
Enonic XP Documentation
Release 6.4.3

Enonic AS

November 11, 2016

Appendix

1 Getting Started 3

2 Tutorials 15

3 Developer Guide 37

4 Operations Guide 113

5 API and Reference Guide 141

6 Release Notes 175

7 Upgrading to 6.4 179

8 Frequently Asked Questions 181

9 Glossary 183

i

ii

Enonic XP Documentation, Release 6.4.3

Congratulations - you’ve found the official Enonic XP 6.4 documentation. We really hope you like our technology and
use it to build amazing things :-).

We’ve put together some funky documentation - for installation check out Getting Started or move on to the Tutorials.
The more savvy will probably enjoy our API and Reference Guide.

Enjoy! - The Enonic Development Team

Appendix 1

Enonic XP Documentation, Release 6.4.3

2 Appendix

CHAPTER 1

Getting Started

So - you’re looking for the fastest way to get Enonic XP up and running?

Select ONE of the options below to get going:

1.1 Use Enonic Cloud

Enonic Cloud is a one-stop-shop hosted version of Enonic XP, available on demand.

3

Enonic XP Documentation, Release 6.4.3

Complete the following steps:

• Request Free Cloud Trial
• Log In
• Superhero Blog
• Next Steps

1.1.1 Request Free Cloud Trial

We’re offering a time limited free trial - running your very own cloud instance of Enonic XP. All you need to do is:

• Request a Free Cloud Trial of Enonic XP

Note: Enonic also offers paid cloud instances, ranging from “Developer Cloud” to “Platium Cloud”. Check out our
offerings

1.1.2 Log In

After requesting a Trial, you should recieve an informative e-mail about your installation.

• Click the link in your e-mail to reach the administrative interface, it should be in the following form:
http://<my-email-com>.tryme.enonic.io

• Log in with username su and password password.

After logging in you should see the following screen, with the launcher panel to the right:

4 Chapter 1. Getting Started

https://enonic.com/try
https://enonic.com/pricing
https://enonic.com/pricing

Enonic XP Documentation, Release 6.4.3

1.1.3 Superhero Blog

For your enjoyment, we’ve created the Superhero Blog application and pre-installed it on the trial instance.

This is a simple blog, basically emulating Wordpress - even using one of their nice themes. Follow these steps to try it
out:

Start blogging

• Open the Launcher panel (top right)

• Select the “Content Studio” tool

• Once it has loaded, you will find the superhero site and all it’s content there

Watch Video

Watch this video to learn more about the Superhero Blog Application, and the Content Studio tool:

1.1. Use Enonic Cloud 5

https://youtu.be/YBOghlzIHDg

Enonic XP Documentation, Release 6.4.3

1.1.4 Next Steps

Congratulations on getting started :-)

If you’re ready for some more fun, we recommend looking into the following:

• Browse Enonic Market for more

• Watch the Platform Video

• Hook up with the community on our forum

• Build your first Application with My First App

• More about Sites

1.2 Install on my Computer

This section describes how to install Enonic XP on your own computer. If you have any problems, please look at our
Troubleshooting section.

Note: General Requirements

• Any OS supporting Java (Mac, Linux, Windows etc)

• Java JDK 1.8 (update 40 or newer)

• At least 1 GB of available memory

• HTTP port 8080 should be available (this can be changed if needed, see Configuration)

1.2.1 Install Java

Warning: To run Enonic XP, you need Java Development Kit (JDK) 1.8.40 JDK or newer.

Check JDK Version

If you’re not sure what JDK version you have (or even if you have one), run the following in your terminal/shell:

javac -version

This should produce a response such as: “javac 1.8.0_60”

Having problems with your existing Java installation? Check out our Troubleshooting Java documentation.

Optionally Install Java

If it turns out you’re on the wrong java version, follow these steps

• Download it from http://www.oracle.com/technetwork/java/javase/downloads/index.html

6 Chapter 1. Getting Started

https://market.enonic.com
https://youtu.be/r_rjD8ScfeM
https://discuss.enonic.com
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Enonic XP Documentation, Release 6.4.3

• Follow the instructions for your respective operating system

1.2.2 Download Enonic XP

Enonic XP is available in a simple universal distribution file - running on all plaforms (Windows, Linux, OSX etc)

• Download Enonic XP distribution

• Unzip the file to a suitable location

Command-line version (OSX/Linux only):

curl -O http://repo.enonic.com/public/com/enonic/xp/distro/6.4.3/distro-6.4.3.zip
unzip distro-6.4.3.zip
cd enonic-xp-6.4.3

Next - let’s get the server started

1.2.3 Start the server

Now that the software has been downloaded, you’re ready to start the server - start the respective file from command
line.

Linux and OS X:

[XP Installation Folder]/bin/server.sh

Windows:

[XP Installation Folder]\bin\server.bat

This will start Enonic XP. When successfully started, the following will appear at the end of the log:

12:53:14.302 INFO c.e.x.l.framework.FrameworkService - Started Enonic XP in 7378 ms

1.2. Install on my Computer 7

https://enonic.com/try-now#download-now

Enonic XP Documentation, Release 6.4.3

1.2.4 Log In

• Point your browser to http://localhost:8080

• Log in with username su and password password.

After logging in you should see the following screen, with the launcher panel to the right:

1.2.5 Install Superhero Blog

This is a simple blog, basically emulating Wordpress - even using one of their nice themes. Follow these steps to try it
out:

Install from Market

• Open the Applications tool from the launcher panel to the right

• Click Install from the menu (top left)

• Select Enonic Market from the dialogue

• Browse to the application named “Superhero Blog” and click Install

8 Chapter 1. Getting Started

Enonic XP Documentation, Release 6.4.3

Start blogging

• Open the Launcher panel (top right)

• Select the “Content Studio” tool

• Once it has loaded, you will find the superhero site and all it’s content there

Watch Video

Watch this video to learn more about the Superhero Blog Application, and the Content Studio tool:

1.2. Install on my Computer 9

Enonic XP Documentation, Release 6.4.3

1.2.6 Next Steps

Congratulations on getting started :-)

If you’re ready for some more fun, we recommend looking into the following:

• Browse Enonic Market for more

• Watch the Platform Video

• Hook up with the community on our forum

• Build your first Application with My First App

• More about Sites

1.3 Install with Docker

We´re huge devop fans - and devops love Docker. Docker is the most popular application container platform in the
world. For your convenience, we build Docker images of every Enonic XP release.

10 Chapter 1. Getting Started

https://youtu.be/YBOghlzIHDg
https://market.enonic.com
https://youtu.be/r_rjD8ScfeM
https://discuss.enonic.com
https://www.docker.com

Enonic XP Documentation, Release 6.4.3

Complete the following steps:

• Install Docker
• Start Server
• Log In
• Install Superhero Blog
• Next Steps

1.3.1 Install Docker

Running Enonic XP with Docker actually requires access to a Docker container - now, that’s a surprise!

Note: Docker version 1.8.1 or newer is required to complete this guide

If you don’t already have a Docker up and running, we recommend reading the brilliant documentation on how to get
started with Docker:

• Docker for Windows

• Docker for OSX

• Docker for Linux

1.3.2 Start Server

Launch Enonic XP on Docker

With Docker up and running, installing Enonic XP is as smooth as baby skin. Execute the commands below in your
terminal/shell to get going.

• Create a storage container for configuration files, applications and data (XP_HOME)

docker run -it --name xp-home enonic/xp-home

• Install and start Enonic XP, mounting the xp-home volume

docker run -d -p 8080:8080 --volumes-from xp-home --name xp-app enonic/xp-app

1.3. Install with Docker 11

http://docs.docker.com/windows/started/
http://docs.docker.com/mac/started/
http://docs.docker.com/linux/started/

Enonic XP Documentation, Release 6.4.3

This will download the latest stable Enonic XP image, start it, and map it to port 8080 on your docker-host. You can
optionally add :<versionnumber> at the end of the command to launch a specific version of Enonic XP - i.e.

docker run -d -p 8080:8080 --volumes-from xp-home --name xp-app enonic/xp-app:6.4

Check out our Project page at Docker Hub for more info.

1.3.3 Log In

• Point your browser to http://<mydockercontainer>:8080

• Log in with username su and password password.

After logging in you should see the following screen, with the launcher panel to the right:

1.3.4 Install Superhero Blog

This is a simple blog, basically emulating Wordpress - even using one of their nice themes. Follow these steps to try it
out:

Install from Market

• Open the Applications tool from the launcher panel to the right

• Click Install from the menu (top left)

• Select Enonic Market from the dialogue

• Browse to the application named “Superhero Blog” and click Install

12 Chapter 1. Getting Started

https://hub.docker.com/u/enonic/

Enonic XP Documentation, Release 6.4.3

Start blogging

• Open the Launcher panel (top right)

• Select the “Content Studio” tool

• Once it has loaded, you will find the superhero site and all it’s content there

Watch Video

Watch this video to learn more about the Superhero Blog Application, and the Content Studio tool:

1.3. Install with Docker 13

Enonic XP Documentation, Release 6.4.3

1.3.5 Next Steps

Congratulations on getting started :-)

If you’re ready for some more fun, we recommend looking into the following:

• Browse Enonic Market for more

• Watch the Platform Video

• Hook up with the community on our forum

• Build your first Application with My First App

• More about Sites

14 Chapter 1. Getting Started

https://youtu.be/YBOghlzIHDg
https://market.enonic.com
https://youtu.be/r_rjD8ScfeM
https://discuss.enonic.com

CHAPTER 2

Tutorials

Ready to learn something new? Well you’ve come to the right place!

You will find our tutorials below.

2.1 XP Installation (Video)

This video demonstrates how to install Enonic XP on your local computer.

Here are some resources related to installation and hosting of Enonic XP

• Install on my Computer

• Operations Guide

• Install as service

• Clustering

• Monitoring

• Backup and Restore

2.2 Project Init (Video)

This video demonstrates how to initialize a new application project using existing project or starter kits

Here are some additional resources related to application development

• Developer Guide

• Projects

• Libraries

2.3 Javascript MVC (Video)

This video demonstrates how to build site html parts using Javascript as controller and Thymeleaf as view technology.

Here are some resources related to site development

• Sites

15

Enonic XP Documentation, Release 6.4.3

• Content Types

• Views

• Part

2.4 My First App

This guide will lead you through the required steps to build the “Hello World” app for Enonic XP.

In this tutorial, you will learn how to initialize new application projects and deploy them. We will create a simple
website that displays a list of countries and cities with a Google map of each city. Upon completion, you will be
familiar with content types, page and part components, page templates, regions, and the Content Studio app. You
won’t be writing any code - just copy/paste from the examples.

The screen-shots below show the final product of this tutorial.

Note: To complete this tutorial, you will need a local running installation (see Install on my Computer) of Enonic XP
and a text editor of your choice. All terminal actions assume you’re using OSX or Linux.

2.4.1 Initialize project

Enonic XP includes the Toolbox CLI which can perform several useful operations. The init-project operation will
clone an existing project from a repository source, such as GitHub. The starter-vanilla project will initialize a new
application with the standard structures required (see Projects).

1. Create a new folder at a suitable location on your filesystem for the application project files. e.g.
/Users/<username>/projects/myapp This will be the project root.

2. Change directory in the terminal to this project root.

3. Run the following command, replacing [$XP_INSTALL] with the path to your unzipped XP installation:

[$XP_INSTALL]/toolbox/toolbox.sh init-project -n com.company.myapp -r starter-vanilla -c 1.0.0

Tip: Only basic characters (a-z, 0-9 and .) must be used for application names, and the name must be globally unique.
We recommend following standard Java package naming conventions such as com.mycompany.myapp.

Your project folder will now be filled with the standard folder structure for developing an app.

2.4.2 Build and Deploy

Now that we have set up a project, we should test that it builds and deploys successfully. But before deploying the
app, the $XP_HOME environment variable must be set to the path of the home folder of the XP installation.

1. Run the following command in the terminal, replacing [$XP_INSTALL] with your installation location (no
brackets):

Linux and OSX:

export XP_HOME=[XP Installation Folder]/home

Windows:

16 Chapter 2. Tutorials

https://github.com

Enonic XP Documentation, Release 6.4.3

set XP_HOME=[XP Installation Folder]/home

2. Execute the following command (from the project root directory):

Linux and OSX:

./gradlew deploy

Windows:

gradlew deploy

The included Gradle wrapper will build the app and then attempt to deploy it to your installation.

The deployment step simply moves the result of the build (the application JAR file) into the $XP_HOME/deploy
directory. From there, Enonic XP will detect, install and start the application automatically.

You will need to access the Administrative console to check that the app has installed and started.

3. Log in to the Administrative console (http://localhost:8080) with the Administrative user credentials (userid su
and password password).

4. Navigate to the Applications Tool. The application you just deployed should be listed here.

5. Click the app called “Myapp” to see information about it and confirm that it has started.

Note: You can change the display name of the application by editing the gradle.properties file.

2.4.3 Create the Hello World Site

Our next goal is to set up a “Hello World” site in Content Studio, but first we must add some initial configuration to
our project.

Site descriptor

An application can serve many purposes and building sites is just one of them. The site.xml file is the descriptor
that will let Enonic XP know that this app can be added to a site. Site-wide configurations can be defined in this file
but we will leave the config element empty for now (see Site Descriptors).

A basic site.xml file was automatically created by the init-project script:

[project-root]/src/main/resources/site/site.xml

Note: All of the files we will be working with are below the “site” directory in the project folder -
src/main/resources/site. All file paths from now on will begin with “site/”.

Page Component

Page components are the most basic building blocks of websites in Enonic XP (see Page). They require a JavaScript
controller and optionally an XML descriptor and an HTML view. This first example does not need a descriptor file.

A page controller (see Page) is a JavaScript file that handles requests such as GET and POST. Controllers usually pass
data in the form of a JavaScript object to be dynamically rendered in an HTML view. No data is passed in the example
below, but the view file is specified and rendered as static HTML.

2.4. My First App 17

http://gradle.org
http://localhost:8080

Enonic XP Documentation, Release 6.4.3

1. Create a folder called hello inside the site/pages directory.

2. Create the page controller and page view files specified below inside the hello folder:

Listing 2.1: Hello page controller - site/pages/hello/hello.js

var thymeleaf = require('/lib/xp/thymeleaf'); // Import the thymeleaf render function

// Handle the GET request
exports.get = function(req) {

// Specify the view file to use
var view = resolve('hello.html');

// Render HTML from the view file
var body = thymeleaf.render(view, {});

// Return the response object
return {

body: body
}

};

The view below is a simple HTML file. This file will be updated later to handle dynamic content.

Listing 2.2: Hello page view - site/pages/hello/hello.html

<!DOCTYPE html>
<html>

<head>
<title>Hello world</title>

</head>
<body data-portal-component-type="page">

<h1>Hello world</h1>
</body>

</html>

3. Once these files are in place, redeploy the app from the terminal with ./gradlew deploy.

Tip: Each page controller must reside in its own folder under the site/pages directory. The name of the controller
JavaScript file must be the same as the directory that contains it. The HTML view file can reside anywhere in the
project and have any valid file name. This allows view files to be shared between components.

Create Site

Now that the files are in place, we can create the site in a browser using the Content Studio admin tool. Switch between

different tools by clicking the menu icon (top right) to open the Launcher panel.

1. In your browser, navigate to the Content Studio tool. (Use the menu icon at the top right)

2. Click “New” and select “Site” from the list of content types (Opens a tab for editing the new site).

3. Fill in the form with Display Name: “Hello World”.

4. Select your “MyApp” application in the “Applications” dropdown.

18 Chapter 2. Tutorials

Enonic XP Documentation, Release 6.4.3

5. If you don’t see a blue area on the right of the page then click this button in the toolbar to open the Page
Editor.

6. Use the dropdown in the Page Editor (blue area) to select the “hello” page.

7. Click the “Save draft” button in the toolbar (top-left).

8. Now close the “Hello World” site editor tab to see the content pane.

When you click on the “Hello World” site content, the preview should look something like this:

2.4.4 Add some Countries

In order to make our “World” slightly more interesting, we need some data - or more specifically countries.

To add structured data (such as countries), we need so-called Content Types. The content type defines the form (and
underlying schema) of items you manage.

1. Create a folder called “country” inside the “content-types” folder of your project.

2. Add the Country content type file below to this folder.

Listing 2.3: Country content type - site/content-types/country/country.xml

<content-type>
<display-name>Country</display-name>
<super-type>base:structured</super-type>
<form>
<input type="TextArea" name="description">
<label>Description</label>
<occurrences minimum="0" maximum="1"/>

</input>
<input type="TextLine" name="population">

<label>Population</label>
<occurrences minimum="0" maximum="1"/>

</input>
</form>

</content-type>

2.4. My First App 19

Enonic XP Documentation, Release 6.4.3

Each content type can have a custom icon that will be visible in the Content Studio interface. Though not required,
content icons can be helpful for content editors.

3. Copy the image below to the the same folder (content-types/country) with the name country.png.

This content type defines form inputs for description and population. Every content has a built-in field for Display
Name. When the app is redeployed, this content type will produce the form seen below in the Content Studio app.

Tip: Each content type must reside in its own folder under the site/content-types directory. The name of the
content type XML file and the icon PNG file must be the same as the directory that contains them.

2.4.5 Create the Country Part

We also need a way to present a country - because every country wants to be seen. This time, rather than just making
another page controller, we will create a Part component. Parts are reusable components that can be added to pages
containing “regions” - more on this later.

1. Create a folder called “country” inside the “parts” folder in your project.

2. Add the part controller and view files below to the “country” folder:

Listing 2.4: Country part controller - site/parts/country/country.js

var portal = require('/lib/xp/portal'); // Import the portal functions
var thymeleaf = require('/lib/xp/thymeleaf'); // Import the Thymeleaf rendering function

// Handle the GET request

20 Chapter 2. Tutorials

Enonic XP Documentation, Release 6.4.3

exports.get = function(req) {

// Get the country content as a JSON object
var content = portal.getContent();

// Prepare the model object with the needed data from the content
var model = {

name: content.displayName,
description: content.data.description,
population: content.data.population

};

// Specify the view file to use
var view = resolve('country.html');

// Return the merged view and model in the response object
return {

body: thymeleaf.render(view, model)
}

};

The part controller file above handles the GET request and passes the country content data to the view file which is
shown below.

Listing 2.5: Country part view - site/parts/country/country.html

<div>
<h3 data-th-text="${name}"></h3>
<div data-th-if="${population}" data-th-text="'Population: ' + ${population}"></div>
<div data-th-if="${description}" data-th-text="${description}"></div>

</div>

2.4.6 The Hello Region Page

Parts start to make sense when placed into a region. Regions are “slots” contained within pages or layouts. Pages and
layouts may contain multiple regions, and each region must have a unique name.

Let’s create a new page component with a single region called “Main”. We will later place the “Country” part into this
region.

The benefit of a region (see Regions) is that a page component can be re-used across multiple different pages by simply
adding different parts to them as needed.

1. Create a folder called “hello-region” in your project’s site/pages/ folder.

2. Add the “Hello region” page descriptor, controller and view files:

Listing 2.6: Page descriptor - site/pages/hello-region/hello-region.xml

<page>
<display-name>Hello Region</display-name>
<config/>
<regions>
<region name="main"/>

</regions>
</page>

The XML file above is a Descriptor. Regions and page configurations can be defined here.

2.4. My First App 21

Enonic XP Documentation, Release 6.4.3

Listing 2.7: Page controller - site/pages/hello-region/hello-region.js

var portal = require('/lib/xp/portal'); // Import the portal functions
var thymeleaf = require('/lib/xp/thymeleaf'); // Import the Thymeleaf rendering function

// Handle the GET request
exports.get = function(req) {

// Get the content that is using the page
var content = portal.getContent();

// Extract the main region which contains component parts
var mainRegion = content.page.regions.main;

// Prepare the model that will be passed to the view
var model = {

mainRegion: mainRegion
}

// Specify the view file to use
var view = resolve('hello-region.html');

// Render the dynamic HTML with values from the model
var body = thymeleaf.render(view, model);

// Return the response object
return {

body: body
}

};

This page controller uses a portal library (see lib-portal in Javascript Libraries) to get the content and extract the
“main” region which was defined in the descriptor XML file.

Listing 2.8: Page view - site/pages/hello-region/hello-region.html

<!DOCTYPE html>
<html>
<head>

<title>Hello world</title>
</head>
<body data-portal-component-type="page">

<h1>Country</h1>
<div data-portal-region="main">

<div data-th-if="${mainRegion}" data-th-each="component : ${mainRegion.components}" data-th-remove="tag">
<div data-portal-component="${component.path}" data-th-remove="tag"></div>

</div>
</div>

</body>
</html>

The view file above defines the place on the page where the region will render component parts that are dragged and
dropped in the Page Editor.

3. When done - redeploy your app once again!

./gradlew deploy

22 Chapter 2. Tutorials

Enonic XP Documentation, Release 6.4.3

Tip: You can restart XP in Development mode and then the app won’t have to be redeployed after making changes.

2.4.7 Add your favorite country

Now that the “Country” content type is installed (and we have a part to display them), we can create new countries
using the Content Studio interface.

1. Right-click on the “Hello World” site from the navigation tree and select “New”. The “Create Content” dialogue
will open.

2. Click “Country” from the list of content types.

3. Fill in the form with the details of your favorite country.

Similar to the site, we must also configure a view for the country

4. In the toolbar, in the top right corner of the page, click the button with the monitor icon to activate the
Page Editor (blue background).

2.4. My First App 23

Enonic XP Documentation, Release 6.4.3

5. In the Page Editor, select “Hello Region” from the template selector dropdown. If the dropdown arrow is not
visible, double-click inside the option field or start typing “hello world” in it to see the options.

6. Click the cog button to open the Inspection Panel (far right).

7. In the Inspection Panel, click the “Insert” tab. This reveals a list of default components that can be placed into
regions.

8. Click and drag the “Part” into the box on the page.

9. A new dropdown option will appear. Select the “country” part.

10. Save draft and close the content edit tab.

When you click on the country in the content pane, you should see a preview of the rendered page, something like this:

2.4.8 The Country Page Template

With our current solution, sadly, we would have to create a new page for every country we add. As this is not a very
effective way of working with large data sets, we will create a page template that will automatically render all country
content.

1. Select the Templates item located below the “Hello World” site in the content pane.

2. Click “New” and select “Page Template”.

3. Fill in the form as follows:

• Display Name: “Country”

• Supports: “Country” (selected from the list of content types)

4. If the blue Page Editor panel is not displayed on the right, click the button in the toolbar.

5. Select the “Hello Region” controller with the dropdown in the blue Page Editor panel.

24 Chapter 2. Tutorials

Enonic XP Documentation, Release 6.4.3

6. Open the Inspection Panel (activated from the cog button in the toolbar).

7. Under the “Insert” tab, drag and drop a “Part” into the empty region where it says “Drop here”.

8. Select the “country” part from the dropdown.

9. Click “Save draft” in the toolbar and close the tab.

Every “Country” content you create will now use this template by default.

Tip: The “Support” property is the key. A page template will support rendering of the content types specified here.

Try this out by creating a few new countries in your site. Be aware that every content you create will be a child of the
content that was selected in the content pane, so make sure you select the “Hello World” site before clicking “New” in
the toolbar. Or get in the habit of right-clicking the parent content and selecting “New” from the context menu. This
way you will never accidentally create a content in the wrong place.

Extra task

Make your Favorite Country use the page template too!

You might remember that your favorite country was “hardcoded” - so let’s change it to use templates as well.

1. In the Content pane, double click the country content to edit it.

2. Open the Inspection Panel and select the “Inspect” tab if it’s not already selected.

3. You should see a label for “Rnederer” with “Custom” selected and a label for “Page controller” with “Hello
Region” selected. If you see a label for “Part” instead then click on the page above the country name to select
the page. Then click the “Inspect” tab. (See image below)

4. Now select “Automatic” from under the “Renderer” label in the “Inspect” tab.

5. Save draft and close the tab.

2.4. My First App 25

Enonic XP Documentation, Release 6.4.3

You can select another Page template at any time, or even customize the presentation of a single content.

2.4.9 The Country List Part

Each country content can now be viewed on a page. But the site home page is still a bit empty. This section will have
you alter the “hello” page controller and view files to list all of the country contents.

1. Edit the “hello” page controller site/pages/hello/hello.js and replace the file’s contents with the
code below:

var thymeleaf = require('/lib/xp/thymeleaf'); // Import the thymeleaf render function
var contentLib = require('/lib/xp/content'); // Import the content service functions
var portal = require('/lib/xp/portal'); // Import the portal functions

// Handle the GET request
exports.get = function(req) {

var model = {};

var nearestSite = portal.getSite();

// Get all the country contents (in the current site)
var result = contentLib.query({

start: 0,
count: 100,
contentTypes: [

app.name + ':country'
],
"query": "_path LIKE '/content" + nearestSite._path + "/*'"

});

var hits = result.hits;
var countries = [];

// Loop through the contents and extract the needed data
for(var i = 0; i < hits.length; i++) {

var country = {};
country.name = hits[i].displayName;
country.contentUrl = portal.pageUrl({

id: hits[i]._id
});
countries.push(country);

}

// Add the country data to the model
model.countries = countries;

// Specify the view file to use
var view = resolve('hello.html');

// Compile HTML from the view with dynamic data from the model
var body = thymeleaf.render(view, model);

// Return the response object
return {

body: body
}

};

26 Chapter 2. Tutorials

Enonic XP Documentation, Release 6.4.3

2. Now edit the “hello” view file site/pages/hello/hello.html and replace its contents with the code
below:

<!DOCTYPE html>
<html>
<head>

<title>Hello world</title>
</head>
<body data-portal-component-type="page">

<h1>Hello world</h1>
<h2>Countries</h2>

<li data-th-each="country : ${countries}">

<a data-th-href="${country.contentUrl}" data-th-text="${country.name}">

</body>
</html>

3. If you didn’t start XP in Development mode then redeploy the app from the command line with ./gradlew
deploy.

Each country that you created is now listed on the home page and the names are also links to the individual content
pages.

2.4.10 Hello Geo World

Going back to your site, you will now see a list of the countries we have added. To make this even more exciting, we
will add a City content type with geo-location and a City list part with configuration capabilities.

City content

The next steps will create a content type for adding cities with location coordinates.

1. Create a folder called city inside the project’s site/content-types folder.

2. Add the content type file below to your project. Because the contet type’s folder is named “city” the file must
be named “city.xml”.

Listing 2.9: City content type - site/content-types/city/city.xml

<content-type>
<display-name>City</display-name>
<super-type>base:structured</super-type>
<form>
<input type="GeoPoint" name="location">
<label>Location</label>
<occurrences minimum="1" maximum="1"/>

</input>
<input type="TextLine" name="population">

<label>Population</label>
<occurrences minimum="0" maximum="1"/>

</input>
</form>

</content-type>

2.4. My First App 27

Enonic XP Documentation, Release 6.4.3

The file above defines a content type for cities with a required field for the location in latitude and longitude.

3. Copy the image below and save it in the same folder with the City content type. Name it “city.png”.

City list part

We need a part component to display the city data. It will list the cities and show a Google map of each location.

1. Create a folder called city-list inside the project’s site/parts folder.

2. Add the part descriptor file. It must be named city-list.xml.

Listing 2.10: City list part descriptor - site/parts/city-list/city-list.xml

<part>
<display-name>City list</display-name>
<config>
<input type="ComboBox" name="mapType">
<label>Map type</label>
<occurrences minimum="0" maximum="1"/>
<config>

<option value="ROADMAP">ROADMAP</option>
<option value="SATELLITE">SATELLITE</option>
<option value="HYBRID">HYBRID</option>
<option value="TERRAIN">TERRAIN</option>

</config>
</input>
<input type="TextLine" name="zoom">
<label>Zoom level 1-15</label>
<occurrences minimum="0" maximum="1"/>

</input>
</config>

</part>

The part descriptor above has a configuration similar to those found in content types.

3. Add the part controller file. It must be named city-list.js.

Listing 2.11: City list part controller - site/parts/city-list/city-list.js

var contentLib = require('/lib/xp/content'); // Import the content library functions
var portal = require('/lib/xp/portal'); // Import the portal functions
var thymeleaf = require('/lib/xp/thymeleaf'); // Import the Thymeleaf rendering function

// Handle the GET request
exports.get = function (req) {

// Get the part configuration for the map

28 Chapter 2. Tutorials

Enonic XP Documentation, Release 6.4.3

var config = portal.getComponent().config;
var zoom = parseInt(config.zoom) && config.zoom <= 15 && config.zoom >= 1 ? config.zoom : 10;
var mapType = config.mapType || 'ROADMAP';

// String that will be inserted to the head of the document
var googleMaps = '<script src="http://maps.googleapis.com/maps/api/js"></script>';

var countryPath = portal.getContent()._path;

// Get all the country's cities
var result = contentLib.query({

start: 0,
count: 100,
contentTypes: [

app.name + ':city'
],
query: "_path LIKE '/content" + countryPath + "/*'",
sort: "modifiedTime DESC"

});

var hits = result.hits;

var cities = [];

if (hits.length > 0) {
googleMaps += '<script>function initialize() {';

// Loop through the contents and extract the needed data
for (var i = 0; i < hits.length; i++) {

var city = {};
city.name = hits[i].displayName;
city.location = hits[i].data.location;
city.population = hits[i].data.population ? 'Population: ' + hits[i].data.population : null;

cities.push(city);

if (city.location) {
city.mapId = 'googleMap' + i;

googleMaps += 'var center' + i + ' = new google.maps.LatLng(' + city.location + '); ';

googleMaps += 'var mapProp = {center:center' + i + ', zoom:' + zoom +
', mapTypeId:google.maps.MapTypeId.' + mapType + ', scrollwheel: false };' +
'var map' + i + ' = new google.maps.Map(document.getElementById("googleMap' + i + '"),mapProp); ' +
'var marker = new google.maps.Marker({ position:center' + i + '}); marker.setMap(map' + i + ');';

}

}

googleMaps += '} google.maps.event.addDomListener(window, "load", initialize);</script>';
}

// Prepare the model object that will be passed to the view file
var model = {

cities: cities
};

2.4. My First App 29

Enonic XP Documentation, Release 6.4.3

// Specify the view file to use
var view = resolve('city-list.html');

// Return the response object
return {

body: thymeleaf.render(view, model),
// Put the maps' javascript into the head of the document
pageContributions: {

headEnd: googleMaps
}

}
};

This controller uses Page Contributions to put the Google Maps JavaScript into the head of the document.

4. Add the part view file. It must be named city-list.html to match the “resolve” function in the controller.

Listing 2.12: City list part view - site/parts/city-list/city-list.html

<div class="cities" style="min-height:100px;">
<h3>Cities</h3>
<div class="city" data-th-each="city : ${cities}">

<h3 data-th-text="${city.name}"></h3>
<div data-th-if="${city.population}" data-th-text="${city.population}"></div>
<div data-th-id="${city.mapId}" data-if="${city.mapId}" style="width:100%;height:300px;"></div>

</div>
</div>

5. If you didn’t start XP in Development mode then build and deploy your project one final time with ./gradlew
deploy.

All of the project’s files are now complete. The rest of the steps will be performed in the Content Studio interface.

2.4.11 Create Cities

Now let’s make use of the new city content type and part component. First we need to add the “City list” part to the
“Country” page template.

1. Edit the “Country” page template. Find it in the content pane below the templates

2. Open the Inspect Panel by clicking the cog button in the toolbar.

3. Under the Insert tab, click and drag a Part to the page region below the “country” part. (This may be a
bit tricky because the “country” part is small.)

4. Select the “City list” part from the dropdown in the box.

5. Save and close the tab.

Now we need to create a few City contents under each country. (Sample data is available in the table below.)

1. From the content pane, select a country content that you created earlier. It is important that each city content is
created under its country.

2. Right-click the country content and select “New”. The “Create content” dialogue will open.

30 Chapter 2. Tutorials

Enonic XP Documentation, Release 6.4.3

3. Now select “City” from the list of content types.

4. Fill in the city name and location; the population is optional. The location format must be comma separated
latitude and longitude with decimals.

5. Save draft.

6. Create several more city contents below each country content by repeating the previous steps. Sample data is
provided in the table below.

Country City Lat,Long Population

USA
San Francisco 37.7833,-122.4167 837,442
Las Vegas 36.1215,-115.1739 603,488
Washington D.C. 38.9047,-77.0164 658,893

Norway
Oslo 59.9100,10.7500 618,683
Bergen 60.3894,5.3300 265,857
Trondheim 63.4297,10.3933 178,021

Colombia
Bogota 4.5981,-74.0758 7,000,000
Medellin 6.2308,-75.5906 2,440,000
Barranquilla 10.9639,-74.7964 1,885,500

Each country page will now have a list of the cities you created with a Google map of the location. It should look
something like this:

2.4. My First App 31

Enonic XP Documentation, Release 6.4.3

2.4.12 Configure City List

The City list part descriptor (site/parts/city-list/city-list.xml) has configuration inputs for the map type and zoom level.
You can set the default values for these inputs by editing the City list part in the Country page template.

1. Open the Country page template for editing.

32 Chapter 2. Tutorials

Enonic XP Documentation, Release 6.4.3

2. Open the Inspection Panel by clicking the cog button in the toolbar.

3. Click on the City list part in the Page Editor panel.

4. Under the “Inspect” tab of the Inspection Panel, set the Map type to “HYBRID” and Zoom level to 12.

5. Save draft and close the edit tab.

Now all of the countries will show the city maps with the new settings. You can override these defaults for any
individual country by editing the Country content and changing its City list part configuration.

2.4.13 Go Online

Now that your “Hello World” is complete, it’s time to publish.

1. Select the “Hello World” site in the content pane

2. Right-click and select “Publish” from the context menu, or click the “Publish” button in the toolbar

3. The Publishing Wizard will appear. Check the “Include children” checkbox

4. Verify that all your items are listed - click “Publish”!

When publishing content, all the selected items and changes are “cloned” from draft to the master branch (Repository).

You will always see the draft version of content in the preview window and the Page Editor of the Con-
tent Studio. If you have placed your site on root level, you can also see your live site at this url:
http://localhost:8080/portal/master/hello-world.

Well done - you just created your first App for Enonic XP - The Enonic team congratulates you - we look forward to
seeing all the brilliant things you will make and are always looking for feedback.

2.4. My First App 33

https://discuss.enonic.com

Enonic XP Documentation, Release 6.4.3

2.4.14 Some Pro Tips

Adding libraries to your project

Why re-invent the wheel for each app you make? Reusable code can be created in libraries and added to any XP
project. Some essential tools can be found in the Util lib, Menu lib, RECAPTCHA and Landing page libraries.

Adding apps to your site

A website can be created from a single app. But a site’s functionality can be extended by adding other pre-made
apps. SEO Meta Fields, Disqus comments and Google Analytics are just a few of the many apps that can instantly add
features to your site. See what’s available at the Enonic Marketplace.

Handling Multiple projects

A best practice for working on multiple projects would involve keeping a separate XP_HOME folder for each project.
The folder structure for such a setup would look something like this:

/Users/<name>/development
/Users/<name>/development/software/<xp-install-version>
/Users/<name>/development/xp-homes/<project-name>/home
/Users/<name>/development/projects/<project-name>/<project-source-files>

An actual implementation with projects called my-first-app and company-site would look like this:

/Users/mla/development/software/enonic-xp-6.3.1
/Users/mla/development/software/enonic-xp-6.4.0
/Users/mla/development/xp-homes/my-first-app/home
/Users/mla/development/xp-homes/company-site/home
/Users/mla/development/projects/my-first-app/...
/Users/mla/development/projects/company-site/...

This allows you to have one Enonic XP installation for each version and as many different XP_HOME folders as
you need for your projects. When switching from one project to another, you only have to change the XP_HOME
environment variable and then restart the installation of the Enonic XP version that the project was created for.

Check this Enonic Labs article for a more in-depth process. It also includes some bash scripting that will help with
setting and changing $XP_HOME and starting and stopping XP.

Logging JSON objects

While developing an app, it can be helpful to see the structure of objects returned by library functions. The best way
to do this is to set up a utilities JavaScript file in the project lib folder. Add the following function to the utilities file:

site/lib/utilities.js

exports.log = function (data) {
log.info('Utilities log %s', JSON.stringify(data, null, 4));

};

Call the log function in any controller like the example below and then check the log after refreshing the page.

var util = require('utilities');

var content = portal.getContent();
util.log(content);

34 Chapter 2. Tutorials

https://github.com/enonic/lib-util
https://github.com/enonic/lib-menu
https://github.com/enonic/lib-recaptcha
https://github.com/enonic/lib-landingpage
http://market.enonic.com/applications
http://labs.enonic.com/articles/working-with-multiple-xp-projects

Enonic XP Documentation, Release 6.4.3

This logging function and many other useful functions are included in the Util library.

Continuous build with Dev Mode or Gradle

It can be quite time consuming to frequently use the terminal to redeploy an app during development. Starting Enonic
XP in dev-mode will make most changes to your app code visible immediately on localhost. See the Development
mode page for more information about its capabilities and limitations.

Another option is to use ./gradlew -t deploy in the terminal from the project root. This will automatically
build and redeploy your app every time changes to a file are detected. This method is slower than dev-mode, but it
handles some situations that dev-mode doesn’t. Gradle 2.7 or newer is required.

Both dev-mode and Gradle continuous-mode require the $XP_HOME environment variable to be set in the terminal
window.

2.4.15 Next Steps

This tutorial only covered the basics of app development. Explore the documentation for more in-depth coverage.

Check our GitHub page for examples of more advanced apps. The Superhero blog app is also a good place to see more
advanced code. The Google Analytics app demonstrates extending the Content Studio interface

Need help? Ask questions on our forum or answer questions from others.

The screenshot below shows the Content Studio interface with content on the left and a site preview on the right.

2.4. My First App 35

https://github.com/enonic/lib-util
https://github.com/enonic
https://github.com/enonic/app-superhero-blog
https://github.com/enonic/app-google-analytics
https://discuss.enonic.com

Enonic XP Documentation, Release 6.4.3

The image below is what a page of the site will look like when finished.

36 Chapter 2. Tutorials

CHAPTER 3

Developer Guide

We <3 Developers!

We’re thrilled to see you here - If you’re a first timer to Enonic XP, we recommend starting on My First App and the
Tutorials section - or if you’re more familiar with XP, how about drilling into the Node Domain chapter. If you’re
actually looking for APIs - you’ll find them over here API and Reference Guide.

37

Enonic XP Documentation, Release 6.4.3

38 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

3.1 Applications

Like anything that calls itself an operating system - Enonic XP has Applications. The applications can be installed and
run on a single server, or an entire cluster.

It is important to note that applications are not limited to being “Web Applications” - they can be running server jobs,
provide internal API’s to other applications, offer HTTP services, include custom Admin Tools, extend other tools or
applications, or be used to build sites.

Applications may even carry data, for instance, to initialize a repository or populate a new site.

3.1.1 Life Cycle

Applications and have the following life-cycle:

• installed

• started

• stopped

• uninstalled

When installing applications in an XP cluster - the application is uploaded and stored in the system repository - and
then started on all nodes. If an application contains an initialization script, this script will only be executed on the
master node - running only once.

3.1.2 Composition

An application file is typically a JAR (.jar). This is short for Java Archive. Enonic XP is built on top of Java and
the powerful OSGi framework, so developers with special requirements may utilize capabilities such as exposing and
consuming services from other applications. However, since Enonic XP is designed to run Serverside JavaScript, most
Projects will be completely free of Java.

To speed up development and enable a high degree of re-use, applications can be composed of Libraries in addi-
tion to your own code. Libraries can be built almost like you create applications. Libraries (and applications) are
shared through Maven repositories. An example is https://repo.enonic.com. Anyone may configure and run their own
repository - for internal as well as external use.

For your amusement, we can also tell you that Enonic XP itself is composed from more than 50 different applications
- making the platform extremely modular.

3.1.3 Other Resources

To learn more about applications and how they are built - continue reading the Developer Guide, but pay special
attention to the following chapters:

• Projects

• Libraries

3.1. Applications 39

https://repo.enonic.com

Enonic XP Documentation, Release 6.4.3

3.2 Libraries

Enonic XP provides the concept of libraries in order to speed up development and re-use of functionality and code.
Technically, libraries are very similar to Applications, but the main difference is that a library cannot be installed and
started by itself.

So, a library may consist of all the same objects you find in applications - such as Assets, Content Types and HTTP
Controllers - things you may need in an application.

3.2.1 Finding Libraries

A number of standard and 3rd party libraries are available with the core XP release, check out: Javascript Libraries.
You will also find a wide range of libraries on the Enonic Market - https://enonic.com/market/libraries

3.2.2 Adding libraries

Libraries are added to your project by simply referring to them in your build script. Read more about this on our
Projects documentation.

3.2.3 Best practice

If you wonder when/how you should create a library, here are some guidelines

• Strong cohesion: Keep the components in a library together only if they are strongly related. Split them up in
multiple libs if they are not.

• Weak coupling: A library should avoid having dependencies. In practice, this will not always be possible, but
apart from the XP APIs, other dependencies should raise an alarm, and only be included after careful analysis
showing there is no other way.

• Use names that are self-explanatory and follow the java naming conventions - for example
com.company.lib.mylib.

3.3 Projects

This section provides an overview of how to setup, build and deploy new projects for applications and libraries.

3.3.1 Project Initialization

The fastest way to get started with any XP project is to use a starter project. The starter-vanilla project on GitHub -
https://github.com/enonic/starter-vanilla is often used.

To get going, we recommend using the init-project script that is a part of the Enonic XP installation.

In the terminal, move to the XP installation’s toolbox folder. Copy/paste the command below and specify an empty
folder for -d and an appropriate app name for -n. Then execute the command to get your very own project initialized.

toolbox.sh init-project -d <projectFolder> -n com.mycompany.myApp -r enonic/starter-vanilla

40 Chapter 3. Developer Guide

https://enonic.com/market/libraries
https://github.com/enonic/starter-vanilla

Enonic XP Documentation, Release 6.4.3

The init-project command simply clones the entire Git project (to the local folder that was specified with -d), then
removes the Git references. It also updates your build script files by adding the specified app name (-n) to the project.

Once this is done, you must clean up and adapt the code to your own requirements.

You may, in principle, apply this command to any standard XP application or library project!

3.3.2 Project structure

To build applications with Enonic XP, you will typically setup a project. The fastest way to do this is using the
init-project feature included in the Enonic XP toolbox utility.

The project structure is a similar to Maven projects for those who are familiar with that.

Below is a sample project folder structure - all items are folders, except for site.xml and build.gradle:

my-first-app/
build.gradle
src/
main/

java/
resources/

admin/
widgets/
tools/

assets/
lib/
services/
site/
content-types/
error/
filters/
i18n/
layouts/
mixins/
pages/
parts/
site.xml

views/

Every file and folder has a specific function and meaning.

build.gradle Gradle script for building the application or library. This file describes the actual build process.

src/main/java/ Optional folder where you place any java code that might be included in the project - following
traditional Maven style development.

src/main/resources/ This is where all non-java code is placed, and thus where you will typically be working with
your XP projects. All folders described below are relative to this folder

admin/tools This is where you place code for admin tools. Tools are administrative user interfaces (apps) running
in their own separate browser tab. Create tools if you need a back-office utility to manage your applications or
similar.

admin/widgets Widgets are essentially user interface components that can be embedded within selected tools. I.e.
you can create a widget that extends the Content Studio detail panel.

assets/ Public folder for external css, javascript and static images etc. etc.

lib/ This is the last place the global require JavaScript-function looks, so it is a good place to put default JavaScript
files here.

3.3. Projects 41

https://maven.apache.org/
https://gradle.org/

Enonic XP Documentation, Release 6.4.3

services/ Services are a special type of http controller that will be mounted on a fixed url pattern that looks like this:
_/service/<myapp>/<myservice>. You may use services like any other JavaScript controller in the system.

site/site.xml The site.xml file contains basic information for a site created with the application. Settings for the
application can be defined in the config element and the values for these settings can be updated using the
Content Studio tool.

<site>
<x-data mixin="menu-item"/>
<config>

<field-set name="info">
<label>Info</label>
<items>
<input type="TextLine" name="company">

<label>Company</label>
<occurrences minimum="1" maximum="1"/>

</input>
<input type="TextArea" name="description">
<label>Description</label>
<occurrences minimum="1" maximum="1"/>

</input>
</items>

</field-set>
</config>

</site>

site/content-types/ Content schemas are placed here. Used to create structured content (see Content Types).

site/error/ Create custom http error pages by placing an error controller in this directory (see Error Handling).

site/filters/ This is where generic http response filters are placed. Filters can be used for post processing any given
request - also across applications added to a site. A common use case is adding script tags to pages - but
possibilities are virtually endless.

site/i18n/ This folder will contain application localization files (i18n is short for Internationalization). Files placed
in this folder must follow Java’s standard property file format, one file for each language. Here is an example:
https://docs.oracle.com/javase/tutorial/i18n/resbundle/propfile.html

site/mixins/ Mixin schema-types are placed here. A mixin can be used to add common fields to multiple content-types
or other schemas (see Mixins).

site/pages/ Page controllers are placed here. They will be used to render pages and page templates (see Page).

site/parts/ Part controllers should be placed here. Parts are dynamically configurable components that can be placed
on pages (see Part).

site/layouts/ Layout controllers should be placed here. Layouts are similar to parts, but in addition have one or more
regions. Regions enable placement of other components inside the layout. (see Layout).

views/

Views are any kind of files that are used for rendering. The folder is optional, as view files can be placed
anywhere you want, just keep in mind what path to use when resolving them (see Views).

3.3.3 Build script

By default, Enonic uses Gradle as the main build tool. This is a highly flexible Java-based utility that builds on the
popular Maven project tools and code repository structures. Enonic provides a Gradle plugin that greatly simplifies
the build process. If you used the starter-vanilla project to initialize your project, you will have all the basic tools you
need to get going.

42 Chapter 3. Developer Guide

https://docs.oracle.com/javase/tutorial/i18n/resbundle/propfile.html

Enonic XP Documentation, Release 6.4.3

Running a build

If you have not installed Gradle, the fastest way to get going is to execute the gradle wrapper script.

Move into your project root folder and execute the following command:

OSX/Linux:

./gradlew build

Windows:

gradlew.bat build

The gradle wrapper will download all necessary files to run gradle and produce the project artifacts. These will
typically be placed in the projects build/libs/ folder.

gradle.properties

Your project should contain a gradle.properties file. Set xpVersion to the version of Enonic XP you are
working with, and look over the other settings to make sure they are correct.

build.gradle

The build.gradle file defines all the dependencies to other libraries.

There are three standard scopes (keywords) used in the dependency list

• Compile (default gradle scope, compiles library and adds it to class path - standard for pure Java libraries)

• Include (XP custom scope that merges the /src/main/resources folder in the library with your project - any code
in your project overwrites the library files)

• Webjar (Extracts the content of the specified Webjar - http://www.webjars.org/ - placing it into the assets folder,
using the version number as root folder)

gradle deploy

To have Gradle automatically deploy new applications to your XP installation, you have to specify an environment
variable that tells Gradle where to place the artifact (application file).

OSX/Linux:

export XP_HOME=/path/to/xp-installation/home

Windows:

set XP_HOME=c:\path\to\xp-installation\home

With $XP_HOME set, run the following command to build and deploy the file

OSX/Linux:

./gradlew deploy

Windows:

gradlew.bat deploy

Once completed, your XP installation will detect, install and start the files.

3.3. Projects 43

http://www.webjars.org/

Enonic XP Documentation, Release 6.4.3

3.3.4 Installing an application

There are several ways to install applications

• Uploading directly from the “Applications” admin tool - this will install and start the application in the entire
cluster

• Use the Toolbox CLI command line utility - this will install and start the application in the entire cluster.

• And finally, the developer way - copying the application JAR file to the $XP_HOME/deploy folder - this will
install and start the application on the local node (typically used by developers)

Once an application is placed in this folder, it will be picked up, installed and started by the local instance. If the
application is removed it will be stopped and uninstalled.

OSX/Linux command line to copy the artifact to the deploy folder:

cp build/libs/[artifact].jar $XP_HOME/deploy/.

For your convenience - we have simplified this process by adding a deploy task to your build. Instead of manually
copying to the deploy folder, you can simply execute gradle deploy:

./gradlew deploy

For the deploy command to work, you have to set the XP_HOME environment variable (in your shell) to your actual
Enonic XP home directory.

Run the following command to set the XP_HOME variable

OSX/Linux:

export XP_HOME=/path/to/xp-installation/home

Windows:

set XP_HOME=c:\path\to\xp-installation\home

Continuous Deploy

To continuously build and deploy your application on changes, you can use Gradle continuous mode. This will watch
for changes and run the specified task when something changes. To use this with the deploy task, you can run the
following command:

./gradlew -t deploy

This will deploy and reload the application on the server when something changes in your project. The continuous
deployment mode is most useful when coding Java, or other changes that require a full compile and re-deploy.

For the instant updates of JavaScript code without re-deploying, check out Development mode.

3.3.5 Sample library

In this example, we will create support for redirection of URLs. For this, we need a content-type, and a simple
JavaScript file.

The content-type, let’s just call it url, defines the URLs that the code may redirect to. So in the content-types
directory, add a new directory and name it url. Then, in this directory, create the content type:

44 Chapter 3. Developer Guide

https://docs.gradle.org/current/userguide/continuous_build.html

Enonic XP Documentation, Release 6.4.3

Listing 3.1: src/main/resources/site/content-types/url/url.xml

<?xml version="1.0" encoding="UTF-8"?>
<content-type>

<display-name>URL</display-name>
<content-display-name-script>$('url')</content-display-name-script>
<super-type>base:structured</super-type>
<form>
<input type="TextLine" name="url">
<label>URL</label>
<occurrences minimum="1" maximum="1"/>

</input>
</form>

</content-type>

To make it easier to notice when creating a new content in Enonic XP, add this icon, url.png in the same directory:

Now, we need the JavaScript. Since we are talking about a redirect here, the script must be placed on a page. So, in
the pages directory, we add a folder: url-redirects . In this, we need the page descriptor:

Listing 3.2: src/main/resources/site/pages/url-redirect/url-redirect.xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<page>

<display-name>URL redirect</display-name>
<config/>

</page>

Then, we add the code that does the actual redirect:

Listing 3.3: src/main/resources/site/pages/url-redirect/url-redirect.js

var portal = require('/lib/xp/portal');

// Handle GET request
exports.get = handleGet;

function handleGet() {
var result = portal.getContent();
var url = result.data.url;

var response = {};

if (url) {
response.redirect = url;

}
else {

response.body = 'No URL configured.'
}

3.3. Projects 45

Enonic XP Documentation, Release 6.4.3

return response;
}

This library can now be included in any app where you might want redirect functionality, or in other libs that can build
more advanced functions based on this simple example.

3.3.6 Development mode

You can start the server in dev-mode to speed up the development process. When using this mode, you only need to
deploy your code once - or when certain situations arise (see below).

Start server using dev-mode:

$ $XP_INSTALL/bin/server.sh dev

First time you will need to deploy the code (app, lib, etc.) using the deploy task (see Installing an application):

$./gradlew deploy

After that, you do not need to redeploy your application except...

• when modifying Java code.

• when deleting a page, part or layout component.

• when deleting a content-type, mixin or relationship-type.

• when changing source directories.

• if you have source-transformation tools (typescript, less, sass).

Warning: Do not use dev-mode in production environments. It takes a little more time to render pages and caches
are sometimes disabled.

3.4 Schemas

As the low level storage of Enonic XP is entirely schema-less, we have created a high-level schema concept that is
used to configure many of the forms you see in the Enonic XP Admin.

Schemas are made up of the following main concepts:

• A rich set of widgets called Input Types

• Building rich Forms by combining Input Types and layouts

• Horizontal inheritance across forms through the use of Mixins

3.4.1 Input Types

Input types are specified by XML snippets and used in combinations to build forms. An input type has both a front-end
and a back-end. Each input type will return a property with a specific value type.

The following XML configuration is common for all input types:

46 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

<input name="name" type="type-name">
<label>Some label</label>
<occurrences minimum="0" maximum="1"/>
<config/>

</input>

@name The name attribute is the technical name used in templates and result sets to refer to this value.

@type The type refers to one of the many input types which are explained below.

label The label text will become the label for the input field in the editable form of the admin console.

occurrences Detailed definition of how many times this field may be repeated inside one content. Set minimum to
zero for fields that are not required, and maximum to zero for fields that have no restriction on the number of
values.

config Optional configuration that is used by some of the input-types. The config consists of elements with optional
attributes. Each element/attribute name with dashes is automatically camel-cased (relationship-type ->
relationshipType).

Input types

AttachmentUploader

This field enables uploading of one or more files that will be stored as attachments to the current node/content. This is
different from media content where each media is a separate node that can be linked to.

<input type="AttachmentUploader" name="myname">
<label>My Label</label>
<occurrences minimum="0" maximum="0"/>

</input>

CheckBox

A checkbox field has a value if it is checked, or no value if it is not checked. Therefore, the only values for occurrences
that makes sense is a minimum of zero and a maximum of one.

<input name="name" type="CheckBox">
<label>Required</label>
<occurrences minimum="0" maximum="1"/>

</input>

ComboBox

A ComboBox needs a list of options.

<input name="name" type="ComboBox">
<label>Required</label>
<occurrences minimum="1" maximum="1"/>
<config>
<option value="one">Option One</option>
<option value="two">Option Two</option>

</config>
</input>

option This element defines the option label. The value attribute defines the actual value to set when this option is
selected. Multiple option settings are ordered.

3.4. Schemas 47

Enonic XP Documentation, Release 6.4.3

Date

A simple field for dates with a calendar pop-up box in the admin console. The default format is yyyy-MM-dd.

<input name="name" type="Date">
<label>Date (with tz)</label>
<occurrences minimum="0" maximum="1"/>
<config>
<timezone>true</timezone>

</config>
</input>

timezone true if timezone information should be used. Default is false.

DateTime

A simple field for dates with time. A pop-up box with a calendar and time selector allows easy editing. The format is
yyyy-MM-dd hh:mm for example, 2015-02-09T09:00. The date-time could be of type local (no datetime)
or with a timezone. This is done using configuration:

<input name="name" type="DateTime">
<label>DateTime (with tz)</label>
<occurrences minimum="0" maximum="1"/>
<config>
<timezone>true</timezone>

</config>
</input>

timezone true if timezone information should be used. Default is false.

Double

A double value input-type.

GeoPoint

Stores a GPS coordinate as two comma-separated decimal numbers.

• The first number must be between -90 and 90, where a negative number indicates a location south of equator
and a positive is north of the equator.

• The second number must be between -180 and 180, where a negative number indicates a location in the western
hemisphere and a positive number is a location in the eastern hemisphere.

HtmlArea

A field for inputting multi-line text, with formatting options.

Long

A simple field for large integers.

48 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

RadioButton

An input type for selecting one of several options, defined in the config element.

<input name="name" type="RadioButton">
<label>Radio Buttons</label>
<occurrences minimum="0" maximum="0"/>
<config>
<option value="one">Option One</option>
<option value="two">Option Two</option>

</config>
</input>

option This element defines the option label. value attribute defines the actual value to set when this option is
selected. Multiple option settings are ordered.

Tag

An intuitive input format for specifying a set of simple strings.

TextArea

A field for inputting multi-line text.

TextLine

A field for inputting a single line of text.

<input name="socialSecurityNumber" type="TextLine">
<config>
<regexp>\b\d{3}-\d{2}-\d{4}\b</regexp>

</config>
</input>

regexp A regular expression that restricts the valid values for the input. Optional, if not set any text is a valid value.

Time

A simple field for time. A pop-up box allows simple selection of a certain time. The default format is hh:mm.

3.4.2 Item Sets

Item sets represent a special capability of forms that allow you to nest other form items hierarchically.

Inputs in item sets are grouped into logical units, allowing them to repeat as a complex input type - since item sets
support occurrences too. Item sets are both visually and semantically grouped as the name of the item set is used in
the persisted property structure. An item set actually produces a property set.

Here is an example of an item set with two inputs. The resulting form will allow multiple entries of phone numbers
with labels:

3.4. Schemas 49

Enonic XP Documentation, Release 6.4.3

<item-set name="contact_info">
<label>Contact Info</label>
<items>
<input name="label" type="TextLine">
<label>Label</label>
<occurrences minimum="0" maximum="1"/>

</input>
<input name="phone_number" type="TextLine">
<label>Phone Number</label>
<occurrences minimum="0" maximum="1"/>

</input>
</items>
<occurrences minimum="0" maximum="0"/>

</item-set>

name The set needs a name for reference in result sets.

label The set label is printed as a header on the box that will surround the group in the input form.

occurrences Occurrence configuration can be done at any level.

Tip: It is also possible to nest item sets inside each other

3.4.3 Schema Layouts

To shape the presentation of a form, one can use layouts. Currently, only one layout exists.

Field set

A field set may be used to group items visually. The example below will create a form in the admin console with the
inputs grouped under the label of the field set.

<field-set name="metadata">
<label>Metadata</label>
<items>
<input name="tags" type="Tag">

<label>Tags for tag cloud</label>
<occurrences minimum="0" maximum="5"/>

</input>
</items>

</field-set>

@name The field set needs a name for reference.

label The label will appear as a heading above the inputs that are grouped inside.

items The fields inside the set must be listed inside an items element.

3.4.4 Mixins

Structures of data that are repeated in different content types or component descriptors may be defined as mix-
ins. Such structures (like a set of address fields or a combobox with a standard set of values) would be de-
fined once in a mixin and then the mixin would be called in other schemas that require these fields. The mixin

50 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

definition file must be placed in the folder site/mixins/[name] and named [name].xml. For example,
site/mixins/us-address/us-address.xml.

<mixin>
<display-name>U.S. Address format</display-name>
<items>
<item-set name="address">
<label>Address</label>
<occurrences minimum="0" maximum="0"/>
<items>

<input type="TextLine" name="addressLine">
<label>addressLine</label>
<occurrences minimum="0" maximum="2"/>

</input>
<input type="TextLine" name="city">
<label>City</label>
<occurrences minimum="1" maximum="1"/>

</input>
<input type="TextLine" name="state">
<label>State</label>
<occurrences minimum="0" maximum="1"/>

</input>
<input type="TextLine" name="zipCode">
<label>Zip code</label>
<occurrences minimum="0" maximum="1"/>

</input>
</items>

</item-set>
</items>

</mixin>

Tip: A mixin may optionally have its own specific icon. The icon can be assigned to the mixin by adding a PNG file
with the same name, in the mixin folder, e.g. site/mixins/us-address/us-address.png

Using a mixin

Below is an example of a simple content type that uses the us-address mixin (inline) and the menu-item mixin
(x-data). Notice that the name of the mixin file is used and not the mixin’s Display Name.

<content-type>
<display-name>Using mixins</display-name>
<super-type>base:structured</super-type>
<form>
<field-set name="basic">

<label>Status</label>
<items>

<inline mixin="us-address"/>
</items>

</field-set>
</form>
<x-data mixin="menu-item"/>

</content-type>

inline When a mixin is added with the inline element, the inputs will be included with the content data. Inline
mixins can be used in content types, component descriptors, and the site.xml file.

3.4. Schemas 51

Enonic XP Documentation, Release 6.4.3

x-data Mixins can also be added with an x-data element in content types and the site.xml file. Be aware that any
x-data inputs added to the site.xml file will be applied to all content types in the site.

3.4.5 Forms

The main purpose of the schema concept is to construct forms that can be edited through the admin interface or used
programmatically, without coding a custom interface and complex controllers. A form is basically a composition of
layouts and input types. When a form is populated and submitted, the result will be a basic property structure that can
be stored directly into Nodes.

Some hands on examples where forms are used in the system are Content Types and Sites.

Basic Setup

Forms can be defined through Java or XML, where the latter is the most common.

Below is an example configuration in xml:

<form>
<input name="choice1" type="ComboBox">
<label>Choice1</label>
<occurrences minimum="0" maximum="1"/>
<config>

...
</config>

</input>
</form>

Adding Mixins

To simplify maintenance of forms, mixins can be created and injected into a form simply by referencing it. The form
will render as if everything in the mixin was written directly in the form itself. Read more about Mixins.

<form>
<field-set name="basic">
<label>Status</label>
<items>

<inline mixin="us-address"/>
</items>

</field-set>
</form>

3.5 Serverside JavaScript

Enonic XP primarily uses server-side JavaScript for application development. Our goal is to enable any developer -
PHP, .net, Java, Python, etc, etc to quickly be productive with Enonic XP.

Here are some highlights on how it works:

• Runs on the Java Virtual Machine using the Nashorn JavaScript engine, a high performance, portable and robust
platform.

• Multithreaded request-response approach - simplifying software development and utilization of modern multi-
core hardware

52 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

• Implements central parts of CommonJS module specification (http://wiki.commonjs.org/wiki/Modules/1.1) like
RequireJS - but not all

• You can invoke Java directly from your scripts - quickly accessing powerful Java libraries

Beyond simply executing JavaScript on the server, the XP framework provides a range of capabilities, primarily
associated with HTTP. Read more below to learn about the basic concepts.

3.5.1 HTTP Controllers

Serverside JavaScript is used in the http controllers of Enonic XP. Every Page, Part, Layout, Services etc. must have a
controller.

JavaScript controllers are invoked from the portal by exporting functions matching the desired HTTP Method it imple-
ments. As such, any controller must explicitly declare one or more “exports” in order to handle requests: GET, POST,
DELETE are examples of such methods.

The appropriate function will automatically be invoked for every request sent to the controller

Example usage

// Handles a GET request
exports.get = function(req) {}

// Handles a POST request
exports.post = function(req) {}

A handler function receives a parameter with a request object, and returns a response object.

exports.get = function(request) {

if (request.mode === 'edit') {
// do something...

}

var name = request.params.name;
log.info('Name = %s', name);

return {
body: 'Hello ' + name,
contentType: 'text/plain'

};

};

3.5.2 Global JavaScript objects and functions

The following global functions and objects are available in the Enonic XP framework.

App

The globally available app object holds information about the contextual app it was delivered from.

app.name
Name of the application.

app.version

3.5. Serverside JavaScript 53

http://wiki.commonjs.org/wiki/Modules/1.1

Enonic XP Documentation, Release 6.4.3

Version of the application.

Examples:

// Get application name
var name = app.name; // com.enonic.app.superhero

// Get application version
var version = app.version; // 1.2.0

Log

This gobally available log object holds the logging methods. It’s one method for each log level and takes the same
number of parameters.

log.debug(message[, args])
Arguments

• message (string) – Message to log as a debug-level message.

• args (array) – Optional arguments used in message format.

log.info(message[, args])
Arguments

• message (string) – Message to log as an info-level message.

• args (array) – Optional arguments used in message format.

log.warning(message[, args])
Arguments

• message (string) – Message to log as a warning-level message.

• args (array) – Optional arguments used in message format.

log.error(message[, args])
Arguments

• message (string) – Message to log as an error-level message.

• args (array) – Optional arguments used in message format.

Examples:

// Log a simple message
log.debug('Hello World');

// Log a formatting message
log.info('Hello %s', 'World');

// Log a formatting message
log.warning('%s %s', 'Hello', 'World');

// Log using the built-in JSON converter
log.error('My JSON %s', object);

54 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

Resolve()

This globally available function resolves a fully qualified path to a local resource based on the current location. It
does not check if a resource exists at the specified path. This function supports both relative (with dot-references) and
absolute paths.

resolve(path)

Arguments

• path (string) – Path to resolve using current location.

Returns The fully qualified resource path of the location.

Examples:

// Absolute path
var path1 = resolve('/views/myview.html');

// Relative path - in this case, the resource must be in the same folder
var path2 = resolve('myview.html');

// Relative path (same as above)
var path3 = resolve('./myview.html');

// Relative path - resource is one level up
var path4 = resolve('../myview.html');

Require()

This globally available function will load a JavaScript file and return the exports as objects. The function implements
parts of the CommonJS Modules Specification.

require(path)

Arguments

• path (string) – Path to the JavaScript to load.

Returns The loaded JavaScript object exports.

Examples:

// Absolute path
var lib1 = require('/lib/mylib.js');

// Relative path
var lib2 = require('mylib');

// Relative path (same as above)
var lib3 = require('./mylib.js');

// Relative path
var lib4 = require('../mylib');

If the path is relative then it will start looking for the file from the local directory. If the file is not found there, it will
start scanning in parent directories that have a /lib folder until it reaches the resources/ folder. The file extension .js is
not required.

3.5. Serverside JavaScript 55

http://wiki.commonjs.org/wiki/Modules/1.1

Enonic XP Documentation, Release 6.4.3

Exports

The globally available exports keyword is used to expose functionality from a given JavaScript file (controllers,
libraries etc). This is part of the require.js spec.

Simply use the exports keyword to expose functionality from any JavaScript file.

Double underscore __

The double underscore is available in any server-side JavaScript code and is used for wrapping Java objects in a
JavaScript object. Read more about Invoking Java.

3.5.3 HTTP Request

The following object is passed along with every HTTP request. The object is similar to many traditional request ob-
jects, except for two special properties: mode and branch. These properties are specific to the XP Portal, automatically
indicating the contextual branch and rendering mode.

The request object represents the HTTP request and current context for the controller.

{
"method": "GET",
"scheme": "http",
"host": "enonic.com",
"port": "80",
"path": "/my/page",
"url": "http://enonic.com/my/page?debug=true",
"mode": "edit",
"branch": "master",
"params": {
"debug": "true"

},
"headers": {
"Language": "en",
"Cookies": "mycookie=123; other=abc;"

},
"cookies": {
"mycookie": "123",
"other": "abc"

}
}

method HTTP method of the request.

scheme Scheme of the request.

host Host of the request.

port Port of the request.

path Path of the request.

url URL of the request.

mode Portal rendering mode, one of: edit, preview, live.

branch Name of the repository branch, one of: draft, master.

body Optional text value

56 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

params Name/value pairs with the query/form parameters from the request.

headers Name/value pairs with the HTTP request headers.

cookies Name/value pairs with the HTTP request cookies.

3.5.4 HTTP Response

The response object is the value returned by an HTTP controller - as a response to an HTTP Request.

{
"status": 200,
"body": "Hello World",
"contentType": "text/plain",
"headers": {

"key": "value"
},
"cookies": {},
"redirect": "/another/page",
"pageContributions": {},
"postProcess": true,
"applyFilters": true

}

status HTTP response status code (default is 200).

body HTTP message body of the response that can either be a string or a JavaScript object.

contentType MIME type of the body (defaults to text/plain; charset=utf-8).

headers Name/value pairs with the HTTP headers to be added to the response.

cookies HTTP cookies to be added to the response. Will be described in a later section.

redirect URI to redirect to. If specified, the value will be set in the “Location” header and the status will be set to
303.

pageContributions A special filter available for sites and page components allowing page components to contribute
html to the main page markup. See Page Contributions

postProcess Post-processing is a special filter for sites and pages, if enabled it will reprosess a page looking for page
contributions and rendering components in a page. (See also Page Contributions) (default is true). Set to false
if you want to speed up page rendering in cases where there are no regions or page components.

applyFilters Whether or not to execute the filters after rendering. Set to false to skip execution of filters. (See also
Response Filters) (default is true).

3.5.5 HTTP Cookies

There are two ways that Http Cookie values can be set in responses.

• If the value is a string then the cookie is created using default settings.

• If the value is an object then it will try to apply the settings. Every field is optional except “value”.

Here’s an example of how the cookies should be set:

return {
status: 200,
body: "Hello World",
headers: {

3.5. Serverside JavaScript 57

Enonic XP Documentation, Release 6.4.3

"header1": "value1"
},
cookies: {

"plain": "value",
"complex": {

value: "value",
path: "/valid/path",
domain: "enonic.com",
comment: "Some cookie comments",
maxAge: 2000,
secure: false,
httpOnly: false

}
}

};

3.5.6 Websockets

Warning: Websocket support is experimental.

Websocket support allows a service to act as a websocket channel that you can connect to from a web-browser.

A get method must be implemented to handle initialization of the websocket.

// Create a websocket if websocket request.
exports.get = function (req) {

if (!req.webSocket) {
return {
status: 404

};
}

return {
webSocket: {

data: {
user: "test"

},
subProtocols: ["text"]

}
};

};

A websocket event handler named webSocketEvent is required. It will be called for every websocket event from
a client. See example below.

// Listen to a websocket event
exports.webSocketEvent = function (event) {

if (event.type == 'open') {
// Do something on open

}

if (event.type == 'message') {
// Do something on message recieved

}

58 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

if (event.type == 'close') {
// Do something on close

}

};

Below is an example of a simple chat. A library called lib-websocket has functions for sending messages back
and adding/removing clients in groups. Adding to groups allows for multicast message sending.

// Lib that contains websocket functions.
var webSocketLib = require('/lib/xp/websocket');

// Listen to a websocket event
exports.webSocketEvent = function (event) {

if (event.type == 'open') {
// Send message back to client
webSocketLib.send(event.session.id, 'Welcome to our chat');

// Add client into a group
webSocketLib.addToGroup('chat', event.session.id);

}

if (event.type == 'message') {
// Propegate message to group
webSocketLib.sendToGroup('chat', event.message);

}

if (event.type == 'close') {
// Remove client from a group
webSocketLib.removeFromGroup('chat', event.session.id);

}

};

3.5.7 Invoking Java

In Enonic XP, there is a standard object named __ (double underscore), accessible from any serverside JavaScript code,
which provides a way to wrap Java objects in a JavaScript object. The __ object has functions that allow JavaScript
to communicate with Java classes. The newBean function will wrap the Java object named in the parameter, for
instance:

var bean = __.newBean('com.enonic.xp.lib.io.IOHandlerBean');

This line is from the lib-io library, which is a good example of how this is used. In the Java IOHandlerBean
class, there are several methods, like the readLines method:

public List<String> readLines(final Object value)
throws Exception

{
final CharSource source = toCharSource(value);
return source.readLines();

}

This method is now accessible as a function on the JavaScript bean and may be invoked from JavaScript, like this:

3.5. Serverside JavaScript 59

Enonic XP Documentation, Release 6.4.3

exports.readLines = function (stream) {
return __.toNativeObject(bean.readLines(stream));

};

This results in a global JavaScript function readLines. This example also shows the use of the toNativeObject
method, which in this case, converts a Java String array to a JSON object. The reference documentation for the __
object can be found here: The __ object.

3.6 Assets

Applications and libraries commonly use files that will be delivered to the client (typically web browsers) without
being modified. Examples are icons, css files, javascript files etc. Enonic XP provides a standard and optimized
approach to serving assets across applications.

Developers simply place the files they want to use into their project’s /src/main/resources/assets/ folder. These files
can then be dynamically accessed through the asset service. The asset service is typically available through _/as-
set/<myapp>/path/to/myasset.ext.

The assetUrl() portal function lets you easily create links to assets.

assetUrl(path [,application] [,type] [,params])

Arguments

• path (string) – Path to the asset.

• application (string) – Application where the asset exists. Default is current appli-
cation.

• type (string) – URL type. Either server (server-relative URL) or absolute. Default is
server.

• params (object) – Custom parameters to append to the url.

Returns The the relative or absolute URL to the asset.

3.7 Services

Services allow the creation of http endpoints without binding them to specific paths.

Services typically consist of a single JavaScript file which bares the name of the service. This controller must be in a
folder with the same name and must be located in the /src/main/resources/services folder. For example,
a logout service would look like this: /src/main/resources/services/logout/logout.js

The service can then be accessed on a relatively mounted URL, as seen below, where application is the application
name (without version):

*/_/service/[application]/[service-name]

The portal function serviceUrl() will create a dynamic URL for a service.

serviceUrl(name [,application] [,type] [,params])

Arguments

• name (string) – Name of the service.

• application (string) – Application where the service exists. Default is current ap-
plication.

60 Chapter 3. Developer Guide

http://repo.enonic.com/public/com/enonic/xp/docs/6.4.3/docs-6.4.3-libdoc.zip!/-__.html

Enonic XP Documentation, Release 6.4.3

• type (string) – URL type. Either server (server-relative URL) or absolute. Default is
server.

• params (object) – Custom parameters to append to the url.

Returns The the relative or absolute URL to the service.

Attention: For sites, you may only access the services of the apps that have been added to that site.

The following example is a simple service that returns a JSON object with the date and a counter.

var counter = 0;

exports.get = function(req) {

counter++;

return {
body: {

time: new Date(),
counter: counter

},
contentType: 'application/json'

};

};

3.8 Views

Instead of composing the HTML, JSON or other output in your javascript controllers, it’s often easier to use a full
MVC (Model View Controller) approach.

Enonic XP supports pluggable view technologies and ships the following view libraries out-of-the-box.

• Thymeleaf - typically used with HTML (see lib-thymeleaf in Javascript Libraries)

• Mustache - typically for use with JSON (see lib-mustache in Javascript Libraries)

• Xslt - recommended for XML processing (see lib-xslt in Javascript Libraries)

3.9 Sites

Sites can be built from one (or more) applications. But only applications that contain a specific structure and a site
descriptor can be used for this purpose.

This chapter will dive into the details on how to build sites and the various components of a site, such as pages and
parts.

3.9.1 Site Descriptors

To indicate that an application provides “site capabilities” and allow it to be added to sites, a
site descriptor must be placed into the application. Within your project, simply add a file called
/main/src/resources/site/site.xml.

3.8. Views 61

Enonic XP Documentation, Release 6.4.3

The site.xml file also makes use of the Schemas concept, so you may easily define custom forms for configuring the
application when adding it to a site. These configurations are made in the <config> element.

Listing 3.4: /main/src/resources/site/site.xml

<site>
<x-data mixin="menu-item"/>
<config>
<field-set name="info">

<label>Info</label>
<items>

<input type="TextLine" name="company">
<label>Company</label>
<occurrences minimum="1" maximum="1"/>

</input>
<input type="TextArea" name="description">
<label>Description</label>
<occurrences minimum="1" maximum="1"/>

</input>
</items>

</field-set>
</config>

</site>

All controllers within the app can access the configured values with the portal.getSiteConfig() function.

var portal = require('/lib/xp/portal');

// Find the site configuration for this app in current site.
var siteConfig = portal.getSiteConfig();

An app’s site.xml file may optionally contain <x-data> elements for adding Mixins and a <filters> element for adding
Response Filters.

3.9.2 Content Types

To enable simple configuration and setup of publishing forms, validation and data types - Enonic XP ships with a
content api. Central to this api are Content Types. Structured, indexed and searchable content items are created from
Content types. Content Types build on the Forms concept, so they are very similar to other configurable forms in
Enonic XP.

Content repository

Every content item produced is eventually stored as nodes in the low level storage, read more about the Node Domain.

A system standard repository called cms-repo is initialized when installing Enonic XP. This is where content is
stored when working with content in the Content Studio application or the content-API.

The content-API actively uses the branch capabilities. The cms-repo has two branches:

• draft

• master

The content seen while working in Content Studio is in the draft branch. Content in the portal is served from the
master branch.

Publishing a content moves it from the draft branch to the master branch.

62 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

Sample Content type

A “Person” content type might look something like this:

The underlying schema configuration would look like this

<?xml version="1.0" encoding="UTF-8"?>
<content-type>

<display-name>Person</display-name>
<super-type>base:structured</super-type>

3.9. Sites 63

Enonic XP Documentation, Release 6.4.3

<form>
<input type="imageSelector" name="photo">

<label>Photo</label>
<occurrences minimum="1" maximum="1"/>

</input>
<input type="HtmlArea" name="bio">

<label>Bio</label>
<occurrences minimum="1" maximum="1"/>

</input>
<input type="TextLine" name="email">
<label>Email</label>
<occurrences minimum="1" maximum="1"/>

</input>
<input type="TextLine" name="website">
<label>Website</label>
<occurrences minimum="0" maximum="1"/>

</input>
<input type="TextLine" name="twitter">
<label>Twitter Name</label>
<occurrences minimum="0" maximum="1"/>

</input>
<input type="TextLine" name="facebook">
<label>Facebook Name</label>
<occurrences minimum="0" maximum="1"/>

</input>
</form>

</content-type>

And the persisted (and searchable node) would look like this: NB! The content type defined properties are stored
within the ‘data’ propertySet.

{
"_id": "c814b68c-7dd3-4851-a35e-6709b07409d4",
"_name": "purple-tentacle",
"_path": "/superhero/authors/purple-tentacle",
"creator": "user:system:su",
"modifier": "user:system:su",
"createdTime": "2016-01-07T07:23:42.149Z",
"modifiedTime": "2016-01-07T07:26:49.129Z",
"type": "com.enonic.sampleapp:person",
"displayName": "Purple Tentacle",
"hasChildren": true,
"language": "en",
"valid": true,
"data": {
"photo": "10b6cf60-581a-43cd-aa76-30a0c3503a45",
"bio": "<p>Have great plans to take on the world</p>",
"email": "purple@dott.game"

},
"x": {},
"page": {},
"attachments": {}

}

Standard Content Properties

• _id = string

64 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

• _name = fulltext

• _parent = string

• attachment = string

• displayName = fulltext

• contentType = string

• creator = string

• createdTime = datetime

• data = type

• x = type

• form = none

• language = string

• modifiedTime = datetime

• owner = string

• page = minimal

• page.regions = none

• site = none

• thumbnail = none

• type = string

A content has a set of standard properties (sorted alphabetically below).

_id The content id (same as node id)

_name The content name (same as node name)

_parent The parent content path (same as node parent)

attachment If content contains attachments, a list of attachment-names and properties.

contentType The content schema type.

creator The user principal that created the content.

createdTime The timestamp when the content was created.

data A property-set containing all user defined properties defined in the content-type.

displayName Name used for display purposes.

language The locale-property of the content.

modifiedTime Last time the content was modified.

owner The user principal that owns the content.

page The page property contains page-specific properties, like template and regions. This will typically be reference
to a page-template that supports the content-type.

site If contentType is portal:site, this will contain site-specific information.

thumbnail A thumbnail representing the content.

type A property used to identify content in a node repository.

3.9. Sites 65

Enonic XP Documentation, Release 6.4.3

x A property-set containing properties from mixins, also known as xtra data.

Base Content Types

A set of basic content types are provided with the installation.

Content types have a set of properties you need to know about:

• Content types are named with their application name, i.e. base:folder, where “base” is the application - but also
have a nice display name like “Folder”

• abstract (default: false) means you cannot create content with this content type

• final (default: false) means it is not possible to create content types that “extend” this

• allow-child-content (default: true) if false, it will prevent users from creating child items on content of
this type. (i.e. prevents creating child items of images)

Folder (base:folder)

• abstract: false

• final: false

• allow-child-content: true

Folders are simply containers for child content, with no other properties than their name and Display Name. They are
helpful in organizing your content.

Media (base:media)

• abstract: true

• final: false

• allow-child-content: false

This content type serves as the abstract supertype for all content types that are considered “files” in their natural habitat.
These are listed on the Media Content Types page.

Shortcut (base:shortcut)

• abstract: false

• final: true

• allow-child-content: true

This is used for redirecting a visitor to another content item in the structure The content type name is
base:shortcut.

Structured (base:structured)

• abstract: true

• final: false

• allow-child-content: true

66 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

This is possibly the most commonly used base type for creating other content types. The structured content type is
the foundation for basically any other structured content you can come up with, such as the Person content in the
previous example.

Unstructured (base:unstructured)

• abstract: false

• final: true

• allow-child-content: true

The unstructured content type is a special content type that permits the creation of any property or structure without
actually defining it first. This is convenient for user generated content from forms on a site.

Caution: There is currently no UI for unstructured content so they will appear empty in the admin console.
However, a custom page template that supports base:unstructured may easily be created to show name/value pairs.

Media Content Types

The system ships with a set of pre-defined media content types. When files are uploaded in the Content Studio interface
or through the content API - they will be transformed to one of the following content-types.

Common settings for all the content types listed below.

• super-type: base:media

• abstract: false

• final: true

• allow-child-content: false

Tip: Enonic XP treats media content pretty much like any other content items - for instance the person, but they all
have at least one attachment (namely the file).

3.9. Sites 67

Enonic XP Documentation, Release 6.4.3

Here are the various media content types that also come installed with Enonic XP:

Text (media:text) Plain text files.

Data (media:data) Miscellaneous binary file formats.

Audio (media:audio) Audio files.

Video (media:video) Video files.

Image (media:image) Bitmap image files.

Vector (media:vector) Vector graphic files like .svg.

Archive (media:archive) File archives like .zip, tar and jar.

Document (media:document) Text documents with advanced formatting, like .doc, .odt and pdf.

Spreadsheet (media:spreadsheet) Spreadsheet files.

Presentation (media:presentation) Presentation files like Keynote and Powerpoint.

Code (media:code) Files with computer code like .c, .pl or .java.

Executable (media:executable) Executable application files.

Unknown (media:unknown) Everything else.

Portal content types

In order to build sites in a secure and fashionable manner, Enonic XP also ships with a few special purpose content
types.

Site (portal:site)

• super-type: base:structured

• abstract: false

• final: true

• allow-child-content: true

The Site content type allows creating websites. By creating a content of type Site, it will become the root of a website.

This content type provides a special behavior for the content, allowing to select and configure applications for the
website. The types (content types, relationship types and mixins) of the applications selected will be available to be
used inside the website content tree.

Note: The content types of an application can only be used under a content of type Site which has the application
selected.

Page Template (portal:page-template)

• super-type: base:structured

• abstract: false

68 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

• final: true

• allow-child-content: true

Page templates are the equivalent of “master slides” in keynote and powerpoint. They enable you to set up pages that
will be used when presenting other content types. From the sample content type above, the page template “Person
Show” was taking care of the presentation.

Template folder (portal:template-folder)

• super-type: base:folder

• abstract: false

• final: true

• allow-child-content: portal:page-template only

This is a special content-type. Every site automatically creates a child content of this type named _templates. The
templates folder holds all the page templates of that site. It may not hold any other content type, and it may not be
created manually in any other location.

Custom Content Types

Custom Content Types can be created using Java or simple xml files - and deployed through applications.

When using xml, each content type must have a separate folder in the application resource structure. i.e.
site/content-types/<my-content-type-name>.

Each folder must then hold a file with the name of the content type and .xml extension (e.g.
my-content-type-name.xml).

This is the basic structure of a content-type.xml file:

<content-type>
<display-name>Choices</display-name>
<content-display-name-script>$('firstName', ' ', 'lastName')</content-display-name-script>
<super-type>base:structured</super-type>
<is-abstract>false</is-abstract>
<is-final>true</is-final>
<allow-child-content>true</allow-child-content>
<form>
<input name="choice1" type="ComboBox">
<label>Choice1</label>
<occurrences minimum="0" maximum="1"/>
<config>

...
</config>

</input>
</form>

</content-type>

display-name The display name of the content type is used throughout the admin console to recognize it. But the
technical name is the name of the folder the file is placed in.

super-type Many properties are inherited from the super-type. All custom content types must either inherit
base:structured directly or indirectly. The icon and the general form to edit the fields of the content
are important properties that are inherited from base:structured.

3.9. Sites 69

Enonic XP Documentation, Release 6.4.3

is-abstract If a content type is abstract, no content of this type may be instantiated. It may still be used as a super
type for other content types.

is-final Final content types may not be used as super types of other content types.

allow-child-content Default is true, which allows nodes to be added in the tree below a content of this type.

form Fields in the content type are defined as input elements which are placed inside the form element. All legal
input types are described below.

input name and type are mandatory attributes of the input element. label and occurrences are mandatory
child elements.

config Some input types have a complex configuration that is defined inside a config element. It is mandatory for
the content types that need it.

content-display-name-script The name of a content may be generated by JavaScript from the values in the form,
including values that are added through a mixin.

Tip: A content type may optionally have its own specific icon. The icon can be assigned
to the content type by adding a PNG file with the same name, in the content type folder, e.g.
site/content-types/my-content-type-name/my-content-type-name.png

3.9.3 Response Filters

Response filters are scripts, similar to controllers, that allow customizing or adapting the response of page controllers.
Notice that this actually applies to pages from any application added to the site.

The page and component controllers are processed during rendering and then the response filters will be executed
afterward.

To add a response filter, create a folder site/filters in the application and place a [filter-name].js file
within this folder. A filter must export a method named responseFilter. This method receives the request and
response objects as parameters and must return a response object (see HTTP Controllers).

Here is an example of a [filter].js file:

Listing 3.5: site/filters/trackingScript.js

exports.responseFilter = function (req, res) {
var trackingScript = '<script src="http://some.site/js/tracking.js"></script>';

if (!res.pageContributions.bodyEnd) {
res.pageContributions.bodyEnd = [];

}
res.pageContributions.bodyEnd.push(trackingScript);

if (req.params.debug === 'true') {
res.applyFilters = false; // skip other filters

}

return res;
};

In addition, the filter must be declared in the site.xml descriptor by adding a <response-filter> element
within the <filters> element, with @name and @order attributes.

70 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

Listing 3.6: site/site.xml

<?xml version="1.0" encoding="UTF-8"?>
<site>

<filters>
<response-filter name="trackingScript" order="10"/>

</filters>
<x-data mixin="html-meta"/>
<config>
<input type="ContentSelector" name="profiles">

<label>Profiles folder</label>
<occurrences minimum="0" maximum="1"/>
<config>

<relationship-type>system:reference</relationship-type>
<allow-content-type>base:folder</allow-content-type>

</config>
</input>

</config>
</site>

Response filters may change any of the values of the response object, that includes: HTTP status code, response body,
HTTP headers, cookies and page contributions.

It is also possible to return the response object received without any changes.

Execution order

An application can contain multiple filters declared in site.xml. Multiple applications can be selected for a Site.
When a page is rendered, all the filters declared in all the applications selected for the site will be executed. The
order in which the filters are executed depends on the filters order (as defined in site.xml) and the order of the
applications configured on the Site.

The filters with a lower order will be executed first. In case there are several filters with the same order number,
the position of the applications (as configured for a Site in Content Studio) determines the order of execution.

The filter-chain execution can be interrupted from either a controller or a filter by setting the applyFilters field
in the response. When this value is set to false all of the remaining filters will be skipped. (See HTTP Response).

3.9.4 Site Input Types

For the Content Studio and sites, several custom input types have been created. These may freely be used by any
schema in the site domain, such as content types - page, part, and site descriptors.

ContentSelector

References to other content are specified by this input type.

<input name="name" type="ContentSelector">
<label>Cited In</label>
<occurrences minimum="0" maximum="0"/>
<config>
<relationship>system:reference</relationship>
<allowType>citation</allowType>
<allowType>my.other.app:quote</allowType>
<allowPath>${site}/people/</allowPath>
<allowPath>./*</allowPath>

3.9. Sites 71

Enonic XP Documentation, Release 6.4.3

<allowPath>/quotes*</allowPath>
</config>

</input>

relationship This setting defines the name of which relationship-type to use. Default is system:reference.

allowType This is used to limit the content types that may be selected for this input. Use one setting for each content-
type.

allowPath This is used to limit the path of the content that may be selected for this input. The site on which the
content exists, can be wildcarded with ${site} Use one setting for each path expression.

Listing 3.7: allowPath samples

<!--
All children of <site>/people, e.g

/mySite/people/myContent
/mySite/people/myGroup/anotherContent

-->
<allowPath>${site}/people/*</allowPath>

<!--
All content in mySite starting with people, including children, e.g

/mySite/peoples
/mySite/people/myContent
/mySite/peoples/myContent
/mySite/people/myGroup/anotherContent

-->
<allowPath>/mySite/people*</allowPath>

<!-- All children of the current content -->
<allowPath>./*</allowPath>

<!-- All children of the current content's parent -->
<allowPath>../*</allowPath>

HtmlArea

A field for entering html in a WYSIWYG HTML editor. It supports inserting images and linking to media content in
general. More configuration options will be available here soon!

ImageSelector

An ImageSelector is used to add images to a form. Existing image content may be selected, or a new image may be
uploaded from the file system.

<input name="image" type="ImageSelector">
<label>Non-required image</label>
<occurrences minimum="0" maximum="1"/>
<config>

<allowPath>./*</allowPath>
</config>

</input>

allowPath This is used to limit the path of the images that may be selected for this input. The site on which the
content exists, can be wildcarded with ${site} Use one setting for path expression.

72 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

3.9.5 Relationship Types

Custom content types may have relationships to each other or other content types. For instance, a person may have
an image, or an employee may have a boss, or belong to a department. These relationships must be defined with a
specific relationship type, then used in the custom content with an input type ContentSelector. The relationship
type definition is an XML file. It must be placed in the folder, site/relationship-types/[name] and be
named [name].xml. Here is an example of a relationship-type:

<relationship-type>
<display-name>Citation</display-name>
<from-semantic>citation in</from-semantic>
<to-semantic>cited by</to-semantic>
<allowed-from-types/>
<allowed-to-types>
<content-type>com.enonic.xp.modules.features:article</content-type>

</allowed-to-types>
</relationship-type>

from-semantic Text to describe the “from” relationship.

to-semantic Text to describe the “to” relationship.

allowed-from-types Any content type may use this relationship-type.

allowed-to-types Wherever this relationship-type is used, only an article may be selected.

The content types have the format module-name:content-type-name. The module may be system for
built-in types.

Tip: A relationship type may optionally have its own specific icon. The icon can be assigned to
the relationship type by adding a PNG file with the same name, in the relationship type folder, i.e.
site/relationship-types/[name]/[name].png

System relationship types

There are two default relationship types that may be used out of the box. These represent general relationship types
that may be reused often.

system:reference No content type restriction, from-semantic = “relates to”, to-semantic = “related of”.

system:parent No content type restriction, from-semantic = “parent of”, to-semantic = “child of”.

3.9.6 Page

A page component is the most basic building block of a site. Each page component must have a JavaScript controller
file and optionally an XML descriptor and an HTML view file. These files can define regions in the page where parts
and layouts may be added, or they can define a simple page without any compositions. Page components can be
added to content individually throught the Content Studio interface or they can be used to create page templates that
automatically render supported content types.

Any number of page templates can be created from a single page component. Thanks to the magic of page templates,
even very large sites will typically have very few page components–perhaps one for all the HTML pages and one for
RSS pages.

Pages should be placed in the folder site/pages/[page-name]

3.9. Sites 73

Enonic XP Documentation, Release 6.4.3

Descriptor

The page descriptor is an XML file that that is used to define regions and custom input fields for page configuration.
If a page does not require regions or configuration options then the descriptor may be omitted.

The file must be named [page-name].xml. For example, if a page component is named “default” then the file
must reside at site/pages/default/default.xml.

<page>
<display-name>My first page</display-name>
<config>
<!-- input fields... -->

</config>
<regions>
<region name="top"/>
<region name="bottom"/>

</regions>
</page>

display-name A simple human readable display name.

config The config element is where input fields are defined for configurable data that may be used on the page.

regions This is where regions are defined. Various component parts can be dragged and dropped into regions on the
page.

Controller

A page controller handles requests to the page. The controller is a required file written in JavaScript and must be
named [page-name].js. A controller exports a method for each type of HTTP request that should be handled.
The handle method has the request object as a parameter and returns the response object (see HTTP Controllers).

// Handles a GET request
exports.get = function(req) {}

// Handles a POST request
exports.post = function(req) {}

Here’s a simple controller that acts on the GET request method.

exports.get = function(req) {

return {
body: '<html><head></head><body><h1>My first page</h1></body></html>',
contentType: 'text/html'

};

};

Render-view

If you feel like concatenating strings to create an entire web page is a little too much hassle, Enonic XP also supports
views. A view is rendered using a rendering engine; we currently support XSLT, Mustache and Thymeleaf rendering
engines. This example will use Thymeleaf.

To make a view, create a file my-first-page.html in the view folder.

74 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

<!DOCTYPE html>
<html>
<head>
</head>
<body>
<h1>My first page, with a view!</h1>

</body>
</html>

In our [page-name].js file, we will need to parse the view to a string for output. Here is where the Thymeleaf
engine comes in. Using the Thymeleaf rendering engine is easy; here is how we do it.

var thymeleaf = require('/lib/xp/thymeleaf');

exports.get = function(req) {

// Resolve the view
var view = resolve('/site/view/my-first-page.html');

// Define the model
var model = {
name: "John Doe"

};

// Render a thymeleaf template
var body = thymeleaf.render(view, model);

// Return the result
return {
body: body,
contentType: 'text/html'

};

};

Unlike controllers and descriptors, view files can reside anywhere in your project and have any valid file name. This
allows for code reuse as multiple page components can share the same view. If the view file is in the same folder as
the page controller then it can be resolved with only the file name resolve(’file-name.html’). Otherwise,
the full path should be used, starting with a ‘/’ as in the example above.

Dynamic-content

We can send dynamic content to the view from the controller via the model parameter of the render function. We
then need to use the rendering engine specific syntax to render it. The controller file above passed a variable called
name and here is how to extract its value in the view using Thymeleaf syntax.

<!DOCTYPE html>
<html>
<head>
</head>
<body>
<h1>My first page, with a view!</h1>
<h2>Hello World</h2>

</body>
</html>

More on how to use Thymeleaf can be found in the official Thymeleaf documentation.

3.9. Sites 75

http://www.thymeleaf.org/doc/usingthymeleaf.html

Enonic XP Documentation, Release 6.4.3

Regions

To be able to add components like images, component parts, or text to our page via the Page Editor drag and drop
interface, we need to create at least one region. Regions can be declared in the page descriptor. Each region will be
referenced by name.

<page>
<display-name>My first page</display-name>
<config />
<regions>
<region name="main"/>

</regions>
</page>

You will also need to handle regions in the controller.

var portal = require('/lib/xp/portal');

// Get the current content. It holds the context of the current execution
// session, including information about regions in the page.
var content = portal.getContent();

// Include info about the region of the current content in the parameters
// list for the rendering.
var mainRegion = content.page.regions["main"];

// Extend the model from previous example
var model = {

name: "Michael",
mainRegion: mainRegion

};

To make the Page Editor understand that an element is a region, we need an attribute called
data-portal-component-type with the value region in our HTML.

<!DOCTYPE html>
<html>
<head>
</head>
<body>
<h1>My first page, with a view!</h1>
<h2>Hello World</h2>
<div data-portal-region="main">
<div data-th-each="component : ${mainRegion.components}" data-th-remove="tag">

<div data-portal-component="${component.path}" data-th-remove="tag" />
</div>

</div>
</body>

</html>

We can now use the Page Editor drag and drop interface to drag components into our page.

3.9.7 Part

A part is a building block that can be placed in a region on a page or layout. As with pages, each part is composed of
a JavaScript controller, an XML descriptor and an HTML view.

The part descriptor and controller files must be placed in the folder site/parts/[part-name]

76 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

Descriptor

The part descriptor is where input fields are defined for custom configuration of the part. The descriptor is not required
if the part does not need any custom configuration. Parts cannot contain regions.

When used, the descriptor file must have the same name as the part folder that contains it
site/parts/[part-name]/[part-name].xml:

<part>
<display-name>My favorite things</display-name>
<config>
<field-set name="things">
<label>Things</label>
<items>

<input type="TextLine" name="thing">
<label>Thing</label>
<occurrences minimum="0" maximum="5"/>

</input>
</items>

</field-set>
</config>

</part>

Controller

To drive this part, we will also need a controller. The controller typically uses library functions to get content and/or
configurations and prepare data which it passes to the view file for dynamic rendering.

site/parts/[part-name]/[part-name].js

var portal = require('/lib/xp/portal'); // Import the portal functions
var thymeleaf = require('/lib/xp/thymeleaf'); // Import the thymeleaf render function

// Handle GET requests
exports.get = function(portal) {

// Find the current component from request
var component = portal.getComponent();

// Find a config variable for the component
var things = component.config["thing"] || [];

// Define the model
var model = {
component: component,
things: things

};

// Resolve the view
var view = resolve('/site/view/my-favorite-things.html');

// Render a thymeleaf template
var body = thymeleaf.render(view, model);

// Return the result
return {
body: body,
contentType: 'text/html'

3.9. Sites 77

Enonic XP Documentation, Release 6.4.3

};

};

View

The HTML generated by the part must have a single root element. The things parameter is basically just JSON data
passed from the controller and we can iterate over it easily in Thymeleaf and print its values.

<section>
<h2>A list of my favorite things</h2>
<ul class="item" data-th-each="thing : ${things}">
<li data-th-text="${thing}">A thing will appear here.

</section>

The part can now be added to the page via drag and drop. You will be able to configure the part in the context window
in live-edit.

3.9.8 Layout

Layouts are used in conjunction with regions to organize the structure of the various component parts that will be
placed on the page via Page Editor drag and drop. Layouts can be dropped into the page regions and then parts
can be dragged into the layout. This allows multiple layouts (two-column, three-column, etc.) on the same page and
web editors can change things around without touching any code. Making a layout is similar to making pages and part
components. Layouts cannot be nested.

Layout contains - like pages and parts - a descriptor, a controller and a view, and should be placed in the folder
site/layouts/[layout-name]

Descriptor

The layout descriptor defines regions within the layout where parts can be placed with the Page Editor. The file must
be named [layout-name].xml.

<layout>
<display-name>70/30</display-name>
<config/>
<regions>
<region name="left"/>
<region name="right"/>

</regions>
</layout>

Controller

The layout controller composes the view of the layout based on HTTP requests. The file must be named
[layout-name].js.

var portal = require('/lib/xp/portal');
var thymeleaf = require('/lib/xp/thymeleaf');

exports.get = function(req) {

78 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

// Find the current component.
var component = portal.getComponent();

// Resolve the view
var view = resolve('./layout-70-30.html');

// Define the model
var model = {
leftRegion: component.regions["left"],
rightRegion: component.regions["right"]

};

// Render a thymeleaf template
var body = thymeleaf.render(view, model);

// Return the result
return {
body: body,
contentType: 'text/html'

};

};

View

A layout view defines the markup for the layout component. The sample view below is created in Thymeleaf, but it
could be created in any view engine that is supported.

<div class="row">
<div data-portal-region="left" class="col-sm-8">
<div data-th-each="component : ${leftRegion.components}" data-th-remove="tag">
<div data-portal-component="${component.path}" data-th-remove="tag" />

</div>
</div>

<div data-portal-region="right" class="col-sm-4" >
<div data-th-each="component : ${rightRegion.components}" data-th-remove="tag">
<div data-portal-component="${component.path}" data-th-remove="tag" />

</div>
</div>

</div>

Styling

For a layout to have any meaning, some styling must be applied to the view. The desired CSS should be placed in the
/assets folder of the application, and included in the page where the layout should be supported. For example, the
view my-first-page.html supports Bootstrap layouts:

<head>
<meta charset="utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<link data-th-href="${portal.assetUrl({'_path=css/bootstrap.min.css'})}" href="../assets/css/bootstrap.min.css" rel="stylesheet"/>

</head>

3.9. Sites 79

Enonic XP Documentation, Release 6.4.3

3.9.9 Page Contributions

Page contributions are fragments of HTML that a component (part or layout) can contribute to the page in which it is
contained. The idea is to allow components to add JavaScript or CSS stylesheets globally in the page, although it is
not restricted to scripts or styles.

Page contributions help with solving 2 problems:

• Allow components to insert scripts or styles in specific positions in the page where it is often required.

For example, a component providing web analytics might require that a script is inserted at the end of the page
<body>. Or a stylesheet needed for a component must be inserted in the <head> tag.

• Avoid duplicating script libraries or stylesheets required for a component. Even if the same component is
included multiple times in a page, the library script contributed will only be added once.

Any part or layout controller can contribute content to the page. The values from all component contributions will
be included in the final rendered page. Duplicated values will be ignored. There are four positions where contributed
content can be inserted in the page:

• headBegin: After the <head> opening tag.

• headEnd: Before the </head> closing tag.

• bodyBegin: After the <body> opening tag.

• bodyEnd: Before the </body> closing tag.

{
"body": "<html>...</html>",
"pageContributions": {
"headEnd": "value",
"bodyEnd": [

"value1", "value2"
]

}
}

Some remarks:

• All the pageContributions fields are optional. The pageContributions object is optional and each
property inside is optional.

• The value for a contribution can be a string or an array of strings.

• The values are unique within an injection point (or tag position). If the same string is contributed from different
parts, or from the same part that exists multiple times in the page, the value will only be inserted once. E.g. if
two parts include a script for jQuery, it will be included once. But if one part is contributing to headBegin
and another one contributes the same value to bodyEnd, then it will be inserted in both places.

• If the tag does not exist in the rendered page, the value is ignored. I.e. if there is no <head> tag, the contribu-
tions to headBegin and headEnd will just be ignored.

• The contributions are inserted in a post-processing step during rendering. That means that there will not be any
processing of Thymeleaf tags or similar. Contributions are treated as plain text.

3.9.10 Error Handling

Enonic XP enables you to displaying nice custom error pages for your site.

80 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

Create the following folder in your project src/main/resources/site/error and place an error.js
within it. The file follows the same pattern as controllers and filters. If certain methods are implemented and ex-
ported, they will be executed in case of errors during rendering.

If an error occurs during processing - the system looks for an error.js script within the relevant application - sites
specifically it will go through all applications added to the site (in order).

If an error.js script is found, it looks for an exported method named handleXXX where XXX is the HTTP status-
code of the error. If not found, it will try to find the generic error method handleError instead.

Here is an example of an error.js file:

var thymeleaf = require('/lib/xp/thymeleaf');

var view404 = resolve('page-not-found.html');
var viewGeneric = resolve('error.html');

exports.handle404 = function (err) {
var body = thymeleaf.render(view404, {});
return {

contentType: 'text/html',
body: body

}
};

exports.handleError = function (err) {
var debugMode = err.request.params.debug === 'true';
if (debugMode && err.request.mode === 'preview') {

return;
}

var params = {
errorCode: err.status

};
var body = thymeleaf.render(viewGeneric, params);

return {
contentType: 'text/html',
body: body

}
};

The input parameter for the handleXXX and handleError functions is an error JSON object containing the status
code, error message, Java Exception object, and the original request object:

{
"status": 404,
"message": "Some error message",
"exception": "<the actual exception object in Java>",
"request": "<original request JSON>"

}

The expected returned value for the function is a response object (see HTTP Controllers).

The error processing logic will try every handle-function in application order until it can get a result (not undefined
or null). This means that an error function can decide to not handle a specific error and let the next one deal with it.
If no result is returned by any function, it will be eventually handled by the internal error page.

Also note that if an error occurs inside the custom-error code, then the internal error page will be rendered.

3.9. Sites 81

Enonic XP Documentation, Release 6.4.3

3.10 Localization

Enonic XP provides a standard approach to code localizations, simply by adding resource bundles to your applications,
and actively using the localize functions in “controllers” and “views”. Content localization currently requires
building separate structures - we are working on process tools to simplify this in future releases.

To see how this is used in a controller, see lib-i18n in Javascript Libraries.

3.10.1 Resource Bundle

The resource-bundle consists of a collection of files containing the phrases to be used for localization. The resource-
bundle should be placed in a folder named i18n under the application site folder.

Each locale to be localized should be represented by a single resource, e.g this could be a structure for an app support-
ing

• ‘English’ (default)

• ‘English US’

• ‘Norwegian’

• ‘Norwegian Nynorsk’

site/i18n/phrases.properties
site/i18n/phrases_en_us.properties
site/i18n/phrases_no.properties
site/i18n/phrases_no_nn.properties

The filename of a resource determines what locale it represents:

phrases[_languagecode][_countrycode][_variant].properties

Caution: The filename should be in lowercase.

The languagecode is a valid ISO Language Code. These are the two-letter codes as defined by ISO-639. You can
find a full list of these codes at a number of sites, such as: http://www.loc.gov/standards/iso639-2/php/English_list.php.

The countrycode is a valid ISO Country Code. These are the two-letter codes as defined by ISO-3166. You can
find a full list of these codes at a number of sites, such as: http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-
3166-code-lists/list-en1.html

A sample phrases.properties file would look like this:

user.greeting = Hello, {0}!
complex_message = Good to see you. How are you doing?
message_url = http://localhost:8080/{0}
message_multi_placeholder = My name is {0} and I live in {1}
message_placeholder = Hello, my name is {0}.
med_\u00e6_\u00f8_\u00e5 = This contains the norwegian characters æ, ø and å

Placeholders

Placeholders are marked with {<number>}. The given number corresponds with the function argument named
values and the placement of the parameter. See below for an example.

82 Chapter 3. Developer Guide

http://www.loc.gov/standards/iso639-2/php/English_list.php
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html

Enonic XP Documentation, Release 6.4.3

Encoding and special characters

The encoding of localization resource bundle files must be ISO-8859-1, also known as Latin-1. All non-Latin-1
characters in property-keys must be entered using Unicode escape characters, e.g u00E6 for the Norwegian letter ‘æ’.
The values may also be encoded, but this is not required.

3.10.2 Resolving locale

A locale is composed of language, country and variant. Language is required, country and variant are optional.

The string-representation of a locale is:

LA[_CO][_VA]

where

• LA = two letter language-code

• CO = two letter country-code

• VA = two letter variant-code.

The variant argument is a vendor or browser-specific code. For example; WIN for Windows, MAC for Macintosh, and
POSIX for POSIX. Where there are two variants, separate them with an underscore, and put the most important one
first. For example, a Traditional Spanish collation might construct a locale with parameters for language, country and
variant as: “es”, “ES”, “Traditional_WIN”.

When a localize function is called upon, a locale is resolved to decide which localization to use.

The following is considered, in this order:

• Given as argument to function

• Language specified on site

3.10.3 Finding best match

When localizing a keyword, a best match pattern will be applied to the resource bundle to select the localized phrase.
If the locale for a request is resolved to “en-US”, these files will be considered in given order:

• phrases_en_us.properties

• phrases_en.properties

• phrases.properties

If the locale for a request would have been resolved to en, the phrases_en_us.properties file would not have
been considered when localizing a keyword.

If the locale does not match a specific file, the default phrases.properties will be used.

If no matching localization key is found in any of the files in a bundle, a default NOT_TRANSLATEDwill be displayed.

3.11 Node Domain

At the core of Enonic XP lies a distributed data storage - all persistent items in Enonic XP are stored as nodes.

3.11. Node Domain 83

Enonic XP Documentation, Release 6.4.3

3.11.1 Overview

Years of experience has taught us that traditional approaches to data storage (read SQL) are unsuited for the com-
mon requirements of modern cloud-based applications and platforms. A key goal of Enonic XP was to deliver a
complete stack - virtually eliminating complex dependencies to 3rd party applications, and minimize requirements to
infrastructure.

With the growing popularity of various so-called NoSQL (Not Only SQL) solutions, we evaluated many different
technologies and found great inspiration in the following:

Git

• (+) Cherry picking

• (+) Branching

• (+) Pull requests

• (-) Performance search

• (-) Granularity of access (all or nothing)

Java Content Repository

• (+) Hierarchy

• (+) Granularity

• (+) Feature set

• (+) Unstructured

• (-) Performance

• (-) Complexity (not document oriented)

• (-) Attached data model

• (-) Requires additional storage backend

Elasticsearch

• (+) Document oriented

• (+) Scalability

• (+) Performance

• (+) Search

• (+) Aggregations

• (-) Search engine, not a database

• (-) No blob support

• (-) No security

• (-) Creates schemas

We were unable to find any single solution that was sufficiently simple and included our desired feature set - so we
decided to build our own; the Enonic Content Repository.

The Enonic Content Repository is a place where you can store data, or more specific: Nodes.

It is built on top of Elasticsearch and exposes many of it’s capabilities in search and aggregations and scalability - but
in addition, provides the following capabilities:

• Hierarchical storage model

84 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

• Versioning support

• Complete Access Control and security model

• Blob support - using shared filesystem and append-only approach

• Repository and Branch concepts for content staging

• Schemaless - Add any property you like, at any time

• Rich set of value types (HTMLPart, XML, Binary, Reference etc..)

• SQL-like query syntax

The Enonic Content Repository itself contains one or more separate repositories based on the application need. For
instance, an application could demand a setup having three repositories - one for application data, one for users and
one for logging:

The reasons for having several separated repositories are many, and explained in detail in the Repository below.

3.11.2 Nodes

A Node represents a single storable entity of data. It can be compared to a “row” in sql, or a “document” in document
oriented storage models. Nodes are, as mentioned in the previous section, stored in a repository.

Every node has:

• a name

• a parent-reference

• an id

• a timestamp

• a (possibly empty) set of Property key/value.

Consider two nodes - one node representing the city “Oslo” and another representing the company, “Enonic”:

3.11. Node Domain 85

Enonic XP Documentation, Release 6.4.3

The nodes have different properties. There is no schema to a node, so a node property value with the same property-
name can have different value-types across nodes.

3.11.3 Property

Properties represent a placement of data in a node - following the simple key = value pattern. A property has a
path. Elements in the path are separated by . (dot). Every property has also a type. See the complete list of Value
Types.

myProperty
data.myProperty
cars.brands.skoda

For a property to be able to hold other properties, it has to be of type Set. In the above samples, data, cars and
brands are properties of type Set.

Some characters are illegal in a property key. Here’s a list of illegal characters:

• _ is illegal as the first character, because it is a reserved prefix for System Properties.

• . is illegal as any character, since it is the path separator.

• [and] are also illegal as any character. These are used as array index indicators.

Here’s an example of some properties:

first-name = "Thomas"
cities = ["Oslo", "San Francisco"]
city.location = geoPoint('37.785146,-122.39758')
person.age = 39
person.birth-date = localDate("1975-17-10")

3.11.4 Value Types

At the core of the node domain are value types. Every property to be stored in a node must have a value type. The
value type enables the system to interpret and handle each piece of data specially - applying to both validation and
indexing.

All value-types support arrays of values. All elements in an array must be of the same value-type.

Below is a complete list of all supported value-types.

String A character string.

Index value-type String

Example ’myString’

86 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

BinaryReference Reference to a binary object.

Index value-type String

Example ’my-binary-ref’

Boolean A value representing true or false.

Index value-type String

Example true

Double Double-precision 64-bit IEEE 754 floating point.

Index value-type Double

Example 11.5

GeoPoint Represents a geographical point, given in latitude and longitude.

Index value-type GeoPoint

Example ’59.9090442,10.7423389’

Instant A single point on the time-line.

Index value-type Instant

Example 2015-03-16T10:00:02Z

LocalTime A time representation without timezone.

Index value-type String

Example 10:00:03

LocalDateTime A date-time representation without timezone.

Index value-type String

Example 2015-03-16T10:00:02

Long 64-bit two’s complement integer.

Index value-type Double

Example 1234

Reference Holds a reference to other nodes in the same repository.

Index value-type String

Example ’0b7f7720-6ab1-4a37-8edc-731b7e4f439e’

Set A special value type that holds properties as it’s value, allowing nested levels of properties, creating tree structures
within a single node.

Index value-type N/A

XML Accepts a String containing valid XML.

Index value-type String

Example ’<property>myPropertyValue</property>’

3.11. Node Domain 87

Enonic XP Documentation, Release 6.4.3

3.11.5 System Properties

To reduce complexity, we explicitly dropped the use of namespaces. Thus, in order to separate system properties from
user defined properties, we reserved _ as a starting character for system properties.

Below are the system properties explained.

_id Holds the id of the node, typically generated automatically in the form of a UUID.

_name Holds the name of the node. The name must be unique within its scope (all nodes with same parent).

_parentPath Reference to parent node path.

_path The path is resolved from the node name and parent path.

_timestamp The last change to the node version.

_nodeType Used to create collections for nodes in a repository.

_versionKey The id of the node version.

_state Used for keeping state of a node in a branch.

_permissions_read The principals that have read access.

_permissions_create The principals that have create access.

_permissions_delete The principals that have delete access.

_permissions_modify The principals that have modify access.

_permissions_publish The principals that have publish access.

_permissions_readpermissions The principals that have access to read the node permissions.

_permissions_writepermissions The principals that have access to change the node permissions.

3.11.6 Repository

A repository is a place where nodes can be stored. Data stored in a repository will typically belong to a common
domain. Fetches and searches are by default executed against a single repository, so it makes sense to keep data from
different domains separated in different repositories. For instance, in the Enonic XP CMS, content and data concerning
user management are separated into two repositories. The Content Studio application uses the cms-repo repository,
and the User Manager application uses the system-repo repository.

When nodes are stored in the repository, two things happens:

• The node properties are stored in a Blobstore as a node-version. A node-version is an entity representing the
properties of the node, without name, parent and other meta-data.

• The node is inserted into a branch. The branch keeps track of a tree-structure referring to node-versions.

A repository will always contain a default branch, called ‘master’. If there is more than one branch, API methods are
used for resolving diff between and pushing changes from one branch to another.

Node versions and branches

Consider the ‘Oslo’ and ‘Enonic’ nodes from earlier sections:

88 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

There will be two node-versions in the repository stored in the blobstore:

A node-version is a representation of a node’s properties. A node-version has no knowledge of name, parent or other
meta-data: just the properties of a node. At the same time, the targeted branch (named ‘draft’ in this example) gets
two entries:

3.11. Node Domain 89

Enonic XP Documentation, Release 6.4.3

The node-versions are now a part of a tree-structure, based on the node’s name and parent. If we push the content of
branch ‘draft’ to the default branch ‘master’, we end up with something like this:

At the moment, there are two branches pointing to the same node-versions. This means that a single node version can
exist in several branches with different structures. Now, consider that the ‘oslo’ - node is updated and stored to the
‘draft’-branch, resulting in a new node-version with the same id and an updated pointer from the branch:

90 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

The two branches now point to different node-versions of the ‘oslo’ node. Again, doing a push-operation from ‘draft’
to ‘master’ will result in both nodes pointing to the same node-versions:

Repository characteristics

Note: Currently, there is no API for creating and managing repositories, so this information is for reference only at
the moment.

3.11. Node Domain 91

Enonic XP Documentation, Release 6.4.3

A repository should be tuned to match the characteristic of the data you want to store, e.g:

• Expected number of documents

• Read or Write - optimized

• Real-time/near real-time/batch - data availability requirements

• Analyzing

• Archiving strategy

For instance; a log repository will have to be able to handle a large amount of data, but there will probably be no
real-time requirements for data to be available. Also, archiving data will be needed to prevent the repository from
growing infinitely.

3.11.7 Blobstore

The blobstore is a file system location defaulted to $XP_HOME/repo/blob. The blobstore itself is split into one
directory for nodes and one for binaries.

3.12 Search

This section explains how to find data in the Enonic Content Repository. For a system that deals with storing and
retrieving data, a rich search-API is paramount.

3.12.1 Overview

When searching in Enonic XP, you are searching for nodes, or content if working in the context of the CMS content
API. This documentation is general and intended for the Node Domain, but except for some built-in property-values
and the addition of some convenience parameters in the content domain, everything is valid for both domains.

In general, the search-APIs deal with a number of basic parameters:

• start

• count

• query

• filter

• aggregations

Start & count

When searching, the result will contain a number of matching nodes. This number if given by the provided count
parameter in the query. The result will also contain a value indicating the total number of hits for the search: total.
The start parameter indicates from what position in the result set we should start retrieving results.

Lets consider a search matching 1000 documents. Usually, one does not retrieve all these results at once, but rather a
subset of the result - and fetch the next subset of the result if necessary. This type of data-retrieving is called paging.

Typically, one will decide the number of wanted results for each iteration, e.g 100:

• start = 0

• count = 100

92 Chapter 3. Developer Guide

http://repo.enonic.com/public/com/enonic/xp/docs/6.4.3/docs-6.4.3-libdoc.zip!/module-lib_xp_content.html
http://repo.enonic.com/public/com/enonic/xp/docs/6.4.3/docs-6.4.3-libdoc.zip!/module-lib_xp_content.html

Enonic XP Documentation, Release 6.4.3

Then, for the next iteration, we will start from the first result not retrieved in the first iteration:

• start = 100

• count = 100

The total return field can be used to create page-navigation for the search result, by dividing the total hits by the
page-size (count) to get the needed number of pages.

Query

The query-part of a search is where the constraints are defined. All nodes in the repository will match when then query
parameter is empty. The query is defined in the Query Language section.

The results matching the query constraint will be assigned a score. This is imperative for fulltext-type queries. The
score of a matching document depends on how the constraint is defined, e.g which fulltext-like function is used. See
the Query Functions section for details.

Filter & query-filter

A filter also applies constraints. The difference between a filter-constraint and a query-constraint, is that the hits
matching the filter are not scored. Scoring hits is a costly operation, and makes no sense for typical filter constraints
like “price > 10”, so it’s a good way of optimizing searches by appending non-fulltext operations to the filter-constraint
instead of the query-constraint.

There are also two different kinds of filters. A query-filter is a part of the query-constraint, meaning that aggrega-
tions results are also affected by these constraints. A filter on the other hand, is not considered in the aggregations
calculations, meaning that applying a filter will not impact the aggregation result.

Aggregations

An aggregation is a function, or something that is executed, on a collection of search results. The search-results are
defined by the query and query-filter of the search request. See the Aggregations section for details.

3.12.2 Node Indexing

When nodes are persisted, they will automatically be indexed. If no special indexing instructions are passed with the
node, the node will be indexed based on the property types.

Indexing instructions

By default, nodes will be indexed using the “type” instruction - using the propertyType to determine how it should
be indexed. Special indexing options may be passed along with the node - forcing special handling of one or more
properties. These options are described below:

type (default) Indexing is done based on type; e.g numeric values are stored as both string and numeric.

string Force indexing as a string-value only, no matter what type of data.

datetime Indexed as a datetime-value and string, no matter what type of data. If not able to parse value as date-time,
no value will be indexed.

numeric Indexed as a numeric (double) and string, no matter what type of data. If not able to parse value as number,
no value will be indexed.

3.12. Search 93

Enonic XP Documentation, Release 6.4.3

minimal Indexed as a string-value only, no matter what type of data.

none Value not indexed.

ngram nGram-indexed fields are available for search by using the nGram-function. An nGram-analyzed field will
index all substring values from 2 to 15 characters.

Consider this value of a property of type text-line:

"article"

This is split into the following tokens when analyzed:

'ar', 'art', 'arti', 'artic', 'articl', 'article'

For more information about how the nGram-function works, check out the nGram-function.

fulltext Fulltext-indexed fields are available for search by using the fulltext-function. A fulltext-analyzed field will be
split into tokens.

Consider this value of a property of type text-line:

"This article contains information test-driven development"

This is split into the following tokens when analyzed:

'this', 'article', 'contains', 'information', 'about', 'test', 'driven', 'development'

For more information about how the fulltext-function works, check out the fulltext-function.

3.12.3 Indexed content properties

All user defined properties are indexed and available for queries.

In addition there are a number of standard content-properties available for search:

_alltext A collection of all fulltext-analyzed fields (textLine, textArea, htmlArea) in a content in one property

_id Holds the id of the content, typically generated automatically in the form of a UUID.

_manualordervalue The order value used when child-content is ordered manually

_name Holds the name of the content

_parentPath Reference to parent content path.

_path The content path

_permissions_read The principals that have read access.

_permissions_create The principals that have create access.

_permissions_delete The principals that have delete access.

_permissions_modify The principals that have modify access.

_permissions_publish The principals that have publish access.

_permissions_readpermissions The principals that have access to read the content permissions.

_permissions_writepermissions The principals that have access to change the content permissions.

_references Outgoing references to other content.

_score Calculated relevance for a hit

_state Used for keeping state of a content in a branch.

94 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

_timestamp The last change to the content version.

_versionKey The id of the node version.

attachment.size If any attachments, contains an array of attachment sizes

attachment.label If any attachments, contains an array of attachment labels

attachment.mimetype If any attachments, contains an array of attachment mime-types

attachment.name If any attachments, contains an array of attachment name

attachment.binary If any attachments, contains an array of attachment file-name

creator The user principal that created the content.

createdTime The timestamp when the content was created.

data A property-set containing all user defined properties defined in the content-type.

displayName Name used for display purposes.

language The locale-property of the content.

modifiedTime Last time the content was modified.

owner The user principal that owns the content.

page The page property contains page-specific properties, like template and regions.

page.region.component.textcomponent.text This property contains all values in the text-components added to pages

type The content-type name

x A property-set containing properties from mixins, also known as extra data. Indexed values depend on the specified
mixins.

3.12.4 Query Functions

Here’s a description of all functions that can be used in a query.

fulltext

The fulltext function is searching for words in a field, and calculates relevance scores for matches based on a set of
rules (e.g number of occurences, field-length).

Tip: Only fields analyzed as text are considered when applying the fulltext-function. This includes, as default, all
text-based fields in the content-domain.

Syntax

fulltext(<fields>, <search-string>, <operator>)

3.12. Search 95

Enonic XP Documentation, Release 6.4.3

Fields

Fields is a string containing a comma-separated list of fields to include in the search. Wildcards are supported in
field-names.

You can boost - thus increasing or decreasing hit-score pr field basis - if providing more than one field to the query by
appending a weight-factor: ^N:

fulltext('title^5,description', 'my search string', 'AND')

Operator

The allowed operators are:

• OR Matches if any of the words in the search-string matches.

• AND Matches only if all words in search-string matches.

Search-string syntax

The search-string supports a set of operator:

• + signifies AND operation.

• | signifies OR operation.

• - negates a single token.

• * at the end of a term signifies a prefix query.

• (and) signify precedence.

• ~N after a word signifies edit distance (fuzziness) with a number representing Levenshtein distance.

• ~N after a phrase signifies slop amount.

Examples

Match if “myField” contains any of the given words.

fulltext("myField", "cheese fish cake onion", "OR")

Match if any field with path starting with “myData.myProperties” contains any of the given words.

fulltext("myData.myProperties.*", "cheese fish cake onion", "OR")

Match if “myField” contains any of the given words and “myCategory” = “soup”.

myCategory = "'soup" AND fulltext("myField", "cheese fish cake onion", "OR")

Match if “myField” contains all the given words.

fulltext("myField", "cheese fish cake onion", "AND")

Match if “myField” contains “Levenshtein” with a fuzziness distance of 2.

fulltext("myField", "Levenshtein~2", "AND")

Match if “myField” contains “fish” and not “boat”.

96 Chapter 3. Developer Guide

http://en.wikipedia.org/wiki/Levenshtein_distance

Enonic XP Documentation, Release 6.4.3

fulltext("myField", "fish -boat", "AND")

Match if any field under data-set data contains “fish” and not “boat”.

fulltext("data.*", "fish -boat", "AND")

nGram

An n-gram is a sequence of n letters from a string. The nGram-function is used to search for words or phrases
beginning with a given search string. Typically, find-as-you-type searches will use this function.

Tip: Only fields analyzed as text are considered when applying the ngram-function. This includes, as default, all
text-based fields in the content-domain.

Syntax

ngram(<field>, <search-string>, <operator>)

Operator

The allowed operators are:

• OR Matches if any of the words in the search-string matches.

• AND Matches only if all words in search-string matches.

Examples

Matches if “myField” contains any word beginning with “lev”, e.g “Levenshteins Algorithm”.

ngram("myField", "lev", "AND")

Matches if “myField” contains words beginning with “lev” and “alg”, e.g “Levenshteins Algorithm”.

ngram("myField", "lev alg", "AND")

Matches if “myField” contains words beginning with “fish” or “boat”, e.g “fishpond” or “boatman”.

ngram("myField", "fish boat", "OR")

range

The range functions test each value in the given field for a given range.

Syntax

range(<field>, <from>, <to>, [<includeFrom>], [<includeTo>])

3.12. Search 97

Enonic XP Documentation, Release 6.4.3

The from and to values must be of the same type.

includeFrom and includeTo are optional with default value ‘false’, meaning that the actual values for the from
and to are not included as matches.

Unbounded ranges can be queried by providing an empty string as argument.

Examples

Matches all that have a version-string in the range, including ‘6.3.0’

range('version', '6.3.0', '6.4.0', 'true', 'false')

range('publishFrom', instant('2015-08-01T09:00:00Z'), instant('2015-08-01T11:00:00Z'))

Matches all that have values between 2.0 and 3.0, including 2.0

range('myValue', 2.0, 3.0, 'true', 'false')

Matches all that have publishFrom-date newer that the given date.

range('publishFrom', instant('2015-08-01T09:00:00Z'), '')

Matches all that have publishTo-date older that the given date.

range('publishTo', '', instant('2015-08-01T09:00:00Z'))

3.12.5 Order Functions

Here’s a description of all functions that can be used in order-by clause.

geoDistance

The geoDistance-function enables you to order the results according to distance to a given geo-point.

Tip: Documents with no geo-point property with the given path will be ordered last if matching the query.

Syntax

geoDistance(<field>, <location>)

Field Field-argument accepts a path to a property containing geoPoint data.

Location The location is a geoPoint from which the distance factor should be calculated, formatted as “lati-
tude,longitude”.

Examples

Order by distance from “shopLocation” to the fixed location.

ORDER BY geoDistance("shopLocation", "59.9127300,10.7460900")

98 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

3.12.6 Aggregations

An aggregation is a function that is executed on a collection of search results. The search-results are defined by the
query and query-filter of the search request.

For instance, consider a query returning all nodes that have a property “price” less than, say, $100. Now, we want to
divide the result nodes into ranges, say 0-$25, $25-$50 and so on. We also would like to know the average price for
each category. This could be done by doing multiple separate queries and calculating the average manually, but this
would be very inefficient and cumbersome. Luckily, aggregations solve these types of problems easily.

In some API functions it is possible to send in an aggregations expression object. This object is either in Java or a
JSON like the following:

"aggregations" : {
"[name]" : {
"[type]" : {

... body ...
},
"aggregations": {

... sub-aggregations ...
}

}
}

There are two different types of aggregations:

• Bucket aggregations: A bucket aggregation places documents matching the query in a collection - a bucket.
Each bucket has a key.

• Metrics aggeregations: A metric aggeregation computes metrics over a set of documents.

Typically, you will divide data into buckets and then use metric aggregations to calculate e.g average values, sum, etc
for each bucket, if necessary.

terms

The ‘terms’ aggergation places documents into bucket based on property values. Each unique value of a property will
get its own bucket. Here’s a list of properties:

field (string) The property path.

size (int) The number of bucket to return, ordered by the given orderType and orderDirection. Default to 10.

order (string) How to order the results, type and direction. Default to _term ASC.

Types:

• _term: Alphabetic ordering of bucket keys.

• _count: Numeric ordering of number of document in buckets.

Here’s an example of the terms aggregation:

"aggregations": {
"categories": {

"terms": {
"field": "myCategory",
"order": "_count desc",
"size": 10

}
}

}

3.12. Search 99

Enonic XP Documentation, Release 6.4.3

The above example gives a result with this structure:

"aggregations": {
"categories": {

"buckets": [{
"docCount": 132,
"key": "articles"

},
{

"docCount": 101,
"key": "documents"

},
{

"docCount": 43,
"key": "case-studies"

}]
}

}

range

The range aggregation query defines a set of ranges that represents a bucket. Here’s a list of properties:

field (string) The property path.

ranges (range[]) The range-buckets to create.

range (from: number, to: number) Defines a range to create a bucket for. From-value is included in bucket, to is
excluded.

Here’s an example of the range aggregation:

"price_ranges": {
"range": {

"field": "price",
"ranges": [

{ "to": 50 },
{ "from": 50, "to": 100 },
{ "from": 100 }

]
}

}

The above example gives a result with this structure:

"price_ranges": {
"buckets": [{

"docCount": 2,
"key": "a",
"to": 50

},
{

"docCount": 4,
"from": 50,
"key": "b",
"to": 100

},

100 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

{
"docCount": 4,
"from": 100,
"key": "c"

}]
}

dateRange

The dateRange aggregation query defines a set of date-ranges that represents a bucket. Only documents with properties
of type ‘DateTime’ will considered in the dateRange aggregation buckets. Here’s a list of properties:

field (string) The property path.

format (string) The date-format of which the buckets will be formatted to on return. Default to
YYYY-MM-DDThh:mm:ssTZD.

ranges (range[]) The range-buckets to create.

range (from: number, to: number) Defines a range to create a bucket for. From-value is included in bucket, to is
excluded. The from and to follows a special date-math explained below.

Here’s an example of the dateRange aggregation:

"my_date_range": {
"dateRange": {

"field": "date",
"format": "MM-yyy",
"ranges": [{

"to": "now-10M"
},
{

"from": "now-10M"
}]

}
}

The above example gives a result with this structure:

"price_ranges": {
"buckets": [{

"docCount": 2,
"key": "a",
"to": 50

},
{

"docCount": 4,
"from": 50,
"key": "b",
"to": 100

},
{

"docCount": 4,
"from": 100,
"key": "c"

}]
}

3.12. Search 101

Enonic XP Documentation, Release 6.4.3

Date-math expression

The range fields accepts a date-math expression to calculate the time-spans.

Now minus a day:

now-1d

The given date minus 3 days plus one minute:

2014-12-10T10:00:00Z||-3h+1m

Range describing now plus one day and thirty minutes, rounded to minutes:

now+1d+30m/m

dateHistogram

The date-histogram aggregation query defines a set of bucket based on a given time-unit. For instance, if querying a
set of log-events, a dateHistorgram aggregations query with interval h (hour) will divide each log event into a
bucket for each hour in the time-span of the matching events. Here’s a list of properties:

field (string) The property path.

interval (string) The time-unit interval for creating bucket. Supported time-unit notations:

• y = Year

• M = Month

• w = Week

• d = Day

• h = Hour

• m = Minute

• s = Second

format (string) Output format of date string.

minDocCount (int) Only include bucket in result if number of hits <= minDocCount.

Here’s an example of the date_histogram aggregation:

"by_month": {
"dateHistogram": {

"field": "init_date",
"interval": "1M",
"minDocCount": 0,
"format": "MM-yyy"

}
}

The above example gives a result with this structure:

"by_month" : {
"buckets" : [{

"docCount" : 8,
"key" : "2014-01"

}, {
"docCount" : 10,

102 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

"key" : "2014-02"
}, {

"docCount" : 12,
"key" : "2014-03"

}]
}

stats

The stats-aggregations calculates the following statistics for the parent-aggregation buckets:

• avg

• min

• max

• count

• sum

Here’s a list of properties:

field (string) The property path.

Here’s an example of the stats aggregation:

{
"start": 0,
"count": 0,
"aggregations": {

"products": {
"terms": {
"field": "data.product.category",
"order": "_count desc",
"size": 10

},
"aggregations": {
"priceStats": {
"stats": {
"field": "data.product.price"

}
}

}
}

}
}

The above example gives a result with this structure:

"products": {
"buckets": [{

"key": "tv",
"docCount": 123,
"priceStats": {

"count": 123,
"min": 2599,
"max": 87944,
"avg": 7400,
"sum": 578100

3.12. Search 103

Enonic XP Documentation, Release 6.4.3

}
},
{

"key": "blu-ray player",
"docCount": 42,
"priceStats": {

"count": 42,
"min": 699,
"max": 5999,
"avg": 1548,
"sum": 65016

}
},
{

"key": "reciever",
"docCount": 12,
"priceStats": {

"count": 12,
"min": 2999,
"max": 26950,
"avg": 5548,
"sum": 66756

}
}]

}

geo-distance

The geo_distance aggregation needs a defined range to split the documents into buckets. Only documents with prop-
erties of type ‘GeoPoint’ will be considered in the geo_distance aggregation buckets.

Here’s a list of properties:

field (string) The property path.

ranges (range[]) The range-buckets to create.

range (from: number, to: number) Defines a range to create a bucket for. From-value is included in bucket, to is
excluded.

unit (string) The meassurement unit to use for the ranges. Legal values are either the full name or the abbreviation of
the following: km (kilometers), m (meters), cm (centimeters), mm (millimeters), mi (miles), yd (yards), ft (feet)
or nmi (nauticalmiles).

origin (lat: number, lon: number) The GeoPoint from which the distance is measured.

Here’s an example of the range aggregation:

"aggregations": {
"distance": {

"geo_distance": {
'field': "data.cityLocation",
'unit': "km",
'origin': {

'lat': "90.0",
'lon': "0.0"

},
'ranges': [{ 'from': 0, 'to': 1200 }, { 'from': 1200, 'to': 4000 }, { 'from': 4000, 'to': 12000 }, {'from': 12000}]

}

104 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

}
}

The above example gives a result with this structure:

"aggregations":
{"distance":

{"buckets": [{
"key": "*-1200.0",
"doc_count": 3,

},
{

"key": "1200.0-4000.0",
"doc_count": 4,

},
{

"key": "4000.0-12000.0",
"doc_count": 5,

},
{

"key": "12000.0-*",
"doc_count": 1,

},],},
}

NOTE: At the time of writing, there is only one way of find out which result belongs to which bucket: By also sorting
the result on geo_distance, and matching the order to the number of each bucket. In a future version, there will easier
ways of doing this.

3.12.7 Ordering results

Any field can be used to order the result, either (default) DESC (descending) or ASC (ascending). The default field
for ordering is _score

_score

The score-value is calculated based on a number of factors, e.g number of matching clauses in boolean expressions,
how often the term appears in the documents when searching for text etc. See elasticsearch-documentation for more
insight.

3.12.8 Querying date and time

Querying against date and time-fields may require some knowledge on how data is stored and indexed.

LocalDate

LocalDate represents a date without time-zone in the ISO-8601 calendar, e.g 2015-03-19. LocalDate-properties
are stored as a ISO LocalDate-formatted string in the index, thus all searches are done against string-values.

LocalDate string-format:

yyyy-MM-dd

3.12. Search 105

Enonic XP Documentation, Release 6.4.3

Given a node with a property named ‘myLocalDate’ of type localDate and value 2015-03-19, all of the follow-
ing queries will match:

myLocalDate = '2015-03-19'
myLocalDate > '2015-03-18'
myLocalDate <= '2015-03-19'

LocalTime

LocalTime represents a time without time-zone in the ISO-8601 calendar, e.g 11:39:49. LocalTime-properties are
stored as a ISO LocalTime-formatted string in the index, thus all searches are done against string-values.

LocalTime string-format:

HH:mm[:ss[.SSS]]

LocalTime string value examples:

09:30
10:00
10:00:30
10:00:30.142

Since the queries are matching string-values, the input time in query must either adhere the same string-format restric-
tions, or be wrapped in a function time which accepts a time-formatted string as input.

Given a node with a property named ‘myLocalTime’ of type localTime and value = 09:36:00, all the following
queries will match:

myLocalTime > '09:00'
myLocalTime = '09:36'
myLocalTime = '09:36:00'
myLocalTime LIKE '09:*'
myLocalTime < '09:36:01'
myLocalTime < '09:36:00.1'

This must be wrapped in time-function since its not padded with a leading 0:

myLocalTime > time('9:00')

If optional fractions of seconds are given, the string format will also contain this even if 0, and expression will not
match unless wrapped in time-function:

myLocalTime = time('09:36:00.0')

Even if the string-matching will do the job 99% of the time, the safest bet is to always go with the time-function when
applicable.

LocalDateTime

LocalDateTime represents a date-time without time-zone in the ISO-8601 calendar, e.g 2015-03-19T11:39:49.
LocalDateTime-properties are stored as a ISO LocalDateTime-formatted string in the index, thus all searches are done
against string-values.

LocalDateTime string-format:

yyyy-MM-ddTHH:mm[:ss[.SSS]]

106 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

Since the queries are matching string-values, the input dateTime in query must either adhere the same string-format
restrictions, or be wrapped in a function dateTime which accepts a dateTime-formatted string as input.

Given a node with a property named ‘myLocalDateTime’ of type localDateTime and value
2015-03-19T10:30:00, all of the following queries will match:

myLocalDateTime = '2015-03-19T10:30:00'
myLocalDateTime = dateTime('2015-03-19T10:30')
myLocalDateTime < dateTime('2015-03-19T10:30:00.001')

DateTime / Instant

DateTime represents a date-time with time-zone in the ISO-8601 calendar, e.g 2015-03-19T11:39:49+02:00.
Its possible to query properties of with value-type DateTime both as an ISO instant and as ISO dateTime, using the
provided built-in functions instant and dateTime.

Instant string-format (instant always given in UTC-time):

yyyy-MM-ddTHH:mm[:ss[.SSS]Z

Instant string value examples:

2015-03-19T16:30:20Z
2015-03-19T16:30:20.123Z

DateTime string-format (Z for UTC, else offset in hours and minutes):

yyyy-MM-ddTHH:mm[:ss[.SSS](Z|+hh:mm|-hh:mm)

DateTime string value examples:

2015-03-19T16:30:20Z
2015-03-19T16:30:20+01:00
2015-03-19T16:30:20-01:30
2015-03-19T16:30:20.123-01:30

Given a node with a property named ‘myDateTime’ of type dateTime and value
2015-03-19T10:25:00+02:00, all of the following queries will match:

myDateTime = instant('2015-03-19T08:25:00Z')
myDateTime = dateTime('2015-03-19T08:25:00Z')
myDateTime = dateTime('2015-03-19T10:25:00+02:00')
myDateTime = dateTime('2015-03-19T11:25:00+03:00')

3.12.9 Querying paths

All nodes have three system-properties concerning the node placement in a branch, all of type String:

• _name: The node name without path.

• _parentPath: The parent node path.

• _path: The full path of the node.

Finds node with path /content/mySite/myCategory/myContent.

_path = '/content/mySite/myCategory/myContent'

Finds all nodes with name myContent in a folder named myCategory, e.g
/content/test/thisIsMyCategory/myContent and /content/myCategory/myContent.

3.12. Search 107

Enonic XP Documentation, Release 6.4.3

_name = 'myContent' AND _parentPath LIKE '*myCategory'

Finds all nodes under the path /content/mySite/myCategory including children of children.

_path LIKE '/content/mySite/myCategory/*'

Finds only first level children under the path /content/mySite/myCategory.

_parentPath = '/content/mySite/myCategory'

3.12.10 Querying references

References to other nodes are stored in a property named _references. This could be used to find incoming
references to a node.

Find all nodes referring to the node with id = ‘abc’:

_references = 'abc'

3.13 Admin

Go go backoffice!

Complex applications often require some kind of “back office” tools for management. Enonic XP provides a standard-
ized approach to deliver and extend Admin tools.

This document describes how you can build your own Admin Tools and extend some of the default tools shipped with
XP through Widgets.

3.13.1 Admin Tools

Warning: Admin Tool support is experimental.

Admin Tools are independent “back office” user interfaces designed to manage Enonic XP or installed applications.
Each tool will run in it’s own browser tab - here are some of the reasons for this:

• Faster user interfaces and better deep-linking support

• Developers can use their favorite front-end frameworks

• Simplified debugging

Standard Tools

Enonic XP ships with the following tools by default:

• Home (The default tool)

• Applications (Install, stop, start and uninstall applications)

• Content Studio (Create and manage content and sites)

• Users (Create, setup and manage users, groups and roles)

108 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

Launcher

Navigation between the various Admin Tools is done via the “Launcher Panel”, Accessible from the top right corner.
This icon and the Launcher panel should be available across all Admin Tools.

To create a new Admin Tool, you must create a new folder in your project structure, i.e.
admin/tools/[tool-name]. Then you must place a descriptor, an icon and a controller there.

Descriptor

The tool descriptor defines the basic info to be displayed in the launcher and which roles are required to access
the tool.

The descriptor file must have the same name as the tool, i.e. admin/tools/[tool-name]/[tool-name].xml:

<tool>
<display-name>My Tool</display-name>
<description>Control my stuff</description>
<allow>
<principal>role:system.admin</principal>
<principal>role:myapp.myrole</principal>

</allow>
</tool>

Icon

You should add an SVG icon to the tool. This will be displayed in the launcher panel to-
gether with the info from the descriptor. The icon file must have the same name as the tool, i.e.
admin/tools/[tool-name]/[tool-name].svg:

3.13. Admin 109

Enonic XP Documentation, Release 6.4.3

Controller

To drive the tool, we will need a controller (See HTTP Controllers). The controller typically produces the initial tool
html. Depending on the tool implementation it may also handle sub-requests from the tool.

The controller must have the same name as the tool, i.e. admin/tools/[tool-name]/[tool-name].js:

exports.get = function (req) {
return {

body: '<html><head></head><body><h1>My first tool</h1></body></html>',
contentType: 'text/html'

};
};

Adding the Launcher Panel menu

Adding the Launcher Panel menu to a custom admin tool requires a few extra steps. The view file must include a
JavaScript CONFIG object and the launcher.js file from the built-in XP admin UI app. The controller file below shows
two parameters with the required values and the view file below shows how to use them.

var portalLib = require('/lib/xp/portal');
var thymeleaf = require('/lib/xp/thymeleaf');

exports.get = function (req) {

var params = {
adminUiAssetsUrl: portalLib.assetUrl({path: "", application: "com.enonic.xp.admin.ui"}),
launcherJsUrl: portalLib.assetUrl({path: "/js/launcher.js", application: "com.enonic.xp.admin.ui"})

}

return {
body: thymeleaf.render(view, params)

};
};

The two script elements must be placed in the <body> of the view page. The CONFIG appId must match the name of
the admin tool. This will work for an app named “system-info”.

<body>
<script data-th-inline="javascript">

/*<![CDATA[*/
var CONFIG = {

portalAssetsUrl : /*[[${adminUiAssetsUrl}]]*/,
appId: 'system-info'

};
/*]]>*/

</script>
<script type="text/javascript" data-th-src="${launcherJsUrl}"></script>

</body>

3.13.2 Widgets

Warning: Widget support is experimental.

110 Chapter 3. Developer Guide

Enonic XP Documentation, Release 6.4.3

Widgets are user interface components that can be used to extend various Admin Tools. Currently, the only available
extension point for widgets are detail panels in the Content Studio tool.

To create a widget, you must create a new folder in your project structure, i.e. admin/widgets/[widget-name].
Then you must place a descriptor and a controller there.

Descriptor

The widget descriptor defines the display name and the interfaces it matches.

An interface is simply a unique identifier that is used to create a link between a tool and the widget. For example, for
your widget to be displayed in the “Content Studio” detail panel, add the interface “contentstudio.detailpanel”

The descriptor file must match the widget name, i.e. admin/widgets/[widget-name]/[widget-name].xml:

<widget>
<display-name>My first widget</display-name>
<interfaces>
<interface>contentstudio.detailpanel</interface>

</interfaces>
</widget>

Controller

To drive the widget, we will need a controller (See HTTP Controllers). The controller typically produces the
initial widget html. Depending on the widget implementation it may also handle sub-requests from the widget.

The controller file must match the widget name, i.e. admin/widgets/[widget-name]/[widget-name].js:

exports.get = function (req) {
return {

body: '<html><head></head><body><h1>My first widget</h1></body></html>',
contentType: 'text/html'

};
};

3.13. Admin 111

Enonic XP Documentation, Release 6.4.3

112 Chapter 3. Developer Guide

CHAPTER 4

Operations Guide

This guide gives you all the gory details on how to tune Enonic XP - if you’re looking for installation guides try Getting
Started

113

Enonic XP Documentation, Release 6.4.3

4.1 Package Structure

The unzipped Enonic XP distribution will have the following structure (folders with a * will not appear until the
installation is started the first time)

enonic-xp-[version]
|- bin/
|- home/
|- config/
|- data/ *
|- deploy/
|- logs/

114 Chapter 4. Operations Guide

Enonic XP Documentation, Release 6.4.3

|- repo/ *
|- snapshots/
|- work/ *

|- lib/
|- system/
|- toolbox/
|- work/ *

The root installation folder is referred to as XP_INSTALL. Here’s an explanation of all the other folders:

bin/ Contains the scripts for starting and stopping Enonic XP and setting environment variables.

home/ Home directory, also called XP_HOME. All files for a specific instance of XP reside here. This folder can be
copied to other locations for working with multiple projects.

config/ Configuration files are placed here, including Virtual Host and system.properties.

data/ Additional data like exports and dumps. This folder will not appear until certain operations are run.

deploy/ Hot deploy directory. Applications are automatically installed upon placing their JAR files in this
directory.

logs/ Default location for logs.

repo/ Repository data (blobs and indexes). This folder will not appear until the installation is started for the
first time.

snapshots/ This is where snapshots are stored when using the snapshot-operation. This folder will not appear
until a snapshot is done.

work/ Cache and generated bundles are stored here. This folder will not appear until the installation is started
the first time.

lib/ Contains the bootstrap code used to launch Enonic XP.

system/ System OSGi bundles are placed here.

toolbox/ Command-line interface tool to manage the server. See Toolbox CLI.

work/ OSGI cache is stored here. This folder will not appear until the installation is started for the first time.

4.2 Configuration

Enonic XP, system modules, and 3rd party modules can easily be configured by editing the files in the
$XP_HOME/config/ directory.

When changing files ending with .cfg, their respective modules will automatically restart with the new configuration.
Files ending with .properties require a full restart of Enonic XP to be applied. In a clustered environment each
node must be restarted.

4.2.1 System Configuration

The default system.properties are listed below.

Listing 4.1: $XP_HOME/config/system.properties

4.2. Configuration 115

Enonic XP Documentation, Release 6.4.3

#
Installation settings
#
xp.name = demo

#
Configuration FileMonitor properties
#
felix.fileinstall.poll = 1000
felix.fileinstall.noInitialDelay = true

4.2.2 Virtual Host Configuration

Virtual hosts have their own configuration file and settings are automatically updated upon changes. A sample virtual
host configuration is listed below.

Listing 4.2: $XP_HOME/config/com.enonic.xp.web.vhost.cfg

enabled = true

mapping.test.host = localhost
mapping.test.source = /status/a
mapping.test.target = /full/path/status/a

mapping.intranet.host = enonic.com
mapping.intranet.source = /
mapping.intranet.target = /portal/master/enonic.com

mapping.admin.host = enonic.com
mapping.admin.source = /admin
mapping.admin.target = /admin

In this example file, three mappings are configured.

host Host-name to match.

source Requested path to match.

target Path to which the request is sent.

In the second example, mapping “intranet”, a site is mapped to the root of the URL, which would be normal in
production environments.

In the third example, the admin site is mapped to enonic.com/admin.

4.2.3 Mail Configuration

The mail server used for sending email messages can be configured. A sample mail configuration is listed below.

Listing 4.3: $XP_HOME/config/com.enonic.xp.mail.cfg

smtpHost=mail.server.com
smtpPort=25
smtpAuth=true
smtpUser=user

116 Chapter 4. Operations Guide

Enonic XP Documentation, Release 6.4.3

smtpPassword=secret
smtpTLS=false

smtpHost Host name of the SMTP server. Default localhost.

smtpPort TCP port of the SMTP server. Default 25.

smtpAuth Enable authentication with the SMTP server. Default false.

smtpUser User to be used during authentication with the SMTP server, if ‘smtpAuth’ is set to true.

smtpPassword Password to be used during authentication with the SMTP server, if ‘smtpAuth’ is set to true.

smtpTLS Turn on Transport Layer Security (TLS) security for SMTP servers that require it. Default false.

4.2.4 Storage Configuration

Repository Configuration

Repository configuration can be set using com.enonic.xp.repo.cfg file.

Listing 4.4: $XP_HOME/config/com.enonic.xp.repo.cfg

#
Blobstore configuration to use.
#
blobStore.dir = ${xp.home}/repo/blob

#
Where to store snapshots.
#
snapshots.dir = ${xp.home}/snapshots

Elasticsearch configuration

The cluster functionallity is facilitated by Elasticsearch, so all relevant Elasticsearch settings are available.

When changing com.enonic.xp.elasticsearch.cfg, the node will automatically restart with the new con-
figuration.

Listing 4.5: $XP_HOME/config/com.enonic.xp.elasticsearch.cfg

node.name = local-node
node.master = true

path = ${xp.home}/repo/index
path.data = ${path}/data
path.work = ${path}/work
path.conf = ${path}/conf
path.logs = ${path}/logs
path.plugins = ${path}/plugins

cluster.name = mycluster
cluster.routing.allocation.disk.threshold_enabled = false

http.enabled = false
network.host = 127.0.0.1
transport.tcp.port = 9300-9400

4.2. Configuration 117

Enonic XP Documentation, Release 6.4.3

gateway.expected_nodes = 1
gateway.recover_after_time = 5m
gateway.recover_after_nodes = 1
discovery.zen.minimum_master_nodes = 1
discovery.zen.ping.unicast.hosts = 127.0.0.1

index.recovery.initial_shards = quorum

node.name Node name. Default local-node.

node.master Allow this node to be eligible as a master node. Default true.

node.data Allow data to be distributed to this node. Default true.

path Path to directory where elasticsearch stores files. Default ${xp.home}/repo/index. Should be on a local
file-system, not sharded.

path.data Path to directory where to store index data allocated for this node. Default $path/data.

path.work Path to temporary files. Default ${xp.home}/repo/index/work.

path.conf Path to directory containing configuration. Default $path/conf.

path.logs Path to log files. Default ${xp.home}/repo/index/logs.

path.plugins Path to where plugins are installed. Default $path/plugins.

cluster.name Cluster name. Default mycluster.

cluster.routing.allocation.disk.threshold_enabled Prevent shard allocation on nodes depending on disk usage. De-
fault false.

http.enabled Enable the HTTP module. Default false.

network.host Set the bind address and the address other nodes will use to communicate with this node. Default
127.0.0.1. Can be an explicit IP-address, a host-name or an alias. See the section below for an overview of
aliases.

transport.tcp.port Custom port for the node to node communication. Defaults to the range 9300-9400.

gateway.expected_nodes Number of nodes expected to be in the cluster to start the recovery immediately. Default 1.

gateway.recover_after_time Time to wait until recovery happens once the nodes are met. Default 5m.

gateway.recover_after_nodes Number of nodes expected to be in the cluster to start the recovery after gate-
way.recover_after_time. Default 1.

discovery.zen.minimum_master_nodes Ensure a node sees N other master eligible nodes to be considered opera-
tional within the cluster. Default 1.

discovery.zen.ping.multicast.enabled Enable multicast ping discovery. Default false.

discovery.zen.ping.unicast.hosts List of master nodes in the cluster to perform discovery when new nodes are started.
Default 127.0.0.1, [::1].

index.recovery.initial_shards Number of shards expected to be found on full cluster restart per index. Default
quorum.

Network host aliases

• _local_ : Will be resolved to the local ip address.

• _non_loopback_ : The first non loopback address.

• _non_loopback:ipv4_ : The first non loopback IPv4 address.

• _non_loopback:ipv6_ : The first non loopback IPv6 address.

118 Chapter 4. Operations Guide

Enonic XP Documentation, Release 6.4.3

• _[networkInterface]_ : Resolves to the ip address of the provided network interface. For example
en0

• _[networkInterface]:ipv4_ : Resolves to the ipv4 address of the provided network interface. For
example _en0:ipv4_

• _[networkInterface]:ipv6_ : Resolves to the ipv6 address of the provided network interface. For
example _en0:ipv6_

4.2.5 Jetty HTTP Configuration

Jetty HTTP settings can be configured using com.enonic.xp.web.jetty.cfg file.

Listing 4.6: $XP_HOME/config/com.enonic.xp.web.jetty.cfg

Set this if host name (or ip) needs to be fixed.
host =

Socket timeout for connections.
timeout = 60000

True to send server header.
sendServerHeader = false

True to enable HTTP connections.
http.enabled = true

Http port number to use.
http.port = 8080

Session timeout (when inactive) in minutes.
session.timeout = 60

Cookie name to use for sessions.
session.cookieName = JSESSIONID

Enable GZIP compression for responses.
gzip.enabled = true

Minimum number of bytes in response to consider compressing the response.
gzip.minSize = 16

True to enable request logging.
log.enabled = false

Request log file.
log.file = ${xp.home}/logs/jetty-yyyy_mm_dd.request.log

True to append to the file, or create new one when started.
log.append = true

True to use extended format.
log.extended = true

Timezone to display timestamp in.
log.timeZone = GMT

4.2. Configuration 119

Enonic XP Documentation, Release 6.4.3

Number of days to retain the logs.
log.retainDays = 31

4.2.6 OSGi Shell Configuration

To enable or configure OSGi shell, use com.enonic.xp.server.shell.cfg file.

Listing 4.7: $XP_HOME/config/com.enonic.xp.server.shell.cfg

#
Remote shell configuration
#

enabled = false
telnet.ip = 127.0.0.1
telnet.port = 5555
telnet.maxConnect = 2
telnet.socketTimeout = 0

4.2.7 DoS Filter Configuration

The DoS (denial of service) filter can be configured using com.enonic.xp.web.dos.cfg file.

Listing 4.8: $XP_HOME/config/com.enonic.xp.web.dos.cfg

Enable dos filter (true/false)
enabled = false

Maximum number of requests from a connection per second. Requests in excess of this are first delayed, then throttled.
maxRequestsPerSec = 25

Delay imposed on all requests over the rate limit. -1 = reject request, 0 delay.
delayMs = 100

Length of time, in ms, to blocking wait for the throttle semaphore.
maxWaitMs = 50

Number of requests over the rate limit able to be considered at once.
throttledRequests = 5

Length of time, in ms, to async wait for semaphore.
throttleMs = 30000

Length of time, in ms, to allow the request to run.
maxRequestMs = 30000

Length of time, in ms, to keep track of request rates for a connection, before deciding that the user has gone away, and discarding it.
maxIdleTrackerMs = 30000

If true, insert the DoSFilter headers into the response.
insertHeaders = true

If true, usage rate is tracked by session if a session exists.
trackSessions = true

120 Chapter 4. Operations Guide

Enonic XP Documentation, Release 6.4.3

If true and session tracking is not used, then rate is tracked by IP+port (effectively connection).
remotePort = false

A comma-separated list of IP addresses that will not be rate limited.
ipWhitelist =

4.2.8 Market Configuration

The market-place for installing applications can be configured using the com.enonic.xp.market.cfg file

Listing 4.9: $XP_HOME/config/com.enonic.xp.market.cfg

marketUrl = https://market.enonic.com/applications

4.3 Clustering

4.3.1 Introduction

System Requirements

Enonic XP clusters have minimal requirements to infrastructure, it needs:

• Distributed (or shared) filesystem

• Load balancer - to make sure traffic is routed to different nodes

4.3. Clustering 121

Enonic XP Documentation, Release 6.4.3

These components are standard ingredients in modern clouds and they are readily available as software as well. An
XP cluster can also be launched on a regular computer for testing or development purposes.

Basic cluster setup on local machine

We have tried to make deployment of XP as simple and fail-safe as possible. By default it is configured to run on a
local computer and it will not start looking for nodes in the network until you configure it to do so.

To test a cluster on your local machine, you need to do the following:

1. Get two XP installations: Download an $XP_DISTRO and copy it to a second $XP_DISTRO folder.

Typically, you will already have an XP-installation by now, so just copy the $XP_DISTRO folder to make another
node.

2. Share data: Prepare a common place for storing data and configure both XP instances:

In $XP_DISTRO/home/config/com.enonic.xp.repo.cfg set the following property to point to a common
directory:

blobStore.dir = /some/common/path

3. Give each node its own HTTP-port: Since you will run two nodes on the same machine, you also
need to set two different HTTP-ports to be able to run two instances at once:

In $XP_DISTRO/home/config/com.enonic.xp.web.jetty.cfg set the following property to different
values for the two nodes, typically 8080 and 8090

http.port = somePort

122 Chapter 4. Operations Guide

Enonic XP Documentation, Release 6.4.3

4. Start your cluster: Start both nodes by their respective bin/server.sh or bin/server.bat.
They will connect and you should have a live cluster on your machine. You can check the current
cluster info at:

http://localhost:8080/status/cluster

Note: By default, if no XP_HOME environment variable is set, the XP_HOME used is the one located in the
XP_DISTRO/home folder which will work nicely for the above example. If you have set XP_HOME in the shell
where you try to start the server, this will override the default settings. So for the above test, unset the XP_HOME
variable if needed:

unset XP_HOME

4.3.2 Cluster configuration

There are a well of options at your disposal to configure and tune the cluster behavior. See Elastic-
search configuration for a subset of the available settings. All settings referred to in this chapter are set in
$XP_HOME/config/com.enonic.xp.elasticsearch.cfg unless otherwise specified.

There are some key elements to consider when setting up a cluster:

1. Set up a shared storage for the nodes -> Shared storage Configuration

2. Make sure that nodes are connected -> Network configuration

3. Distribute the data between the nodes -> Replica setup

4. Ensure cluster data integrity -> Cluster partition settings

5. Ensure cluster stability -> Cluster stability settings

6. Make sure nodes recover correctly -> Node recovery settings

7. Monitoring the cluster -> Cluster monitoring

8. Deploying applications -> Deploying Apps in cluster

9. Securing data -> Backing up a cluster

4.3.3 Shared storage Configuration

For now, the nodes in the cluster need a shared storage to store data as files. Setting this up is highly individual for
different operating systems and infrastructures, but as a basic guideline:

1. Get access to a shared or distributed file system and mount it on the nodes that will be part of the
cluster

2. Configure $XP_HOME/config/com.enonic.xp.repo.cfg to point to the mounted storage:

blobsStore.dir = /path/to/shared/disk/folder

4.3.4 Network configuration

The nodes in a cluster need to be able to discover and communicate with other nodes in the network. The nodes
communicate through TCP.

4.3. Clustering 123

Enonic XP Documentation, Release 6.4.3

Each node binds to an IP-address and port, and communicates to other nodes specified in a list of other nodes bind
addresses. Verify that your network allows TCP traffic on a specific port or port-range for the nodes to communicate
and then configure the nodes to use these addresses.

Settings

network.host

The network.host setting specifies the TCP-address used for node communication. The default value for this is
127.0.0.1, which means that this node will never be able to talk to other nodes.

The network.host setting can be an explicit IP-address, a host-name or an alias. See the Storage Configuration
section for an overview.

transport.tcp.port

The transport.tcp.port value defines the port that the node will use for communication. This defaults to a
range of ports; 9300-9400, meaning that it will use the first available port in this range.

discovery.zen.ping.unicast.hosts

The discovery.zen.ping.unicast.hosts value contains a comma-separated list of nodes that are allowed
to join the cluster. Each value is either in the form of host:port or host:port1-port2 (port-range).

Sample config

transport.tcp.port = 9300-9400
network.host = _eth0:ipv4_
discovery.zen.ping.unicast.hosts = 10.0.6.47[9300-9400],10.0.6.49[9300-9400],10.0.6.73[9300-9400],10.0.6.74[9300]

Tip: Why aren’t my nodes connecting

The most common issue is that the node binds to a different network address than specified in the unicast list. When a
node starts, the log will show the current bind-address of the node in a message similar to this:

09:01:43.282 INFO org.elasticsearch.http - [loadtest-appserver1] bound_address {inet[/10.0.6.49:9300]}, publish_address {inet[/10.0.6.49:9300]}

Make sure that the bind-addresses match those specified in the unicast-list. If it still doesn’t work, it’s time to blame
the firewall or consult the Troubleshooting

4.3.5 Replica setup

Number of replicas

For a cluster to perform, each node must be able to do its share of work. Enonic XP searches for data in a number of
Elasticsearch indices. An index can have a number of replicas (copies) spread around to the nodes in the cluster, so
each node can query its local index for data.

The indices in Enonic XP have one replica configured by default. When a cluster has more than two nodes, this number
must be increased to ensure that each node has a replica of the indices.

124 Chapter 4. Operations Guide

Enonic XP Documentation, Release 6.4.3

The number of replicas can be set at runtime with the Toolbox CLI set-replicas, and the recommended settings for
replicas is number of nodes - 1

So for a 3 node cluster, the number of replicas should be set to 2.

4.3.6 Cluster partition settings

One of the main motivations of a cluster is to ensure that even if one or several nodes fail, the service you are providing
should still be available. In an ideal world, a 100 node cluster should be fully operational even if 99 nodes are down.
But in the real world, we also need to consider the cluster data integrity. This introduces a common dilemma in
clustered environments; how to avoid the dreaded split-brain situation.

In a split-brain scenario, nodes get divided into smaller clusters that don’t communicate with each other, and each
cluster believing that the nodes in the other cluster are dead. This can easily happen in a cluster with 4 nodes on two
different locations:

<<<Figure>>>

If the nodes on location-1 are disconnected from the master node on location-2, they will regroup and select a new
master on location-1 and still provide service. The nodes on location-2 will assume that the nodes in location-1 are
dead, so they will also continue serving requests. but they have no way of synchronizing data between the locations.
This will break the integrity of the cluster and make data invalid.

To avoid this situation, there are a couple of basic properties of a cluster that should be ensured:

1. Beyond a two node cluster, there should be an odd number of nodes. So 1,2,3,5,7 etc are all acceptable cluster
configurations.

2. When nodes are forming separate smaller clusters, only the cluster-partition with the majority of nodes should
be fully operational and accept writes.

3. The minority cluster partitions can be allowed to serve read-only requests if that is acceptable for the provided
service.

Settings

discovery.zen.minimum_master_nodes

This is the most important setting to set correctly to ensure cluster data integrity. A node will not accept requests
before the number of ‘minimum_master_nodes’ are met. For instance, in a 3 node cluster with 3 master nodes and
‘minimum_master_nodes’ setting of ‘2’, imagine that one of the nodes loose connection to the two other nodes. This
node will only see one possible master node (itself) and will not accept requests. The remaining two other nodes will
still work, and when the lost node reconnects again, it will get the fresh data from the other nodes and rejoin the cluster.

Important: As a rule of thumb, this setting should be set to N/2+1, where N is the total number of nodes. So for a 5
node cluster, discovery.zen.minimum_master_nodes = 5/2+1 = 3 (rounding down to the nearest integer)

So what about a 2 node cluster? It will be impossible to avoid a possible split-brain scenario with this setup. It’s highly
recommended to add one node as a tie-breaker. This node may act as a dedicated master node (with node.data = false,
see Cluster stability settings) which enables it to run on less expensive hardware since it will not handle any external
requests.

Tip: Why nodes leave the cluster

There are 2 main reasons why cluster nodes leave the cluster

4.3. Clustering 125

Enonic XP Documentation, Release 6.4.3

1. Network failure

2. Node not responding

Network failures

Network failures are the main reason for cluster stability-issues. The problems could have any number of reasons,
from a router breaking down to complex scenarios where e.g a firewall cuts the connection in one direction between
two nodes

Node not responding

If a node does not get a response on a ping to the master node within a set timeout, it will consider it as dead and
invoke an election process. Likewise, the master node expects that a slave node will respond within a certain amount
of time. This is usually caused by a node doing a stop-the-world garbage collection, and not being able to respond to
the request at all for a period of time.

4.3.7 Cluster stability settings

In a low load environment, there is probably no need to do a lot of tuning since it will perform acceptable with the
default setup. If you expect heavy load, there are a couple of things to consider when setting up the cluster topology.

Dedicated master nodes

A cluster consists of a number of nodes sharing data and state between them. A cluster needs to have exactly one node
acting as a master-node at any time. The master-node is responsible for managing the cluster-state. In a busy cluster,
the master-nodes will have to do a lot of work to ensure that all other nodes get the needed information.

Since the cluster stability depends on a healthy master node, it may be a good idea to set aside a number of nodes as
dedicated master nodes. These dedicated master nodes should not be handling external requests, but rather concentrate
on keeping the cluster nodes in sync and stable.

A node can be configured to be allowed to act as a master-node by the setting node.master.

A dedicated master node should have the following settings:

node.master = true
node.data = false

Data nodes

Data nodes are the workhorses of the cluster. They will handle the bulk load of the requests, depending on the master
node to keep them in sync. These nodes need the most memory and CPU power.

A dedicated data node should have the following settings:

node.master = false
node.data = true

4.3.8 Node recovery settings

Node recovery happens when a node starts or reconnects to the cluster after a e.g a network shortage.

Consider a cluster of 2 nodes. When a node starts for the first time, it will try to connect to a cluster. If no master
found, it will elect itself as master, then proceed to initialize the index-data locally. If it does find an existing master

126 Chapter 4. Operations Guide

Enonic XP Documentation, Release 6.4.3

node, it will require the master to provide it with data. This is all good, but there may occur situations where a new
node in an existing cluster starts initializing data before the nodes with existing data can inform the new node that
there is already data in the cluster.

Settings

gateway.recover_after_nodes

Defaults to 1. Do not start the recovery of local indices before this number of nodes (master or data) has joined the
cluster.

gateway.recover_after_master_nodes

Defaults to 0. Do not start the recovery of local indices before this number of master-nodes is present in the cluster.

4.3.9 Cluster monitoring

See Cluster monitoring

4.3.10 Deploying Apps in cluster

To deploy applications in a cluster you need to deploy the application to every node, as loading and installation of apps
is done on a per-node basis. This also means you can choose what applications to deploy on each node.

Warning: Remember that XP only supports running one version of an application at any time. So don’t leave the
old versions of your applications in the deploy directory.

4.3.11 Backing up a cluster

Backing up a cluster is done in the same way as backing up a single node installation, the only difference is that the
snapshots.dir-option should point to a shared file system location, see Storage Configuration.

1. First, on any cluster node, take a :toolbox-snapshot of the indices. This will store a cluster-wide
snapshot of all data at a point of time. This can be configured to run as an automatic job; Only the
diff from the last snapshot will be stored, so the operation is quick.

2. Second, take a file copy of your blobstore.

We recommend uisng incremental backup for the blobstore (rsync or similar) as this will only copy the
recently changed files. The combined data from the snapshots and blobstore copy is all you need in order
to restore Enonic XP.

4.3.12 Sample configurations

2-node cluster

4.3. Clustering 127

Enonic XP Documentation, Release 6.4.3

node.name = local-node-1
node.master = true

cluster.name = mycluster

network.host = _en0_
transport.tcp.port = 9300-9400

gateway.expected_nodes = 1
gateway.recover_after_nodes = 1
discovery.zen.minimum_master_nodes = 1
discovery.zen.ping.unicast.hosts = <node1Address>,<node2Address>

3-node cluster

node.name = local-node-1
node.master = true

cluster.name = mycluster

network.host = _en0_
transport.tcp.port = 9300-9400

gateway.expected_nodes = 2
gateway.recover_after_nodes = 2
discovery.zen.minimum_master_nodes = 2
discovery.zen.ping.unicast.hosts = <node1Address>,<node2Address>,<node3Address>

5-node cluster

node.name = local-node-1
node.master = true

cluster.name = mycluster

network.host = _en0_
transport.tcp.port = 9300-9400

gateway.expected_nodes = 3
gateway.recover_after_nodes = 3
discovery.zen.minimum_master_nodes = 3
discovery.zen.ping.unicast.hosts = <node1Address>,<node2Address>,<node3Address>,<node3Address>,<node5Address>

7-node cluster with dedicated roles

NODE1 - NODE-3 dedicated masters

node.name = node-1/node-2/node-3
node.master = true
node.data = false

cluster.name = mycluster

128 Chapter 4. Operations Guide

Enonic XP Documentation, Release 6.4.3

network.host = _en0_
transport.tcp.port = 9300-9400

gateway.recover_after_master_nodes = 2
discovery.zen.minimum_master_nodes = 2
discovery.zen.ping.unicast.hosts = <node1Address>,<node2Address>,<node3Address>,<node3Address>,<node5Address>,<node6Address>,<node7Address>

NODE4 - NODE-7 dedicated data nodes

node.name = node-4/node-5/node-6/node-7
node.master = false
node.data = true

cluster.name = mycluster

network.host = _en0_
transport.tcp.port = 9300-9400

gateway.recover_after_master_nodes = 2
discovery.zen.minimum_master_nodes = 2
discovery.zen.ping.unicast.hosts = <node1Address>,<node2Address>,<node3Address>,<node3Address>,<node5Address>,<node6Address>,<node7Address>

4.4 Monitoring

We provide some basic metric tools for monitoring which are easily accessed in a simple JSON format.

4.4.1 Basic status info

To access the monitoring JSON feed you can point to the following url:

http://localhost:8080/status

This will give you a list of status-reporters. Each reporter has a name and can be accessed using the following pattern:

http://localhost:8080/status/<name>

4.4.2 Cluster monitoring

There are two tools at your disposal for monitoring the health of the cluster and indices:

Cluster health

http://<host>:<port>/status/cluster

Which should give you a response like this:

{
"localNode": {

"hostName": "Runars-MacBook-Pro.local",
"id": "xUfgZ2FdRu6q-CLJA4CIkA",

4.4. Monitoring 129

Enonic XP Documentation, Release 6.4.3

"isMaster": true,
"numberOfNodesSeen": 2,
"version": "1.4.4"

},
"members": [

{
"address": "inet[/127.0.0.1:9300]",
"hostName": "Runars-MacBook-Pro.local",
"id": "xUfgZ2FdRu6q-CLJA4CIkA",
"isMaster": true,
"version": "1.4.4"

},
{

"address": "inet[/127.0.0.1:9301]",
"hostName": "Runars-MacBook-Pro.local",
"id": "yvHpvM7KQn6y6yTZ-QIRNw",
"isMaster": false,
"version": "1.4.4"

}
],
"name": "mycluster",
"state": "YELLOW"

}

This view gives a brief overview of the nodes in the cluster. For convenience, the current local node to which the
request was made has a separate entry in addition to being in the list of members.

The “state” property is the most important:

• Green: Cluster is operational and all configured replicas are distributed to a node

• Yellow: Cluster is operational, but there are replicas that are not distributed to any node

• Red: Cluster is not operational

To see the details about how the replicas are distributed, let’s continue to the Index stats report:

Index stats

http://<host>:<port>/status/index

Which should give you a response like this:

{
"summary": {

"total": 8,
"started": 4,
"unassigned": 4
"initializing": 0,
"relocating": 0,

},
"shards": {

"initializing": [],
"relocating": [],
"started": [

{
"id": "search-cms-repo(0)",
"nodeAddress": "10.0.6.146",
"nodeId": "xUfgZ2FdRu6q-CLJA4CIkA",

130 Chapter 4. Operations Guide

Enonic XP Documentation, Release 6.4.3

"type": "PRIMARY"
},
{

"id": "search-system-repo(0)",
"nodeAddress": "10.0.6.146",
"nodeId": "xUfgZ2FdRu6q-CLJA4CIkA",
"type": "PRIMARY"

},
{

"id": "storage-system-repo(0)",
"nodeAddress": "10.0.6.146",
"nodeId": "xUfgZ2FdRu6q-CLJA4CIkA",
"type": "PRIMARY"

},
{

"id": "storage-cms-repo(0)",
"nodeAddress": "10.0.6.146",
"nodeId": "xUfgZ2FdRu6q-CLJA4CIkA",
"type": "PRIMARY"

}
],
"unassigned": [

{
"id": "search-cms-repo(0)",
"nodeAddress": "UNKNOWN",
"type": "REPLICA"

},
{

"id": "search-system-repo(0)",
"nodeAddress": "UNKNOWN",
"type": "REPLICA"

},
{

"id": "storage-system-repo(0)",
"nodeAddress": "UNKNOWN",
"type": "REPLICA"

},
{

"id": "storage-cms-repo(0)",
"nodeAddress": "UNKNOWN",
"type": "REPLICA"

}
]

}
}

This gives an overview of how the indices are distributed and what state the index parts (shards) are currently in. A
shard could be either PRIMARY or REPLICA (copy of a primary shard). These are the possible states:

• total: Total number of index parts (e.g two repositories with two indices with one replica for each
index)

• started: Shards that are currently assigned to a node

• unassigned: Shards waiting to be distributed to a node. Typically a setup with a number of replicas
where one or more nodes are not running

• relocating: Shards that are currently moving from one node to another

• initializing Shards that are currently being recovered from disk at startup.

4.4. Monitoring 131

Enonic XP Documentation, Release 6.4.3

The shards section gives a more detailed overview on the shard distribution.

4.5 Install as service

When installing Enonic XP on a standard production server, you will want to set it up to run as a service.

First, make sure the correct version of Java is installed on your system. See Install Java for guidance.

4.5.1 Linux

Install with script

Attention: The script is written for and tested on Ubuntu / CentOS. For other distrubutions, the manual installation
may be neccessary.
Prerequisites

• User with sudo rights
• Java JRE 1.8+ installed
• /lib/lsb/init-functions installed

1. Download the Enonic XP distribution

2. Unzip the distributiopn

3. Run script: sudo ./enonic-xp-6.4.3/service/install_service.sh

4. Optional: Set JAVA_HOME and JAVA_OPTS variables in /etc/xp.conf

5. Start service: sudo service xp start

6. Check log: sudo tail -f /home/xp/enonic/xp/logs/server.log

Manual installation

See linux-detailed-service-install

4.5.2 Windows

Info on running XP as a service in windows will come later.

4.6 Backup and Restore

Backing up your data is vital for any installation.

All the data in an Enonic XP installation is stored in $XP_HOME/repo. This directory has two folders: blob and
index.

The blob folder contains all files needed by the system to manage your data, while the index folder contains the
Elasticsearch index folders. These are dependent on each other in the sense that one is not much use without the other.

That leaves us with ensuring that two elements are safely stored for retrieval in an emergency:

• $XP_HOME/repo/blobs

132 Chapter 4. Operations Guide

Enonic XP Documentation, Release 6.4.3

• $XP_HOME/repo/index

4.6.1 Backup vs Export

The export/import-API enables you to dump your data to a serialized format. The serialized data could then be
imported into another instance. This is very useful, but is not optimal for a backup/restore scheme since it requires
some work to get things up and running again, especially when working with big installations with a lot of data. The
backup/restore-process described below on the other hand, should enable a quick and safe way to get your system back
to operation when in a hurry.

See Export and Import for more information on export/import.

4.6.2 Backing up blobs

The blobs are just files on a filesystem. This should be backed up by your preferred way of doing file-backups.

The folder to backup is:

• $XP_HOME/repo/blobs

4.6.3 Backing up indexes

Backing up the indices is a bit more complex than just copying the index-folder since it involves floating data with
state, especially in a clustered environment. To help you out, we have a snapshot-API. A snapshot is exactly that; a
snapshot of the indices state at a point of time. There are 4 rest-resources at your disposal.

http://<your-installation>/admin/rest/repo/snapshot Stores a snapshot of the current indices
state.

http://<your-installation>/admin/rest/repo/list Returns a list of available snapshots for the in-
stallation.

http://<your-installation>/admin/rest/repo/restore Restore a snapshot of the indices state.

http://<your-installation>/admin/rest/repo/delete Deletes a snapshot or a group of snapshots.

Snapshot

The snapshot rest-service accepts a JSON in this format:

{
"repositoryId": "<repository-id>"

}

A snapshot of the given repository will be created for later retrieval. Each subsequent snapshot will store the changes
between this snapshot and the last snapshot of the given repository. This means that only changed data are stored when
doing subsequent snapshots. The default location where snapshots are stored is $xp_home/snapshots. A name
of the snapshot will be given at snapshot-time, and returned in the snapshot-result.

To ease the process, we have provided a snapshot tool.

4.6. Backup and Restore 133

Enonic XP Documentation, Release 6.4.3

Restore

The restore rest-service accepts a JSON in this format:

{
"snapshotName": "<snapshot-name>",
"repository" : "<repository-id>"

}

The indices will be closed for the duration of a restore operation, meaning that no request will be accepted while the
restore in running. To ease the process, we have provided a restore tool.

Warning: Restoring a snapshot will restore data to the exact state of the indices at the snapshot-time, meaning all
other changes will be lost.

Delete

The delete rest-service accepts a JSON in this format:

{
"snapshotNames": ["name1", "name2"],
"before" : "<timestamp>"

}

Deletes either all snapshots before timestamp, or given snapshots by name. To ease the process, we have provided a
delete-snapshots tool.

4.7 Export and Import

Exporting and importing data in your Enonic XP installation is useful both for securing data and migrating between
installations. Enonic XP ships with a set of tools (Toolbox CLI) to ease the operation of exporting and importing data
from the system.

Caution: At the moment, exporting and importing data can only be done to and from files on the same server
running Enonic XP.

4.7.1 Export

The export operation will extract data for a given content URL and store it as XML in a sub-folder under
$XP_HOME/data/export. The REST service for export is found at the following URL:

http://<host>:<port>/admin/rest/export/export

The export REST service accepts a JSON in this format:

{
"sourceRepoPath": "<source-repo-path>",
"exportName": "<name>",
"importWithIds": <true|false>,
"dryRun": <true|false>

}

To ease the process, we have provided an export tool.

134 Chapter 4. Operations Guide

Enonic XP Documentation, Release 6.4.3

4.7.2 Import

The import will take data from a given export directory and load it into Enonic XP at the desired content path. The
REST service for import is found at the following URL:

http://<host>:<port>/admin/rest/export/import

The import REST service accepts a JSON in this format:

{
"exportName": "<name>",
"targetRepoPath": "<target-repo-path>",
"importWithIds": <true|false>,
"importWithPermissions": <true|false>,
"dryRun": <true|false>
"xslSource": "<xsl-file-path>"
"xslParams": {
"<name>": "<value>"

}
}

To ease the process, we have provided an import tool.

4.7.3 Export data structure

Let’s look at how this works. The following structure will be exported:

Run the export command:

$./toolbox.sh export -a su:password -s cms-repo:draft:/ -t myExport

Below is the resulting structure in the export folder $XP_HOME/data/export/myExport:

4.7. Export and Import 135

Enonic XP Documentation, Release 6.4.3

./content

./content/_

./content/_/node.xml

./content/demo-site

./content/demo-site/_

./content/demo-site/_/manualChildOrder.txt

./content/demo-site/_/node.xml

./content/demo-site/_templates

...

./content/demo-site/case-studies

./content/demo-site/case-studies/_

./content/demo-site/case-studies/_/node.xml

./content/demo-site/case-studies/a-demo-case-study

...

./content/demo-site/case-studies/a-demo-case-study/enonic man.png

./content/demo-site/case-studies/a-demo-case-study/enonic man.png/_

./content/demo-site/case-studies/a-demo-case-study/enonic man.png/_/bin

./content/demo-site/case-studies/a-demo-case-study/enonic man.png/_/bin/Enonic man.png

...

./content/demo-site/case-studies/powered-by-sites

...

./content/demo-site/contact-enonic

...

content The base folder of the export. All content in cms-repo has this as root path.

content/_ All folders named _ are system folders for the data at the current level.

content/_/node.xml The definition of the node, e.g. all data for the current node

content/demo-site This is the site from the screenshot above.

content/demo-site/_/manualChildOrder.txt Our demo-site has manually ordered children, this file
contains an ordered list of children.

content/demo-site/case-studies This ‘case-studies’ content is the first element in the site.

content/demo-site/case-studies/a-demo-case-study/enonic man.png/_/bin The A
demo case study content has a binary attachment called Enonic man.png. The folder _/bin
contains the actual binary files.

4.7.4 Changing export data

It is possible to make manual changes to the exported data before importing.

Using the above export as an example, the demo-site displayName can be changed to something more suitable:

myExport $ vi content/demo-site/_/node.xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<node xmlns="urn:enonic:xp:export:1.0">

<id>2dfbdc41-af98-4b3c-a2a9-9dc4814d003a</id>
<childOrder>_manualordervalue DESC</childOrder>
<nodeType>content</nodeType>
<data>
<boolean name="valid">true</boolean>
<string name="displayName">My much nicer demo-site!</string>
<string name="type">portal:site</string>
<string name="owner">user:system:su</string>

136 Chapter 4. Operations Guide

Enonic XP Documentation, Release 6.4.3

After some data has been changed, it can be imported again:

$./toolbox.sh import -a su:password -s myExport -t cms-repo:draft:/

Caution: Editing exported data is experimental at the moment and will potentially cause trouble if not done
carefully. For exports without ids, references will be broken and must be fixed manually. When importing with ids
onto existing data, renaming and changing manual order will not yet work as expected.

4.8 Troubleshooting

This document is an up-to-date list of known problems (and how to fix them) for our current release and development
releases.

4.8.1 Wrong Java version

Verify that Java 1.8 (update 40 or higher) is installed and that this version is actually used.

Run java -version in the shell where you attempt to start Enonic XP:

$ java -version
java version "1.8.0_40"
Java(TM) SE Runtime Environment (build 1.8.0_40-b26)
Java HotSpot(TM) 64-Bit Server VM (build 25.40-b25, mixed mode)

The boot log will also output the version of Java that was actually used.

If the Java version does not match your expected version, make sure that the JAVA_HOME environment variable is set
correctly. For OS X and Linux users - execute the following in your command line:

export JAVA_HOME=`/usr/libexec/java_home -v 1.8`

Optionally add the line to your ~/.properties file to make the change persistent.

Check the Troubleshooting Java page for more Java help.

4.8.2 Port 8080 already taken

A lot of different web software defaults to port 8080. If you find that the log is complaining about this, simply identify
the other software you have running on this port and stop it.

If shutting down other software that uses port 8080 is not an option, you may set a different port for Enonic XP. See
Configuration.

4.8. Troubleshooting 137

Enonic XP Documentation, Release 6.4.3

4.8.3 Unexpected behavior

While frequently redeploying an app during development, some instability or unexpected behavior may be noticed.
This can be caused by certain changes to the app files. For example, changing the app name in the build.gradle file,
or deleting content import node.xml files. When this occurs, the project may need a clean build gradle clean
build. Sometimes the app JAR file may need to be deleted from the $XP_HOME/deploy directory as well, and then
replaced with the clean build JAR file.

Having two versions of the same app in the $XP_HOME/deploy folder will cause problems.

4.8.4 Cannot login after install

There could be a problem with file permissions on Windows if Enonic XP was unzipped and started from within the
“My Documents” folder. This may allow XP to start, but the users cannot log in. The solution would be to unzip the
Enonic XP distribution outside of the “My Documents” folder, or to manually change the file permissions.

4.8.5 Sending email with lib-mail not working

Check the installation’s Mail Configuration.

4.9 Troubleshooting Java

Important: This documentation is based on OSX, Windows version coming later..

4.9.1 Check current JDK version

To see all installed JDK’s on you environment, if any, type the following command in your terminal:

~/ $ /usr/libexec/java_home -V
Matching Java Virtual Machines (4):

1.8.0_45, x86_64: "Java SE 8" /Library/Java/JavaVirtualMachines/jdk1.8.0_45.jdk/Contents/Home
1.8.0_40, x86_64: "Java SE 8" /Library/Java/JavaVirtualMachines/jdk1.8.0_40.jdk/Contents/Home
1.8.0_20, x86_64: "Java SE 8" /Library/Java/JavaVirtualMachines/jdk1.8.0_20.jdk/Contents/Home
1.7.0_67, x86_64: "Java SE 7" /Library/Java/JavaVirtualMachines/jdk1.7.0_67.jdk/Contents/Home

~/ $

If you have a JDK equal to or above version 1.8.0_40, but the javac -version points to another version, proceed
to set the JAVA_HOME environment variable correctly.

4.9.2 Setting JAVA_HOME

If you don’t have a JDK equal to or above version 1.8.0_40, you must install a newer version.

• Go to the JDK page and click the “JDK download” button. This button will always link to the latest version.

• Follow the installation instructions.

• After installation, proceed to check that the JAVA_HOME environment variable is set correctly.

To check the current JAVA_HOME environment variable:

138 Chapter 4. Operations Guide

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://docs.oracle.com/javase/8/docs/technotes/guides/install/install_overview.html

Enonic XP Documentation, Release 6.4.3

~/ $ echo $JAVA_HOME
/Library/Java/JavaVirtualMachines/jdk1.8.0_60.jdk/Contents/Home
~/ $

If this is not set correctly, you must set the correct one either for this terminal session, or in your .profile or
.bashrc for all terminal sessions.

• To set the correct JAVA_HOME for the current terminal session; invoke the following command in your terminal.
This command will set JAVA_HOME to the newest installed 1.8 JDK-version:

~/ $ export JAVA_HOME=`/usr/libexec/java_home -v 1.8`

• To set for all terminal sessions, add the entry to either your ~/.bash_profile or ~/.profile.

$ vim .bash_profile

export JAVA_HOME=$(/usr/libexec/java_home -v 1.8)

$ source .bash_profile

$ echo $JAVA_HOME
/Library/Java/JavaVirtualMachines/1.8.0_45.jdk/Contents/Home

4.9. Troubleshooting Java 139

Enonic XP Documentation, Release 6.4.3

140 Chapter 4. Operations Guide

141

Enonic XP Documentation, Release 6.4.3

CHAPTER 5

API and Reference Guide

5.1 Javascript Libraries

This section describes the various standard libraries shipped with Enonic XP. The libraries are included in your appli-
cation through the Gradle build script like this:

142 Chapter 5. API and Reference Guide

Enonic XP Documentation, Release 6.4.3

dependencies {
include 'com.enonic.xp:<name>:6.4.3'

}

Where name is the name of the library. Here’s a list of available libraries:

• lib-auth

• lib-cache

• lib-content

• lib-context

• lib-http-client

• lib-i18n

• lib-io

• lib-mail

• lib-mustache

• lib-portal

• lib-thymeleaf

• lib-xslt

• lib-websocket

To include both lib-mail and lib-content you can add both inside the dependency list like this:

dependencies {
include 'com.enonic.xp:lib-mail:6.4.3'
include 'com.enonic.xp:lib-content:6.4.3'

}

Note: The server-side JavaScript reference documentation can be accessed using the following links:

• Read in your browser

• Download as zip

5.2 View Functions

Some view technologies support a set of view functions. The list of view functions below are supported out-of-the-box:

5.2.1 assetUrl

This generates a URL pointing to a static file in the site/assets folder, such as CSS, background images, etc.

Parameters:

_path Path to the asset.

_application Use this when the asset referenced is in another application. Defaults to current application. Use the
app name, for example, com.enonic.blog.superhero.

5.2. View Functions 143

http://repo.enonic.com/public/com/enonic/xp/docs/6.4.3/docs-6.4.3-libdoc.zip!/index.html
http://repo.enonic.com/public/com/enonic/xp/docs/6.4.3/docs-6.4.3-libdoc.zip

Enonic XP Documentation, Release 6.4.3

_type URL type. Either server (server-relative URL) or absolute. Default is server.

everything else Custom parameters to append to the url.

Usage in Thymeleaf:

<a data-th-href="${portal.assetUrl({'_path=css/main.css'})}">Link

Usage in XSLT:

<xsl:stylesheet version="2.0" exclude-result-prefixes="#all"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:portal="urn:enonic:xp:portal:1.0">

<xsl:template match="/">
<xsl:value-of select="portal:assetUrl('_path=a')"/>

</xsl:template>

</xsl:stylesheet>

5.2.2 attachmentUrl

This generates a URL pointing to an attachment.

Parameters:

_id Id to the content holding the attachment.

_path Path to the content holding the attachment.

_name Name to the attachment.

_label Label of the attachment. Default is source.

_download Set to true if the disposition header should be set to attachment. Default is false.

_type URL type. Either server (server-relative URL) or absolute. Default is server.

everything else Custom parameters to append to the url.

Usage in Thymeleaf:

<a data-th-href="${portal.attachmentUrl({'_download=true'})}">Link

Usage in XSLT:

<xsl:stylesheet version="2.0" exclude-result-prefixes="#all"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:portal="urn:enonic:xp:portal:1.0">

<xsl:template match="/">
<xsl:value-of select="portal:attachmentUrl('_download=true')"/>

</xsl:template>

</xsl:stylesheet>

5.2.3 componentUrl

This generates a URL pointing to a component.

Parameters:

144 Chapter 5. API and Reference Guide

Enonic XP Documentation, Release 6.4.3

_id Id to the page.

_path Path to the page.

_component Path to the component. If not set, the current path is set.

_type URL type. Either server (server-relative URL) or absolute. Default is server.

everything else Custom parameters to append to the url.

Usage in Thymeleaf:

<a data-th-href="${portal.componentUrl({'_component=main/1'})}">Link

Usage in XSLT:

<xsl:stylesheet version="2.0" exclude-result-prefixes="#all"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:portal="urn:enonic:xp:portal:1.0">

<xsl:template match="/">
<xsl:value-of select="portal:componentUrl('_component=main/1')"/>

</xsl:template>

</xsl:stylesheet>

5.2.4 imageUrl

This generates a URL pointing to an image.

Parameters:

_id Id to the image.

_path Path to the image. If _id is specified, this parameter is not used.

_format Format of the image.

_scale Resize and crop the image to fit the available area. See: Scaling

_quality Quality for JPEG images, ranges from 0 (max compression) to 100 (min compression). Default is 85.

_background Background color.

_filter Styling filters to use on the image. More than one filter may be combined with a semicolon. See: Styling

_type URL type. Either server (server-relative URL) or absolute. Default is server.

everything else Custom parameters to append to the url.

Usage in Thymeleaf:

Usage in XSLT:

<xsl:stylesheet version="2.0" exclude-result-prefixes="#all"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:portal="urn:enonic:xp:portal:1.0">

<xsl:template match="/">
<xsl:value-of select="portal:imageUrl('_id=11', 'scale=width(200)')"/>
<xsl:value-of select="portal:imageUrl('_path=test', 'scale=width(200)')"/>

5.2. View Functions 145

Enonic XP Documentation, Release 6.4.3

</xsl:template>

</xsl:stylesheet>

5.2.5 pageUrl

This generates a URL pointing to a page.

Parameters:

_id Id to the page. If id is set, then path is not used.

_path Path to the page. Relative paths is resolved using the context page.

_type URL type. Either server (server-relative URL) or absolute. Default is server.

everything else Custom parameters to append to the url.

Usage in Thymeleaf:

<a data-th-href="${portal.pageUrl({'_path=/my/page', 'a=3'})}">Link

Usage in XSLT:

<xsl:stylesheet version="2.0" exclude-result-prefixes="#all"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:portal="urn:enonic:xp:portal:1.0">

<xsl:template match="/">
<xsl:value-of select="portal:pageUrl('_path=/my/page', 'a=3')"/>

</xsl:template>

</xsl:stylesheet>

5.2.6 serviceUrl

This generates a URL pointing to a service.

Parameters:

_service Name of the service.

_application Other application to reference to. Default is current application.

_type URL type. Either server (server-relative URL) or absolute. Default is server.

everything else Custom parameters to append to the url.

Usage in Thymeleaf:

<a data-th-href="${portal.serviceUrl({'_service=myservice', 'a=3'})}">Link

Usage in XSLT:

<xsl:stylesheet version="2.0" exclude-result-prefixes="#all"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:portal="urn:enonic:xp:portal:1.0">

<xsl:template match="/">
<xsl:value-of select="portal:serviceUrl('_service=myservice', 'a=3')"/>

146 Chapter 5. API and Reference Guide

Enonic XP Documentation, Release 6.4.3

</xsl:template>

</xsl:stylesheet>

5.2.7 imagePlaceholder

This command generates a URL to an image placeholder.

Parameters:

width Width of image.

height Height of image.

Usage in Thymeleaf:

Usage in XSLT:

<xsl:stylesheet version="2.0" exclude-result-prefixes="#all"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:portal="urn:enonic:xp:portal:1.0">

<xsl:template match="/">
<xsl:value-of select="portal:imagePlaceholder('width=10','height=10')"/>

</xsl:template>

</xsl:stylesheet>

5.2.8 localize

This localizes a phrase.

Parameters:

_key The property key.

_locale A string-representation of a locale. If the locale is not set, the site language is used.

_values Optional placeholder values (comma separated).

Usage in Thymeleaf:

<div data-th-text="${portal.localize({'_key=mystring','_locale=en'})}">Not translated</div>

Usage in XSLT:

<xsl:stylesheet version="2.0" exclude-result-prefixes="#all"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:portal="urn:enonic:xp:portal:1.0">

<xsl:template match="/">
<xsl:value-of select="portal:localize('_key=mystring')"/>

</xsl:template>

</xsl:stylesheet>

5.2. View Functions 147

Enonic XP Documentation, Release 6.4.3

5.2.9 processHtml

This function replaces abstract internal links contained in an HTML text by generated URLs.

Parameters:

_value Html value string to process.

_type URL type. Either “server” (server-relative URL) or “absolute”. Default is “server”

Usage in Thymeleaf:

<div data-th-text="${portal.processHtml({'_value=some text'})}">Text</div>

Usage in XSLT:

<xsl:stylesheet version="2.0" exclude-result-prefixes="#all"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:portal="urn:enonic:xp:portal:1.0">

<xsl:template match="/">
<xsl:value-of select="portal:processHtml('_value=some text')"/>

</xsl:template>

</xsl:stylesheet>

5.3 Query Language

When finding nodes and content you will be using our query language. It is based on SQL and looks very similar.

5.3.1 queryExr

Grammar:

queryExpr = [constraintExpr] [orderExpr] ;

• If no constraint-expression is given, all documents will match.

• If no order-expression is given, results will be ordered by _score descending.

Examples:

myCategory = 'article'
myCategory = 'article' ORDER BY title DESC
ORDER BY title

5.3.2 constraintExpr

Grammar:

constraintExpr = compareExpr
| logicalExpr
| dynamicConstraint
| notExpr ;

148 Chapter 5. API and Reference Guide

Enonic XP Documentation, Release 6.4.3

5.3.3 compareExpr

Grammar:

compareExpr = fieldExpr operator valueExpr ;
fieldExpr = propertyPath ;
operator = '=', '!=', '>', '>', '<', '<=', 'LIKE', 'NOT LIKE', 'IN', 'NOT IN' ;
valueExpr = string | number | valueFunc ;
valueFunc = geoPoint | instant | time | dateTime, localDateTime ;
geoPoint = '"' lat ',' lon '"' ;
instant = 'instant(' string ')' ;
time = 'time(' string ')' ;
dateTime = 'dateTime(' string ')' ;
localDateTime = 'localDateTime(' string ')' ;

Examples:

user.myCategory = "articles"
user.myCategory IN ("articles", "documents")
user.myCategory != "articles"
user.myCategory LIKE "*tic*"
myPriority < 10
myPriority <= 10
myPriority > 10
myPriority < 100
myPriority != 10
myInstant = instant('2014-02-26T14:52:30.00Z')
myInstant <= instant('2014-02-26T14:52:30.00Z')
myInstant <= dateTime('2014-02-26T14:52:30.00+02:00')
myTime = time('09:00')
myLocalDateTime = time('2014-02-26T14:52:30.00')
myLocation = '59.9127300,10.7460900'
myLocation IN ('59.9127300,10.7460900','59.2181000,10.9298000')

5.3.4 logicalExpr

Grammar:

logicalExpr = constraintExpr operator constraintExpr ;
operator = 'AND' | 'OR' ;

Examples:

myCategory = "articles" AND myPriority > 10
myCategory IN ("articles", "documents") OR myPriority <= 10

5.3.5 dynamicConstraint

Grammar:

dynamicConstraint = functionExpr ;

Examples:

fulltext('myCategory', 'Searching for fish', 'AND')
ngram('description', 'fish boat', 'AND')

5.3. Query Language 149

Enonic XP Documentation, Release 6.4.3

5.3.6 notExpr

Grammar:

notExpr = 'NOT' constraintExpr ;

Examples:

NOT myCategory = 'article'

5.3.7 orderExpr

Grammar:

orderExpr = 'ORDER BY' (fieldOrderExpr | dynamicOrderExpr)
(',' (fieldOrderExpr | dynamicOrderExpr))* ;

5.3.8 fieldOrderExpr

Grammar:

fieldOrderExpr = propertyPath [direction] ;
direction> = 'ASC' | 'DESC' ;

Examples:

_name ASC
_timestamp DESC
title DESC
data.myProperty

5.3.9 dynamicOrderExpr

Grammar:

dynamicOrderExpr = functionExpr [direction] ;
direction = 'ASC' | 'DESC' ;

Examples:

geoDistance('59.9127300,10.746090')

5.3.10 propertyPath

Grammar:

propertyPath = pathElement ('.' pathElement)* ;
pathElement = ([validJavaIdentifier - '.'])* ;

Examples:

myProperty
data.myProperty
data.myCategory.myProperty

150 Chapter 5. API and Reference Guide

Enonic XP Documentation, Release 6.4.3

Tip: Wildcards in propertyPaths are supported in functions fulltext and ngram only at the moment. When using
these functions, expressions like this are valid:

myProp*
*Property
data.*
*.myProperty
data.*.myProperty

5.3.11 functionExpr

Grammar:

functionExpr = functionName '(' arguments ')' ;

5.3.12 Examples

Find all documents where property ‘myCategory’ is populated with a value, and the value does not equal ‘article’.

myCategory LIKE '*' AND NOT myCategory = 'article'

Find all document where property ‘myCategory’ is either ‘article’ or ‘document’ and title starts with ‘fish’.

myCategory IN ('article', 'document') AND ngram('title', 'fish', 'AND')

Find all documents where any fulltext-analyzed property contains ‘fish’ and ‘spot’, and order them ascending by
distance from Oslo.

fulltext('_allText', 'fish spot', 'AND') ORDER BY
geoDistance('data.location', '59.9127300,10.7460900') ASC

Find all documents where any property under data-set ‘data’ contains ‘fish’ and ‘spot’, and order them ascending by
distance from Oslo.

fulltext('data.*', 'fish spot', 'AND') ORDER BY
geoDistance('data.location', '59.9127300,10.7460900') ASC

5.4 Toolbox CLI

The toolbox is a CLI (command line interface) tool that is used to do administration tasks. Toolbox executables are
located in $XP_INSTALL/toolbox folder. Use toolbox.sh for mac/unix environments and toolbox.bat
for windows environments.

To get help for the commands, just type the following:

$./toolbox.sh
usage: toolbox <command> [<args>]

The most commonly used toolbox commands are:
delete-snapshots Deletes snapshots, either before a given timestamp or by name.
dump Export data from every repository.
export Export data for a specified path.

5.4. Toolbox CLI 151

Enonic XP Documentation, Release 6.4.3

help Display help information
import Import data from a named export.
init-project Initiates an Enonic XP application project.
install-app Install an application from URL or file
list-snapshots Returns a list of existing snapshots with name and status.
load Import data from a dump.
reindex Reindex content in search indices for the given repository and branches.
reprocess Reprocesses content in the repository.
restore Restores a snapshot of a previous state of the repository.
set-replicas Set the number of replicas in the cluster.
snapshot Stores a snapshot of the current state of the repository.
upgrade Upgrade a dump to the current version. The upgraded files will be written to <dumpFolderName>_upgraded_<version>

See 'toolbox help <command>' for more information on a specific command.

To get help for a specific command, you can type toolbox.sh help <command>, like:

$ toolbox.sh help import

Here’s a list of all the commands that you can do with the toolbox:

5.4.1 snapshot

Create a snapshot of all or a single repository while running. The snapshots will be stored in the directory given in
snapshots.dir option in the Storage Configuration (default $xp_home/snapshots).

Attention: For a clustered installation, the snapshot-location must be on a shared file-system.

Usage:

NAME
toolbox snapshot - Stores a snapshot of the current state of the
repository.

SYNOPSIS
toolbox snapshot -a <auth> [-h <host>] [-p <port>] [-r <repository>]

OPTIONS
-a <auth>

Authentication token for basic authentication (user:password).

-h <host>
Host name for server (default is localhost).

-p <port>
Port number for server (default is 8080).

-r <repository>
the name of the repository to snapshot (default is all repositories)

Example:

$./toolbox.sh snapshot -a su:password

Related:

• List available snapshots with names: list-snapshots

152 Chapter 5. API and Reference Guide

Enonic XP Documentation, Release 6.4.3

• Restore snapshot: restore

5.4.2 restore

Restore a named snapshot.

Usage:

NAME
toolbox restore - Restores a snapshot of a previous state of the
repository.

SYNOPSIS
toolbox restore -a <auth> [-h <host>] [-p <port>] [-r <repository>]

-s <snapshotName>

OPTIONS
-a <auth>

Authentication token for basic authentication (user:password).

-h <host>
Host name for server (default is localhost).

-p <port>
Port number for server (default is 8080).

-r <repository>
The name of the repository to restore.

-s <snapshotName>
The name of the snapshot to restore.

Example:

$./toolbox restore -a su:password -r cms-repo \
-s cms-repo2015-07-02t11:53:13.224z

5.4.3 list-snapshots

List all the snapshots for the installation.

Usage:

NAME
toolbox list-snapshots - Returns a list of existing snapshots with name
and status.

SYNOPSIS
toolbox list-snapshots -a <auth> [-h <host>] [-p <port>]

OPTIONS
-a <auth>

Authentication token for basic authentication (user:password).

-h <host>
Host name for server (default is localhost).

5.4. Toolbox CLI 153

Enonic XP Documentation, Release 6.4.3

-p <port>
Port number for server (default is 8080).

Example:

$./toolbox.sh list-snapshots -a su:password

5.4.4 delete-snapshots

Deletes all snapshots before the given timestamp.

Usage:

NAME
toolbox delete-snapshots - Deletes snapshots, either before a given
timestamp or by name.

SYNOPSIS
toolbox delete-snapshots -a <auth> -b <before> [-h <host>] [-p <port>]

OPTIONS
-a <auth>

Authentication token for basic authentication (user:password).

-b <before>
Delete snapshots before this timestamp.

-h <host>
Host name for server (default is localhost).

-p <port>
Port number for server (default is 8080).

Example:

$./toolbox.sh delete-snapshots -a su:password -b 2015-02-14t14:24:20.618z

5.4.5 export

Extract data for a given repository, branch and content path. The result will be stored in the
$XP_HOME/data/export directory.

Usage:

NAME
toolbox export - Export data for a specified path.

SYNOPSIS
toolbox export -a <auth> [-h <host>] [-p <port>] -s <sourceRepoPath>

[--skipids] -t <exportName>

OPTIONS
-a <auth>

Authentication token for basic authentication (user:password).

-h <host>
Host name for server (default is localhost).

154 Chapter 5. API and Reference Guide

Enonic XP Documentation, Release 6.4.3

-p <port>
Port number for server (default is 8080).

-s <sourceRepoPath>
Path of data to export. Format:
<repo-name>:<branch-name>:<node-path>.

--skipids
Flag that skips ids in data when exporting.

-t <exportName>
Target name to save export.

Example:

$./toolbox.sh export -a su:password -s cms-repo:draft:/ -t myExport

5.4.6 import

Import data from a named export and load it into Enonic XP at the desired content path.

Usage:

OPTIONS
-a <auth>

Authentication token for basic authentication (user:password).

-h <host>
Host name for server (default is localhost).

-p <port>
Port number for server (default is 8080).

-s <exportName>
A named export to import.

--skipids
Flag that skips ids.

-t <targetRepoPath>
Target path for import. Format:
<repo-name>:<branch-name>:<node-path>. e.g 'cms-repo:draft:/'

-xslParam <xslParam>
Parameter to pass to the XSL transformations before importing nodes.
Format: <parameter-name>=<parameter-value> . e.g. 'applicationId=com.enonic.myapp'

-xslSource <xslSource>
Path to xsl file (relative to <XP_HOME>/data/export) for applying
transformations to node.xml before importing.

Example:

$./toolbox.sh import -a su:password -s myExport -t cms-repo:draft:/

Tip: An XSL file and a set of name=value parameters can be optionally passed for applying transformations to each
node.xml file, before importing it.

5.4. Toolbox CLI 155

Enonic XP Documentation, Release 6.4.3

This option could for example be used for renaming types or fields. The .xsl file must be located in the
$XP_HOME/data/export directory.

5.4.7 reindex

Reindex the content in the search indices for the given repository and branches.

Usage:

NAME
toolbox reindex - Reindex content in search indices for the given
repository and branches.

SYNOPSIS
toolbox reindex -a <auth> -b <branches>... [-h <host>] [-i] [-p <port>]

-r <repository>

OPTIONS
-a <auth>

Authentication token for basic authentication (user:password).

-b <branches>
A comma-separated list of branches to be reindexed.

-h <host>
Host name for server (default is localhost).

-i
If flag -i given true, the indices will be deleted before recreated.

-p <port>
Port number for server (default is 8080).

-r <repository>
The name of the repository to reindex.

Example:

$./toolbox.sh reindex -a su:password -b draft -i -r cms-repo

5.4.8 set-replicas

Set the number of replicas in the cluster.

Usage:

NAME
toolbox set-replicas - Set the number of replicas in the cluster.

SYNOPSIS
toolbox set-replicas -a <auth> [-h <host>] [-p <port>] [--]

<numberOfReplicas>

OPTIONS
-a <auth>

Authentication token for basic authentication (user:password).

156 Chapter 5. API and Reference Guide

Enonic XP Documentation, Release 6.4.3

-h <host>
Host name for server (default is localhost).

-p <port>
Port number for server (default is 8080).

--
This option can be used to separate command-line options from the
list of argument, (useful when arguments might be mistaken for
command-line options

<numberOfReplicas>
Number of replicas

Example:

$./toolbox.sh set-replicas -a su:password 2

5.4.9 dump

Export data from every repository. This is used to backup the entire repository when doing an upgrade. The result will
be stored in the $XP_HOME/data/dump directory.

Usage:

NAME
toolbox dump - Export data from every repository.

SYNOPSIS
toolbox dump -a <auth> [-h <host>] [-p <port>] -t <target>

OPTIONS
-a <auth>

Authentication token for basic authentication (user:password).

-h <host>
Host name for server (default is localhost).

-p <port>
Port number for server (default is 8080).

-t <target>
Dump name.

Example:

$./toolbox.sh dump -a su:password -t myDump

5.4.10 load

Load data from a named dump and load it into Enonic XP. The dump read has to be stored in the
$XP_HOME/data/dump directory.

Attention: A load must never be performed on a repo with existing content. It’s meant to be used on empty repos.
Make sure the repo is emptied first (delete contents)!

5.4. Toolbox CLI 157

Enonic XP Documentation, Release 6.4.3

Usage:

NAME
toolbox load - Import data from a dump.

SYNOPSIS
toolbox load -a <auth> [-h <host>] [-p <port>] -s <source>

OPTIONS
-a <auth>

Authentication token for basic authentication (user:password).

-h <host>
Host name for server (default is localhost).

-p <port>
Port number for server (default is 8080).

-s <source>
Dump name.

Example:

$./toolbox.sh load -a su:password -s myDump

5.4.11 upgrade

Upgrade a data dump from a previous version to the current version. The output of the upgrade will be placed
alongside the dump that is being upgraded and will have the name <dump-name>_upgraded_<new-version> unless a
target location is specified with -t.

The current version XP installation must be running with the upgraded app deployed.

Usage:

NAME
toolbox upgrade - Upgrade a dump.

SYNOPSIS
toolbox upgrade -d dump-path -t target-location

OPTIONS
-d <dump>

Directory for dump.

Example:

$./toolbox.sh upgrade -d ./data/dump/5.3.1-dump

The output would appear as:

/data/dump/5.3.1_upgraded_6.0.0/

5.4.12 init-project

The init-project tool initializes a new application project structure by retrieving a Git repository, removing all refer-
ences to the Git repository, and adapting its build file properties (gradle.properties).

158 Chapter 5. API and Reference Guide

Enonic XP Documentation, Release 6.4.3

Usage:

NAME
toolbox init-project - Initiates an Enonic XP application project

SYNOPSIS
toolbox init-project [-a <authentication>]

[(-c <checkout> | --checkout <checkout>)]
[(-d <destination> | --destination <destination>)]
(-n <name> | --name <name>)
(-r <repository> | --repository <repository>)
[(-v <version> | --version <version>)]

OPTIONS
-a <authentication>

Optional authentication token for basic authentication (user:password)

-c <checkout>, --checkout <checkout>
Branch or commit to checkout.

-d <destination>, --destination <destination>
Optional destination path to create your project, if not specified current
directory will be used

-n <name>, --name <name>
Unique qualifying name that will be given to your application i.e.
com.company.myapp. NOTE: Choose the name carefully as changing it at a later
point in time will require updating your content too.

-v <version>, --version <version>
Optional version number that will be set in your application project, if not
used 1.0.0-SNAPSHOT will be set

-r <repository>, --repository <repository>
Git repository you wish to use as starting point. Supports both full urls to
any standard xp git-hosted project, or optionally a GitHub repository path
(account/repo) - account defaults to "enonic" if not specified

Examples:

$ toolbox.sh init-project -d ~/Dev/xp/apps/myApp -n com.company.myapp -v 0.9.0 -r https://github.com/enonic/starter-vanilla.git -c 1.0.0

$ toolbox.sh init-project -n com.company.myapp -v 1.0.0-SNAPSHOT -r enonic/starter-base

$ toolbox.sh init-project -n com.company.myapp -r starter-base

5.4.13 install-app

Installs an application on all nodes

Usage:

NAME
toolbox install-app - Installs an application on all nodes

SYNOPSIS
toolbox install-app -a <auth> (-u <url> | -f <file>) [-h <host>] [-p <port>]

5.4. Toolbox CLI 159

Enonic XP Documentation, Release 6.4.3

OPTIONS
-a <auth>

Authentication token for basic authentication (user:password)

-u <url>
Url to application

-f <file>
Path to application jar-file

-h <host>
Host name for server (default is localhost)

-p <port>
Port number for server (default is 8080)

Example:

$./toolbox.sh install-app -a su:password -u http://repo.enonic.com/public/com/enonic/app/superhero/1.2.0/superhero-1.2.0.jar

$./toolbox.sh install-app -a su:password -f /Users/rmy/Dev/apps/superhero/build/libs/superhero-1.2.0-SNAPSHOT.jar

5.5 Image Processor

Enonic XP includes a number of image processing commands that may be used to set the size or add style to the
images. The commands are appended to the image URLs. To automatically create the URLs, use the imageUrl view
function.

5.5.1 Scaling

Scale Max

Scales the image proportionally, so the longest edge has the given number of pixels.

Arguments:

size The length of the longest edge. Required

Example:

max(600)

Scale Wide

Scales the image to fit the given width of the picture. If the image is taller than the given height, it is cropped on top
and bottom, based on the focal point position.

Arguments:

width Width in pixels

height maximum height in pixels

Example:

160 Chapter 5. API and Reference Guide

Enonic XP Documentation, Release 6.4.3

wide(600,200)

Scale Block

Scales the image, while keeping the aspect ratio, so it fills the rectangle specified by width and height. Then crops the
overflowing axis based on the focal point position. The result of a call to this method will be an image that always has
the exact size of the specified input.

Arguments:

width Width in pixels

height Height in pixels

Example:

block(600,200)

Scale Square

Scales the image proprtionally to match the shortest edge. The longest edge will be cropped based on the focal point
position.

Arguments:

size The length of both sides in pixels

Example:

square(600)

Scale Height

Scales the image proportionally to match the given height.

Arguments:

height Height in pixels

Example:

height(600)

Scale Width

Scales the image proportionally to match the given width.

Arguments:

width Width in pixels

Example:

width(600)

5.5. Image Processor 161

Enonic XP Documentation, Release 6.4.3

5.5.2 Styling

Block

Pixelates the image creating a mosaic like effect.

Arguments:

size The number of pixels squared, that should be combined to one block. Default: 2

Example:

block(5)

Blur

Applies a blur effect.

Arguments:

radius How much blur to apply. Default: 2

Example:

blur(8)

162 Chapter 5. API and Reference Guide

Enonic XP Documentation, Release 6.4.3

Border

Applies a rectangular border around the image.

Arguments:

width The width of the border in pixels. Default: 2

color The color of the border as a decimal or hexadecimal number. Default: 0 / 0x000000 (black)

Example:

border(5)
border(4, 0x777777)

Emboss

Applies an embossing effect on the image.

No arguments

5.5. Image Processor 163

Enonic XP Documentation, Release 6.4.3

Example:

emboss()

Grayscale

Creates a grayscale variant of the image.

No arguments

Example:

grayscale()

Invert

Inverts the colors in the image.

No arguments

164 Chapter 5. API and Reference Guide

Enonic XP Documentation, Release 6.4.3

Example:

invert()

Rounded

Rounds the corners of the image, with an option of adding a border around the rounded image.

Arguments:

radius The number of pixels from each corner where the rounding starts. Default: 10

borderSize The width of the border in pixels. Default: 0

borderColor The color of the border as a decimal or hexadecimal number. Default: 0 / 0x000000 (black)

Example:

rounded()
rounded(15)
rounded(10,1)
rounded(8,4,0x777777)

5.5. Image Processor 165

Enonic XP Documentation, Release 6.4.3

Sharpen

Applies a sharpening filter to the image.

No arguments

Example:

sharpen()

RGB Adjust

Adjust the red, green and blue levels in the image.

Arguments:

red The adjusted red level for the image. Default: 0

green The adjusted green level for the image. Default: 0

blue The adjusted blue level for the image. Default: 0

Example:

rgbadjust(2.0,0.25,-1.75)

166 Chapter 5. API and Reference Guide

Enonic XP Documentation, Release 6.4.3

HSB Adjust

Adjust the hue, saturation and brightness levels in the image.

Arguments:

hue Value from -1 to 1, of how far around the color wheel to move the hue of the image. Default: 0

saturation Value from -1 to 1 to adjust the intesity of the colors in the image. Default: 0

brightness Value from -1 to 1 to adjust the brightness of the image. Default: 0

Example:

hsbadjust(0.5,-0.1)
hsbadjust(-0.15,0.2,-0.2)

Edge

Creates an abstract image by brightening every edge and darkening every even surface of the image.

5.5. Image Processor 167

Enonic XP Documentation, Release 6.4.3

No arguments

Example:

edge()

Bump

Creates a 3D looking texture, based on darkening and lighting each side of edges in the image.

No arguments

Example:

bump()

Sepia

Creates a grayscale image with a yellow-reddish tint to make it look like an old photograph.

168 Chapter 5. API and Reference Guide

Enonic XP Documentation, Release 6.4.3

Arguments:

depth The brightness of the tint. Default: 20

Example:

sepia()
sepia(25)

Rotate 90

Rotates an image 90 degrees

No arguments

Example:

rotate90()

Rotate 180

Rotates an image 180 degrees

No arguments

5.5. Image Processor 169

Enonic XP Documentation, Release 6.4.3

Example:

rotate180()

Rotate 270

Rotates an image 270 degrees

No arguments

Example:

rotate270()

Flip horizontal

Flips an image horizontally

No arguments

Example:

fliph()

170 Chapter 5. API and Reference Guide

Enonic XP Documentation, Release 6.4.3

Flip vertically

Flips an image vertically

No arguments

Example:

flipv()

Colorize

Makes a grayscale image, then applies a tint, based on the specified color.

Arguments:

red Red boost value. Default: 1

green Green boost value. Default: 1

5.5. Image Processor 171

Enonic XP Documentation, Release 6.4.3

blue Blue boost value. Default: 1

Example:

colorize(3,1,1.5)

HSB Colorize

Makes a grayscale image, then applies a tint, based on the specified color.

Arguments:

color The tint color as a decimal or hexadecimal number. Default: 0xFFFFFF

Example:

hsbcolorize(0x00AAAA)

172 Chapter 5. API and Reference Guide

Enonic XP Documentation, Release 6.4.3

5.6 JavaDoc API

You can either download the JavaDoc as a zip or view it directly in your browser.

5.6. JavaDoc API 173

http://repo.enonic.com/public/com/enonic/xp/docs/6.4.3/docs-6.4.3-javadoc.zip
http://repo.enonic.com/public/com/enonic/xp/docs/6.4.3/docs-6.4.3-javadoc.zip!/index.html

Enonic XP Documentation, Release 6.4.3

174 Chapter 5. API and Reference Guide

CHAPTER 6

Release Notes

Enonic XP 6.4 is a minor release, with several exciting new features and fixes - there are no breaking changes

6.1 Enonic Market

Enonic Market is now available, indirectly a part of Enonic XP - providing easy access to applications, libraries and
starters built by Enonic or other 3rd party vendors. Market applications can even be installed directly from XP. Check
it out: https://market.enonic.com

6.2 New App installer

Applications can now be installed directly from the “Applications” admin tool. This applies both to local application
files, and applications shared in the Enonic Market. For clustered installations, applications will automatically be
distributed and started on all cluster nodes! The system still supports local deployments. Local deployments will
override apps installed centrally - i.e. for development or testing purposes.

175

https://market.enonic.com

Enonic XP Documentation, Release 6.4.3

Application configuration is still handled on file.

Read more about Installing an application

6.3 Pluggable Admin Tools

Enonic XP now supports 3rd party admin tools - (previously admin apps). Each tool is now running in a separate
browser tab, allowing developers to pick and choose their favorite front-end technology. Read the documentation for
how to get started with Admin Tools.

6.4 Launcher and Home page

The home page is now available as a separate tool, featuring a new tools launcher panel. The launcher panel is easily
embedded in other tools - providing global navigation capabilities. The home page currently only serves the purpose
of being a start page for choosing other tools - but will provide exciting features in upcoming releases.

176 Chapter 6. Release Notes

Enonic XP Documentation, Release 6.4.3

6.5 Page Editor

Navigation and user interaction inside Page Editor have been significantly improved to be more intuitive and not
take away attention from the components being edited by giving them more focus and space. We’ve also changed
component interaction behaviour and styling to be consistent between the Page Editor and the Page Components view.

6.6 Contextual Navigation

Editors may now navigate directly in the preview area to find what they are looking for, and then click edit. The
content navigation panel (to the left) will update selection as the user navigates the site.

6.7 Reference Search

It is now possible to search for incoming and outbound references. All references within a document are now automat-
ically indexed in the virtual property _references, making it easy to search for incoming references and outbound
references between nodes and content.

6.8 Experimental Websocket support

It is now possible to create and use WebSockets in XP apps. This support is experimental and details may change for
future releases. Feel free to test it out and give us feedback so we can implement this the best way. More details on

6.5. Page Editor 177

Enonic XP Documentation, Release 6.4.3

Websockets.

6.9 Libraries

• lib-content now features a publish function (push content from draft to master branch)

6.10 Minor improvements

• Improved organizing of development resources for application projects - see Project structure. Developer assets/
libs/ and services/ should now be placed on resources/ root - not within sites/ - see Upgrading to 6.4

• XSLT Transformations support in toolbox import utility (Apply transformation to import XML on a per-node
basis)

• New input type - AttachmentUploader - Add attachments directly from a form - see Input Types

• New “abstract” property for media:document content types (Enabling presentation/indexing of a document ab-
stract)

• New “tags” property for all media:* content-types (Enables tagging and search across media)

• Usability improvements for page editor - removed shader, faster selections and context menu on right-click

• Page Component - Highlighting with dashed borders and show text extract from text components

• Upgraded to Elasticsearch 1.5.2

• JVM now autoselects memory HEAP size - no longer using fixed default values

6.11 Changelog

For a complete list of changes see http://github.com/enonic/xp/releases/tag/v6.4.0

178 Chapter 6. Release Notes

http://github.com/enonic/xp/releases/tag/v6.4.0

CHAPTER 7

Upgrading to 6.4

Warning: This documentation describes upgrading from 6.3.1 to 6.4. Upgrading directly from 6.3.0 is not
supported.

7.1 Upgrade Steps

There are no breaking changes in this release, but due to internal changes in repository you will have to dump your
data, upgrade the dump, and load it into the new version:

7.1.1 1. Setup new installation

1. Download Enonic XP http://repo.enonic.com/public/com/enonic/xp/distro/6.4.3/distro-6.4.3.zip

2. Setup new XP installations - (for all servers in your entire cluster if you have one)

Tip: Remember to update any startup scripts you might have to launch your new installation given a server restart

7.1.2 2. Move configuration

1. Copy your $OLD_XP_HOME/config/ and deploy/ folders to the the new $NEW_XP_HOME/ (on all nodes)

2. Remove the $NEW_XP_HOME/config/org.apache.felix.fileinstall-deploy.cfg file (To support UI-based appli-
cation installation)

7.1.3 3. Migrate Data

Tip: Remember to backup your existing data before starting this step

1. If possible - stop traffic to the servers to avoid new data coming in during this process, or stop the servers after
dumping the data.

2. Dump data from existing server. (dump). The dump will be created in $OLD_XP_HOME/data/dump/

179

http://repo.enonic.com/public/com/enonic/xp/distro/6.4.3/distro-6.4.3.zip

Enonic XP Documentation, Release 6.4.3

toolbox.sh dump -a su:password -t 6.3.1-dump

3. Upgrade the dump with a new XP installation. (upgrade).

toolbox.sh upgrade -d [path/to/OLD_XP_HOME]/data/dump/6.3.1-dump

4. Start the new server(s)

5. Copy the upgraded dump files from the old to the new server, place it in $NEW_XP_HOME/data/dump/. The
folder will be named “6.3.1-dump_upgraded_6.4.0”

6. Load the updated dump (load)

toolbox.sh load -a su:password -s 6.3.1-dump_upgraded_6.4.0

7.1.4 4. Install Apps (OPTIONAL)

This release supports installing applications globally, using the repository. Follow the steps below if you want to
migrate your apps from file.

1. Make sure the $XP_HOME/deploy folder of the new installation is empty

2. Install the Applications that was in the $XP_HOME/deploy folder using the Applications UI tool, or install-app

7.2 New Project Structure (OPTIONAL)

Developers can update their application project structure to benefit from some of the new application development
capabilities such as Admin Tools and Widgets, and align their applications for other future improvements,

• move .../resources/site/assets/ to .../resources/assets/

• move .../resources/site/services/ to .../resources/services/

• move .../resources/site/lib/ to .../resources/lib

• Optionally move .../resources/site/views/ to .../resources/views/ - this is an optional folder.

XP is backward compatible, and will scan for assets/ and services/ - initially on root, then in site. But only the first
discovered folder will be used. For libraries, the lookup pattern for “require” will now include scanning parent folders
with lib/ folders until reaching the resources/ folder.

NB! If you have used explicit require references i.e. “/lib/mylib” these files must now be moved to resouces/ root, or
referenced relatively instead.

(NB! Applications with updated structure will require minimum XP version 6.4)

180 Chapter 7. Upgrading to 6.4

CHAPTER 8

Frequently Asked Questions

8.1 What’s the latest release?

The latest release can be found here latest release changelog.

8.2 Where can I get the source code?

All source code for Enonic XP is published on our GitHub project page.

8.3 Do you publish changelogs?

Yes. You can go to the releases tab on GitHub to read the changelog for all versions. If you want to see what’s coming,
you can go to our GitHub wiki page.

8.4 How is Enonic XP Licensed

Enonic XP is available under the AGPL 3 license, with a linking exception. This basically means that you are free
to use and re-distribute Enonic XP according to the AGPL license. The linking exception ensures that you can build
custom applications and libraries on top of Enonic XP and license these however you see fit. Any changes made to the
Enonic XP core platform however must be licensed as APGL.

We encourage the use of FOSS licensing for 3rd party apps and libraries. Libraries in particular should be licensed
with a non-intrusive license such as Apache, BSD or MIT.

Note: This is a major difference from products such as Drupal and Wordpress where your themes, plugins and
modules must be licensed as GPL too.

Enonic XP also consists of many 3rd party software components. The complete list can be found in our Notice.txt file

181

https://github.com/enonic/xp/releases/latest
https://github.com/enonic/xp
https://github.com/enonic/xp/releases
https://github.com/enonic/xp/wiki
http://www.gnu.org/licenses/agpl-3.0.html
https://github.com/enonic/xp/blob/master/NOTICE.txt

Enonic XP Documentation, Release 6.4.3

8.5 What is $XP_INSTALL?

$XP_INSTALL and $XP_HOME are referenced frequently in the documentation and it is important to understand
the difference. $XP_INSTALL is the top level directory of the XP installation and it contains the directories bin, home,
lib, toolbox and others.

8.6 What is $XP_HOME?

$XP_HOME, by default, is the location of the $XP_INSTALL/home folder which contains the config, deploy, repo
and other directories specific to a single XP instance. The home folder can be copied to multiple locations for devel-
opers working on more than one project.

There are two situations where the $XP_HOME environment variable must be set:

1. When developers are working on an application and intend to use ./gradlew deploy.

2. When a home folder other than $XP_INSTALL/home is to be used.

8.7 Where can I get help?

The community forum would be a good place to start. We also offer formal training courses.

Enonic also offers software support subscriptions for business critical installations: https://enonic.com/pricing

182 Chapter 8. Frequently Asked Questions

https://discuss.enonic.com/
https://enonic.com/learn
https://enonic.com/pricing

CHAPTER 9

Glossary

$XP_HOME By default, this is the location of the $XP_INSTALL/home folder and it contains directories specific to
a single XP instance. The home folder can be copied to multiple locations for developers working on multiple
isolated projects. The $XP_HOME environment variable should be set to the home folder of the project to be
run.

$XP_INSTALL The the location of the unzipped XP download

Tip: The source code for this documentation source is available on GitHub .

183

https://github.com/enonic/xp-doc

Enonic XP Documentation, Release 6.4.3

184 Chapter 9. Glossary

Index

Symbols
$XP_HOME, 183
$XP_INSTALL, 183

A
app.name (app attribute), 53
app.version (app attribute), 53
assetUrl() (built-in function), 60

L
log.debug() (log method), 54
log.error() (log method), 54
log.info() (log method), 54
log.warning() (log method), 54

N
Name of the application. (Name of the application at-

tribute), 53

R
require() (built-in function), 55
resolve() (built-in function), 55

S
serviceUrl() (built-in function), 60

V
Version of the application. (Version of the application at-

tribute), 53

185

	Getting Started
	Tutorials
	Developer Guide
	Operations Guide
	API and Reference Guide
	Release Notes
	Upgrading to 6.4
	Frequently Asked Questions
	Glossary

