

	Parameters

	
	spider (Spider object) – the spider which has been closed

	reason (str) – a string which describes the reason why the spider was closed. If
it was closed because the spider has completed scraping, the reason
is 'finished'. Otherwise, if the spider was manually closed by
calling the close_spider engine method, then the reason is the one
passed in the reason argument of that method (which defaults to
'cancelled'). If the engine was shutdown (for example, by hitting
Ctrl-C to stop it) the reason will be 'shutdown'.

spider_opened

	
scrapy.signals.spider_opened(spider)

	Sent after a spider has been opened for crawling. This is typically used to
reserve per-spider resources, but can be used for any task that needs to be
performed when a spider is opened.

This signal supports returning deferreds from their handlers.

	Parameters

	spider (Spider object) – the spider which has been opened

spider_idle

	
scrapy.signals.spider_idle(spider)

	Sent when a spider has gone idle, which means the spider has no further:

	requests waiting to be downloaded

	requests scheduled

	items being processed in the item pipeline

If the idle state persists after all handlers of this signal have finished,
the engine starts closing the spider. After the spider has finished
closing, the :signal:`spider_closed` signal is sent.

You may raise a DontCloseSpider exception to
prevent the spider from being closed.

This signal does not support returning deferreds from their handlers.

	Parameters

	spider (Spider object) – the spider which has gone idle

Note

Scheduling some requests in your :signal:`spider_idle` handler does
not guarantee that it can prevent the spider from being closed,
although it sometimes can. That’s because the spider may still remain idle
if all the scheduled requests are rejected by the scheduler (e.g. filtered
due to duplication).

spider_error

	
scrapy.signals.spider_error(failure, response, spider)

	Sent when a spider callback generates an error (ie. raises an exception).

This signal does not support returning deferreds from their handlers.

	Parameters

	
	failure (Failure [https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html] object) – the exception raised as a Twisted Failure [https://twistedmatrix.com/documents/current/api/twisted.python.failure.Failure.html] object

	response (Response object) – the response being processed when the exception was raised

	spider (Spider object) – the spider which raised the exception

request_scheduled

	
scrapy.signals.request_scheduled(request, spider)

	Sent when the engine schedules a Request, to be
downloaded later.

The signal does not support returning deferreds from their handlers.

	Parameters

	
	request (Request object) – the request that reached the scheduler

	spider (Spider object) – the spider that yielded the request

request_dropped

	
scrapy.signals.request_dropped(request, spider)

	Sent when a Request, scheduled by the engine to be
downloaded later, is rejected by the scheduler.

The signal does not support returning deferreds from their handlers.

	Parameters

	
	request (Request object) – the request that reached the scheduler

	spider (Spider object) – the spider that yielded the request

request_reached_downloader

	
scrapy.signals.request_reached_downloader(request, spider)

	Sent when a Request reached downloader.

The signal does not support returning deferreds from their handlers.

	Parameters

	
	request (Request object) – the request that reached downloader

	spider (Spider object) – the spider that yielded the request

response_received

	
scrapy.signals.response_received(response, request, spider)

	Sent when the engine receives a new Response from the
downloader.

This signal does not support returning deferreds from their handlers.

	Parameters

	
	response (Response object) – the response received

	request (Request object) – the request that generated the response

	spider (Spider object) – the spider for which the response is intended

response_downloaded

	
scrapy.signals.response_downloaded(response, request, spider)

	Sent by the downloader right after a HTTPResponse is downloaded.

This signal does not support returning deferreds from their handlers.

	Parameters

	
	response (Response object) – the response downloaded

	request (Request object) – the request that generated the response

	spider (Spider object) – the spider for which the response is intended

 Item Exporters

Item Exporters

Once you have scraped your items, you often want to persist or export those
items, to use the data in some other application. That is, after all, the whole
purpose of the scraping process.

For this purpose Scrapy provides a collection of Item Exporters for different
output formats, such as XML, CSV or JSON.

Using Item Exporters

If you are in a hurry, and just want to use an Item Exporter to output scraped
data see the Feed exports. Otherwise, if you want to know how
Item Exporters work or need more custom functionality (not covered by the
default exports), continue reading below.

In order to use an Item Exporter, you must instantiate it with its required
args. Each Item Exporter requires different arguments, so check each exporter
documentation to be sure, in Built-in Item Exporters reference. After you have
instantiated your exporter, you have to:

1. call the method start_exporting() in order to
signal the beginning of the exporting process

2. call the export_item() method for each item you want
to export

3. and finally call the finish_exporting() to signal
the end of the exporting process

Here you can see an Item Pipeline which uses multiple
Item Exporters to group scraped items to different files according to the
value of one of their fields:

from scrapy.exporters import XmlItemExporter

class PerYearXmlExportPipeline(object):
 """Distribute items across multiple XML files according to their 'year' field"""

 def open_spider(self, spider):
 self.year_to_exporter = {}

 def close_spider(self, spider):
 for exporter in self.year_to_exporter.values():
 exporter.finish_exporting()
 exporter.file.close()

 def _exporter_for_item(self, item):
 year = item['year']
 if year not in self.year_to_exporter:
 f = open('{}.xml'.format(year), 'wb')
 exporter = XmlItemExporter(f)
 exporter.start_exporting()
 self.year_to_exporter[year] = exporter
 return self.year_to_exporter[year]

 def process_item(self, item, spider):
 exporter = self._exporter_for_item(item)
 exporter.export_item(item)
 return item

Serialization of item fields

By default, the field values are passed unmodified to the underlying
serialization library, and the decision of how to serialize them is delegated
to each particular serialization library.

However, you can customize how each field value is serialized before it is
passed to the serialization library.

There are two ways to customize how a field will be serialized, which are
described next.

1. Declaring a serializer in the field

If you use Item you can declare a serializer in the
field metadata. The serializer must be
a callable which receives a value and returns its serialized form.

Example:

import scrapy

def serialize_price(value):
 return '$ %s' % str(value)

class Product(scrapy.Item):
 name = scrapy.Field()
 price = scrapy.Field(serializer=serialize_price)

2. Overriding the serialize_field() method

You can also override the serialize_field() method to
customize how your field value will be exported.

Make sure you call the base class serialize_field() method
after your custom code.

Example:

from scrapy.exporter import XmlItemExporter

class ProductXmlExporter(XmlItemExporter):

 def serialize_field(self, field, name, value):
 if field == 'price':
 return '$ %s' % str(value)
 return super(Product, self).serialize_field(field, name, value)

Built-in Item Exporters reference

Here is a list of the Item Exporters bundled with Scrapy. Some of them contain
output examples, which assume you’re exporting these two items:

Item(name='Color TV', price='1200')
Item(name='DVD player', price='200')

BaseItemExporter

	
class scrapy.exporters.BaseItemExporter(fields_to_export=None, export_empty_fields=False, encoding='utf-8', indent=0)

	This is the (abstract) base class for all Item Exporters. It provides
support for common features used by all (concrete) Item Exporters, such as
defining what fields to export, whether to export empty fields, or which
encoding to use.

These features can be configured through the constructor arguments which
populate their respective instance attributes: fields_to_export,
export_empty_fields, encoding, indent.

	
export_item(item)

	Exports the given item. This method must be implemented in subclasses.

	
serialize_field(field, name, value)

	Return the serialized value for the given field. You can override this
method (in your custom Item Exporters) if you want to control how a
particular field or value will be serialized/exported.

By default, this method looks for a serializer declared in the item
field and returns the result of applying
that serializer to the value. If no serializer is found, it returns the
value unchanged except for unicode values which are encoded to
str using the encoding declared in the encoding attribute.

	Parameters

	
	field (Field object or an empty dict) – the field being serialized. If a raw dict is being
exported (not Item) field value is an empty dict.

	name (str) – the name of the field being serialized

	value – the value being serialized

	
start_exporting()

	Signal the beginning of the exporting process. Some exporters may use
this to generate some required header (for example, the
XmlItemExporter). You must call this method before exporting any
items.

	
finish_exporting()

	Signal the end of the exporting process. Some exporters may use this to
generate some required footer (for example, the
XmlItemExporter). You must always call this method after you
have no more items to export.

	
fields_to_export

	A list with the name of the fields that will be exported, or None if you
want to export all fields. Defaults to None.

Some exporters (like CsvItemExporter) respect the order of the
fields defined in this attribute.

Some exporters may require fields_to_export list in order to export the
data properly when spiders return dicts (not Item instances).

	
export_empty_fields

	Whether to include empty/unpopulated item fields in the exported data.
Defaults to False. Some exporters (like CsvItemExporter)
ignore this attribute and always export all empty fields.

This option is ignored for dict items.

	
encoding

	The encoding that will be used to encode unicode values. This only
affects unicode values (which are always serialized to str using this
encoding). Other value types are passed unchanged to the specific
serialization library.

	
indent

	Amount of spaces used to indent the output on each level. Defaults to 0.

	indent=None selects the most compact representation,
all items in the same line with no indentation

	indent<=0 each item on its own line, no indentation

	indent>0 each item on its own line, indented with the provided numeric value

XmlItemExporter

	
class scrapy.exporters.XmlItemExporter(file, item_element='item', root_element='items', **kwargs)

	Exports Items in XML format to the specified file object.

	Parameters

	
	file – the file-like object to use for exporting the data. Its write method should
accept bytes (a disk file opened in binary mode, a io.BytesIO object, etc)

	root_element (str) – The name of root element in the exported XML.

	item_element (str) – The name of each item element in the exported XML.

The additional keyword arguments of this constructor are passed to the
BaseItemExporter constructor.

A typical output of this exporter would be:

<?xml version="1.0" encoding="utf-8"?>
<items>
 <item>
 <name>Color TV</name>
 <price>1200</price>
 </item>
 <item>
 <name>DVD player</name>
 <price>200</price>
 </item>
</items>

Unless overridden in the serialize_field() method, multi-valued fields are
exported by serializing each value inside a <value> element. This is for
convenience, as multi-valued fields are very common.

For example, the item:

Item(name=['John', 'Doe'], age='23')

Would be serialized as:

<?xml version="1.0" encoding="utf-8"?>
<items>
 <item>
 <name>
 <value>John</value>
 <value>Doe</value>
 </name>
 <age>23</age>
 </item>
</items>

CsvItemExporter

	
class scrapy.exporters.CsvItemExporter(file, include_headers_line=True, join_multivalued=', ', **kwargs)

	Exports Items in CSV format to the given file-like object. If the
fields_to_export attribute is set, it will be used to define the
CSV columns and their order. The export_empty_fields attribute has
no effect on this exporter.

	Parameters

	
	file – the file-like object to use for exporting the data. Its write method should
accept bytes (a disk file opened in binary mode, a io.BytesIO object, etc)

	include_headers_line (str) – If enabled, makes the exporter output a header
line with the field names taken from
BaseItemExporter.fields_to_export or the first exported item fields.

	join_multivalued – The char (or chars) that will be used for joining
multi-valued fields, if found.

The additional keyword arguments of this constructor are passed to the
BaseItemExporter constructor, and the leftover arguments to the
csv.writer [https://docs.python.org/2/library/csv.html#csv.writer] constructor, so you can use any csv.writer constructor
argument to customize this exporter.

A typical output of this exporter would be:

product,price
Color TV,1200
DVD player,200

PickleItemExporter

	
class scrapy.exporters.PickleItemExporter(file, protocol=0, **kwargs)

	Exports Items in pickle format to the given file-like object.

	Parameters

	
	file – the file-like object to use for exporting the data. Its write method should
accept bytes (a disk file opened in binary mode, a io.BytesIO object, etc)

	protocol (int) – The pickle protocol to use.

For more information, refer to the pickle module documentation [https://docs.python.org/2/library/pickle.html].

The additional keyword arguments of this constructor are passed to the
BaseItemExporter constructor.

Pickle isn’t a human readable format, so no output examples are provided.

PprintItemExporter

	
class scrapy.exporters.PprintItemExporter(file, **kwargs)

	Exports Items in pretty print format to the specified file object.

	Parameters

	file – the file-like object to use for exporting the data. Its write method should
accept bytes (a disk file opened in binary mode, a io.BytesIO object, etc)

The additional keyword arguments of this constructor are passed to the
BaseItemExporter constructor.

A typical output of this exporter would be:

{'name': 'Color TV', 'price': '1200'}
{'name': 'DVD player', 'price': '200'}

Longer lines (when present) are pretty-formatted.

JsonItemExporter

	
class scrapy.exporters.JsonItemExporter(file, **kwargs)

	Exports Items in JSON format to the specified file-like object, writing all
objects as a list of objects. The additional constructor arguments are
passed to the BaseItemExporter constructor, and the leftover
arguments to the JSONEncoder [https://docs.python.org/2/library/json.html#json.JSONEncoder] constructor, so you can use any
JSONEncoder [https://docs.python.org/2/library/json.html#json.JSONEncoder] constructor argument to customize this exporter.

	Parameters

	file – the file-like object to use for exporting the data. Its write method should
accept bytes (a disk file opened in binary mode, a io.BytesIO object, etc)

A typical output of this exporter would be:

[{"name": "Color TV", "price": "1200"},
{"name": "DVD player", "price": "200"}]

Warning

JSON is very simple and flexible serialization format, but it
doesn’t scale well for large amounts of data since incremental (aka.
stream-mode) parsing is not well supported (if at all) among JSON parsers
(on any language), and most of them just parse the entire object in
memory. If you want the power and simplicity of JSON with a more
stream-friendly format, consider using JsonLinesItemExporter
instead, or splitting the output in multiple chunks.

JsonLinesItemExporter

	
class scrapy.exporters.JsonLinesItemExporter(file, **kwargs)

	Exports Items in JSON format to the specified file-like object, writing one
JSON-encoded item per line. The additional constructor arguments are passed
to the BaseItemExporter constructor, and the leftover arguments to
the JSONEncoder [https://docs.python.org/2/library/json.html#json.JSONEncoder] constructor, so you can use any JSONEncoder [https://docs.python.org/2/library/json.html#json.JSONEncoder]
constructor argument to customize this exporter.

	Parameters

	file – the file-like object to use for exporting the data. Its write method should
accept bytes (a disk file opened in binary mode, a io.BytesIO object, etc)

A typical output of this exporter would be:

{"name": "Color TV", "price": "1200"}
{"name": "DVD player", "price": "200"}

Unlike the one produced by JsonItemExporter, the format produced by
this exporter is well suited for serializing large amounts of data.

 Python Module Index

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 scrapy	

 	
 	
 scrapy.contracts	

 	
 	
 scrapy.contracts.default	

 	
 	
 scrapy.crawler	
 The Scrapy crawler

 	
 	
 scrapy.downloadermiddlewares	

 	
 	
 scrapy.downloadermiddlewares.ajaxcrawl	

 	
 	
 scrapy.downloadermiddlewares.cookies	
 Cookies Downloader Middleware

 	
 	
 scrapy.downloadermiddlewares.defaultheaders	
 Default Headers Downloader Middleware

 	
 	
 scrapy.downloadermiddlewares.downloadtimeout	
 Download timeout middleware

 	
 	
 scrapy.downloadermiddlewares.httpauth	
 HTTP Auth downloader middleware

 	
 	
 scrapy.downloadermiddlewares.httpcache	
 HTTP Cache downloader middleware

 	
 	
 scrapy.downloadermiddlewares.httpcompression	
 Http Compression Middleware

 	
 	
 scrapy.downloadermiddlewares.httpproxy	
 Http Proxy Middleware

 	
 	
 scrapy.downloadermiddlewares.redirect	
 Redirection Middleware

 	
 	
 scrapy.downloadermiddlewares.retry	
 Retry Middleware

 	
 	
 scrapy.downloadermiddlewares.robotstxt	
 robots.txt middleware

 	
 	
 scrapy.downloadermiddlewares.stats	
 Downloader Stats Middleware

 	
 	
 scrapy.downloadermiddlewares.useragent	
 User Agent Middleware

 	
 	
 scrapy.exceptions	
 Scrapy exceptions

 	
 	
 scrapy.exporters	
 Item Exporters

 	
 	
 scrapy.extensions.closespider	
 Close spider extension

 	
 	
 scrapy.extensions.corestats	
 Core stats collection

 	
 	
 scrapy.extensions.debug	
 Extensions for debugging Scrapy

 	
 	
 scrapy.extensions.logstats	
 Basic stats logging

 	
 	
 scrapy.extensions.memdebug	
 Memory debugger extension

 	
 	
 scrapy.extensions.memusage	
 Memory usage extension

 	
 	
 scrapy.extensions.statsmailer	
 StatsMailer extension

 	
 	
 scrapy.extensions.telnet	
 The Telnet Console

 	
 	
 scrapy.http	
 Request and Response classes

 	
 	
 scrapy.item	
 Item and Field classes

 	
 	
 scrapy.linkextractors	
 Link extractors classes

 	
 	
 scrapy.linkextractors.lxmlhtml	
 lxml's HTMLParser-based link extractors

 	
 	
 scrapy.loader	
 Item Loader class

 	
 	
 scrapy.loader.processors	
 A collection of processors to use with Item Loaders

 	
 	
 scrapy.mail	
 Email sending facility

 	
 	
 scrapy.pipelines.files	
 Files Pipeline

 	
 	
 scrapy.pipelines.images	
 Images Pipeline

 	
 	
 scrapy.selector	
 Selector class

 	
 	
 scrapy.settings	
 Settings manager

 	
 	
 scrapy.signals	
 Signals definitions

 	
 	
 scrapy.spidermiddlewares	

 	
 	
 scrapy.spidermiddlewares.depth	
 Depth Spider Middleware

 	
 	
 scrapy.spidermiddlewares.httperror	
 HTTP Error Spider Middleware

 	
 	
 scrapy.spidermiddlewares.offsite	
 Offsite Spider Middleware

 	
 	
 scrapy.spidermiddlewares.referer	
 Referer Spider Middleware

 	
 	
 scrapy.spidermiddlewares.urllength	
 URL Length Spider Middleware

 	
 	
 scrapy.spiders	
 Spiders base class, spider manager and spider middleware

 	
 	
 scrapy.statscollectors	
 Stats Collectors

 	
 	
 scrapy.utils.log	
 Logging utils

 	
 	
 scrapy.utils.trackref	
 Track references of live objects

 Index

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | X

_

 	
 	__nonzero__() (scrapy.selector.Selector method)

A

 	
 	adapt_response() (scrapy.spiders.XMLFeedSpider method)

 	add_css() (scrapy.loader.ItemLoader method)

 	add_value() (scrapy.loader.ItemLoader method)

 	
 	add_xpath() (scrapy.loader.ItemLoader method)

 	adjust_request_args() (scrapy.contracts.Contract method)

 	AjaxCrawlMiddleware (class in scrapy.downloadermiddlewares.ajaxcrawl)

 	allowed_domains (scrapy.spiders.Spider attribute)

B

 	
 	BaseItemExporter (class in scrapy.exporters)

 	body (scrapy.http.Request attribute)

 	(scrapy.http.Response attribute)

 	
 	body_as_unicode() (scrapy.http.TextResponse method)

C

 	
 	clear_stats() (scrapy.statscollectors.StatsCollector method)

 	close_spider()

 	(scrapy.statscollectors.StatsCollector method)

 	closed() (scrapy.spiders.Spider method)

 	CloseSpider

 	Compose (class in scrapy.loader.processors)

 	context (scrapy.loader.ItemLoader attribute)

 	Contract (class in scrapy.contracts)

 	CookiesMiddleware (class in scrapy.downloadermiddlewares.cookies)

 	copy() (scrapy.http.Request method)

 	(scrapy.http.Response method)

 	
 	CoreStats (class in scrapy.extensions.corestats)

 	crawl() (scrapy.crawler.Crawler method)

 	Crawler (class in scrapy.crawler)

 	crawler (scrapy.spiders.Spider attribute)

 	CrawlSpider (class in scrapy.spiders)

 	css() (scrapy.http.TextResponse method)

 	(scrapy.selector.Selector method)

 	(scrapy.selector.SelectorList method)

 	CSVFeedSpider (class in scrapy.spiders)

 	CsvItemExporter (class in scrapy.exporters)

 	custom_settings (scrapy.spiders.Spider attribute)

D

 	
 	default_input_processor (scrapy.loader.ItemLoader attribute)

 	default_item_class (scrapy.loader.ItemLoader attribute)

 	default_output_processor (scrapy.loader.ItemLoader attribute)

 	default_selector_class (scrapy.loader.ItemLoader attribute)

 	DefaultHeadersMiddleware (class in scrapy.downloadermiddlewares.defaultheaders)

 	delimiter (scrapy.spiders.CSVFeedSpider attribute)

 	
 	DepthMiddleware (class in scrapy.spidermiddlewares.depth)

 	DontCloseSpider

 	DownloaderMiddleware (class in scrapy.downloadermiddlewares)

 	DownloaderStats (class in scrapy.downloadermiddlewares.stats)

 	DownloadTimeoutMiddleware (class in scrapy.downloadermiddlewares.downloadtimeout)

 	DropItem

 	DummyStatsCollector (class in scrapy.statscollectors)

E

 	
 	encoding (scrapy.exporters.BaseItemExporter attribute)

 	(scrapy.http.TextResponse attribute)

 	engine (scrapy.crawler.Crawler attribute)

 	engine_started() (in module scrapy.signals)

 	engine_stopped() (in module scrapy.signals)

 	
 	export_empty_fields (scrapy.exporters.BaseItemExporter attribute)

 	export_item() (scrapy.exporters.BaseItemExporter method)

 	extensions (scrapy.crawler.Crawler attribute)

 	extract() (scrapy.selector.Selector method)

 	(scrapy.selector.SelectorList method)

F

 	
 	Field (class in scrapy.item)

 	fields (scrapy.item.Item attribute)

 	fields_to_export (scrapy.exporters.BaseItemExporter attribute)

 	FilesPipeline (class in scrapy.pipelines.files)

 	find_by_request() (scrapy.loader.SpiderLoader method)

 	finish_exporting() (scrapy.exporters.BaseItemExporter method)

 	flags (scrapy.http.Response attribute)

 	
 	FormRequest (class in scrapy.http)

 	from_crawler()

 	(scrapy.downloadermiddlewares.DownloaderMiddleware method)

 	(scrapy.spidermiddlewares.SpiderMiddleware method)

 	(scrapy.spiders.Spider method)

 	from_response() (scrapy.http.FormRequest class method)

 	from_settings() (scrapy.loader.SpiderLoader method)

 	(scrapy.mail.MailSender class method)

G

 	
 	get_collected_values() (scrapy.loader.ItemLoader method)

 	get_css() (scrapy.loader.ItemLoader method)

 	get_input_processor() (scrapy.loader.ItemLoader method)

 	get_media_requests() (scrapy.pipelines.files.FilesPipeline method)

 	(scrapy.pipelines.images.ImagesPipeline method)

 	get_oldest() (in module scrapy.utils.trackref)

 	
 	get_output_processor() (scrapy.loader.ItemLoader method)

 	get_output_value() (scrapy.loader.ItemLoader method)

 	get_stats() (scrapy.statscollectors.StatsCollector method)

 	get_value() (scrapy.loader.ItemLoader method)

 	(scrapy.statscollectors.StatsCollector method)

 	get_xpath() (scrapy.loader.ItemLoader method)

H

 	
 	headers (scrapy.http.Request attribute)

 	(scrapy.http.Response attribute)

 	(scrapy.spiders.CSVFeedSpider attribute)

 	HtmlResponse (class in scrapy.http)

 	
 	HttpAuthMiddleware (class in scrapy.downloadermiddlewares.httpauth)

 	HttpCacheMiddleware (class in scrapy.downloadermiddlewares.httpcache)

 	HttpCompressionMiddleware (class in scrapy.downloadermiddlewares.httpcompression)

 	HttpErrorMiddleware (class in scrapy.spidermiddlewares.httperror)

 	HttpProxyMiddleware (class in scrapy.downloadermiddlewares.httpproxy)

I

 	
 	Identity (class in scrapy.loader.processors)

 	IgnoreRequest

 	ImagesPipeline (class in scrapy.pipelines.images)

 	inc_value() (scrapy.statscollectors.StatsCollector method)

 	indent (scrapy.exporters.BaseItemExporter attribute)

 	Item (class in scrapy.item)

 	item (scrapy.loader.ItemLoader attribute)

 	item_completed() (scrapy.pipelines.files.FilesPipeline method)

 	(scrapy.pipelines.images.ImagesPipeline method)

 	
 	item_dropped() (in module scrapy.signals)

 	item_error() (in module scrapy.signals)

 	item_scraped() (in module scrapy.signals)

 	ItemLoader (class in scrapy.loader)

 	iter_all() (in module scrapy.utils.trackref)

 	iterator (scrapy.spiders.XMLFeedSpider attribute)

 	itertag (scrapy.spiders.XMLFeedSpider attribute)

J

 	
 	Join (class in scrapy.loader.processors)

 	
 	JsonItemExporter (class in scrapy.exporters)

 	JsonLinesItemExporter (class in scrapy.exporters)

L

 	
 	list() (scrapy.loader.SpiderLoader method)

 	load() (scrapy.loader.SpiderLoader method)

 	load_item() (scrapy.loader.ItemLoader method)

 	
 	log() (scrapy.spiders.Spider method)

 	logger (scrapy.spiders.Spider attribute)

 	LogStats (class in scrapy.extensions.logstats)

 	LxmlLinkExtractor (class in scrapy.linkextractors.lxmlhtml)

M

 	
 	MailSender (class in scrapy.mail)

 	MapCompose (class in scrapy.loader.processors)

 	max_value() (scrapy.statscollectors.StatsCollector method)

 	MemoryStatsCollector (class in scrapy.statscollectors)

 	
 	meta (scrapy.http.Request attribute)

 	(scrapy.http.Response attribute)

 	MetaRefreshMiddleware (class in scrapy.downloadermiddlewares.redirect)

 	method (scrapy.http.Request attribute)

 	min_value() (scrapy.statscollectors.StatsCollector method)

N

 	
 	name (scrapy.spiders.Spider attribute)

 	namespaces (scrapy.spiders.XMLFeedSpider attribute)

 	nested_css() (scrapy.loader.ItemLoader method)

 	
 	nested_xpath() (scrapy.loader.ItemLoader method)

 	NotConfigured

 	NotSupported

O

 	
 	object_ref (class in scrapy.utils.trackref)

 	OffsiteMiddleware (class in scrapy.spidermiddlewares.offsite)

 	
 	open_spider()

 	(scrapy.statscollectors.StatsCollector method)

P

 	
 	parse() (scrapy.spiders.Spider method)

 	parse_node() (scrapy.spiders.XMLFeedSpider method)

 	parse_row() (scrapy.spiders.CSVFeedSpider method)

 	parse_start_url() (scrapy.spiders.CrawlSpider method)

 	PickleItemExporter (class in scrapy.exporters)

 	post_process() (scrapy.contracts.Contract method)

 	PprintItemExporter (class in scrapy.exporters)

 	pre_process() (scrapy.contracts.Contract method)

 	print_live_refs() (in module scrapy.utils.trackref)

 	
 	process_exception() (scrapy.downloadermiddlewares.DownloaderMiddleware method)

 	process_item()

 	process_request() (scrapy.downloadermiddlewares.DownloaderMiddleware method)

 	process_response() (scrapy.downloadermiddlewares.DownloaderMiddleware method)

 	process_results() (scrapy.spiders.XMLFeedSpider method)

 	process_spider_exception() (scrapy.spidermiddlewares.SpiderMiddleware method)

 	process_spider_input() (scrapy.spidermiddlewares.SpiderMiddleware method)

 	process_spider_output() (scrapy.spidermiddlewares.SpiderMiddleware method)

 	process_start_requests() (scrapy.spidermiddlewares.SpiderMiddleware method)

Q

 	
 	quotechar (scrapy.spiders.CSVFeedSpider attribute)

R

 	
 	re() (scrapy.selector.Selector method)

 	(scrapy.selector.SelectorList method)

 	RedirectMiddleware (class in scrapy.downloadermiddlewares.redirect)

 	RefererMiddleware (class in scrapy.spidermiddlewares.referer)

 	register_namespace() (scrapy.selector.Selector method)

 	remove_namespaces() (scrapy.selector.Selector method)

 	replace() (scrapy.http.Request method)

 	(scrapy.http.Response method)

 	replace_css() (scrapy.loader.ItemLoader method)

 	replace_value() (scrapy.loader.ItemLoader method)

 	replace_xpath() (scrapy.loader.ItemLoader method)

 	Request (class in scrapy.http)

 	
 	request (scrapy.http.Response attribute)

 	request_dropped() (in module scrapy.signals)

 	request_reached_downloader() (in module scrapy.signals)

 	request_scheduled() (in module scrapy.signals)

 	Response (class in scrapy.http)

 	response_downloaded() (in module scrapy.signals)

 	response_received() (in module scrapy.signals)

 	RetryMiddleware (class in scrapy.downloadermiddlewares.retry)

 	ReturnsContract (class in scrapy.contracts.default)

 	RobotsTxtMiddleware (class in scrapy.downloadermiddlewares.robotstxt)

 	Rule (class in scrapy.spiders)

 	rules (scrapy.spiders.CrawlSpider attribute)

S

 	
 	ScrapesContract (class in scrapy.contracts.default)

 	scrapy.contracts (module)

 	scrapy.contracts.default (module)

 	scrapy.crawler (module)

 	scrapy.downloadermiddlewares (module)

 	scrapy.downloadermiddlewares.ajaxcrawl (module)

 	scrapy.downloadermiddlewares.cookies (module)

 	scrapy.downloadermiddlewares.defaultheaders (module)

 	scrapy.downloadermiddlewares.downloadtimeout (module)

 	scrapy.downloadermiddlewares.httpauth (module)

 	scrapy.downloadermiddlewares.httpcache (module)

 	scrapy.downloadermiddlewares.httpcompression (module)

 	scrapy.downloadermiddlewares.httpproxy (module)

 	scrapy.downloadermiddlewares.redirect (module)

 	scrapy.downloadermiddlewares.retry (module)

 	scrapy.downloadermiddlewares.robotstxt (module)

 	scrapy.downloadermiddlewares.stats (module)

 	scrapy.downloadermiddlewares.useragent (module)

 	scrapy.exceptions (module)

 	scrapy.exporters (module)

 	scrapy.extensions.closespider (module)

 	scrapy.extensions.closespider.CloseSpider (class in scrapy.extensions.closespider)

 	scrapy.extensions.corestats (module)

 	scrapy.extensions.debug (module)

 	scrapy.extensions.debug.Debugger (class in scrapy.extensions.debug)

 	scrapy.extensions.debug.StackTraceDump (class in scrapy.extensions.debug)

 	scrapy.extensions.logstats (module)

 	scrapy.extensions.memdebug (module)

 	scrapy.extensions.memdebug.MemoryDebugger (class in scrapy.extensions.memdebug)

 	scrapy.extensions.memusage (module)

 	scrapy.extensions.memusage.MemoryUsage (class in scrapy.extensions.memusage)

 	scrapy.extensions.statsmailer (module)

 	scrapy.extensions.statsmailer.StatsMailer (class in scrapy.extensions.statsmailer)

 	scrapy.extensions.telnet (module), [1]

 	scrapy.extensions.telnet.TelnetConsole (class in scrapy.extensions.telnet)

 	scrapy.http (module)

 	scrapy.item (module)

 	scrapy.linkextractors (module)

 	scrapy.linkextractors.lxmlhtml (module)

 	scrapy.loader (module), [1]

 	scrapy.loader.processors (module)

 	scrapy.mail (module)

 	scrapy.pipelines.files (module)

 	scrapy.pipelines.images (module)

 	scrapy.selector (module)

 	
 	scrapy.settings (module)

 	scrapy.signals (module)

 	scrapy.spidermiddlewares (module)

 	scrapy.spidermiddlewares.depth (module)

 	scrapy.spidermiddlewares.httperror (module)

 	scrapy.spidermiddlewares.offsite (module)

 	scrapy.spidermiddlewares.referer (module)

 	scrapy.spidermiddlewares.urllength (module)

 	scrapy.spiders (module)

 	scrapy.statscollectors (module), [1]

 	scrapy.utils.log (module)

 	scrapy.utils.trackref (module)

 	SelectJmes (class in scrapy.loader.processors)

 	Selector (class in scrapy.selector)

 	selector (scrapy.http.TextResponse attribute)

 	(scrapy.loader.ItemLoader attribute)

 	SelectorList (class in scrapy.selector)

 	send() (scrapy.mail.MailSender method)

 	serialize_field() (scrapy.exporters.BaseItemExporter method)

 	set_stats() (scrapy.statscollectors.StatsCollector method)

 	set_value() (scrapy.statscollectors.StatsCollector method)

 	settings (scrapy.crawler.Crawler attribute)

 	(scrapy.spiders.Spider attribute)

 	SETTINGS_PRIORITIES (in module scrapy.settings)

 	signals (scrapy.crawler.Crawler attribute)

 	sitemap_alternate_links (scrapy.spiders.SitemapSpider attribute)

 	sitemap_follow (scrapy.spiders.SitemapSpider attribute)

 	sitemap_rules (scrapy.spiders.SitemapSpider attribute)

 	sitemap_urls (scrapy.spiders.SitemapSpider attribute)

 	SitemapSpider (class in scrapy.spiders)

 	Spider (class in scrapy.spiders)

 	spider (scrapy.crawler.Crawler attribute)

 	spider_closed() (in module scrapy.signals)

 	spider_error() (in module scrapy.signals)

 	spider_idle() (in module scrapy.signals)

 	spider_opened() (in module scrapy.signals)

 	spider_stats (scrapy.statscollectors.MemoryStatsCollector attribute)

 	SpiderLoader (class in scrapy.loader)

 	SpiderMiddleware (class in scrapy.spidermiddlewares)

 	start_exporting() (scrapy.exporters.BaseItemExporter method)

 	start_requests() (scrapy.spiders.Spider method)

 	start_urls (scrapy.spiders.Spider attribute)

 	stats (scrapy.crawler.Crawler attribute)

 	StatsCollector (class in scrapy.statscollectors)

 	status (scrapy.http.Response attribute)

T

 	
 	TakeFirst (class in scrapy.loader.processors)

 	
 	text (scrapy.http.TextResponse attribute)

 	TextResponse (class in scrapy.http)

U

 	
 	update_telnet_vars() (in module scrapy.extensions.telnet)

 	url (scrapy.http.Request attribute)

 	(scrapy.http.Response attribute)

 	
 	UrlContract (class in scrapy.contracts.default)

 	urljoin() (scrapy.http.Response method)

 	UrlLengthMiddleware (class in scrapy.spidermiddlewares.urllength)

 	UserAgentMiddleware (class in scrapy.downloadermiddlewares.useragent)

X

 	
 	XMLFeedSpider (class in scrapy.spiders)

 	XmlItemExporter (class in scrapy.exporters)

 	XmlResponse (class in scrapy.http)

 	
 	xpath() (scrapy.http.TextResponse method)

 	(scrapy.selector.Selector method)

 	(scrapy.selector.SelectorList method)

 Versioning and API Stability

Versioning and API Stability

Versioning

There are 3 numbers in a Scrapy version: A.B.C

	A is the major version. This will rarely change and will signify very
large changes.

	B is the release number. This will include many changes including features
and things that possibly break backwards compatibility, although we strive to
keep theses cases at a minimum.

	C is the bugfix release number.

Backward-incompatibilities are explicitly mentioned in the release notes,
and may require special attention before upgrading.

Development releases do not follow 3-numbers version and are generally
released as dev suffixed versions, e.g. 1.3dev.

Note

With Scrapy 0.* series, Scrapy used odd-numbered versions for development releases [https://en.wikipedia.org/wiki/Software_versioning#Odd-numbered_versions_for_development_releases].
This is not the case anymore from Scrapy 1.0 onwards.

Starting with Scrapy 1.0, all releases should be considered production-ready.

For example:

	1.1.1 is the first bugfix release of the 1.1 series (safe to use in
production)

API Stability

API stability was one of the major goals for the 1.0 release.

Methods or functions that start with a single dash (_) are private and
should never be relied as stable.

Also, keep in mind that stable doesn’t mean complete: stable APIs could grow
new methods or functionality but the existing methods should keep working the
same way.

 DjangoItem

DjangoItem

DjangoItem has been moved into a separate project.

It is hosted at:

https://github.com/scrapy-plugins/scrapy-djangoitem

 Scrapyd

Scrapyd

Scrapyd has been moved into a separate project.

Its documentation is now hosted at:

https://scrapyd.readthedocs.io/en/latest/

 Ubuntu packages

Ubuntu packages

New in version 0.10.

Scrapinghub [https://scrapinghub.com/] publishes apt-gettable packages which are generally fresher than
those in Ubuntu, and more stable too since they’re continuously built from
GitHub repo [https://github.com/scrapy/scrapy] (master & stable branches) and so they contain the latest bug
fixes.

Caution

These packages are currently not updated and may not work on
Ubuntu 16.04 and above, see :issue:`2076` and :issue:`2137`.

To use the packages:

	Import the GPG key used to sign Scrapy packages into APT keyring:

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv 627220E7

	Create /etc/apt/sources.list.d/scrapy.list file using the following command:

echo 'deb http://archive.scrapy.org/ubuntu scrapy main' | sudo tee /etc/apt/sources.list.d/scrapy.list

	Update package lists and install the scrapy package:

sudo apt-get update && sudo apt-get install scrapy

Note

Repeat step 3 if you are trying to upgrade Scrapy.

Warning

python-scrapy is a different package provided by official debian
repositories, it’s very outdated and it isn’t supported by Scrapy team.

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/network_02.png
[Olnspector [Console D Debugger () Style itor

§ VAR "

Sus | Method Fie Domain Couse
maincss quotestorcrn.. syesheet
bootstapmincss ff quotestoscr.. styesheet
el £ quotestosca.. document
bootstapminess i quotestoscr.. styleshest
mincsz # quotestoscr.. syleshest
veris & et script

@ fonts googles.. stlesheet
£ qutestosca. v

33807 K8/ 64.20 kB transfesred Finish: 319 min

@ Performance

Tope
bt

o

DOMContentioaded: 318 min

0 Memory.

Al HTML CSS 5 XHR otz Images Medis WS Other

Trandersd
cached
cached
e
cached
cached
cached
e

1308

Network 8 Storage B

Persist Logs [Disble cache Nothrotting ¢

s Lom| [free ma
13408
%1
20008 i
% it
13418 som
ane —som
15218 - 153
20518 —om

_images/network_03.png
gooareads tnk:
g

= /author/shon/3810.bert_Enstetn
“aibert Einstein®
“Aabert-ginstein®

e
~entning:

“rThe worla 52 we nave crested it iz 3 process of our tinking.

“/author/shon/ 77326, K_Roming”
“3.K. Roing"
2 K Rowang”

“aptaitiest
“XIt 1 aur cholces, Harry, that show what me truly are, far rore than our sbilities.

_images/inspector_01.png
