

Important

The XP 7.0 documentation and lots of other updated articles, guides and templates are available in our Developer Portal [https://developer.enonic.com].

Enonic XP 6.15 documentation

Enonic XP is a unique and powerful application development stack - in a single runtime.

Seriously fast, and scalable from a single server to large clusters - Enonic XP radically simplifies the application infrastructure required to deliver high performance mission critical applications and sites.

Build powerful applications with a single dependency

[image: _images/wos.jpg]

	NoSQL storage - Distributed content repository built on top of Elasticsearch

	App Engine - Supports serverside Javascript and Java through the PurpleJS framework [https://purplejs.io]

	Powerful embedded Web Content Management - seamlessly blend applications and websites

	Runs on the powerful Java Virtual Machine - can be deployed on just about any infrastructure.

To get started - check out Getting Started or move on to the Tutorials.
The more savvy will probably enjoy our API and Reference Guide.

Enjoy! - The Enonic Development Team

	Getting Started

	Tutorials

	Developer Guide

	Operations Guide

	Admin Guide

	API and Reference Guide

Appendix

	Release Notes

	Upgrade notes - 6.15

	Frequently Asked Questions

	Glossary

Tip

The source code for this documentation is available on GitHub [https://github.com/enonic/xp-doc] .

Getting Started

So - you’re looking for the fastest way to get Enonic XP up and running?

[image: ../_images/getting-started.jpg]
Select ONE of the options below to get going:

	Enonic Cloud

	OSX

	Windows

	Docker

	For Developers

Enonic Cloud

Enonic Cloud is a one-stop-shop hosted version of Enonic XP, available on demand.

Complete the following steps:

	Request Free Cloud Trial

	Log In

	Add Sample Apps

	Open Content Studio

	Visit Enonic Market

	Next Steps

Request Free Cloud Trial

We’re offering a time limited free trial - running your very own cloud instance of Enonic XP. All you need to do is:

	Request a Free Cloud Trial of Enonic XP [https://enonic.com/try]

Note

Enonic also offers paid cloud instances, ranging from “Developer Cloud” to “Platium Cloud”. Check out our offerings [https://enonic.com/pricing]

Log In

After requesting a Trial, you should recieve an informative e-mail about your installation.

	Click the link in your e-mail to reach the administrative interface, it should be in the following form: http://<my-email-com>.tryme.enonic.io

Click on “CREATE ADMIN USER…”, fill out the form and click on “CREATE ADMIN USER”.

After the creation, you should see the following screen, with the launcher panel to the right:

[image: ../_images/admin.jpg]

Add Sample Apps

If this is the first time you launch XP - the welcome tour will automatically launch.
If it does not start, simply click the tour icon at top left of the home screen.

	Click through each step of the welcome tour

	On the last step, click the Install button

	Once the applications are installed, click finish

[image: ../_images/tour.png]

Open Content Studio

The sample applications automatically create demo sites you can try out.

	Select “Content Studio” from the launcher menu

	Once loaded, you will find the sites in the tree grid

	Select or expand the sites you are interested in for a preview

	Right click or choose actions from the menu to get going

[image: ../_images/content-studio1.png]
Wireframe Prototyping Application

Watch this video to see how you can make interactive prototypes with Enonic XP and learn about Content Studio:

[image: Wireframe Prototyping Demo Video]
 [https://youtu.be/QAV7W_6J_Q8]Superhero Blog Application

Watch this video to learn how you can use Enonic XP as a blogging platform, and learn more about Content Studio:

[image: Superhero Application Demo Video]
 [https://youtu.be/YBOghlzIHDg]

Visit Enonic Market

Find more on Enonic Market

If you want to try other applications, follow the steps below:

	Open the Applications tool from the launcher panel to the right

	Click Install from the menu (top left)

	Browse to find the applications you are looking for and click Install

[image: ../_images/install.jpg]
You may also visit Enonic market directly on https://market.enonic.com

Next Steps

Congratulations on getting started :-)

If you’re ready for some more fun, we recommend looking into the following:

	Watch the Platform Video [https://youtu.be/r_rjD8ScfeM]

	Hook up with the community on our forum [https://discuss.enonic.com]

	Build your first Application with My First App

	Learn more about Sites

OSX

This section describes the easiest way to install Enonic XP on a Mac OSX computer.

Watch this video

 Windows

Windows

This section describes the easiest way to install Enonic XP on a Windows computer.

Watch this video

 Docker

Docker

We´re huge devop fans - and devops love Docker [https://www.docker.com]. Docker is the most popular application container platform in the world.
For your convenience, we build Docker images of every Enonic XP release.

[image: ../_images/docker.png]

Complete the following steps:

	Install Docker

	Start Server

	Log In

	Add Sample Apps

	Visit Enonic Market

	Next Steps

Install Docker

Running Enonic XP with Docker actually requires access to a Docker container - now, that’s a surprise!

Note

Docker version 1.8.1 or newer is required to complete this guide

If you don’t already have a Docker up and running, we recommend reading the brilliant documentation on how to get started with Docker:

	Docker for Windows [http://docs.docker.com/windows/started/]

	Docker for OSX [http://docs.docker.com/mac/started/]

	Docker for Linux [http://docs.docker.com/linux/started/]

Start Server

Launch Enonic XP on Docker

With Docker up and running, installing Enonic XP is as smooth as baby skin. Execute the commands below in your terminal/shell to get going.

	Create a storage container for configuration files, applications and data (XP_HOME)

docker run -it --name xp-home enonic/xp-home

	Install and start Enonic XP, mounting the xp-home volume

docker run -d -p 8080:8080 --volumes-from xp-home --name xp-app enonic/xp-app

This will download the latest stable Enonic XP image, start it, and map it to port 8080 on your docker-host.
You can optionally add :<versionnumber> at the end of the command to launch a specific version of Enonic XP - i.e.

docker run -d -p 8080:8080 --volumes-from xp-home --name xp-app enonic/xp-app:6.15.12

Check out our Project page at Docker Hub [https://hub.docker.com/u/enonic/] for more info.

Log In

Start by pointing your browser to http://<mydockercontainer>:8080

Click on “CREATE ADMIN USER…”, fill out the form and click on “CREATE ADMIN USER”.

After the creation, you should see the following screen, with the launcher panel to the right:

[image: ../_images/admin.jpg]

Add Sample Apps

If this is the first time you launch XP - the welcome tour will automatically launch.
If it does not start, simply click the tour icon at top left of the home screen.

	Click through each step of the welcome tour

	On the last step, click the Install button

	Once the applications are installed, click finish

[image: ../_images/tour.png]

Visit Enonic Market

Find more on Enonic Market

If you want to try other applications, follow the steps below:

	Open the Applications tool from the launcher panel to the right

	Click Install from the menu (top left)

	Browse to find the applications you are looking for and click Install

[image: ../_images/install.jpg]
You may also visit Enonic market directly on https://market.enonic.com

Next Steps

Congratulations on getting started :-)

If you’re ready for some more fun, we recommend looking into the following:

	Watch the Platform Video [https://youtu.be/r_rjD8ScfeM]

	Hook up with the community on our forum [https://discuss.enonic.com]

	Build your first Application with My First App

	Learn more about Sites

 For Developers

For Developers

This section describes how to install Enonic XP on any operating system.
This is also the recommended approach for setting up a development environment.
If you have any problems, please look at our Troubleshooting section.

Watch this video

 Tutorials

Tutorials

Ready to learn something new? Well you’ve come to the right place!

You will find our tutorials below.

	Project Init (Video)

	Javascript MVC (Video)

	My First App

	Build a Custom Selector

 Project Init (Video)

Project Init (Video)

This video demonstrates how to initialize a new application project using existing project or starter kits

 Javascript MVC (Video)

Javascript MVC (Video)

This video demonstrates how to build site html parts using Javascript as controller and Thymeleaf as view technology.

 My First App

My First App

This guide will lead you through the required steps to build the “Hello World” app for Enonic XP.

This three-part tutorial will cover the basics of creating a website application for Enonic XP. You will learn how to initialize new
application projects and deploy them. We will create a simple website that displays a list of countries and cities with a Google map of each
city. Upon completion, you will be familiar with content types, page and part components, page templates, regions, and the Content Studio
app. You won’t be writing any code - just copy/paste from the examples.

The screen-shots below show the final product of this tutorial.

Note

To complete this tutorial, you will need a local running installation
(see For Developers) of Enonic XP and a text editor of your choice.
All terminal actions assume you’re using OSX or Linux.

	Part 1: Project set up

	Part 2: Content types and parts

	Part 3: Configurable components

The screenshot below shows the Content Studio interface with content on the left and a site preview on the right.

[image: ../../_images/screenshot-preview.png]
The image below is what a page of the site will look like when finished.

[image: ../../_images/screenshot-usa-cities.png]

 Part 1: Project set up

Part 1: Project set up

In this first section, you will learn how to initialize a new project with the CLI toolbox that comes with Enonic XP. Then you will build
and deploy the app with Gradle. Next you will create a couple of files for your first page component. Finally, you’ll create a site with
your app in the Content Studio.

	Initialize project

	Build and Deploy

	Create the Hello World Site

 Initialize project

Initialize project

Enonic XP includes the Toolbox CLI which can perform several useful operations. The init-project operation will clone an existing
project from a repository source, such as GitHub [https://github.com]. The starter-vanilla project will initialize a new application with
the standard structures required (see Projects).

	Create a new folder at a suitable location on your filesystem for the application project files.
e.g. /Users/<username>/projects/myapp This will be the project root.

	Change directory in the terminal to this project root. cd /Users/<username>/projects/myapp

	Run the following command, replacing [$XP_INSTALL] with the path to your unzipped XP installation:

 Build and Deploy

Build and Deploy

Now that the basic project structure is set up, we should test that it builds and deploys successfully. But before deploying the app, the
$XP_HOME environment variable must be set to the path of the home folder of the XP installation.

	Run the following command in the terminal, replacing [$XP_INSTALL] with your installation location (no brackets):

Linux and OSX:

export XP_HOME=[$XP_INSTALL]/home

For example, if your XP installation is at /Users/enonic/installs/enonic-xp-6.15.12 then you would enter:

export XP_HOME=/Users/enonic/installs/enonic-xp-6.15.12/home

Windows:

set XP_HOME=[$XP_INSTALL]/home

	Execute the following command (from the project root directory):

Linux and OSX:

./gradlew deploy

Windows:

gradlew deploy

The included Gradle [http://gradle.org] wrapper will build the app and then attempt to deploy it to your installation.

The deployment step simply moves the result of the build (the application JAR file) into the $XP_HOME/deploy directory.
From there, Enonic XP will detect, install and start the application automatically.

You will need to access the Administrative console to check that the app has installed and started. Enonic XP must be running to proceed.

3. Log in to the Administrative console (http://localhost:8080) with the Administrative user credentials. (The default credentials are
userid: su and password: password).

	Navigate to the Applications Tool. The application you just deployed should be listed here.

	Click the app called “Myapp” to see information about it and confirm that it has started.

[image: ../../_images/myapp-apps.jpg]

Note

You can change the display name of the application by editing the gradle.properties file.

 Create the Hello World Site

Create the Hello World Site

Our next goal is to set up a “Hello World” site in Content Studio, but first we must add some initial configuration to our project.

Site descriptor

An application can serve many purposes and building sites is just one of them. The site.xml file is the descriptor that will let Enonic
XP know that this app can be added to a site. Response filters and controller mappings can be set up in the site descriptor as well as
application configurations (see Site Descriptors).

A basic site.xml file was automatically created by the init-project script and we don’t need to make any changes for now. Later in this
tutorial we will edit site.xml to add a site-wide configuration.

[project-root]/src/main/resources/site/site.xml

Application description and icon

The application.xml file at [project-root]/src/main/resources/application.xml can be edited to provide a suitable description for
your app. Go ahead and give your app a custom description.

The application.svg file can be replaced with a custom app icon. The description and icon will be visible in the admin tools.

Note

Most of the files we will be working with are below the “site” directory in the project folder - src/main/resources/site. All file
paths from now on will begin with “site/”.

Page Component

Page components are the most basic building blocks of websites in Enonic XP (see Page). They require a JavaScript
controller and optionally an XML descriptor and an HTML view. This first example does not need a descriptor file.

A page controller (see Page) is a JavaScript file that handles requests such as GET and POST.
Controllers usually pass data in the form of a JavaScript object to be dynamically rendered in an HTML view. No data is passed in the
example below, but the view file is specified and rendered as static HTML.

	Create a folder called hello inside the site/pages directory.

	Create the page controller and page view files specified below inside the hello folder:

Hello page controller - site/pages/hello/hello.js

var thymeleaf = require('/lib/xp/thymeleaf'); // Import the thymeleaf library

// Handle the GET request
exports.get = function(req) {

 // Specify the view file to use
 var view = resolve('hello.html');

 // Render HTML from the view file
 var body = thymeleaf.render(view, {});

 // Return the response object
 return {
 body: body
 }
};

The view below is a simple HTML file. This file will be updated later to handle dynamic content.

Hello page view - site/pages/hello/hello.html

<!DOCTYPE html>
<html>
 <head>
 <title>Hello world</title>
 </head>
 <body data-portal-component-type="page">
 <h1>Hello world</h1>
 </body>
</html>

	Once these files are in place, redeploy the app from the terminal with ./gradlew deploy.

Tip

Each page controller must reside in its own folder under the site/pages directory. The name of the controller JavaScript file
must be the same as the directory that contains it. The HTML view file can reside anywhere in the project and have any valid file name.
This allows view files to be shared between components.

Create Site

Now that the files are in place, we can create the site in a browser using the Content Studio admin tool.
Switch between different tools by clicking the menu icon [image: menuicon] (top right) to open the Launcher panel.

	In your browser, navigate to the Content Studio tool. (Use the menu icon at the top right)

	Click “New” and select “Site” from the list of content types (Opens a tab for editing the new site).

	Fill in the form with Display Name: “Hello World”.

	Select your “MyApp” application in the “Applications” dropdown.

	If you don’t see a blue area on the right of the page then click this button [image: monitoricon] in the toolbar to open the Page Editor.

	Use the dropdown in the Page Editor (blue area) to select the “hello” page.

	Click the “Save draft” button in the toolbar (top-left).

	Now close the “Hello World” site editor tab to see the content pane.

When you click on the “Hello World” site content, the preview should look something like this:

[image: ../../_images/hello-world-site1.jpg]
This concludes part one of the tutorial. Let’s review: You’ve learned how to initialize a new project with the CLI toolbox init-project.
Then you set the $XP_HOME environment variable and deployed the app with gradle. Next, you created a page component with a JavaScript
controller and an HTML view file. Finally, you created a site in the Content Studio and added the app and page component to the site. This
might seem like a lot of work just to make a static page; but we have laid a solid foundation in preparation for dynamically displaying
structured content in reusable components which you will learn about in the next section.

 Part 2: Content types and parts

Part 2: Content types and parts

Welcome to part two. Now it is time to introduce content types for structured data and how to display the data with part components. You
will also learn how to build pages and page templates with components and regions.

	Add some Countries

	Create the Country Part

	The Hello Region Page

	Add your favorite country

	The Country Page Template

	The Country List Part

 Add some Countries

Add some Countries

In order to make our “World” slightly more interesting, we will add some countries as structured data.

The structure of data (such as countries) are defined in XML files and are referred to as Content Types.
The content type defines the form (and underlying schema) of items you manage.

	Create a folder named “country” inside the “content-types” folder of your project.

	Create an XML file named “country.xml” in the “country” folder and paste in the code below for the Country content type.

Country content type - site/content-types/country/country.xml

<content-type>
 <display-name>Country</display-name>
 <super-type>base:structured</super-type>
 <form>
 <input type="TextArea" name="description">
 <label>Description</label>
 <occurrences minimum="0" maximum="1"/>
 </input>
 <input type="TextLine" name="population">
 <label>Population</label>
 <occurrences minimum="0" maximum="1"/>
 </input>
 </form>
</content-type>

Each content type can have a custom icon that will be visible in the Content Studio interface. Though not required, content icons can be
helpful for content editors.

	Copy the image below to the the same folder (content-types/country) with the name country.png.

[image: ../../_images/country.png]
This content type defines form inputs for description and population. Every content has a built-in field for Display Name. When
the app is redeployed, you can create a new content of type “Country” in the Content Studio. The Country content type will produce the form
seen below. Each country content that is created with this form will become a page in the site when a page component is added to it with the
dropdown in the page editor on the right. More on this later.

[image: ../../_images/country-content-form.jpg]

Tip

Each content type must reside in its own folder under the site/content-types directory. The name of the content type XML file
and the icon PNG file must be the same as the directory that contains them.

 Create the Country Part

Create the Country Part

We also need a way to display the data from our Country content type. This time, rather than making another page controller, we will create
a Part component. Parts are reusable components that can be added to “regions” in pages or layout components - more on this later.

	Create a folder called “country” inside the “parts” folder in your project.

	Add the part controller and view files below to the “country” folder:

Country part controller - site/parts/country/country.js

var portal = require('/lib/xp/portal'); // Import the portal library
var thymeleaf = require('/lib/xp/thymeleaf'); // Import the Thymeleaf library

// Handle the GET request
exports.get = function(req) {

 // Get the country content as a JSON object
 var content = portal.getContent();

 // Prepare the model object with the needed data from the content
 var model = {
 name: content.displayName,
 description: content.data.description,
 population: content.data.population
 };

 // Specify the view file to use
 var view = resolve('country.html');

 // Return the merged view and model in the response object
 return {
 body: thymeleaf.render(view, model)
 }
};

The part controller file above handles the GET request and passes the country content data to the view file which is shown below.

Country part view - site/parts/country/country.html

<div>
 <h3 data-th-text="${name}"></h3>
 <div data-th-if="${population}" data-th-text="'Population: ' + ${population}"></div>
 <div data-th-if="${description}" data-th-text="${description}"></div>
</div>

 The Hello Region Page

The Hello Region Page

Parts start to make sense when placed into a region. Regions are “slots” contained within pages or layouts. Pages and layouts may contain
multiple regions, and each region must have a unique name.

Let’s create a new page component with a single region called “Main”. Later we will use the Content Studio to place the “Country” part into
this region.

The benefit of a region (see Regions) is that a page component can be re-used across multiple different pages by simply
adding different parts to them as needed.

	Create a folder called “hello-region” in your project’s site/pages/ folder.

	Add the “Hello region” page descriptor, controller and view files:

Page descriptor - site/pages/hello-region/hello-region.xml

<page>
 <display-name>Hello Region</display-name>
 <config/>
 <regions>
 <region name="main"/>
 </regions>
</page>

The XML file above is a Descriptor. Regions and page configurations can be defined here.

Page controller - site/pages/hello-region/hello-region.js

var portal = require('/lib/xp/portal'); // Import the portal library
var thymeleaf = require('/lib/xp/thymeleaf'); // Import the Thymeleaf library

// Handle the GET request
exports.get = function(req) {

 // Get the content that is using the page
 var content = portal.getContent();

 // Extract the main region which contains component parts
 var mainRegion = content.page.regions.main;

 // Prepare the model that will be passed to the view
 var model = {
 mainRegion: mainRegion
 }

 // Specify the view file to use
 var view = resolve('hello-region.html');

 // Return the merged view and model in the response object
 return {
 body: thymeleaf.render(view, model)
 }
};

This page controller uses a portal library (see lib-portal in Javascript Libraries) to get the content and extract
the “main” region which was defined in the descriptor XML file.

Page view - site/pages/hello-region/hello-region.html

<!DOCTYPE html>
<html>
<head>
 <title>Hello world</title>
</head>
<body>
 <h1>Country</h1>
 <div data-portal-region="main">
 <div data-th-if="${mainRegion}" data-th-each="component : ${mainRegion.components}" data-th-remove="tag">
 <div data-portal-component="${component.path}" data-th-remove="tag"></div>
 </div>
 </div>
</body>
</html>

The view file above defines the place on the page where the region will render component parts that are dragged and dropped in the Page Editor.

	When done - redeploy your app once again!

./gradlew deploy

Tip

You can restart XP in Development mode and then the app won’t have to be redeployed after making changes.

 Add your favorite country

Add your favorite country

Now that the “Country” content type is installed (and we have a part to display them), we can create
new countries using the Content Studio interface.

	Right-click on the “Hello World” site from the navigation tree and select “New”. The “Create Content” dialogue will open.

	Click “Country” from the list of content types.

	Fill in the form with the details of your favorite country.

Similar to the site, we must also configure a view for the country

	In the toolbar, in the top right corner of the page, click the button with the monitor icon [image: monitoricon] to activate the Page Editor
(blue background).

[image: ../../_images/country-content-edit.jpg]

	In the Page Editor, select “Hello Region” from the template selector dropdown. If the dropdown arrow is not visible, double-click
inside the option field or start typing “hello world” in it to see the options.

The blue box with “Drop here” is the region that we defined in the project code and it’s where we add components here in the page editor.

	Click the cog button [image: cogicon] in the toolbar to open the Inspection Panel (far right).

	In the Inspection Panel, click the “Insert” tab. This reveals a list of default component types that can be placed into regions.

	Click and drag the “Part” [image: particon] into the box on the page.

	A new dropdown option will appear. Select the “country” part.

	Save draft and close the content edit tab.

When you click on the country in the content pane, you should see a preview of the rendered page, something like this:

[image: ../../_images/country-content-rendered.jpg]

 The Country Page Template

The Country Page Template

With our current solution, sadly, we would have to create a new page for every country we add.
As this is not a very effective way of working with large data sets, we will create a page template that will automatically render all
country content.

	Select the Templates item [image: templatesicon] located below the “Hello World” site in the content pane.

	Click “New” and select “Page Template”.

	Fill in the form as follows:

	Display Name: “Country”

	Supports: “Country” (selected from the list of content types)

	If the blue Page Editor panel is not displayed on the right, click the [image: monitoricon] button in the toolbar.

	Select the “Hello Region” controller with the dropdown in the blue Page Editor panel.

	Open the Inspection Panel (activated from the cog button [image: cogicon] in the toolbar).

	Under the “Insert” tab, drag and drop a “Part” [image: particon] into the empty region where it says “Drop here”.

	Select the “country” part from the dropdown.

	Click “Save draft” in the toolbar and close the tab.

Every “Country” content you create will now use this template by default.

Tip

The “Support” property is the key. A page template will support rendering of the content types specified here.

Try this out by creating a few new countries in your site. Be aware that every content you create will be a child of the content that was
selected in the content pane, so make sure you select the “Hello World” site before clicking “New” in the toolbar. Or better yet, get in the
habit of right-clicking the desired parent content and selecting “New” from the context menu. This way you will never accidentally create a
content in the wrong place.

Tip

From Enonic XP 6.11, The Detail Panel on the far right of the Browse View has a little box showing the rendering mode. Compare your favorite country to other countries that are rendered automatically:

[image: ../../_images/rendering-mode-view.png]

Extra task

Make your Favorite Country use the page template too!

You might remember that your favorite country was “hardcoded” - so let’s change it to use templates as well.

	In the Content pane, double click the country content to edit it.

	Open the Inspection Panel [image: cogicon] and select the “Inspect” tab if it’s not already selected.

	You should see a label for “Page Template” with “Custom” selected and a label for “Page controller” with “Hello Region” selected. If you
see a label for “Part” instead then click on the page above the country name to select the page. Then click the “Inspect” tab. (See image
below)

	Now select “Automatic” from under the “Page Template” label in the “Inspect” tab.

	Save draft and close the tab.

[image: ../../_images/page-template-automatic.jpg]
You can select another Page template at any time, or even customize the presentation of a single content.

 The Country List Part

The Country List Part

Each country content can now be viewed on a page. But the site home page is still a bit empty. This section will have you alter the “hello”
page controller and view files to list all of the country contents.

	Edit the “hello” page controller site/pages/hello/hello.js and replace the file’s contents with the code below:

var thymeleaf = require('/lib/xp/thymeleaf'); // Import the thymeleaf library
var contentLib = require('/lib/xp/content'); // Import the content service library
var portal = require('/lib/xp/portal'); // Import the portal library

// Handle the GET request
exports.get = function(req) {
 var model = {};

 var site = portal.getSite();

 // Get all the country contents (in the current site)
 var result = contentLib.query({
 start: 0,
 count: 100,
 contentTypes: [
 app.name + ':country'
],
 "query": "_path LIKE '/content" + site._path + "/*'"
 });

 var hits = result.hits;
 var countries = [];

 // Loop through the contents and extract the needed data
 for(var i = 0; i < hits.length; i++) {

 var country = {};
 country.name = hits[i].displayName;
 country.contentUrl = portal.pageUrl({
 id: hits[i]._id
 });
 countries.push(country);
 }

 // Add the country data to the model
 model.countries = countries;

 // Specify the view file to use
 var view = resolve('hello.html');

 // Return the merged view and model in the response object
 return {
 body: thymeleaf.render(view, model)
 }
};

	Now edit the “hello” view file site/pages/hello/hello.html and replace its contents with the code below:

<!DOCTYPE html>
<html>
<head>
 <title>Hello world</title>
</head>
<body data-portal-component-type="page">
 <h1>Hello world</h1>
 <h2>Countries</h2>

 <li data-th-each="country : ${countries}">

 <a data-th-href="${country.contentUrl}" data-th-text="${country.name}">

</body>
</html>

	If you didn’t start XP in Development mode then redeploy the app from the command line with ./gradlew deploy.

Each country that you created is now listed on the home page and the names are also links to the individual content pages.

This concludes part 2 of the tutorial. Let’s review what you’ve learned. First you created a content type by defining the data structure for
countries in the country.xml file. Then you created a custom part component to display the country data. Next you created a new page
component with a region. In the Content Studio, you created some “country” contents and added the page and put the country part in the
region. Then you made a page template to automatically render a page for all the country content. Finally, you modified the first page
component to show a list of the countries on the home page.

In the next section you will add cities to the site and learn how to make configurable parts.

 Part 3: Configurable components

Part 3: Configurable components

Welcome to part three. Here we will create a new content type for cities and a configurable component to display them. You will also learn
how to make app configurations and you will get more practice with the Content Studio. Part three will conclude with content publishing and
some advice and best practices.

	Hello Geo World

	App configuration

	Create Cities

	Configure City List

	Go Online

	Some Pro Tips

	Next Steps

 Hello Geo World

Hello Geo World

The home page of the site now shows a list of the countries we have added. To make this even more exciting, we will add a City content
type with geo-location and a City list part with configuration capabilities.

City content

The next steps will create a content type for adding cities with location coordinates.

	Create a folder named city inside the project’s site/content-types folder.

	Add the content type file below to your project. Because the contet type’s folder is named “city” the file must be named “city.xml”.

City content type - site/content-types/city/city.xml

<content-type>
 <display-name>City</display-name>
 <super-type>base:structured</super-type>
 <form>
 <input type="GeoPoint" name="location">
 <label>Location</label>
 <occurrences minimum="1" maximum="1"/>
 </input>
 <input type="TextLine" name="population">
 <label>Population</label>
 <occurrences minimum="0" maximum="1"/>
 </input>
 </form>
</content-type>

The file above defines a content type for cities with a required field for the location in latitude and longitude.

	Copy the image below and save it in the same folder with the City content type. Name it “city.png”.

[image: ../../_images/city.png]

City list part

We need a part component to display the city data. It will list the cities and show a Google map of each location.

	Create a folder named city-list inside the project’s site/parts folder.

	Add the part descriptor file. It must be named city-list.xml.

City list part descriptor - site/parts/city-list/city-list.xml

<part>
 <display-name>City list</display-name>
 <config>
 <input type="ComboBox" name="mapType">
 <label>Map type</label>
 <occurrences minimum="0" maximum="1"/>
 <config>
 <option value="ROADMAP">ROADMAP</option>
 <option value="SATELLITE">SATELLITE</option>
 <option value="HYBRID">HYBRID</option>
 <option value="TERRAIN">TERRAIN</option>
 </config>
 </input>
 <input type="TextLine" name="zoom">
 <label>Zoom level 1-15</label>
 <default>10</default>
 <config>
 <regexp>\b[1-9][0-5]?\b</regexp>
 </config>
 <occurrences minimum="0" maximum="1"/>
 </input>
 </config>
</part>

The part descriptor above has a configuration similar to those found in content types.

	Add the part controller file. It must be named city-list.js.

City list part controller - site/parts/city-list/city-list.js

var contentLib = require('/lib/xp/content'); // Import the content library functions
var portal = require('/lib/xp/portal'); // Import the portal functions
var thymeleaf = require('/lib/xp/thymeleaf'); // Import the Thymeleaf rendering function

// Handle the GET request
exports.get = function (req) {

 // Get the part configuration for the map
 var config = portal.getComponent().config;
 var zoom = parseInt(config.zoom) || 10;
 var mapType = config.mapType || 'ROADMAP';

 // Get the site configuration for the app
 var siteConfig = portal.getSiteConfig();
 var googleApiKey = siteConfig.googleApiKey;

 // String that will be inserted to the head of the document
 var googleMaps = '<script src="http://maps.googleapis.com/maps/api/js?key=' + googleApiKey + '"></script>';

 var countryPath = portal.getContent()._path;

 // Get all the country's cities
 var result = contentLib.query({
 start: 0,
 count: 100,
 contentTypes: [
 app.name + ':city'
],
 query: "_path LIKE '/content" + countryPath + "/*'",
 sort: "modifiedTime DESC"
 });

 var hits = result.hits;

 var cities = [];

 if (hits.length > 0) {
 googleMaps += '<script>function initialize() {';

 // Loop through the contents and extract the needed data
 for (var i = 0; i < hits.length; i++) {

 var city = {};
 city.name = hits[i].displayName;
 city.location = hits[i].data.location;
 city.population = hits[i].data.population ? 'Population: ' + hits[i].data.population : null;

 cities.push(city);

 if (city.location) {
 city.mapId = 'googleMap' + i;

 googleMaps += 'var center' + i + ' = new google.maps.LatLng(' + city.location + '); ';

 googleMaps += 'var mapProp = {center:center' + i + ', zoom:' + zoom +
 ', mapTypeId:google.maps.MapTypeId.' + mapType + ', scrollwheel: false };' +
 'var map' + i + ' = new google.maps.Map(document.getElementById("googleMap' + i + '"),mapProp); ' +
 'var marker = new google.maps.Marker({ position:center' + i + '}); marker.setMap(map' + i + ');';
 }

 }

 googleMaps += '} google.maps.event.addDomListener(window, "load", initialize);</script>';
 }

 // Prepare the model object that will be passed to the view file
 var model = {
 cities: cities
 };

 // Specify the view file to use
 var view = resolve('city-list.html');

 // Return the response object
 return {
 body: thymeleaf.render(view, model),
 // Put the maps' javascript into the head of the document
 pageContributions: {
 headEnd: googleMaps
 }
 }
};

There are a few things to note in this controller file. It gets the part configuration for zoom and map type which were defined in the part
descriptor. It also gets the site configuration for the Google Maps API key which we will define later in the site.xml file.
Page Contributions are used to put the Google Maps JavaScript into the head of the document.

	Add the part view file. It must be named city-list.html to match the “resolve” function in the controller.

City list part view - site/parts/city-list/city-list.html

<div class="cities" style="min-height:100px;">
 <h3>Cities</h3>
 <div class="city" data-th-each="city : ${cities}">
 <h3 data-th-text="${city.name}"></h3>
 <div data-th-if="${city.population}" data-th-text="${city.population}"></div>
 <div data-th-id="${city.mapId}" data-if="${city.mapId}" style="width:100%;height:300px;"></div>

 </div>
</div>

There is just one more file to edit and then all the code for this project will be complete.

 App configuration

App configuration

Google Maps won’t work without an API key. We need somewhere to enter the key so that it can be accessed by any component that needs it. The
perfect place to define a site-wide configuration is in the site descriptor.

	Replace the contents of the site.xml file at site/site.xml with the code below.

Site descriptor - site/site.xml

<site>
 <config>
 <input type="TextLine" name="googleApiKey">
 <label>Google API key</label>
 <help-text>Get your Google maps Javascript API key at: https://developers.google.com/maps/documentation/javascript/get-api-key</help-text>
 <occurrences minimum="1" maximum="1"/>
 </input>
 </config>
</site>

The inputs defined in the site descriptor will appear in a form when editing the site content in the Content Studio.

	If you didn’t start XP in Development mode then build and deploy your project one final time with ./gradlew deploy.

All of the project’s files are now complete. The rest of the steps will be performed in the Content Studio interface.

	Edit the site content. You will notice that the “Myapp” application is now red due to a missing required configuration.

	Click the pencil icon to edit the Myapp configuration and enter your Google API key. You can get a Google API key from the
Google developers [https://developers.google.com/maps/documentation/javascript/get-api-key] site if you don’t already have one.

[image: ../../_images/app-config.jpg]

 Create Cities

Create Cities

Now let’s make use of the new city content type and part component. First we need to add the “City list” part to the “Country” page template.

	Edit the “Country” page template. Find it in the content pane below the templates [image: templatesicon]

	Open the Inspect Panel by clicking the cog button [image: cogicon] in the toolbar.

	Under the Insert tab, click and drag a Part [image: particon] to the page region below the “country” part. (This may be a bit tricky because the
“country” part is small.) You could also right-click on the word “Country” and then use the context menu to insert the part.

	Select the “City list” part from the dropdown in the box.

	Save and close the tab.

Now we need to create a few City contents under each country. (Sample data is available in the table below.)

	From the content pane, select a country content that you created earlier. It is important that each city content is created under its
country.

	Right-click the country content and select “New”. The “Create content” dialogue will open.

	Now select “City” from the list of content types.

	Fill in the city name and location; the population is optional. The location format must be comma separated latitude and longitude
with decimals.

	Save draft.

	Create several more city contents below each country content by repeating the previous steps. Sample data is provided in the table below.

	Country

	City

	Lat,Long

	Population

	USA

	San Francisco

	37.7833,-122.4167

	837,442

	Las Vegas

	36.1215,-115.1739

	603,488

	Washington D.C.

	38.9047,-77.0164

	658,893

	Norway

	Oslo

	59.9100,10.7500

	618,683

	Bergen

	60.3894,5.3300

	265,857

	Trondheim

	63.4297,10.3933

	178,021

	Colombia

	Bogota

	4.5981,-74.0758

	7,000,000

	Medellin

	6.2308,-75.5906

	2,440,000

	Barranquilla

	10.9639,-74.7964

	1,885,500

Each country page will now have a list of the cities you created with a Google map of the location.
It should look something like this:

[image: ../../_images/city-list.png]

 Configure City List

Configure City List

The City list part descriptor (site/parts/city-list/city-list.xml) has configuration inputs for the map type and zoom level. You can set
the default values for these inputs by editing the City list part in the Country page template.

	Open the Country page template for editing.

	Open the Inspection Panel by clicking the cog button [image: cogicon] in the toolbar.

	Click on the City list part in the Page Editor panel.

	Under the “Inspect” tab of the Inspection Panel, set the Map type to “HYBRID” and Zoom level to 12.

	Save draft and close the edit tab.

Now all of the countries will show the city maps with the new settings. You can override these defaults for any individual country by
editing the Country content and changing its City list part configuration.

[image: ../../_images/city-list-config.jpg]

 Go Online

Go Online

Now that your “Hello World” is complete, it’s time to publish.

	Select the “Hello World” site in the content pane

	Right-click and select “Publish” from the context menu, or click the “Publish” button in the toolbar

	The Publishing Wizard will appear. You may click the [image: childrenicon] icon to see all child nodes that are published together.

	Verify that all your items are listed - click “Publish”!

When publishing content, all the selected items and changes are “cloned” from draft to the master branch (Repository).

You will always see the draft version of content in the preview window and the Page Editor of the Content Studio.
If you have placed your site on root level, you can also see your live site at this url:
http://localhost:8080/portal/master/hello-world.

Well done - you just created your first App for Enonic XP - The Enonic team congratulates you - we look forward to seeing all the brilliant
things you will make.

We are always looking for feedback [https://discuss.enonic.com].

Now take a look at Some Pro Tips.

 Some Pro Tips

Some Pro Tips

Adding libraries to your project

Why re-invent the wheel for each app you make? Reusable code can be created in libraries and added to any XP project. Some essential tools
can be found in the Util lib [https://github.com/enonic/lib-util], Menu lib [https://github.com/enonic/lib-menu],
RECAPTCHA [https://github.com/enonic/lib-recaptcha] and Landing page [https://github.com/enonic/lib-landingpage] libraries.

Adding apps to your site

A website can be created from a single app. But a site’s functionality can be extended by adding other pre-made apps. SEO Meta Fields,
Disqus comments and Google Analytics are just a few of the many apps that can instantly add features to your site. See what’s available at
the Enonic Marketplace [http://market.enonic.com/applications].

Handling Multiple projects

A best practice for working on multiple projects would involve keeping a separate XP_HOME folder for each project.
The folder structure for such a setup would look something like this:

/Users/<name>/development
/Users/<name>/development/software/<xp-install-version>
/Users/<name>/development/xp-homes/<project-name>/home
/Users/<name>/development/projects/<project-name>/<project-source-files>

An actual implementation with projects called my-first-app and company-site would look like this:

/Users/mla/development/software/enonic-xp-6.15.12
/Users/mla/development/xp-homes/my-first-app/home
/Users/mla/development/xp-homes/company-site/home
/Users/mla/development/projects/my-first-app/...
/Users/mla/development/projects/company-site/...

This allows you to have one Enonic XP installation for each version and as many different XP_HOME folders as you need for your projects.
When switching from one project to another, you only have to change the XP_HOME environment variable and then restart the installation of
the Enonic XP version that the project was created for.

Check this Enonic Labs article [http://labs.enonic.com/articles/working-with-multiple-xp-projects] for a more in-depth process. It also
includes some bash scripting that will help with setting and changing $XP_HOME and starting and stopping XP.

Logging JSON objects

While developing an app, it can be helpful to see the structure of objects returned by library functions. The best way to do
this is to set up a utilities JavaScript file in the project lib folder. Add the following function to the utilities file:

site/lib/utilities.js

exports.log = function (data) {
 log.info('Utilities log %s', JSON.stringify(data, null, 4));
};

Call the log function in any controller like the example below and then check the log after refreshing the page.

var util = require('utilities');

var content = portal.getContent();
util.log(content);

This logging function and many other useful functions are included in the Util library [https://github.com/enonic/lib-util].

Continuous build with Dev Mode or Gradle

It can be quite time consuming to frequently use the terminal to redeploy an app during development. Starting Enonic XP in dev-mode
will make most changes to your app code visible immediately on localhost. See the Development mode page for more information about
its capabilities and limitations.

Another option is to use ./gradlew -t deploy in the terminal from the project root. This will automatically build and redeploy your app
every time changes to a file are detected. This method is slower than dev-mode, but it handles some situations that dev-mode doesn’t. Gradle
2.7 or newer is required.

Both dev-mode and Gradle continuous-mode require the $XP_HOME environment variable to be set in the terminal window.

 Next Steps

Next Steps

This tutorial only covered the basics of app development. Explore the documentation for more in-depth coverage.

Check our GitHub [https://github.com/enonic] page for examples of more advanced apps. The
Superhero [https://github.com/enonic/app-superhero-blog] blog app is also a good place to see more advanced code.
The Google Analytics [https://github.com/enonic/app-google-analytics] app demonstrates extending the Content Studio interface.

The HTML files in this tutorial used Thymeleaf for dynamic data. Visit the Thymeleaf documentation [http://www.thymeleaf.org/documentation.html]
to learn more about it.

Need help? Ask questions on our forum [https://discuss.enonic.com] or answer questions from others.

 Build a Custom Selector

Build a Custom Selector

This guide will lead you through the required steps to build an input of type Custom Selector.

	Create a content type

	Create a service

	Response format

	Sample service

	Integration with Google Books API

Create a content type

	Create a folder called “my-custom-selector” inside the “site/content-types” folder of your project.

	In that folder create a configuration schema for the “my-custom-selector” content type.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<content-type>
 <display-name>Custom Selector</display-name>
 <super-type>base:structured</super-type>
 <form>
 <input name="my-custom-selector" type="CustomSelector">
 <label>My Custom Selector</label>
 <occurrences minimum="0" maximum="0"/>
 <config>
 <service>my-custom-selector-service</service>
 </config>
 </input>
 </form>
</content-type>

Create a service (or refer to a service in another app)

	Create a folder called “my-custom-selector-service” (folder name must match the one specified in the config schema) inside the “resources/services” folder of your project.

	In that folder create a javascript service file called “my-custom-selector-service.js” (again, the name must match the config schema).

	Create GET handler method in this service file and make sure it returns JSON in the proper format.

Tip

You can also refer to service file in another application (for example, com.myapplication.app:myservice) instead of adding one to your application.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<content-type>
 <display-name>Custom Selector</display-name>
 <super-type>base:structured</super-type>
 <form>
 <input name="my-custom-selector" type="CustomSelector">
 <label>My Custom Selector</label>
 <occurrences minimum="0" maximum="0"/>
 <config>
 <service>com.myapplication.app:my-custom-selector-service</service>
 </config>
 </input>
 </form>
</content-type>

Response format

Format of JSON response from the service:

	id

	Unique Id of the option

	displayName

	Option title

	description (optional)

	Detailed description

	iconUrl (optional)

	Path to the thumbnail image file

	icon (optional)

	Inline image content (for example, SVG)

Example of a simple service file

Below is a simple service file that returns two items in the result set, one with external thumbnail image, and another one with inline SVG markup:

var portalLib = require('/lib/xp/portal');

exports.get = handleGet;

function handleGet(req) {

 var params = parseparams(req.params);

 var body = createresults(getItems(), params);

 return {
 contentType: 'application/json',
 body: body
 }
}

function getItems() {
 return [{
 id: 1,
 displayName: "Option number 1",
 description: "External SVG file is used as icon",
 iconUrl: portalLib.assetUrl({path: 'images/number_1.svg'}),
 icon: null
 }, {
 id: 2,
 displayName: "Option number 2",
 description: "Inline SVG markup is used as icon",
 iconUrl: null,
 icon: {
 data: '<svg version="1.1" xmlns="http://www.w3.org/2000/svg" width="32" height="32" viewBox="0 0 32 32"><path fill="#000" d="M16 3c-7.18 0-13 5.82-13 13s5.82 13 13 13 13-5.82 13-13-5.82-13-13-13zM16 27c-6.075 0-11-4.925-11-11s4.925-11 11-11 11 4.925 11 11-4.925 11-11 11zM17.564 17.777c0.607-0.556 1.027-0.982 1.26-1.278 0.351-0.447 0.607-0.875 0.77-1.282 0.161-0.408 0.242-0.838 0.242-1.289 0-0.793-0.283-1.457-0.848-1.99s-1.342-0.8-2.331-0.8c-0.902 0-1.654 0.23-2.256 0.69s-0.96 1.218-1.073 2.275l1.914 0.191c0.036-0.56 0.173-0.96 0.41-1.201s0.555-0.361 0.956-0.361c0.405 0 0.723 0.115 0.952 0.345 0.23 0.23 0.346 0.56 0.346 0.988 0 0.387-0.133 0.779-0.396 1.176-0.195 0.287-0.727 0.834-1.592 1.64-1.076 0.998-1.796 1.799-2.16 2.403s-0.584 1.242-0.656 1.917h6.734v-1.781h-3.819c0.101-0.173 0.231-0.351 0.394-0.534 0.16-0.183 0.545-0.552 1.153-1.109z"></path></svg>',
 type: "image/svg+xml"
 }
 }];
}

function parseparams(params) {

 var query = params['query'],
 ids, start, count;

 try {
 ids = JSON.parse(params['ids']) || []
 } catch (e) {
 log.warning('Invalid parameter ids: %s, using []', params['ids']);
 ids = [];
 }

 try {
 start = Math.max(parseInt(params['start']) || 0, 0);
 } catch (e) {
 log.warning('Invalid parameter start: %s, using 0', params['start']);
 start = 0;
 }

 try {
 count = Math.max(parseInt(params['count']) || 15, 0);
 } catch (e) {
 log.warning('Invalid parameter count: %s, using 15', params['count']);
 count = 15;
 }

 return {
 query: query,
 ids: ids,
 start: start,
 end: start + count,
 count: count
 }
}

function createresults(items, params, total) {

 var body = {};

 log.info('Creating results with params: %s', params);

 var hitCount = 0, include;
 body.hits = items.sort(function (hit1, hit2) {
 if (!hit1 || !hit2) {
 return !!hit1 ? 1 : -1;
 }
 return hit1.displayName.localeCompare(hit2.displayName);
 }).filter(function (hit) {
 include = true;

 if (!!params.ids && params.ids.length > 0) {
 include = params.ids.some(function (id) {
 return id == hit.id;
 });
 } else if (!!params.query && params.query.trim().length > 0) {
 var qRegex = new RegExp(params.query, 'i');
 include = qRegex.test(hit.displayName) || qRegex.test(hit.description) || qRegex.test(hit.id);
 }

 if (include) {
 hitCount++;
 }
 return include && hitCount > params.start && hitCount <= params.end;
 });
 body.count = Math.min(params.count, body.hits.length);
 body.total = params.query ? hitCount : (total || items.length);

 return body;
}

Integration with Google Books API

And here’s a bit more advanced version of the service file that fetches book titles from the Google Books API:

var portalLib = require('/lib/xp/portal');
var httpClient = require('/lib/xp/http-client');
var cacheLib = require('/lib/xp/cache');

var bookIdCache = cacheLib.newCache({
 size: 100
});

var searchQueriesCache = cacheLib.newCache({
 size: 100,
 expire: 60 * 10
});

var apiKey = "AIzaSyDZnJCAzEXznkeBzaDDoKdj0u6nfEDFcAU";

exports.get = handleGet;

function handleGet(req) {

 var params = req.params;
 var ids;
 try {
 ids = JSON.parse(params.ids) || []
 } catch (e) {
 ids = [];
 }

 var tracks;
 if (ids.length > 0) {
 tracks = fetchBooksByIds(ids);
 } else {
 tracks = searchBooks(params.query, params.start || 0, params.count || 10);
 }

 return {
 contentType: 'application/json',
 body: tracks
 }
}

function fetchBooksByIds(ids) {
 var tracks = [];

 for (var i = 0; i < ids.length; i++) {
 var id = ids[i];

 var track = bookIdCache.get(id, function () {
 var bookResponse = fetchBookById(id);
 return bookResponse ? parseBookResponse(bookResponse) : null;
 });

 if (track) {
 tracks.push(track);
 }
 }

 return {
 count: tracks.length,
 total: tracks.length,
 hits: tracks
 };
}

function searchBooks(text, start, count) {
 text = (text || '').trim();
 if (!text) {
 return {
 count: 0,
 total: 0,
 hits: []
 };
 }

 return searchQueriesCache.get(searchKey(text, start, count), function () {
 var googleResponse = fetchBooks(text, start, count);
 return parseSearchResults(googleResponse);
 });
}

function searchKey(text, start, count) {
 return start + '-' + count + '-' + text;
}

function fetchBookById(id) {
 log.info('Fetching books from Google Bookds API by id: ' + id);
 try {
 var response = httpClient.request({
 url: 'https://www.googleapis.com/books/v1/volumes/' + id,
 method: 'GET',
 contentType: 'application/json',
 connectTimeout: 5000,
 readTimeout: 10000
 });
 if (response.status === 200) {
 return JSON.parse(response.body);
 }

 } catch (e) {
 log.error('Could not retrieve the book', e);
 }

 return null;
}

function fetchBooks(text, start, count) {
 if (!text) {
 return emptyResponse();
 }

 log.info('Querying Google Books API: ' + start + ' + ' + count + ' "' + text + '"');
 try {
 var response = httpClient.request({
 url: 'https://www.googleapis.com/books/v1/volumes',
 method: 'GET',
 contentType: 'application/json',
 connectTimeout: 5000,
 readTimeout: 10000,
 params: {
 'key': apiKey,
 'q': text,
 'printType': 'books',
 'maxResults': count,
 'startIndex': start
 }
 });

 if (response.status === 200) {
 return JSON.parse(response.body);
 }
 log.error('Could not fetch books: error ' + JSON.parse(response));

 } catch (e) {
 log.error('Could not fetch books: ', e);
 }

 return emptyResponse();
}

function emptyResponse() {
 return {
 "kind": "books#volumes",
 "totalItems": 0
 };
}

function parseSearchResults(resp) {
 var options = [];
 var books = resp.items, i, option, book;
 for (i = 0; i < books.length; i++) {
 book = books[i];
 option = bookIdCache.get(book.id, function () {
 return parseBook(book);
 });
 options.push(option);
 }

 return {
 count: resp.items.length,
 total: resp.totalItems,
 hits: options
 };
}

function parseBookResponse(resp) {

 if (!resp.id) {
 return null;
 }

 return parseBook(resp);
}

function parseBook(book) {
 var option = {};
 option.id = book.id;
 var volume = book.volumeInfo;

 var author = volume.authors && volume.authors.length > 0 ? volume.authors[0] : '';
 option.displayName = volume.title + (author ? ' (by ' + author + ')' : '');
 option.description = volume.description;

 if (volume.imageLinks) {
 option.iconUrl = volume.imageLinks.thumbnail || volume.imageLinks.smallThumbnail;
 } else {
 option.iconUrl = defaultIcon();
 }

 return option;
}

function defaultIcon() {
 return portalLib.assetUrl({path: 'noimage.png'});
}

[image: ../../_images/custom-selector-books.png]

 Developer Guide

Developer Guide

We <3 Developers!

We’re thrilled to see you here - If you’re a first timer to Enonic XP, we recommend starting on My First App and the Tutorials section
- or if you’re more familiar with XP, how about drilling into the Storage chapter. If you’re actually looking for APIs - you’ll find them over
here API and Reference Guide.

[image: ../_images/ready-set-code.jpg]

	Applications

	Libraries

	Projects

	Schemas

	Serverside JavaScript

	Application Controller

	Assets

	Services

	Views

	Sites

	Localization

	Storage

	Search

	Admin

	ID Providers

	Tasks

 Applications

Applications

Like anything that calls itself an operating system - Enonic XP has Applications.
The applications can be installed and run on a single server, or an entire cluster.

It is important to note that applications are not limited to being “Web Applications” -
they can be running server jobs, provide internal API’s to other applications, offer HTTP services, include custom Admin Tools, extend other
tools or applications, or be used to build sites.

Applications may even carry data, for instance, to initialize a repository or populate a new site.

Life Cycle

Applications have the following life-cycle:

	installed

	started

	stopped

	uninstalled

When installing applications in an XP cluster - the application is uploaded and stored in the system repository - and then started on all nodes.
If an application contains an initialization script, this script will only be executed on the master node - running only once.

Composition

An application file is typically a JAR (.jar). This is short for Java Archive.
Enonic XP is built on top of Java and the powerful OSGi framework, so developers with special requirements may utilize capabilities such as
exposing and consuming services from other applications.
However, since Enonic XP is designed to run Serverside JavaScript, most Projects will be completely free of Java.

To speed up development and enable a high degree of re-use, applications can be composed of Libraries in addition to your own code.
Libraries can be built almost like you create applications. Libraries (and applications) are shared through Maven repositories.
An example is https://repo.enonic.com.
Anyone may configure and run their own repository - for internal as well as external use.

For your amusement, we can also tell you that Enonic XP itself is composed from more than 50 different applications - making the platform extremely modular.

Other Resources

To learn more about applications and how they are built - continue reading the Developer Guide, but pay special attention to the following chapters:

	Projects

	Libraries

 Libraries

Libraries

Enonic XP provides the concept of libraries in order to speed up development and re-use of functionality and code.
Technically, libraries are very similar to Applications, but the main difference is that a library cannot be installed and started by itself.

So, a library may consist of all the same objects you find in applications - such as Assets, Content Types and HTTP Controllers - things you may need in an application.

Finding Libraries

A number of standard and 3rd party libraries are available with the core XP release, check out: Javascript Libraries.
You will also find a wide range of libraries on the Enonic Market - https://market.enonic.com/libraries

Adding libraries

Libraries are added to your project by simply referring to them in your build script.
Read more about this on our Projects documentation.

Best practice

If you wonder when/how you should create a library, here are some guidelines

	Strong cohesion: Keep the components in a library together only if they are strongly related. Split them up in multiple libs if they are not.

	Weak coupling: A library should avoid having dependencies. In practice, this will not always be possible, but apart from the XP APIs, other dependencies should raise an alarm, and only be included after careful analysis showing there is no other way.

	Use names that are self-explanatory and follow the java naming conventions - for example com.company.lib.mylib.

 Projects

Projects

This section provides an overview of how to setup, build and deploy new projects for applications and libraries.

	Project Initialization

	Project structure

	Build script

	Installing an application

	Sample library

	Development mode

 Project Initialization

Project Initialization

The fastest way to get started with any XP project is to use a starter project.
The starter-vanilla project on GitHub - https://github.com/enonic/starter-vanilla is often used.

To get going, we recommend using the init-project script that is a part of the Enonic XP installation.

In the terminal, move to the XP installation’s toolbox folder. Copy/paste the command below and specify an empty folder for -d and an
appropriate app name for -n. Then execute the command to get your very own project initialized.

toolbox.sh init-project -d <projectFolder> -n com.mycompany.myApp -r enonic/starter-vanilla

The init-project command simply clones the entire Git project (to the local folder that was specified with -d), then removes the Git references.
It also updates your build script files by adding the specified app name (-n) to the project.

Once this is done, you must clean up and adapt the code to your own requirements.

You may, in principle, apply this command to any standard XP application or library project!

 Project structure

Project structure

To build applications with Enonic XP, you will typically setup a project. The fastest way to do this is using the init-project feature
included in the Enonic XP toolbox utility.

The project structure is similar to Maven [https://maven.apache.org/] projects for those who are familiar with that.

Below is a sample project folder structure - all items that end with a slash are folders

my-first-app/
 build.gradle
 src/
 main/
 java/
 resources/
 admin/
 widgets/
 tools/
 application.svg
 application.xml
 assets/
 lib/
 main.js
 services/
 site/
 content-types/
 error/
 filters/
 layouts/
 mixins/
 pages/
 parts/
 x-data/
 site.xml
 i18n/
 tasks/
 views/

Every file and folder has a specific function and meaning.

	build.gradle

	Gradle [https://gradle.org/] script for building the application or library. This file describes the actual
build process.

	src/main/java/

	Optional folder where you place any java code that might be included in the project - following traditional Maven style development.

	src/main/resources/

	This is where all non-java code is placed, and thus where you will typically be working with your XP projects.
All folders described below are relative to this folder

	admin/tools

	This is where you place code for admin tools. Tools are administrative user interfaces (apps) running in their own separate browser tab.
Create tools if you need a back-office utility to manage your applications or similar.

	admin/widgets

	Widgets are essentially user interface components that can be embedded within selected tools.
I.e. you can create a widget that extends the Content Studio detail panel.

	application.svg

	Application icon in SVG format.

	application.xml

	The XML file contains basic information for the application. Currently a description.

<application>
 <description>Application description goes here</description>
</application>

	assets/

	Public folder for external css, javascript and static images etc. etc.

	lib/

	This is the last place the global require JavaScript-function looks,
so it is a good place to put default JavaScript files here.

	main.js

	This file may be thought of as an app initializer. It is executed every time the app is started. (see Main Initializer)

	services/

	Services are a special type of http controller that will be mounted on a fixed url pattern that looks like this: _/service/<myapp>/<myservice>.
You may use services like any other JavaScript controller in the system.

	site/site.xml

	The site.xml file contains basic information for a site created with the application.
Settings for the application can be defined in the config element
and the values for these settings can be updated using the Content Studio tool.

<site>
 <config>
 <input type="TextLine" name="company">
 <label>Company</label>
 <occurrences minimum="1" maximum="1"/>
 </input>
 <input type="TextArea" name="description">
 <label>Description</label>
 <occurrences minimum="1" maximum="1"/>
 </input>
 </config>
</site>

	site/content-types/

	Content schemas are placed here. Used to create structured content (see Content Types).

	site/error/

	Create custom http error pages by placing an error controller in this directory (see Error Handling).

	site/filters/

	This is where generic http response filters are placed. Filters can be used for post processing any given request - also across applications added to a site.
A common use case is adding script tags to pages - but possibilities are virtually endless.

	site/layouts/

	Layout controllers should be placed here. Layouts are similar to parts, but in addition have one or more regions.
Regions enable placement of other components inside the layout. (see Layout).

	site/mixins/

	Mixin schema-types are placed here. A mixin can be used to add common fields to multiple content-types or other schemas (see Mixins).

	site/pages/

	Page controllers are placed here. They will be used to render pages and page templates (see Page).

	site/parts/

	Part controllers should be placed here. Parts are dynamically configurable components that can
be placed on pages (see Part).

	site/x-data/

	Schemas for “extra data” (x-data) - common fields that can be added to content-types or other schemas based on regex rules (see X-data).

	i18n/

	This folder will contain application localization files (i18n is short for Internationalization).
Files placed in this folder must follow Java’s standard property file format, one file for each language.
Here is an example: https://docs.oracle.com/javase/tutorial/i18n/resbundle/propfile.html

	tasks/

	Contains tasks to be executed asynchronously (see Tasks).

	views/

	
	Views are any kind of files that are used for rendering. The folder is optional, as view files can

	be placed anywhere you want, just keep in mind what path to use when resolving them (see Views).

 Build script

Build script

By default, Enonic uses Gradle as the main build tool. This is a highly flexible Java-based utility that builds on the popular Maven project tools and code repository structures.
Enonic provides a Gradle plugin that greatly simplifies the build process. If you used the starter-vanilla project to initialize your project, you will have all the basic tools you need to get going.

Running a build

If you have not installed Gradle, the fastest way to get going is to execute the gradle wrapper script.

Move into your project root folder and execute the following command:

OSX/Linux:

./gradlew build

Windows:

gradlew.bat build

The gradle wrapper will download all necessary files to run gradle and produce the project artifacts. These will typically be placed in the projects build/libs/ folder.

gradle.properties

Your project should contain a gradle.properties file. Set xpVersion to the version of Enonic XP you are working with, and look over the other settings to
make sure they are correct.

build.gradle

The build.gradle file defines all the dependencies to other libraries.

There are three standard scopes (keywords) used in the dependency list

	Compile (default gradle scope, compiles library and adds it to class path - standard for pure Java libraries)

	Include (XP custom scope that merges the /src/main/resources folder in the library with your project - any code in your project overwrites the library files)

	Webjar (Extracts the content of the specified Webjar - http://www.webjars.org/ - placing it into the assets folder, using the version number as root folder)

gradle deploy

To have Gradle automatically deploy new applications to your XP installation, you have to specify an environment variable that tells Gradle where to place the artifact (application file).

OSX/Linux:

export XP_HOME=/path/to/xp-installation/home

Windows:

set XP_HOME=c:\path\to\xp-installation\home

With $XP_HOME set, run the following command to build and deploy the file

OSX/Linux:

./gradlew deploy

Windows:

gradlew.bat deploy

Once completed, your XP installation will detect, install and start the files.

 Installing an application

Installing an application

There are several ways to install applications

	Uploading directly from the “Applications” admin tool - this will install and start the application in the entire cluster

	Use the Toolbox CLI command line utility - this will install and start the application in the entire cluster.

	And finally, the developer way - copying the application JAR file to the $XP_HOME/deploy folder - this will install and start the application on the local node (typically used by developers)

Once an application is placed in this folder, it will be picked up, installed and started by the local instance.
If the application is removed it will be stopped and uninstalled.

OSX/Linux command line to copy the artifact to the deploy folder:

cp build/libs/[artifact].jar $XP_HOME/deploy/.

For your convenience - we have simplified this process by adding a deploy task to your build.
Instead of manually copying to the deploy folder, you can simply execute gradle deploy:

./gradlew deploy

For the deploy command to work, you have to set the XP_HOME environment variable
(in your shell) to your actual Enonic XP home directory.

Run the following command to set the XP_HOME variable

OSX/Linux:

export XP_HOME=/path/to/xp-installation/home

Windows:

set XP_HOME=c:\path\to\xp-installation\home

Continuous Deploy

To continuously build and deploy your application on changes, you can use
Gradle continuous mode [https://docs.gradle.org/current/userguide/continuous_build.html].
This will watch for changes and run the specified task when something changes.
To use this with the deploy task, you can run the following command:

./gradlew -t deploy

This will deploy and reload the application on the server when something changes in your project.
The continuous deployment mode is most useful when coding Java, or other changes that require a full compile and re-deploy.

For the instant updates of JavaScript code without re-deploying, check out Development mode.

 Sample library

Sample library

In this example, we will create support for redirection of URLs. For this, we need a content-type, and a simple JavaScript file.

The content-type, let’s just call it url, defines the URLs that the code may redirect to. So in the content-types directory, add a new
directory and name it url. Then, in this directory, create the content type:

src/main/resources/site/content-types/url/url.xml

<?xml version="1.0" encoding="UTF-8"?>
<content-type>
 <display-name>URL</display-name>
 <content-display-name-script>$('url')</content-display-name-script>
 <super-type>base:structured</super-type>
 <form>
 <input type="TextLine" name="url">
 <label>URL</label>
 <occurrences minimum="1" maximum="1"/>
 </input>
 </form>
</content-type>

To make it easier to notice when creating a new content in Enonic XP, add this icon, url.png in the same directory:

[image: ../../_images/url.png]
Now, we need the JavaScript. Since we are talking about a redirect here, the script must be placed on a page. So, in the pages
directory, we add a folder: url-redirects . In this, we need the page descriptor:

src/main/resources/site/pages/url-redirect/url-redirect.xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<page>
 <display-name>URL redirect</display-name>
 <config/>
</page>

Then, we add the code that does the actual redirect:

src/main/resources/site/pages/url-redirect/url-redirect.js

var portal = require('/lib/xp/portal');

// Handle GET request
exports.get = handleGet;

function handleGet() {
 var result = portal.getContent();
 var url = result.data.url;

 var response = {};

 if (url) {
 response.redirect = url;
 }
 else {
 response.body = 'No URL configured.'
 }

 return response;
}

This library can now be included in any app where you might want redirect functionality, or in other libs that can build more advanced
functions based on this simple example.

 Development mode

Development mode

You can start the server in dev-mode to speed up the development process.
When using this mode, you only need to deploy your code once - or when certain situations arise (see below).

Start server using dev-mode:

$ $XP_INSTALL/bin/server.sh dev

First time you will need to deploy the code (app, lib, etc.) using the deploy task
(see Installing an application):

$./gradlew deploy

After that, you do not need to redeploy your application except…

	when modifying Java code.

	when deleting a page, part or layout component.

	when deleting a content-type, mixin or relationship-type.

	when changing source directories.

	if you have source-transformation tools (typescript, less, sass).

Warning

Do not use dev-mode in production environments. It takes a little more
time to render pages and caches are sometimes disabled.

 Schemas

Schemas

As the low level storage of Enonic XP is entirely schema-less, we have created a high-level schema concept that is used to configure many of the forms you see in the Enonic XP Admin.

Schemas are made up of the following main concepts:

	A rich set of widgets called Input Types

	Rich Forms by combining Input Types and layouts

	Horizontal inheritance across forms through the use of X-data and Mixins

	Input Types

	Item Sets

	Option Sets

	Schema Layouts

	X-data

	Mixins

	Relationship Types

	Forms

 Input Types

Input Types

Input types are specified by XML snippets and used in combinations to build forms. An input type has both a front-end and a back-end.
Each input type will return a property with a specific value type.

The following XML configuration is common for all input types:

<input name="name" type="type-name">
 <label i18n="type-name.label">Some label</label>
 <help-text i18n="type-name.help-text">Use me to provide some extra info for the input</help-text>
 <occurrences minimum="0" maximum="1"/>
 <config/>
</input>

	@name (required)

	The name attribute is the technical name used in templates and result
sets to refer to this value.

	@type (required)

	The type refers to one of the many input types which are explained below.

	label (required)

	The label text will become the label for the input field in the editable form of
the admin console.

	label@i18n

	The key to look up the label text in the localization bundles. (See also Localization of Schemas)

	help-text

	This optional text will be shown next to the input field and can be used for explanation of the field’s purpose.

	help-text@i18n

	The key to look up the help text in the localization bundles. (See also Localization of Schemas)

	occurrences

	Detailed definition of how many times this field may be repeated inside one content.
Set minimum to zero for fields that are not required, and maximum to zero for
fields that have no restriction on the number of values.
This element is optional, if omitted the default will be minimum="0" and maximum="1".

	config

	Optional configuration that is used by some of the input-types. The config
consists of elements with optional attributes. Each element/attribute name
with dashes is automatically camel-cased
(relationship-type -> relationshipType).

	AttachmentUploader

	CheckBox

	ComboBox

	ContentSelector

	ContentTypeFilter

	CustomSelector

	Date

	DateTime

	Double

	GeoPoint

	HtmlArea

	ImageSelector

	Long

	MediaSelector

	RadioButton

	Tag

	TextArea

	TextLine

	Time

 AttachmentUploader

AttachmentUploader

This field enables uploading of one or more files that will be stored as attachments to the current node/content.
This is different from media content where each media is a separate node that can be linked to.

<input type="AttachmentUploader" name="myname">
 <label>My Label</label>
 <occurrences minimum="0" maximum="0"/>
</input>

	common fields

	All Input Types have these Common Fields

 CheckBox

CheckBox

A checkbox field has a value if it is checked, or no value if it is not checked. Therefore, the only values for occurrences
that makes sense is a minimum of zero and a maximum of one, which is default and may be skipped.

<input name="name" type="CheckBox">
 <label>Required</label>
 <occurrences minimum="0" maximum="1"/>
 <default>checked</default>
 <config>
 <alignment>right</alignment>
 </config>
</input>

	common fields

	All Input Types have these Common Fields

	default

	This element specifies the default value. Set it to checked to check it, otherwise it will be left unchecked.

	config

	
	alignment

	This config setting can be used to configure checkbox position in relation to its label. Default alignment is to the left of the label.
Supported values are: “left”, “right”, “top”, “bottom”.

 ComboBox

ComboBox

A ComboBox needs a list of options.

<input name="name" type="ComboBox">
 <label>Required</label>
 <occurrences minimum="1" maximum="1"/>
 <config>
 <option value="one">Option One</option>
 <option value="two">Option Two</option>
 </config>
 <default>one</default>
</input>

	common fields

	All Input Types have these Common Fields

	option

	This element defines the option label. The value attribute defines the
actual value to set when this option is selected. Multiple option
settings are ordered.

	default

	This element specifies the default option for the combo box. It should be equal to one of the option values.

 ContentSelector

ContentSelector

References to other content are specified by this input type. Use the toggle icon to switch between the list mode (default) and the tree mode.

<input name="name" type="ContentSelector">
 <label>Cited In</label>
 <occurrences minimum="0" maximum="0"/>
 <config>
 <relationshipType>system:reference</relationshipType>
 <allowContentType>citation</allowContentType>
 <allowContentType>my.other.app:quote</allowContentType>
 <allowPath>${site}/people/</allowPath>
 <allowPath>./*</allowPath>
 <allowPath>/quotes*</allowPath>
 <treeMode>true</treeMode>
 <showStatus>true</showStatus>
 <hideToggleIcon>true</hideToggleIcon>
 </config>
</input>

	common fields

	All Input Types have these Common Fields

	relationship

	This setting defines the name of which relationship-type to use. Default is system:reference.

	allowContentType

	This is used to limit the content types that may be selected for this input using following rules:

	If you only specify content type name - citation - the current app is automatically presumed. Use one setting for each content-type.

	You can add another app’s name - my.other.app - followed by a colon (:) and the content type name :quote to allow content from other apps, like so: my.other.app:quote.

	Asterisk (*) can be used instead of app name or content type name. For instance *:quote will select content type quote from any app.

	${app} wildcard is used to denote current app name. So writing ${app}:* will select all content types from the current app.

	Regular expressions are also supported. For example my.other.app:^content* will select all content types starting with content from the app my.other.app.
You can even use complex expressions with negative lookaheads like ((?!folder).)*$ that will return all content types except the ones containing folder.

	allowPath

	This is used to limit the path of the content that may be selected for this input. The site on which the content exists, can be wildcarded with ${site} Use one setting for each path expression.

<!--
Only content from the current site (but from any location), e.g
 /mySite/fish.jpg
 /mySite/articles/new-blog-post
 /mySite/someFolder/anotherFolder/rubarb/lettuce
-->
<allowPath>${site}/*</allowPath>

<!--
All children of <site>/people, e.g
 /mySite/people/myContent
 /mySite/people/myGroup/anotherContent
-->
<allowPath>${site}/people/*</allowPath>

<!--
All content in mySite starting with people, including children, e.g
 /mySite/peoples
 /mySite/people/myContent
 /mySite/peoples/myContent
 /mySite/people/myGroup/anotherContent
-->
<allowPath>/mySite/people*</allowPath>

<!-- All children of the current content -->
<allowPath>./*</allowPath>

<!-- All children of the current content's parent -->
<allowPath>../*</allowPath>

	treeMode

	By default content selector is displaying content in the list mode but you can switch it to default tree-mode (same as in the Content grid) by setting treeMode to true.

[image: ../../../_images/content-selector-tree.png]

	showStatus

	You can display current status for each content item inside the content selector by setting showStatus to true.

[image: ../../../_images/content-selector-status.png]

	hideToggleIcon

	The toggle mode icon can be hidden by setting hideToggleIcon to true.

[image: ../../../_images/content-selector-no-toggle.png]

 ContentTypeFilter

ContentTypeFilter

A field for selecting a content type.

<input name="name" type="ContentTypeFilter">
 <label>Target type</label>
 <occurrences minimum="0" maximum="0"/>
 <config>
 <context>true</context>
 </config>
</input>

	common fields

	All Input Types have these Common Fields

	context

	true to list only the content types contained in the applications configured for the current site.
Otherwise all the registered content types in the system will be listed. Default is false.

 CustomSelector

CustomSelector

Selector input type with custom data source. Application developers must create a service that returns results according to the
required JSON format, and then specify the service name in the input config. For information on creating a service see the
Services section.

Below there are two sample usages of CustomSelector input type:

<input name="my-custom-selector" type="CustomSelector">
 <label>My Custom Selector</label>
 <occurrences minimum="0" maximum="0"/>
 <config>
 <service>my-custom-selector-service</service>
 </config>
</input>

<input name="musicTrack" type="CustomSelector">
 <label>Intro song</label>
 <config>
 <service>spotify-music-selector</service>
 <param value="genre">classic</param>
 <param value="sortBy">length</param>
 </config>
</input>

	common fields

	All Input Types have these Common Fields

	service

	The name of a JavaScript service file, located under /resources/services/[serviceName]/[serviceName].js.
You can also refer to a service file in another application, for example com.myapplication.app:myservice.

	option

	Parameter to pass to the service. Option parameters allow customizing a CustomSelector to be used in different contexts.
There can be multiple options or none. The options will be included in the HTTP request to the service as name-value query parameters.

Service Request

In addition to the option values, if set on the input type <config>, the service will receive the following query parameters in the HTTP request:

	ids

	Array of item ids already selected in the CustomSelector. The service is expected to return the items with the specified ids.

	start

	Index of the first item expected. Used for pagination of the results.

	count

	Maximum number of items expected. Used for pagination of the results.

	query

	String with the search text typed by the user in the CustomSelector input field.

Service Response

The service controller must have a GET handler that returns results in JSON format.
The JSON object returned must include total and count properties as numbers, and hits containing an array of items.
Each item in the hits property must have the following fields:

	id

	Unique Id of the option

	displayName

	Option title

	description (optional)

	Detailed description

	iconUrl (optional)

	Path to the thumbnail image file

	icon (optional)

	Inline image content (for example, SVG)

Example of JSON response from a CustomSelector service:

{
 "total": 10,
 "count": 2,
 "hits": [
 {
 "id": "1",
 "displayName": "Option number 1",
 "description": "External SVG file is used as icon",
 "iconUrl": "/some/path/images/number_1.svg"
 },
 {
 "id": "2",
 "displayName": "Option number 2",
 "description": "Inline SVG markup is used as icon",
 "icon": {
 "data": "<svg xmlns=\"http://www.w3.org/2000/svg\"/>",
 "type": "image/svg+xml"
 }
 }
]
}

Please check our tutorial on how to Build a Custom Selector.

 Date

Date

A simple field for dates with a calendar pop-up box in the admin console.
The default format is yyyy-MM-dd.

<input name="name" type="Date">
 <label>Some Date</label>
 <occurrences minimum="0" maximum="1"/>
 <default>2011-09-12</default>
</input>

	common fields

	All Input Types have these Common Fields

	default

	The format for the default date value can be:

	Date in ISO 8601 format: yyyy-MM-dd (e.g. “2016-12-31”)

	Relative date expression (e.g. “+1year -12days”)

A relative date expression is a sequence of one or more date offsets.
An offset consists of: a plus or minus sign, followed by an integer, followed by a date unit string (e.g. “+3 days”)

The date unit can be expressed as a singular unit, plural unit, or initial letter:

	“year”

	“years”

	“y”

	“month”

	“months”

	“M”

	“week”

	“weeks”

	“w”

	“day”

	“days”

	“d”

An offset can also be the string now, which means current date.

 DateTime

DateTime

A simple field for dates with time. A pop-up box with a calendar and time selector allows easy editing.
The format is yyyy-MM-dd hh:mm for example, 2015-02-09T09:00. The date-time could be of type
local (no datetime) or with a timezone. This is done using configuration:

 <input name="name" type="DateTime">
 <label>DateTime (with tz)</label>
 <occurrences minimum="0" maximum="1"/>
 <config>
 <timezone>true</timezone>
 </config>
 </input>

	common fields

	All Input Types have these Common Fields

	timezone

	true if timezone information should be used. Default is false.

	default

	The format for the default date value can be:

	Combined date and time in ISO 8601 format, with timezone: yyyy-MM-ddThh:mm±hh:mm (e.g. “2016-12-31T23:59+01:00”)

	Combined date and time in ISO 8601 format, without timezone: yyyy-MM-ddThh:mm (e.g. “2016-12-31T23:59”)

	Relative datetime expression (e.g. “+1year -12hours”)

Note that the ISO8601 format consists of concatenating a complete date expression, the letter T as a delimiter, and a valid time expression.

The timezone offset is a plus or minus sign, followed by an hour offset, followed by a colon, followed by a minute offset.
A timezone offset of zero can also be represented as ‘Z’, meaning UTC or Zulu time. It is equivalent to offset +00:00.

A relative date expression is a sequence of one or more datetime offsets.
An offset consists of: a plus or minus sign, followed by an integer, followed by a date/time unit string (e.g. “+3 days”)

The date unit can be expressed as a singular unit, plural unit, or initial letter:

	“year”

	“years”

	“y”

	“month”

	“months”

	“M”

	“week”

	“weeks”

	“w”

	“day”

	“days”

	“d”

	“hour”

	“hours”

	“h”

	“minute”

	“minutes”

	“m”

An offset can also be the string now, which means current date and time.

Examples:

<input name="dateTimeDefaultTz" type="DateTime">
 <label>DateTime (with tz and default value)</label>
 <config>
 <timezone>true</timezone>
 </config>
 <default>2000-01-01T12:30+01:00</default>
</input>

<input name="dateTimeDefaultNoTz" type="DateTime">
 <label>DateTime (without tz and default value)</label>
 <default>2000-01-01T12:30</default>
</input>

<input name="dateTimeRelative" type="DateTime">
 <label>DateTime (relative default value)</label>
 <default>+1year -12hours</default>
</input>

<input name="dateTimeNow" type="DateTime">
 <label>DateTime (current time as default value)</label>
 <default>now</default>
</input>

 Double

Double

A double value input-type.

<input name="rate" type="Double">
 <label>Interest rate</label>
 <default>3.89</default>
</input>

<input name="angle" type="Long">
 <label>Angle (rad)</label>
 <config>
 <min>0</min>
 <max>3.14159</max>
 </config>
</input>

	common fields

	All Input Types have these Common Fields

	default

	This element specifies a default value. The value can be any double-precision floating-point number, with the dot character as decimal separator.

	config

	
	min

	Minimum value allowed for the field. Optional.

	max

	Maximum value allowed for the field. Optional.

 GeoPoint

GeoPoint

Stores a GPS coordinate as two comma-separated decimal numbers.

	The first number must be between -90 and 90, where a negative number
indicates a location south of equator and a positive is north of the equator.

	The second number must be between -180 and 180, where a negative number indicates
a location in the western hemisphere and a positive number is a location in the eastern hemisphere.

<input name="name" type="GeoPoint">
 <label>Location</label>
 <occurrences minimum="0" maximum="1"/>
</input>

	common fields

	All Input Types have these Common Fields

	default

	This element specifies a default string value for the GeoPoint, for example 51.5,-0.1.

 HtmlArea

HtmlArea

A field for entering multi-line text with rich-formatting options.

<input name="description" type="HtmlArea">
 <label>Description</label>
 <default><h3>Enter description here</h3></default>
</input>

	common fields

	All Input Types have these Common Fields

	default

	This element specifies a default value. The value can contain any HTML elements, but tags must be correctly closed since the input type is defined inside an XML.

	config

	
	include

	List of space-separated tools to be added to the toolbar (see the tip below).

	exclude

	Use this to hide some of the default tools in the toolbar (see the tip below).

Tip

HTML Area is configured with default set of tools but the toolbar can be customized.
Using the config setting you can exclude specific tools from being shown (use “*” to exclude all tools at once) and/or include those that you want to have in the toolbar.
Separate tools with a space and use “|” character to group tool buttons together.
Complete list of supported tools can be found below.

<input name="description" type="HtmlArea">
 <label>Description</label>
 <default><h3>Enter description here</h3></default>
 <config>
 <exclude>*</exclude>
 <include>AlignLeft AlignRight | Bold Italic</include>
 </config>
</input>

[image: ../../../_images/htmlarea-customized.jpg]
Default configuration of the HTML Area toolbar is shown below:

Styleselect | Bold Italic Underline | Alignleft Aligncenter Alignright Alignjustify | Bullist Numlist Outdent Indent | Charmap Anchor Image Macro Link Unlink | Table

	Name

	Description

	Styleselect

	Text format menu

	Bold

	Bold text

	Italic

	Italic text

	Underline

	Underline text

	Alignleft

	Left align content

	Aligncenter

	Center content

	Alignright

	Right align content

	Alignjustify

	Justify content

	Bullist

	Add a bullet list

	Numlist

	Insert a numbered list

	Outdent

	Decrease indent

	Indent

	Increase indent

	Charmap

	Insert a special character

	Anchor

	Insert an anchor

	Image

	Insert/Edit an image

	Macro

	Insert a macro

	Link

	Insert/Edit a link

	Unlink

	Remove link

	Table

	Table format menu

These are additional tools supported by HTML Area that can be used in the input config:

	Name

	Description

	Backcolor

	Background color

	Blockquote

	Quotation

	Code

	Wrap text with code tag

	Copy

	Copy selected text into buffer

	CopyFormatting

	Copy formatting

	CreateDiv

	Wrap with div

	Cut

	Cut selected text into buffer

	Font

	Font menu

	FontSize

	Font size menu

	HorizontalRule

	Insert a horizontal line

	Ltr

	Text direction left to right

	NewPage

	Clean editor’s content

	Preview

	Preview HTML Area contents

	Redo

	Repeat last action

	RemoveFormat

	Remove formatting

	Rtl

	Text direction right to left

	SelectAll

	Select editor’s content

	Strikethrough

	Strikethrough over text

	Styles

	Text styles menu

	Subscript

	Subscript text

	Superscript

	Superscript text

	TextColor

	Text color

	Undo

	Undo last action

	VisualBlocks

	Visualize all block-level elements

 ImageSelector

ImageSelector

Pick a reference to another existing image or upload a new image.
Supported image types are:

	Jpeg

	Png

	Gif

	Svg

<input name="image" type="ImageSelector">
 <label>Non-required image</label>
 <occurrences minimum="0" maximum="1"/>
 <config>
	 <allowPath>./*</allowPath>
 </config>
</input>

	common fields

	All Input Types have these Common Fields

	allowContentType

	Same as for ContentSelector .

	allowPath

	Same as for ContentSelector .

	treeMode

	Same as for ContentSelector .
When not in tree mode, Image Selector will show images in gallery mode, 3 images per row.

	hideToggleIcon

	Same as for ContentSelector .

 Long

Long

A simple field for large integers.

<input name="count" type="Long">
 <label>Count</label>
 <default>42</default>
</input>

<input name="rating" type="Long">
 <label>Rating</label>
 <config>
 <min>1</min>
 <max>10</max>
 </config>
</input>

	common fields

	All Input Types have these Common Fields

	default

	This element specifies a default value. The value can be any valid integer.

	config

	
	min

	Minimum value allowed for the field. Optional.

	max

	Maximum value allowed for the field. Optional.

 MediaSelector

MediaSelector

Allows selecting one or several content items of Media Content Types or uploading a new content of Media Content Types.

<input name="myMediaSelector" type="MediaSelector">
 <label>Archives</label>
 <occurrences minimum="0" maximum="1"/>
 <config>
 <allowContentType>media:archive</allowContentType>
 </config>
</input>

	common fields

	Same common Fields that are supported by other Input Types

	allowContentType

	Same as for ContentSelector .

	allowPath

	Same as for ContentSelector .

	treeMode

	Same as for ContentSelector .

	showStatus

	Same as for ContentSelector .

	hideToggleIcon

	Same as for ContentSelector .

 RadioButton

RadioButton

An input type for selecting one of several options, defined in the config element.

<input name="name" type="RadioButton">
 <label>Radio Buttons</label>
 <occurrences minimum="0" maximum="0"/>
 <config>
 <option value="one">Option One</option>
 <option value="two">Option Two</option>
 </config>
 <default>one</default>
</input>

	common fields

	All Input Types have these Common Fields

	option

	This element defines the option label. value attribute defines the
actual value to set when this option is selected. Multiple option
settings are ordered.

	default

	This element specifies the default option for the radio button. It should be equal to one of the option values.

 Tag

Tag

An intuitive input format for specifying a set of simple strings.

<input name="name" type="Tag">
 <label>Location</label>
 <occurrences minimum="0" maximum="1"/>
</input>

	common fields

	All Input Types have these Common Fields

 TextArea

TextArea

A field for inputting multi-line text.

<input name="description" type="TextArea">
 <label>Description</label>
 <default>Description goes here</default>
 <config>
 <max-length>42</max-length>
 </config>
</input>

	common fields

	All Input Types have these Common Fields

	default

	This element specifies a default string value for the TextArea.

	config

	
	max-length

	Maximum number of characters allowed in the field. If not specified the length is unrestricted.

 TextLine

TextLine

A field for inputting a single line of text.

<!-- Bare minimum example, the least settings you need for the field to work. -->
<input name="myTextField" type="TextLine">
 <label>String input</label>
 <occurrences minimum="0" maximum="1"/><!-- Even this can be omitted. -->
</input>

<!-- Example using regex validation and a default value. -->
<input name="socialSecurityNumber" type="TextLine">
 <label>SSN</label>
 <occurrences minimum="0" maximum="1"/>
 <config>
 <regexp>\b\d{3}-\d{2}-\d{4}\b</regexp>
 <max-length>11</max-length>
 </config>
 <default>000-00-0000</default>
</input>

	common fields

	All Input Types have these Common Fields

	default

	This element specifies a default string value for the TextLine.

	config

	
	regexp

	A regular expression that restricts the valid values for the input. Optional, if not set any text is a valid value.

	max-length

	Maximum number of characters allowed in the field. If not specified the length is unrestricted.

 Time

Time

A simple field for time. A pop-up box allows simple selection of a certain time.
The default format is hh:mm.

<input name="name" type="Time">
 <label>My Time</label>
 <occurrences minimum="0" maximum="1"/>
 <default>now</default>
</input>

	common fields

	All Input Types have these Common Fields

	default

	The format for the default time value can be:

	Time in 24h format: hh:mm (e.g. “23:59”)

	Relative time expression (e.g. “+1hour -12minutes”)

A relative time expression is a sequence of one or more time offsets.
An offset consists of: a plus or minus sign, followed by an integer, followed by a time unit string (e.g. “+3 minutes”)

The time unit can be expressed as a singular unit, plural unit, or initial letter:

	“hour”

	“hours”

	“h”

	“minute”

	“minutes”

	“m”

An offset can also be the string now, which means current time.

 Item Sets

Item Sets

Item sets represent a special capability of forms that allow you to nest other form items hierarchically.

Inputs in item sets are grouped into logical units, allowing them to repeat as a complex input type - since item sets support occurrences too.
Item sets are both visually and semantically grouped as the name of the item set is used in the persisted property structure. An item set actually produces a property set.

Here is an example of an item set with two inputs. The resulting form will allow multiple entries of phone numbers with labels:

<item-set name="contact_info">
 <label i18n="contact_info.label">Contact Info</label>
 <items>
 <input name="label" type="TextLine">
 <label>Label</label>
 <occurrences minimum="0" maximum="1"/>
 </input>
 <input name="phone_number" type="TextLine">
 <label>Phone Number</label>
 <occurrences minimum="0" maximum="1"/>
 </input>
 </items>
 <occurrences minimum="0" maximum="0"/>
</item-set>

	name (required)

	The set needs a name for reference in result sets.

	label

	The set label is printed as a header on the box that will surround the group
in the input form.

	label@i18n

	The key to look up the label text in the localization bundles. (See also Localization of Schemas)

	occurrences

	Occurrence configuration can be done at any level.

Tip

It is also possible to nest item sets inside each other

 Option Sets

Option Sets

An option set represents a group of options rendered as either radio-buttons or checkboxes.
Each option may or may not have a form of inputs it consists of. An option can be considered to be a field-set with selectable header.

By default, an option form will only be shown upon selection of the option, but the entire option
set may be configured to have all of its options expanded by default.

It’s also possible to pre-select specific options by default.

Here is an example of a multi-select option set with options expanded by default, empty first option and pre-selected second option:

<option-set name="checkOptionSet">
 <label i18n="checkOptionSet.label">Multi-selection OptionSet</label>
 <expanded>true</expanded>
 <occurrences minimum="1" maximum="1"/>
 <help-text>You can select up to 2 options</help-text>
 <options minimum="1" maximum="2">
 <option name="option_1">
 <label i18n="checkOptionSet.option_1.label">Option 1</label>
 <help-text i18n="checkOptionSet.option_1.help-text">Help text for Option 1</help-text>
 </option>
 <option name="option_2">
 <label i18n="checkOptionSet.option_2.label">Option 2</label>
 <default>true</default>
 <items>
 <input name="contentSelector" type="ContentSelector">
 <label>Content selector</label>
 <occurrences minimum="0" maximum="0"/>
 <config/>
 </input>
 </items>
 </option>
 <option name="option_3">
 <label>Option 3</label>
 <help-text>Help text for Option 3</help-text>
 <items>
 <input name="textarea" type="TextArea">
 <label>Text Area</label>
 <occurrences minimum="0" maximum="1"/>
 </input>
 <input name="long" type="Long">
 <label>Long</label>
 <indexed>true</indexed>
 <occurrences minimum="0" maximum="1"/>
 </input>
 </items>
 </option>
 </options>
</option-set>

	@name (required)

	The set needs a name for reference in result sets.

	label

	The label is displayed as a header of the option set.

	label@i18n

	The key to look up the label text in the localization bundles. (See also Localization of Schemas)

	expanded

	Optional. Set to true to expand all of the options by default

	occurrences

	Detailed definition of how many times this option set may be repeated inside one content.

	help-text

	Optional. Help text for the entire option set.

	help-text@i18n

	The key to look up the help text in the localization bundles. (See also Localization of Schemas)

	options (required)

	Container of options.

	@minimum

	Required. Minimum number of options that must be selected in this option set.

	@maximum

	Required. Maximum number of options that can be selected in this option set.
Setting this attribute to a value greater than 1 will result in rendering of a multi-select option set with
options rendered as checkboxes. Setting the attribute value to 1 will render options as radio-buttons (single-select option set).
Once the maximum of selected options is reached, the rest of the options will be disabled.

	option (required)

	Container of the option form.

	@name (required)

	Option name. Must be unique within the option set.

	label (required)

	Label of the option’s checkbox or radio button.

	label@i18n

	The key to look up the label text in the localization bundles. (See also Localization of Schemas)

	help-text

	Optional. Help text for the option.

	help-text@i18n

	The key to look up the help text in the localization bundles. (See also Localization of Schemas)

	default

	Optional. Set to true to pre-select the option.

	items

	Optional. Container of the option form’s inputs.

 Schema Layouts

Schema Layouts

To shape the presentation of a form, one can use layouts. Currently, only one layout exists.

Field set

A field set may be used to group items visually. The example below will create a form in the admin console with the inputs grouped under the
label of the field set.

<field-set name="metadata">
 <label i18n="metadata.label">Metadata</label>
 <items>
 <input name="tags" type="Tag">
 <label>Tags for tag cloud</label>
 <occurrences minimum="0" maximum="5"/>
 </input>
 </items>
</field-set>

	@name (required)

	The field set needs a name for reference.

	label

	The label will appear as a heading above the inputs that are grouped inside.

	label@i18n

	The key to look up the label text in the localization bundles. (See also Localization of Schemas)

	items

	The fields inside the set must be listed inside an items element.

 X-data

X-data

X-data is a concept similar to Mixins but, unlike mixins, x-data schemas don’t have to be plugged in inline inside content type schema or site.xml
which makes them much more flexible. Unless config of x-data implicitly restricts it from being used for specific content types(s), it will
be automatically made visible in the Content Wizard and user can manually enable it for specific content.

X-data definition file must be placed in the folder site/x-data/[name] and named
[name].xml. For example, site/x-data/us-address/us-address.xml.

<x-data>
 <display-name>This x-data will be available only for folders</display-name>
 <allowContentType>base:folder</allowContentType>
 <items>
 <input type="TextLine" name="addressLine">
 <label>Street address</label>
 <occurrences minimum="0" maximum="2"/>
 </input>
 <input type="TextLine" name="city">
 <label>City</label>
 <occurrences minimum="1" maximum="1"/>
 </input>
 <input type="TextLine" name="state">
 <label>State</label>
 <occurrences minimum="0" maximum="1"/>
 </input>
 <input type="TextLine" name="zipCode">
 <label>Zip code</label>
 <occurrences minimum="0" maximum="1"/>
 </input>
 </items>
</x-data>

Tip

X-data may optionally have its own specific icon. The icon can be assigned to x-data by adding a PNG file with
the same name, in the x-data folder, e.g. site/mixins/us-address/us-address.png

Configuring x-data for content types

Use regular expressions in the allowContentType field to filter content types the x-data will be available for.
The aforementioned example of x-data will be available only for base:folder content type and the example below will be
available for all content types except base:folder.

<x-data>
 <display-name>This x-data will be available for any content type except folders</display-name>
 <allowContentType>((?!base:folder).)*$</allowContentType>
 <items>
 <input type="TextLine" name="addressLine">
 <label>Street address</label>
 <occurrences minimum="0" maximum="2"/>
 </input>
 <input type="TextLine" name="city">
 <label>City</label>
 <occurrences minimum="1" maximum="1"/>
 </input>
 <input type="TextLine" name="state">
 <label>State</label>
 <occurrences minimum="0" maximum="1"/>
 </input>
 <input type="TextLine" name="zipCode">
 <label>Zip code</label>
 <occurrences minimum="0" maximum="1"/>
 </input>
 </items>
</x-data>

If allowContentType is not specified, the x-data is assumed to be available for all content types.

Tip

Like inline mixins, x-data can be plugged in directly inside content type schemas, component descriptors and site.xml file. Note that
if x-data is plugged in directly in content type schema but its configuration doesn’t allow it for this content type then it won’t be available.

<site>
 <config>
 <input type="TextLine" name="company">
 <label>Company</label>
 <occurrences minimum="1" maximum="1"/>
 </input>
 <input type="TextArea" name="description">
 <label>Description</label>
 <occurrences minimum="1" maximum="1"/>
 </input>
 </config>
 <x-data name="us-address"/>
</site>

 Mixins

Mixins

Structures of data that are repeated in different content types or component descriptors may be defined as mixins. Such structures (like some
address fields or a combobox with a standard set of values) would be defined once in a mixin and then the mixin would be applied in
other schemas that require these fields. The mixin definition file must be placed in the folder site/mixins/[name] and named
[name].xml. For example, site/mixins/us-address/us-address.xml.

<mixin>
 <display-name>U.S. Address format</display-name>
 <items>
 <input type="TextLine" name="addressLine">
 <label>Street address</label>
 <occurrences minimum="0" maximum="2"/>
 </input>
 <input type="TextLine" name="city">
 <label>City</label>
 <occurrences minimum="1" maximum="1"/>
 </input>
 <input type="TextLine" name="state">
 <label>State</label>
 <occurrences minimum="0" maximum="1"/>
 </input>
 <input type="TextLine" name="zipCode">
 <label>Zip code</label>
 <occurrences minimum="0" maximum="1"/>
 </input>
 </items>
</mixin>

Tip

A mixin may optionally have its own specific icon. The icon can be assigned to the mixin by adding a PNG file with
the same name, in the mixin folder, e.g. site/mixins/us-address/us-address.png

Using a mixin

Below is an example of a simple content type that uses the us-address mixin. In this case fields defined in the mixin will be injected
into the form inside the content type schema and their values will be saved with content data.
Notice that the name of the mixin file is used and not the mixin’s Display Name.

<content-type>
 <display-name>Using mixins</display-name>
 <super-type>base:structured</super-type>
 <form>
 <inline mixin="us-address"/>
 </form>
</content-type>

Tip

Mixins can be used in content types, component descriptors, and the site.xml file.

Tip

If you need more flexibility to enable a mixin for specific content types without having to plug it in directly in each content type scheme,
consider using X-data instead.

 Relationship Types

Relationship Types

Note

Relationship types are optional and experimental, they currently do not provide relevant functionality to your projects

Custom content types may have relationships to each other or other content types.
For instance, a person may have an image, or an employee may have a boss, or belong
to a department. These relationships must be defined with a specific relationship type, then used
in the custom content with an input type ContentSelector. The relationship type definition
is an XML file. It must be placed in the folder, site/relationship-types/[name] and
be named [name].xml. Here is an example of a relationship-type:

<relationship-type>
 <display-name>Citation</display-name>
 <from-semantic>citation in</from-semantic>
 <to-semantic>cited by</to-semantic>
 <allowed-from-types/>
 <allowed-to-types>
 <content-type>com.enonic.xp.modules.features:article</content-type>
 </allowed-to-types>
</relationship-type>

	from-semantic

	Text to describe the “from” relationship.

	to-semantic

	Text to describe the “to” relationship.

	allowed-from-types

	Any content type may use this relationship-type.

	allowed-to-types

	Wherever this relationship-type is used, only an article may be selected.

The content types have the format module-name:content-type-name.
The module may be system for built-in types.

Tip

A relationship type may optionally have its own specific icon. The icon can be assigned to the relationship type by adding a PNG file with
the same name, in the relationship type folder, i.e. site/relationship-types/[name]/[name].png

System relationship types

There are two default relationship types that may be used out of the box. These represent
general relationship types that may be reused often.

	system:reference

	No content type restriction, from-semantic = “relates to”, to-semantic = “related of”.

	system:parent

	No content type restriction, from-semantic = “parent of”, to-semantic = “child of”.

 Forms

Forms

The main purpose of the schema concept is to construct forms that can be edited through the admin interface or used programmatically, without coding a custom interface and complex controllers.
A form is basically a composition of layouts and input types. When a form is populated and submitted, the result will be a basic property structure that can be stored directly into Nodes.

Some hands on examples where forms are used in the system are Content Types and Sites.

Basic Setup

Forms can be defined through Java or XML, where the latter is the most common.

Below is an example configuration in xml:

<form>
 <input name="choice1" type="ComboBox">
 <label>Choice1</label>
 <occurrences minimum="0" maximum="1"/>
 <config>
 ...
 </config>
 </input>
</form>

Adding Mixins

To simplify maintenance of forms, mixins can be created and injected into a form simply by referencing it.
The form will render as if everything in the mixin was written directly in the form itself. Read more about Mixins.

<form>
 <field-set name="basic">
 <label>Status</label>
 <items>
 <inline mixin="us-address"/>
 </items>
 </field-set>
</form>

 Serverside JavaScript

Serverside JavaScript

Enonic XP primarily uses server-side JavaScript for application development.
Our goal is to enable any developer - PHP, .net, Java, Python, etc, etc to quickly be productive with Enonic XP.

Here are some highlights on how it works:

	Runs on the Java Virtual Machine using the Nashorn JavaScript engine, a high performance, portable and robust platform.

	Multithreaded request-response approach - simplifying software development and utilization of modern multi-core hardware

	Implements central parts of CommonJS module specification (http://wiki.commonjs.org/wiki/Modules/1.1) like RequireJS - but not all

	You can invoke Java directly from your scripts - quickly accessing powerful Java libraries

Beyond simply executing JavaScript on the server, the XP framework provides a range of capabilities, primarily associated with HTTP.
Read more below to learn about the basic concepts.

	HTTP Controllers

	Global JavaScript objects and functions

	Main Initializer

	HTTP Request

	HTTP Response

	HTTP Cookies

	Websockets

	Invoking Java

 HTTP Controllers

HTTP Controllers

Serverside JavaScript is used in the http controllers of Enonic XP.
Every Page, Part, Layout, Services, Controller Mappings etc. must have a controller.

An application may also contain an Application Controller.

JavaScript controllers are invoked from the portal by exporting functions matching the desired HTTP Method it implements.
As such, any controller must explicitly declare one or more “exports” in order to handle requests:
get, post, delete are examples of such methods.

A controller can also export a special function all which will handle requests with any HTTP method, unless there is a function exported for the specific method.

The appropriate function will automatically be invoked for every request sent to the controller.

Example usage

// Handles a GET request
exports.get = function(req) {}

// Handles a POST request
exports.post = function(req) {}

// Handles all requests, other than GET or POST which are handled by the functions above
exports.all = function(req) {}

A handler function receives a parameter with a request object, and returns a response object.

exports.get = function(request) {

 if (request.mode === 'edit') {
 // do something...
 }

 var name = request.params.name;
 log.info('Name = %s', name);

 return {
 body: 'Hello ' + name,
 contentType: 'text/plain'
 };

};

 Global JavaScript objects and functions

Global JavaScript objects and functions

The following global functions and objects are available in the Enonic XP framework.

App

The globally available app object holds information about the contextual app it was delivered from. It has the following properties:

	app.name

	The name of the application, as defined in its gradle configuration.

	app.version

	Version of the application, as defined in its gradle configuration.

	app.config

	Values from the application’s configuration file. This can be set using $XP_HOME/config/<app.name>.cfg. Every time the configuration is changed the app is restarted.

Examples:

// Get application name
var name = app.name; // com.enonic.app.superhero

// Get application version
var version = app.version; // 1.2.0

// Get some config from the <app.name>.cfg file
var myKey = app.config.secretkey; // Reads the string stored in the "secretkey" property

Log

This globally available log object holds the logging methods. It’s one method for each log
level and takes the same number of parameters.

	
log.debug(message[, args])

	
	Arguments

	
	message (string) – Message to log as a debug-level message.

	args (array) – Optional arguments used in message format.

	
log.info(message[, args])

	
	Arguments

	
	message (string) – Message to log as an info-level message.

	args (array) – Optional arguments used in message format.

	
log.warning(message[, args])

	
	Arguments

	
	message (string) – Message to log as a warning-level message.

	args (array) – Optional arguments used in message format.

	
log.error(message[, args])

	
	Arguments

	
	message (string) – Message to log as an error-level message.

	args (array) – Optional arguments used in message format.

Examples:

// Log a simple message
log.debug('Hello World');

// Log a formatting message
log.info('Hello %s', 'World');

// Log a formatting message
log.warning('%s %s', 'Hello', 'World');

// Log using the built-in JSON converter
log.error('My JSON %s', object);

Resolve()

This globally available function resolves a fully qualified path to a local resource based
on the current location. It does not check if a resource exists at the specified path.
This function supports both relative (with dot-references) and absolute paths.

	
resolve(path)

	
	Arguments

	
	path (string) – Path to resolve using current location.

	Returns

	The fully qualified resource path of the location.

Examples:

// Absolute path
var path1 = resolve('/views/myview.html');

// Relative path - in this case, the resource must be in the same folder
var path2 = resolve('myview.html');

// Relative path (same as above)
var path3 = resolve('./myview.html');

// Relative path - resource is one level up
var path4 = resolve('../myview.html');

Require()

This globally available function will load a JavaScript file and return the exports as objects.
The function implements parts of the CommonJS Modules Specification [http://wiki.commonjs.org/wiki/Modules/1.1].

	
require(path)

	
	Arguments

	
	path (string) – Path to the JavaScript to load.

	Returns

	The loaded JavaScript object exports.

Examples:

// Absolute path
var lib1 = require('/lib/mylib.js');

// Relative path
var lib2 = require('mylib');

// Relative path (same as above)
var lib3 = require('./mylib.js');

// Relative path
var lib4 = require('../mylib');

If the path is relative then it will start looking for the file from the local directory.
If the file is not found there, it will start scanning in parent directories that have a /lib folder until it reaches the resources/ folder.
The file extension .js is not required.

Exports

The globally available exports keyword is used to expose functionality from a given JavaScript file (controllers, libraries etc).
This is part of the require.js spec.

Simply use the exports keyword to expose functionality from any JavaScript file.

Double underscore __

The double underscore is available in any server-side JavaScript code and is used for wrapping Java objects in a JavaScript object. Read
more about Invoking Java.

 Main Initializer

Main Initializer

When an application starts it can trigger some code. If you add a main.js file to the root of your application
(/src/main/resources/) this file is executed when the application starts. Here it’s possible to add various initialization code or
add event listeners to listen for events.

Simple example:

// Log application started
log.info('Application ' + app.name + ' started');

Running code on stop:

// Log application started
log.info('Application ' + app.name + ' started');

// Log when application is stopped
__.disposer(function() {
 log.info('Application ' + app.name + ' stopped');
});

 HTTP Request

HTTP Request

The following object is passed along with every HTTP request. The object is similar to many traditional request objects, except for two special properties:
mode and branch. These properties are specific to the XP Portal, automatically indicating the contextual branch and rendering mode.

The request object represents the HTTP request and current context for the
controller.

{
 "method": "GET",
 "scheme": "http",
 "host": "enonic.com",
 "port": "80",
 "path": "/my/page",
 "url": "http://enonic.com/my/page?debug=true",
 "remoteAddress": "10.0.0.1",
 "mode": "edit",
 "branch": "master",
 "params": {
 "debug": "true"
 },
 "headers": {
 "Language": "en",
 "Cookies": "mycookie=123; other=abc;"
 },
 "cookies": {
 "mycookie": "123",
 "other": "abc"
 }
}

	method

	HTTP method of the request.

	scheme

	Name of the scheme used to make this request (“http” / “https”).

	host

	Host name of the server to which the request was sent.

	port

	Port of the server to which the request was sent.

	path

	Path of the request.

	url

	URL of the request.

	remoteAddress

	IP address of the client that sent the request. If the X-Forwarded-For [http://en.wikipedia.org/wiki/X-Forwarded-For] header is set, its value will override the client IP.

	mode

	Portal rendering mode, one of: edit, preview, live.

	branch

	Name of the repository branch, one of: draft, master.

	body

	Optional text value

	params

	Name/value pairs with the query/form parameters from the request.

	headers

	Name/value pairs with the HTTP request headers.

	cookies

	Name/value pairs with the HTTP request cookies.

 HTTP Response

HTTP Response

The response object is the value returned by an HTTP controller - as a response to an HTTP Request.

{
 "status": 200,
 "body": "Hello World",
 "contentType": "text/plain",
 "headers": {
 "key": "value"
 },
 "cookies": {},
 "redirect": "/another/page",
 "pageContributions": {},
 "postProcess": true,
 "applyFilters": true
}

	status

	HTTP response status code (default is 200).

	body

	HTTP message body of the response that can either be a string or a JavaScript object.

	contentType

	MIME type of the body (defaults to text/plain; charset=utf-8).

	headers

	Name/value pairs with the HTTP headers to be added to the response.

	cookies

	HTTP cookies to be added to the response. Will be described in a later section.

	redirect

	URI to redirect to. If specified, the value will be set in the “Location” header and the status will be set to 303.

	pageContributions

	A special filter available for sites and page components allowing page components to contribute html to the main page markup. See Page Contributions

	postProcess

	Post-processing is a special filter for sites and pages, if enabled it will reprosess a page looking for page contributions and rendering
components in a page. (See also Page Contributions) (default is true). Set to false if you want to speed up page rendering in cases where there are no regions or page components.

	applyFilters

	Whether or not to execute the filters after rendering. Set to false to skip execution of filters. (See also Response Filters) (default is true).

 HTTP Cookies

HTTP Cookies

There are two ways that Http Cookie values can be set in responses (see examples).

	If the value is a string (1) then the cookie is created using default settings.

	If the value is an object (2) then it will try to apply the settings. Every field is optional except “value”.

Here’s an example of how the cookies should be set:

return {
 status: 200,
 body: "Hello World",
 cookies: {
 "plain": "value", // Example (1) of just setting a value
 "complex": { // Example (2) for using a full JS object
 value: "value",
 path: "/valid/path",
 domain: "enonic.com",
 comment: "Some cookie comments",
 maxAge: 2000,
 secure: false,
 httpOnly: false
 }
 }
};

Settings

Overview of full JS object and the settings can be found here. A full in-depth into how each parameter works can be found in the Java documentation for Cookies [http://docs.oracle.com/javaee/6/api/javax/servlet/http/Cookie.html]. Also, general knownledge of Cookies [https://en.wikipedia.org/wiki/HTTP_cookie] and their limitations is adviced.

	value (required)

	The value to store in the cookie. The example (2) in the code above would create a cookie looking like this complex: value.

	path

	The paths on the site this cookie should be available from (and all containing paths).

Default: empty (The current URL path.)

	domain

	Add additional sites that should be able to read the cookie.

Default: empty (Only the server that creates the cookie can read it.)

	comment

	A comment describing the cookie.

Default: null

	maxAge

	Number of seconds before the browser is allowed to delete the cookie.

Default: -1 (The cookie will live until the browser is shut down.)

	secure

	Control if the cookie should only be accepted to be created and read over https and similar secure protocols.

Default: false

	httpOnly

	Control if the cookie is available for scripts or not. If true, only the serverside code can read the cookie.

Default: false (Also client-side scripts can read the cookie.)

 Websockets

Websockets

Warning

Websocket support is experimental.

Websocket support allows a service to act as a websocket channel that
you can connect to from a web-browser.

A get method must be implemented to handle initialization
of the websocket.

// Create a websocket if websocket request.
exports.get = function (req) {

 if (!req.webSocket) {
 return {
 status: 404
 };
 }

 return {
 webSocket: {
 data: {
 user: "test"
 },
 subProtocols: ["text"]
 }
 };
};

A websocket event handler named webSocketEvent is required. It will be called for every websocket event from a client. See example below.

// Listen to a websocket event
exports.webSocketEvent = function (event) {

 if (event.type == 'open') {
 // Do something on open
 }

 if (event.type == 'message') {
 // Do something on message recieved
 }

 if (event.type == 'close') {
 // Do something on close
 }

};

Below is an example of a simple chat. A library called lib-websocket has functions for sending messages back and adding/removing clients
in groups. Adding to groups allows for multicast message sending.

// Lib that contains websocket functions.
var webSocketLib = require('/lib/xp/websocket');

// Listen to a websocket event
exports.webSocketEvent = function (event) {

 if (event.type == 'open') {
 // Send message back to client
 webSocketLib.send(event.session.id, 'Welcome to our chat');

 // Add client into a group
 webSocketLib.addToGroup('chat', event.session.id);
 }

 if (event.type == 'message') {
 // Propegate message to group
 webSocketLib.sendToGroup('chat', event.message);
 }

 if (event.type == 'close') {
 // Remove client from a group
 webSocketLib.removeFromGroup('chat', event.session.id);
 }

};

 Invoking Java

Invoking Java

In Enonic XP, there is a standard object named __ (double underscore), accessible from any serverside JavaScript code, which provides
a way to wrap Java objects in a JavaScript object. The __ object has functions that allow JavaScript to communicate with Java
classes. The newBean function will wrap the Java object named in the parameter, for instance:

var bean = __.newBean('com.enonic.xp.lib.io.IOHandlerBean');

This line is from the lib-io library, which is a good example of how this is used. In the Java IOHandlerBean class, there are several
methods, like the readLines method:

public List<String> readLines(final Object value)
 throws Exception
{
 final CharSource source = toCharSource(value);
 return source.readLines();
}

This method is now accessible as a function on the JavaScript bean and may be invoked from JavaScript, like this:

exports.readLines = function (stream) {
 return __.toNativeObject(bean.readLines(stream));
};

This results in a global JavaScript function readLines. This example also shows the use of the toNativeObject method, which in
this case, converts a Java String array to a JSON object.
The reference documentation for the __ object can be found here: The __ object [http://repo.enonic.com/public/com/enonic/xp/docs/6.15.12/docs-6.15.12-libdoc.zip!/-__.html].

 Application Controller

Application Controller

An application can implement a controller to handle HTTP requests. This is done by adding a main.js JavaScript file at the root of the application (/src/main/resources/).

The HTTP requests are handled independent of any site or content, on a specific URL with the path /app/[app-id] (e.g. “/app/com.enonic.app.superhero”).

The main.js file acts as any other controller and may expose a function for each HTTP method that should be handled: GET, POST, etc.
Or an all function to handle requests with any method. (see HTTP Controllers).

The function that handles the request receives the request object as a parameter and returns the response object .

The following is an example of an application controller, in main.js.

var mustache = require('/lib/xp/mustache');

// Handles a GET request
exports.get = function (req) {

 var view = resolve('my-page.html');
 var params = {
 appId: app.name,
 title: 'Hello world'
 };

 return {
 body: mustache.render(view, params),
 contentType: 'text/html'
 };
};

// Handles a POST request
exports.post = function (req) {
 var name = request.params.name;

 return {
 body: {'Hello': name},
 contentType: 'application/json'
 };
};

// Handles all other method requests
exports.all = function (req) {
 if (req.method === 'DELETE') {
 handleDelete(req);

 } else if (req.method === 'PUT') {
 handlePut(req);
 }

 return {
 body: {'Hello': name, 'Method': req.method},
 contentType: 'application/json'
 };
};

Assets

The asset files of an application (see Assets) are also available under the application controller URL.

For example, the asset in src/main/resources/assets/css/styles.css in application with name com.enonic.myapp can be requested with the URL
/app/com.enonic.myapp/css/styles.css.

 Assets

Assets

Applications and libraries commonly use files that will be delivered to the client (typically web browsers) without being modified. Examples
are icons, css files, javascript files etc. Enonic XP provides a standard and optimized approach to serving assets across applications.

Developers simply place the files they want to use into their project’s /src/main/resources/assets/ folder.
These files can then be dynamically accessed through the asset service. The asset service is typically available through _/asset/<myapp>/path/to/myasset.ext.

The assetUrl() portal function lets you easily create links to assets.

	
assetUrl({path [,application] [,type] [,params]})

	
	Arguments

	
	path (string) – Path to the asset.

	application (string) – Application where the asset exists. Default is current application.

	type (string) – URL type. Either server (server-relative URL) or absolute. Default is server.

	params (object) – Custom parameters to append to the url.

	Returns

	The relative or absolute URL to the asset.

API

The detailed API documentation may be found here [http://repo.enonic.com/public/com/enonic/xp/docs/6.15.12/docs-6.15.12-libdoc.zip!/module-portal.html#.assetUrl.].

 Services

Services

Services allow the creation of http endpoints without binding them to specific paths.
Each service must have a JavaScript controller file and optionally an XML descriptor placed in the folder services/[service-name]

Descriptor

The service descriptor is an XML file that is used to define which rights are required to access the service.

The descriptor file must have the same name as the service, i.e. services/[service-name]/[service-name].xml:

<service>
 <allow>
 <principal>role:system.admin</principal>
 <principal>role:myapp.myrole</principal>
 </allow>
</service>

Controller

A service controller handles requests to the service.
The controller is a required file written in JavaScript and must have the same name as the service, i.e. services/[service-name]/[service-name].js.

A controller exports a function for each type of HTTP request that should be handled.
The handle function takes the request object as a parameter and returns the response object (see HTTP Controllers).

The following example is a simple service that returns a JSON object with the date and a counter.

var counter = 0;

exports.get = function(req) {

 counter++;

 return {
 body: {
 time: new Date(),
 counter: counter
 },
 contentType: 'application/json'
 };

};

Access

The service can then be accessed on a relatively mounted URL, as seen below, where application is the application name (without version):

*/_/service/[application]/[service-name]

The portal function serviceUrl() will create a dynamic URL for a service.

	
serviceUrl({service [,application] [,type] [,params]})

	
	Arguments

	
	service (string) – Name of the service.

	application (string) – Application where the service exists. Default is current application.

	type (string) – URL type. Either server (server-relative URL) or absolute. Default is server.

	params (object) – Custom parameters to append to the url.

	Returns

	The relative or absolute URL to the service.

API

The detailed API documentation may be found here [http://repo.enonic.com/public/com/enonic/xp/docs/6.15.12/docs-6.15.12-libdoc.zip!/module-portal.html#.serviceUrl.].

 Views

Views

Instead of composing the HTML, JSON or other output in your javascript controllers,
it’s often easier to use a full MVC (Model View Controller) approach.

Enonic XP supports pluggable view technologies and ships the following view libraries out-of-the-box.

	Thymeleaf - typically used with HTML (see lib-thymeleaf in Javascript Libraries)

	Mustache - typically for use with JSON (see lib-mustache in Javascript Libraries)

	Xslt - recommended for XML processing (see lib-xslt in Javascript Libraries)

 Sites

Sites

Sites can be built from one (or more) applications.
But only applications that contain a specific structure and a site descriptor can be used for this purpose.

This chapter will dive into the details on how to build sites and the various components of a site, such as pages and parts.

	Site Descriptors

	Content Types

	Response Filters

	Controller Mappings

	Page

	Part

	Layout

	Fragment

	Page Contributions

	Error Handling

	Macros

 Site Descriptors

Site Descriptors

To indicate that an application provides “site capabilities” and allow it to be added to sites, a site descriptor must be placed into the application.
Within your project, simply add a file called /src/main/resources/site/site.xml.

The site.xml file also makes use of the Schemas concept, so you may easily define custom forms for configuring the application when
adding it to a site. These configurations are made in the <config> element.

/src/main/resources/site/site.xml

<site>
 <config>
 <input type="TextLine" name="company">
 <label>Company</label>
 <occurrences minimum="1" maximum="1"/>
 </input>
 <input type="TextArea" name="description">
 <label>Description</label>
 <occurrences minimum="1" maximum="1"/>
 </input>
 </config>
</site>

All controllers within the app can access the configured values with the portal.getSiteConfig() function.

var portal = require('/lib/xp/portal');

// Find the site configuration for this app in current site.
var siteConfig = portal.getSiteConfig();

Extensions

An app’s site.xml file may optionally contain other elements, placed outside the <config> node.

Use <x-data> element for adding X-data or <inline> element for adding Mixins
Adding extra data this way will automatically add that data to the content in Content Studio.

Additionally, the <filters> element can be used for adding Response Filters.

Controller Mappings can also be configured in a site descriptor with a <mappings> element.

 Content Types

Content Types

To enable simple configuration and setup of publishing forms, validation and data types - Enonic XP ships with a content api. Central to this api are Content Types.
Structured, indexed and searchable content items are created from Content types. Content Types build on the Forms concept, so they are very similar to other configurable forms in Enonic XP.

	Content repository

	Sample Content type

	Standard Content Properties

	Base Content Types

	Media Content Types

	Portal content types

	Custom Content Types

 Content repository

Content repository

Every content item produced is eventually stored as nodes in the low level storage, read more about the Storage.

A system standard repository called cms-repo is initialized when installing Enonic XP. This
is where content is stored when working with content in the Content Studio application or the content-API.

The content-API actively uses the branch capabilities. The cms-repo has two branches:

	draft

	master

The content seen while working in Content Studio is in the draft branch. Content in
the portal is served from the master branch.

Publishing a content moves it from the draft branch to the master branch.

 Sample Content type

Sample Content type

A “Person” content type might look something like this:

[image: ../../../_images/person-cty.png]
The underlying schema configuration would look like this

<?xml version="1.0" encoding="UTF-8"?>
<content-type>
 <display-name>Person</display-name>
 <super-type>base:structured</super-type>
 <form>
 <input type="imageSelector" name="photo">
 <label>Photo</label>
 <occurrences minimum="1" maximum="1"/>
 </input>
 <input type="HtmlArea" name="bio">
 <label>Bio</label>
 <occurrences minimum="1" maximum="1"/>
 </input>
 <input type="TextLine" name="email">
 <label>Email</label>
 <occurrences minimum="1" maximum="1"/>
 </input>
 <input type="TextLine" name="website">
 <label>Website</label>
 <occurrences minimum="0" maximum="1"/>
 </input>
 <input type="TextLine" name="twitter">
 <label>Twitter Name</label>
 <occurrences minimum="0" maximum="1"/>
 </input>
 <input type="TextLine" name="facebook">
 <label>Facebook Name</label>
 <occurrences minimum="0" maximum="1"/>
 </input>
 </form>
</content-type>

And the persisted (and searchable node) would look like this:
NB! The content type defined properties are stored within the ‘data’ propertySet.

{
 "_id": "c814b68c-7dd3-4851-a35e-6709b07409d4",
 "_name": "purple-tentacle",
 "_path": "/superhero/authors/purple-tentacle",
 "creator": "user:system:su",
 "modifier": "user:system:su",
 "createdTime": "2016-01-07T07:23:42.149Z",
 "modifiedTime": "2016-01-07T07:26:49.129Z",
 "type": "com.enonic.sampleapp:person",
 "displayName": "Purple Tentacle",
 "hasChildren": true,
 "language": "en",
 "valid": true,
 "data": {
 "photo": "10b6cf60-581a-43cd-aa76-30a0c3503a45",
 "bio": "<p>Have great plans to take on the world</p>",
 "email": "purple@dott.game"
 },
 "x": {},
 "page": {},
 "attachments": {}
}

 Standard Content Properties

Standard Content Properties

These are the standard content properties - value type and index options specified in parentheses.

	_id (string)

	The content id (this is the same as node id)

	_name (string, fulltext, ngram)

	The content name (same as node name)

	attachment (propertySet)

	If content contains attachments, a list of attachments with respective properties will be listed here.

	type (string)

	The content schema type.

	creator (string)

	The user principal that created the content.

	createdTime (dateTime)

	The timestamp when the content was created.

	data (propertySet)

	Contains all user defined properties as defined by the contentType.

	displayName (string, fulltext)

	Name used for display purposes.

	language (string)

	The locale-property of the content.

	modifiedTime (dateTime)

	Last time the content was modified.

	owner (string)

	The user principal that owns the content.

	page (propertySet)

	The page property contains page-specific properties, like template and regions.
This will typically be reference to a page-template that supports the content-type.

	publish (propertySet)

	Contains publish-information, e.g publish.from

	x (propertySet)

	A property-set containing properties from x-data and mixins.

 Base Content Types

Base Content Types

A set of basic content types are provided with the installation.

Content types have a set of properties you need to know about:

	Content types are named with their application name, i.e. base:folder, where “base” is the application - but also have a nice display name like “Folder”

	abstract (default: false) means you cannot create content with this content type

	final (default: false) means it is not possible to create content types that “extend” this

	allow-child-content (default: true) if false, it will prevent users from creating child items on content of this type. (i.e. prevents creating child items of images)

Folder (base:folder)

	abstract: false

	final: false

	allow-child-content: true

Folders are simply containers for child content, with no other properties than their
name and Display Name. They are helpful in organizing your content.

Media (base:media)

	abstract: true

	final: false

	allow-child-content: false

This content type serves as the abstract supertype for all content types that are considered “files” in
their natural habitat. These are listed on the Media Content Types page.

Shortcut (base:shortcut)

	abstract: false

	final: true

	allow-child-content: true

This is used for redirecting a visitor to another content item in the structure.
Optional name-value parameters can be set to be added to the redirect URL.

Structured (base:structured)

	abstract: true

	final: false

	allow-child-content: true

This is possibly the most commonly used base type for creating other content types.
The structured content type is the foundation for basically any other structured content
you can come up with, such as the Person content in the previous example.

Unstructured (base:unstructured)

	abstract: false

	final: true

	allow-child-content: true

The unstructured content type is a special content type that permits the creation
of any property or structure without actually defining it first. This is convenient for user generated content from forms on a site.

Caution

There is currently no UI for unstructured content so they will appear empty in the admin console. However, a custom page template that
supports base:unstructured may easily be created to show name/value pairs.

 Media Content Types

Media Content Types

The system ships with a set of pre-defined media content types.
When files are uploaded in the Content Studio interface or through the content API -
they will be transformed to one of the following content-types.

Common settings for all the content types listed below.

	super-type: base:media

	abstract: false

	final: true

	allow-child-content: false

Tip

Enonic XP treats media content pretty much like any other content items - for instance
the person, but they all have at least one attachment (namely the file).

[image: ../../../_images/upload-button.png]
Here are the various media content types that also come installed with Enonic XP:

	Text (media:text)

	Plain text files.

	Data (media:data)

	Miscellaneous binary file formats.

	Audio (media:audio)

	Audio files.

	Video (media:video)

	Video files.

	Image (media:image)

	Bitmap image files.

	Vector (media:vector)

	Vector graphic files like .svg.

	Archive (media:archive)

	File archives like .zip, tar and jar.

	Document (media:document)

	Text documents with advanced formatting, like .doc, .odt and pdf.

	Spreadsheet (media:spreadsheet)

	Spreadsheet files.

	Presentation (media:presentation)

	Presentation files like Keynote and Powerpoint.

	Code (media:code)

	Files with computer code like .c, .pl or .java.

	Executable (media:executable)

	Executable application files.

	Unknown (media:unknown)

	Everything else.

 Portal content types

Portal content types

In order to build sites in a secure and fashionable manner, Enonic XP
also ships with a few special purpose content types.

Site (portal:site)

	super-type: base:structured

	abstract: false

	final: true

	allow-child-content: true

The Site content type allows creating websites. By creating a content of type Site, it will become the root of a website.

This content type provides a special behavior for the content, allowing to select and configure applications for the website.
Content types, relationship types, filters and x-data of the applications selected will be available to be used
inside the website content tree.

Note

The content types of an application can only be used under a content of type Site which has the application selected.

Page Template (portal:page-template)

	super-type: base:structured

	abstract: false

	final: true

	allow-child-content: true

Page templates are the equivalent of “master slides” in keynote and powerpoint.
They enable you to set up pages that will be used when presenting other content types.
From the sample content type above, the page template “Person Show” was taking care of the presentation.

Template folder (portal:template-folder)

	super-type: base:folder

	abstract: false

	final: true

	allow-child-content: portal:page-template only

This is a special content-type. Every site automatically creates a child
content of this type named _templates. The templates folder holds all the page templates of
that site. It may not hold any other content type, and it may not be created manually in any other location.

Fragment (portal:fragment)

	super-type: base:structured

	abstract: false

	final: true

	allow-child-content: true

The Fragment content type represents a reusable page component. A content of this type contains a page component(Part, Layout, Text, Image) that can be re-used in other pages.
But it only needs to be maintained in one place.

To create a content of type portal:fragment edit an existing page with Page Editor, select the context menu of an existing component in the page, and then clicking on “Create Fragment”.
Once created, the fragment content can be referenced in other pages by inserting a Fragment component in the page.

A Fragment content can be edited with Page Editor and the changes applied to the component will immediately be available in the pages that include the fragment.
When a page containing fragment a component is rendered, the components of the portal:fragment content pointed by the fragment component are rendered in the place of the fragment component.

There is a default page for rendering and edit fragments.
The default page does not have any styles defined, but it is possible to render it with the application theme and styles by defining a controller mapping with <match>type:'portal:fragment'</match> (See Controller Mappings).

 Custom Content Types

Custom Content Types

Custom Content Types can be created using Java or simple xml files - and deployed through applications.

When using xml, each content type must have a separate folder in the application resource structure.
i.e. site/content-types/<my-content-type-name>.

Each folder must then hold a file with the name of the content type and .xml extension (e.g. my-content-type-name.xml).

This is the basic structure of a content-type.xml file:

<content-type>
 <display-name i18n="types.choices.displayName">Choices</display-name>
 <content-display-name-script>$('firstName', ' ', 'lastName')</content-display-name-script>
 <super-type>base:structured</super-type>
 <is-abstract>false</is-abstract>
 <is-final>true</is-final>
 <allow-child-content>true</allow-child-content>
 <form>
 <input name="choice1" type="ComboBox">
 <label>Choice1</label>
 <occurrences minimum="0" maximum="1"/>
 <config>
 ...
 </config>
 </input>
 </form>
</content-type>

	display-name

	The display name of the content type is used throughout the admin console
to recognize it. But the technical name is the name of the folder the file is placed in.

	display-name@i18n

	The key to look up the display-name text in the localization bundles. (See also Localization of Schemas)

	super-type

	Many properties are inherited from the super-type. All custom content types
must either inherit base:structured directly or indirectly. The icon and the general
form to edit the fields of the content are important properties that are inherited from base:structured.

	is-abstract

	If a content type is abstract, no content of this type may be instantiated. It may still be used as
a super type for other content types.

	is-final

	Final content types may not be used as super types of other content types.

	allow-child-content

	Default is true, which allows nodes to be added in the tree below a content of this type.

	form

	Fields in the content type are defined as input elements which are placed inside
the form element. All legal input types are described below.

	input

	name and type are mandatory attributes of the input element.
label and occurrences are mandatory child elements.

	config

	Some input types have a complex configuration that is defined inside a
config element. It is mandatory for the content types that need it.

	content-display-name-script

	The name of a content may be generated by JavaScript from the values in the form, including values that are added through a mixin.

Tip

A content type may optionally have its own specific icon. The icon can be assigned to the content type by adding a PNG or SVG file with
the same name, in the content type folder, e.g. site/content-types/my-content-type-name/my-content-type-name.svg

 Response Filters

Response Filters

Note: Response filters are deprecated. In 7.0, they are replaced by Response Processors [https://developer.enonic.com/docs/xp/stable/cms/response-processors]

Response filters are scripts, similar to controllers, that allow customizing or adapting the response of page controllers.
Notice that this actually applies to pages from any application added to the site.

The page and component controllers are processed during rendering and then the response filters will be executed afterward.

To add a response filter, create a folder site/filters in the application and place a [filter-name].js file within this folder.
A filter must export a method named responseFilter.
This method receives the request and response objects as parameters and must return a response object (see HTTP Controllers).

Here is an example of a [filter].js file:

site/filters/trackingScript.js

exports.responseFilter = function (req, res) {
 var trackingScript = '<script src="http://some.site/js/tracking.js"></script>';

 var bodyEnd = res.pageContributions.bodyEnd;
 if (!bodyEnd) {
 res.pageContributions.bodyEnd = [];
 }
 if (typeof bodyEnd == 'string') {
 res.pageContributions.bodyEnd = [bodyEnd];
 }
 res.pageContributions.bodyEnd.push(trackingScript);

 if (req.params.debug === 'true') {
 res.applyFilters = false; // skip other filters
 }

 return res;
};

In addition, the filter must be declared in the site.xml descriptor by adding a <response-filter> element within the <filters> element, with @name and @order attributes.

site/site.xml

<?xml version="1.0" encoding="UTF-8"?>
<site>
 <filters>
 <response-filter name="trackingScript" order="10"/>
 </filters>
 <x-data mixin="html-meta"/>
 <config>
 <input type="ContentSelector" name="profiles">
 <label>Profiles folder</label>
 <occurrences minimum="0" maximum="1"/>
 <config>
 <relationshipType>system:reference</relationshipType>
 <allowContentType>base:folder</allowContentType>
 </config>
 </input>
 </config>
</site>

Response filters may change any of the values of the response object, that includes: HTTP status code, response body, HTTP headers, cookies and page contributions.

It is also possible to return the response object received without any changes.

Execution order

An application can contain multiple filters declared in site.xml. Multiple applications can be selected for a Site.
When a page is rendered, all the filters declared in all the applications selected for the site will be executed.
The order in which the filters are executed depends on the filters order (as defined in site.xml) and the order of the applications configured on the Site.

The filters with a lower order will be executed first.
In case there are several filters with the same order number,
the position of the applications (as configured for a Site in Content Studio) determines the order of execution.

The filter-chain execution can be interrupted from either a controller or a filter by setting the applyFilters field in the response.
When this value is set to false all of the remaining filters will be skipped. (See HTTP Response).

 Controller Mappings

Controller Mappings

Controller mappings allow the creation of HTTP endpoints that are bound to a combination of a URL pattern and/or content property.

The mappings can be defined in the site.xml file (see Site Descriptors).

<site>

 <mappings>
 <mapping controller="/site/foobar/api.js" order="10">
 <!-- URL relative to site path, e.g.: [site-path]/api/v42/action -->
 <pattern>/api/v\d+/.*</pattern>
 </mapping>

 <!-- handle fragment content-type -->
 <mapping controller="/site/pages/default/default.js">
 <match>type:'portal:fragment'</match>
 </mapping>
 </mappings>

</site>

Multiple mappings can be set for a site.

Each controller mapping has the following properties:

	Controller: application path to the JavaScript controller that will handle the request. This attribute is required.

	Content match: matching condition to evaluate on the content in the requested path. This element is optional.

	URL pattern: regular expression to match against the request URL. This element is optional.

	Order: determines which controller will be executed in case there is more than one that matches. The mapping with lowest order value will be executed. Default is 50.

Controller mappings can be used for rendering fragments, i.e. contents of type portal:fragment, with custom styles and layout.
That way they will be consistent with the other page components in the application (see Portal content types).
This is useful for editing fragments from Page Editor in Content Studio.

Controller

The controller is specified with the controller attribute in a <mapping> element.
A controller handles requests in the same way a Page or a Part controller does.
The controller is a JavaScript file located in the application.

Unlike page and part controllers, a mapping controller is not required to be placed in a specific directory.
In fact, an existing page or service controller can also be used as the controller for a mapping.

The controller must export a method for each type of HTTP request that should be handled.
The handle method receives the request object as a parameter and returns the response object (see HTTP Controllers).

Example: <mapping controller="/site/controller/foo.js">

Content match

The <match> element specifies a condition related to the content corresponding with the requested URL path.

The condition takes the form of a property path followed by a semicolon, and then an expected value.

The property path can be one of the content properties (_id, _name, _path, type, displayName, hasChildren, language, valid) or a custom property in the data or x part.

Examples:

<match>type:'portal:fragment'</match>

<match>_path:'/features/.*'</match>

<match>data.employee.type:'developer'</match>

<match>data.product.category:42</match>

<match>x.com-enonic-myapp.menuItem.show:true</match>

The expected value can be either a regular expression to match the property value, or simply a string, number or boolean (true | false).

URL pattern

The <pattern> element specifies a regular expression to be matched against the request URL.
The part of the URL that is taken into account for the matching is the path relative to the site where the application is configured.
For example, if a site has a content path /mysite, then the pattern <pattern>/api/.*</pattern> will match with requests with URL ending in /mysite/api/.*

If the pattern contains the question mark ? character, the URL to match will also include query parameters. The query parameters will be normalized so they are always in alphabetical order.

For example the pattern <pattern>/api\?category=foo&key=\d+</pattern> will match with both:

/api?category=foo&key=123 and also with /api?key=123&category=foo

Note than in the previous example the question mark character ? is escaped with a backslash because the question mark is a quantifier in regular expressions.
And also the ampersand character & needs to be XML-escaped because the pattern string is in an XML. Another alternative to XML-escape is to wrap the string in a CDATA block, as in the example below.

The protocol, host and port are not involved in the matching.

The pattern element may also contain an invert attribute to indicate that the result of evaluating the regular expression should be negated: <pattern invert="true">

The pattern string must be a valid Java regular expression [https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html].

Examples:

<pattern>/api/.*\.json</pattern>

<pattern>/.*</pattern>

<pattern><![CDATA[/endpoint\?bar=\d+&foo=.*]]></pattern>

<pattern>/endpoint\?bar=\d+&foo=.*</pattern>

<pattern invert="true">/section/.*</pattern>

 Page

Page

A page component is the most basic building block of a site. Each page component must have a JavaScript controller file
and optionally an XML descriptor and an HTML view file. These files can define regions in the page where parts and layouts may be
added, or they can define a simple page without any compositions. Page components can be added to content individually
through the Content Studio interface or they can be used to create page templates that automatically render supported content types.

Any number of page templates can be created from a single page component. Thanks to the magic of page templates, even very large
sites will typically have very few page components–perhaps one for all the HTML pages and one for RSS pages.

Pages should be placed in the folder site/pages/[page-name]

Descriptor

The page descriptor is an XML file that is used to define regions and custom input fields for page configuration.
If a page does not require regions or configuration options then the descriptor may be omitted.

The file must be named [page-name].xml. For example, if a page component is named “default” then the file must reside at
site/pages/default/default.xml.

<page>
 <display-name>My first page</display-name>
 <config>
 <!-- input fields... -->
 </config>
 <regions>
 <region name="top"/>
 <region name="bottom"/>
 </regions>
</page>

	display-name

	A simple human readable display name.

	display-name@i18n

	The key to look up the display-name text in the localization bundles. Optional. (See also Localization of Schemas)

	config

	The config element is where input fields are defined for configurable data that
may be used on the page.

	regions

	This is where regions are defined. Various component parts can be dragged and dropped into
regions on the page.

Controller

A page controller handles requests to the page. The controller is a required file written in JavaScript and must be
named [page-name].js. A controller exports a method for each type of HTTP request that should be handled.
The handle method has the request object as a parameter and returns the response object (see HTTP Controllers).

// Handles a GET request
exports.get = function(req) {}

// Handles a POST request
exports.post = function(req) {}

Here’s a simple controller that acts on the GET request method.

exports.get = function(req) {

 return {
 body: '<html><head></head><body><h1>My first page</h1></body></html>',
 contentType: 'text/html'
 };

};

Render-view

If you feel like concatenating strings to create an entire web page is a
little too much hassle, Enonic XP also supports views. A view is rendered
using a rendering engine; we currently support XSLT, Mustache and Thymeleaf
rendering engines. This example will use Thymeleaf.

To make a view, create a file my-first-page.html in the view folder.

<!DOCTYPE html>
<html>
 <head>
 </head>
 <body>
 <h1>My first page, with a view!</h1>
 </body>
</html>

In our [page-name].js file, we will need to parse the view to a string for
output. Here is where the Thymeleaf engine comes in. Using the Thymeleaf
rendering engine is easy; here is how we do it.

var thymeleaf = require('/lib/xp/thymeleaf');

exports.get = function(req) {

 // Resolve the view
 var view = resolve('/site/view/my-first-page.html');

 // Define the model
 var model = {
 name: "John Doe"
 };

 // Render a thymeleaf template
 var body = thymeleaf.render(view, model);

 // Return the result
 return {
 body: body,
 contentType: 'text/html'
 };

};

Unlike controllers and descriptors, view files can reside anywhere in your project
and have any valid file name. This allows for code reuse as
multiple page components can share the same view. If the view file is in the same
folder as the page controller then it can be resolved with only the file name
resolve('file-name.html'). Otherwise, the full path should be used, starting
with a ‘/’ as in the example above.

Dynamic-content

We can send dynamic content to the view from the controller via the model
parameter of the render function. We then need to use the rendering engine
specific syntax to render it. The controller file above passed a variable
called name and here is how to extract its value in the view using
Thymeleaf syntax.

<!DOCTYPE html>
<html>
 <head>
 </head>
 <body>
 <h1>My first page, with a view!</h1>
 <h2>Hello World</h2>
 </body>
</html>

More on how to use Thymeleaf can be found in
the official Thymeleaf documentation [https://www.thymeleaf.org/documentation.html].

Regions

To be able to add components like images, component parts, or text to our page via the Page Editor drag and drop
interface, we need to create at least one region. Regions can be declared in the page descriptor.
Each region will be referenced by name.

<page>
 <display-name>My first page</display-name>
 <config />
 <regions>
 <region name="main"/>
 </regions>
</page>

You will also need to handle regions in the controller.

var portal = require('/lib/xp/portal');

// Get the current content. It holds the context of the current execution
// session, including information about regions in the page.
var content = portal.getContent();

// Include info about the region of the current content in the parameters
// list for the rendering.
var mainRegion = content.page.regions["main"];

// Extend the model from previous example
var model = {
 name: "Michael",
 mainRegion: mainRegion
};

To make the Page Editor understand that an element is a region, it needs an attribute
called data-portal-region with value being name of the region.

<!DOCTYPE html>
<html>
 <head>
 </head>
 <body>
 <h1>My first page, with a view!</h1>
 <h2>Hello World</h2>
 <div data-portal-region="main">
 <div data-th-each="component : ${mainRegion.components}" data-th-remove="tag">
 <div data-portal-component="${component.path}" data-th-remove="tag" />
 </div>
 </div>
 </body>
</html>

We can now use the Page Editor drag and drop interface to drag components into
our page.

 Part

Part

A part is a building block that can be placed in a region on a page or layout. As
with pages, each part is composed of a JavaScript controller, an XML descriptor and an HTML view.

The part descriptor and controller files must be placed in the folder site/parts/[part-name]

Descriptor

The part descriptor is where input fields are defined for custom configuration of the part. The descriptor is not required if the part
does not need any custom configuration. Parts cannot contain regions.

When used, the descriptor file must have the same name as the part folder that contains it site/parts/[part-name]/[part-name].xml:

<part>
 <display-name>My favorite things</display-name>
 <config>
 <field-set name="things">
 <label>Things</label>
 <items>
 <input type="TextLine" name="thing">
 <label>Thing</label>
 <occurrences minimum="0" maximum="5"/>
 </input>
 </items>
 </field-set>
 </config>
</part>

Controller

To drive this part, we will also need a controller. The controller typically uses library functions to get
content and/or configurations and prepare data which it passes to the view file for dynamic rendering.

site/parts/[part-name]/[part-name].js

var portal = require('/lib/xp/portal'); // Import the portal functions
var thymeleaf = require('/lib/xp/thymeleaf'); // Import the thymeleaf render function

// Handle GET requests
exports.get = function(req) {

 // Find the current component from request
 var component = portal.getComponent();

 // Find a config variable for the component
 var things = component.config["thing"] || [];

 // Define the model
 var model = {
 component: component,
 things: things
 };

 // Resolve the view
 var view = resolve('/site/view/my-favorite-things.html');

 // Render a thymeleaf template
 var body = thymeleaf.render(view, model);

 // Return the result
 return {
 body: body,
 contentType: 'text/html'
 };

};

View

A part view defines the markup for the part component.
The things parameter is basically just JSON data passed from the
controller and we can iterate over it easily in Thymeleaf and print its values.

<section>
 <h2>A list of my favorite things</h2>
 <ul class="item" data-th-each="thing : ${things}">
 <li data-th-text="${thing}">A thing will appear here.

</section>

The part can now be added to the page via drag and drop. You will be able to configure the part in the context window
in live-edit.

Important

The HTML generated for the part view must have a single root element.

 Layout

Layout

Layouts are used in conjunction with regions to organize the structure of the various component parts that will be placed on the page
via Page Editor drag and drop. Layouts can be dropped into the page regions and then parts can be dragged into the
layout. This allows multiple layouts (two-column, three-column, etc.) on the same page and web editors can change things
around without touching any code. Making a layout is similar to making pages and part
components. Layouts cannot be nested.

Layout contains - like pages and parts - a descriptor, a controller and a view, and should be
placed in the folder site/layouts/[layout-name]

Descriptor

The layout descriptor defines regions within the layout where parts can be placed with the Page Editor.
The file must be named [layout-name].xml.

<layout>
 <display-name>70/30</display-name>
 <config/>
 <regions>
 <region name="left"/>
 <region name="right"/>
 </regions>
</layout>

Controller

The layout controller composes the view of the layout based on HTTP requests.
The file must be named [layout-name].js.

var portal = require('/lib/xp/portal');
var thymeleaf = require('/lib/xp/thymeleaf');

exports.get = function(req) {

 // Find the current component.
 var component = portal.getComponent();

 // Resolve the view
 var view = resolve('./layout-70-30.html');

 // Define the model
 var model = {
 leftRegion: component.regions["left"],
 rightRegion: component.regions["right"]
 };

 // Render a thymeleaf template
 var body = thymeleaf.render(view, model);

 // Return the result
 return {
 body: body,
 contentType: 'text/html'
 };

};

View

A layout view defines the markup for the layout component. The sample view
below is created in Thymeleaf, but it could be created in any view engine
that is supported.

<div class="row">
 <div data-portal-region="left" class="col-sm-8">
 <div data-th-each="component : ${leftRegion.components}" data-th-remove="tag">
 <div data-portal-component="${component.path}" data-th-remove="tag" />
 </div>
 </div>

 <div data-portal-region="right" class="col-sm-4" >
 <div data-th-each="component : ${rightRegion.components}" data-th-remove="tag">
 <div data-portal-component="${component.path}" data-th-remove="tag" />
 </div>
 </div>
</div>

Important

The HTML generated for the layout view must have a single root element.

Styling

For a layout to have any meaning, some styling must be applied to the view. The desired CSS should
be placed in the /assets folder of the application, and included in the page where the layout should
be supported. For example, the view my-first-page.html supports Bootstrap layouts:

<head>
 <meta charset="utf-8"/>
 <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
 <link data-th-href="${portal.assetUrl({'_path=css/bootstrap.min.css'})}" href="../assets/css/bootstrap.min.css" rel="stylesheet"/>
</head>

 Fragment

Fragment

Fragments are reusable page components. A fragment can be created from an instance of one of the other four page component types: Part, Layout, Text or Image.

When created, the fragment will be stored in a content of type portal:fragment, including the component’s config. This content can then be edited independent of where it is included.

A fragment component can be inserted in any other page or layout from the same site with the Page Editor. A fragment component acts as a placeholder for the referenced fragment content.
At the moment of rendering the page, the fragment is replaced by the specific component from which the fragment was created.

Unlike pages, parts, and layouts, fragment components do not require creating a descriptor in the application, since they are only placeholders for other components.

View

Content of type portal:fragment can be edited in the Page Editor as if it was a regular page.
The components will be rendered inside a plain empty HTML page by default.
But it is also possible to create a custom renderer with the application styles and layout.

To create a custom renderer for the portal:fragment content, configure a controller mapping in site.xml:

<site>

 <mappings>
 <mapping controller="/site/pages/default/default.js">
 <match>type:'portal:fragment'</match>
 </mapping>
 </mappings>

</site>

This mapping indicates that it will handle content of type portal:fragment.

The mapping points to a controller that will handle the rendering. The controller is just like any other page or part controller (See HTTP Controllers and Controller Mappings for details).

The custom view that will render portal:fragment content is like any other Page view, with one difference.
A page has regions, but a fragment has only a component without any regions defined. To specify the component to be rendered we need to specify data-portal-component="fragment" instead of the component path.

<!DOCTYPE html>
<html>
<head>
 <link rel="stylesheet" href="myStyles.css" type="text/css"/>
</head>
<body>
 <h1>Page header</h1>

 <!-- render Fragment component -->
 <div data-portal-component="fragment" data-th-remove="tag"/>

 <footer>Copyright © Enonic AS</footer>
</body>
</html>

 Page Contributions

Page Contributions

Page contributions lets your components (page, part, layout) or macro contribute to the page’s resulting HTML before it’s being sent back to the user. Normally, the HTML being sent from any page is only possible to change from the page itself. Contributions can add any HTML (like CSS style, JavaScript, or any other custom HTML) to specific segments of the resulting HTML code.

A few ways to use page contributions are:

	Let a Google Maps part use page contributions to add required JavaScript to the page’s <head> section.

	Using a part that requires custom styling add the needed CSS to the <head> of that page.

	Adding a specific layout to a page will add a custom JavaScript tracker to the end of the <body> of that page.

	If parts collecting form data is added to a page, let them add a <p> to the beginning of the <body> explaining what the data is used for.

Added code from page contributions will be aggregated from all controllers before generating the final HTML. Any duplicate page contributions will be removed, making sure the HTML is not bloated.

To use page contributions, your component needs to return a pageContributions property in the HTTP Response of your component, meaning in the returned JavaScript object (where you usually put the body property). A full return might look like this (as always, the return goes at the end of your component’s controller):

return {
 body: '<p>Some code</p>',
 pageContributions: {
 headEnd: [
 "<script>My script</script>"
]
 }
};

Changing the headEnd to one of the other possible positions will change where the code you contributed is added in the page’s HTML before returning it to the end-user.

Note: Be sure to return your pageContributions data in the form of an array to make it easier to work with, and make sure any existing contributions are not overwritten.

There are four positions where contributed content can be inserted in the page:

	headBegin: After the <head> opening tag.

	headEnd: Before the </head> closing tag.

	bodyBegin: After the <body> opening tag.

	bodyEnd: Before the </body> closing tag.

A simple usage example:

return {
 "body": body,
 "pageContributions": {
 "headEnd": [
 "<some script />"
]
 }
};

A more full usage example:

return {
 "body": "<html>...</html>",
 "pageContributions": {
 "headEnd": "value",
 "bodyEnd": [
 "value1", "value2"
]
 }
};

Some remarks:

	All the pageContributions fields are optional. The pageContributions object is optional and each property inside is optional.

	The value for a contribution can be a string or an array of strings.

	The values are unique within an injection point (or tag position). If the same string is contributed from different parts, or from the same part that
exists multiple times in the page, the value will only be inserted once. E.g. if two parts include a script for jQuery, it will be included once.
But if one part is contributing to headBegin and another one contributes the same value to bodyEnd, then it will be inserted in both places.

	If the tag does not exist in the rendered page, the value is ignored. I.e. if there is no <head> tag, the contributions to headBegin and
headEnd will just be ignored.

	The contributions are inserted in a post-processing step during rendering. That means that there will not be any processing of
Thymeleaf tags or similar. Contributions are treated as plain text.

 Error Handling

Error Handling

Enonic XP enables you to displaying nice custom error pages for your site.

Create the following folder in your project src/main/resources/site/error and place an error.js within it.
The file follows the same pattern as controllers and filters. If certain methods are implemented and exported, they will be executed in case of errors during rendering.

If an error occurs during processing - the system looks for an error.js script within the relevant application - sites specifically it will go through all applications added to the site (in order).

If an error.js script is found, it looks for an exported method named handleXXX where XXX is the HTTP status-code of the error.
If not found, it will try to find the generic error method handleError instead.

Here is an example of an error.js file:

var thymeleaf = require('/lib/xp/thymeleaf');

var view404 = resolve('page-not-found.html');
var viewGeneric = resolve('error.html');

exports.handle404 = function (err) {
 var body = thymeleaf.render(view404, {});
 return {
 contentType: 'text/html',
 body: body
 }
};

exports.handleError = function (err) {
 var debugMode = err.request.params.debug === 'true';
 if (debugMode && err.request.mode === 'preview') {
 return;
 }

 var params = {
 errorCode: err.status
 };
 var body = thymeleaf.render(viewGeneric, params);

 return {
 contentType: 'text/html',
 body: body
 }
};

The input parameter for the handleXXX and handleError functions is an error JSON object containing the status code, error message, Java Exception object, and the original request object:

{
 "status": 404,
 "message": "Some error message",
 "exception": "<the actual exception object in Java>",
 "request": "<original request JSON>"
}

The expected returned value for the function is a response object (see HTTP Controllers).

The error processing logic will try every handle-function in application order until it can get a result (not undefined or null).
This means that an error function can decide to not handle a specific error and let the next one deal with it.
If no result is returned by any function, it will be eventually handled by the internal error page.

Also note that if an error occurs inside the custom-error code, then the internal error page will be rendered.

 Macros

Macros

Warning

Macros are experimental.

Macros are instructions that allow adding extra functionality or include dynamic content in the Html Editor.

The Html Editor is used when editing HtmlArea input fields, or while editing a Text component in Page Editor.

There are two built-in macros included in XP. But its real power comes from macros provided by applications.
When an application that contains macros is added to a site, they will be available for any HtmlArea or Text component inside the site.

Macro instruction

A macro instruction is similar to an HTML or XML tag but using square brackets instead of angle brackets.
It has a name, a set of attributes, and optionally a body.

[macroname attrib1="value1" attrib2="value2"] body [/macroname]
[macroname attrib1="value1" attrib2="value2"/]

Macro instructions can be added anywhere in an HTML page, usually inside a content’s HtmlArea field.

During the rendering of the page the macros are resolved and executed. Then the result from executing the macro replaces the instruction text.
In addition, a macro can also add styles or scripts to the page, by setting Page Contributions in its response.

A user can add macro instructions by typing the square bracket tags, as the examples above.
But more frequently it will click on the Insert macro button and select one of the macros available.

Descriptor

A macro descriptor is an xml file that allows assigning a user-friendly name, and a description to the macro.
It also has a configuration to define the types and names of the macro parameters.

	display-name

	A simple human readable display name.

	display-name@i18n

	The key to look up the display-name text in the localization bundles. Optional. (See also Localization of Schemas)

	description

	A description to show in the Insert macro dialog in Content Studio.

	description@i18n

	The key to look up the description text in the localization bundles. Optional. (See also Localization of Schemas)

	config

	The config element is a form where each input element corresponds to a macro parameter. The macro body is represented with an input named "body".

Note

The config form does not support nested elements, so Item Sets are not allowed in the macro config form.
Also the HtmlArea input type is not allowed in the config form, since it may contain macros itself.

Its path follows the pattern site/macros/<macroName>/<macroName>.xml

<macro>
 <display-name i18n="a-macro.display-name">Current user</display-name>
 <description i18n="a-macro.description">Shows currently logged user</description>

 <form>
 <input name="defaultText" type="TextLine">
 <label>Text to show if no user logged in</label>
 </input>
 </form>
</macro>

Tip

The macro texts (display-name, description, label and help-text from config input types) can be provided in multiple languages. See Localization of Schemas for details.

Although not strictly required, it is recommended to create a descriptor, as it provides the required details for adding macros through the UI in Content Studio.

Controller

The functionality of a macro is implemented in a JavaScript controller, inside an application.

Its path follows the pattern site/macros/<macroName>/<macroName>.js

A macro controller must export a single macro function that takes a context parameter and returns a response object (see HTTP Response).

The context parameter is a Javascript object with the following properties:

	name

	a string containing the macro name.

	body

	a string containing the body of the macro instruction.

	params

	an object with key-value pairs containing the macro parameters. The values are the strings from the macro instruction attributes.

	document

	a string with the HTML document that contains the current macro. The document contains the raw source HTML, before any macro instructions have been executed,
and before image or content URLs have been resolved. The document is only an input parameter to the macro, it cannot be modified.

	request

	the request object.

// Example usage: [currentUser defaultText="Anonymous"/]
var authLib = require('/lib/xp/auth');
var portalLib = require('/lib/xp/portal');

exports.macro = function (context) {
 var defaultText = context.params.defaultText;

 var user = authLib.getUser();
 var body = '' + (user ? user.displayName : defaultText) + '';

 var doc = context.document; // HTML document containing the current macro
 var lineCount = doc.split(/\r\n|\r|\n/).length;
 if (lineCount <= 1) {
 return {
 body: ''
 }
 }

 return {
 body: body,
 pageContributions: {
 headEnd: [
 '<link href="' + portalLib.assetUrl({path: 'css/current-user.css'}) + '"/>'
]
 }
 }
};

Note that only the body and pageContributions fields of the response are relevant for macro controllers.

Tip

A macro controller can also use libraries, like any other JavaScript controller.

Built-in macros

There are currently 2 built-in macros that are included in XP and available for any site:

	disable

	The contents (body) of this macro will not be evaluated as macros. That allows rendering another macro instruction as text without executing it.
It is useful for documenting macros, for example. This macro has no parameters.

	embed

	It allows embedding an <iframe> element in an HTML area. This is a generic way for embedding content from an external source (e.g. YouTube videos).
This macro has no parameters.

Examples:

[disable]Example of macro instruction: [myMacro param1="value1"/][/disable]

[embed]<iframe src="https://www.youtube.com/embed/cFfxuWUgcvI" allowfullscreen></iframe>[/embed]

Note

A macro may optionally have its own specific icon. The icon can be assigned to the macro by adding a PNG or SVG file with
the same name, in the macro folder, e.g. site/macros/myMacro/myMacro.svg

 Localization

Localization

Enonic XP provides a standard approach to code localizations, simply by adding resource bundles to your applications, and actively using the localize
functions in “controllers” and “views”. Detailed documentation for this function is found here: localize.

To see how this is used in a controller, see lib-i18n in Javascript Libraries.

The labels and texts used in content types, input types and other schemas can also be localized. See how to localize them in Localization of Schemas.

	Resource Bundle

	Resolving locale

	Finding best match

	Localization of Schemas

 Resource Bundle

Resource Bundle

The resource-bundle consists of a collection of files containing the phrases to be used for localization. The
resource-bundle should be placed in a folder named i18n.

Each locale to be localized should be represented by a single resource, e.g this could be a structure for an app supporting

	‘English’ (default)

	‘English US’

	‘Norwegian’

	‘Norwegian Nynorsk’

i18n/phrases.properties
i18n/phrases_en_US.properties
i18n/phrases_no.properties
i18n/phrases_no_NN.properties

The filename of a resource determines what locale it represents:

phrases[_languagecode][_countrycode][_variant].properties

Caution

The filename should be in lowercase.

The languagecode is a valid ISO Language Code. These are the two-letter codes as
defined by ISO-639. You can find a full list of these codes at a number of sites, such as: http://www.loc.gov/standards/iso639-2/php/English_list.php.

The countrycode is a valid ISO Country Code. These are the two-letter codes as defined by ISO-3166. You can find a full list of
these codes at a number of sites, such as: http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html

A sample phrases.properties file would look like this:

user.greeting = Hello, {0}!
complex_message = Good to see you. How are you doing?
message_url = http://localhost:8080/{0}
message_multi_placeholder = My name is {0} and I live in {1}
message_placeholder = Hello, my name is {0}.
med_\u00e6_\u00f8_\u00e5 = This contains the norwegian characters æ, ø and å

Placeholders

Placeholders are marked with {<number>}. The given number corresponds with the function argument named values and
the placement of the parameter. See above for an example.

Encoding and special characters

The encoding of localization resource bundle files must be ISO-8859-1, also known as Latin-1. All non-Latin-1 characters
in property-keys must be entered using Unicode escape characters, e.g u00E6 for the Norwegian letter ‘æ’. The values may
also be encoded, but this is not required.

 Resolving locale

Resolving locale

A locale is composed of language, country and variant. Language is required, country and variant are optional.

The string-representation of a locale is:

LA[_CO][_VA]

where

	LA = two letter language-code

	CO = two letter country-code

	VA = two letter variant-code.

The variant argument is a vendor or browser-specific code. For example; WIN for Windows, MAC for Macintosh, and POSIX
for POSIX. Where there are two variants, separate them with an underscore, and put the most important one first. For
example, a Traditional Spanish collation might construct a locale with parameters for language, country and variant as:
“es”, “ES”, “Traditional_WIN”.

When a localize function is called upon, a locale is resolved to decide which localization to use.

The following is considered, in this order:

	Given as argument to function

	Language specified on site

 Finding best match

Finding best match

When localizing a keyword, a best match pattern will be applied to the resource bundle to select the localized phrase.
If the locale for a request is resolved to “en-US”, these files will be considered in given order:

	phrases_en_US.properties

	phrases_en.properties

	phrases.properties

If the locale for a request would have been resolved to en, the phrases_en_US.properties file would not have been
considered when localizing a keyword.

If the locale does not match a specific file, the default phrases.properties will be used.

If no matching localization key is found in any of the files in a bundle, a default NOT_TRANSLATED will be displayed.

 Localization of Schemas

Localization of Schemas

The labels and texts used in XP schemas can be localized so that they are displayed in the preferred language according to the user’s browser settings.

The schema fields that support localization may have an optional i18n="key" attribute in the XML schema descriptor.
This i18n attribute will contain a key string that refers to the translated texts in the i18n/phrases.properties bundle files.

The i18n attributes are always optional. If the i18n attribute is not specified, the value of the XML element will be used.

Example of localized Content Type

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<content-type>
 <display-name i18n="person.display-name">Person</display-name>
 <super-type>base:structured</super-type>
 <form>
 <input type="TextLine" name="name">
 <label i18n="person.name.label">Name</label>
 <occurrences minimum="1" maximum="1"/>
 </input>
 <input type="TextLine" name="age">
 <label i18n="person.age.label">Age</label>
 <occurrences minimum="1" maximum="1"/>
 </input>
 <input type="imageSelector" name="photo">
 <label i18n="person.photo.label">Photo</label>
 <help-text i18n="person.photo.help-text">Passport photo</help-text>
 <occurrences minimum="0" maximum="1"/>
 </input>
 </form>
</content-type>

Note

The localization of schemas applies to the admin tool apps included in XP: Home, Content Studio, Applications and Users.

Supported Fields

The following schemas and fields support the i18n attribute for localization:

	Input type: label, help-text

	Item set: label, help-text

	Field set: label

	Option set: label, help-text

	Content Type: displayName, description

	Mixin: displayName, description, input types

	Page descriptor: displayName, input types in config

	Part descriptor: displayName, input types in config

	Layout descriptor: displayName, input types in config

	Admin Tool descriptor: displayName, description

	Macro: displayName, description, input types in config

Translations

The translated texts for each of the i18n keys should be placed in the corresponding phrases.properties file, in the same application where the schema is defined.

Steps to add the translations for a schema:

	Add or edit one file per language supported:

src/main/resources/i18n/phrases_<language-code>.properties

Example files to support English and Norwegian

src/main/resources/i18n/phrases.properties
src/main/resources/i18n/phrases_en.properties
src/main/resources/i18n/phrases_no.properties

	Add the i18n keys from the schema in each of the phrases.properties files. Each line should have the key, an equals = sign, and the text in the specific language.

phrases_en.properties

person.display-name=Person
person.name.label=Name
person.age.label=Age
person.photo.label=Photo
person.photo.help-text=Passport photo

phrases_no.properties

 person.display-name=Person
 person.name.label=Navn
 person.age.label=Alder
 person.photo.label=Bilde
 person.photo.help-text=Passbilde

	It is also recommended to add a phrases.properties file (without language suffix) that will be used as default if a translation for the browser language cannot be found.

	Build and deploy the application. The texts in the schema will appear depending on the language configured in the browser.

See also Resource Bundle.

 Storage

Storage

At the core of Enonic XP lies a distributed data storage with strong search-capabilities.

	Overview

	Repository

	Branches

	Nodes

	Property

	Value Types

	System Properties

	Blobstore

 Overview

Overview

Years of experience has taught us that traditional approaches to data storage (read SQL) are unsuited for the common requirements of modern cloud-based applications and platforms.
A key goal of Enonic XP was to deliver a complete stack - virtually eliminating complex dependencies to 3rd party applications, and minimize requirements to infrastructure.

With the growing popularity of various so-called NoSQL (Not Only SQL) solutions, we evaluated many different technologies and found great inspiration in the following:

	Git

	
	(+) Cherry picking

	(+) Branching

	(+) Pull requests

	(-) Performance search

	(-) Granularity of access (all or nothing)

	Java Content Repository

	
	(+) Hierarchy

	(+) Granularity

	(+) Feature set

	(+) Unstructured

	(-) Performance

	(-) Complexity (not document oriented)

	(-) Attached data model

	(-) Requires additional storage backend

	Elasticsearch

	
	(+) Document oriented

	(+) Scalability

	(+) Performance

	(+) Search

	(+) Aggregations

	(-) Search engine, not a database

	(-) No blob support

	(-) No security

	(-) Creates schemas

We were unable to find any single solution that was sufficiently simple and included our
desired feature set - so we decided to build our own; the Enonic Content Repository.

The Enonic Content Repository is a place where you can store data,
or more specific, Nodes.

It is built on top of Elasticsearch and exposes many of it’s capabilities in search and aggregations
and scalability - but in addition, provides the following capabilities:

	Hierarchical storage model

	Versioning support

	Complete Access Control and security model

	Blob support - using shared filesystem and append-only approach

	Repository and Branch concepts for content staging

	Schema-less - Add any property you like, at any time

	Rich set of value types (Binary, Reference)

	SQL-like query syntax

The Enonic Content Repository itself contains one or more separate repositories based on the application need.
For instance, an application could demand a setup having three repositories - one for application data, one for users and one for logging:

[image: ../../_images/sub-repos.png]

 Repository

Repository

A repository is silo where nodes can be stored. Data stored in a repository will
typically belong to a common domain. Fetches and searches are by default executed against
a single repository, so it makes sense to keep data from different domains separated in different repositories.

When nodes are stored in the repository, two things happens:

	The node properties are stored in a Blobstore as a node-version.
A node-version is an entity representing the properties of the node, without name,
parent and other meta-data.

	The node is inserted into a Branches. The branch keeps track of a
tree-structure referring to node-versions.

Built-in repositories

Out of the box, Enonic XP ships with two built-in repositories:

	system-repo: The core repository. Here, users and groups, references to other repositories, installed application etc are stored.

	cms-repo : Content domain data, this is the data managed in the Content Studio app.

Managing repositories

Repositories (including Branches) can be managed in the Repository API. When creating a repository, separate storage- and search-indexes will be created, and references to these repositories stored in the system-repo.

 Branches

Branches

A branch is a set of data in a Repository. The data is organized hierarchically with path, unique in the branch.
This means that the fully qualified location of a data object in Enonic XP consists of:

	repo

	branch

	path

All repositories have a default branch called master. Any number of branches could be added to facilitate your data.
E.g; in the content-repository, used for managing content in the Content Studio, there are two branches:

	draft (data as seen in the Content Studio)

	master (the data served in the portal)

Synchronizing branches

Often, you want to manage the same data-entities in different versions in different branches, and synchronize the data between them.

In the content-api, this operation is called to “publish” the data, which synchronizes the data between two branches.
In the node-api, its also possible to get the diff between two repositories, and a push operation to push differences from one branch to another.
These operations will ensure that references and dependencies are maintained, e.g its not possible to push a child-node to a branch if the parent does not exist in the target branch, so the parent node will also be pushed to the target branch.

Example:

Consider the ‘Oslo’ and ‘Enonic’ nodes from earlier sections:

[image: ../../_images/nodes.png]
There will be two node-versions in the repository stored in the blobstore:

[image: ../../_images/node-versions.png]
A node-version is a representation of a node’s properties. A node-version has no knowledge of name, parent or other meta-data: just the properties of a node.
At the same time, the targeted branch (named ‘draft’ in this example) gets two entries:

[image: ../../_images/branch_initial.png]
The node-versions are now a part of a tree-structure, based on the node’s name and parent.
If we push the content of branch ‘draft’ to the default branch ‘master’, we end up with something like this:

[image: ../../_images/branch_push.png]
At the moment, there are two branches pointing to the same node-versions. This means that a single node version can exist in several branches with different structures.
Now, consider that the ‘oslo’ - node is updated and stored to the ‘draft’-branch, resulting in a new node-version with the same id and an updated pointer from the branch:

[image: ../../_images/branch_diff.png]
The two branches now point to different node-versions of the ‘oslo’ node.
Again, doing a push-operation from ‘draft’ to ‘master’ will result in both nodes pointing to the same node-versions:

[image: ../../_images/branch_push_2.png]

 Nodes

Nodes

A Node represents a single storable entity of data. It can be compared to a “row” in sql, or a “document” in document oriented storage models.
Nodes are, as mentioned in the previous section, stored in a repository.

Every node has:

	a name

	a parent-reference

	an id

	a timestamp

	a (possibly empty) set of Property key/value.

Consider two nodes - one node representing the city “Oslo” and another representing the company, “Enonic”:

[image: ../../_images/nodes.png]
The nodes have different properties. There is no schema to a node, so a node property
value with the same property-name can have different value-types across nodes.

 Property

Property

Properties represent a placement of data in a node - following the simple
key = value pattern. A property has a path. Elements in the path are separated by . (dot).
Every property has also a type. See the complete list of Value Types.

myProperty
data.myProperty
cars.brands.skoda

For a property to be able to hold other properties, it has to be of type Set.
In the above samples, data, cars and brands are properties of type Set.

Some characters are illegal in a property key. Here’s a list of illegal characters:

	_ is illegal as the first character, because it is a reserved prefix for System Properties.

	. is illegal as any character, since it is the path separator.

	[and] are also illegal as any character. These are used as array index indicators.

Here’s an example of some properties:

first-name = "Thomas"
cities = ["Oslo", "San Francisco"]
city.location = geoPoint('37.785146,-122.39758')
person.age = 39
person.birth-date = localDate("1975-17-10")

 Value Types

Value Types

At the core of the node domain are value types. Every property to be stored in a node must have a value type.
The value type enables the system to interpret and handle each piece of data specially - applying to both validation and indexing.

All value-types support arrays of values. All elements in an array must be of the same
value-type.

Below is a complete list of all supported value-types.

	String

	A character string.

	Index value-type

	String

	Example

	'myString'

	BinaryReference

	Reference to a binary object.

	Index value-type

	String

	Example

	'my-binary-ref'

	Boolean

	A value representing true or false.

	Index value-type

	String

	Example

	true

	Double

	Double-precision 64-bit IEEE 754 floating point.

	Index value-type

	Double

	Example

	11.5

	GeoPoint

	Represents a geographical point, given in latitude and longitude.

	Index value-type

	GeoPoint

	Example

	'59.9090442,10.7423389'

	Instant

	A single point on the time-line.

	Index value-type

	Instant

	Example

	2015-03-16T10:00:02Z

	LocalTime

	A time representation without timezone.

	Index value-type

	String

	Example

	10:00:03

	LocalDateTime

	A date-time representation without timezone.

	Index value-type

	String

	Example

	2015-03-16T10:00:02

	Long

	64-bit two’s complement integer.

	Index value-type

	Double

	Example

	1234

	Reference

	Holds a reference to other nodes in the same repository.

	Index value-type

	String

	Example

	'0b7f7720-6ab1-4a37-8edc-731b7e4f439e'

	Set

	A special value type that holds properties as it’s value, allowing
nested levels of properties, creating tree structures within a single node.

	Index value-type

	N/A

	XML

	Accepts a String containing valid XML.

	Index value-type

	String

	Example

	'<property>myPropertyValue</property>'

 System Properties

System Properties

To reduce complexity, we explicitly dropped the use of namespaces. Thus, in
order to separate system properties from user defined properties, we
reserved _ as a starting character for system properties.

Below are the system properties explained.

	_childOrder

	Default ordering of children when doing find children if no other order expression is given

	_id

	Holds the id of the node, typically generated automatically in the form of a UUID.

	_indexConfig

	Specification on how to index properties

	_manualOrderValue

	Numeric order value used for the builtin manual ordering

	_name

	Holds the name of the node. The name must be unique within its scope (all nodes with same parent).

	_nodeType

	Used to create collections for nodes in a repository.

	_parentPath

	Reference to parent node path.

	_path

	The path is resolved from the node name and parent path.

	_permissions_read

	The principals that have read access.

	_permissions_create

	The principals that have create access.

	_permissions_delete

	The principals that have delete access.

	_permissions_modify

	The principals that have modify access.

	_permissions_publish

	The principals that have publish access.

	_permissions_readpermissions

	The principals that have access to read the node permissions.

	_permissions_writepermissions

	The principals that have access to change the node permissions.

	_state

	Used for keeping state of a node in a branch.

	_timestamp

	The last change to the node version.

	_versionKey

	The id of the node version.

 Blobstore

Blobstore

The blobstore is a file system location defaulted to $XP_HOME/repo/blob. The blobstore
itself is split into one directory for nodes and one for binaries.

 Search

Search

This section explains how to find data in the Enonic Content Repository. For a system that deals with storing and
retrieving data, a rich search-API is paramount.

	Overview

	Indexing

	Indexed content properties

	Query Filters

	Query Functions

	Order Functions

	Aggregations

	Ordering results

	Querying date and time

	Querying paths

	Querying references

	Querying existing / missing values

 Overview

Overview

When searching in Enonic XP, you are searching for nodes, or content if working in the context of the CMS content API [http://repo.enonic.com/public/com/enonic/xp/docs/6.15.12/docs-6.15.12-libdoc.zip!/module-lib_xp_content.html].
This documentation is general and intended for the Storage, but except for some built-in
property-values and the addition of some convenience parameters in the content domain, everything is valid for both domains.

In general, the search-APIs deal with a number of basic parameters:

	start

	count

	query

	filter

	aggregations

Start & count

When searching, the result will contain a number of matching nodes. This number if given by the
provided count parameter in the query. The result will also contain a value indicating the total
number of hits for the search: total. The start parameter indicates from what position in the
result set we should start retrieving results.

Lets consider a search matching 1000 documents. Usually, one does not retrieve all these results at once,
but rather a subset of the result - and fetch the next subset of the result if necessary. This type of
data-retrieving is called paging.

Typically, one will decide the number of wanted results for each iteration, e.g 100:

	start = 0

	count = 100

Then, for the next iteration, we will start from the first result not retrieved in the first iteration:

	start = 100

	count = 100

The total return field can be used to create page-navigation for the search result, by dividing
the total hits by the page-size (count) to get the needed number of pages.

Query

The query-part of a search is where the constraints are defined. All nodes in
the repository will match when then query parameter is empty. The query is defined in the Query Language section.

The results matching the query constraint will be assigned a score. This is imperative for fulltext-type queries.
The score of a matching document depends on how the constraint is defined, e.g which fulltext-like function
is used. See the Query Functions section for details.

Filter & query-filter

A filter also applies constraints. The difference between a filter-constraint and a query-constraint,
is that the hits matching the filter are not scored. Scoring hits is a costly operation, and makes no sense
for typical filter constraints like “price > 10”, so it’s a good way of optimizing searches by appending
non-fulltext operations to the filter-constraint instead of the query-constraint.

There are also two different kinds of filters. A query-filter is a part of the query-constraint,
meaning that aggregations results are also affected by these constraints. A filter on the other hand, is not
considered in the aggregations calculations, meaning that applying a filter will not impact the aggregation result.

Aggregations

An aggregation is a function, or something that is executed, on a collection of search results.
The search-results are defined by the query and query-filter of the search request. See the
Aggregations section for details.

 Indexing

Indexing

When nodes are persisted, the node properties will automatically be indexed and available for queries. A value is indexed based on an ‘Index Instruction’. This instruction decides what value types a property value will be indexed into.

By default, values will be indexed by “type”, meaning that string-values will be indexed as ‘fulltext’, other as ‘string’ + value-type (e.g numeric and string for properties of type Double)

Index value-types

A single value can be indexed as several different types, based on the Index instructions and the type of value.

	string

	The string-representation of a value. All indexed values are indexed as string, this is the minimal base.

	numeric

	A double-representation of value.

	datetime

	A date-time representation of a value

	ngram

	nGram-indexed fields are available for search by using the nGram-function. An nGram-analyzed
field will index all substring values from 2 to 15 characters.

Consider this value of a property of type text-line:

"article"

This is split into the following tokens when analyzed:

'ar', 'art', 'arti', 'artic', 'articl', 'article'

For more information about how the nGram-function works, check out the nGram-function.

	analyzed

	Analyzed fields are available for search by using the fulltext-function.
An analyzed field will be split into tokens.

Consider this value of a property of type text-line:

"This article contains information test-driven development"

This is split into the following tokens when analyzed:

'this', 'article', 'contains', 'information', 'about', 'test', 'driven', 'development'

For more information about how the fulltext-function works, check out the fulltext-function.

	paths

	The path-elements (separated by default path-separator ‘/’) are indexed as tokens.

A value will only be indexed as the applicable types, e.g only numeric values will be stored with a numeric representation.

Note

Internally, the different value-types are indexed as e.g myValue._numeric, myValue._ngram, myValue._analyzed etc.

The different values are then used based on the context, e.g when using the ngram-query function, only values with the ._ngram-prefix will be queried, meaning that a value that is not indexed as “ngram” will not be included in the result.

This context is applied behind the scenes, and the only thing to consider for users are how the data is indexed.

Indexing instructions

By default, nodes will be indexed using the “type” instruction - using the propertyType to determine how it should be indexed.
Special indexing options may be passed along with the node (e.g in the Node API) - forcing special handling of one or more properties. These options are described below:

	type (default)

	Indexing is done based on type; e.g numeric values are indexed as both string and numeric.

	minimal

	Value is indexed as a string-value only, no matter what type of data.

	none

	Value is not indexed.

	fulltext

	Values are stored as ‘ngram’, ‘analyzed’ and also added to the _allText-field

	path

	Values are stored as ‘path’ type and applicable for the pathMatch-function

 Indexed content properties

Indexed content properties

All user defined properties are indexed and available for queries.

In addition there are a number of standard content-properties available for search:

	_alltext

	A collection of all fulltext-analyzed fields (textLine, textArea, htmlArea) in a content in one property

	_id

	Holds the id of the content, typically generated automatically in the form of a UUID.

	_manualordervalue

	The order value used when child-content is ordered manually

	_name

	Holds the name of the content

	_parentPath

	Reference to parent content path.

	_path

	The content path

	_permissions_read

	The principals that have read access.

	_permissions_create

	The principals that have create access.

	_permissions_delete

	The principals that have delete access.

	_permissions_modify

	The principals that have modify access.

	_permissions_publish

	The principals that have publish access.

	_permissions_readpermissions

	The principals that have access to read the content permissions.

	_permissions_writepermissions

	The principals that have access to change the content permissions.

	_references

	Outgoing references to other content.

	_score

	Calculated relevance for a hit

	_state

	Used for keeping state of a content in a branch.

	_timestamp

	The last change to the content version.

	_versionKey

	The id of the node version.

	attachment.size

	If any attachments, contains an array of attachment sizes

	attachment.label

	If any attachments, contains an array of attachment labels

	attachment.mimetype

	If any attachments, contains an array of attachment mime-types

	attachment.name

	If any attachments, contains an array of attachment name

	attachment.binary

	If any attachments, contains an array of attachment file-name

	attachment.text

	If any attachments, contains the extracted text of e.g pdf-files

	creator

	The user principal that created the content.

	createdTime

	The timestamp when the content was created.

	data

	A property-set containing all user defined properties defined in
the content-type.

	displayName

	Name used for display purposes.

	language

	The locale-property of the content.

	modifiedTime

	Last time the content was modified.

	owner

	The user principal that owns the content.

	page

	The page property contains page-specific properties, like template and regions.

	page.region.component.textcomponent.text

	This property contains all values in the text-components added to pages

	publish.from

	The time when the content was first published. This timestamp will be the set both in draft and master branch.

	type

	The content-type name

	x

	A property-set containing properties from x-data (this also includes mixins).

 Query Filters

Query Filters

A query filter works a bit different than the query-expression. When searching with query-expressions, steps like ordering and scoring is done to produce the result. These are relatively costly operations.
A filter is doing none of these steps, it’s only filtering the result from the query-expression, and is thus the most efficient way of limiting hits based on simple comparison statements.

The query filters are applied as a root level property in query-api’s, here is an example from using the content-API

var result = contentLib.query({
 start: 0,
 count: 2,
 query: "data.city = 'Oslo' AND fulltext('data.description', 'garden', 'AND') ",
 filters: {
 boolean: {
 must: {
 exists: {
 field: "modifiedTime"
 }
 },
 mustNot: {
 hasValue: {
 field: "myField",
 values: [
 "cheese",
 "fish",
 "onion"
]
 }
 }
 },
 notExists: {
 field: "unwantedField"
 },
 ids: {
 values: ["id1", "id2"]
 }
 }
});

If specifying several filters on the filter object root level, the filters are joined automatically with a boolean “must” clause, meaning all filters must match.

Supported query filters:

	exists

	notExists

	hasValue

	ids

	boolean

 exists

exists

The exists filter filter outs any document not containing any value in the given field.

	field (string)

	The property path

Here’s an example of using the exists filter:

{
 "start": 0,
 "count": 2,
 "filters": {
 "exists": {
 "field": "publish.from"
 }
 }
}

 notExists

notExists

The notExists filter filters out any document containing any value in the given field.

	field (string)

	The property path

Here’s an example of using the notExists filter:

{
 "start": 0,
 "count": 2,
 "filters": {
 "notExists": {
 "field": "publish.from"
 }
 }
}

 hasValue

hasValue

The hasValue filter matches if document contain any of the values given in the value list

	field (string)

	The property path

	values (object[])

	Array of values to decide a match

Here’s an example of using the hasValue filter:

{
 "start": 0,
 "count": 2,
 "filters": {
 "hasValue": {
 "field": "product",
 "values" : [
 "plunge saw",
 "combination square",
 "router",
 "mitre saw"
]
 }
 }
}

 ids

ids

The ids filter is a shorthand filter to filter on ids

	values (string[])

	Arrays of ids to match

Here’s an example of using the hasValue filter:

{
 "start": 0,
 "count": 2,
 "filters": {
 "ids": {
 "values": [
 "0123456789",
 "1234567890"
]
 }
 }
}

 boolean

boolean

The boolean filter combines functions in logical expressions

	must (filter[])

	All functions on the must array must evaluate to true for the filter to match

	mustNot (filter[])

	All functions in the mustNot array must evaluate to false for the filter to match

	should (filter[])

	One or more of the functions in the should array must evaluate to true for the filter to match

Here’s an example of using the boolean filter:

{
 "start": 0,
 "count": 2,
 "filters": {
 "boolean": {
 "must": {
 "exists": {
 "field": "modifiedTime"
 }
 },
 "mustNot": {
 "hasValue": {
 "field": "myField",
 "values": [
 "cheese",
 "fish",
 "onion"
]
 }
 }
 }
 }
}

 Query Functions

Query Functions

Here’s a description of all functions that can be used in a query.

	fulltext

	nGram

	range

	pathMatch

 fulltext

fulltext

The fulltext function is searching for words in a field, and calculates relevance scores
for matches based on a set of rules (e.g number of occurences, field-length).

Tip

Only fields analyzed as text are considered when applying the fulltext-function. This includes,
as default, all text-based fields in the content-domain.

Syntax

fulltext(<fields>, <search-string>, <operator>)

Fields

Fields is a string containing a comma-separated list of fields to include in the search.
Wildcards are supported in field-names.

Some valid string values for “fields” are:

'displayName' // Search in single field
'displayName,data.description,data.title' // Search in multiple fields
'data.*' // Wildcard usage

Note that “data.” domain is used to access custom fields from custom content types. Default fields, like displayName, are directly available at the top level (without the “data.” prepended).

You can boost - thus increasing or decreasing hit-score pr field basis - if providing
more than one field to the query by appending a weight-factor: ^N:

fulltext('displayName^5,data.description', 'my search string', 'AND')

Operator

The allowed operators are:

	OR Matches if any of the words in the search-string matches.

	AND Matches only if all words in search-string matches.

Search-string syntax

The search-string supports a set of operator:

	+ signifies AND operation.

	| signifies OR operation.

	- negates a single token.

	* at the end of a term signifies a prefix query.

	(and) signify precedence.

	" and " wraps a number of tokens to signify a phrase for searching

	~N after a word signifies edit distance (fuzziness) with a number representing Levenshtein distance [http://en.wikipedia.org/wiki/Levenshtein_distance].

	~N after a phrase signifies slop amount (how far apart terms in phrase are allowed)

Examples

Match if “myField” contains any of the given words.

fulltext("myField", "cheese fish cake onion", "OR")

Match if any field with path starting with “myData.myProperties” contains any of the given words.

fulltext("myData.myProperties.*", "cheese fish cake onion", "OR")

Match if “myField” contains any of the given words and “myCategory” = “soup”.

myCategory = "'soup" AND fulltext("myField", "cheese fish cake onion", "OR")

Match if “myField” contains all the given words.

fulltext("myField", "cheese fish cake onion", "AND")

Match if “myField” contains “Levenshtein” with a fuzziness distance of 2.

fulltext("myField", "Levenshtein~2", "AND")

Match if “myField” contains “fish” and not “boat”.

fulltext("myField", "fish -boat", "AND")

Match if any field under data-set data contains “fish” and not “boat”.

fulltext("data.*", "fish -boat", "AND")

Match exact phrase.

fulltext('data.*', '"gone fishing today"', "AND")

Match phrase where maximum distance between words are 2.

fulltext('data.*', '"gone fishing today"~2', "AND")

 nGram

nGram

An n-gram is a sequence of n letters from a string. The nGram-function is used to search for
words or phrases beginning with a given search string. Typically, find-as-you-type searches will use this function.
The max limit of an ngram is 12 character, meaning that search-strings over 12 characters will not match any ngrams.
This means that the ngram should be combined with the fulltext-function or other query expressions to both match incomplete words and full phrases.

Tip

Only fields analyzed as text are considered when applying the ngram-function. This includes,
as default, all text-based fields in the content-domain.

Syntax

ngram(<field>, <search-string>, <operator>)

Operator

The allowed operators are:

	OR Matches if any of the words in the search-string matches.

	AND Matches only if all words in search-string matches.

Examples

Matches if “myField” contains any word beginning with “lev”, e.g “Levenshteins Algorithm”.

ngram("myField", "lev", "AND")

Matches if “myField” contains words beginning with “lev” and “alg”, e.g “Levenshteins Algorithm”.

ngram("myField", "lev alg", "AND")

Matches if “myField” contains words beginning with “fish” or “boat”, e.g “fishpond” or “boatman”.

ngram("myField", "fish boat", "OR")

 range

range

The range functions test each value in the given field for a given range.

Syntax

range(<field>, <from>, <to>, [<includeFrom>], [<includeTo>])

The from and to values must be of the same type.

includeFrom and includeTo are optional with default value ‘false’, meaning that the actual values for the from and to are not included as matches.

Unbounded ranges can be queried by providing an empty string as argument.

Examples

Matches all that have a version-string in the range, including ‘6.3.0’

range('version', '6.3.0', '6.4.0', 'true', 'false')

range('publishFrom', instant('2015-08-01T09:00:00Z'), instant('2015-08-01T11:00:00Z'))

Matches all that have values between 2.0 and 3.0, including 2.0

range('myValue', 2.0, 3.0, 'true', 'false')

Matches all that have publishFrom-date newer that the given date.

range('publishFrom', instant('2015-08-01T09:00:00Z'), '')

Matches all that have publishTo-date older that the given date.

range('publishTo', '', instant('2015-08-01T09:00:00Z'))

 pathMatch

pathMatch

The path-match matches a path in a same branch, scoring the paths closest to the given query path first. Also, a number of minimum matching elements that must match could be set.

Syntax

pathMatch(<field>, <path>, [<minimum_elements_must_match>])

If not given, the default minimum-must-match value will be 1.

Examples

Given these contents:

/content/mySite
/content/mySite/fish
/content/mySite/fish/onion
/content/mySite/cheese
/content/mySite/cheese/jam
/content/myOtherSite

pathMatch('_path', '/content/mySite/fish/onion/mayonnaise', 2)

This will return (orded by _score):

	/content/mySite/fish/onion

	/content/mySite/fish

	/content/mySite/cheese/jam

	/content/mySite/cheese

	/content/mySite

 Order Functions

Order Functions

Here’s a description of all functions that can be used in order-by clause.

	geoDistance

 geoDistance

geoDistance

The geoDistance-function enables you to order the results according to distance
to a given geo-point.

Tip

Documents with no geo-point property with the given path will be ordered
last if matching the query.

Syntax

geoDistance(<field>, <location>)

	Field

	Field-argument accepts a path to a property containing geoPoint data.

	Location

	The location is a geoPoint from which the distance factor should be calculated,
formatted as “latitude,longitude”.

Examples

Order by distance from “shopLocation” to the fixed location.

ORDER BY geoDistance("shopLocation", "59.9127300,10.7460900")

 Aggregations

Aggregations

An aggregation is a function that is executed on a collection of search results. The search-results are defined by the query and query-filter
of the search request.

For instance, consider a query returning all nodes that have a property “price” less than, say, $100. Now, we want to divide the result nodes into ranges, say
0-$25, $25-$50 and so on. We also would like to know the average price for each category. This could be done by doing multiple separate queries and calculating the
average manually, but this would be very inefficient and cumbersome. Luckily, aggregations solve these types of problems easily.

In some API functions it is possible to send in an aggregations expression object. This object is either in Java or a JSON like the following:

{
"aggregations" : {
 "[name]" : {
 "[type]" : {
 ... body ...
 },
 "aggregations": {
 ... sub-aggregations ...
 }
 }
}

There are two different types of aggregations:

	Bucket aggregations: A bucket aggregation places documents matching the query in a collection - a bucket. Each bucket has a key.

	Metrics aggeregations: A metric aggeregation computes metrics over a set of documents.

Typically, you will divide data into buckets and then use metric aggregations to calculate e.g average values,
sum, etc for each bucket, if necessary.

	terms

	range

	dateRange

	dateHistogram

	stats

	geoDistance

 terms

terms

The ‘terms’ aggergation places documents into bucket based on property values. Each unique value of a property will
get its own bucket. Here’s a list of properties:

	field (string)

	The property path.

	size (int)

	The number of bucket to return, ordered by the given orderType and orderDirection. Default to 10.

	order (string)

	How to order the results, type and direction. Default to _term ASC.

Types:

	_term: Alphabetic ordering of bucket keys.

	_count: Numeric ordering of number of document in buckets.

Here’s an example of the terms aggregation:

{
 "aggregations": {
 "categories": {
 "terms": {
 "field": "myCategory",
 "order": "_count desc",
 "size": 10
 }
 }
 }
}

The above example gives a result with this structure:

{
 "aggregations": {
 "categories": {
 "buckets": [
 {
 "docCount": 132,
 "key": "articles"
 },
 {
 "docCount": 101,
 "key": "documents"
 },
 {
 "docCount": 43,
 "key": "case-studies"
 }
]
 }
 }
}

 range

range

The range aggregation query defines a set of ranges that represents a bucket.
Here’s a list of properties:

	field (string)

	The property path.

	ranges (range[])

	The range-buckets to create.

	range (from: number, to: number)

	Defines a range to create a bucket for. From-value is included in bucket, to is excluded.

Here’s an example of the range aggregation:

{
 "price_ranges": {
 "range": {
 "field": "price",
 "ranges": [
 {
 "to": 50
 },
 {
 "from": 50,
 "to": 100
 },
 {
 "from": 100
 }
]
 }
 }
}

The above example gives a result with this structure:

{
 "price_ranges": {
 "buckets": [
 {
 "docCount": 2,
 "key": "a",
 "to": 50
 },
 {
 "docCount": 4,
 "from": 50,
 "key": "b",
 "to": 100
 },
 {
 "docCount": 4,
 "from": 100,
 "key": "c"
 }
]
 }
}

 dateRange

dateRange

The dateRange aggregation query defines a set of date-ranges that represents a bucket. Only
documents with properties of type ‘DateTime’ will considered in the dateRange aggregation buckets.
Here’s a list of properties:

	field (string)

	The property path.

	format (string)

	The date-format of which the buckets will be formatted to on return. Defaults to yyyy-MM-dd'T'HH:mm:ss.SSSZ.

	ranges (range[])

	The range-buckets to create.

	range (from: number, to: number)

	Defines a range to create a bucket for. From-value is included in bucket, to is excluded. The
from and to follows a special date-math explained below.

Here’s an example of the dateRange aggregation:

{
 "my_date_range": {
 "dateRange": {
 "field": "date",
 "format": "MM-yyy",
 "ranges": [
 {
 "to": "now-10M"
 },
 {
 "from": "now-10M"
 }
]
 }
 }
}

The above example gives a result with this structure:

{
 "my_date_range": {
 "buckets": [
 {
 "key": "*-12-2017",
 "docCount": 2,
 "to": "2017-12-01T00:00:00Z"
 },
 {
 "key": "12-2017-*",
 "docCount": 4,
 "from": "2017-12-01T00:00:00Z"
 }
]
 }
}

Date-math expression

The range fields accepts a date-math expression to calculate the time-spans.

Now minus a day:

now-1d

The given date minus 3 days plus one minute:

2014-12-10T10:00:00Z||-3h+1m

Range describing now plus one day and thirty minutes, rounded to minutes:

now+1d+30m/m

 dateHistogram

dateHistogram

The date-histogram aggregation query defines a set of bucket based on a given time-unit. For instance,
if querying a set of log-events, a dateHistorgram aggregations query with interval h (hour) will divide each log
event into a bucket for each hour in the time-span of the matching events. Here’s a list of properties:

	field (string)

	The property path.

	interval (string)

	The time-unit interval for creating bucket. Supported time-unit notations:

	y = Year

	M = Month

	w = Week

	d = Day

	h = Hour

	m = Minute

	s = Second

	format (string)

	Output format of date string.

	minDocCount (int)

	Only include bucket in result if number of hits <= minDocCount.

Here’s an example of the date_histogram aggregation:

{
 "by_month": {
 "dateHistogram": {
 "field": "init_date",
 "interval": "1M",
 "minDocCount": 0,
 "format": "MM-yyy"
 }
 }
}

The above example gives a result with this structure:

{
 "by_month": {
 "buckets": [
 {
 "docCount": 8,
 "key": "2014-01"
 },
 {
 "docCount": 10,
 "key": "2014-02"
 },
 {
 "docCount": 12,
 "key": "2014-03"
 }
]
 }
}

 stats

stats

The stats-aggregations calculates the following statistics for the parent-aggregation buckets:

	avg

	min

	max

	count

	sum

Here’s a list of properties:

	field (string)

	The property path.

Here’s an example of the stats aggregation:

{
 "start": 0,
 "count": 0,
 "aggregations": {
 "products": {
 "terms": {
 "field": "data.product.category",
 "order": "_count desc",
 "size": 10
 },
 "aggregations": {
 "priceStats": {
 "stats": {
 "field": "data.product.price"
 }
 }
 }
 }
 }
}

The above example gives a result with this structure:

{
 "products": {
 "buckets": [
 {
 "key": "tv",
 "docCount": 123,
 "priceStats": {
 "count": 123,
 "min": 2599,
 "max": 87944,
 "avg": 7400,
 "sum": 578100
 }
 },
 {
 "key": "blu-ray player",
 "docCount": 42,
 "priceStats": {
 "count": 42,
 "min": 699,
 "max": 5999,
 "avg": 1548,
 "sum": 65016
 }
 },
 {
 "key": "reciever",
 "docCount": 12,
 "priceStats": {
 "count": 12,
 "min": 2999,
 "max": 26950,
 "avg": 5548,
 "sum": 66756
 }
 }
]
 }
}

 geoDistance

geoDistance

The geoDistance aggregation needs a defined range to split the documents into buckets.
Only documents with properties of type ‘GeoPoint’ will be considered in the geoDistance aggregation buckets.

Here’s a list of properties:

	field (string)

	The property path.

	ranges (range[])

	The range-buckets to create.

	range (from: number, to: number)

	Defines a range to create a bucket for. From-value is included in bucket, to is excluded.

	unit (string)

	The meassurement unit to use for the ranges. Legal values are either the full
name or the abbreviation of the following: km (kilometers), m (meters), cm
(centimeters), mm (millimeters), mi (miles), yd (yards), ft (feet) or nmi
(nauticalmiles).

	origin (lat: number, lon: number)

	The GeoPoint from which the distance is measured.

Here’s an example of the range aggregation:

{
 "aggregations": {
 "distance": {
 "geoDistance": {
 "field": "data.cityLocation",
 "unit": "km",
 "origin": {
 "lat": "90.0",
 "lon": "0.0"
 },
 "ranges": [
 {
 "from": 0,
 "to": 1200
 },
 {
 "from": 1200,
 "to": 4000
 },
 {
 "from": 4000,
 "to": 12000
 },
 {
 "from": 12000
 }
]
 }
 }
 }
}

The above example gives a result with this structure:

{
 "aggregations": {
 "distance": {
 "buckets": [
 {
 "key": "*-1200.0",
 "doc_count": 3
 },
 {
 "key": "1200.0-4000.0",
 "doc_count": 4
 },
 {
 "key": "4000.0-12000.0",
 "doc_count": 5
 },
 {
 "key": "12000.0-*",
 "doc_count": 1
 }
]
 }
 }
}

NOTE: At the time of writing, there is only one way of find out which result belongs to which bucket:
By also sorting the result on geoDistance, and matching the order to the number of each bucket.
In a future version, there will easier ways of doing this.

 Ordering results

Ordering results

Any field can be used to order the result, either (default) DESC (descending) or ASC (ascending).
The default field for ordering is _score

_score

The score-value is calculated based on a number of factors, e.g number of matching clauses in boolean expressions, how often the term appears in the documents when searching for text etc.
See elasticsearch-documentation for more insight.

 Querying date and time

Querying date and time

Querying against date and time-fields may require some knowledge on how data is stored and indexed.

	LocalDate

	LocalTime

	LocalDateTime

	DateTime / Instant

 LocalDate

LocalDate

LocalDate represents a date without time-zone in the ISO-8601 calendar, e.g 2015-03-19.
LocalDate-properties are stored as a ISO LocalDate-formatted string in the index, thus all searches are done against string-values.

LocalDate string-format:

yyyy-MM-dd

Given a node with a property named ‘myLocalDate’ of type localDate and value 2015-03-19, all of the following queries will match:

myLocalDate = '2015-03-19'
myLocalDate > '2015-03-18'
myLocalDate <= '2015-03-19'

 LocalTime

LocalTime

LocalTime represents a time without time-zone in the ISO-8601 calendar, e.g 11:39:49.
LocalTime-properties are stored as a ISO LocalTime-formatted string in the index, thus all searches are done against string-values.

LocalTime string-format:

HH:mm[:ss[.SSS]]

LocalTime string value examples:

09:30
10:00
10:00:30
10:00:30.142

Since the queries are matching string-values, the input time in query must either adhere the same string-format restrictions,
or be wrapped in a function time which accepts a time-formatted string as input.

Given a node with a property named ‘myLocalTime’ of type localTime and value = 09:36:00, all the following queries will match:

myLocalTime > '09:00'
myLocalTime = '09:36'
myLocalTime = '09:36:00'
myLocalTime LIKE '09:*'
myLocalTime < '09:36:01'
myLocalTime < '09:36:00.1'

This must be wrapped in time-function since its not padded with a leading 0:

myLocalTime > time('9:00')

If optional fractions of seconds are given, the string format will also contain this even if 0, and expression
will not match unless wrapped in time-function:

myLocalTime = time('09:36:00.0')

Even if the string-matching will do the job 99% of the time, the safest bet is to always go with
the time-function when applicable.

 LocalDateTime

LocalDateTime

LocalDateTime represents a date-time without time-zone in the ISO-8601 calendar, e.g 2015-03-19T11:39:49.
LocalDateTime-properties are stored as a ISO LocalDateTime-formatted string in the index, thus all searches are done against string-values.

LocalDateTime string-format:

yyyy-MM-ddTHH:mm[:ss[.SSS]]

Since the queries are matching string-values, the input dateTime in query must either adhere the same string-format restrictions,
or be wrapped in a function dateTime which accepts a dateTime-formatted string as input.

Given a node with a property named ‘myLocalDateTime’ of type localDateTime and value 2015-03-19T10:30:00, all of the following queries will match:

myLocalDateTime = '2015-03-19T10:30:00'
myLocalDateTime = dateTime('2015-03-19T10:30')
myLocalDateTime < dateTime('2015-03-19T10:30:00.001')

 DateTime / Instant

DateTime / Instant

DateTime represents a date-time with time-zone in the ISO-8601 calendar, e.g 2015-03-19T11:39:49+02:00.
Its possible to query properties of with value-type DateTime both as an ISO instant and as ISO dateTime, using the provided
built-in functions instant and dateTime.

Instant string-format (instant always given in UTC-time):

yyyy-MM-ddTHH:mm[:ss[.SSS]Z

Instant string value examples:

2015-03-19T16:30:20Z
2015-03-19T16:30:20.123Z

DateTime string-format (Z for UTC, else offset in hours and minutes):

yyyy-MM-ddTHH:mm[:ss[.SSS](Z|+hh:mm|-hh:mm)

DateTime string value examples:

2015-03-19T16:30:20Z
2015-03-19T16:30:20+01:00
2015-03-19T16:30:20-01:30
2015-03-19T16:30:20.123-01:30

Given a node with a property named ‘myDateTime’ of type dateTime and value 2015-03-19T10:25:00+02:00,
all of the following queries will match:

myDateTime = instant('2015-03-19T08:25:00Z')
myDateTime = dateTime('2015-03-19T08:25:00Z')
myDateTime = dateTime('2015-03-19T10:25:00+02:00')
myDateTime = dateTime('2015-03-19T11:25:00+03:00')

 Querying paths

Querying paths

All nodes have three system-properties concerning the node placement in a branch, all of type String:

	_name: The node name without path.

	_parentPath: The parent node path.

	_path: The full path of the node.

See the query-function pathMatch for advanced path-matching

Note

When working with content, all paths are under a special root containing content; /content.

While this mostly is explicit when working in the content-domain, this has to be dealt with when using paths in query-expressions and functions since you are actually querying nodes.

Examples

Finds node with path /content/mySite/myCategory/myContent.

_path = '/content/mySite/myCategory/myContent'

Finds all nodes with name myContent in a folder named myCategory
e.g /content/test/thisIsMyCategory/myContent and /content/myCategory/myContent.

_name = 'myContent' AND _parentPath LIKE '*myCategory'

Finds all nodes under the path /content/mySite/myCategory including children of children.

_path LIKE '/content/mySite/myCategory/*'

Finds only first level children under the path /content/mySite/myCategory.

_parentPath = '/content/mySite/myCategory'

 Querying references

Querying references

References to other nodes are stored in a property named _references. This could be used to find incoming references to a node.

Find all nodes referring to the node with id = ‘abc’:

_references = 'abc'

 Querying existing / missing values

Querying existing / missing values

There are two ways of querying missing values:

By filter

The exists- and notExists-filters is the recommended and most efficient way of query for missing values

{
 "start": 0,
 "count": 2,
 "filters": {
 "exists": {
 "field": "publish.from"
 }
 }
}

{
 "start": 0,
 "count": 2,
 "filters": {
 "notExists": {
 "field": "publish.from"
 }
 }
}

See the exists-filter and notExists-filter

By query

This method is not as efficient as using a filter, but if you need to do this within a query-expression, you could use the “LIKE” function with an all-expression:

	Exists:

myValue LIKE "*"

	Not-exists:

publish.first NOT LIKE "*"

 Admin

Admin

Go go backoffice!

Complex applications often require some kind of “back office” tools for management.
Enonic XP provides a standardized approach to deliver and extend Admin tools.

This document describes how you can build your own Admin Tools and extend some of the default tools shipped with XP through Widgets.

	Admin Tools

	Widgets

 Admin Tools

Admin Tools

Warning

Admin Tool support is experimental.

Admin Tools are independent “back office” user interfaces designed to manage Enonic XP or installed applications.
Each tool will run in it’s own browser tab - here are some of the reasons for this:

	Faster user interfaces and better deep-linking support

	Developers can use their favorite front-end frameworks

	Simplified debugging

Standard Tools

Enonic XP is shipped with the following tools by default:

	Home (The default tool)

	Applications (Install, stop, start and uninstall applications)

	Content Studio (Create and manage content and sites)

	Users (Create, setup and manage users, groups and roles)

Launcher

Navigation between the various Admin Tools is done via the “Launcher Panel”, accessible via the “burger” icon in the top right corner.
This icon and the Launcher panel should be available across all Admin Tools.

[image: ../../../_images/launcher.jpg]
To create a new Admin Tool, you must create a new folder in your project structure, i.e. admin/tools/[tool-name].
Then you must place a descriptor, an icon and a controller there.

Descriptor

The tool descriptor defines the basic info to be displayed in the launcher and which roles are required to access the tool.

The descriptor file must have the same name as the tool, i.e. admin/tools/[tool-name]/[tool-name].xml:

<tool>
 <display-name i18n="my-tool.display-name">My Tool</display-name>
 <description i18n="my-tool.description">Control my stuff</description>
 <allow>
 <principal>role:system.admin</principal>
 <principal>role:myapp.myrole</principal>
 </allow>
</tool>

Tip

The tool display-name and description can be provided in multiple languages. See Localization of Schemas for details.

Icon

You should add an SVG icon to the tool. This will be displayed in the launcher panel together with the info from the descriptor.
The icon file must have the same name as the tool, i.e. admin/tools/[tool-name]/[tool-name].svg:

Controller

To drive the tool, we will need a controller (See HTTP Controllers). The controller typically produces the initial tool html.
Depending on the tool implementation it may also handle sub-requests from the tool.

The controller must have the same name as the tool, i.e. admin/tools/[tool-name]/[tool-name].js:

var mustache = require('/lib/xp/mustache');
var portalLib = require('/lib/xp/portal');
var adminLib = require('/lib/xp/admin');

function handleGet() {
 var view = resolve('./my-view.html');

 var params = {
 adminUrl: adminLib.getBaseUri(),
 assetsUrl: portalLib.assetUrl({path: ''}),
 appName: 'My custom tool'
 };

 return {
 contentType: 'text/html',
 body: mustache.render(view, params)
 };
}

exports.get = handleGet;

Adding the Launcher Panel menu

Adding the Launcher Panel menu to a custom admin tool requires a few steps.

	Add a reference to lib-admin-ui to the dependencies section in build.gradle file of your project:

include "com.enonic.lib:lib-admin-ui:1.1.0"

	Add references to XP Admin UI’s libraries and stylesheets to your view file - they are required for the Launcher Panel to function properly:

<!-- Common style and library used by the Launcher Panel -->
<link rel="stylesheet" type="text/css" href="{{assetsUrl}}/admin/common/styles/_all.css">

<!-- Append the Admin libraries -->
<script type="text/javascript" src="{{assetsUrl}}/admin/common/lib/_all.js"></script>

<!-- Append the Admin UI -->
<script type="text/javascript" src="{{assetsUrl}}/admin/common/js/_all.js"></script>

	Add a reference to the Launcher bundle which will inject the “burger” icon and the Launcher panel into your page.

<!-- Append the launcher -->
<script type="text/javascript" src="{{launcherPath}}" async></script>

	In the <body> section of the view add a Javascript snippet where you define a global object variable called “CONFIG” with properties launcherUrl, adminUrl and appId. appId is needed to correctly identify your tool inside the Launcher panel.

<body>
 <!-- Configuration -->
 <script type="text/javascript">
 var CONFIG = {
 adminUrl: '{{adminUrl}}',
 appId: '{{appId}}',
 launcherUrl: '{{launcherUrl}}'
 };
 </script>
</body>

	Finally, make sure that all parameters used in the view are passed from the view controller:

var mustache = require('/lib/xp/mustache');
var portalLib = require('/lib/xp/portal');
var adminLib = require('/lib/xp/admin');

function handleGet() {
 var view = resolve('./my-view.html');

 var params = {
 adminUrl: adminLib.getBaseUri(),
 assetsUrl: portalLib.assetUrl({
 path: ''
 }),
 launcherPath: adminLib.getLauncherPath(),
 launcherUrl: adminLib.getLauncherUrl(),
 appId: 'my-custom-tool'
 };

 return {
 contentType: 'text/html',
 body: mustache.render(view, params)
 };
}

exports.get = handleGet;

Entire view:

<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <meta http-equiv="X-UA-Compatible" content="IE=Edge"/>
 <meta name="viewport" content="width=device-width, user-scalable=no">
 <meta name="theme-color" content="#ffffff">

 <title>{{appName}}</title>

 <!-- Styles -->
 <link rel="stylesheet" type="text/css" href="{{assetsUrl}}/admin/common/styles/_all.css">

 <!-- Common lib -->
 <script type="text/javascript" src="{{assetsUrl}}/admin/common/lib/_all.js"></script>

</head>
<body>

<!-- Configuration -->
<script type="text/javascript">
 var CONFIG = {
 adminUrl: '{{adminUrl}}',
 appId: '{{appId}}',
 launcherUrl: '{{launcherUrl}}'
 };
</script>

<!-- Common UI -->
<script type="text/javascript" src="{{assetsUrl}}/admin/common/js/_all.js"></script>

<!-- Append the Launcher Panel -->
<script type="text/javascript" src="{{launcherPath}}" async></script>

</body>
</html>

Tip

Feel free to use our admin tool starter [https://github.com/enonic/starter-admin-tool] to help you speed up the process of setting up your own tool.

 Widgets

Widgets

Warning

Widget support is experimental.

Widgets are user interface components that can be used to extend various Admin Tools.
Currently, the only available extension point for widgets are detail panels in the Content Studio tool.

To create a widget, you must create a new folder in your project structure, i.e. admin/widgets/[widget-name].
Then you must place a descriptor and a controller there.

Descriptor

The widget descriptor defines the display name, which roles are required to access the widget and the interfaces it matches.

An interface is simply a unique identifier that is used to create a link between a tool and the widget.
For example, for your widget to be displayed in the “Content Studio” detail panel, add the interface “contentstudio.detailpanel”

The descriptor file must match the widget name, i.e. admin/widgets/[widget-name]/[widget-name].xml:

<widget>
 <display-name>My first widget</display-name>
 <interfaces>
 <interface>contentstudio.detailpanel</interface>
 </interfaces>
 <allow>
 <principal>role:system.admin</principal>
 <principal>role:myapp.myrole</principal>
 </allow>
</widget>

Controller

To drive the widget, we will need a controller (See HTTP Controllers). The controller typically produces the initial widget html.
Depending on the widget implementation it may also handle sub-requests from the widget.

The controller file must match the widget name, i.e. admin/widgets/[widget-name]/[widget-name].js:

exports.get = function (req) {
 return {
 body: '<html><head></head><body><h1>My first widget</h1></body></html>',
 contentType: 'text/html'
 };
};

 ID Providers

ID Providers

An ID Provider is a pluggable authentication module, contained inside an application.
Install an existing ID Provider or write your own, configure it and associate it to a user store.

Set up an ID Provider

To set up an ID Provider, you must follow the 3 steps below:

	An application containing an ID Provider must be installed and started (Use the admin tool Applications).

	The application must be associated to a user store and configured (Use the admin tool Users and edit the user store to guard).

	The user store must be associated to a virtual host in the virtual host configuration file (see Virtual Host Configuration).

Create an ID Provider

To create an ID provider, you must create a new folder in your project structure, i.e. idprovider.
Then you must place a descriptor and a controller there.

Descriptor

The ID Provider descriptor is a required XML file used to define the mode and the configuration required by the provider.
The descriptor file must have the following path: idprovider/idprovider.xml:

<id-provider>
 <mode>LOCAL</mode>
 <config>
 <input name="title" type="TextLine">
 <label>Title</label>
 <occurrences minimum="0" maximum="1"/>
 <default>User Login</default>
 </input>
 </config>
</id-provider>

	mode

	Specifies how the provider uses the user store.

LOCAL: Both the users and groups are stored locally in the user store.

EXTERNAL: Both the users and groups are stored in a remote system.
The user store is only a snapshot view of this remote system and therefore the users and groups are not editable in the admin tool Users.

MIXED: The users are stored in a remote system and the groups in the user store.
The users in the user store are only a snapshot view of this remote system and therefore the users are not editable in the admin tool Users.

	config

	Specifies the input fields of the configuration required by the ID provider.

Controller

The controller is a required file written in JavaScript and must have the following path: idprovider/idprovider.js:

var authLib = require('/lib/xp/auth');

exports.handle401 = function (req) {
 var body = generateLoginPage();
 return {
 status: 401,
 contentType: 'text/html',
 body: body
 };
};

exports.login = function (req) {

 // If this function was called with a parameter "redirect", a validation of the origin is performed.
 // The result of the validation is passed to the ID Provider as a request property "validTicket".
 var redirectUrl = req.validTicket ? req.params.redirect : undefined;

 var body = generateLoginPage(redirectUrl);
 return {
 contentType: 'text/html',
 body: body
 };
};

exports.logout = function (req) {

 // Calling "authLib.logout()" will log out the current user from Enonic XP.
 authLib.logout();

 // If this function was called with a parameter "redirect", a validation of the origin is performed.
 // The result of the validation is passed to the ID Provider as a request property "validTicket".
 var redirectUrl = req.validTicket ? req.params.redirect : undefined;

 if (redirectUrl) {
 return {
 redirect: redirectUrl
 };
 } else {
 var body = generateLoginPage();
 return {
 contentType: 'text/html',
 body: body
 };
 }
};

exports.autoLogin = function (req) {
 log.info('Auto login. Invoked only when user is not authenticated');
};

function generateLoginPage(redirectUrl) {
 var authConfig = authLib.getIdProviderConfig();
 var title = authConfig.title || "User Login";
 var redirectionLink = redirectUrl ? 'Return' : '';
 return '<html><head></head><body><h1>' + title + '</h1>' + redirectionLink + '</body></html>';
}

	handle401

	Optional function rendered in the case of a 401 error.
This function typically produces a login or error page.

	get/post/…

	Functions rendered. An ID provider controller exports a method for each type of HTTP request that should be handled.
The portal function idProviderUrl() will create a dynamic URL to this function.

	login

	Function rendered.
The portal function loginUrl() will create a dynamic URL to this function.

	logout

	Function rendered.
The portal function logoutUrl() will create a dynamic URL to this function.

	autoLogin

	Optional function executed if the current user is unauthenticated.
This functions allows you to, for example, handle web tokens or other request headers.

 Tasks

Tasks

Tasks allow the asynchronous execution of jobs.
Each task has a name, a JavaScript controller file, and an XML descriptor in the folder tasks/[task-name]

Descriptor

The task descriptor is an XML file that defines configuration parameters for the task.

When parameters are passed to the task controller, they will be validated according to the XML config schema (see Schemas).

The config element in the descriptor XML is optional. It can be left empty if the task does not take any parameters.

The descriptor file must have the same name as the task, i.e. tasks/[task-name]/[task-name].xml:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<task>
 <description>Background job</description>
 <config>
 <input type="Long" name="count">
 <label>Number of items to process</label>
 <default>42</default>
 <occurrences minimum="1" maximum="1"/>
 </input>
 </config>
</task>

Controller

A task controller handles the execution of the task.
The controller is a required file written in JavaScript and must have the same name as the task, i.e. tasks/[task-name]/[task-name].js.

A task controller must export a run function, that will be called when the task is executed.
The run function will receive the task parameters as a JSON object.

The following is an example of task controller.

var taskLib = require('/lib/xp/task');

exports.run = function (params) {

 var count = params.count || 42;

 taskLib.progress({info: 'Initializing task'});

 for (var i = 0; i < count; i++) {
 taskLib.progress({
 info: 'Processing item ' + (i + 1),
 current: i,
 total: count
 });

 processItem(i);
 }

 taskLib.progress({info: 'Task completed'});

};

Using Tasks

Tasks can be started by calling the submitNamed function in lib-task library [http://repo.enonic.com/public/com/enonic/xp/docs/6.15.12/docs-6.15.12-libdoc.zip!/module-task.html#.submitNamed].

Task Properties

A running task has the following properties, which can be obtained using the functions in lib-task library [http://repo.enonic.com/public/com/enonic/xp/docs/6.15.12/docs-6.15.12-libdoc.zip!/module-task.html]

	Name

	Type

	Description

	id

	string

	Task unique id.

	name

	string

	Task name.

	description

	string

	Task description.

	state

	string

	Task state. Possible values: WAITING, RUNNING, FINISHED, FAILED

	application

	string

	Application containing the callback function to run.

	user

	string

	Key of the user that submitted the task.

	startTime

	string

	Time when the task was submitted (in ISO-8601 format).

	progress

	Object

	Progress information provided by the running task.

	progress.current

	number

	Latest progress current numeric value.

	progress.total

	number

	Latest progress target numeric value.

	progress.info

	string

	Latest progress textual information.

 Operations Guide

Operations Guide

This guide gives you all the gory details on how to tune Enonic XP - if you’re looking for installation guides try Getting Started

[image: ../_images/runs-anywhere.jpg]

	Package Structure

	Configuration

	Cluster Deployment

	Reverse Proxy Servers

	Monitoring

	Install as service

	Backup and Restore

	Export and Import

	Troubleshooting

	Troubleshooting Java

 Package Structure

Package Structure

The unzipped Enonic XP distribution will have the following structure (folders with a * will not appear until the installation is started the first time)

enonic-xp-[version]
 |- bin/
 |- home/
 |- config/
 |- data/ *
 |- deploy/
 |- logs/
 |- repo/ *
 |- snapshots/
 |- work/ *
 |- lib/
 |- service/
 |- system/
 |- toolbox/
 |- work/ *

The root installation folder is referred to as XP_INSTALL. Here’s an
explanation of all the other folders:

	bin/

	Contains the scripts for starting and stopping Enonic XP and setting environment variables.

	home/

	Home directory, also called XP_HOME. All files for a specific instance of XP reside here.
This folder can be copied to other locations for working with multiple projects.

	config/

	Configuration files are placed here, including Virtual Host and system.properties.

	data/

	Additional data like exports and dumps. This folder will not appear until certain operations are run.

	deploy/

	Hot deploy directory. Applications are automatically installed upon placing their JAR files in this directory.

	logs/

	Default location for logs.

	repo/

	Repository data (blobs and indexes). This folder will not appear until the installation is started for the first time.

	snapshots/

	This is where snapshots are stored when using the snapshot-operation. This folder will not appear until a snapshot is done.

	work/

	Cache and generated bundles are stored here. This folder will not appear until the installation is started the first time.

	lib/

	Contains the bootstrap code used to launch Enonic XP.

	service/

	Contains install script for Linux to make Enonic XP run as a service. See: Install as service.

	system/

	System OSGi bundles are placed here.

	toolbox/

	Command-line interface tool to manage the server. See Toolbox CLI.

	work/

	OSGI cache is stored here. This folder will not appear until the installation is started for the first time.

 Configuration

Configuration

Enonic XP and 3rd party applications can easily be configured by editing the files
in the $XP_HOME/config/ directory.

When changing files ending with .cfg, it’s respective application will automatically
restart with the new configuration. Files ending with .properties require a full restart of
Enonic XP to be applied. In a clustered environment, configuration files must be distributed to all nodes where it is relevant.

System Properties

The $XP_HOME/config/system.properties file must always be placed in this location. Any changes to this file will require a full restart of the node to take effect
The standard version of this file is listed below.

$XP_HOME/config/system.properties

Installation settings
xp.name = demo

Global security settings
xp.suPassword = password
xp.suPassword = {sha1}5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8

Initialization settings
xp.init.adminUserCreation = true

Configuration FileMonitor properties
felix.fileinstall.poll = 1000
felix.fileinstall.noInitialDelay = true

Config loading properties
xp.config.paths = ${xp.home}/config

In case you cannot log in as the su user and do not have any other admin user, you can set a temporary password by setting the property xp.suPassword in system.properties and restart the node.
The password value can be hashed. The hashing algorithm currently supported are: sha1, sha256, sha512 and md5.

With Enonic XP versjon 6.9 a simple but powerful feature called “Config Paths” was introduced.
In addition to the default $XP_HOME/config/ directory, you may now instruct XP to scan multiple different folders when looking for config files.

This provides great flexibility and can simplify configuration management. For instance:

	Allowing selected users to manage application config, but not system configuration

	Overriding standard config on selected nodes only

If multiple paths are listed, each directory will be scanned in the defined order, and the first file found of each configuration, will be used.

Below is an example usage of config path where it will scan three directories in the defined order.

xp.config.paths = ${xp.home}/config,/usr/local/xp/${node.group},/etc/xp/config

Please note that ${xp.home}/config is no longer required to be in the path.

Virtual Host Configuration

Virtual hosts have their own configuration file and settings
are automatically updated upon changes. A sample virtual host configuration
is listed below.

$XP_HOME/config/com.enonic.xp.web.vhost.cfg

enabled = true

mapping.test.host = localhost
mapping.test.source = /
mapping.test.target = /
mapping.test.userStore = system

mapping.intranet.host = enonic.com
mapping.intranet.source = /
mapping.intranet.target = /portal/master/enonic.com
mapping.intranet.userStore = enonic

mapping.admin.host = enonic.com
mapping.admin.source = /admin
mapping.admin.target = /admin
mapping.admin.userStore = system

In this example file, three mappings are configured.

	host

	Host-name to match.

	source

	Requested path to match.

	target

	Path to which the request is sent.

	userStore

	Key of the user store associated to this virtual host (see ID Providers).

In the second example, mapping “intranet”, a site is mapped to the root of the
URL, which would be normal in production environments.

In the third example, the admin site is mapped to enonic.com/admin.

Mail Configuration

The mail server used for sending email messages can be configured.
A sample mail configuration is listed below.

$XP_HOME/config/com.enonic.xp.mail.cfg

smtpHost=mail.server.com
smtpPort=25
smtpAuth=true
smtpUser=user
smtpPassword=secret
smtpTLS=false

	smtpHost

	Host name of the SMTP server. Default localhost.

	smtpPort

	TCP port of the SMTP server. Default 25.

	smtpAuth

	Enable authentication with the SMTP server. Default false.

	smtpUser

	User to be used during authentication with the SMTP server, if ‘smtpAuth’ is set to true.

	smtpPassword

	Password to be used during authentication with the SMTP server, if ‘smtpAuth’ is set to true.

	smtpTLS

	Turn on Transport Layer Security (TLS) security for SMTP servers that require it. Default false.

Repo Configuration

	snapshots.dir

	Where to store snapshots

$XP_HOME/config/com.enonic.xp.repo.cfg

#
Where to store snapshots.
#
snapshots.dir = ${xp.home}/snapshots

Storage Configuration

Blobstore Configuration

Main blobstore configuration is configured in com.enonic.xp.blobstore.cfg.

$XP_HOME/config/com.enonic.xp.blobstore.cfg

provider = file
cache = true
cache.sizeThreshold = 1mb
cache.memoryCapacity = 100mb

	provider

	The blobstore provider to be used for storing. Default value is file. Other providers will be available in future versions / enterprise-edition. Each provider will have a separate configuration file named com.enonic.xp.blobstore.<providername>.cfg

	cache

	Enable or disable memory caching of blobs fetched from the blobstore. Default true

	cache.sizeThreshold

	The maximum size for objects to be cached, defaults to 1MB. You will usually avoid filling up the cache with large blobs, but rather cache smaller objects that are used often. The size notation accepts a number plus byte-size idenfier (b/kb/mb/gb/tb/pb)

	cache.memoryCapacity

	The maximum memory footprint of the blob cache. Defaults to 100MB. The size notation accepts a number plus byte-size idenfier (b/kb/mb/gb/tb/pb)

File blobstore configuration

$XP_HOME/config/com.enonic.xp.blobstore.file.cfg

baseDir = ${xp.home}/repo/blob
readThrough.provider =
readThrough.enabled = false
readThrough.sizeThreshold = 100mb

	baseDir

	Base-directory for storing blobs. Defaults to ${xp.home}/repo/blob.

	readThrough.provider = none

	Readthrough provider name, if enabled. A readthrough provider stores and fetches blobs through an intermediate blobstore. Typically used for providers using a remote blobstore where caching as local files will improve performance.

	readThrough.enabled = false

	Enable or disable readthough provider usage. Default to false.

	readThrough.sizeThreshold = 100mb

	The maximum size for objects to be stored in the readthrough provider, defaults to 100MB. The size notation accepts a number plus byte-size idenfier (b/kb/mb/gb/tb/pb)

Cluster configuration

Enonic XP functions with two clusters: Elasticsearch and Ignite. The cluster configuration gathers the common configuration for both ElasticSearch and Ignite

$XP_HOME/config/com.enonic.xp.cluster.cfg

cluster.enabled = false

node.name = <generated-UUID>

discovery.unicast.hosts = 127.0.0.1
network.host = 127.0.0.1
network.publish.host = 127.0.0.1

session.replication.enabled = false

	cluster.enabled

	If true, the node wil try to join a cluster. Default false.

	node.name

	Node name. Default a generated-UUID

	discovery.unicast.hosts

	List of nodes in the cluster to perform discovery when new nodes are started. Default 127.0.0.1.

	network.host

	Set the bind address. Default 127.0.0.1. Can be an explicit IP-address, a host-name or an alias. See the section below for an overview of aliases

	network.publish.host

	Set the address other nodes will use to communicate with this node = 127.0.0.1. Default 127.0.0.1

	session.replication.enabled

	Use the web session replication between cluster nodes. Default false.

Warning

Session replication is an experimental feature

Network host aliases

	local : Will be resolved to the local ip address.

	_non_loopback_ : The first non loopback address.

	_non_loopback:ipv4_ : The first non loopback IPv4 address.

	_non_loopback:ipv6_ : The first non loopback IPv6 address.

	[networkInterface] : Resolves to the ip address of the provided network interface. For example _en0_

	[networkInterface]:ipv4 : Resolves to the ipv4 address of the provided network interface. For example _en0:ipv4_

	[networkInterface]:ipv6 : Resolves to the ipv6 address of the provided network interface. For example _en0:ipv6_

Elasticsearch configuration

All relevant Elasticsearch settings are available.

When changing com.enonic.xp.elasticsearch.cfg, the node will automatically restart with the new configuration.

$XP_HOME/config/com.enonic.xp.elasticsearch.cfg

node.client = false
node.data = true
node.master = true

path = ${xp.home}/repo/index
path.data = ${path}/data
path.work = ${path}/work
path.conf = ${path}/conf
path.logs = ${path}/logs
path.plugins = ${path}/plugins

cluster.name = mycluster
cluster.routing.allocation.disk.threshold_enabled = false

http.enabled = false
transport.tcp.port = 9300-9400

gateway.expected_nodes = 1
gateway.recover_after_time = 5m
gateway.recover_after_nodes = 1
discovery.zen.minimum_master_nodes = 1
discovery.unicast.port = 9300
index.recovery.initial_shards = 1

	node.data

	Allow data to be distributed to this node. Default true.

	node.master

	Allow this node to be eligible as a master node. Default true.

	path

	Path to directory where elasticsearch stores files. Default ${xp.home}/repo/index. Should be on a local file-system, not sharded.

	path.data

	Path to directory where to store index data allocated for this node. Default $path/data.

	path.work

	Path to temporary files. Default ${xp.home}/repo/index/work.

	path.conf

	Path to directory containing configuration. Default $path/conf.

	path.logs

	Path to log files. Default ${xp.home}/repo/index/logs.

	path.plugins

	Path to where plugins are installed. Default $path/plugins.

	cluster.name

	Cluster name. Default mycluster.

	cluster.routing.allocation.disk.threshold_enabled

	Prevent shard allocation on nodes depending on disk usage. Default false.

	http.enabled

	Enable the HTTP module. Default false.

	transport.tcp.port

	Custom port for the node to node communication. Defaults to the range 9300-9400.

	gateway.expected_nodes

	Number of nodes expected to be in the cluster to start the recovery immediately. Default 1.

	gateway.recover_after_time

	Time to wait until recovery happens once the nodes are met. Default 5m.

	gateway.recover_after_nodes

	Number of nodes expected to be in the cluster to start the recovery after gateway.recover_after_time. Default 1.

	discovery.unicast.port

	List of ports to perform discovery when new nodes are started. Default 9300.

	index.recovery.initial_shards

	Number of shards expected to be found on full cluster restart per index. Default quorum.

Ignite configuration

$XP_HOME/config/com.enonic.xp.ignite.cfg

discovery.tcp.port = 47500
discovery.tcp.port.range = 0

discovery.tcp.reconnect = 10

discovery.tcp.network.timeout = 5000
discovery.tcp.socket.timeout = 2000
discovery.tcp.ack.timeout = 2000
discovery.tcp.join.timeout = 0

discovery.tcp.stat.printfreq = 0

communication.message.queue.limit = 1024

	discovery.tcp.port

	Local port to listen to. Default 47500.

	discovery.tcp.port.range

	Range for local ports. Local node will try to bind on first available port starting from discovery.tcp.port up until discovery.tcp.port + discovery.tcp.port.range. Default 0.

	discovery.tcp.reconnect

	Number of times the node tries to (re)establish connection to another node. Default 10.

	discovery.tcp.network.timeout

	Maximum network timeout to use for network operations (in ms). Default 5000.

	discovery.tcp.socket.timeout

	Socket operations timeout (in ms). Default 5000.

	discovery.tcp.ack.timeout

	Timeout for receiving acknowledgement for sent message (in ms). Default 5000.

	discovery.tcp.join.timeout

	Join timeout (in ms). Default 0.

	discovery.tcp.stat.printfreq

	Statistics print frequency. Default 0.

	communication.message.queue.limit

	Message queue limit for incoming and outgoing messages. Default 1024.

Admin UI Configuration

The Admin UI can be configured in the com.enonic.xp.app.main.cfg file. For now, the only option here, is to turn off the XP Tour for all users.

$XP_HOME/config/com.enonic.xp.app.main.cfg

Disable the "Welcome tour" from the XP Home Screen. Default enabled.
tourDisabled = true

Jetty HTTP Configuration

Jetty HTTP settings can be configured using com.enonic.xp.web.jetty.cfg file.

$XP_HOME/config/com.enonic.xp.web.jetty.cfg

Set this if host name (or ip) needs to be fixed.
host =

Socket timeout for connections.
timeout = 60000

True to send server header.
sendServerHeader = false

True to enable HTTP connections.
http.enabled = true

Http port number to use.
http.port = 8080

Max request header size (default 32K).
http.requestHeaderSize = 32768

Max response header size (default 32K).
http.responseHeaderSize = 32768

Session timeout (when inactive) in minutes.
session.timeout = 60

Cookie name to use for sessions.
session.cookieName = JSESSIONID

Enable GZIP compression for responses.
gzip.enabled = true

Minimum number of bytes in response to consider compressing the response.
gzip.minSize = 16

True to enable request logging.
log.enabled = false

Request log file.
log.file = ${xp.home}/logs/jetty-yyyy_mm_dd.request.log

True to append to the file, or create new one when started.
log.append = true

True to use extended format.
log.extended = true

Timezone to display timestamp in.
log.timeZone = GMT

Number of days to retain the logs.
log.retainDays = 31

Media Configuration

If you need extra media-type (MIME type) mappings you can add them
in com.enonic.xp.media.cfg.

$XP_HOME/config/com.enonic.xp.media.cfg

Media type mappings
ext.mp3 = audio/mpeg3
ext.p = text/x-pascal

OSGi Shell Configuration

To enable or configure OSGi shell, use com.enonic.xp.server.shell.cfg file.

$XP_HOME/config/com.enonic.xp.server.shell.cfg

#
Remote shell configuration
#

enabled = false
telnet.ip = 127.0.0.1
telnet.port = 5555
telnet.maxConnect = 2
telnet.socketTimeout = 0

DoS Filter Configuration

The DoS (denial of service) filter can be configured using
com.enonic.xp.web.dos.cfg file.

$XP_HOME/config/com.enonic.xp.web.dos.cfg

Enable dos filter (true/false)
enabled = false

Maximum number of requests from a connection per second. Requests in excess of this are first delayed, then throttled.
maxRequestsPerSec = 25

Delay imposed on all requests over the rate limit. -1 = reject request, 0 delay.
delayMs = 100

Length of time, in ms, to blocking wait for the throttle semaphore.
maxWaitMs = 50

Number of requests over the rate limit able to be considered at once.
throttledRequests = 5

Length of time, in ms, to async wait for semaphore.
throttleMs = 30000

Length of time, in ms, to allow the request to run.
maxRequestMs = 30000

Length of time, in ms, to keep track of request rates for a connection, before deciding that the user has gone away, and discarding it.
maxIdleTrackerMs = 30000

If true, insert the DoSFilter headers into the response.
insertHeaders = true

If true, usage rate is tracked by session if a session exists.
trackSessions = true

If true and session tracking is not used, then rate is tracked by IP+port (effectively connection).
remotePort = false

A comma-separated list of IP addresses that will not be rate limited.
ipWhitelist =

Market Configuration

The market-place for installing applications can be configured using the com.enonic.xp.market.cfg file

$XP_HOME/config/com.enonic.xp.market.cfg

marketUrl = https://market.enonic.com/applications

UDC Configuration

UDC (Usage Data Collector) is collecting anonymous usage data 10 minutes
after startup and every 24 hours. It is only used for finding out what platforms
to focus on and improve platform stability. To switch this off, you can
configure it sing the com.enonic.xp.server.udc.cfg file

$XP_HOME/config/com.enonic.xp.server.udc.cfg

#
Set to false to disable usage data collector (UDC)
#
enabled = true

Standard ID Provider

Standard ID Provider, in charge of the login for admin by default, has a “Create Admin User” mode for new installations under specific conditions.
When this mode is enabled, you also have the possibility to postpone the admin user creation and login without a user.
You may turn off this capability.

$XP_HOME/config/com.enonic.xp.app.standardidprovider.cfg

Set to false to disable the "login without user" capability of the Admin User Creation mode
loginWithoutUser = true

 Cluster Deployment

Cluster Deployment

Introduction

Consider deploying an XP cluster if you are building applications or sites that require

	High availability

	High performance

	Both above

A clustered deployment of Enonic XP enables you to distribute load across servers (aka nodes) and at the same time increased resilience.
If one node fails the rest of the cluster will still be running and keep your services available.

Ways to Cluster

The minimal and simplest cluster deployment is three nodes - identically configured.
However There are many available configurations when deploying a cluster, here are some factors to consider

	Dedicated nodes for specific sites or services

	Dedicated admin nodes

	Dedicated storage nodes

	Dedicated master nodes

Attention

Clusters with a paired number of nodes should be avoided due to the so-called split-brain scenario - discussed further below.

System Requirements

Enonic XP clusters have minimal requirements to infrastructure, it needs:

	Distributed (or shared) filesystem

	Load balancer - to make sure traffic is routed to different nodes

[image: ../_images/logical-cluster.png]
These components are standard ingredients in modern clouds and they are readily available as software as well.
An XP cluster can also be launched on a single computer for testing or development purposes.

Basic cluster setup on local machine

We have strived to make Enonic XP deployment as simple and fail-safe as possible. By default it is configured to run on a local computer and it
will not start looking for nodes in the network until you configure it to do so.

To test a cluster on your local machine, you need to do the following:

	Get two XP installations: Download an $XP_DISTRO and copy it to a second $XP_DISTRO folder.

Typically, you will already have an XP-installation by now, so just copy the $XP_DISTRO folder to make another node.

	Share data: Prepare a common place for storing data and configure both XP instances:

In $XP_DISTRO/home/config/com.enonic.xp.blobstore.file.cfg set the following property to point to a common directory:

baseDir = /some/common/path

	Give each node its own HTTP-port: Since you will run two nodes on the same machine, you also need to set two different HTTP-ports to be able to run two instances at once:

In $XP_DISTRO/home/config/com.enonic.xp.web.jetty.cfg set the following property to different values for the two nodes, typically 8080 and 8090

http.port = somePort

	Enable clustering: In $XP_DISTRO/home/config/com.enonic.xp.cluster.cfg set the property node.local to false

cluster.enabled = true

	Open ElasticSearch ports: In $XP_DISTRO/home/config/com.enonic.xp.elasticsearch.cfg set the properties transport.tcp.port and discovery.unicast.port to a range, e.g 9300-9301

transport.tcp.port = 9300-9301
discovery.unicast.port = 9300-9301

	Open Ignite ports: In $XP_DISTRO/home/config/com.enonic.xp.ignite.cfg set the property discovery.tcp.port.range, e.g 2

discovery.tcp.port.range = 2

	Start your cluster: Start both nodes by their respective bin/server.sh or bin\server.bat. They will connect and you should have a live cluster on your machine. You can check the current cluster info at:

http://localhost:8080/status/cluster

Note

By default, if no XP_HOME environment variable is set, the XP_HOME used is the one located in the XP_DISTRO/home folder which will work
nicely for the above example. If you have set XP_HOME in the shell where you try to start the server, this will override the default settings.
So for the above test, unset the XP_HOME variable if needed:

unset XP_HOME

Cluster configuration

There are a well of options at your disposal to configure and tune the cluster behavior. See Elasticsearch configuration for a subset of the available settings.
All settings referred to in this chapter are set in $XP_HOME/config/com.enonic.xp.elasticsearch.cfg unless otherwise specified.

There are some key elements to consider when setting up a cluster:

	Set up a shared storage for the nodes -> Shared storage Configuration

	Make sure that nodes are connected -> Network configuration

	Distribute the data between the nodes -> Replica setup

	Ensure cluster data integrity -> Cluster partition settings

	Ensure cluster stability -> Cluster stability settings

	Make sure nodes recover correctly -> Node recovery settings

	Monitoring the cluster -> Cluster monitoring

	Deploying applications -> Deploying Apps in cluster

	Securing data -> Backing up a cluster

Shared storage Configuration

For now, the nodes in the cluster need a shared storage to store data as files. Setting this up is highly individual for different operating systems and infrastructures, but as a basic guideline:

	Get access to a shared or distributed file system and mount it on the nodes that will be part of the cluster

	Configure $XP_HOME/config/com.enonic.xp.blobstore.file.cfg to point to the mounted storage:

baseDir = /path/to/shared/disk/folder

Network configuration

The nodes in a cluster need to be able to discover and communicate with other nodes in the network. The nodes communicate through TCP.

Each node binds to an IP-address and port, and communicates to other nodes specified in a list of other nodes bind addresses. Verify that your network allows TCP traffic on a specific port or port-range for the nodes to communicate and then configure the nodes to use these addresses.

Settings

cluster.enabled

When this setting is false, the node will never try to join a cluster. In all cluster setups, nodes must set this to true

discovery.unicast.hosts

The discovery.unicast.hosts value contains a comma-separated list of nodes that are allowed to join the cluster. The default value for this is 127.0.0.1

network.host & network.publish.host

The network.host and network.publish.host settings specify the TCP-address used for node communication. The default value for these is 127.0.0.1, which means that this node will never be able to talk to other nodes.

These settings can be an explicit IP-address, a host-name or an alias. See the Cluster configuration section for an overview.

Sample config

discovery.unicast.hosts = 10.0.6.47,10.0.6.49,10.0.6.73
network.host = _eth0:ipv4_
network.publish.host = _eth0:ipv4_

Tip

Why aren’t my nodes connecting

The most common issue is that the node binds to a different network address than specified in the unicast list.
When a node starts, the log will show the current bind-address of the node in a message similar to this:

09:01:43.282 INFO org.elasticsearch.http - [loadtest-appserver1] bound_address {inet[/10.0.6.49:9300]}, publish_address {inet[/10.0.6.49:9300]}

Make sure that the bind-addresses match those specified in the unicast-list. If it still doesn’t work, it’s time to blame the firewall or consult the Troubleshooting

Replica setup

Number of replicas

For a cluster to perform, each node must be able to do its share of work. Enonic XP searches for data in a number of Elasticsearch indices.
An index can have a number of replicas (copies) spread around to the nodes in the cluster, so each node can query its local index for data.

The indices in Enonic XP have one replica configured by default. When a cluster has more than two nodes, this number must be increased to ensure that each node has a replica of the indices.

The number of replicas can be set at runtime with the Toolbox CLI set-replicas, and the recommended settings for replicas is number of nodes - 1

So for a 3 node cluster, the number of replicas should be set to 2.

Cluster partition settings

One of the main motivations of a cluster is to ensure that even if one or several nodes fail, the service you are providing should still be
available. In an ideal world, a 100 node cluster should be fully operational even if 99 nodes are down. But in the real world, we also need
to consider the cluster data integrity. This introduces a common dilemma in clustered environments; how to avoid the dreaded split-brain situation.

In a split-brain scenario, nodes get divided into smaller clusters that don’t communicate with each other, and each cluster believing that
the nodes in the other cluster are dead. This can easily happen in a cluster with 4 nodes on two different locations:

If the nodes on location-1 are disconnected from the master node on location-2, they will regroup and select a new master on location-1 and
still provide service. The nodes on location-2 will assume that the nodes in location-1 are dead, so they will also continue serving
requests. but they have no way of synchronizing data between the locations. This will break the integrity of the cluster and make data invalid.

To avoid this situation, there are a couple of basic properties of a cluster that should be ensured:

	Beyond a two node cluster, there should be an odd number of nodes. So 1,2,3,5,7 etc are all acceptable cluster configurations.

	When nodes are forming separate smaller clusters, only the cluster-partition with the majority of nodes should be fully operational and accept writes.

	The minority cluster partitions can be allowed to serve read-only requests if that is acceptable for the provided service.

Settings

discovery.zen.minimum_master_nodes

This is the most important setting to set correctly to ensure cluster data integrity. A node will not accept requests before the number of
‘minimum_master_nodes’ are met. For instance, in a 3 node cluster with 3 master nodes and ‘minimum_master_nodes’ setting of ‘2’, imagine
that one of the nodes loose connection to the two other nodes. This node will only see one possible master node (itself) and will not accept
requests. The remaining two other nodes will still work, and when the lost node reconnects again, it will get the fresh data from the other
nodes and rejoin the cluster.

Important

As a rule of thumb, this setting should be set to N/2+1, where N is the total number of nodes. So for a 5 node cluster,
discovery.zen.minimum_master_nodes = 5/2+1 = 3 (rounding down to the nearest integer)

So what about a 2 node cluster? It will be impossible to avoid a possible split-brain scenario with this setup. It’s highly recommended to
add one node as a tie-breaker. This node may act as a dedicated master node (with node.data = false, see Cluster stability settings)
which enables it to run on reduced hardware since it will not handle any external requests.

A common practice for increased stability is setting up dedicated master nodes.
These nodes will then never be affected by traffic peaks and can safely keep track of the cluster state.

Tip

Why nodes leave the cluster

There are 2 main reasons why cluster nodes leave the cluster

	Network failure

	Node not responding

Network failures

Network failures are the main reason for cluster stability-issues. The problems could have any number of reasons, from a router breaking
down to complex scenarios where e.g a firewall cuts the connection in one direction between two nodes

Node not responding

If a node does not get a response on a ping to the master node within a set timeout, it will consider it as dead and invoke an election
process. Likewise, the master node expects that a slave node will respond within a certain amount of time. This is usually caused by a
node doing a stop-the-world garbage collection, and not being able to respond to the request at all for a period of time.

Cluster stability settings

In a low load environment, there is probably no need to do a lot of tuning since it will perform acceptable with the default setup. If you
expect heavy load, there are a couple of things to consider when setting up the cluster topology.

Dedicated master nodes

A cluster consists of a number of nodes sharing data and state between them. A cluster needs to have exactly one node acting as a master-node
at any time. The master-node is responsible for managing the cluster-state. In a busy cluster, the master-nodes will have to do a lot of work
to ensure that all other nodes get the needed information.

Since the cluster stability depends on a healthy master node, it may be a good idea to set aside a number of nodes as dedicated master nodes.
These dedicated master nodes should not be handling external requests, but rather concentrate on keeping the cluster nodes in sync and stable.

A node can be configured to be allowed to act as a master-node by the setting node.master.

A dedicated master node should have the following settings:

node.master = true
node.data = false

Data nodes

Data nodes are the workhorses of the cluster. They will handle the bulk load of the requests, depending on the master node to keep them in
sync. These nodes need the most memory and CPU power.

A dedicated data node should have the following settings:

node.master = false
node.data = true

Node recovery settings

Node recovery happens when a node starts or reconnects to the cluster after a e.g a network shortage.

Consider a cluster of 2 nodes. When a node starts for the first time, it will try to connect to a cluster. If no master found, it will elect
itself as master, then proceed to initialize the index-data locally. If it does find an existing master node, it will require the master to
provide it with data. This is all good, but there may occur situations where a new node in an existing cluster starts initializing data
before the nodes with existing data can inform the new node that there is already data in the cluster.

Settings

gateway.recover_after_nodes

Defaults to 1. Do not start the recovery of local indices before this number of nodes (master or data) has joined the cluster.

gateway.recover_after_master_nodes

Defaults to 0. Do not start the recovery of local indices before this number of master-nodes is present in the cluster.

Cluster monitoring

See Cluster monitoring

Deploying Apps in cluster

To deploy applications in a cluster you need to deploy the application to every node, as loading and installation of apps is done on a
per-node basis. This also means you can choose what applications to deploy on each node.

Warning

Remember that XP only supports running one version of an application at any time.
So don’t leave the old versions of your applications in the deploy directory.

Backing up a cluster

Backing up a cluster is done in the same way as backing up a single node installation, the only difference is that the
snapshots.dir-option should point to a shared file system location, see Storage Configuration.

	First, on any cluster node, take a :toolbox-snapshot of the indices. This will store a cluster-wide snapshot of all data at a point
of time. This can be configured to run as an automatic job; Only the diff from the last snapshot will be stored, so the operation is quick.

	Second, take a file copy of your blobstore.

We recommend uisng incremental backup for the blobstore (rsync or similar) as this will only copy the recently changed files.
The combined data from the snapshots and blobstore copy is all you need in order to restore Enonic XP.

Sample configurations

3-node cluster

$XP_HOME/config/com.enonic.xp.cluster.cfg

cluster.enabled = true
discovery.unicast.hosts = <node1Address>,<node2Address>,<node3Address>
network.host = _en0_
network.publish.host = _en0_

$XP_HOME/config/com.enonic.xp.elasticsearch.cfg

gateway.expected_nodes = 2
gateway.recover_after_nodes = 2
discovery.zen.minimum_master_nodes = 2

5-node cluster

$XP_HOME/config/com.enonic.xp.cluster.cfg

cluster.enabled = true
discovery.unicast.hosts = <node1Address>,<node2Address>,<node3Address>,<node4Address>,<node5Address>
network.host = _en0_
network.publish.host = _en0_

$XP_HOME/config/com.enonic.xp.elasticsearch.cfg

gateway.expected_nodes = 3
gateway.recover_after_nodes = 3
discovery.zen.minimum_master_nodes = 3

7-node cluster with dedicated roles

$XP_HOME/config/com.enonic.xp.cluster.cfg

cluster.enabled = true
discovery.unicast.hosts = <node1Address>,<node2Address>,<node3Address>,<node4Address>,<node5Address>,<node6Address>,<node7Address>
network.host = _en0_
network.publish.host = _en0_

$XP_HOME/config/com.enonic.xp.elasticsearch.cfg

NODE1 - NODE-3 dedicated masters

node.master = true
node.data = false

gateway.recover_after_master_nodes = 2
discovery.zen.minimum_master_nodes = 2

NODE4 - NODE-7 dedicated data nodes

node.master = false
node.data = true

gateway.recover_after_master_nodes = 2
discovery.zen.minimum_master_nodes = 2

 Reverse Proxy Servers

Reverse Proxy Servers

A common and recommended way to deploy Enonic XP is by using reverse proxy servers.
Adding this layer of services to your network provides additional flexibility beyond what is offered directly by XP.
Some potential benefits are:

	Vhost routing to XP and other systems

	Additional network security

	Certificate and HTTPS handling

	URL rewriting

	Load balancing

	Resource caching

	Logging

	and more

Below we describe how to configure popular web servers as proxies in front of a single Enonic XP node.

Apache

Attention

	Prerequisites

	
	Apache 2.4 downloaded and running on local machine

	Enonic XP downloaded and started on local machine, using the default port 8080

Apache provides a detailed tutorial on setting up proxies here: http://httpd.apache.org/docs/2.4/howto/reverse_proxy.html

Load Mod Proxy

To get started we need to add some selected Apache Proxy Modules.

Add the following line after the other LoadModule directives in your Apache configuration aka httpd.conf

LoadModule proxy_module /usr/lib/apache2/modules/mod_proxy.so
LoadModule proxy_http_module /usr/lib/apache2/modules/mod_proxy_http.so
LoadModule proxy_wstunnel_module /usr/lib/apache2/modules/mod_proxy_wstunnel.so

Setup Apache Vhost

Apache Vhost with Proxy config

<VirtualHost *:443>

 ServerName mydomain.com
 DocumentRoot /var/www/html/

 ProxyRequests Off
 ProxyPreserveHost On

 ProxyPass /admin/event ws://localhost:8080/admin/event
 ProxyPassReverse /admin/event ws://localhost:8080/admin/event

 ProxyPass / http://localhost:8080/
 ProxyPassReverse / http://localhost:8080/

</VirtualHost>

This setup will proxy all requests directly through Apache to XP, also notice the WebSocket directive.
Enonic XP admin UI uses websockets actively, as this is not http traffic, a separate proxy needs to be configured.

Nginx

Work in progress

 Monitoring

Monitoring

We provide some basic metric tools for monitoring which are easily accessed in
a simple JSON format. To access the monitoring JSON feed you can point to
the following url:

http://localhost:8080/status

This will give you a list of status-reporters. Each reporter has a name and
can be accessed using the following pattern:

http://localhost:8080/status/<name>

Here’s a list of all the status pages and what is shows:

	cache.com.enonic.xp.webSessionCache

	Statistics about the web session cache.

	cluster.elasticsearch

	Information about the ElasticSearch cluster. Local-node and members.

	cluster.ignite

	Information about the Ignite cluster. Local-node and members.

	cluster.manager

	Information about the state of the clusters: elasticsearch and ignite

	dump.deadlocks

	This will try to detect thread deadlocks and show them if any.

	dump.threads

	Dumps all current thread-states.

	http.filter

	List of servlet filters registered. It shows class, order and the URL patterns to which it applies.

	http.servlet

	List of HTTP servlets registered. It shows class, order and the URL patterns to which it applies.

	http.threadpool

	Status of the the Jetty web server thread pool.

	http.webHandler

	List of WebHandler instances registered.

	index

	Shows ElasticSearch index status.

	jvm.gc

	Information about JVM GC status.

	jvm.info

	General JVM information (version, vendor, uptime).

	jvm.memory

	JVM memory information (heap, non-heap, pools).

	jvm.os

	Information about OS (name, version, architecture).

	jvm.properties

	Shows all JVM properties.

	jvm.threads

	JVM thread stats (count, peak, total).

	mediaTypes

	List of mappings from file extension to media type.

	metrics

	Shows metrics. The information can be filtered using ?filter=....

	osgi.bundle

	Information about all OSGi bundles.

	osgi.component

	Information about registered SCR OSGi components.

	osgi.service

	Shows all OSGi services registered.

	server

	Information about the server (version, build).

Cluster monitoring

There are multiple tools at your disposal for monitoring the health of the clusters and indices:

Cluster health

http://<host>:<port>/status/cluster.manager

To obtain a generic health check of the clusters.
It should return you a response similar to:

{
 "state": "OK",
 "clusters": [
 {
 "id": "elasticsearch",
 "enabled": true,
 "healthy": true,
 "numberOfNodesSeen": 3
 },
 {
 "id": "ignite",
 "enabled": true,
 "healthy": true,
 "numberOfNodesSeen": 3
 }
]
}

Ignite cluster health

http://<host>:<port>/status/cluster.ignite

Which should return you a response similar to:

{
 "members": [
 {
 "id": "b57aa9c3-9d1e-4fab-8e93-664fffea0472",
 "name": "af5287fc-663d-40bd-9b05-7cca59f96522",
 "local": true,
 "isClient": false,
 "isDeamon": false,
 "order": 1,
 "addresses": [
 "127.0.0.1"
],
 "hostNames": []
 },
 {
 "id": "f1fa5651-75cc-45a9-9562-9c9e032aeb30",
 "name": "01bd187e-7cd1-4a8a-ac0a-918d4e09aa64",
 "local": false,
 "isClient": false,
 "isDeamon": false,
 "order": 2,
 "addresses": [
 "127.0.0.1"
],
 "hostNames": []
 },
 {
 "id": "01c90f5d-052e-442f-b998-9b7ed567a79b",
 "name": "cf91d280-6111-47f2-8118-7d48664c3530",
 "local": false,
 "isClient": false,
 "isDeamon": false,
 "order": 3,
 "addresses": [
 "127.0.0.1"
],
 "hostNames": []
 }
],
 "localNode": {
 "id": "b57aa9c3-9d1e-4fab-8e93-664fffea0472",
 "numberOfNodesSeen": 3
 }
}

This view gives a brief overview of the nodes in the cluster.

ElasticSearch cluster health

http://<host>:<port>/status/cluster.elasticsearch

Which should return you a response similar to:

{
 "name": "mycluster",
 "localNode": {
 "isMaster": true,
 "id": "WT_gNgZ8SAu7GCJxvynSOg",
 "hostName": "griPortable.local",
 "version": "1.5.2",
 "numberOfNodesSeen": 3
 },
 "members": [
 {
 "isMaster": false,
 "id": "WqknPf3USg2fOnK6xGlWwA",
 "hostName": "griPortable.local",
 "version": "1.5.2",
 "address": "inet[/127.0.0.1:9301]",
 "name": "01bd187e-7cd1-4a8a-ac0a-918d4e09aa64",
 "isDataNode": true,
 "isClientNode": false
 },
 {
 "isMaster": false,
 "id": "xDwdxa37SUy6AHPz6hMZMA",
 "hostName": "griPortable.local",
 "version": "1.5.2",
 "address": "inet[/127.0.0.1:9302]",
 "name": "cf91d280-6111-47f2-8118-7d48664c3530",
 "isDataNode": true,
 "isClientNode": false
 },
 {
 "isMaster": true,
 "id": "WT_gNgZ8SAu7GCJxvynSOg",
 "hostName": "griPortable.local",
 "version": "1.5.2",
 "address": "inet[/127.0.0.1:9300]",
 "name": "af5287fc-663d-40bd-9b05-7cca59f96522",
 "isDataNode": true,
 "isClientNode": false
 }
],
 "state": "GREEN"
}

This view gives a brief overview of the nodes in the cluster. For convenience, the current local node to which the request was made has a
separate entry in addition to being in the list of members.

The “state” property is the most important:

	Green: Cluster is operational and all configured replicas are distributed to a node

	Yellow: Cluster is operational, but there are replicas that are not distributed to any node

	Red: Cluster is not operational

To see the details about how the replicas are distributed, let’s continue to the Index stats report:

Index stats

http://<host>:<port>/status/index

Which should give you a response like this:

{
 "summary": {
 "total": 8,
 "started": 8,
 "unassigned": 0,
 "relocating": 0,
 "initializing": 0
 },
 "shards": {
 "started": [
 {
 "id": "search-cms-repo(0)",
 "nodeId": "xDwdxa37SUy6AHPz6hMZMA",
 "nodeAddress": "192.168.1.5",
 "type": "REPLICA"
 },
 {
 "id": "search-cms-repo(0)",
 "nodeId": "WT_gNgZ8SAu7GCJxvynSOg",
 "nodeAddress": "192.168.1.5",
 "type": "PRIMARY"
 },
 {
 "id": "search-system-repo(0)",
 "nodeId": "xDwdxa37SUy6AHPz6hMZMA",
 "nodeAddress": "192.168.1.5",
 "type": "PRIMARY"
 },
 {
 "id": "search-system-repo(0)",
 "nodeId": "WqknPf3USg2fOnK6xGlWwA",
 "nodeAddress": "192.168.1.5",
 "type": "REPLICA"
 },
 {
 "id": "storage-system-repo(0)",
 "nodeId": "WT_gNgZ8SAu7GCJxvynSOg",
 "nodeAddress": "192.168.1.5",
 "type": "REPLICA"
 },
 {
 "id": "storage-system-repo(0)",
 "nodeId": "WqknPf3USg2fOnK6xGlWwA",
 "nodeAddress": "192.168.1.5",
 "type": "PRIMARY"
 },
 {
 "id": "storage-cms-repo(0)",
 "nodeId": "WT_gNgZ8SAu7GCJxvynSOg",
 "nodeAddress": "192.168.1.5",
 "type": "PRIMARY"
 },
 {
 "id": "storage-cms-repo(0)",
 "nodeId": "WqknPf3USg2fOnK6xGlWwA",
 "nodeAddress": "192.168.1.5",
 "type": "REPLICA"
 }
],
 "unassigned": [],
 "relocating": [],
 "initializing": []
 }
}

This gives an overview of how the indices are distributed and what state the index parts (shards) are currently in. A shard could be
either PRIMARY or REPLICA (copy of a primary shard). These are the possible states:

	total: Total number of index parts (e.g two repositories with two indices with one replica for each index)

	started: Shards that are currently assigned to a node

	unassigned: Shards waiting to be distributed to a node. Typically a setup with a number of replicas where one or more nodes are not running

	relocating: Shards that are currently moving from one node to another

	initializing Shards that are currently being recovered from disk at startup.

The shards section gives a more detailed overview on the shard distribution.

 Install as service

Install as service

When installing Enonic XP on a standard production server, you will want to set it up to run as a service.

First, make sure the correct version of Java is installed on your system. See Install Java for guidance.

Linux

Install with script

Attention

The script is written for and tested on Ubuntu / CentOS. For other distrubutions, the manual installation may be neccessary.

	Prerequisites

	
	User with sudo rights

	Java JRE 1.8+ installed

	/lib/lsb/init-functions installed

	Download the Enonic XP distribution

	Unzip the distributiopn

	Run script: sudo ./enonic-xp-6.15.12/service/install_service.sh

	Optional: Set JAVA_HOME and JAVA_OPTS variables in /etc/xp.conf

	Start service: sudo service xp start

	Check log: sudo tail -f /home/xp/enonic/xp/logs/server.log

Manual installation

See Linux install as service detailed

Windows

Info on running XP as a service in windows will come later.

 Backup and Restore

Backup and Restore

Backing up your data is vital for any installation.

All the data in an Enonic XP installation is stored in $XP_HOME/repo. This directory has two folders: blob and index.

The blob folder contains all files needed by the system to manage your data, while the index folder contains the Elasticsearch index folders. These
are dependent on each other in the sense that one is not much use without the other.

That leaves us with ensuring that two elements are safely stored for retrieval in an emergency:

	$XP_HOME/repo/blobs

	$XP_HOME/repo/index

Backup vs Export

The export/import enables you to export your data to a serialized format. The serialized data could then be imported into another instance. This is very useful, but is not optimal for a backup/restore scheme since it requires some work to get things up and running again, especially when working with big installations with a lot of data. The backup/restore-process described below on the other hand, should enable a quick and safe way to get your system back to operation when in a hurry.

See Export and Import for more information on export/import.

Backing up blobs

The blobs are just files on a filesystem. This should be backed up by your preferred way of doing file-backups.

The folder to backup is:

	$XP_HOME/repo/blobs

Backing up indexes

Backing up the indices is a bit more complex than just copying the index-folder since it involves floating data with state, especially in a
clustered environment. To help you out, we have a snapshot-API. A snapshot is exactly that; a snapshot of the indices state at a point of time.
There are 4 rest-resources at your disposal.

	http://<your-installation>/admin/rest/repo/snapshot

	Stores a snapshot of the current indices state.

	http://<your-installation>/admin/rest/repo/list

	Returns a list of available snapshots for the installation.

	http://<your-installation>/admin/rest/repo/restore

	Restore a snapshot of the indices state.

	http://<your-installation>/admin/rest/repo/delete

	Deletes a snapshot or a group of snapshots.

Snapshot

The snapshot rest-service accepts a JSON in this format:

{
 "repositoryId": "<repository-id>"
}

A snapshot of the given repository will be created for later retrieval. Each subsequent snapshot will store the changes between this snapshot
and the last snapshot of the given repository. This means that only changed data are stored when doing subsequent snapshots. The default
location where snapshots are stored is $xp_home/snapshots. A name of the snapshot will be given at snapshot-time, and returned in the
snapshot-result.

To ease the process, we have provided a snapshot tool.

Restore

The restore rest-service accepts a JSON in this format:

{
 "snapshotName": "<snapshot-name>",
 "repository" : "<repository-id>"
}

The indices will be closed for the duration of a restore operation, meaning that no request will be accepted while the restore in running.
To ease the process, we have provided a restore tool.

Warning

Restoring a snapshot will restore data to the exact state of the indices at the
snapshot-time, meaning all other changes will be lost.

Delete

The delete rest-service accepts a JSON in this format:

{
 "snapshotNames": ["name1", "name2"],
 "before" : "<timestamp>"
}

Deletes either all snapshots before timestamp, or given snapshots by name. To ease the process, we have provided a
delete-snapshots tool.

 Export and Import

Export and Import

Exporting and importing data in your Enonic XP installation is useful both for securing data and migrating between installations.
Enonic XP ships with a set of tools (Toolbox CLI) to ease the operation of exporting and importing data from the system.

Caution

At the moment, exporting and importing data can only be done to and from files on the
same server running Enonic XP.

Content Export/Import vs System Dump/Load

Both enable you to export your data to a serialized format and import the serialized data into another instance.
But, while the export/import focuses on a given content, the dump/load is used to export an entire system (all repositories and branches).
This is used, for example to migrate between systems or perform upgrade scripts.
Dump and Load also supports dumping complete version history and branches.

Content Export

The export operation will extract data for a given content URL and store it as XML
in a sub-folder under $XP_HOME/data/export.
The REST service for export is found at the following URL:

http://<host>:<port>/api/repo/export

The export REST service accepts a JSON in this format:

{
 "sourceRepoPath": "<source-repo-path>",
 "exportName": "<name>",
 "exportWithIds": <true|false>,
 "dryRun": <true|false>
}

To ease the process, we have provided an export tool.

Content Import

The import will take data from a given export directory and load it into Enonic XP at the
desired content path. The REST service for import is found at the following URL:

http://<host>:<port>/api/repo/import

The import REST service accepts a JSON in this format:

{
 "exportName": "<name>",
 "targetRepoPath": "<target-repo-path>",
 "importWithIds": <true|false>,
 "importWithPermissions": <true|false>,
 "dryRun": <true|false>
 "xslSource": "<xsl-file-path>"
 "xslParams": {
 "<name>": "<value>"
 }
}

To ease the process, we have provided an import tool.

Content Export data structure

Let’s look at how this works. The following structure will be exported:

[image: ../_images/export-source.png]
Run the export command:

$./toolbox.sh export -a su:password -s cms-repo:draft:/ -t myExport

Below is the resulting structure in the export folder $XP_HOME/data/export/myExport:

./content
./content/_
./content/_/node.xml
./content/demo-site
./content/demo-site/_
./content/demo-site/_/manualChildOrder.txt
./content/demo-site/_/node.xml
./content/demo-site/_templates
...
./content/demo-site/case-studies
./content/demo-site/case-studies/_
./content/demo-site/case-studies/_/node.xml
./content/demo-site/case-studies/a-demo-case-study
...
./content/demo-site/case-studies/a-demo-case-study/enonic man.png
./content/demo-site/case-studies/a-demo-case-study/enonic man.png/_
./content/demo-site/case-studies/a-demo-case-study/enonic man.png/_/bin
./content/demo-site/case-studies/a-demo-case-study/enonic man.png/_/bin/Enonic man.png
...
./content/demo-site/case-studies/powered-by-sites
...
./content/demo-site/contact-enonic
...

	content

	The base folder of the export. All content in cms-repo
has this as root path.

	content/_

	All folders named _ are system folders for the data at the
current level.

	content/_/node.xml

	The definition of the node, e.g. all data for the current node

	content/demo-site

	This is the site from the screenshot above.

	content/demo-site/_/manualChildOrder.txt

	Our demo-site has manually ordered children, this file contains an
ordered list of children.

	content/demo-site/case-studies

	This ‘case-studies’ content is the first element in the site.

	content/demo-site/case-studies/a-demo-case-study/enonic man.png/_/bin

	The A demo case study content has a binary attachment called
Enonic man.png. The folder _/bin contains the actual binary files.

Changing export data

It is possible to make manual changes to the exported data before importing.

Using the above export as an example, the demo-site displayName can be changed to something more suitable:

myExport $ vi content/demo-site/_/node.xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<node xmlns="urn:enonic:xp:export:1.0">
 <id>2dfbdc41-af98-4b3c-a2a9-9dc4814d003a</id>
 <childOrder>_manualordervalue DESC</childOrder>
 <nodeType>content</nodeType>
 <data>
 <boolean name="valid">true</boolean>
 <string name="displayName">My much nicer demo-site!</string>
 <string name="type">portal:site</string>
 <string name="owner">user:system:su</string>

After some data has been changed, it can be imported again:

$./toolbox.sh import -a su:password -s myExport -t cms-repo:draft:/

[image: ../_images/import-result.png]

Caution

Editing exported data is experimental at the moment and will potentially cause trouble if not
done carefully. For exports without ids, references will be broken and must be fixed manually. When
importing with ids onto existing data, renaming and changing manual order will not yet
work as expected.

System Dump

The dump operation will extract data from your entire system and store it as XML in a sub-folder under $XP_HOME/data/dump.
The REST service for export is found at the following URL:

http://<host>:<port>/api/system/dump

The dump REST service accepts a JSON in this format:

{
 "name": "<dump-name>"
}

To ease the process, we have provided a dump tool.

System Load

The load operation will take data from a given dump directory and load it into Enonic XP.
The REST service for load is found at the following URL:

http://<host>:<port>/api/system/load

The export REST service accepts a JSON in this format:

{
 "name": "<dump-name>"
}

To ease the process, we have provided a load tool.

 Troubleshooting

Troubleshooting

This document is an up-to-date list of known problems (and how to fix them)
for our current release and development releases.

Wrong Java version

Verify that Java 1.8 (update 92 or higher) is installed and that this version is actually used.

Run java -version in the shell where you attempt to start Enonic XP:

$ java -version
java version "1.8.0_92"
Java(TM) SE Runtime Environment (build 1.8.0_92-b14)
Java HotSpot(TM) 64-Bit Server VM (build 25.92-b14, mixed mode)

The boot log will also output the version of Java that was actually used.

If the Java version does not match your expected version, make sure that the JAVA_HOME environment variable is set correctly.
For OS X and Linux users - execute the following in your command line:

export JAVA_HOME=`/usr/libexec/java_home -v 1.8`

Optionally add the line to your ~/.properties file to make the change persistent.

Check the Troubleshooting Java page for more Java help.

Port 8080 already taken

A lot of different web software defaults to port 8080. If you find that the log
is complaining about this, simply identify the other software you have running on this port
and stop it.

If shutting down other software that uses port 8080 is not an option, you may set a different port for Enonic XP. See Configuration.

Unexpected behavior

While frequently redeploying an app during development, some instability or unexpected behavior may be noticed. This can be caused by
certain changes to the app files. For example, changing the app name in the build.gradle file, or deleting content import node.xml files.
When this occurs, the project may need a clean build gradle clean build. Sometimes the app JAR file may need to be deleted from the
$XP_HOME/deploy directory as well, and then replaced with the clean build JAR file.

Having two versions of the same app in the $XP_HOME/deploy folder will cause problems.

Cannot login after install

There could be a problem with file permissions on Windows if Enonic XP was unzipped and started from within the “My Documents” folder. This
may allow XP to start, but the users cannot log in. The solution would be to unzip the Enonic XP distribution outside of the “My Documents”
folder, or to manually change the file permissions.

Sending email with lib-mail not working

Check the installation’s Mail Configuration.

 Troubleshooting Java

Troubleshooting Java

Important

This documentation is based on OSX, Windows version coming later..

Check current JDK version

To see all installed JDK’s on you environment, if any, type the following command in your terminal:

~/ $ /usr/libexec/java_home -V
Matching Java Virtual Machines (4):
 1.8.0_45, x86_64: "Java SE 8" /Library/Java/JavaVirtualMachines/jdk1.8.0_45.jdk/Contents/Home
 1.8.0_40, x86_64: "Java SE 8" /Library/Java/JavaVirtualMachines/jdk1.8.0_40.jdk/Contents/Home
 1.8.0_20, x86_64: "Java SE 8" /Library/Java/JavaVirtualMachines/jdk1.8.0_20.jdk/Contents/Home
 1.7.0_67, x86_64: "Java SE 7" /Library/Java/JavaVirtualMachines/jdk1.7.0_67.jdk/Contents/Home
~/ $

Enonic XP run on Java 8 only, using update 92 or later. If you have a Java 8 JDK equal to or above version 1.8.0_92, but the
javac -version points to another version, proceed to set the JAVA_HOME environment variable correctly.

Setting JAVA_HOME

If you don’t have a Java 8 JDK equal to or above version 1.8.0_92, you must install a newer version.

	Go to the JDK page [http://www.oracle.com/technetwork/java/javase/downloads/index.html] and look down the page for the Java 8 section.
The download button for the JDK, will download the latest version for Java 8.

	Follow the installation instructions [http://docs.oracle.com/javase/8/docs/technotes/guides/install/install_overview.html].

	After installation, proceed to check that the JAVA_HOME environment variable is set correctly.

To check the current JAVA_HOME environment variable:

~/ $ echo $JAVA_HOME
/Library/Java/JavaVirtualMachines/jdk1.8.0_131.jdk/Contents/Home
~/ $

If this is not set correctly, you must set the correct one either for this terminal session, or in your .profile or .bashrc for all
terminal sessions.

	To set the correct JAVA_HOME for the current terminal session; invoke the following command in your terminal. This command will set
JAVA_HOME to the newest installed 1.8 JDK-version:

~/ $ export JAVA_HOME=`/usr/libexec/java_home -v 1.8`

	To set for all terminal sessions, add the entry to either your ~/.bash_profile or ~/.profile.

$ vim .bash_profile

export JAVA_HOME=$(/usr/libexec/java_home -v 1.8)

$ source .bash_profile

$ echo $JAVA_HOME
/Library/Java/JavaVirtualMachines/1.8.0_131.jdk/Contents/Home

 Admin Guide

Admin Guide

This documentation describes the various administrative tools that are included in Enonic XP by default.

When visiting the Enonic XP admin interface - you will be required to log in.
For new installations and unless configured otherwise, you will first have to create the admin. user.

[image: ../_images/login-page.png]

Language

The tools of the admin console have been translated to the following languages:

	English

	French

	Norwegian

	Polish

	Portuguese

	Russian

	Spanish

	Swedish

When using the admin console, your browser settings will be checked. If your preferred language is one of the above, it will be used.
If your preferred language is not in the list, the admin console will default to English.

If you know a language that is not supported, we would greatly appreciate help with translating the admin console to more languages.
Please checkout out our guide on Contributing to Translations.

The tools:

	Home

	Content Studio

	Applications

	Users

 Home

Home

Upon successful login, user is redirected to the Home page. The collapsible Launcher Panel will automatically expand from the right-hand side.

The icons on the Dashboard can be used for the following:

	XP Tour starts interactive welcome guide through the main sections of the Enonic XP

	About opens dialog with current version of XP and a few helpful links

	Docs opens latest Enonic documentation

	Discuss opens Enonic forum where you can send questions to Enonic team

	Market opens Enonic market where you can download apps, widgets etc. for the Enonic XP

Future releases will include more functionality for the Home Tool.

[image: ../_images/start-page.png]

Launcher panel

The Launcher panel lists the installed admin tools in alphabetical order. These will open in a new tab when selected, but a long
left-click will open the selected tool in the same tab. The bottom of the Launcher Panel shows current user and the logout button.

Tip

Admin tools are user-definable. Read more about how to create your own Admin Tools.

 Content Studio

Content Studio

The Content Studio is the Web CMS interface of Enonic XP. It is used for managing and publishing content. It also provides the tools for
building and extending web applications from the components of the installed apps.

Opening the Content Studio reveals the Browse View with a menu bar, content tree grid, preview panel and details panel. The Edit
view appears when content is created or edited and will open in a new browser tab. All actions and features will be described in the following pages.

Hint

The Content Studio is fully responsive, so panels may stack or collapse if the screen is small or narrow. This
documentation will assume a large desktop view.

[image: ../../_images/content-studio.png]

	Browse View

	Content Editor

	Publishing Issues

	Content Types

	Actions

	Keyboard shortcuts

 Browse View

Browse View

The Browse view is the default page of the Content Studio. It consists of a menu bar on top and two or three panels below it. On the
left is the Content tree grid where all the sites and content can be found. To the right of the tree grid is the Preview panel
which displays a preview of the selected content. On the far right is the Detail panel that may be toggled on and off with the [image: detailicon] icon
in the top right corner.

[image: ../../_images/content-studio.png]

	Toolbar

	Search Panel

	Content tree grid

	Preview panel

	Detail panel

	Widgets

 Toolbar

Toolbar

The toolbar in the browse view has buttons for the following actions: New, Edit, Delete, Duplicate, Move, Sort, Preview and Publish. These options are also
available in the context menu that appears when right-clicking on a content item in the tree grid panel.

[image: ../../_images/toolbar.jpg]

	New: Opens the New dialogue for creating new content.

	Edit: Opens the content for editing in a new browser tab. See Content Editor.

	Delete: Opens the Delete item dialogue for the selected content. Read about Delete.

	Duplicate: Makes a copy of the selected content. See Duplicate.

	Move: Opens the Move item with children dialogue. See Move.

	Sort: Opens the Sort items dialogue where child items of the selected content can be sorted. See Sort.

	Preview: Opens the selected content in preview mode, in a new browser tab. If more than one content is selected, each will open in
its own tab. Only content that has a supporting page template can be previewed. Read more about Page Templates.

	Publish: Opens the Publishing Wizard dialogue. Read more about Publish.

	Unpublish: Opens the Unpublish Wizard dialogue for taking the item offline.

 Search Panel

Search Panel

The search panel can be toggled with the magnifying glass icon at the far left of the menu bar. When opened, it has a text search field and
categories to limit search results by Content Types and Last Modified. All content will match an empty search field.

[image: ../../_images/search-panel1.jpg]
Search results are instantly updated in the tree grid as search parameters are changed. Children of matching content will also exist in the
tree grid but won’t be visible unless the parent is expanded with the triangle.

The number of hits will appear below the search field, along with a Clear button that will remove all search parameters.

Each content type that has at least one matching content will appear in the Content Types list with the number of matches in parenthesis ().
Checking the box next to a content type will remove the results that do not match that type. Multiple content types can be “checked”.

The Last Modified list works in a similar manner. It is used to limit results to content that has been modified in the last month, week, day
or hour. This list may not appear if other search parameters have limited results to content that was modified more than a month ago.

Tip

Search results remain in the tree grid when the search panel is closed. Don’t forget to clear the search when finished with it.

 Content tree grid

Content tree grid

The content tree lists all the content that the logged in user has read access to. Content can be organized and stored in a hierarchy with
child content collapsed under parent content. Parent content will have a gray triangle to the left of the content icon that can be clicked
to expand or collapse the view of its children. The content tree can also be navigated with the keyboard arrow keys. The top of the content
tree has buttons to select all displayed content, clear selected content and refresh the tree.

[image: ../../_images/content-tree-grid.png]
Information about the content is displayed in three columns. The first column has an icon based on the type of content. A gray triangle will
appear to the left of the icon if the content has children content. The first column also has a display name and under this is the path
name. The URL path to any content can be determined by following the tree grid path names from parent to child. The second column shows the
status of the content which will be Offline, Online or Modified. The third column shows the date that content was last modified.

If current user has only read access to a content item, such item will be slightly dimmed in the grid.

Checkboxes to the left of each content in the tree can be used to select more than one content.
The checkbox in the toolbar will select/deselect all content.
Group actions available in the menu bar will be performed on all the selected content.
Some actions can only be performed on one content at a time.

Double-click on a content item will open it for edit in a new browser tab.

Right-click on a content item will expand its context menu.

 Preview panel

Preview panel

A preview of the selected content appears in the right-hand panel of the Browse View if page template supports the type of content selected. This
is a working preview so links will take you to other pages and highlight the new page content in the content tree grid. The Preview
button in the toolbar will open the page in a new browser tab. When more than one content is selected in the content tree grid, the preview
panel is replaced with a list of all selected content items. If preview is for some reason unavailable the panel will indicate the reason with a message.

Note

Only the Draft version of content is visible in the preview panel.

Preview panel has a toolbar which shows status and last modifier of the content, as well as the list of open publishing issues the content is currently a part of. The newest issue
is shown by default and the entire list can be expanded via dropdown. Clicking on the issue name will open the Issue Details dialog.

[image: ../../_images/preview-toolbar.png]

 Detail panel

Detail panel

The detail panel displays built-in and custom widgets with information about the content, selected in the tree grid.
To see it, click the [image: detailicon] button in the top right corner. This reveals the panel selector, which by default show details about
the content. The details are split into several boxes that show:

	Icon, name and path of selected content

	Content status (Online, Offline, or Modified)

	Permissions: The permissions section has three parts. First it shows an unlock icon [image: unlockicon] if the content has the role Everyone, which means the content is viewable without authentication. Second, it lists the users that have access to the selected content at each access level, for example, “Can Read” or “Full Access”. Third, it has a link to edit permissions if the logged in user has the Content Manager Administrator role or other applied permissions to edit the content.

	Basic information about the selected content, including type, application, language, owner, timestamps and ID

	Rendering Mode, which reveals if the content is rendered by a custom built page, a specifically selected page template, or an automatically selected page template.

	File attachments

[image: ../../_images/content-detail-panel.png]

Widget selector

The dropdown menu on the top is a widget selector control with the installed widgets listed. In addition to the Details widget,
the Version history and Dependency widgets are built-in.
Others can be added with the Applications admin tool.
When a widget is selected, everything below it in the details panel is replaced with
whatever the widget is designed to display. To the left of the widget selector the [image: detailicon] button is available to hide the detail panel.

[image: ../../_images/widget-selector.png]

Tip

Widgets are user-definable. Read more about how to create your own Widgets.

 Widgets

Widgets

Widgets are apps that add functionality to the Content Studio. As of version 6.15, there are three built-in widgets. The
Detail panel was described on the previous page. Here follows descriptions of the version history and dependency widgets.
Installed widgets are listed in a dropdown selector at the top of the panel.

Tip

Widgets are user-definable. Read more about how to create your own Widgets.

Version history

Every time a content is saved with changes, a new version is created. The Version history widget displays a list of each version for a
selected content. This widget also allows the user to switch between versions of a content.

Each version item in the list displays the name of the user who made the changes and the length of time since the change was made. If the
content has been published then the published version will be marked as “Online” with a green heading.

Selecting one of the version items will expand it to reveal the timestamp, version id, and the display name of the content.

[image: ../../_images/version-history.jpg]

Active version and online version

Every content has one active version. A published content will also have an online version. The active version is the one shown in the
preview and the one that will be loaded into the content editor when the content is edited. When a content is published, the active version
is the one that goes online so it will be both the active and online version.

The active version can be changed by restoring a different version. If the active version is older than the published version, it will be
listed as “Out-of-date”. The active version will be listed as “Modified” if it is newer than the online version.

Restoring a version

Any version can be set as the active version by selecting it and clicking the button labeled “Restore this version”. Doing so will not
change the published (online) version. This means that a previously published version of the content will remain online when a version is
restored. A content must be published before the restored (active) version goes online.

Dependencies

Content can be configured to use content of other types. For example, an article content might use a ContentSelector for adding pre-defined
categories. The dependencies widget makes it easy to find all the content that uses, or is used by, the selected content.

Select the Dependencies widget in the details panel and then select a content in the tree grid. The icon, name, and path of the selected
content will appear in the center of the details panel. An icon for each type of inbound dependency is listed at the top-left. Icons for
each type of outbound dependency are listed at the bottom-right. Next to each content type icon is the number of dependent items of that
type.

[image: ../../_images/dependencies-widget.jpg]
Inbound dependencies are other content items that use the selected content. Outbound dependencies are the content items that are
used by the selected content. For example, the image above shows a Post content named March Madness. This Post has five inbound Comment
items that reference the March Madness post. The Post itself references one image content, one Author content, and two Category contents.
Therefore, the image, Author and Categories are outbound.

Inbound and outbound content can be viewed by clicking the respective buttons at the top and bottom of the dependencies widget. This will
open the search panel on the left and filter the tree grid to show only the selected dependency type.

 Content Editor

Content Editor

The Content Editor opens in a new browser tab from the Browse View when a content is created or edited. Multiple content
tabs can be open at the same time. Clicking on the Content Studio tree icon in the top left corner will open Browse View
in a new browser tab. User will get a browser warning upon trying to close a tab with modified but unsaved content.

The edit view consists of several parts. On the left is the Content Form. If content is editable, the Page Editor will
automatically open on the right. Expandable Context Panel and Components Panel can be open from inside the Page Editor.
Inspection panel will be placed to the right of the Page Editor or expand over it, based on screen resolution. The Components view will
always hover over the Page Editor.

[image: ../../_images/content-wizard.png]

	Content Form

	Page Editor

	Context Panel

	Components Panel

	Component types

	Input types

	Content Security

 Content Form

Content Form

This panel appears on the left side of the page after content is created or while being edited. It is here the form appears in which content data is
entered. The structure and fields in the form are determined by the content type which is defined in the application code. The content
editor panel can be collapsed to give the page editor more room by clicking the arrow icon on the top right of the panel.

The top of the content form has the content type icon, the Display Name, and the content path name. The default icon can be replaced
with an image file by clicking on it. As the Display Name is entered, the path name will automatically be filled in with a URL-friendly
version. The path will not update automatically once the content has been published. This is to prevent accidental breaking of external
hard-coded links. The path name can always be changed manually. It is also possible for the Display Name to be generated automatically while
other fields in the form are filled in if the content type was set up that way in the application code.

[image: ../../_images/wizard-form-1.png]
Underneath is a toolbar with clickable navigation steps that correspond to different sections of the content form.
The first one is always content type name, and the last ones are icons for the Schedule (only for published content), Settings and Access wizard steps.
In between, there might be X-data and Mixins steps enabled for this content.
Clicking on an item in the toolbar will scroll the content form down to the corresponding section.

[image: ../../_images/wizard-form-2.png]
Form fields in the content data section depend on how the content type was set up.

The Schedule section is where the period of time, during which a content is available online, can be modified.
This section is only displayed for published content.

The Settings section is where the content’s Language and Owner are set. The Language will be inherited from the parent content if it
was set there. The Owner will be the logged in user who created the content, but it could be changed if the current user has the right
permissions.

The Access section is where the content’s permissions are set. Content will inherit the permissions of the parent content when
created. Users, Groups and Roles are principals that can be added to the content. Clicking on any item here will expand it and show what
permissions the principal has. Read more about Content Security.

 Page Editor

Page Editor

The page editor is a modifiable preview of the content page that will open automatically when a content that has a supporting page template
is created or edited. It is used in conjunction with the Context Panel to add, remove, and move components around the page with
drag and drop. The page editor can be closed and reopened with the icon on the far right of the toolbar that looks like a computer monitor.

A component can be selected in the page editor by clicking on it. This will highlight the selected component and show its configuration in
the inspect panel. Right-clicking a component will open a context menu with various actions that can be performed on the component. These
options may include Select parent, Insert another component, Inspect its configuration, Reset the component’s configuration,
Remove the component, Duplicate it, and Create fragment from the component.

[image: ../../_images/page-editor.jpg]
The page editor will not automatically open if the type of content being edited does not have a supporting page template. However, it can be
opened manually and a dropdown selector will appear which can be used to add a page component to render a page. Read more about this in the
Page Templates section.

 Context Panel

Context Panel

This panel is a multi-function tool that can be toggled open and closed with the cog icon at the right of the toolbar. It is used in
conjunction with the Page Editor to add and configure components on the page and to emulate various device sizes. The inspection panel
has three tabs: Insert, Inspect, and Emulator.

Insert tab

This tab has a list of Component types that can be added to the page in a two step process. The first step is to drag and drop a component
type placeholder to a region in the page editor. The second step is to select the specific component from a dropdown selector in the
placeholder.

[image: ../../_images/inspect-insert.jpg]
For example, to add a part component called “Categories” to the page, simply click the part icon (puzzle piece) and drag it to a region in
the page editor. A red circle appears when the component is dragged over an area where it cannot be dropped. A green checkbox appears when
dragged over valid locations and a blue box shows where the component will land. Once the part placeholder is dropped, it will have a
combo-box where the “Categories” part can be selected from the list. When a component placeholder is selected, the inspection panel will
also show a combo-box with a list of available part components.

Inspect tab

This is where components are configured. The inspection panel displays form inputs matching the configuration of whichever component is
selected in the page editor. Some components won’t have any configuration settings. The page will not update as configuration values change
until the content is saved or when changes are applied with the button at the bottom of the panel.

The inspect tab is also used for changing the default page template of a selected content and choosing a page component to render content
that does not have a supporting page template. Read more about this in Page Templates.

Emulator tab

This tab has buttons for emulating various sized devices. The page editor will shrink and expand to fit the selected device size.

[image: ../../_images/emulator.jpg]

 Components Panel

Components Panel

This tool opens in a draggable internal window activated by the clipboard icon in the toolbar. It displays a hierarchical tree
representation of all the components and regions on the page, including the page itself. This tool is extremely valuable in situations when
an unconfigured component does not render or content structure is complex or device resolution is very small.

Selecting a component in the tree will highlight the component in the page editor and display its configuration in the inspection panel’s
Inspect tab. The triangle on the right of each component will open a menu of options that can be selected for the component. The menu
options available depend on the component selected, but may include: Insert for inserting other components, Reset to reset the
component’s configuration, Remove, Duplicate and Create fragment.

Components can be rearranged directly in the tree with drag’n’drop function.

In the image below, a part named Meta is selected in the Components view and the part is highlighted with a black border at the bottom
of the page editor. The Meta part’s configuration is visible in the inspect panel on the right.

[image: ../../_images/components-view.jpg]

 Component types

Component types

Enonic XP has five types of components that can be added to regions on a page. These component types are listed under the “Insert” tab of
the page editor. This section covers each type of component in detail. See the Page Editor and Context Panel pages for more
information about editing pages.

	Image component

	Part component

	Layout component

	Text component

	Fragment component

 Image component

Image component

The Image component allows content editors to place an image into any region on a page without writing any code.

In the Page Editor, drag an Image component placeholder from the inspect panel to the desired region on the page. Once placed, the
empty image placeholder contains an image selector that can be used to find and select any previously uploaded image content. If the name of
the image is known, simply start typing it in the box to filter the list of images. If the name is not known, use the down arrow to open a
list of images to choose from. Note that the list will contain all image content items in the XP installation, including images that were
created in a different site of a multi-site environment.

If the desired image does not already exist as a content, simply upload it with the button on the right side of the image selector dropdown.
The new image content will be created as a child of the page being edited, but it could be moved later if needed.

The inspect panel will also show the dropdown image selector as well as a text area for writing an image caption. If a caption is entered,
it will appear below the image.

[image: ../../_images/image-component.jpg]

 Part component

Part component

Part components are reusable, configurable components that can be placed into any region of a page with the page editor
Context Panel. This allows content editors to build and customize pages without writing any code. There are no built-in part
components. Each one is custom made in the application code. Parts are typically created to render custom content, lists of content, forms,
etc.

The first step in adding a part component to a page is to edit the page content and open the inspection panel’s “Insert” tab. Drag the part
component placeholder (puzzle piece) to the desired location on the page. The part placeholder will now appear as a blue box with a dropdown
selector. The same part dropdown selector will appear in the inspect panel. Use one of the selectors to find the desired part component.
Once a part component is selected, the placeholder will be replaced with the actual part and the Inspect panel will show the part’s
configuration options in a form.

Some parts won’t have any configuration. Parts with configuration options are independently configured. This means that the same part
component can be added to multiple pages, or even multiple times in the same page, and each instance can have different configuration
values.

[image: ../../_images/part-component-selector.jpg]

 Layout component

Layout component

Layout components are reusable, configurable components (similar to Part components) that can be placed into any region defined in a page
component. Layouts themselves define regions where other components can be placed with the Page Editor. The primary purpose of a
layout is to enable other components to be placed side-by-side. As of version 6.15, a layout cannot be placed inside another layout.
There are no built-in layouts. Each one is custom made in the application code. Layouts are typically created for two or three columns and
have configuration options for column widths.

In the Page Editor, drag a Layout component placeholder from the inspect panel to the desired region on the page. The layout
placeholder will now appear as a blue box with a dropdown selector. The same dropdown selector will appear in the inspect panel. Use one of
the selectors to find the desired layout component. Once a layout is selected, the actual layout rendering will replace the placeholder and
its configuration options will appear in the inspect panel. Some layout components may not have any configuration options.

[image: ../../_images/layouts.jpg]
While editing a page, it may be difficult to select a layout to access its configuration. In this case, the Components Panel can help
to select the layout. Alternatively, a part within the layout can be selected and then that part’s parent can be selected from the
right-click context menu. Continue selecting the parent component until the layout is the selected component.

 Text component

Text component

Note

This section is under construction. This information is likely incomplete and possibly inaccurate until this notice is removed.

The Text component allows content editors to place and format text into any region on a page without writing any code. Images can also be
added inside text components. Macros allow Twitter tweets, YouTube videos, embedded code, and no-format text to be added as well. The
formatting and macro options are the same as those for the HtmlArea inputs that can be found in content types and other configuration forms
in the Content Studio. The only difference is that the formatting toolbar is at the top of the page for text components.

In the Page Editor, drag a Text component from the inspect panel to the desired region on the page. A cursor will appear inside the
text component and editing can begin. If another component is selected, the text component will need to be double-clicked to resume editing.

 Fragment component

Fragment component

Fragments are created as content from an instance of another component. What makes a fragment special is that it uses the same configuration
on every page where it’s added. When a fragment content is altered, the change is instantly visible on every page that uses it. All of the
other components are independently configured.

Creating fragments

Fragments can be created from any component on a page. When a fragment is created, it makes a content copy of the part, layout, image or
text component. In the page editor, right-click the desired component and select “Create fragment” from the context menu. The new fragment
content is created as a child of the page being edited. The fragment content will open in a new editor tab where its name and configuration
can be changed. At the same time, the component that was copied is replaced with the new fragment.

Using fragments

Once a fragment content has been created, it can be added to pages with the page editor. Drag a fragment placeholder from the “Insert” tab
of the Context Panel to the desired location on the page. Use the dropdown selector in the placeholder to find the desired
fragment content. Once selected, the fragment will appear.

[image: ../../_images/fragments.jpg]

 Input types

Input types

Some of the input types will be familiar from standard web forms. Other input types are specific for editing content and configurations in
Enonic XP. Most inputs can be navigated and operated with the keyboard. Inputs can have their own configurations which are defined in the
application code and affect how they work.

All inputs have some common features. For example:

	Each input has a label.

	Each input can have an optional help text.

	Required fields are marked with a red asterisk.

	Input fields may be repeatable so that they can have multiple values. Repeatable inputs will have an Add button below the field.

	Standard input types

	Selector input types

	Html Area input type

	Date and time input types

	Numbers and GeoPoint input types

[image: ../../_images/input-types.jpg]
All inputs can have an optional help text that will be shown next to the input. It’s hidden by default but can be turned on by clicking the “?” icon
next to the input label.

Note blue “?” icons next to the Checkbox and the GeoPoint fields in the form below - for these two fields the help text is turned on.
The ComboBox field also has a help text, but it’s hidden - the “?” icon is inactive and must be clicked to show the help text.

[image: ../../_images/input-types-help-text.jpg]
It’s also possible to turn on help text for all inputs on the form at once by clicking the “?” icon inside the Content Wizard toolbar.

[image: ../../_images/input-types-help-text-all.jpg]

 Standard input types

Standard input types

These are the familiar input types that are used all over the web. They function the same as you would expect.

TextLine

A text line is used for capturing a single line of text. In the image below, the first TextLine is required and marked with a red star. The
second allows multiple entries under the same label. When multiple values are enabled, the order of the entries can be changed by clicking
the dotted area to the left of the entry box and dragging them up or down.

TextLine inputs may be configured with regular expressions to allow only valid values with a specified structure. The box becomes red when
the value does not match the regular expression.

TextArea

The text area is used when the expected value to be entered is too large for a text line. Multiple lines of text are allowed. There are no
formatting options available for a text area. The box will expand vertically as more text is entered.

CheckBox

The checkbox can be toggled between checked or unchecked by clicking the box or the label with the mouse or by pressing the space-bar when it has
focus. Checkbox position in relation to its label is configurable.

RadioButtons

This type of input allows the user to select one of several options. When one option is selected, a previously selected option will be
unselected. The options can be navigated with the keyboard arrows.

[image: ../../_images/inputs-standard.jpg]

 Selector input types

Selector input types

These input types allow selections from a list of options.

Attachment uploader

Files can be selected for upload with this input type. The uploaded files will exist as attachments to the content being edited rather than
as a content of their own.

Clicking the upload button to the right of the label will open your machine’s native file browser where one or more files may be selected.
Attached files are listed by name and may be removed by clicking the X to the left. The files may also be downloaded by clicking the file
name.

[image: ../../_images/inputs-attachment.jpg]

ComboBox

This input type allows the selection of one or more predefined options. Clicking the down arrow in the right of the box will open a list of
options. Typing in the box will filter the options in the list.

If the input is configured for more than one selection then a checkbox will appear to the left of each option. The Apply button appears
in the box when changes are made and it must be used to accept the changes.

Selected options can be removed by clicking the X to the right of the selection text.

[image: ../../_images/inputs-combobox.jpg]

Content selector

Content selectors allow the selection of one ore more existing content items. They can be configured in the application code to list only
specific types of content and/or content that exists at a certain path of the content tree.

Content selectors behave much like combo boxes. The down arrow in the right of the box opens the list. Typing in the search field will
filter the content by name. When multiple content items have been selected, their order can be changed by clicking and dragging the dotted area
to the left of each content. Any selected content can be opened for editing by clicking the pencil icon. Selected content can be removed
with the X icon.

[image: ../../_images/inputs-content-selector.png]
Content selector supports two modes of displaying content: flat (default) and tree. The mode can be switched by the toggler icon inside the input field.

[image: ../../_images/inputs-content-selector-tree.png]

Media selector

Media selectors are much like content selectors except that they allow only media content to be selected (see Media Content Types). They also allow creating new media content
by uploading a new local media file with the Upload button or simply by dragging the file onto the selector.

[image: ../../_images/inputs-media-selector-dropdown.png]
The list of selected options looks and behaves like that of Content Selector.

Image selector

Image selectors are basically media selectors that allow only image content to be selected or created.

By default image selector is displaying content in the gallery mode with large thumbnail images:

[image: ../../_images/inputs-image-selector-gallery.png]
Clicking the toggler icon inside the selector’s input field will switch the selector into tree mode:

[image: ../../_images/inputs-image-selector-tree.png]
Order of selected images can be changed by clicking and dragging the image thumbnails.
Clicking on a selected image will reveal Edit and Remove buttons.

[image: ../../_images/inputs-image-selector.png]

Tag

Tags allow the selection of previously entered tags and also allow the creation of new tag options. Start typing in the box to reveal
matching options. If the desired tag is found in the list, use the arrow keys or click to select it. If the desired tag has not been entered
before, simply finish typing and press enter/return. Added tags can be removed by clicking the X next to each tag.

[image: ../../_images/inputs-tag.jpg]

Custom selector

Behavior of Custom selector is similar to that of Content selector except that the list of options in the dropdown is built based on custom
data source. Application developer must create a service that returns JSON in correct format required by the input. Name of this service
must then be specified inside the input configuration in the application code. Each option in the JSON must have a unique Id and display name
(required), and, optionally, description and thumbnail (either as an external URL or inline SVG).

[image: ../../_images/inputs-custom-selector.jpg]

 Html Area input type

Html Area input type

There are three input types for entering text. The Text Line and Text Area are covered in the Standard input types page. This
section will cover the HtmlArea.

The HtmlArea is a special input type that allows text to be formatted in various ways. Code and iFrames can be embedded with macros. Images
and content links can also be inserted. The editing features of the HtmlArea are the same for the Text component, except that the toolbar
for the text component appears at the top of the page.

[image: ../../_images/input-htmlarea.png]

Toolbar

The toolbar has buttons for various formatting options as well as inserting things like pictures, links, special characters and more.

Paragraph Format menu

Paragraph Format menu contains options for styles that can be applied to the entire paragraph, for example to create heading elements or snippets of code.

Inline Format

The next group of icons represent inline styles which can be combined in the same paragraph, for example bold, italic, strikethrough etc.

Alignment

The next four icons can be used to change alignment of selected element: left-align, center, right-align or justify.

Lists

The next two icons will turn text into a bullet list or a numbered list. Pressing “enter/return” will make a new list item and pressing it a
second time will end the list. Use shift + enter/return to make a new line within the list item. A sub-list can be created with the indent
button.

Indent

The next buttons will decrease and increase indent for the selected text. These buttons will also increase or decrease the level of a list
item.

Special character

This button opens a menu with 250 special characters. Selecting one will insert it at the cursor’s location.

Anchor

Anchors enable pointing to a specfic position on a page via context link. If a link references an anchor on the same page then the page will scroll up
or down to the location of the anchor. The anchor button in the toolbar opens the Insert Anchor dialog where the name of the anchor is
entered. The anchor name will be used as the value of the “id” attribute, so it should be lower case without spaces.

Insert/Edit image

This button opens the Insert Image dialog. An existing image content can be selected from the “Image” selector, or a new image can be
uploaded by clicking the upload button. Once an image is selected, some formatting options appear. The image can be floated to the left or
right so that text wraps around it. The image can also be centered or set to full width. A checkbox allows you to keep the image at its
original size. A Cropping effect selector has options for various aspect ratios. A caption can be entered at the bottom.

Insert macro

This button opens the Insert Macro dialog, which contains a selector for choosing a macro. Macros allow all sorts of things to be
inserted into the input, such as iframes, YouTube videos, Twitter Tweets, etc. There two built-in macros and others can be added with
applications. Once a macro is selected, a form appears with inputs for the macro’s configuration settings.

Insert/Edit Link

This button opens the Insert Link dialog. You can select existing text in the HTML Area before opening the dialog or write it directly
inside the dialog. You can link to a content item, external URL, trigger download or a new email.

Unlink

Pressing this button will remove a link from an element.

Table

This button expands a dropdown menu enabling you to insert a new table, manage table properties or add/delete columns/rows in existing table.

Tip

Although HTML Area comes with default toolbar, it can be customized to exclude specific (or all) tools and/or include other tools that are supported.
Read about this in description of HtmlArea input config.

Tip

Read about keyboard shortcuts supported in the HTML Area in our Keyboard shortcuts section.

 Date and time input types

Date and time input types

There are three input types for entering dates and times: Date, Time, and DateTime. Each input has a date/time-picker tool.
Values can also be manually typed into the input fields. The input turns red if the value is not in a valid format. These inputs can have
default values (set in the application code) and the defaults can even be relative to the date and time that the form item was created.

[image: ../../_images/inputs-date-time.jpg]

Date

The date input filed allows text to be entered in the format of YYYY-MM-DD. The input block turns red when the date is entered with an
invalid format. The button on the right opens a date-picker tool. Date inputs can be configured to have a default
value. The default date could even be relative to the current date, for example, one month from the time that the content with thie input
was created.

[image: ../../_images/input-date.jpg]

Time

The time can be entered manually in the 24 hour format HH:MM. Invalid entries will turn the input red. A button in the right of the form
will open a time-picker tool for easily selecting the desired time. The input could be configured with a default value.

[image: ../../_images/input-time.jpg]

DateTime

The DateTime input contains both the date and the time. A value can be entered manually in the format “YYYY-MM-DD HH:MM”. A date-time picker
tool can be opened with the button on the right side fo the input.

The input can be configured to include the timezone. The timezone will be the same as that of the Enonic installation server and it is not
editable in the data-time picker tool. However, the timezone can be changed by manually entering a date in ISO 8601 format
2016-06-17T12:59+03:00. A default value can be set.

[image: ../../_images/input-date-time-picker.jpg]

 Numbers and GeoPoint input types

Numbers and GeoPoint input types

There are four ways to input numeric data. Double and Long ensures the data is treated as numeric on the back-end as well.
GeoPoint is a very special input type for registering a Geo Point world coordinate.
All of these input types have validation rules to ensure correct input.

[image: ../../_images/inputs-numbers.jpg]

TextLine with RegExp

A TextLine input can be configured with a regular expression in the application code to allow only numbers.

Double

A double is a number with a decimal point.

Long

A long is a large number. The maximum value that can be entered as a long is 8999999999999999.

GeoPoint

A Geo Point stores geographical coordinates with the latitude and longitude separated by a comma.

 Content Security

Content Security

Security of a content is determined by the principals and permissions in the content’s security settings. Principals are Users,
Groups and Roles which are managed in the Users admin tool. Principals are added to each content. Permissions are
granted to the principals of the content.

Principals

Individual users could be added to each content. But security is easier to manage by adding groups and roles to each content and then
granting the appropriate permissions to these groups and roles. When a group is added to a content then all users who are members of that
group will have the group permissions for that content. Similarly, when a role is granted permissions to a content, all users who have that
role will also have those permissions.

Permissions

Permissions are granted to principals on a per-content basis. This means that changing a principal’s permissions for one content does not
affect that principal’s permissions for other content. Below is a list of permissions that can be applied to each principal for any content.

	Read: The principal can see this content.

	Create: The principal can create child items under this content. For example, if a user has this permission on a folder then the user
can create new content in the folder.

	Modify: The principal can edit this content and save changes in the draft branch.

	Delete: The principal can delete this content from the draft branch. If the content is published then its status can be changed to
“Pending delete”.

	Publish: The principal can publish this content to the master branch. Can also remove content that is “Pending delete”.

	Read permissions: The principal can see this content’s permissions.

	Write permissions: The principal can change this content’s permissions.

Permissions can also be denied to a principal, even if the permissions would otherwise be granted from another principal. For example, all
content editors might be added to a group called “Content editors” which has the Can Publish permissions. But new content editors might
break stuff, so they would also be added to a group called “Noobs”. Users in this group could be prevented from publishing and deleting
content by denying those permissions to the group.

Public content

For a content to be accessible to the public, (meaning users who are not logged in), it must have the role Everyone with the Read
permission. The content must also be published. Content without the Everyone role can only be seen by users who are logged in and have
read access to it through one of the content’s principals.

Editing permissions

When a site is first created, it will have the roles Administrator and Content Manager Administrator with full access. It will also
have the role of Content Manager App with read access. When content is created it will inherit the security settings from its parent
content. The security settings for any content can be changed through the Edit permissions dialogue. This can be accessed with the
Edit Permissions button in the Security section when editing a content, or by the button in the details panel in browse view.

[image: ../../_images/edit-permissions.jpg]
Opening the Edit Permissions dialogue shows a list of the current principals and their permissions for the content. By default, all
content will inherit permissions from its parent. Permissions cannot be changed until the box for Inherit permissions is unchecked. Any
changes that are made will also be applied to all child items that directly or indirectly inherit permissions from this content. There is
also a checkbox at the bottom of the dialogue labeled Overwrite child permissions. Checking this box will force the new permissions on
child content that do not inherit permissions.

When the Inherit permissions checkbox is unchecked, a dropdown selector will appear for adding new principals. The permissions for each
principal in the list can be determined by the settings in blue letters on the right. Clicking a setting will open a menu with the available
options that can be applied, which are listed below:

	Can Read: Has only the Read permission.

	Can Write: Has permissions for Read, Create, Modify, and Delete.

	Can Publish: Has permissions for Read, Create, Modify, Delete, and Publish.

	Full Access: Has all permissions.

	Custom: Any combination of permissions.

Selecting “Custom” will list all of the permissions. Clicking on a permission will toggle it between white (not granted), green (granted)
and red (denied).

 Publishing Issues

Publishing Issues

Publishing Issues is a way to create, delegate and follow up tasks for publishing one or several content items.
The list of publishing issues can be open by clicking [image: issueicon] icon in the Content Studio header.
A new issue can be created either from the Issue List dialog, Publishing wizard or from the Publish button’s menu in the Browse view’s Toolbar.

[image: ../../_images/publishing-issues-list.png]
If current user has any open issues assigned to him this will be reflected on the Issue icon: [image: notificationicon].

	New Issue

	Issue List

	Issue Details

	Issue Status

Tip

When content is selected in the grid, menu of the Publish button will show the list of open issues this content is a part of.

[image: ../../_images/publish-menu-issues.png]

 New Issue

New Issue

There are several ways to create a new issue.

From the Issue List dialog

Click the [image: issueicon] icon in the Content Studio header to open the Issue List dialog.

[image: ../../_images/publishing-issues-list-empty.png]
In this dialog click the “New Issue” button to open the “Create Issue” dialog.

[image: ../../_images/publishing-issues-new-empty.png]
Fill out title and description of the new issue, select one or more assignees and content that is supposed to be published within the issue.
Use the [image: includechildrenicon] icon to flag content items that must be published with all of their child items. Use “X” icons in the list
to exclude items that should not be published within the issue.

[image: ../../_images/publishing-issues-new-issue.png]
Click “Create Issue” button to create the issue or “Cancel” to return to the list.

From the Publishing Wizard

Inside the Publishing Wizard you can expand the Publish button’s dropdown menu and select “Create Issue” option.

[image: ../../_images/publishing-issues-create-issue.png]
This will open the “Create Issue” dialog similar to the one above except that the list of content items will be based on selection in the “Publishing Wizard”.
Use [image: backicon] in the top left corner of the dialog to return to the Publishing Wizard if you want to make changes to the list of contents.

From the Publish button menu

In the Content Grid select content items that you want to add to a new issue. Expand the dropdown menu of the Publish button in the grid’s toolbar
and select “Create Issue”. Again, this will open the “Create Issue” dialog with preselected items from the grid selection.

[image: ../../_images/publishing-issues-create-issue-toolbar.png]
No matter which way was used to create a new issue, once it was successfully created the user will be redirected to the new issue’s details dialog:

[image: ../../_images/publishing-issues-existing.png]
After a new issue is created, both creator of the issue and all of the assignees will be notified by email.

 Issue List

Issue List

The list of Publishing Issues can be opened by clicking the [image: issueicon] icon in the Content Studio header.

[image: ../../_images/publishing-issues-list.png]
Default view shows the list of open issues.
Filter on top of the list can be used to narrow down the list to only the issues assigned to your user or created by your user. You can also
switch to the list of closed issues by clicking the link to the right of the two checkboxes.
If there are issues assigned to your user or issues created by your user, the filter will be automatically preset when you open the dialog.
Black circles next to each issue indicate assignees the issue is assigned to.
Clicking an issue will open the Issue Details dialog.
“New Issue” button opens the New Issue dialog.

 Issue Details

Issue Details

The dialog with issue details opens from the Issue List or via direct link from an email confirmation sent to assignees.
It will also open automatically after a new issue is created.
Use [image: backicon] in the top left corner to go back to the Issue List.
By pressing the pencil icon next to the issue title you will switch the title to edit mode and be able to edit it.

[image: ../../_images/publishing-issues-edit.png]
The dialog has three tabs: Comments, Items and Assignees.

Comments

The first tab of the Issue details dialog shows the list of comments. If the issue was created with the description it will be listed as the first comment.
Each comment has a menu icon where you will find buttons to edit or delete the comment. You can add a new comment by typing in text into the textfield at the bottom
of the tab and pressing the “Add Comment” button.
“Close Issue” button will close the issue without publishing it.

[image: ../../_images/publishing-issues-comments.png]

Items

On the second tab of the Issue details dialog you will find the list of content items and their dependencies. You can modify the list by adding new content to the issue
or removing existing items from the issue. By clicking the “Publish & Close Issue” you will publish all of the items with dependencies and the issue will be closed. You
can schedule publishing using the Publish button’s dropdown menu.

[image: ../../_images/publishing-issues-items.png]

Assignees

The “Assignees” tab shows the list of users that the issue was assigned to. Each assignee will receive an email about new comments or changes in the issue.

[image: ../../_images/publishing-issues-assignees.png]

 Issue Status

Issue Status

Status of an issue can be changed from Open to Closed or back at any time by clicking the status button in the
Issue Details dialog. This will expand a dropdown with available statuses - select one and the issue will be updated at once.
As always after issue modifications, an email will be sent to both creator of the issue and all of the assignees to notify them of the changes.

Note that changing issue status will change its location in the Issue List - it will be moved from Open tab to Closed tab or the other way around.

[image: ../../_images/publishing-issues-status.png]

 Content Types

Content Types

Some content types are built into Enonic XP. A basic understanding of these will be essential to building sites with the Content Studio.

[image: ../../_images/content-types.jpg]

	Folder

	Shortcut

	Site Content

	Page Templates

	Templates folder

	Unstructured

	Image content

 Folder

Folder

Content of type Folder is only used to group other contents. Folders have no data fields other than the display name and path name.
They also have the Settings and Security sections like any other content.

[image: ../../_images/folder.jpg]

 Shortcut

Shortcut

Shortcuts create a content path that will redirect to another content. This allows a content deep inside a site to be accessed with a short
URL.

For example, a content in the “Posts” folder named “Gotham sure is a big town” would normally be reached at a URL with
superhero/posts/gotham-sure-is-a-big-town. But a shortcut as a first child of “Superhero” would make it available at
superhero/gotham.

Each shortcut has a required Target field. The selected target content can be edited with the pencil icon.

In addition it is possible to set custom parameters as a list of name-value pairs. These optional parameters will be added to the redirect URL.

[image: ../../_images/shortcut.png]

 Site Content

Site Content

Sites are usually created at the root level of the tree grid from a special built-in content type represented by a globe icon. Site contents
have a textarea field for the site description and a dropdown selector for adding and configuring applications. Every site content will have a
Templates folder which is automatically created along with the site content.

[image: ../../_images/sites.jpg]

Applications

Applications contain all the code behind a website. Apps are installed with the Applications tool and apps are used by adding them to
a Site content. Some apps will have components for building a site and others will only add functionality to existing sites. Sites will need
at least one app that has at least one page component before any rendering can happen.

Edit a Site content and add the desired apps with the Applications dropdown selector.
Only users with the role “Administrator” or “Content Manager Administrator” can add an application to a site.
The image below shows the edit view for the Superhero Site content.
This site has two applications: one is the Superhero theme which was used to build the site and the other is the
SumoMe App that adds some functionality.

[image: ../../_images/site-apps.jpg]

Configuration

Apps that have been added to a Site are listed in the content edit panel with the display name and app name.
The X icon removes the app from the site and the pencil icon opens the application configuration dialogue with the current values.
Only users with the role “Administrator” or “Content Manager Administrator” can remove an application from a site or edit application
configuration.
The configuration options available are defined in the application code.

[image: ../../_images/site-app-config.jpg]

 Page Templates

Page Templates

A page template is special content that enable other content to be rendered as pages. Page template must support one or more content types.
When a request endpoint matches a content path, the content’s supporting template will be used to render it. The Page Editor is used
to build page templates by placing the desired components into regions on the page in the desired locations.

Page components

Page components are defined in the application code and contain the basic HTML structure of all rendered pages. Each page template uses one
page component. They usually contain the page header, footer and menu. Most page components will have one or more regions where other
components (parts, layouts, etc.) can be placed with the page editor. A single page component can be used by any number of page templates.

Creating page templates

A page template can only be created in its site’s Templates folder. Create a new template content here and choose which
content types will use it for rendering with the dropdown selector labeled Supports. A dropdown selector on the right side of the page
is used for choosing the page component. Once a page component is selected, the page preview will be visible in the page editor. Use the
inspect panel or the component view to add components to the region(s) in the page.

[image: ../../_images/templates.jpg]

Customizing content

More than one page template can support the same content type. In this situation, the template that appears first in the Templates folder
will be used to render the content by default. But individual content can be manually configured to use any template that supports its type.
For example, in the image below there is a content type called “Post” and two templates that support the Post type, first is “Post show - 2
columns” and then “Post show - 1 column”. The “Post show - 2 columns” will be used automatically by all Post content. To force an individual
Post content to use the 1 column template, edit the content and select the 1 column template in the Page Template dropdown at the top of
the Inspect panel.

[image: ../../_images/template-selector.jpg]
Individual content can also be customized to render differently. To customize a content, edit it and click anywhere on the page in the page
editor. A context menu appears with a “Customize” button. Once that button is clicked, components on the page can be moved with drag and
drop, or removed from the page and other components can be added.

Rendering other content

Even content that has no supporting templates can be rendered as a page. For example, if a site has a Folder content called “Articles”
and it has child Article content then it might be desirable to render the “Articles” folder as a page with a list of the articles that
it contains. This is achieved by adding a page component to the unsupported content with the page editor. Edit the content and open the page
editor. Select a page component from the dropdown selector and then add components (parts, layouts, etc.) to the page.

[image: ../../_images/page-component.jpg]

 Templates folder

Templates folder

The Templates folder is just like a regular folder except that it has a special icon and it can only contain Page-template content.
When a Site content is created, a Templates folder is automatically created with it as a child of the Site.

 Unstructured

Unstructured

Unstructured content cannot be edited in the Content Studio except for the display name, the content name, and the settings and security.
Content of this type is meant to be used by applications to store data when the structure is not known. Form entries are often stored as
unstructured content to avoid the need to create a custom content type for each form on a site. The stored data cannot be viewed in the
Content Studio without a custom page component or page template that supports the Unstructured content type.

 Image content

Image content

An image content is created when an image file is uploaded. Storing images as content allows them to be indexed for searches and have the
same language and security settings as other content. Image content items have fields for Caption, Artist, Copyright, Tags and Text. Image
content also has fields that are automatically filled in with any Exif data the image file contains. The image file itself can be swapped
out with the upload button or by dragging a file onto the image. Images can be cropped and a focal point can be added in the editor.

Cropping

Clicking the crop icon (above the image) will darken the page outside of the image preview and the editing tools. The zoom slider will make
the preview larger and parts of the image will extend into the dark regions of the page. The image can be moved by clicking and dragging it
around. The aspect ratio can be changed by clicking and dragging the circle (arrows icon) at the bottom of the picture. Make the necessary
adjustments so that the part of the picture you want to keep is within the highlighted area. The Apply button will restore the page to
normal edit mode.

[image: ../../_images/image-cropping.jpg]

Focal point

Images can be displayed on a web page with a different aspect ratio than the original. When this happens, the top and bottom or the left and
right edges of the picture will be automatically cropped. This can cause the subject of the image to be lost. For example, the heads of
people in a portrait image could be cut off when the image is rendered with a landscape ratio. Setting a focal point on an image ensures
that the subject will always be in the picture, no matter the ratio used to render it.

Click the focal point icon. A red circle appears in the center of the image preview. Click on the part of the picture that you want to
always keep in frame and then click the Apply button. Once a focal point is set, its location will be marked with a red circle when the
content is in edit mode.

[image: ../../_images/image-no-focal-point.jpg]
In the image above, the original picture has a tall aspect ratio. No focal point is set.

[image: ../../_images/image-focal-point.jpg]
Setting the focal point.

[image: ../../_images/image-with-focal-point.jpg]
The giraffe’s head remains in frame with the focal point set.

 Actions

Actions

Content can be created, edited, deleted, duplicated, moved, sorted and published.

	New

	Delete

	Duplicate

	Move

	Sort

	Publish

 New

New

All content created with the Content Studio begins with the Create Content dialogue. This dialogue has two functions. First it assists
the user with finding the type of content to be created. Second, it opens the edit view in a new internal tab.

[image: ../../_images/create-content.jpg]
There are three ways to open the Create Content dialogue in the Content Studio. The first method is with the shortcut - alt + n. The
other methods require selecting the New button in the toolbar or in the context menu that appears when right-clicking an existing
content in the tree grid.

Content will be created as a child of whichever content was selected in the tree grid when the Create Content dialogue was opened. If no
content was selected, the new content will be created at the root of the repository. Usually, only Site contents are created at the
root.

Search field

The search field can be used to quickly find a content type.

File and image upload

To the right of the search field is an upload button represented by an icon with an up arrow. Clicking this icon will open the user’s file
browser so one or more files can be selected from the file system. The type of content created will depend on the type of file selected.
Files can also be dragged and dropped onto the Create Content dialogue. A new edit view tab will open for each selected file so that
meta-data can be entered.

Most Popular

If the parent content has one or more existing child items, the most used type of child content will appear with a blue background at the
top of the content type list. The number of this type of child content is in parenthesis.

Content type list

All content types of the installed applications are listed on the left side of the Create Content dialogue. The list is instantly updated as
characters are typed into the search field. Each item in the list has the content type icon, Display Name of the content type, and the full
app name of the content type. It is possible for two applications to have a content type with the same Display Name, so the full app name
would be helpful to tell them apart.

Recently Used

The right side of the dialogue will list the recently used types of content.

 Delete

Delete

Note

This page is under construction. This information is likely incomplete and possibly inaccurate until this notice is removed.

Content can be deleted using the Delete item dialogue. This dialogue can be accessed by the Delete button in the toolbar of both
browse view and edit view. It can also be opened from the context menu by right-clicking a content in the tree grid. The selected content is
listed along with its status. If the content is a parent then the children contents are listed and will also be deleted.
The Delete button shows the total number of items that will be removed. More than one content can be selected for deletion from the tree
grid in browse view.

Offline content is removed immediately. Content that is online can be removed immediately by checking the box labeled “Instantly
delete published items”. If this box is not checked then the content will only be marked for deletion. Its status will change to pending
delete and its name will have a line through it. Content that is pending delete will still be visible outside the Content Studio. Content
that is pending delete can be removed and taken offline by publishing or unpublishing it, or deleting it again and checking the box to
“Instantly delete published items”.

[image: ../../_images/delete-item-dialogue.jpg]
If a content item that is about to be deleted has any incoming references (other content items that depend on it), this will be shown under
the item’s path inside the dialog in a form of “Incoming dependencies: X”, where X is a number of references.

[image: ../../_images/delete-item-dialogue-dependencies.png]
A click on the “Incoming dependencies: X” will open a new tab displaying the content grid with only the references of the selected content item
to make it easy for the user to delete them or unlink them from the item to be deleted.

[image: ../../_images/delete-item-dependencies.png]
An extra layer of protection kicks in before multiple items or a site content can be deleted. The “Confirm delete” dialogue appears to warn
that this action cannot be undone. The number of content items to be deleted must be entered before the deletion will occur.

[image: ../../_images/confirm-delete.jpg]

 Duplicate

Duplicate

If you want to duplicate one or more content items, select them in the Content Grid and click Duplicate button in the Grid toolbar.
This will open modal dialog where you can choose whether child items of selected content(s) should also be duplicated or not.
Pressing “Duplicate” button in the dialog will trigger the duplicate operation which will be visualised by a progress bar, if the process is taking more than a few seconds.
Duplicates will get a new id and path names will be postfixed with “-copy”.

When the Duplicate button is clicked from inside the Content Wizard, only the current item will be selected in the dialog.

[image: ../../_images/duplicate.png]

 Move

Move

The toolbar’s “Move” button opens the Move item with children dialogue. This feature moves selected items with all children and current
permissions to another place in the tree grid. Type to search, or use the dropdown arrow, to find the new parent content where the selected
items will be moved to. If the “Move” button in the dialogue is clicked without choosing a parent content then the items will be moved to
the root of the content tree. Content cannot be moved to a location where another content already exists with the same path name.

[image: ../../_images/move-content.jpg]

 Sort

Sort

Child items of any content can be sorted in a number of ways through the Sort items dialogue. It is accessed with the Sort button in
the toolbar or context menu, or by clicking a “sort” icon that appears for previously sorted content.

[image: ../../_images/sort.png]
The default sorting is by the modified time in descending order. The other options are modified time ascending, DisplayName
(ascending or descending), and Manually Sorted. To manually sort items, simply drag and drop them in the Sort items dialogue.

[image: ../../_images/sort-options.png]
Once items are sorted, the parent content will have an arrow in the browse view tree grid pointed up or down to denote ascending or descending. If the
content is manually sorted, an icon with three horizontal bars will appear. Clicking the bars or arrow icon will open the Sort items
dialogue. In the image below, the Templates folder has manual sorting and the Posts folder is sorted by DisplayName descending.

[image: ../../_images/sorted.jpg]

 Publish

Publish

Publishing is a simple but important concept for working with content in Enonic XP. The basic concept of publishing is that it makes
content viewable to others outside of the Content Studio.

Draft and master branch

All content created with the Content Studio exists in the draft branch with the status offline. Content in the draft branch can be
edited, changed, and previewed until it is ready to go online. Every time a content is saved with changes, a new version is created. (See
Version history) When a content is published, the active version is copied from the draft branch to the master branch. Only
content in the master branch can be accessed by others outside of the Content Studio, subject to the contents’ security settings.

Content status

Published content will have the status online while content that has not yet been published will be offline. When changes to a
published content are saved, the new version becomes the active version but the version that is online is not changed. The status of the
new active version will be modified and this content will need to be published again before the changes will be visible outside of the
Content Studio.

When a published content is “deleted”, the “Delete item” dialogue offers a checkbox to “Instantly delete published items”. If this box is
not checked then the content’s status will be pending delete and it will still be visible outside of the Content Studio. Content that is
pending delete must be published, unpublished, or “instantly deleted” before it is actually removed from the master branch.

Publishing wizard

Content is published through the Publishing Wizard dialogue. When a content is selected for publishing, its parents and all the related
content will be published with it. For example, in the image below, a Post content named “March madness” was selected for publishing.
This post has two related Category contents and a related Author content. Therefore, the categories and author will be published
with the March Madness post and the parent folders of the categories and author will also be published. All items that will be published
with the selected content are listed in the publishing wizard.

[image: ../../_images/publishing-wizard.png]
If the selected content has children then these items can be included by checking the box labeled “Include child items”. The total number of
items that will be published is displayed on the Publish button. The green “Publish” button has a menu option for “Publish tree” which
simply opens the dialogue with the “Include child items” box checked.

Schedule publish

During the publish of offline contents, the user has the possibility to specify the period of time during which the contents will be
available online. By default, the period starts from the time of the publish and has no expiring time.
This allow the user to schedule a publish by specifying an “Online from” date/time in the future and, optionally, an expiring date/time.
The content status of published contents that are not yet available or not available anymore will have the additional mention “(Pending)”
or “(Expired)”.

Note

Changes to online items will be effective immediately - i.e. modified, moved, deleted.

[image: ../../_images/schedule-publish.png]

Unpublish content

Previously published content can be taken offline with the “Unpublish” feature. The “Unpublish” dialogue can be opened from the Publish menu
in the toolbar or by right-clicking the content in the tree grid and selecting “Unpublish” from the context menu. All of the content’s
children will be listed and unpublished along with the selected content. The total number of content items that will be taken offline will
appear in parenthesis in the red “Unpublish” button at the bottom of the dialogue.

Content that has the status Pending delete will be removed and taken offline when unpublished.

[image: ../../_images/unpublish-dialogue.jpg]

 Keyboard shortcuts

Keyboard shortcuts

This section describes the shortcuts that are available for power users in the Content Studio.

Hint

Press F2 to reveal all available shortcuts for a view

Browse View

	Content grid

	MAC OSX

	Windows

	New content

	Alt+N

	Alt+N

	Select/unselect content

	Space

	Space

	Edit selected content

	Cmd+E or Enter

	Ctrl+E or Enter

	Delete selected content

	Cmd+Del

	Ctrl+Del

	Preview selected content

	Alt+Space

	Ctrl+Alt+Space

	Publish selected content

	Ctrl+Alt+P

	Ctrl+Alt+P

Content Editor

	Edit content wizard

	MAC OSX

	Windows

	Save content

	Cmd+S

	Ctrl+S

	Save content and close wizard tab

	Cmd+Enter

	Ctrl+Enter

	Close wizard tab

	Alt+W

	Alt+W

	Delete content

	Cmd+Del

	Ctrl+Del

	Preview content

	Alt+Space

	Ctrl+Alt+Space

	Publish content

	Ctrl+Alt+P

	Ctrl+Alt+P

Rich Text Editor

	HtmlArea editor

	MAC OSX

	Windows

	Cut

	Cmd+X

	Ctrl+X

	Copy

	Cmd+C

	Ctrl+C

	Paste

	Cmd+V

	Ctrl+V

	Paste as text

	Shift+Cmd+V

	Shift+Ctrl+V

	Select All

	Cmd+A

	Ctrl+A

	Bold

	Cmd+B

	Ctrl+B

	Italic

	Cmd+I

	Ctrl+I

	Underline

	Cmd+U

	Ctrl+U

	H1

	Cmd+Alt+1

	Ctrl+Shift+1

	H2

	Cmd+Alt+2

	Ctrl+Shift+2

	H3

	Cmd+Alt+3

	Ctrl+Shift+3

	H4

	Cmd+Alt+4

	Ctrl+Shift+4

	H5

	Cmd+Alt+5

	Ctrl+Shift+5

	H6

	Cmd+Alt+6

	Ctrl+Shift+6

	Paragraph

	Cmd+Shift+7

	Ctrl+Shift+7

	Div

	Cmd+Shift+8

	Ctrl+Shift+8

	Address

	Cmd+Shift+9

	Ctrl+Shift+9

	Undo

	Cmd+Z

	Ctrl+Z

	Redo

	Cmd+Y / Cmd+Shift+Z

	Ctrl+Y / Ctrl+Shift+Z

	Focus to toolbar

	Alt+F10

	Alt+F10

	Focus to element path

	Alt+F11

	Alt+F11

	Insert link

	Cmd+K

	Ctrl+K

	Insert image

	Cmd+L

	Ctrl+L

	Find

	Cmd+F

	Ctrl+F

 Applications

Applications

The Applications admin tool provides an interface to install, uninstall, start and stop applications for an Enonic XP installation. A list
of the installed applications appears in the left panel. Applications in this list can be selected by clicking on them. Information about
a selected app appears in the right panel. This information includes the basics such as version, key and system requirements as well as a
list content type schemas, descriptors for pages and page components, as well as all the sites that use this application.

[image: ../../_images/apps-tool.png]

Installing an app

Two methods of installing apps are available with the Applications tool. Both are initiated by clicking the “Install” button in the toolbar
which will open a modal dialog.

Install from Enonic Market

Applications from the Enonic Market are listed in the dialog in alphabetical order. Each app in the list has a name, a brief description, version
number and an “Install” link that will download, install and start the app. Installation will occur on all nodes of a clustered environment.
Clicking the name of an app will open a page on the Enonic Market website with more information about the app. If application is already installed
but there’s a newer version of the app on the Market, the download link will say “Update” instead of “Install”. You can use the search field
above the application list to quickly filter the list.

[image: ../../_images/install-market.jpg]

Install via file upload

An application can also be installed by dragging an application JAR file directly onto the installation dialog. Alternatively, you can click
the upload button to the right of the search field and select an application JAR file from your local filesystem. The app will be installed
and started automatically when the download is complete.

[image: ../../_images/install-upload.jpg]

Manual installation

A third method of installing apps involves placing the application JAR file into the $XP_HOME/deploy folder. It is not possible to do
this with the Applications admin tool. Apps installed this way would require the JAR file to be placed in the $XP_HOME/deploy folder on
each node in a cluster. Locally installed apps will have a blue circle with an “L” on the app icon in the list of installed apps. The
Superhero theme app was installed locally in the image below. Locally installed apps can only be uninstalled by deleting the JAR file in the
$XP_HOME/deploy folder.

[image: ../../_images/install-local.png]

 Users

Users

The Users tool allows the management of userstores, users, roles, and groups. A basic understanding of Enonic XP identity management is
essential for the proper management of your applications.

	Userstores

	Roles

[image: ../../_images/user-admin.jpg]

 Userstores

Userstores

All users and groups are created and managed in user stores. Each Enonic XP installation has a System User Store that cannot be deleted.
Additional user stores can be created as needed. For example, it might be convenient to use the System User Store for employees who run the
website and another user store for customers who log into the public site. Each user store can assign an ID Provider to handle its
authentication (see ID Providers).

Create new

To create a new user store, user, user group or role click “New…” in the toolbar. This will open a new modal dialog where you can
select what type of object you want to create.

[image: ../../_images/new-user-dialog.png]
Note that if there’s more than one user store in the system and you want to create either a user or a group then you will have to select
which user store you want to create it in.

[image: ../../_images/new-user-dialog-stores.png]
After selecting the type of object a new Wizard tab will open where you can finalize and save the item.
Also, if you select an existing user store, user, user group or role in the tree the
“New..” button will automatically change to display what kind of object it will create. For example, if you select an existing user
in the tree then “New…” will change to “New User”. If you click that, it will instantly open a new Wizard tab, skipping the modal dialog.

[image: ../../_images/new-user.png]

User stores

As the <DisplayName> is entered, the <name> field is automatically filled in with a URL friendly version. The <name> field will
be part of the user store key and it cannot be changed once the user store is saved.

The ID Provider is for assigning an app that will handle authentication for the user store. ID providers can have their own configuration
which can be viewed and modified by clicking the pencil icon.

Finally, the permissions section allows principals (users, roles and groups) to be added to the user store. The Authenticated and
Administrator roles are automatically added and they cannot be altered or removed.

When a user store is created, it will automatically have folders for Users and Groups.

[image: ../../_images/user-store.jpg]

Users

The System User Store has two built-in users. One is the Super User which has full administrative permissions. The other is the Anonymous
User which is the principal used by any site visitor that is not logged in.

Creating users

Besides the modal dialog, a new user can be created by right-clicking the “Users” folder (or an existing user) and selecting “New User” in the context menu. This opens the User editor in a
new tab within the page. All the fields are required except for the “Groups & Roles” and the user cannot be “Saved” until the required
fields are filled in.

The <Display Name> field will typically be the user’s first and last name with capital letters and a space. The <name> field will be
automatically filled in with a URL-friendly version of the <Display Name>. The <name> will be used to log in and it can be manually
edited at this time. The <name> cannot be changed once the entry is saved. The Email field must have a valid format and must be unique
per user store. The Password field has buttons to show/hide the characters and the “Generate” button will create a random password for you.
The password’s strength will be displayed as you type and this ranges from “weak” to “extreme”. Passwords cannot be displayed once the entry
is saved.

Groups and Roles can be added to the user now or while editing the entry later.

Once the required fields have valid values, the red exclamation mark in the tab goes away and the user entry can be saved by clicking the
button in the toolbar.

[image: ../../_images/create-user.jpg]

Groups

Groups assist with managing user permissions for content. For example, all content has security permissions which may include roles, groups
and users. If a content has only one group named “Customers” (with read access) then only logged in members of that group can see the content.
Groups have no function without Members. Users and other groups may be added as members. Clicking on a group in the Users admin tool
will show the group’s display name, principal path, and a list of its members.

Creating groups

Right-click the “Groups” folder in the desired user store and select “New Group” in the context menu. The <Display Name> is what will be
listed in the “Groups” folder. The <name> is automatically generated as a URL-friendly version of the <Display Name> and should not
be changed. The Description is optional. Users and other groups can be added to the group as “Members”. Users can also be added to a group
by editing the user.

[image: ../../_images/groups.jpg]

 Roles

Roles

Roles grant certain permissions to the users that have them. New roles can be created by administrators. The built-in roles are listed and
described below.

Administrator

Users with the Administrator role have full access to all content and admin tools through the user interface.

Administration Console Login

Users with this role can log in to the administration console. These users will also require a role for each of the admin tools that the
users need access to.

Content Manager App

This role allows users to access the Content Studio. Users can see content and sites, but cannot save changes or publish content.

Content Manager Expert

This role allows access to advanced features in the Content Studio admin tool,
including seeing and editing the source code of HTML area fields in content and text components on pages.

Content Manager Administrator

This role allows full access to the Content Studio admin tool, including saving edits and publishing content.

Users App

This role allows view-only access to the Users admin tool.

Users Administrator

This role allows full access to the Users admin tool, including create/edit/delete for userstores, users, roles, and groups.

Authenticated

Users automatically have this role when they are logged into the system in any way.

Everyone

This is a special role that all users and site visitors have. This role is typically used to grant read permissions to publicly available content.
Unauthenticated visitors, as well as authenticated users will all have this role.

 API and Reference Guide

API and Reference Guide

[image: ../_images/make-anything-tick.jpg]

	Javascript Libraries

	View Functions

	Query Language

	Toolbox CLI

	Image Processor

	JavaDoc API

 Javascript Libraries

Javascript Libraries

This section describes the various standard libraries shipped with Enonic XP. The libraries are
included in your application through the Gradle build script like this:

dependencies {
 include 'com.enonic.xp:<name>:6.15.12'
}

Where name is the name of the library. Here’s a list of available libraries:

	lib-admin

	lib-auth

	lib-cluster

	lib-common

	lib-content

	lib-context

	lib-event

	lib-i18n

	lib-io

	lib-mail

	lib-mustache

	lib-node

	lib-portal

	lib-repo

	lib-task

	lib-thymeleaf

	lib-value

	lib-websocket

To include both lib-mail and lib-content you can add both inside the
dependency list like this:

dependencies {
 include 'com.enonic.xp:lib-mail:6.15.12'
 include 'com.enonic.xp:lib-content:6.15.12'
}

Adding new libraries in continous mode in Gradle, or Enonic XP dev mode, will not trigger an installation automatically. Just stop Gradle and start continous mode again to install new libraries. The same goes for changes to version number.

Note

The server-side JavaScript reference documentation can be accessed using
the following links:

	Read in your browser [http://repo.enonic.com/public/com/enonic/xp/docs/6.15.12/docs-6.15.12-libdoc.zip!/index.html]

	Download as zip [http://repo.enonic.com/public/com/enonic/xp/docs/6.15.12/docs-6.15.12-libdoc.zip]

 View Functions

View Functions

Some view technologies support a set of view functions. The list of view functions below are supported out-of-the-box:

	assetUrl

	attachmentUrl

	componentUrl

	imageUrl

	pageUrl

	serviceUrl

	imagePlaceholder

	localize

	processHtml

 assetUrl

assetUrl

This generates a URL pointing to a static file in the site/assets folder, such as CSS, background images, etc.

Parameters:

	_path

	Path to the asset.

	_application

	Use this when the asset referenced is in another application. Defaults to current application. Use the app name, for example,
com.enonic.blog.superhero.

	_type

	URL type. Either server (server-relative URL) or absolute. Default is server.

	everything else

	Custom parameters to append to the url.

Usage in Thymeleaf:

<a data-th-href="${portal.assetUrl({'_path=css/main.css'})}">Link

Usage in XSLT:

<xsl:stylesheet version="2.0" exclude-result-prefixes="#all"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:portal="urn:enonic:xp:portal:1.0">

 <xsl:template match="/">
 <xsl:value-of select="portal:assetUrl('_path=a')"/>
 </xsl:template>

</xsl:stylesheet>

 attachmentUrl

attachmentUrl

This generates a URL pointing to an attachment.

Parameters:

	_id

	Id to the content holding the attachment.

	_path

	Path to the content holding the attachment.

	_name

	Name to the attachment.

	_label

	Label of the attachment. Default is source.

	_download

	Set to true if the disposition header should be set to attachment.
Default is false.

	_type

	URL type. Either server (server-relative URL) or absolute. Default is server.

	everything else

	Custom parameters to append to the url.

Usage in Thymeleaf:

<a data-th-href="${portal.attachmentUrl({'_id=1234'})}">Link

<a data-th-href="${portal.attachmentUrl({'_path=/path/to/attachment', '_download=true'})}">Link

Usage in XSLT:

<xsl:stylesheet version="2.0" exclude-result-prefixes="#all"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:portal="urn:enonic:xp:portal:1.0">

 <xsl:template match="/">
 <xsl:value-of select="portal:attachmentUrl('_id=1234')"/>
 <xsl:value-of select="portal:attachmentUrl('_path=/path/to/attachment', '_download=true')"/>
 </xsl:template>

</xsl:stylesheet>

 componentUrl

componentUrl

This generates a URL pointing to a component.

Parameters:

	_id

	Id to the page.

	_path

	Path to the page.

	_component

	Path to the component. If not set, the current path is set.

	_type

	URL type. Either server (server-relative URL) or absolute. Default is server.

	everything else

	Custom parameters to append to the url.

Usage in Thymeleaf:

<a data-th-href="${portal.componentUrl({'_component=main/1'})}">Link

Usage in XSLT:

<xsl:stylesheet version="2.0" exclude-result-prefixes="#all"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:portal="urn:enonic:xp:portal:1.0">

 <xsl:template match="/">
 <xsl:value-of select="portal:componentUrl('_component=main/1')"/>
 </xsl:template>

</xsl:stylesheet>

 imageUrl

imageUrl

This generates a URL pointing to an image.

Parameters:

	_id

	Id to the image.

	_path

	Path to the image. If _id is specified, this parameter is not used.

	_format

	Format of the image.

	_scale

	Resize and crop the image to fit the available area. See: Scaling

	_quality

	Quality for JPEG images, ranges from 0 (max compression) to 100 (min compression). Default is 85.

	_background

	Background color.

	_filter

	Styling filters to use on the image. More than one filter may be combined
with a semicolon. See: Styling

	_type

	URL type. Either server (server-relative URL) or absolute. Default is server.

	everything else

	Custom parameters to append to the url.

Usage in Thymeleaf:

<!-- With ID -->

<!-- With Path -->

<!-- With ID sent as a variable from controller -->

<!-- With ID and width sent as a variable from controller -->

<!-- With ID sent as a variable from controller, using absolute URL output -->

Usage in XSLT:

<xsl:stylesheet version="2.0" exclude-result-prefixes="#all"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:portal="urn:enonic:xp:portal:1.0">

 <xsl:template match="/">
 <xsl:value-of select="portal:imageUrl('_id=11', 'scale=width(200)')"/>
 <xsl:value-of select="portal:imageUrl('_path=test', 'scale=width(200)')"/>
 </xsl:template>

</xsl:stylesheet>

 pageUrl

pageUrl

This generates a URL pointing to a page.

Parameters:

	_id

	Id to the page. If id is set, then path is not used.

	_path

	Path to the page. Relative paths is resolved using the context page.

	_type

	URL type. Either server (server-relative URL) or absolute. Default is server.

	everything else

	Custom parameters to append to the url.

Usage in Thymeleaf:

<a data-th-href="${portal.pageUrl({'_path=/my/page', 'a=3'})}">Link

Usage in XSLT:

<xsl:stylesheet version="2.0" exclude-result-prefixes="#all"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:portal="urn:enonic:xp:portal:1.0">

 <xsl:template match="/">
 <xsl:value-of select="portal:pageUrl('_path=/my/page', 'a=3')"/>
 </xsl:template>

</xsl:stylesheet>

 serviceUrl

serviceUrl

This generates a URL pointing to a service.

Parameters:

	_service

	Name of the service.

	_application

	Other application to reference to. Default is current application.

	_type

	URL type. Either server (server-relative URL) or absolute. Default is server.

	everything else

	Custom parameters to append to the url.

Usage in Thymeleaf:

<a data-th-href="${portal.serviceUrl({'_service=myservice', 'a=3'})}">Link

Usage in XSLT:

<xsl:stylesheet version="2.0" exclude-result-prefixes="#all"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:portal="urn:enonic:xp:portal:1.0">

 <xsl:template match="/">
 <xsl:value-of select="portal:serviceUrl('_service=myservice', 'a=3')"/>
 </xsl:template>

</xsl:stylesheet>

 imagePlaceholder

imagePlaceholder

This command generates a URL to an image placeholder.

Parameters:

	width

	Width of image.

	height

	Height of image.

Usage in Thymeleaf:

Usage in XSLT:

<xsl:stylesheet version="2.0" exclude-result-prefixes="#all"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:portal="urn:enonic:xp:portal:1.0">

 <xsl:template match="/">
 <xsl:value-of select="portal:imagePlaceholder('width=10','height=10')"/>
 </xsl:template>

</xsl:stylesheet>

 localize

localize

This localizes a phrase.

Parameters:

	_key

	The property key.

	_locale

	A string-representation of a locale. If the locale is not set, the
site language is used.

	_values

	Optional placeholder values (comma separated).

Usage in Thymeleaf:

<div data-th-text="${portal.localize({'_key=mystring','_locale=en'})}">Not translated</div>

Usage in XSLT:

<xsl:stylesheet version="2.0" exclude-result-prefixes="#all"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:portal="urn:enonic:xp:portal:1.0">

 <xsl:template match="/">
 <xsl:value-of select="portal:localize('_key=mystring')"/>
 </xsl:template>

</xsl:stylesheet>

 processHtml

processHtml

This function replaces abstract internal links contained in an HTML
text by generated URLs.

Parameters:

	_value

	Html value string to process.

	_type

	URL type. Either “server” (server-relative URL) or “absolute”. Default is “server”

Usage in Thymeleaf:

<div data-th-text="${portal.processHtml({'_value=some text'})}">Text</div>

Usage in XSLT:

<xsl:stylesheet version="2.0" exclude-result-prefixes="#all"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:portal="urn:enonic:xp:portal:1.0">

 <xsl:template match="/">
 <xsl:value-of select="portal:processHtml('_value=some text')"/>
 </xsl:template>

</xsl:stylesheet>

 Query Language

Query Language

When finding nodes and content you will be using our query language. It is
based on SQL and looks very similar.

queryExr

Grammar:

queryExpr = [constraintExpr] [orderExpr] ;

	If no constraint-expression is given, all documents will match.

	If no order-expression is given, results will be ordered by _score descending.

Examples:

myCategory = 'article'
myCategory = 'article' ORDER BY title DESC
ORDER BY title

constraintExpr

Grammar:

constraintExpr = compareExpr
 | logicalExpr
 | dynamicConstraint
 | notExpr ;

compareExpr

Grammar:

compareExpr = fieldExpr operator valueExpr ;
fieldExpr = propertyPath ;
operator = '=', '!=', '>', '>', '<', '<=', 'LIKE', 'NOT LIKE', 'IN', 'NOT IN' ;
valueExpr = string | number | valueFunc ;
valueFunc = geoPoint | instant | time | dateTime, localDateTime ;
geoPoint = '"' lat ',' lon '"' ;
instant = 'instant(' string ')' ;
time = 'time(' string ')' ;
dateTime = 'dateTime(' string ')' ;
localDateTime = 'localDateTime(' string ')' ;

Examples:

user.myCategory = "articles"
user.myCategory IN ("articles", "documents")
user.myCategory != "articles"
user.myCategory LIKE "*tic*"
myPriority < 10
myPriority <= 10
myPriority > 10
myPriority < 100
myPriority != 10
myInstant = instant('2014-02-26T14:52:30.00Z')
myInstant <= instant('2014-02-26T14:52:30.00Z')
myInstant <= dateTime('2014-02-26T14:52:30.00+02:00')
myTime = time('09:00')
myLocalDateTime = time('2014-02-26T14:52:30.00')
myLocation = '59.9127300,10.7460900'
myLocation IN ('59.9127300,10.7460900','59.2181000,10.9298000')

logicalExpr

Grammar:

logicalExpr = constraintExpr operator constraintExpr ;
operator = 'AND' | 'OR' ;

Examples:

myCategory = "articles" AND myPriority > 10
myCategory IN ("articles", "documents") OR myPriority <= 10

dynamicConstraint

Grammar:

dynamicConstraint = functionExpr ;

Examples:

fulltext('myCategory', 'Searching for fish', 'AND')
ngram('description', 'fish boat', 'AND')

notExpr

Grammar:

notExpr = 'NOT' constraintExpr ;

Examples:

NOT myCategory = 'article'

orderExpr

Grammar:

orderExpr = 'ORDER BY' (fieldOrderExpr | dynamicOrderExpr)
 (',' (fieldOrderExpr | dynamicOrderExpr))* ;

fieldOrderExpr

Grammar:

fieldOrderExpr = propertyPath [direction] ;
direction> = 'ASC' | 'DESC' ;

Examples:

_name ASC
_timestamp DESC
title DESC
data.myProperty

dynamicOrderExpr

Grammar:

dynamicOrderExpr = functionExpr [direction] ;
direction = 'ASC' | 'DESC' ;

Examples:

geoDistance('59.9127300,10.746090')

propertyPath

Grammar:

propertyPath = pathElement ('.' pathElement)* ;
pathElement = ([validJavaIdentifier - '.'])* ;

Examples:

myProperty
data.myProperty
data.myCategory.myProperty

Tip

Wildcards in propertyPaths are supported in functions fulltext and
ngram only at the moment. When using these functions, expressions
like this are valid:

myProp*
*Property
data.*
*.myProperty
data.*.myProperty

functionExpr

Grammar:

functionExpr = functionName '(' arguments ')' ;

Examples

Find all documents where property ‘myCategory’ is populated with a value, and
the value does not equal ‘article’.

myCategory LIKE '*' AND NOT myCategory = 'article'

Find all document where property ‘myCategory’ is either ‘article’ or ‘document’ and title
starts with ‘fish’.

myCategory IN ('article', 'document') AND ngram('title', 'fish', 'AND')

Find all documents where any fulltext-analyzed property contains ‘fish’ and ‘spot’, and order
them ascending by distance from Oslo.

fulltext('_allText', 'fish spot', 'AND') ORDER BY
geoDistance('data.location', '59.9127300,10.7460900') ASC

Find all documents where any property under data-set ‘data’ contains ‘fish’ and ‘spot’, and order
them ascending by distance from Oslo.

fulltext('data.*', 'fish spot', 'AND') ORDER BY
geoDistance('data.location', '59.9127300,10.7460900') ASC

 Toolbox CLI

Toolbox CLI

Note

If you have enabled the Virtual Host Configuration, /api has to be accessible for the toolbox CLI to communicate with the server

The toolbox is a CLI (command line interface) tool that is used to do
administration tasks. Toolbox executables are located in $XP_INSTALL/toolbox
folder. Use toolbox.sh for mac/unix environments and toolbox.bat
for windows environments.

To get help for the commands, just type the following:

$./toolbox.sh
usage: toolbox <command> [<args>]

The most commonly used toolbox commands are:
 delete-snapshots Deletes snapshots, either before a given timestamp or by name.
 dump Export data from every repository.
 export Export data for a specified path.
 help Display help information
 import Import data from a named export.
 init-project Initiates an Enonic XP application project.
 install-app Install an application from URL or file
 list-snapshots Returns a list of existing snapshots with name and status.
 load Import data from a dump.
 reindex Reindex content in search indices for the given repository and branches.
 reprocess Reprocesses content in the repository.
 restore Restores a snapshot of a previous state of the repository.
 set-read-only Toggle read-only mode for server or single repository
 set-replicas Set the number of replicas in the cluster.
 snapshot Stores a snapshot of the current state of the repository.
 upgrade Upgrade a dump to the current version. The upgraded files will be written to <dumpFolderName>_upgraded_<version>
 vacuum Removes unused blobs and binaries from blobstore

 See 'toolbox help <command>' for more information on a specific command.

To get help for a specific command, you can type toolbox.sh help <command>, like:

$ toolbox.sh help import

Here’s a list of all the commands that you can do with the toolbox:

	delete-snapshots

	dump

	export

	import

	init-project

	install-app

	list-snapshots

	load

	reindex

	reprocess

	restore

	set-read-only

	set-replicas

	snapshot

	upgrade

	vacuum

 delete-snapshots

delete-snapshots

Deletes all snapshots before the given timestamp.
See Backup and Restore for more information on snapshots.

Usage:

NAME
 toolbox delete-snapshots - Deletes snapshots, either before a given
 timestamp or by name.

SYNOPSIS
 toolbox delete-snapshots -a <auth> -b <before> [-h <host>] [-p <port>]
 [--scheme <scheme>]

OPTIONS
 -a <auth>
 Authentication token for basic authentication (user:password).

 -b <before>
 Delete snapshots before this timestamp.

 -h <host>
 Host name for server (default is localhost).

 -p <port>
 Port number for server (default is 8080).

 --scheme <scheme>
 Scheme (default is http).

Example:

$./toolbox.sh delete-snapshots -a su:password -b 2015-02-14t14:24:20.618z

 dump

dump

toolbox dump - Export data from every repository.
The result will be stored in the $XP_HOME/data/dump directory.

Usage:

NAME
 toolbox dump - Export data from every repository.

SYNOPSIS
 toolbox dump -a <auth> [-h <host>] [--max-version-age <maxAge>]
 [--max-versions <maxVersions>] [-p <port>] [--scheme <scheme>]
 [--skip-versions] -t <target>

OPTIONS
 -a <auth>
 Authentication token for basic authentication (user:password).

 -h <host>
 Host name for server (default is localhost).

 --max-version-age <maxAge>
 Max age of versions to include, in days, in addition to current
 version

 --max-versions <maxVersions>
 Max number of versions to dump in addition to current version

 -p <port>
 Port number for server (default is 8080).

 --scheme <scheme>
 Scheme (default is http).

 --skip-versions
 Dont dump version-history, only current versions included

 -t <target>
 Dump name.

Example:

$./toolbox.sh dump -a su:password -t myDump

 export

export

Extract data from a given repository, branch and content path.
The result will be stored in the $XP_HOME/data/export directory.
This is useful to move a part of a site from one installation to another.
See Export and Import for more information on content export/import.

Attention

Exporting content will not include the version history of the content, just the current version.

Usage:

NAME
 toolbox export - Export data for a specified path.

SYNOPSIS
 toolbox export -a <auth> [-h <host>] [-p <port>] -s <sourceRepoPath>
 [--scheme <scheme>] [--skipids] -t <exportName>

OPTIONS
 -a <auth>
 Authentication token for basic authentication (user:password).

 -h <host>
 Host name for server (default is localhost).

 -p <port>
 Port number for server (default is 8080).

 -s <sourceRepoPath>
 Path of data to export. Format:
 <repo-name>:<branch-name>:<node-path>.

 --scheme <scheme>
 Scheme (default is http).

 --skipids
 Flag that skips ids in data when exporting.

 -t <exportName>
 Target name to save export.

Example:

$./toolbox.sh export -a su:password -s cms-repo:draft:/ -t myExport
$./toolbox.sh export -a su:password -s cms-repo:draft:/content/my-site -t mySiteExport

 import

import

Import data from a named export into Enonic XP at the desired content path.
The export read has to be stored in the $XP_HOME/data/export directory.
See Export and Import for more information on content export/import.

Usage:

NAME
 toolbox import - Import data from a named export.

SYNOPSIS
 toolbox import -a <auth> [-h <host>] [-p <port>] -s <exportName>
 [--scheme <scheme>] [--skip-permissions] [--skipids] -t <targetRepoPath>
 [-xslParam <xslParam>...] [-xslSource <xslSource>]

OPTIONS
 -a <auth>
 Authentication token for basic authentication (user:password).

 -h <host>
 Host name for server (default is localhost).

 -p <port>
 Port number for server (default is 8080).

 -s <exportName>
 A named export to import.

 --scheme <scheme>
 Scheme (default is http).

 --skip-permissions
 Flag that skips permissions.

 --skipids
 Flag that skips ids.

 -t <targetRepoPath>
 Target path for import. Format:
 <repo-name>:<branch-name>:<node-path>. e.g 'cms-repo:draft:/'

 -xslParam <xslParam>
 Parameter to pass to the XSL transformations before importing nodes.
 Format: <parameter-name>=<parameter-value> . e.g.
 'applicationId=com.enonic.myapp'

 -xslSource <xslSource>
 Path to xsl file (relative to <XP_HOME>/data/export) for applying
 transformations to node.xml before importing.

Example:

$./toolbox.sh import -a su:password -s myExport -t cms-repo:draft:/
$./toolbox.sh import -a su:password -s mySiteExport -t cms-repo:draft:/content

Tip

An XSL file and a set of name=value parameters can be optionally passed for applying transformations to each node.xml file, before importing it.

This option could for example be used for renaming types or fields. The .xsl file must be located in the $XP_HOME/data/export directory.

 init-project

init-project

The init-project tool initializes a new application project structure by retrieving a Git repository, removing all references to the Git
repository, and adapting its build file properties (gradle.properties).

Usage:

NAME
 toolbox init-project - Initiates an Enonic XP application project

SYNOPSIS
 toolbox init-project [-a <authentication>]
 [(-c <checkout> | --checkout <checkout>)]
 [(-d <destination> | --destination <destination>)]
 (-n <name> | --name <name>)
 (-r <repository> | --repository <repository>)
 [(-v <version> | --version <version>)]

OPTIONS
 -a <authentication>
 Optional authentication token for basic authentication (user:password)

 -c <checkout>, --checkout <checkout>
 Branch or commit to checkout.

 -d <destination>, --destination <destination>
 Optional destination path to create your project, if not specified current
 directory will be used

 -n <name>, --name <name>
 Unique qualifying name that will be given to your application i.e.
 com.company.myapp. NOTE: Choose the name carefully as changing it at a later
 point in time will require updating your content too.

 -v <version>, --version <version>
 Optional version number that will be set in your application project, if not
 used 1.0.0-SNAPSHOT will be set

 -r <repository>, --repository <repository>
 Git repository you wish to use as starting point. Supports both full urls to
 any standard xp git-hosted project, or optionally a GitHub repository path
 (account/repo) - account defaults to "enonic" if not specified

Examples:

$ toolbox.sh init-project -d ~/Dev/xp/apps/myApp -n com.company.myapp -v 0.9.0 -r https://github.com/enonic/starter-vanilla.git -c 1.3.0

$ toolbox.sh init-project -n com.company.myapp -v 1.0.0-SNAPSHOT -r enonic/starter-base

$ toolbox.sh init-project -n com.company.myapp -r starter-base

 install-app

install-app

Installs an application on all nodes.

Usage:

NAME
 toolbox install-app - Install an application from URL or file

SYNOPSIS
 toolbox install-app -a <auth> [-f <file>] [-h <host>] [-p <port>]
 [--scheme <scheme>] [-u <url>]

OPTIONS
 -a <auth>
 Authentication token for basic authentication (user:password).

 -f <file>
 Application file

 -h <host>
 Host name for server (default is localhost).

 -p <port>
 Port number for server (default is 8080).

 --scheme <scheme>
 Scheme (default is http).

 -u <url>
 The URL of the application

Example:

$./toolbox.sh install-app -a su:password -u http://repo.enonic.com/public/com/enonic/app/superhero/1.2.0/superhero-1.2.0.jar

$./toolbox.sh install-app -a su:password -f /Users/rmy/Dev/apps/superhero/build/libs/superhero-1.2.0-SNAPSHOT.jar

 list-snapshots

list-snapshots

List all the snapshots for the installation.
See Backup and Restore for more information on snapshots.

Usage:

NAME
 toolbox list-snapshots - Returns a list of existing snapshots with name
 and status.

SYNOPSIS
 toolbox list-snapshots -a <auth> [-h <host>] [-p <port>]
 [--scheme <scheme>]

OPTIONS
 -a <auth>
 Authentication token for basic authentication (user:password).

 -h <host>
 Host name for server (default is localhost).

 -p <port>
 Port number for server (default is 8080).

 --scheme <scheme>
 Scheme (default is http).

Example:

$./toolbox.sh list-snapshots -a su:password

 load

load

Load data from a named system dump into Enonic XP.
The dump read has to be stored in the $XP_HOME/data/dump directory.
See Export and Import for more information on system dump/load.

Attention

A load will delete all existing repositories before loading the repositories present in the system-dump

Usage:

NAME
 toolbox load - Import data from a dump.

SYNOPSIS
 toolbox load -a <auth> [-h <host>] [-p <port>] -s <source>
 [--scheme <scheme>] [-y]

OPTIONS
 -a <auth>
 Authentication token for basic authentication (user:password).

 -h <host>
 Host name for server (default is localhost).

 -p <port>
 Port number for server (default is 8080).

 -s <source>
 Dump name.

 --scheme <scheme>
 Scheme (default is http).

 -y
 Automatic yes to prompts; assume “Yes” as answer to all prompts and
 run non-interactively.

Example:

$./toolbox.sh load -a su:password -s myDump

 reindex

reindex

Reindex the content in the search indices for the given repository and branches.
This is usually required after upgrades, and may be useful in many other situation.

Usage:

NAME
 toolbox reindex - Reindex content in search indices for the given
 repository and branches.

SYNOPSIS
 toolbox reindex -a <auth> -b <branches>... [-h <host>] [-i] [-p <port>]
 -r <repository> [--scheme <scheme>]

OPTIONS
 -a <auth>
 Authentication token for basic authentication (user:password).

 -b <branches>
 A comma-separated list of branches to be reindexed.

 -h <host>
 Host name for server (default is localhost).

 -i
 If flag -i given true, the indices will be deleted before recreated.

 -p <port>
 Port number for server (default is 8080).

 -r <repository>
 The name of the repository to reindex.

 --scheme <scheme>
 Scheme (default is http).

Example:

$./toolbox.sh reindex -a su:password -b draft,master -i -r cms-repo

 reprocess

reprocess

Reprocesses content in the repository and regenerates metadata for the media attachments.
Only content of a media type (super-type = base:media) are processed.

Unless the –skip-children flag is specified, it processes all descendants of the specified content path.

This command should be used after migrating content from Enonic CMS using the cms2xp [https://github.com/enonic/cms2xp] tool.

Usage:

NAME
 toolbox reprocess - Reprocesses content in the repository.

SYNOPSIS
 toolbox reprocess -a <auth> [-h <host>] [-p <port>]
 -s <sourceBranchPath> [--scheme <scheme>] [--skip-children]

OPTIONS
 -a <auth>
 Authentication token for basic authentication (user:password).

 -h <host>
 Host name for server (default is localhost).

 -p <port>
 Port number for server (default is 8080).

 -s <sourceBranchPath>
 Target content path to be reprocessed. Format:
 <branch-name>:<content-path>. e.g 'draft:/'

 --scheme <scheme>
 Scheme (default is http).

 --skip-children
 Flag to skip processing of content children.

Example:

$./toolbox.sh reprocess -a su:password -s draft:/

 restore

restore

Restore a named snapshot.
See Backup and Restore for more information on snapshots.

Usage:

NAME
 toolbox restore - Restores a snapshot of a previous state of the
 repository.

SYNOPSIS
 toolbox restore -a <auth> [-h <host>] [-p <port>] [-r <repository>]
 -s <snapshotName> [--scheme <scheme>]

OPTIONS
 -a <auth>
 Authentication token for basic authentication (user:password).

 -h <host>
 Host name for server (default is localhost).

 -p <port>
 Port number for server (default is 8080).

 -r <repository>
 The name of the repository to restore.

 -s <snapshotName>
 The name of the snapshot to restore.

 --scheme <scheme>
 Scheme (default is http).

Example:

$./toolbox.sh restore -a su:password -s 2015-07-02t11:53:13.224z

Related:

	List available snapshots with names: list-snapshots

 set-read-only

set-read-only

Toggle read-only mode. In read-only mode, no changes can be made on the server, or a single repo if specified

Usage:

NAME
 toolbox set-read-only - Toggle read-only mode for server or single
 repository

SYNOPSIS
 toolbox set-read-only -a <auth> [-h <host>] [-p <port>]
 [-r <repositoryId>] [--scheme <scheme>] [--] <readOnly>

OPTIONS
 -a <auth>
 Authentication token for basic authentication (user:password).

 -h <host>
 Host name for server (default is localhost).

 -p <port>
 Port number for server (default is 8080).

 -r <repositoryId>
 Single repository to toggle read-only mode for

 --scheme <scheme>
 Scheme (default is http).

 --
 This option can be used to separate command-line options from the
 list of argument, (useful when arguments might be mistaken for
 command-line options

 <readOnly>
 Read only mode enabled

Example:

$./toolbox.sh set-read-only -a su:password true

 set-replicas

set-replicas

Set the number of replicas in the cluster. For more information on how replicas work and recommended values, see: Replica setup.

Usage:

NAME
 toolbox set-replicas - Set the number of replicas in the cluster.

SYNOPSIS
 toolbox set-replicas -a <auth> [-h <host>] [-p <port>]
 [--scheme <scheme>] [--] <numberOfReplicas>

OPTIONS
 -a <auth>
 Authentication token for basic authentication (user:password).

 -h <host>
 Host name for server (default is localhost).

 -p <port>
 Port number for server (default is 8080).

 --scheme <scheme>
 Scheme (default is http).

 --
 This option can be used to separate command-line options from the
 list of argument, (useful when arguments might be mistaken for
 command-line options

 <numberOfReplicas>
 Number of replicas

Example:

$./toolbox.sh set-replicas -a su:password 2

 snapshot

snapshot

Create a snapshot of all or a single repository while running. The snapshots will be stored in
the directory given in snapshots.dir option in the Repo Configuration (default $xp_home/snapshots).
Note that the first snapshot only stores markers in the repository for the current state.
Subsequent snapshots stores the changes since the last snapshot.
See Backup and Restore for more information on snapshots.

Attention

For a clustered installation, the snapshot-location must be on a shared file-system.

Usage:

NAME
 toolbox snapshot - Stores a snapshot of the current state of the
 repository.

SYNOPSIS
 toolbox snapshot -a <auth> [-h <host>] [-p <port>] [-r <repository>]
 [--scheme <scheme>]

OPTIONS
 -a <auth>
 Authentication token for basic authentication (user:password).

 -h <host>
 Host name for server (default is localhost).

 -p <port>
 Port number for server (default is 8080).

 -r <repository>
 the name of the repository to snapshot.

 --scheme <scheme>
 Scheme (default is http).

Example:

$./toolbox.sh snapshot -a su:password

Related:

	List available snapshots with names: list-snapshots

	Restore snapshot: restore

 upgrade

upgrade

Upgrade a data dump from a previous version to the current version.
The output of the upgrade will be placed alongside the dump that is being upgraded and will have the name <dump-name>_upgraded_<new-version>
unless a target location is specified with -t.

The current version XP installation must be running with the upgraded app deployed.

Usage:

NAME
 toolbox upgrade - Upgrade a dump to the current version. The upgraded
 files will be written to <dumpFolderName>_upgraded_<version>

SYNOPSIS
 toolbox upgrade -d <dump>

OPTIONS
 -d <dump>
 Dump folder location

Example:

$./toolbox.sh upgrade -d ./data/dump/5.3.1-dump

The output would appear as:

/data/dump/5.3.1_upgraded_6.0.0/

 vacuum

vacuum

Deletes unused blobs and binaries from blobstore.

Make sure you have a backup of the installation available before doing a vacuum.

Usage:

NAME
 toolbox vacuum - Removes unused blobs and binaries from blobstore

SYNOPSIS
 toolbox vacuum -a <auth> [-h <host>] [-p <port>] [--scheme <scheme>]

OPTIONS
 -a <auth>
 Authentication token for basic authentication (user:password).

 -h <host>
 Host name for server (default is localhost).

 -p <port>
 Port number for server (default is 8080).

 --scheme <scheme>
 Scheme (default is http).

Example:

$./toolbox.sh vacuum -a su:password

 Image Processor

Image Processor

Enonic XP includes a number of image processing commands that may be used to set
the size or add style to the images. The commands are appended to the image
URLs. To automatically create the URLs, use the imageUrl view
function.

	Scaling

	Styling

 Scaling

Scaling

Scale Max

Scales the image proportionally, so the longest edge has the given number of
pixels.

Arguments:

	size

	The length of the longest edge. Required

	Example:

	max(600)

Scale Wide

Scales the image to fit the given width of the picture. If the image is taller
than the given height, it is cropped on top and bottom, based on the focal
point position.

Arguments:

	width

	Width in pixels

	height

	maximum height in pixels

	Example:

	wide(600,200)

Scale Block

Scales the image, while keeping the aspect ratio, so it fills the rectangle
specified by width and height. Then crops the overflowing axis based on the
focal point position. The result of a call to this method will be an image that
always has the exact size of the specified input.

Arguments:

	width

	Width in pixels

	height

	Height in pixels

	Example:

	block(600,200)

Scale Square

Scales the image proprtionally to match the shortest edge. The longest edge
will be cropped based on the focal point position.

Arguments:

	size

	The length of both sides in pixels

	Example:

	square(600)

Scale Height

Scales the image proportionally to match the given height.

Arguments:

	height

	Height in pixels

	Example:

	height(600)

Scale Width

Scales the image proportionally to match the given width.

Arguments:

	width

	Width in pixels

	Example:

	width(600)

 Styling

Styling

Block

Pixelates the image creating a mosaic like effect.

Arguments:

	size

	The number of pixels squared, that should be combined to one block. Default: 2

	Example:

	block(5)

[image: ../../_images/block5.jpg]

Blur

Applies a blur effect.

Arguments:

	radius

	How much blur to apply. Default: 2

	Example:

	blur(8)

[image: ../../_images/blur8.jpg]

Border

Applies a rectangular border around the image.

Arguments:

	width

	The width of the border in pixels. Default: 2

	color

	The color of the border as a decimal or hexadecimal number.
Default: 0 / 0x000000 (black)

	Example:

	border(5)
border(4, 0x777777)

[image: ../../_images/border4_0x777777.jpg]

Emboss

Applies an embossing effect on the image.

No arguments

	Example:

	emboss()

[image: ../../_images/emboss.jpg]

Grayscale

Creates a grayscale variant of the image.

No arguments

	Example:

	grayscale()

[image: ../../_images/grayscale.jpg]

Invert

Inverts the colors in the image.

No arguments

	Example:

	invert()

[image: ../../_images/invert.jpg]

Rounded

Rounds the corners of the image, with an option of adding a border around the
rounded image.

Arguments:

	radius

	The number of pixels from each corner where the rounding starts. Default: 10

	borderSize

	The width of the border in pixels. Default: 0

	borderColor

	The color of the border as a decimal or hexadecimal number. Default: 0 / 0x000000 (black)

	Example:

	rounded()
rounded(15)
rounded(10,1)
rounded(8,4,0x777777)

[image: ../../_images/rounded8_4_0x777777.jpg]

Sharpen

Applies a sharpening filter to the image.

No arguments

	Example:

	sharpen()

[image: ../../_images/sharpen.jpg]

RGB Adjust

Adjust the red, green and blue levels in the image.

Arguments:

	red

	The adjusted red level for the image. Default: 0

	green

	The adjusted green level for the image. Default: 0

	blue

	The adjusted blue level for the image. Default: 0

	Example:

	rgbadjust(2.0,0.25,-1.75)

[image: ../../_images/rgbadjust2_0_n2.jpg]

HSB Adjust

Adjust the hue, saturation and brightness levels in the image.

Arguments:

	hue

	Value from -1 to 1, of how far around the color wheel to move the hue of the
image. Default: 0

	saturation

	Value from -1 to 1 to adjust the intesity of the colors in the image.
Default: 0

	brightness

	Value from -1 to 1 to adjust the brightness of the image.
Default: 0

	Example:

	hsbadjust(0.5,-0.1)
hsbadjust(-0.15,0.2,-0.2)

[image: ../../_images/hsbadjust.jpg]

Edge

Creates an abstract image by brightening every edge and darkening every even
surface of the image.

No arguments

	Example:

	edge()

[image: ../../_images/edge.jpg]

Bump

Creates a 3D looking texture, based on darkening and lighting each side of edges
in the image.

No arguments

	Example:

	bump()

[image: ../../_images/bump.jpg]

Sepia

Creates a grayscale image with a yellow-reddish tint to make it look like an old
photograph.

Arguments:

	depth

	The brightness of the tint. Default: 20

	Example:

	sepia()
sepia(25)

[image: ../../_images/sepia25.jpg]

Rotate 90

Rotates an image 90 degrees

No arguments

	Example:

	rotate90()

[image: ../../_images/rotate90.jpg]

Rotate 180

Rotates an image 180 degrees

No arguments

	Example:

	rotate180()

[image: ../../_images/rotate180.jpg]

Rotate 270

Rotates an image 270 degrees

No arguments

	Example:

	rotate270()

[image: ../../_images/rotate270.jpg]

Flip horizontal

Flips an image horizontally

No arguments

	Example:

	fliph()

[image: ../../_images/fliph.jpg]

Flip vertically

Flips an image vertically

No arguments

	Example:

	flipv()

[image: ../../_images/flipv.jpg]

Colorize

Makes a grayscale image, then applies a tint, based on the specified color.

Arguments:

	red

	Red boost value. Default: 1

	green

	Green boost value. Default: 1

	blue

	Blue boost value. Default: 1

	Example:

	colorize(3,1,1.5)

[image: ../../_images/colorize.jpg]

HSB Colorize

Makes a grayscale image, then applies a tint, based on the specified color.

Arguments:

	color

	The tint color as a decimal or hexadecimal number. Default: 0xFFFFFF

	Example:

	hsbcolorize(0x00AAAA)

[image: ../../_images/hsbcolorize.jpg]

 JavaDoc API

JavaDoc API

You can either download the JavaDoc as a zip [http://repo.enonic.com/public/com/enonic/xp/docs/6.15.12/docs-6.15.12-javadoc.zip] or view it
directly in your browser [http://repo.enonic.com/public/com/enonic/xp/docs/6.15.12/docs-6.15.12-javadoc.zip!/index.html].

 Release Notes

Release Notes

Enonic XP 6.15 is a release with exciting new features, improvements and fixes.

Improved workflow in Content Studio

Issues are now fully integrated in the publishing process of Content Studio.

	Create issues directly from browse view and/or publishing wizard

	Assign and collaborate on issues until they are resolved

	Easily see and access your issues

	Easily spot and access issues for an item from preview panel

	Directly open and edit content items from an issue

See the full Publishing Issues documentation.

[image: ../../_images/issues.png]

New Html Editor

As of 6.15 Content Studio uses CKEditor as the default editor, deprecating TinyMCE from service.
The switch improves both stability for editors, and new features, here are a few:

	Drag’n dropping images directly into the editor.

	Drag images around inside text

	Double click to edit images

	Double click to edit links

	Field expands on select (for faster scrolling through forms)

The editor is fully backward compatible, and more new features will be introduced in upcoming releases.

[image: ../../_images/ckeditor.png]

See the full Html Area input type documentation.

Updates to steps in Content Editor

The standard steps “Settings” and “Access” have been replaced by icons to save space.
Additionally, Xtra data has been re-implemented, and now allows the editor manually enable or disable entire X-data steps.

Editors can now enable, and disable X-data as needed (using the new x-data feature requires a minor change to existing applications).
See the full X-data documentation.

[image: ../../_images/x-data.png]

Media Selector input type

A brand new input type for selecting and uploading any kind of file is now available. The Media Selector combines features from both Content Selector and the Image selector to provide a flexible way of uploading and selecting files:

[image: ../../_images/media-selector.png]

Improved duplicate dialogue

Duplicating content in Content Studio now support selecting to duplicate only a single item, or an entire tree-structure.

[image: ../../_images/duplicate1.png]

Fully replicated sessions

Warning

Session replication is an experimental feature.

Web sessions (i.e. logins) can now be fully replicated.
This means that users will never loose their session if a server is shut down or fails while running an XP cluster.
As of 6.15 sticky-session load balancer configuration is optional.

Other improvements

	Content type filters for selector inputs now support regular expressions

	Admin extensions are now listed in application details panel

	New Cluster library is available

	x-data now support content type filtering

	Editors may now sort content based on created and publish date

	Link to edit fragments from Inspection panel

	New keyboard shortcuts to publish and preview content

	Support uploading files in Html editor’s insert link dialog.

	several other improvements and 90+ bugfixes.

Warning

There are important upgrade steps to follow when upgrading to 6.15.

Upgrade notes - 6.15 for more details.

Changelog

For a complete list of changes and bugfixes see https://github.com/enonic/xp-distro/releases/tag/v6.15.0

 Upgrade notes - 6.15

Upgrade notes - 6.15

Note

This documentation describes upgrading from 6.14.x to 6.15.

Notable changes

CKEditor replaces TinyMCE

CKEditor is the new HTML editor used inside Content Studio.
To ease the transition, TinyMCE is still present and can be used by setting the property htmlarea in the new config file com.enonic.xp.app.contentstudio.cfg.

$XP_HOME/config/com.enonic.xp.app.contentstudio.cfg

htmlarea = tinymce

Ignite cluster

Enonic XP now includes Apache Ignite. If your installation is not clustered, you do not need to do anything and may skip this part.

Elasticsearch and Ignite communicate between every Enonic XP node of a cluster.
To simplify the configuration, a file com.enonic.xp.cluster.cfg has been created to gather the properties common to Ignite and Elasticsearch.
The configuration files com.enonic.xp.elasticsearch.cfg and com.enonic.xp.ignite.cfg contain the properties specific to each system.

$XP_HOME/config/com.enonic.xp.cluster.cfg

cluster.enabled = true

#The value previously set on the property 'node.name' in 'com.enonic.xp.elasticsearch.cfg'
node.name = <myNodeName>

#The value previously set on the property 'discovery.zen.ping.unicast.hosts' in 'com.enonic.xp.elasticsearch.cfg'
discovery.unicast.hosts = <node1Address>,<node2Address>,<node3Address>,...

#The value previously set on the property 'network.host' in 'com.enonic.xp.elasticsearch.cfg'
network.host = <host>
network.publish.host = <host>

Remove the following obsolete properties from the file com.enonic.xp.elasticsearch.cfg: node.name, node.local, network.host and discovery.zen.ping.unicast.hosts

See the Configuration section for more information about the configuration files.

Upgrade Steps

1. Backup the installation

Backup you current installation. This is described in Backup and Restore.

You could also do a dump of the system, but then you will lose versions if you have to reload it.

2. Install new version

Download Enonic XP http://repo.enonic.com/public/com/enonic/xp/distro/6.15.12/distro-6.15.12.zip and install according to your setup.

Tip

Remember to update any startup scripts you might have to launch your new installation given a server restart

3. Configure XP_HOME

The next step depends on your setup. Do you have your $XP_HOME folder outside or inside the $XP_INSTALL folder?

Outside the $XP_INSTALL - folder:

Make sure the new installation points to the correct $XP_HOME folder.

Inside the $XP_INSTALL - folder:

Copy your $OLD_XP_INSTALL/home folder to the the new $NEW_XP_INSTALL/ (on all nodes).

4. Stop the old installation

5. Start the new installation

 Frequently Asked Questions

Frequently Asked Questions

What’s the latest release?

The latest release can be found here latest release changelog [https://github.com/enonic/xp-distro/releases/latest].

Where can I get the source code?

	All source code for Enonic XP is published on GitHub:

	
	The back-end: Enonic XP runtime [https://github.com/enonic/xp]

	The Admin apps: Enonic XP Apps [https://github.com/enonic/xp-apps]

	Admin lib for common code in admin apps: Admin UI Library [https://github.com/enonic/lib-admin-ui]

Do you publish changelogs?

Yes. Each project have it’s own changelog on GitHub. Go to the GitHub project page using the links in the previous question and click Code.
On the resulting page, a line with links to all commits, branches commits and contributors is show. Clock on the text that say <X> releases,
and all the releases of that project are listed with links to the changelog.

If you want to see what’s coming in the future releases, check out Discuss [https://discuss.enonic.com/] .
Approximately every other week, our product advisory board meets to discuss what to prioritze in the upcoming releases.
Reports from these meetings are published on Discuss.

How is Enonic XP Licensed

Enonic XP is available under the GPL 3.0 license [http://www.gnu.org/licenses/gpl-3.0.html].
This basically means that you are free to use and re-distribute Enonic XP according to the GPL license.
The linking exception ensures that you can build custom applications and libraries on top of Enonic XP and license these however you see fit.
Any changes made to the Enonic XP core platform however must be licensed as GPL.

We encourage the use of FOSS licensing for 3rd party apps and libraries. Libraries in particular should be licensed with a non-intrusive license such as Apache, BSD or MIT.

Note

This is a major difference from products such as Drupal and Wordpress where your themes, plugins and modules must be licensed as GPL too.

Enonic XP also consists of many 3rd party software components. The complete list can be found in our Notice.txt file [https://github.com/enonic/xp/blob/master/NOTICE.txt]

What is $XP_INSTALL?

$XP_INSTALL and $XP_HOME are referenced frequently in the documentation and it is important
to understand the difference. $XP_INSTALL is the top level directory of the XP installation and it
contains the directories bin, home, lib, toolbox and others.

What is $XP_HOME?

$XP_HOME, by default, is the location of the $XP_INSTALL/home folder which contains the config, deploy, repo and other
directories specific to a single XP instance. The home folder can be copied to multiple locations
for developers working on more than one project.

There are two situations where the $XP_HOME environment variable must be set:

	When developers are working on an application and intend to use ./gradlew deploy.

	When a home folder other than $XP_INSTALL/home is to be used.

Where can I get help?

The community forum [https://discuss.enonic.com/] would be a good place to start. We also offer
formal training courses [https://enonic.com/learn].

Enonic also offers software support subscriptions for business critical installations: https://enonic.com/pricing

 Glossary

Glossary

	$XP_HOME

	By default, this is the location of the $XP_INSTALL/home folder and it contains directories specific to a single XP instance. The
home folder can be copied to multiple locations for developers working on multiple isolated projects. The $XP_HOME environment
variable should be set to the home folder of the project to be run.

	$XP_INSTALL

	The the location of the unzipped XP download

 Index

Index

 Symbols
 | A
 | L
 | R
 | S

Symbols

 	
 	$XP_HOME

 	
 	$XP_INSTALL

A

 	
 	assetUrl() (built-in function)

L

 	
 	log.debug() (log method)

 	log.error() (log method)

 	
 	log.info() (log method)

 	log.warning() (log method)

R

 	
 	require() (built-in function)

 	
 	resolve() (built-in function)

S

 	
 	serviceUrl() (built-in function)

 Contributing to Translations

Contributing to Translations

We would greatly appreciate help with translating our Admin Console to more languages. Here is a guide on how to contribute:

First, you need to checkout the project from GitHub. Then, create language files for the specific language you can provide a translation for.
After the translation is done, a pull request should be sent to Enonic, so we can include the file in the next distribution.

The language XP uses in admin is based on settings in the browser. The browser language setting is automatically picked up, and an attempt to match
the language is made. If the language of the browser is not supported by XP, it will default to English.

File locations

XP is split in several different projects. One basic runtime, some libs and several apps.
The phrases files that contain the translatable text is found in the apps and one lib:

Admin UI Library:

The code may be found here: https://github.com/enonic/lib-admin-ui , and checked out from git with git clone git@github.com:enonic/lib-admin-ui.git .

The file that contains translatable phrases is: /src/main/resources/admin/i18n/common.properties

XP Apps

As we keep developing admin tools, we may split this project up further, but for now, all the main admin apps, are all found in the same
GitHub project: https://github.com/enonic/xp-apps/ . Git project URL: git@github.com:enonic/xp-apps.git .
The files that contain translatable phrases are:

	/modules/app-applications/src/main/resources/admin/i18n/phrases.properties

	/modules/app-contentstudio/src/main/resources/admin/i18n/phrases.properties

	/modules/app-standardidprovider/src/main/resources/admin/i18n/phrases.properties

	/modules/app-users/src/main/resources/admin/i18n/phrases.properties

Translating files

To provide a translation, please make a copy of each file into the same location, but extend the main filename with _<language-code>.
If, for instance, you want to make a translation to Spanish, the copied files should be called common_es.properties or phrases_es.properties.
In the copied files, you may now translate all the English text into your preferred language.
When done, please submit a pull request on the project, with the translations.

 <no title>

 The sample applications automatically create demo sites you can try out.

	Select “Content Studio” from the launcher menu

	Once loaded, you will find the sites in the tree grid

	Select or expand the sites you are interested in for a preview

	Right click or choose actions from the menu to get going

[image: ../_images/content-studio1.png]
Wireframe Prototyping Application

Watch this video to see how you can make interactive prototypes with Enonic XP and learn about Content Studio:

[image: Wireframe Prototyping Demo Video]
 [https://youtu.be/QAV7W_6J_Q8]Superhero Blog Application

Watch this video to learn how you can use Enonic XP as a blogging platform, and learn more about Content Studio:

[image: Superhero Application Demo Video]
 [https://youtu.be/YBOghlzIHDg]

 <no title>

 Find more on Enonic Market

If you want to try other applications, follow the steps below:

	Open the Applications tool from the launcher panel to the right

	Click Install from the menu (top left)

	Browse to find the applications you are looking for and click Install

[image: ../_images/install.jpg]
You may also visit Enonic market directly on https://market.enonic.com

 <no title>

 If this is the first time you launch XP - the welcome tour will automatically launch.
If it does not start, simply click the tour icon at top left of the home screen.

	Click through each step of the welcome tour

	On the last step, click the Install button

	Once the applications are installed, click finish

[image: ../_images/tour.png]

 Linux install as service detailed

Linux install as service detailed

Attention

This guide is written for and tested using Ubuntu / CentOS - details may differ on other distrubutions.

Complete the following tasks ro run XP as a service on Linux:

	Create a user for running xp as a service.

We recommend using the name “xp” to stick with the script defaults.

Ubuntu

sudo adduser --home /home/xp --gecos "" --UID <some integer> --disabled-password xp

CentOS

sudo adduser -d /home/xp -m -r -u <some integer> xp

Tip

To make access rights setup easier with regards to a shared file setup in a clustered environment, specify UID on the user to make sure the user will have the same UID across different servers.

	Download the xp-distribution and install at your preferred location.

We recommend installing under /opt/enonic, which will be the default location in our scripts. Make sure that the required Java version is installed, consult the Install Java-section for guidance.

Tip

Setting up a symbolic link from a fixed name to the current used version is recommended to be able to switch version without changing any scripts.

Here is a complete list of commands to install with alias xp pointing to the installed version:

cd /opt

sudo mkdir enonic

cd enonic

sudo curl -O http://repo.enonic.com/public/com/enonic/xp/distro/6.15.12/distro-6.15.12.zip

sudo unzip -qq distro-6.15.12.zip

sudo ln -s enonic-xp-6.15.12 xp

sudo rm distro-6.15.12.zip

ls -la
total 91208
drwxr-xr-x 3 root root 4096 Nov 23 10:09 ./
drwxr-xr-x 23 root root 4096 Dec 5 2012 ../
drwxr-xr-x 8 root root 4096 Nov 23 10:10 enonic-xp-6.15.12/
lrwxrwxrwx 1 root root 24 Nov 23 10:10 xp -> enonic-xp-6.15.12/

	Install service-script

If you followed the naming scheme above, just copy the service-script at $XP_INSTALL/service/init.d/xp to /etc/init.d/xp

sudo cp /opt/enonic/xp/service/init.d/xp /etc/init.d/xp

If you choose to diverge from the recommended setup, edit the $XP_INSTALL/service/init.d/xp to match your configuration.

Note

Logging

The application will log to $XP_HOME/logs by default. The OUT_LOG variable in the service script will decide where to redirect the standard out log of the xp-application. By default, this will be redirected to /dev/null. Set the OUT_LOG to e.g /var/log/xp/xp.log to get a startup-log for the service in addition to the application logging.

Application logging setup are configured in $XP_HOME/config/logback.xml.

	Create XP_HOME

Create an XP_HOME - folder that will contain the data-files and configuration of your xp-installation.

sudo mkdir -p /home/xp/enonic/xp

	Copy config from distribution

Copy $XP_INSTALL/home to the $XP_HOME directory and make sure xp have the correct access rights:

sudo cp -R /opt/enonic/xp/home/* /home/xp/enonic/xp/
sudo chown -R xp:xp /home/xp/enonic

	Configure the xp application

Copy the $XP_INSTALL/service/xp.conf to /etc/xp.conf:

sudo cp /opt/enonic/xp/service/xp.conf /etc/xp.conf

Then edit /etc/xp.conf to match your setup, e.g:

XP Home Folder
export XP_HOME="/home/xp/enonic/xp"

Location of Java installation
export JAVA_HOME="/usr/lib/jvm/java-8-oracle"

Java options
export JAVA_OPTS="-Xms2G -Xmx4G"

Java debug options
export JAVA_DEBUG_OPTS

Additional available Enonic XP options
export XP_OPTS

	Start service:

Ok, you should be ready to go, start the service with the service start command:

sudo service xp start

	Check service-status:

sudo service xp status

	Stop service:

sudo service xp stop

_images/inputs-date-time.jpg
Date and time

Date

20160623

Time

04:02

DateTime (with t2)

2016-06-17 16:07

DateTime (without tz)

2016-06-23 0453

_images/inputs-image-selector-gallery.png
Image selector

B 7oe o searh.

_images/inputs-content-selector.png
Image gallery

Jacmeinc/mage gallery

Image galiery

Jacme-Inc/image gallery

Privacy policy

Jacmeinc/privacy-polcy

_images/inputs-custom-selector.jpg
Custom Selector (0-3)

Type to search..

FNO) Option number 1
hd External SVG file is used as icon

o (@ Optonnumber2
) Inline SVG markup is used as icon

Option number 3
=

%) My future car

_images/inputs-image-selector-tree.png
Image selector

‘ e osearch..

media

“ Ieatures/media

image
Heatures/media/image

Adansonia_grandidieri_02,jpg
Ifeatures/media/image/Adansonia_grandidieri_02,jpg

GT22CU_Tren_a_las_nubes PG
Heatures/media/image/GT22CU_Tren a_las_nubes PG

Renault4_RO1.jpg

Ifaatires/madia imaga/Ranaultd_BOL ina.

_images/inputs-image-selector.png
ImageSelector (nothing selected)

ImageSelector (multiple selected)

ImageSelector (ediUremove)

v

_images/inputs-combobox.jpg
Combo box (nothing selected)

Type to search..

Combo box (one item selected)

Option One

Combo box (search filter)

the

[Theyre

Their

e - |

_images/inputs-content-selector-tree.png
Content selector (tree-structured)

‘ B e osearch.

Enonic
fenonichomepage-copy

audience
Jenonic-homepage-copy/audience,jpg

Case studies
Jenonichomepage-copy/case-studies

(] Screen grabs
4 Jenonic-homepage-copy/case-studies/screen-grabs

M Sites powered by Enonic.

_images/input-types.jpg
> CONTENT STUDIO

Test content

—

Savedraft Delete Duplicate Item s Offline

@ Test content

/acme-inc/test-content

(

Test content

Attachment uploader

X wireffame1.01jar H
Checkbox
v
Combo box*
v

Content Selector
=

2 v
Date
20160613 =]

DateTime (with t2)

20160613 1444 =]

DateTime (without tz)

2016-06-1305:00 5]

Double

314159

GeoPoint

HimlArea

= v L

Long

1234567890123456

Radio Buttons
© Option one
Option Two

_images/inputs-attachment.jpg
Attachment uploader (no files selected)

Attachment uploader (with files)

X guipfilejs
X NOTICEtxt

_images/edit-permissions.jpg
Edit Permissions

Jsuperhero

Inherit permissions

J1ype to search.

Test group
B s Custor..

Write Permissions

Content Manager Administrator Full Access
Iroles/cms.admin

Content Manager App
Iroles/cms.cm.app Can Read

Administrator [y
Iroles/system.admin

Everyone
Iroles/system.everyone Can Read x

— e

_images/emboss.jpg

_images/duplicate1.png
Duplicate content

Superhero
Jsuperhero

_images/edge.jpg

_images/fliph.jpg

_images/flipv.jpg

_images/emulator.jpg
{p> CONTENT STUDIO

Savedraft Delete Duplicate Preview item s Modified Publish o S B

Insert Inspect Emulator

v

Emulate different clients physical sizes

aus

Full Size
100% x 100%

Small Phone
320 %480

s8umas

Medium Phone
75 %667

Large Phone
414736

Enonic XP

Runag

Fastest way from idea to digital experience

Tablet
768x 1024

13" Notebook
1280 %800

15" Notebook
1366768

High Definition TV
1920 x 1080

000 0ocood

Euros
This s the currency used by many
European countries

_images/export-source.png
Demo site
Idemo-site

Case studies
case-studies

Emy Powered by sites
4
W overevysies

Enonic.com
enonic-com

. A demo case study
a-demo-case-study

Enonic man.png
enonic man.png

Enonic.com iphone.png
enonic.com iphone.png

Enonic.com desktop.png
enonic.com desktop.png.

£l

Contact Enonic
contact-enonic

. = EnonicOffice
enonic-office

Enonic in Oslo.jpg
enonic in oslo jpg

Templates
4 I cempiaes

Case study show
case-study-show

Landing page
landing-page

New

New.

New

New.

New

New.

New

New.

New

New.

New

New.

New

New.

_images/folder.jpg
CONTENT STUDIO Unnamed Folder> X

Savedraft Delete

Folder

Settings

Language

Owner

Super User
Isystemyusers/su

Security

Permissions *

Inherits permissions from parent

Content Manager Administrator
Iroles/cms admin

Content Manager App
Iroles/cms.cm.app

Administrator
Iroles/system.admin

Edit Permissions

Full Access

Can Read

Full Access

_images/fragments.jpg
Item s Offline =

Insert Inspect Emulator

= 5

Recent posts
/superhero/fragm.

Recent comments

Michael Lazell on March Madness

_images/hello-world-site1.jpg
{p CONTENTSTUDIO

Q New Edit Delete Duplicate Move Sort Preview

Select Al (2) Clear Selection (1) <

Hello world

Hello World
thello-world

Templates
I cemplares

offine

_images/hsbadjust.jpg

_images/grayscale.jpg

_images/groups.jpg
USERS

Q New Edit Delete

Select All (20) ~ Clear Selection (1)

Q

System User Store
Isystem

e Movie stars

Jennifer Lopez
Jennifer-lopez

s/movie-stars

Sharon Stone
sharon-stone

Group

Bob Marley
bob-marley

John Doe
john-doe

Super User
su

Anonymous User Members

anonymous

bo bo bo bo)o bo

a Groups Sharon Stone
groups x Isystemusers/sharon-stone
Movie stars Jennifer Lopez
movie stars x Isystemusers/jennifer-lopez
gg Music
. R

Roles

R s

Administrator
system.admin

Administration Console Login
system.admin login

Content Manager App
cms.cm.app

Content Manager Administrator
cms.admin

Users Administrator
system.user.admin

Users App
system.user.app

Everyone
system.everyone

Authenticated
system.authenticated

[ORORORORORORORO)

_images/icon-back-to-dialog.png

_images/icon-cog.png

_images/hsbcolorize.jpg

_images/htmlarea-customized.jpg
HTML content

This text can be formatted with bold, underline, italics, steieethrorsh, and many more.

body p

_images/icon-detail-panel.png

_images/getting-started.jpg
Getting started

_images/icon-part.png

_images/icon-publishing-issues.png

_images/icon-menu.png

_images/icon-monitor.png

_images/image-component.jpg
[;—\ CONTENT STUDIO

Save draft

v

aus

Delete

Superhero

Duplicate ~ Preview

Item is Modified

Gotham Sure Is A

By sueerherosipe
Jsuperhero/posts/featured-image/superhero_5.pg

superhero_featured_4,jpg

S perhero/posts/some-bulldings-to-leap/superhero_featured_4pg

Mai
superhero_4.jpg
vosted W 20 hero postiome buldings o eapisuperhero. o5

superhero_featured_3jpg

This is
sl Jcuperhero/posts/gotham-sure-

big-town/superhero_featured_3pg

March Madness is a fun time of year.

Posted in Parent, First Child Category | Tagged test, sticky | 5 comments

2 will be red.

Recent

Michael La
Michael La
Bobby Bro;
Michael La
Michael La

Insert

Image

Caption

Inspect

Lo
Emulator
v

_images/image-cropping.jpg

_images/icon-templates.png

_images/icon-unlock.png

_images/icon-include-children.png

_images/icon-issue-notification.png

_images/input-date.jpg
Date

20160623

(2016 »

< June »

1314

20 2

27 28

1

8

15

2

2

2

9

16

2

34

10 1

17 18

2 25

H

12

19

2

_images/input-htmlarea.png
HTML content

Nomal -| B I U & % X 99

Q L e m

This text can be formatted with bol

, underiine, italics, strikethrough, and miany more.

body p <& H

_images/import-result.png
My much nicer demo-site!
Idemo-site

=] Case studies

Y] csesudies
Contact Enonic

2] conaceenonic

= Templates
P IID emplates

_images/input-date-time-picker.jpg
DateTime (with tz)

2016-06-17 16:07

(2016 »
< June » AL A
12345 16:07
6.7 8 9 101112 N N
13 14 15 16[17] 18 19 ute7
20 21 22 23 24 25 26

27 28 29 30

_images/input-types-help-text.jpg
(i

All input types

[features/all-input-types

AlitheInputTypes ~ Menu Settings Security

Checkbox

Help text for the checkbox

ComboBox

Type to search,

Date

DateTime.

~

|
Double

GeoPoint
latitude,longitude

Help text for the Geo Point feld

_images/input-time.jpg
Time

16:04

A A

16:04

v v

_images/input-types-help-text-all.jpg
o

All input types

[features/all-input-types

AlltheInput Types ~ Menu Settings

Checkbox
[m]

Help text for the checkbox

ComboBox

Type to search..

Help text for the combobox

Date

DateTime.

Double

GeoPoint
latitudelongitude

Help text for the Geo Point field

Security

<

_images/image-no-focal-point.jpg
Superhero

March Madness

This is an example of a sticky post. It will appear at the top of the first page of the post list and the title will be red.

Posted in aren, i ens Superheroes

Who is your favorite superhero?

_images/image-with-focal-point.jpg
Superhero

March Madness

Posted on March

This example of a sticky post. It will appear at the top of the first page of the post list and the title wil be red.

Superheroes

our favorite superhero?

_images/image-focal-point.jpg

nav.xhtml

 Table of Contents

 		
 Enonic XP 6.15 documentation

 		
 Getting Started

 		
 Enonic Cloud

 		
 Request Free Cloud Trial

 		
 Log In

 		
 Add Sample Apps

 		
 Open Content Studio

 		
 Visit Enonic Market

 		
 Next Steps

 		
 OSX

 		
 Download

 		
 Install

 		
 Start

 		
 Log In

 		
 Add Sample Apps

 		
 Open Content Studio

 		
 Visit Enonic Market

 		
 Next Steps

 		
 Troubleshooting

 		
 Windows

 		
 Download

 		
 Install

 		
 Start

 		
 Log In

 		
 Add Sample Apps

 		
 Open Content Studio

 		
 Visit Enonic Market

 		
 Next Steps

 		
 Troubleshooting

 		
 Docker

 		
 Install Docker

 		
 Start Server

 		
 Log In

 		
 Add Sample Apps

 		
 Visit Enonic Market

 		
 Next Steps

 		
 For Developers

 		
 Install Java

 		
 Download Enonic XP

 		
 Start the server

 		
 Log In

 		
 Add Sample Apps

 		
 Visit Enonic Market

 		
 Next Steps

 		
 Troubleshooting

 		
 Tutorials

 		
 Project Init (Video)

 		
 Javascript MVC (Video)

 		
 My First App

 		
 Part 1: Project set up

 		
 Part 2: Content types and parts

 		
 Part 3: Configurable components

 		
 Build a Custom Selector

 		
 Developer Guide

 		
 Applications

 		
 Life Cycle

 		
 Composition

 		
 Other Resources

 		
 Libraries

 		
 Finding Libraries

 		
 Adding libraries

 		
 Best practice

 		
 Projects

 		
 Project Initialization

 		
 Project structure

 		
 Build script

 		
 Installing an application

 		
 Sample library

 		
 Development mode

 		
 Schemas

 		
 Input Types

 		
 Item Sets

 		
 Option Sets

 		
 Schema Layouts

 		
 X-data

 		
 Mixins

 		
 Relationship Types

 		
 Forms

 		
 Serverside JavaScript

 		
 HTTP Controllers

 		
 Global JavaScript objects and functions

 		
 Main Initializer

 		
 HTTP Request

 		
 HTTP Response

 		
 HTTP Cookies

 		
 Websockets

 		
 Invoking Java

 		
 Application Controller

 		
 Assets

 		
 Assets

 		
 API

 		
 Services

 		
 Descriptor

 		
 Controller

 		
 Access

 		
 API

 		
 Views

 		
 Sites

 		
 Site Descriptors

 		
 Content Types

 		
 Response Filters

 		
 Controller Mappings

 		
 Page

 		
 Part

 		
 Layout

 		
 Fragment

 		
 Page Contributions

 		
 Error Handling

 		
 Macros

 		
 Localization

 		
 Resource Bundle

 		
 Resolving locale

 		
 Finding best match

 		
 Localization of Schemas

 		
 Storage

 		
 Overview

 		
 Repository

 		
 Branches

 		
 Nodes

 		
 Property

 		
 Value Types

 		
 System Properties

 		
 Blobstore

 		
 Search

 		
 Overview

 		
 Indexing

 		
 Indexed content properties

 		
 Query Filters

 		
 Query Functions

 		
 Order Functions

 		
 Aggregations

 		
 Ordering results

 		
 Querying date and time

 		
 Querying paths

 		
 Querying references

 		
 Querying existing / missing values

 		
 Admin

 		
 Admin Tools

 		
 Widgets

 		
 ID Providers

 		
 Set up an ID Provider

 		
 Create an ID Provider

 		
 Tasks

 		
 Descriptor

 		
 Controller

 		
 Using Tasks

 		
 Task Properties

 		
 Operations Guide

 		
 Package Structure

 		
 Configuration

 		
 System Properties

 		
 Virtual Host Configuration

 		
 Mail Configuration

 		
 Repo Configuration

 		
 Storage Configuration

 		
 Cluster configuration

 		
 Elasticsearch configuration

 		
 Ignite configuration

 		
 Admin UI Configuration

 		
 Jetty HTTP Configuration

 		
 Media Configuration

 		
 OSGi Shell Configuration

 		
 DoS Filter Configuration

 		
 Market Configuration

 		
 UDC Configuration

 		
 Standard ID Provider

 		
 Cluster Deployment

 		
 Introduction

 		
 Cluster configuration

 		
 Shared storage Configuration

 		
 Network configuration

 		
 Replica setup

 		
 Cluster partition settings

 		
 Cluster stability settings

 		
 Node recovery settings

 		
 Cluster monitoring

 		
 Deploying Apps in cluster

 		
 Backing up a cluster

 		
 Sample configurations

 		
 Reverse Proxy Servers

 		
 Apache

 		
 Nginx

 		
 Monitoring

 		
 Cluster monitoring

 		
 Install as service

 		
 Linux

 		
 Windows

 		
 Backup and Restore

 		
 Backup vs Export

 		
 Backing up blobs

 		
 Backing up indexes

 		
 Export and Import

 		
 Content Export/Import vs System Dump/Load

 		
 Content Export

 		
 Content Import

 		
 Content Export data structure

 		
 Changing export data

 		
 System Dump

 		
 System Load

 		
 Troubleshooting

 		
 Wrong Java version

 		
 Port 8080 already taken

 		
 Unexpected behavior

 		
 Cannot login after install

 		
 Sending email with lib-mail not working

 		
 Troubleshooting Java

 		
 Check current JDK version

 		
 Setting JAVA_HOME

 		
 Admin Guide

 		
 Home

 		
 Launcher panel

 		
 Content Studio

 		
 Browse View

 		
 Content Editor

 		
 Publishing Issues

 		
 Content Types

 		
 Actions

 		
 Keyboard shortcuts

 		
 Applications

 		
 Installing an app

 		
 Users

 		
 Userstores

 		
 Roles

 		
 API and Reference Guide

 		
 Javascript Libraries

 		
 View Functions

 		
 assetUrl

 		
 attachmentUrl

 		
 componentUrl

 		
 imageUrl

 		
 pageUrl

 		
 serviceUrl

 		
 imagePlaceholder

 		
 localize

 		
 processHtml

 		
 Query Language

 		
 queryExr

 		
 constraintExpr

 		
 compareExpr

 		
 logicalExpr

 		
 dynamicConstraint

 		
 notExpr

 		
 orderExpr

 		
 fieldOrderExpr

 		
 dynamicOrderExpr

 		
 propertyPath

 		
 functionExpr

 		
 Examples

 		
 Toolbox CLI

 		
 delete-snapshots

 		
 dump

 		
 export

 		
 import

 		
 init-project

 		
 install-app

 		
 list-snapshots

 		
 load

 		
 reindex

 		
 reprocess

 		
 restore

 		
 set-read-only

 		
 set-replicas

 		
 snapshot

 		
 upgrade

 		
 vacuum

 		
 Image Processor

 		
 Scaling

 		
 Styling

 		
 JavaDoc API

 		
 Release Notes

 		
 Improved workflow in Content Studio

 		
 New Html Editor

 		
 Updates to steps in Content Editor

 		
 Media Selector input type

 		
 Improved duplicate dialogue

 		
 Fully replicated sessions

 		
 Other improvements

 		
 Changelog

 		
 Upgrade notes - 6.15

 		
 Notable changes

 		
 CKEditor replaces TinyMCE

 		
 Ignite cluster

 		
 Upgrade Steps

 		
 1. Backup the installation

 		
 2. Install new version

 		
 3. Configure XP_HOME

 		
 4. Stop the old installation

 		
 5. Start the new installation

 		
 Frequently Asked Questions

 		
 Whatâ��s the latest release?

 		
 Where can I get the source code?

 		
 Do you publish changelogs?

 		
 How is Enonic XP Licensed

 		
 What is $XP_INSTALL?

 		
 What is $XP_HOME?

 		
 Where can I get help?

 		
 Glossary

_static/comment-bright.png

_static/comment.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/minus.png

_images/widget-selector.png
Version history

Details

Dependencies

Google Analytics

_images/version-history.jpg
March Madness x
Isuperhero/posts/march-madness

Michael Lazell
over 4 hours ago

Super User ~
x over a day ago
Timestamp: 2016-05-31 17:20:02

Version Id: b9fcdbc723e7af0f58e27737307904.
Display name: March Madness

Super User
over a year ago

_images/wireframe.jpg
Save draft Delete

v

as

Duplicate Preview

ACME (Mens]

Frontpage carousel |

A big title

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nunc a sapien nec nisi faucibus pharetra at et orci. Vestibulum aliquam libero non
volutpat egestas. Mauris quam felis, semper vitae tincidunt ac, sodales at quam. Proin at vulputate orci. Aenean malesuada ipsum at eros.
semper, non elementum risus viverra. Morbi posuere, urna eget luctus malesuada, ligula nunc posuere metus, vel imperdiet magna elita
orci. Duis tincidunt ex magna, in suscipit purus efficitur id. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos
himenaeos. Aliquam rutrum tristique lacus in efficitur. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Pellentesque tempus
pulvinar scelerisque. Pellentesque non sollicitudin libero.

Item is Offline -

Inspect
Abig title
main/0/center/1

e g

Emulator

_images/windows-start2.jpg
Server started

If you experience any problems

contact u

Home Dirt Launch Bro

INFO c.e.x.c.is. SecurityTnivializer - Role created: role:system user admin
INFO c.e.x.c.is SecurityTnivializer - Role created: role:cms.cm app

TNFO c.e.x.c.is SecurityTnicializer - Role created: role:cms admin

TNFO org.elasticsearch cluster mevadata - [local-node] [search-system-repo] update mapping [master] (dynamic)
INFO c.e.x.c.is SecurityInivializer - User creaved: user:system:anonymous

INFO c.e.x.c.is. SecurityTnitialiszer - User creaved: user:system:su

TNFO org.elasticsearch cluster mevadata - [local-node] [search-system—repo] update mapping [master] (dynamic)
TNFO org.elasticsearch cluster mevadata - [local-node] [search-system—repo] update mapping [master] (dynamic)
INFO c.e.x.c.i.s.Securitylnitislizer - Added user:system:su as member of role:system.sdmin

INFO c.e.x.c.is Securitynivializer - Added user:system:su as member of role:system admin.login

INFO c.e.x.c.is SecurityTnivializer - System—repo [security] layout successfully inivialized

TNFO org.elasticsearch cluster mevadata - [local-node] [search-cms-repo] update mapping [drafc] (dynamic)
INFO c.e.x.c.i.content.ContentInitislizer - Content root-node not found, cresting

2 TNFO c.e.x.c.i.content ContencInitializer - Creaved convent roov-node: /content

TNEO org.elasticsearch cluster mevadata - [local-node] [search-cms-repo] update mapping [drafc] (dynamic)
INFO org.elascicsearch cluster mevadata - [local-node] [search-cms-repo] update mapping [master] (dynamic)
INFO org.eclipse.jetty.util-log - Logging initislized €12146ms

TNFO org_eclipse jetcy server Server - jevty-3.3.5.v20151012

TNFO o.e.3.server handler ContextHandler - Starved o.e.3.s.ServletContextHandler@1e70331{/,null, AVATLABLE]
TNFO o.e jevcy server ServerConnector - Starved ServerConnector@b7d708{HTTP/1.1,[htvp/1.111{0.0.0.0:8080}
INFO org_eclipse jecty server Server - Scarced §12272ms

INFO c.e.x.1.i.framework.FrameworkService - Started Enonic XP in 20285 ms

_images/wizard-form-2.png
@ Delete.. Duplicate...
Post Menu [=] 2
Menu

Menuitem

Name in menu

Schedule

Online from

20180627 15:04.

Online to

YYYY-MM-DD hemm

A Settings

Language
English (en)

Owner

Super User
Isystem/users/su

& Access

Inherits permissions from parent

[\
[\

Content Manager Administrator
Iroles/cms.admin

Content Manager App
Iroles/cms.cm.app

Administrator
Iroles/system.admin

Everyone
Iroles/system.everyone

Preview

& (7 I3

Hlo

Hlo

Full Access

Can Read

Full Access

Can Read

_images/wizard-form-1.png
Delete.. Duplicat Preview

Gotham Sure Is A Big Town

/superhero/posts/gotham-sure-is-a-big-town

Post

A&

Post

Author

E Michael Lazell Esq. v %

Category

W 7 osearh. v

0 Uncategorized v %

Posttext*

There is s0 much area to cover. Lorem ipsum dolor it amet, consectetur adipiscing
elit. Morbi non dapibus lectus. Vestioulum eget commodo mi.

Donec in est sed quam ultricies pharetra at vitae quam. Nam dignissim orci
‘accumsan odio bibendum non mattis nisl congue.

‘Curabitur rutrum pharetra velit, quis feugiat elit consectetur vitae. Lorem ipsum dolor
sit amet, consectetur adipiscing elit. Maecenas in interdum orci.

Tegs

Featured X

Comments

Sticky post

_images/x-data.png
@ Save Delete.. Duplicate.. Preview New v PUBLISH...

Post A a

¢ Superhero

+ Menu

+ SEO Metadata x

Override "Title"

Override "Description”

Hide from external search engines? Gotham Sure Is A Big Town

Posted on March 7, 2015 by Michael Lazell

There is so much area to cover. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi non dapibus lectus.

Vestibulum eget commodo mi.

| Settings Donec in est sed quam ultricies pharetra at vitae quam. Nam dignissim orci accumsan odio bibendum non mattis nisl
congue.
. Curabitur rutrum pharetra velit, qus feugiat elit consectetur vitae. Lorem ipsum dolor sit amet, consectetur adipiscing elt.
anguage
N Maecenas in interdum orci.
English (en) x

_images/wos.jpg

_static/ajax-loader.gif

_images/rotate270.jpg

_images/rounded8_4_0x777777.jpg

_images/rotate90.jpg

_images/schedule-publish.png
Scheduled Publishing

Online from *

YYYY-MM-DD hhmm

Online to

(]
)

(]
[}

YYYY-MM-DD hhmm

_images/runs-anywhere.jpg
ON-PREMISES

ORIN THE

CLOUD?

_images/screenshot-usa-cities.png
Country
USA

Population: 318,900,000
The U.S. is a country of 50 states covering a vast swath of North America, with Alaska in the extreme Northwest and Hawaii extending the nation’s presence into the Pacific
Ocean. Major cities include New York, a global finance and culture center, and Washington, DC, the capital, both on the Atlantic Coast; Los Angeles, famed for filmmaking,
on the Pacific Coast; and the Midwestern metropolis Chicago.

Cities

San Francisco

Population: 837,442

Farallon
Islands:

»
Map data ©2015 Google': Terms of Use | Reportamap error

Las Vegas

Population: 603488)
@ y 7

o]
Loke ead

Map data ©2015 Google | Terms of Use ~ Reportamap ertor

Washington D.C.

Population: 658,893

B« %

_images/screenshot-preview.png
CONTENT STUDIO

Q New Edit Delete Duplicate Move Sort Preview Publish

Select All (15) ~ Clear Selection (1) <

Hello world

Hello World
Offine 20160219
/hello-world
A ush Countries
L offine 20160220
usa
San Francisco offine 20160220 'Smmya
B snirandsco how
. UsA
ELasVEgas Offine 20160220
lasvegas
Washington D.C. offine 20160220
BB washingonac
4 F'T' Norway Offine 20160220
norway
Oslo offine 20160220
oslo
Bergen offine 20160220
bergen
Trondheim Offiine 201602:20
B8 vondnem
. |"T' Colombia offine 20160220
colombia
Bogota offine 20160220
bogota
Medellin offine 20160220
medelin
Barranquilla offine 20160220
barranquilla
-
PR Templates offine 20160219
_templates
Country Offine 20160220
country’

_images/sepia25.jpg

_images/search-panel1.jpg
7y CONTENT STUDIO

Q search New
40 total Select All (8) <
” Superhero Onine 20160218
Content Types superhero
Post(11) RSS Modified 20160413
Category (6) =
Comment (5) Search Modiied 20160408
Folder (4) search
i Frofile Online 20151030
Page template (3) 2] profile
Author (2) Pasis
Online 20150227
Landing page (2) > Wl o
RS page (1)
site (1) , mag Categories offine 20150227
Template-folder 1) W s
iy Authors offine 20150227
" Il o
Last Modified
7 Templates = Online 20150227
<1 week (4) COTITS e
<1day(1)

<1 hour (1)

_images/rotate180.jpg

_images/rgbadjust2_0_n2.jpg

_images/publishing-issues-list.png
Publishing Issues

My Issues Show closed issues (6)

#5 Legg inn resten av teksten
Updated by me less than a minute ago

#8 Nyt library: Appersist
Updated by me less than a minute ago

_images/publishing-issues-list-empty.png
Publishing Issues

Open

My Issues Assigned to Me

_images/publishing-issues-new-issue.png
New Issue

Tite *

New version of our website

Description
Please publish these today

Assignees *
Type to search...

John Doe
x Isystemusers/john-doe

Items
Ifeatures

Features
Ifeatures

S
@

)

Ifeatures/_templates
Ifeatures/_templates/default
Ifeatures/_templates/main

Ifeatures/_templates/no-regions

0 EEDE

Ifeatures/_templates/reference-test

New

New
New
New
New

New

_images/publishing-issues-new-empty.png
New Issue

Tite *

Description

v

Create Issue Cancel

_images/publishing-wizard.png
Publishing Wizard

Your changes are ready for publishing

E March Madness
Jsuperhero/posts/march-madness

Other items that will be published
/superhero/categories/parent/first-child-category
/superhero/categories/parent
Isuperhero/authors

/superhero/authors/michael-lazell

Isuperhero/categories

Include child items

_images/publishing-issues-status.png
< Alternative

Closed |

T

_images/rendering-mode-view.png
f;’ﬁ CONTENT STUDIO

Q New.. Edit Delete. Duplicate
. Hello World
hello-worid

=_ Countries

W counies

e

Belarus
belarus.

e
e
e
e
e
e
e

Algeria
algeria

Belize
belize

Colombia
colombia

Cuba
wba

Dominican Republic
dominican-republic
Egypt

egypt

France

france

Italy
italy

Preview

Country

Belarus

Population: 9,498,700
Belarus, officially the Republic of Belarus (Belarusian: PscniyGuixa Benapycs;
Russian: Pecnyomxa Bezapyce), formerly known by its Russian name Byelorussia
or Belorussia (Russian: Benopycens), is landlocked country in Eastern Europe
bordered by Russia to the northeast, Ukraine to the south, Poland to the west, and
Lithuania and Latvia to the northwest. Its capital and most populous city is Minsk.
Over 409% of its 207,600 square kilometres (80,200 sq mi) s forested. Its strongest
cconomic sectors are service industries and manufacturing. Until the 20th century,
different states at various times controlled the lands of modern-day Belarus, including
the Principality of Polotsk (11th to 14th centurics), the Grand Duchy of Lithuania, the
Polish-Lithuanian Commonwealth, and the Russian Empire.

Details v

Belarus
Ihello-world/countries/belarus

NEW

(5] Full Access

Edit Permissions

Type: country
Application: IsiApp
Language: en

su
2017-06-12 17:28:05
2017-06-13 13:08:16
a709a411-0153-441...

Custom

Hello Region

This item has no attachments

_images/ready-set-code.jpg

_images/publishing-issues-existing.png
< New Version Of Our Website (#1)
m Opened by me less than a minute ago

Please publish these today

Items

Features

Ieatures New

) B

Ifeatures/_templates New
Ifeatures/_templates/default New
Ifeatures/_templates/main New

Ifeatures/_templates/no-regions New

E]
E]
E]
E]

Ifeatures/_templates/reference-test New
Ifeatures/input-types New
Ifeatures/input-types/articles New
Ifeatures/input-types/articles/my-article New
Ifeatures/input-types/date-and-time New
Ifeatures/input-types/date-and-time/datetime-queries New
Ifeatures/input-types/date-and-time/datetime-queries/2015... New
Ifeatures/input-types/date-and-time/datetime-queries/2025... New
Ifeatures/input-types/geo-point New

Edit Issue - Publish (94)

_images/publishing-issues-edit.png
< New version of our website]

p= [oven |

_images/publishing-issues-items.png
< New version of our website #45

Opened by me a minute g0 [~ open |

Comments (1) Items (64) Assignees

W 7o osearh.

& Enonic Unpublished X
fenonic-homepage-copy

Show dependent items (63)

- Publish & Close Issue (64)

_images/superhero-video.jpg
Blog
Applicafion

_images/templates.jpg
Xeon
Ixeon

portfolios
portfolios

Images
images

People
people

Templates
_templates

Unstructured viewer
unstructured-viewer

Person
person-page

Standard
standard

Online

Online

Online

Onfine

Online

Online

Online

Online

_images/template-selector.jpg
tem s Offline Publish ¢

Insert Inspect Emulator
Page Template
a

Automatic
(Post sh

2 columns)

Post show - 2 columns
Isuperhero/_templates/post:s

Search

Post show - one column
Isuperhero/_templ

Custom
Setup your

page
Featured Image

Some Buildings to Leap

Gotham Sure Is A Big Town
March Madness

Worth A Thousand Words

_images/tour.png
Welcome Tour - Step 5 of 5

Install Demo Applications

If you are evaluating or just testing Enonic XP, let’s install some sample applications from Enonic
Market - showing you some of Enonic XP's capabilities.

™~

IMAGE XPERT SUPERHERO BLOG WIREFRAME

_images/toolbar.jpg
(p CONTENTSTUDIO

Q New Edit Delet

_images/upload-button.png
Create Content

In: /archive/long value

Search for content types 1 Recently Us

Article S Doubl
com.enonicwem.modules featuresarticle - comer

Checkbox - ong

_images/unpublish-dialogue.jpg
Unpublish item

Take offline? - Unpublishing selected item(s) will set status back to offline

Onepager
Jonepager

Dependent items - Clean up references to selected item(s) or click unpublish to take all items
offline

Jonepager/_templates
/onepager/_templates/default
Jonepager/people
/onepager/people/bobby-westberg
/onepager/people/bobby-westberg/bwe.jpg

Jonepager/people/michael-lazell

B
-
$ 3
5]
B 3
5]

Jonepager/people/michael-lazell/headshot-square.png

_images/user-admin.jpg
USERS

Q New

Select All (16)

Q

System User Store
Isystem

Users.

R e

Anonymous User
2 anonymous

ol e
su
2 login
login
§ e
cmapp
== Groups

groups

Roles

R

Content Manager Administrator
cms.admin

Users Administrator
system.user.admin

Authenticated
system.authenticated

Everyone
system.everyone

Users App
system.user.app

Administrator
system.admin

Administration Console Login
system admin login

Content Manager App
cms.cm.app

[ORORORORORORORO)

_images/url.png
&

_images/user-store.jpg
m

Save

Customer

customer

User Store

Description

User store for customers

10 provider *
a
Simpleauth
com.enonic.appsimpleauth
Permissions
permissions
v
Authentica

Administrator

_images/site-app-config.jpg
Superhero theme

com.enonic.app.superhero-1.4.0

Background image

‘ = e tosearch.

Max posts per page

H

Posts folder

== Posts

W fcupernerorposts

Footer text

Proudly powered by Enonic XP | Theme: Superhero by WordPress.com

Comments sort

Oldest on top

Search page

Search
Isuperhero/search

_images/shortcut.png
Qs Savedraft Delete.. Duplicate

E‘} Gotham

/superhero/gotham
Shortcut Settings Security
Target*

Gotham Sure Is A Big Town
Isuperhero/posts/gotham- sure-is-a-big-town

Parameters:

Name *

campaignid

Value *

89172

Add Parameters

Collapse

_images/sites.jpg
(P> CONTENTSTUDIO

Q New Edit Delete Duplicate Move Sort Preview Publish

Select All (4) ~ Clear Selection (1) <
Superhero

ST Modfied 20160022

> Test onine 20160421

Iest

Templates

1)) i onine 20160421

R Xeon Modfied 20160821

Ixeon

_images/site-apps.jpg
CONTENT STUDIO Superhero

Savedraft Delete Duplicate Preview

Superhero

/superhero

site

Description

Blog application for Enonic XP

Applications

Posted on

This is an example of a stickv post. It will appear at the top o

_images/sort.png
Sort items Modified date 13

Sort content by selecting default sort above, or drag and drop for manual sorting

Posts

20180516 10:23:42
Isuperhero/posts

Templates

20180516 10:23:42
Jsuperhero/_templates

Search

Isuperhero/search 2018-05-16 10:23:42

Categories

20180514 15:25:55
Isuperhero/categories

Authors

Isuperhero/authors 2018-05-14 15:25:55

o] o |

_images/sort-options.png
Sort items Modified date

Modified date

Sort content by selecting default sort above, or drag and drop for t

Posts Created date

Jsuperhero/posts
Display name

Templates
/superhero/_templates Published date

Search

Isuperhero/search Manually sorted

Categories
Isuperherofcategories

20180514 15:25:55

Authors

Isuperhero/authors 2018-05-14 15:25:55

o] o |

_images/spotlight.jpg
nic XP 6.4.2

Top T

FoLoERs
I enonic - config
I enonic - web
W enonic - web-vhost

W enonic - web-impl
oocumenTs

R Enonictips
B enonicss - html
B enonicess - doc

B enonictxt
PDF DOCUMENTS

B Enonic - Cirrus 10 - 2014-09-18.pdf -
B Enonic - Cirrus 10 - 2014-09-18.pdf -
B Enonic Vendor Brief 2015-11-23.pdf

XP

Enonic XP 6.4.2

Kind
size
Created
Modified

Appiication
2778 MB
e
e

_images/sorted.jpg
= Templates
I fcuperneror tempiates

Post show - 2 columns
post-show-2-columns

Post show - one column
post-show-one-column

Default
default

= Posts
W fcupernerorposts

Category Hierarchy
category-hierarchy

Elements
elements

Featured Image
featured-image

Gotham Sure Is A Big Town
gotham-sure-is-a-big-town

Online

offine

offine

Online

Modified

offine

offine

offine

offine

_images/sub-repos.png
myDataRepo myUserRepo myLogRepo

Enonic Content Repository

_images/start-page.png
Demo

" 6D @ @g K

XPTour About Docs Discuss Market Start page for Enonic XP

Applications
Install and manage your Apps

@) Content Studio
Manage content and sites

i

Users
Manage users and roles

2 superuser Log out

_images/sharpen.jpg

_images/invert.jpg

_images/launcher.jpg
Welcome to Enonic XP

Demo X

Home
Start page for Enonic XP

Applications

Install and manage your Apps
Content Studio

Manage content and sites

J Users
Manage users and roles

x Super User Log out

_images/issues.png
G contenTsTUDIO My Issues

Q New.. Edit Delete.. Duplicate.. Move.. Sort. Preview PUBLISH. =
s} New #1 Lets go live with the site
- Superhero
Isuperhero
S
O ey
(i sy
N e
= Search

search

_images/logical-cluster.png
Load
Balancer

XP Cluster

Blobstore

Shared or distributed filesystem

_images/layouts.jpg
Qﬁ contentstupio [N

Insert Inspect Emulator

Superhero [

Drag and drop components into the page

Savedraft Delete Duplicate Preview Item is Offline

v

Image
Upload or use existing images

|
¥

Advanced components

28ed Supue

Layout
Customize page layout

Text
Write directly on the page

Fragment

_images/install-local.png
APPLICATIONS

Install

Select All (3) Cleas =
SumoMe App 100 sared 2016.04080030:54
com.enonic.app.sumome
Content Viewer App 100 sared 2016.0408002925
com.enonic.app.contentviewer
com.enonic.app.superhero

_images/inspect-insert.jpg
Item is Online

¢

Insert Inspect Emulator

Drag and drop components into the page

Image
Upload or use existing images

-“ Part
Advanced components

Layout
Customize page layout

Text
Wite directly on the page

Fragment
Reusable components

_images/install-market.jpg
Install Application

[search Enonic Market, paste url or upload directly

o Auth0 ID Provider

‘Add AuthO authentication to your Enonic XP installation

Chatrify app
'Add full-featured chat capabilites to your Enonic XP sites.

Chuck Norris
A Chuck Norris fact widget

o
4

Content viewer
Inspect your content object JSON

ContentHive
ContentHive simply creates dummy text and images for your E...

@ o

Cookie Line
Add a cookie notification line without the hassle of making one

Cronjob
Enables a simple cron-scheduling ofjobs.

Data Toolbox
Manage your data using dumps, exports and snapshots

-

_images/install-mac.jpg
eoe L enonic.xp

Drag Enonic XP into
the Applications folder
toinstall

A

Enonic XP 6.4.2.app Applications

VN re—

_images/install.jpg
Install Application

Upload Enonic Market

Content viewer
com.enonic.app.contentviewer

Disqus
com.enonic.app.isqus

Google Analytics

com.enonic.app.ga

Google Tag Manager
com.enonic.app.google.tagmanager

SEO Meta Fields
com.enonic.app.metafields

SumoMe
com.enonic.app.sumome

Superhero Blog

com.enonic.app.superhero

Installed

_images/install-upload.jpg
[n] L Q search
Favorites
[Desktop

[Documents

© Downloads o150/ imagepert-2.0- wio-1.0.1jar
SNAPSHOT jar
{8 Pictures

£ ase
33 Torrent
B3 web

Devices.

Format: | Customised Files

Options

@ Contentviewer
Inspect your content object JSON

. ContentHive
ContentHive simply creates dummy text and images for your E..

Cookie Line
‘Add a cookie notification line without the hassle of making one

Cronjob
Enables a simple cron-scheduling of jobs.

Data Toolbox
Manage your data using dumps, exports and snapshots

_images/admin.jpg
Demo 2

| @ o

Applications

Q, Content Studio

" 6D Q@ @

XPTour About Docs Discuss Market

Users

Manage users and roles

2 Supervser Logout

_images/app-config.jpg
Myapp

Hello World site from the tutorial

Google APl key *

This field is required

_images/4win-start-menu-install.png
Select Start Menu Folder
Vhere should Setup place the programis shortcuts?

Select the Start Men folder in which you would ike Setup to create the progran's shorteuts, then dick Next.
Create a Start Menu foder

_images/6win-completed.png
Completing the Enonic XP 6.4.2 Setup Wizard

Setup has fished instaling Enoric XP 6.4.2 on your computer. The application may be
launched by selecting the instaled icons.

Clck Finsh to exit Setup.

_images/apps-tool.png
' Superhero Blog

Create your very own Superhero theme blog to run on Enonic XP

Application

Installed Version
20180626 17:38:47 17.1

Site

Content Types Page
author default
category rss
comment

landing-page

post

rss-page

Started

Key System Required
com.enonic.app.superhero 6.0.0 0r higher

Part Layout Used By

archive one-column Isuperhero

categories three-column

featured wo-column

meta

postsingle

posts-ist

profile

recent-comments

recent-posts

search-form

search-result
tagcloud

_images/2win-welcome.png
Welcome to the Enonic XP 6.4.2 Setup Wizard

This will nstal Enonic XP 6.4.2 on your computer. The wizard wil lead you step by step
through the nstalaton.

Clidk Next to continue, or Cancel to exit Setup.

_images/3win-placement.png
Select Destination Directory.
Vihere should Enonic XP 6.4.2be instaled?

Select the foder where you would ke Enonic X 6.4.2 to be nstalied, then cick Next.

Destnation drectory

_images/1win-wiz-start.png
install4j Wizard = =

Enoric XP 6.4.21s preparing the instal4] Wizard which
wil guide you through the rest of the setup process.

— [Concel

_images/inputs-numbers.jpg
Numbers and GeoPoint

TextLine with regexp

12345 Valid

Double

314159

Long

1234567890123456

GeoPoint

5,180

_images/inputs-media-selector-dropdown.png
Media selector

‘ B e tosearch..

. archive
Ifeatures/media/archive

starter-pwa-1.0.0
Ifeatures/media/archive/starter-pwa-1.0.0zip

. audio
Ifeatures/media/audio

the-irish-washerwoman.mp3
| I /features/mediafaudiofthe-irish-washerwoman-mp3

- g
featuresimedianmase

_images/inputs-tag.jpg
Tag.

Satman % | Superman | Wonder Woman X 1]
Test
Tag
The Hulk

_images/inputs-standard.jpg
CONTENT STUDIO Unnamed Test Con,

Savedraft Delete Duplicate

Test content grouped

Standard

TextLine (required)

Used for a single line of text

TexcLine (multiple)

Some text x
More text x
TextArea

Multiple lines of text can be entered into a text area. There are no formatting options
available in a text area. The box will expand vertically as more text is entered so it will all
fit in the display area without the need to scroll.

Checkbox

Radio Buttons
© Option one
Option Two

_images/person-cty.png
Purple Tentacle

Isuperhero/authors/purple-tentacle

Person

Photo *

Bio*

I have great plans to take on the world

Email *

purple@dott.game

Website

Twitter Name

Facebook Name

_images/publish-menu-issues.png
Move...

Sort...
5]

New
Published

Published

Published

Preview PUBLISH.

New Publish Tree...
Menu:

Create Issue...
Components in main:
Hello world! #10 New changes

Copy as much as you want - from us at Enoni¢
#9 Publish this today

_images/preview-toolbar.png
Published #36 Please publish this

_images/publishing-issues-comments.png
< New version of our website #45

Opened by me a minu

Comments (1) Items (64) Assignees

e Super User & minute ago
Please publish this today!

_images/publishing-issues-assignees.png
< New version of our website 1
Opened by me a minute ago m

Comments (1) Items (64) Assignees (1)

Type to search..

ase
system/users/ase

_images/publishing-issues-create-issue.png
Publishing Wizard

Your changes are ready for publishing

== Largetree

b Wl rargeee

Other items that will be published

i /large-tree/large-tree-node-1 New
/large-tree/large-tree-node-1/large-tree-node-1-1 New
/large-tree/large-tree-node-1/large-tree-node-1-10 New
/large-tree/large-tree-node-1/large-tree-node-1-100 New
/large-tree/large-tree-node-1/large-tree-node-1-11 New

/large-tree/large-tree-node-1/large-tree-node-1-12 New

/large-tree/large-tree-node-1/large-tree-node-1-13 New

A | Publish(203)

Create Issue...

Schedule... (203)

_images/publishing-issues-create-issue-toolbar.png
(p conTent sTuDIO

G o wore v [

Q New.

Features
Ifeatures

Image XPert
Jimage-xpert

London Stock Exchange
1ise

Office League
Joffice-league

Publish Tree...

Create Issue...

Online

New

2170706

2017-07-06

2017-07-06

2017-07-06

_images/page-editor.jpg
Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet

ftams Ofine

Enonic XP

This is the innovative evolution of CMS that the world has been waiting for.

See our Pricings

Pellentesque habitant morbi tristique senectus et netus et
malesuada fames ac turpis egestas.

Basic Standard Advanced
$29 $49 $199
5GB Storage 10GB Storage 30GB Storage
1GB RAM 2GB RAM 5GB RAM
400GB Bandwidth 1TB Bandwidth 5TB Bandwidth
10 Email Addresses 100 Email Addresses 1000 Email Addresses
Forum Support Forum Support Forum Support

Insert Inspect Emulator

Part

Header

v
com.enonic.app.xeontheader

Heading
Part heading
enonicx
Descripton

This is the innovative evolution of
CMS that the world has been
waiting for.

Menu

Menu item

o

Name in menu

_images/page-component.jpg
contentstunio (S

5 a0

savedraft Delete Duplicate Item is Online

ammy POSts
Folder

Settings

Language Select a controller below to set up a customized page
English (en) x

Owner

Super User
Isystem/users/su

RSS Page
com.enonic.app.superheroirss

B o=

Security

Permissions *

Inherits permissions from parent

Content Manager Administrator

. Full Access
Iroles/cms admin

_images/part-component-selector.jpg
Item is Modified

Insert Inspect Emulator

Drag and drop components into the page

w
A

Advanced components

Layout
Customize page layout

Text
Write directly on the page

Fragment
[-

Categories
com.enonic.appsupe..

will be red

Featured
com.enonic.app.supe..

Meta
com.enonic.app.supe.

Monthly archive
com.enonic.app.supe.

_images/page-template-automatic.jpg
(p CONTENTSTUDIO

Savedraft Delete Duplicate Preview Item is Offline

v

Anuno

Country

USA.

Population: 318,900,000

The U.S. is a country of 50 states covering vast swath of North America, with Alaska in the northwest and
into the Pacific Ocean. Major Atlantic Coast cities are New York, a global finance and culture center, and cap:
‘metropolis Chicago is known for influential architecture and on the west coast, Los Angeles' Hollywood is far

s J

Insert Inspect Emulator

Page Template.

Automatic
(Country)

Country
Ihello-world/._templates/country

£} e

_images/new-user-dialog-stores.png
Create New

i 3

-

User

E My Custom User Store

E System User Store
User Group
User Store

Role

_images/myapp-apps.jpg
APPLICATIONS

Install Stop
Select All (1)~ Clear Selection (1)

% - Mvapp 1005, sarted Myapp

Edit app description at src/main/resour...
Edit app description at src/main/resources/application.xml

Q

Started

Info

Build date Version Key System Required
TeA 1.0.0.SNAPSHOT com.company.myapp 00and<7.00

_images/new-user.png
R users

Q NewUser Edit Delete

~
.4

System User Store
/system

[N

== Users

‘'
users

Super User
su

Anonymous User
anonymous

== Groups
groups

E My Custom User Store
/my-custom-user-store

=— Roles
»
- roles

_images/new-user-dialog.png
Create New

_images/nodes.png
_id = 1001
_name = ‘oslo’
_parent = ROOT

displayName = ‘Oslo’
data.population = 647676
data.area = 454.03

location = geoPoint(’59.9127300,10.7460900°)

_id = 102131
_name = ‘enonic’
_parent = ‘/oslo’

displayName = ‘Enonic’
category = ‘Software company’
employees = 20

_images/node-versions.png
_nodeVersionld = 2345

_id = 1001 _nodeVersionId = 1234

displayName = ‘Oslo’ _id = 102131
data.population = 647676 displayName = ‘Enonic’
data.area = 454.03 category = ‘Software company’

location =
geoPoint(’59.9127300,10.7460900°)

employees = 20

BlobStore

_images/mac-startup.jpg
L] Enonic XP

Server started

If you experience any problems
contact us.

Home Directory Launch Browser

™F0 Lcid Role createt - everyone

FO «.c.i.s.SecurityInitializer - Role created: role: - adnin. login

mFo Lc.iis.SecurityInitializer - Role create user.app

FO Lc.i.s.SecurityInitializer - Role create

RO Lciiis.Se Role createt

FO Lc.iis.SecurityInitiali: Role create

INFO org. arch.cluster.netadata - [local-node] [search-systen-re e. g [naster] (dynamic)
Fo

Fo e,

INFO org.elas ch.cluster.metadata - [local-node] [search-systen-repo] update mapping [master] (dynamic
INFO ora. r.metadata - [local-node] [search-systen-repo] updaf [naster] (

NFO .c.i.s.SecurityInitializer - Added user:system:su as member of role:systen.adnin

NFO Lc.i.s.SecurityInitializer - Added user:system: of role:systen.adnin. Login

FO Lc.i.s.SecurityInitializer - System-repo [security] layout successfully initialized

INFO org.elasticsearch. cluster.netadata ~ [local-node] [search-cns-repo] update_napping [draft] (dynamic)
Fo i t.ContentInitializer ~ Content root-node not found, creating

INFO ora. earch.cluster.metadata ~ [local-node] [search-cms-repo] update_mapping [draft] (dynamic)
Fo x.c.i.content. ContentInitializer — Created content root-node: /content

INFO org.elasticsearch.cluster.netadata — [local-node] [search-cns-repo] update_napping [master] (dynamic)
INFO org.eclipse.jetty.util.log - Logging initialized €9946ms

INFO org.eclipse. jetty. sen rver - jetty-9.3.5.v20151012

Fo v il B e Lt b
NFO ty.server.ServerConnector ~ Started ServerConnectore3d190ab0{HTTP/1.1, [http/1.1]}{0.0.0.0:8080}
INFO org.eclipse.jetty. r - Started @10079ms

Fo i framework. FrameworkService - Started Enonic XP in 8572 ms

_images/login-page.png
endfic

XP

Welcome to Enonic XP

..orlog in without a user

_images/media-selector.png
Media selector

< 2154.27.0ng
Drop files to 51.47png

_images/make-anything-tick.jpg
anything

if (idea) {
enonicExperiencePlatform();

}

else {
drinkCoffee();
getIdea();

_images/move-content.jpg
Move item with children

Moves selected items with all children and current permissions to selected destination

Type to search.

m

_images/border4_0x777777.jpg

_images/branch_diff.png
branch: draft \

/oslo

/oslo/enonic

/ branch: master \

/oslo

/oslo/enonic

_images/block5.jpg

_images/blur8.jpg

_images/branch_push_2.png
branch: draft \

/ branch: master \

/oslo/enonic

_images/bump.jpg

_images/branch_initial.png
/ branch: draft \

/oslo/enonic

a

_nodeVersionId = 2345
_id = 1001

displayName = ‘Oslo’
data.population = 647676
data.area = 454.03
location =

<

geoPoint(’59.9127300,10.7460900°)

N

_nodeVersionld = 1234

_id = 102131
displayName = ‘Enonic’
category = ‘Software company’

employees = 20

<

4
N

4

_images/branch_push.png
/ branch: draft \ /bra’nch: master\

_images/children-list.png

_images/city-list-config.jpg
[‘3 CONTENTSTUDIO [JNpaY

Savedraft Delete Duplicate Preview Item is Offline = Q | |
by Insert Inspect Emulator
Country
Part
s
% Country City list
= com.company.myapp:city-list
3
S (Cities
7
Map type
HYBRID x

Zoom level 1-15

12

Apply

_images/city-list.png
CONTENT STUDIO

Q New Edit Delete Duplicate Move Sort Preview Publish

Select All (14) Clear Selection (1) <
Hello World Country
4 rielo worl offine 20160219
USA
UsA Offiine 2016-02-20
usa
Population: 318,900,000
San Francisco ofine 2160220 The U.S. is a country of 50 states covering a vast swath of North America, with
B o fnasco Alaska in the extreme Northwest and Hawail extending the nation’s presence into
e the Pacific Ocean. Major cities include New York, a global finance and culture
) e offine 20160220 center, and Washington, DC, the capital, both on the Atlantic Coast; Los Angeles,
famed for filmmaking, on the Pacific Coast; and the Midwestern metropolis
4] Washington D.C. ofine 20160220 Chicago.
ELE vashingronac
Cities
o R Nomway orine oz
norway
San Francisco
Oslo Offiine 201602:20
oslo
Population: 837 442
Bergen ofine 20160220 R e &
bergen Map Sateite Fa T
———sunson Beach! Mill Vall Walmkl
E Trondheim Offiine 201602:20
ELE voncheim
4 R Colomoia orine oz
colombia
Bogota Offiine 201602:20
bogota I
Medellin
Medel offine 20160220 F
Barranquilla Offiine 201602:20 it B
barranquilla = 0
 Templates z -
ine 02 2 ~ LA\
> I templates o 260219 [Google W data 2016 Google | Tem of Use Repora maperr

Las Vegas

Population: 603,488

Map satelite

Red Rock

Sumerin
Canvon
National e
@
ole
Mountain ndetson +
Sl w\]
Boutcerc
Goggle Wapdata 62016 Googl Terms.ofUse Raprtamap err

Washington D.C.

Prnnlatian: (58 RQ2

_images/colorize.jpg

_images/components-view.jpg
ttemis Oniine g
!
Insert Inspect Emulator
x S —
Components e
Meta v
com.enonic.appsuperhercimeta
o Default
page
. main) -
shok - Config
first page of the post list
G & Featured Tite
B Meta
i Two column
— layout
. left i
® = Links
Posts list
part o Link: x
. right .
el Contentlink
Search form | = =1 e v
part
* Recent comments External URL
part https://enonic.com
_“ Recent posts)
lnktext
Categories enonic
part
Unkiide
enonc
_“ Monthly archiy | 7
part
-* Tag cloud & image © Lk x
part A part
Contentlink
T Text RSs
First chnd! x
S € Fragment
One Grand
Inspect
paent external URL
Reset
Second Ck
Uncateg Remove
Duplicate Ll
I EnriesRss
Create Fragment
Unkiite
Meta Really imple Synccation
logout

above the title?
Entries RSS

Apply

_images/city.png

_images/ckeditor.png
PoSt text *

Normal /B I US X x99

Q™ e m

There is so much a

Bring

International logistics operator

rea to cover. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi non dapibus
lectus. Vestibulum eget commodo mi.

Donec in est sed quam ultricies pharetra at vitae quam. Nam dignissim orci accumsan
‘odio bibendum non mattis nisl congue.

‘Curabitur rutrum pharetra velit, quis feugiat elit consectetur vitae. Lorem ipsum dolor sit
‘amet, consectetur adipiscing elit. Maecenas in interdum orci.

body p <& H

_images/content-selector-no-toggle.png
Content selector (flat)

[ope e

Features

features
Castillo_de_Petrela_Petrela_Albania_2014-04-17_DD_09JPG
Ifeatures/fragment-castillo-de-petrela-petrela-albania-2014-04-17-d-09,jog

Schedule Publish
Heatures/js-ibraries/schedule-publish

Value
Heatures/jsbrariesivalue

Al A &

_images/content-selector-status.png
(Content selector (with status)

‘ Bl e osearch a
Samara New
Ifeatures/input-types/geo-point/cities-manager...
An_Afghan_elder_and_his_cat_sit_outsic New
Ifeatures/media/image/An_Afghan_elder_and.

Mysite11 odied
Imysiter
continuous-deployment-icon-red.svg Publched

3 oOmO

Jenonic-homepage-copy/developer-tour/contin.

_images/confirm-delete.jpg
Confirm delete

You are about to delete important content. This action cannot be undone.

enter 39 inthe field and click Confirm: ‘ ‘

I

_images/content-detail-panel.png
Details LY

Search
Isuperhero/search

¥l

MODIFIED

5] Everyone can read this tem

@ Full Access

Edit Permissions

Type: landing-page

Application: Superhero theme

Language: en

Owner: su

Created: 2015:04-08 10:44:20

Modified: 2017-06-13 14:45:05.

First Published: 2017-06-13 1¢:48:54

Publish From: 2017-06-13 1¢:48:54

d: 8a09ab18-3699-4408-0883-9c3ee..
Custom
Page

“This item has no attachments

_images/content-selector-tree.png
Content selector (tree-structured)

‘ e osearch..

»

AEVEVEVE

Docportal
sdocportal

Enonic
fenonichomepage-copy

Features
Ifeatures

Image XPert
Jimage-xpert

London Stock Exchange

_images/content-studio.png
&
Q

CONTENT STUDIO

New...

Edit Delete.. Duplicate...

Docportal
Idocporta

Enonic
Jenonic-homepage

Features
ffeatures

. P rE
Narge-tree

London Stock Exchange
fise

. Mindful Monsters
Y ope

Office League
[office-league

Superhero

Isuperhero

Categories
categories

Authors
authors

Posts
posts

March Madness
march-madness

Hello world!
hello-world

HTML
hemi
Links.
links

More Tags
more-tags

Some Buildings to Leap
some-buildings-to-leap

Worth A Thousand Words
worth-a-thousand-words

Elements
elements

Category Hierarchy
category-hierarchy

Featured Image
foatiredimase.

My Issues

Move...

Sort...

Preview

Published

Published

Published

Published

Modified

Posted on

This is an example of a sticky post. It will appear at the top of the first page of the post list and the title

will be red.

Posted In Parent, | Tagged

Posted on

Welcome to Enonic XP. Edit or delete this post and start blogging!

Posted in

v PUBLISH...

#36 Please publish this v

Search
Search

Michael Lazell
on

Michael Lazell
on

Bobby Brown on

Michael Lazell
on

Michael Lazell
o

_images/content-studio1.png
&
Q

CONTENT STUDIO

New...

Edit Delete.. Duplicate...

Docportal
Idocporta

Enonic
Jenonic-homepage

Features
ffeatures

. P rE
Narge-tree

London Stock Exchange
fise

. Mindful Monsters
Y ope

Office League
[office-league

Superhero

Isuperhero

Categories
categories

Authors
authors

Posts
posts

March Madness
march-madness

Hello world!
hello-world

HTML
hemi
Links.
links

More Tags
more-tags

Some Buildings to Leap
some-buildings-to-leap

Worth A Thousand Words
worth-a-thousand-words

Elements
elements

Category Hierarchy
category-hierarchy

Featured Image
foatiredimase.

My Issues

Move...

Sort...

Preview

Published

Published

Published

Published

Modified

Posted on

This is an example of a sticky post. It will appear at the top of the first page of the post list and the title

will be red.

Posted In Parent, | Tagged

Posted on

Welcome to Enonic XP. Edit or delete this post and start blogging!

Posted in

v PUBLISH...

#36 Please publish this v

Search
Search

Michael Lazell
on

Michael Lazell
on

Bobby Brown on

Michael Lazell
on

Michael Lazell
o

_images/content-wizard.png
Delete.. Duplicate... Preview Published v PUBLISH.

Gotham Sure Is A Big Town Superhero

/superhero/posts/gotham-sure-is-a-big-town

Post LS & Menu
Post
Author
E Michael Lazell Esq. & X
Category
B e tosearch.. v Gotham Sure Is A Big Town
st on a7, 2055 by Michae L s
0 Uncategorized v %X
There is so much area to cover. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Morbi non dapibus lectus. Vestibulum eget commodo mi.
Posttext Donec in est sed quam ultricies pharetra at vitae quam. Nam dignissim orci accumsan
There is so much area to cover. Lorem ipsum dolor sit amet, consectetur adipiscing odio bibendum non mattis nisl congue.
elit. Morbi non dapibus lectus. Vestibulum eget commodo mi. Curabitur rutrum pharetra velit, quis feugiat elit consectetur vitae. Lorem ipsum dolor sit

Donec in est sed quam ultricies pharetra at vitae quam. Nam dignissim orci
‘accumsan odio bibendum non mattis nisl congue.

‘Curabitur rutrum pharetra velit, quis feugiat elit consectetur vitae. Lorem ipsum dolor
sit amet, consectetur adipiscing elit. Maecenas in interdum orci. Posted in Uncategorized | Tagged Featured

amet, consectetur adipiscing elit. Maecenas in interdum orci.

< March Madness Some Buldings to Leap —

Tegs

Featured x Search

Comments _

Sticky post B ———————————————————

_images/country-content-edit.jpg
(> CONTENT STUDIO

Savedraft Delete Duplicate Item s Offline

usa

Country

Description

The U is a country of 50 states covering 2 vast swath of
North America, with Alaska in the northwest and Hawaii
extending the nation's presence into the Pacific Ocean. Major
Adantic Coast cites are New York, a global finance and culture
center, and capital Washington, DC. Midwestern metropolis
Chicago is known for influential architecture and on the west
coast, Los Angeles' Hollywood s famed for filmmaking.

Population

318900,000

Select a controller below to set up a customized page

Settings

'
i E hello
Language i com.company.myapp:hello
'
¥ E Hello Region
| com.company.myapp-hello-region
Owner b
Super User |
2 Jsystem/users/su x

Security

Permissions *

Inherits permissions from parent

_images/content-tree-grid.png
(p conTenT sTUDIO

Q New.. %
. Superhero Onle 20171011 05:4808
Isuperhero
o S Online 2017-10-11 09
categories
0 Uncategorized Online 2017-10-11 09
uncategorized g
N 0 Parent New 201502280
parent
Authors a1
Templates

Online 2017-10-11 09

4 I cempiates

Post show - 2 columns.
post-show-2-columns

New 2015103100

Post show - one column

postshow-one-column New 201506122
bl orine 20171011 94808
’ pon orive 201710:11 05

Search
search

Online 2017-10-11 09

ES
== Images
* W images Onine 201701

_images/content-types.jpg
Create Content

In: /test

‘ Search for content types Recently Used

Site
portalsite

Template-folder (1) Template-folder
portaltemplate-folder portaltemplate-folder

Most Popular

Folder
Folder basefolder

baseifolder Shortcut

Shortcut baseishortcut
base:shorteut

site
portaksite

Template-folder
portal:template-folder

Unstructured
base:unstructured

Drop files here to upload

_images/country.png
al

_images/create-content.jpg
Create Content

In: Isuperhero/posts

l Search for content types Recently Used

Category

Most Popular com.enonic.app.superh...

Post (1) Folder
com.enonic.app.superhero:post basefolder

site
Author portak:site

com.enonic.app.superhero:author Shortcut

Category base:shortut

com.enonic.app.superhero:category Unstructured

Comment baseunstructured
com.enonic.app.superhero:comment

Folder
baserfolder

3| Landing page
com.enonic.app.superheroilanding page

Post
com.enonic.app.superhero:post

RSS page
com.enonic.app.superheroirss-page

Shortcut
baseishortcut

Site

Drop files here to upload

_images/country-content-form.jpg
CONTENT STUDIO <Unnamed Countr.

Savedraft Delete Duplicate Item is Offline

i

Country

Select a controller below to set up a customized
page

Description

Population

_images/country-content-rendered.jpg
{p CONTENTSTUDIO

Q New Edit Delete Duplicate Move Sort Preview Publish
Select All (3) Clear Selection (1) < C
. Hello World Olllltl'y
Pl offine 20161212
USA
5: ne 201612
Population: 318,900,000
fifp Templates ofine 2016121z The U.S. s a country of 50 states covering a vast swath of North America, with
A2 templates Alaska in the northwest and Hawaii extending the nation’s presence into the

Pacific Ocean. Major Atlantic Coast cities are New York, a global finance and
culture center, and capital Washington, DC. Midwestern metropolis Chicago is
known for influential architecture and on the west coast, Los Angeles' Hollywood
is famed for filmmaking.

_images/custom-selector-books.png
Select a book

for dummies

Linux All-in-One For Dummies (by Emmett Dulaney)
Eight minibooks in one volume cover every important aspect of Linux and everything you nee.

Meditation For Dummies (by Stephan Bodian)
Take an inward journey for a happier, healthier, more productive life Meditation relaxes the b...

Digital Video For Dummies (by Keith Underdahl)
Digital media sales represent a growing market in consumer technology; in previous editions, ..

PCs For Dummies (by Dan Gookin)
The bestselling PC reference on the planet—now available in its 13th edition Completely upd...

_images/delete-item-dependencies.png
CONTENT STUDIO

Inbound Dependencies Ne
Refl x P
Ieatures/input-types/reference... fs/

Ref2

search (O J——
. Ref3

3his (O = A——
Refd

Content Types features/input-typesireferenc..

Referencetest (3)

_images/create-user.jpg
W_

User

Isystem/users/

Email

Authentication

Password

Show Generate

Groups & Roles

Groups

Roles

_images/dependencies-widget.jpg
CCONTENT STUDIO

March Madness x

Outbound Dependencies x =