

 [image: xproperty]C++ properties and observer pattern

Introduction

xproperty is a C++ library providing traitlets-style properties.

xproperty provides an implementation of the observer patterns relying on C++ template and preprocessor metaprogramming techniques.

Properies of observed objects have no additional memory footprint than the value they hold. The assignment of a new value is simply
replaced at compiled time by

	the call to the validator for that property

	the actual underlying assigment

	the call to the observor for that property.

We also provide the implementation of an xobserved class whose static validator and observer are bound to a dynamic unordered map
of callbacks that can be registered dynamically.

xproperty requires a modern C++ compiler supporting C++14. The following C++ compilers are supported:

	On Windows platforms, Visual C++ 2015 Update 2, or more recent

	On Unix platforms, gcc 4.9 or a recent version of Clang

Licensing

We use a shared copyright model that enables all contributors to maintain the
copyright on their contributions.

This software is licensed under the BSD-3-Clause license. See the LICENSE file for details.

INSTALLATION

	Installation

USAGE

	Usage
	Basic Usage

Installation

xproperty is a header-only library. We provide a package for the conda package manager.

conda install -c conda-forge xproperty

Or you can directly install it from the sources:

cmake -D CMAKE_INSTALL_PREFIX=your_install_prefix
make install

Usage

Basic Usage

	Declaring an observed object Foo with two properties named bar and baz of type double.

	Registering a validator, executed prior to assignment, which can potentially coerce the proposed value.

	Registering a notifier, executed after the assignement.

#include <iostream>
#include <stdexcept>
#include <string>

#include "xproperty/xobserved.hpp"

struct Foo : public xp::xobserved<Foo>
{
 XPROPERTY(double, Foo, bar);
 XPROPERTY(std::string, Foo, baz);
};

Registering an observer and a validator

Foo foo;

XOBSERVE(foo, bar, [](const Foo& f) {
 std::cout << "Observer: New value of bar: " << f.bar << std::endl;
});

XVALIDATE(foo, bar, [](Foo&, double proposal) {
 std::cout << "Validator: Proposal: " << proposal << std::endl;
 if (proposal < 0)
 {
 throw std::runtime_error("Only non-negative values are valid.");
 }
 return proposal;
});

Testing the validated and observed properties

foo.bar = 1.0; // Assigning a valid value
 // The notifier prints "Observer: New value of bar: 1"
std::cout << foo.bar << std::endl; // Outputs 1.0

try
{
 foo.bar = -1.0; // Assigning an invalid value
}
catch (...)
{
 std::cout << foo.bar << std::endl; // Still outputs 1.0
}

Shortcuts to link properties of observed objects

// Create two observed objects
Foo source, target;
source.bar = 1.0;

// Link `source.bar` and `target.bar`
XDLINK(source, bar, target, bar);

source.bar = 2.0;
std::cout << target.bar << std::endl; // Outputs 2.0

Out-of-order initialization of properties

auto foo = Foo()
 .baz("hello, world");

std::cout << foo.baz << std::endl; // Outputs hello, world

Index

Compiler workarounds

This page tracks the workarounds for the various compiler issues that we
encountered in the development. This is mostly of interest for developers
interested in contributing to xwidgets.

Visual Studio and rvalue-ness of attributes

When foo is an rvalue, and bar is member of foo held by value, foo.bar should also be an rvalue.

This is correctly implemented in GCC (since 4.9) and Clang (since before 4.0), but not in Visual Studio.

Hence, we use a different signature for the method chaining of properties with visual studio.

 nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Installation

 		
 Usage

 		
 Basic Usage

_static/minus.png

_static/plus.png

_static/file.png

