

    
      
          
            
  
xnd

xnd is a package for general typed containers.  xnd relies on
the libndtypes [http://ndtypes.readthedocs.io] library for
typing and memory layout information.


Libxnd

C library.



	libxnd








Xnd

Python bindings for libxnd.
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gumath

gumath is a package for extensible dispatch of computational kernels that
target xnd containers.  Kernels can be added at runtime, which allows the
use of JIT compilers.


Libgumath

C library.



	libgumath








Gumath

Python bindings for libgumath.



	gumath








XndTools

XndTools is a Python package containing development tools for the XND project.



	xndtools
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libxnd

libxnd implements support for typed memory blocks using the libndtypes
type library.

Types include ndarrays, ragged arrays (compatible with the Arrow list type),
optional data (bitmaps are compatible with Arrow), tuples, records (structs),
strings, bytes and categorical values.
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Data structures

libxnd is a lightweight container library that leaves most of the work to
libndtypes. The underlying idea is to have a small struct that contains
bitmaps, a linear index, a type and a data pointer.

The type contains all low level access information.

Since the struct is small, it can easily be passed around by value when
it serves as a view on the data.

The owner of the data is a master buffer with some additional bookkeeping
fields.


Bitmaps

typedef struct xnd_bitmap xnd_bitmap_t;

struct xnd_bitmap {
    uint8_t *data;      /* bitmap */
    int64_t size;       /* number of subtree bitmaps in the "next" array */
    xnd_bitmap_t *next; /* array of bitmaps for subtrees */
};





libxnd supports data with optional values. Any type can have a bitmap for its
data.  Bitmaps are addressed using the linear index in the xnd_t
struct.

For a scalar, the bitmap contains just one addressable bit.

For fixed and variable arrays, the bitmap contains one bit for each item.

Container types like tuples and records have new bitmaps for each of their
fields if any of the field subtrees contains optional data.

These field bitmaps are in the next array.




View

/* Typed memory block, usually a view. */
typedef struct xnd {
    xnd_bitmap_t bitmap; /* bitmap tree */
    int64_t index;       /* linear index for var dims */
    const ndt_t *type;   /* type of the data */
    char *ptr;           /* data */
} xnd_t;





This is the xnd view, with a typed data pointer, the current linear index
and a bitmap.

When passing the view around, the linear index needs to be maintained because
it is required to determine if a value is missing (NA).

The convention is to apply the linear index (adjust the ptr and set it
to 0) only when a non-optional element at ndim == 0 is actually
accessed.

This happens for example when getting the value of an element or when
descending into a record.




Flags

#define XND_OWN_TYPE     0x00000001U /* type pointer */
#define XND_OWN_DATA     0x00000002U /* data pointer */
#define XND_OWN_STRINGS  0x00000004U /* embedded string pointers */
#define XND_OWN_BYTES    0x00000008U /* embedded bytes pointers */
#define XND_OWN_POINTERS 0x00000010U /* embedded pointers */

#define XND_OWN_ALL (XND_OWN_TYPE |    \
                     XND_OWN_DATA |    \
                     XND_OWN_STRINGS | \
                     XND_OWN_BYTES |   \
                     XND_OWN_POINTERS)

#define XND_OWN_EMBEDDED (XND_OWN_DATA |    \
                          XND_OWN_STRINGS | \
                          XND_OWN_BYTES |   \
                          XND_OWN_POINTERS)





The ownership flags for the xnd master buffer (see below).  Like libndtypes,
libxnd itself has no notion of how many exported views a master buffer has.

This is deliberately done in order to prevent two different memory management
schemes from getting in each other’s way.

However, for deallocating a master buffer the flags must be set correctly.

XND_OWN_TYPE is set if the master buffer owns the ndt_t.

XND_OWN_DATA is set if the master buffer owns the data pointer.

The string, bytes and ref types have pointers that are embedded in the
data.  Usually, these are owned and deallocated by libxnd.

For strings, the Python bindings use the convention that NULL strings
are interpreted as the empty string. Once a string pointer is initialized it
belongs to the master buffer.




Macros

/* Convenience macros to extract embedded values. */
#define XND_POINTER_DATA(ptr) (*((char **)ptr))
#define XND_BYTES_SIZE(ptr) (((ndt_bytes_t *)ptr)->size)
#define XND_BYTES_DATA(ptr) (((ndt_bytes_t *)ptr)->data)





These macros should be used to extract embedded ref, string and bytes
data.




Master buffer

/* Master memory block. */
typedef struct xnd_master {
    uint32_t flags; /* ownership flags */
    xnd_t master;   /* typed memory */
} xnd_master_t;





This is the master buffer.  flags are explained above, the master buffer
should be considered constant.

For traversing memory, copy a new view buffer by value.




Slice and index keys

enum xnd_key { Index, FieldName, Slice };
typedef struct {
  enum xnd_key tag;
  union {
    int64_t Index;
    const char *FieldName;
    ndt_slice_t Slice;
  };
} xnd_index_t;





Slicing and indexing uses the same model as Python.  Indices are usually
integers, but record fields may also be indexed with field names.

ndt_slice_t has start, stop, step fields that must be filled in with
normalized values following the same protocol as PySlice_Unpack.







          

      

      

    

  

    
      
          
            
  
Functions


Create typed memory blocks

The main use case for libxnd is to create and manage typed memory blocks.
These blocks are fully initialized to 0.  References to additional memory
blocks are allocated and initialized recursively.

bytes and string types are initialized to NULL, since their
actual length is not known yet.

xnd_master_t *xnd_empty_from_string(const char *s, uint32_t flags, ndt_context_t *ctx);





Return a new master buffer according to the type string in s.  flags
must include XND_OWN_TYPE.

xnd_master_t *xnd_empty_from_type(const ndt_t *t, uint32_t flags, ndt_context_t *ctx);





Return a new master buffer according to type.  flags must not include
XND_OWN_TYPE, i.e. the type is externally managed.

This is the case in the Python bindings, where the ndtypes module creates
and manages types.




Delete typed memory blocks

void xnd_del(xnd_master_t *x);





Delete the master buffer according to its flags. x may be NULL.
x->master.ptr and x->master.type may be NULL.

The latter situation should only arise when breaking up reference cycles.
This is used in the Python module.




Bitmaps

xnd_bitmap_t xnd_bitmap_next(const xnd_t *x, int64_t i, ndt_context_t *ctx);





Get the next bitmap for the Tuple, Record, Ref and Constr types.

This is a convenience function that checks if the types have optional
subtrees.

If yes, return the bitmap at index i.  If not, it return an empty bitmap
that must not be accessed.

void xnd_set_valid(xnd_t *x);





Set the validity bit at x->index.  x must have an optional type.

void xnd_set_na(xnd_t *x);





Clear the validity bit at x->index.  x must have an optional type.

int xnd_is_valid(const xnd_t *x);





Check if the element at x->index is valid.  If x does not have an optional
type, return 1.  Otherwise, return the validity bit (zero or nonzero).

int xnd_is_na(const xnd_t *x);





Check if the element at x->index is valid.  If x does not have an optional
type, return 0.  Otherwise, return the negation of the validity bit.

xnd_t xnd_subtree(const xnd_t *x, const xnd_index_t indices[], int len,
                  ndt_context_t *ctx);





Apply zero or more indices to the input x and return a typed view. Valid
indices are integers or strings for record fields.

This function is more general than pure array indexing, hence the name. For
example, it is possible to index into nested records that in turn contain
arrays.

xnd_t xnd_multikey(const xnd_t *x, const xnd_index_t indices[], int len,
                   ndt_context_t *ctx);





Apply zero or more keys to the input x and return a typed view. Valid
keys are integers or slices.

This function differs from xnd_subtree in that it allows
mixed indexing and slicing for fixed dimensions.  Records and tuples
cannot be sliced.

Variable dimensions can be sliced, but do not support mixed indexing
and slicing.







          

      

      

    

  

    
      
          
            
  
xnd

The xnd module implements a container type that maps most Python values
relevant for scientific computing directly to typed memory.

Whenever possible, a single, pointer-free memory block is used.

xnd supports ragged arrays, categorical types, indexing, slicing, aligned memory blocks and type inference.

Operations like indexing and slicing return zero-copy typed views on the data.

Importing PEP-3118 buffers is supported.



	Types

	Alignment and packing

	Buffer protocol

	Quick Start









          

      

      

    

  

    
      
          
            
  
Types

The xnd object is a container that maps a wide range of Python values directly
to memory.  xnd unpacks complex types of arbitrary nesting depth to a single
memory block.

Pointers only occur in explicit pointer types like Ref (reference), Bytes
and String, but not in the general case.


Type inference

If no explicit type is given, xnd supports type inference by assuming
types for the most common Python values.


Fixed arrays

>>> from xnd import *
>>> x = xnd([[0, 1, 2], [3, 4, 5]])
>>> x
xnd([[0, 1, 2], [3, 4, 5]], type='2 * 3 * int64')





As expected, lists are mapped to ndarrays and integers to int64.  Indexing and
slicing works the usual way.  For performance reasons these operations return
zero-copy views whenever possible:

>>> x[0][1] # Indexing returns views, even for scalars.
xnd(1, type='int64')
>>>
>>> y = x[:, ::-1] # Containers are returned as views.
>>> y
xnd([[2, 1, 0], [5, 4, 3]], type='2 * 3 * int64')





Subarrays are views and properly typed:

>>> x[1]
xnd([3, 4, 5], type='3 * int64')





The representation of large values is abbreviated:

>>> x = xnd(10 * [200 * [1]])
>>> x
xnd([[1, 1, 1, 1, 1, 1, 1, 1, 1, ...],
     [1, 1, 1, 1, 1, 1, 1, 1, 1, ...],
     [1, 1, 1, 1, 1, 1, 1, 1, 1, ...],
     [1, 1, 1, 1, 1, 1, 1, 1, 1, ...],
     [1, 1, 1, 1, 1, 1, 1, 1, 1, ...],
     [1, 1, 1, 1, 1, 1, 1, 1, 1, ...],
     [1, 1, 1, 1, 1, 1, 1, 1, 1, ...],
     [1, 1, 1, 1, 1, 1, 1, 1, 1, ...],
     [1, 1, 1, 1, 1, 1, 1, 1, 1, ...],
     ...],
    type='10 * 200 * int64')





Values can be accessed in full using the value property:

>>> x = xnd(11 * [1])
>>> x
xnd([1, 1, 1, 1, 1, 1, 1, 1, 1, ...], type='11 * int64')
>>> x.value
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]





Types can be accessed using the type property:

>>> x = xnd(11 * [1])
>>> x.type
ndt("11 * int64")








Ragged arrays

Ragged arrays are compatible with the Arrow list representation. The data
is pointer-free, addressing the elements works by having one offset array
per dimension.

>>> xnd([[0.1j], [3+2j, 4+5j, 10j]])
xnd([[0.1j], [(3+2j), (4+5j), 10j]], type='var * var * complex128')





Indexing and slicing works as usual, returning properly typed views or
values in the case of scalars:

>>> x = xnd([[0.1j], [3+2j, 4+5j, 10j]])
>>> x[1, 2]
xnd(10j, type='complex128')

>>> x[1]
xnd([(3+2j), (4+5j), 10j], type='var * complex128')





Eliminating dimensions through mixed slicing and indexing is not supported
because it would require copying and adjusting potentially huge offset arrays:

>>> y = x[:, 1]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
IndexError: mixed indexing and slicing is not supported for var dimensions








Records (structs)

From Python 3.6 on, dicts retain their order, so they can be used directly
for initializing C structs.

>>> xnd({'a': 'foo', 'b': 10.2})
xnd({'a': 'foo', 'b': 10.2}, type='{a : string, b : float64}')








Tuples

Python tuples are directly translated to the libndtypes tuple type:

>>> xnd(('foo', b'bar', [None, 10.0, 20.0]))
xnd(('foo', b'bar', [None, 10.0, 20.0]), type='(string, bytes, 3 * ?float64)')








Nested arrays in structs

xnd seamlessly supports nested values of arbitrary depth:

>>> lst = [{'name': 'John', 'internet_points': [1, 2, 3]},
...        {'name': 'Jane', 'internet_points': [4, 5, 6]}]
>>> xnd(lst)
xnd([{'name': 'John', 'internet_points': [1, 2, 3]}, {'name': 'Jane', 'internet_points': [4, 5, 6]}],
    type='2 * {name : string, internet_points : 3 * int64}')








Optional data (missing values)

Optional data is currently specified using None.  It is under debate if
a separate NA singleton object would be more suitable.

>>> lst = [0, 1, None, 2, 3, None, 5, 10]
>>> xnd(lst)
xnd([0, 1, None, 2, 3, None, 5, 10], type='8 * ?int64')








Categorical data

Type inference would be ambiguous, so it cannot work directly. xnd supports
the levels argument that is internally translated to the type.

>>> levels = ['January', 'August', 'December', None]
>>> x = xnd(['January', 'January', None, 'December', 'August', 'December', 'December'], levels=levels)
>>> x.value
['January', 'January', None, 'December', 'August', 'December', 'December']
>>> x.type
ndt("7 * categorical('January', 'August', 'December', NA)")





The above is equivalent to specifying the type directly:

>>> from ndtypes import *
>>> t = ndt("7 * categorical('January', 'August', 'December', NA)")
>>> x = xnd(['January', 'January', None, 'December', 'August', 'December', 'December'], type=t)
>>> x.value
['January', 'January', None, 'December', 'August', 'December', 'December']
>>> x.type
ndt("7 * categorical('January', 'August', 'December', NA)")










Explicit types

While type inference is well-defined, it necessarily makes assumptions about
the programmer’s intent.

There are two cases where types should be given:


Different types are intended

>>> xnd([[0,1,2], [3,4,5]], type="2 * 3 * uint8")
xnd([[0, 1, 2], [3, 4, 5]], type='2 * 3 * uint8')





Here, type inference would deduce int64, so uint8 needs
to be passed explicitly.






All supported types


Fixed arrays

Fixed arrays are similar to NumPy’s ndarray. One difference is that internally
xnd uses steps instead of strides. One step is the amount of indices required
to move the linear index from one dimension element to the next.

This facilitates optional data, whose bitmaps need to be addressed by the
linear index.  The equation stride = step * itemsize always holds.

>>> xnd([[[1,2], [None, 3]], [[4, None], [5, 6]]])
xnd([[[1, 2], [None, 3]], [[4, None], [5, 6]]], type='2 * 2 * 2 * ?int64')





This is a fixed array with optional data.

>>> xnd([(1,2.0,3j), (4,5.0,6j)])
xnd([(1, 2.0, 3j), (4, 5.0, 6j)], type='2 * (int64, float64, complex128)')





An array with tuple elements.




Fortran order

Fortran order is specified by prefixing the dimensions with an exclamation mark:

>>> lst = [[1, 2, 3], [4, 5, 6]]
>>> x = xnd(lst, type='!2 * 3 * uint16')
>>>
>>> x.type.shape
(2, 3)
>>> x.type.strides
(2, 4)





Alternatively, steps can be passed as arguments to the fixed dimension type:

>>> from ndtypes import *
>>> lst = [[1, 2, 3], [4, 5, 6]]
>>> t = ndt("fixed(shape=2, step=1) * fixed(shape=3, step=2) * uint16")
>>> x = xnd(lst, type=t)
>>> x.type.shape
(2, 3)
>>> x.type.strides
(2, 4)








Ragged arrays

Ragged arrays with explicit types are easiest to construct using the dtype
argument to the xnd constructor.

>>> lst = [[0], [1, 2], [3, 4, 5]]
>>> xnd(lst, dtype="int32")
xnd([[0], [1, 2], [3, 4, 5]], type='var * var * int32')





Alternatively, offsets can be passed as arguments to the var dimension type:

>>> from ndtypes import ndt
>>> t = ndt("var(offsets=[0,3]) * var(offsets=[0,1,3,6]) * int32")
>>> xnd(lst, type=t)
xnd([[0], [1, 2], [3, 4, 5]], type='var * var * int32')








Tuples

In memory, tuples are the same as C structs.

>>> xnd(("foo", 1.0))
xnd(('foo', 1.0), type='(string, float64)')





Indexing works the same as for arrays:

>>> x = xnd(("foo", 1.0))
>>> x[0]
xnd('foo', type='string')





Nested tuples are more general than ragged arrays. They can a) hold different
data types and b) the trees they represent may be unbalanced.

They do not allow slicing though and are probably less efficient.

This is an example of an unbalanced tree that cannot be represented as a
ragged array:

>>> unbalanced_tree = (((1.0, 2.0), (3.0)), 4.0, ((5.0, 6.0, 7.0), ()))
>>> x = xnd(unbalanced_tree)
>>> x.value
(((1.0, 2.0), 3.0), 4.0, ((5.0, 6.0, 7.0), ()))
>>> x.type
ndt("(((float64, float64), float64), float64, ((float64, float64, float64), ()))")
>>>
>>> x[0]
xnd(((1.0, 2.0), 3.0), type='((float64, float64), float64)')
>>> x[0][0]
xnd((1.0, 2.0), type='(float64, float64)')





Note that the data in the above tree example is packed into a single contiguous
memory block.




Records

In memory, records are C structs. The field names are only stored in the type.

The following examples use Python-3.6, which keeps the dict initialization
order.

>>> x = xnd({'a': b'123', 'b': {'x': 1.2, 'y': 100+3j}})
>>> x.value
{'a': b'123', 'b': {'x': 1.2, 'y': (100+3j)}}
>>> x.type
ndt("{a : bytes, b : {x : float64, y : complex128}}")





Indexing works the same as for arrays. Additionally, fields can be indexed
by name:

>>> x[0]
xnd(b'123', type='bytes')
>>> x['a']
xnd(b'123', type='bytes')
>>> x['b']
xnd({'x': 1.2, 'y': (100+3j)}, type='{x : float64, y : complex128}')





The nesting depth is arbitrary.  In the following example, the data – except
for strings, which are pointers – is packed into a single contiguous memory
block:

>>> from pprint import pprint
>>> item = {
...   "id": 1001,
...   "name": "cyclotron",
...   "price": 5998321.99,
...   "tags": ["connoisseur", "luxury"],
...   "stock": {
...     "warehouse": 722,
...     "retail": 20
...   }
... }
>>> x = xnd(item)
>>>
>>> pprint(x.value)
{'id': 1001,
 'name': 'cyclotron',
 'price': 5998321.99,
 'stock': {'retail': 20, 'warehouse': 722},
 'tags': ['connoisseur', 'luxury']}
>>>
>>> x.type.pprint()
{
  id : int64,
  name : string,
  price : float64,
  tags : 2 * string,
  stock : {
    warehouse : int64,
    retail : int64
  }
}





Strings can be embedded into the array by specifying the fixed string type.
In this case, the memory block is pointer-free.

>>> from ndtypes import ndt
>>>
>>> t = """
...   { id : int64,
...     name : fixed_string(30),
...     price : float64,
...     tags : 2 * fixed_string(30),
...     stock : {warehouse : int64, retail : int64}
...   }
... """
>>>
>>> x = xnd(item, type=t)
>>> x.type.pprint()
{
  id : int64,
  name : fixed_string(30),
  price : float64,
  tags : 2 * fixed_string(30),
  stock : {
    warehouse : int64,
    retail : int64
  }
}








Record of arrays

Often it is more memory efficient to store an array of records as a record of
arrays.  This example with columnar data is from the Arrow homepage:

>>> data = {'session_id': [1331247700, 1331247702, 1331247709, 1331247799],
...         'timestamp': [1515529735.4895875, 1515529746.2128427, 1515529756.4485607, 1515529766.2181058],
...         'source_ip': ['8.8.8.100', '100.2.0.11', '99.101.22.222', '12.100.111.200']}
>>> x = xnd(data)
>>> x.type
ndt("{session_id : 4 * int64, timestamp : 4 * float64, source_ip : 4 * string}")








References

References are transparent pointers to new memory blocks (meaning a new
data pointer, not a whole new xnd buffer).

For example, this is an array of pointer to array:

>>> t = ndt("3 * ref(4 * uint64)")
>>> lst = [[0,1,2,3], [4,5,6,7], [8,9,10,11]]
>>> xnd(lst, type=t)
xnd([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]], type='3 * ref(4 * uint64)')





The user sees no difference to a regular 3 by 4 array, but internally
the outer dimension consists of three pointers to the inner arrays.

For memory blocks generated by xnd itself the feature is not so useful –
after all, it is usually better to have a single memory block than one
with additional pointers.

However, suppose that in the above columnar data example another application
represents the arrays inside the record with pointers.  Using the ref type,
data structures borrowed from such an application can be properly typed:

>>> t = ndt("{session_id : &4 * int64, timestamp : &4 * float64, source_ip : &4 * string}")
>>> x = xnd(data, type=t)
>>> x.type
ndt("{session_id : ref(4 * int64), timestamp : ref(4 * float64), source_ip : ref(4 * string)}")





The ampersand is the shorthand for “ref”.




Constructors

Constructors are xnd’s way of creating distinct named types. The constructor
argument is a regular type.

Constructors open up a new dtype, so named arrays can be the dtype of
other arrays.  Type inference currently isn’t aware of constructors,
so types have to be provided.

>>> t = ndt("3 * SomeMatrix(2 * 2 * float32)")
>>> lst = [[[1,2], [3,4]], [[5,6], [7,8]], [[9,10], [11,12]]]
>>> x = xnd(lst, type=t)
>>> x
xnd([[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]], [[9.0, 10.0], [11.0, 12.0]]],
    type='3 * SomeMatrix(2 * 2 * float32)')
>>> x[0]
xnd([[1.0, 2.0], [3.0, 4.0]], type='SomeMatrix(2 * 2 * float32)')








Categorical

Categorical types contain values.  The data stored in xnd buffers are indices
(int64) into the type’s categories.

>>> t = ndt("categorical('a', 'b', 'c', NA)")
>>> data = ['a', 'a', 'b', 'a', 'a', 'a', 'foo', 'c']
>>> x = xnd(data, dtype=t)
>>> x.value
['a', 'a', 'b', 'a', 'a', 'a', None, 'c']








Fixed String

Fixed strings are embedded into arrays.  Supported encodings are ‘ascii’,
‘utf8’, ‘utf16’ and ‘utf32’. The string size argument denotes the number
of code points rather than bytes.

>>> t = ndt("10 * fixed_string(3, 'utf32')")
>>> x = xnd.empty(t)
>>> x.value
['', '', '', '', '', '', '', '', '', '']
>>> x[3] = "\U000003B1\U000003B2\U000003B3"
>>> x.value
['', '', '', 'αβγ', '', '', '', '', '', '']








Fixed Bytes

Fixed bytes are embedded into arrays.

>>> t = ndt("3 * fixed_bytes(size=3)")
>>> x = xnd.empty(t)
>>> x[2] = b'123'
>>> x.value
[b'\x00\x00\x00', b'\x00\x00\x00', b'123']
>>> x.align
1





Alignment can be requested with the requirement that size is a multiple of
alignment:

>>> t = ndt("3 * fixed_bytes(size=32, align=16)")
>>> x = xnd.empty(t)
>>> x.align
16








String

Strings are pointers to NUL-terminated UTF-8 strings.

>>> x = xnd.empty("10 * string")
>>> x.value
['', '', '', '', '', '', '', '', '', '']
>>> x[0] = "abc"
>>> x.value
['abc', '', '', '', '', '', '', '', '', '']








Bytes

Internally, bytes are structs with a size field and a pointer to the data.

>>> xnd([b'123', b'45678'])
xnd([b'123', b'45678'], type='2 * bytes')





The bytes constructor takes an optional align argument that specifies the
alignment of the allocated data:

>>> x = xnd([b'abc', b'123'], type="2 * bytes(align=64)")
>>> x.value
[b'abc', b'123']
>>> x.align
8





Note that x.align is the alignment of the array.  The embedded pointers
to the bytes data are aligned at 64.




Primitive types

As a short example, here is a tuple that contains all primitive types:

>>> s = """
...    (bool,
...     int8, int16, int32, int64,
...     uint8, uint16, uint32, uint64,
...     bfloat16, float16, float32, float64,
...     bcomplex32, complex32, complex64, complex128)
... """
>>> x = xnd.empty(s)
>>> x.value
(False, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0j, 0j, 0j, 0j)













          

      

      

    

  

    
      
          
            
  
Alignment and packing

The xnd memory allocators support explicit alignment.  Alignment is specified
in the types.


Tuples and records

Tuples and records have the align and pack keywords that have the same
purpose as gcc’s aligned and packed struct attributes.


Field alignment

The align keyword can be used to specify an alignment that is greater
than the natural alignment of a field:

>>> from xnd import *
>>> s = "(uint8, uint64 |align=32|, uint64)"
>>> x = xnd.empty(s)
>>> x.align
32
>>> x.type.datasize
64








Field packing

The pack keyword can be used to specify an alignment that is smaller
than the natural alignment of a field:

>>> s = "(uint8, uint64 |pack=2|, uint64)"
>>> x = xnd.empty(s)
>>> x.align
8
>>> x.type.datasize
24








Struct packing

The pack and align keywords can be applied to the entire struct:

>>> s = "(uint8, uint64, uint64, pack=1)"
>>> x = xnd.empty(s)
>>> x.align
1
>>> x.type.datasize
17





Individual field and struct directives are mutually exclusive:

>>> s = "2 * (uint8 |align=16|, uint64, pack=1)"
>>> x = xnd.empty(s)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: cannot have 'pack' tuple attribute and field attributes








Array alignment

An array has the same alignment as its elements:

>>> s = "2 * (uint8, uint64, pack=1)"
>>> x = xnd.empty(s)
>>> x.align
1
>>> x.type.datasize
18













          

      

      

    

  

    
      
          
            
  
Buffer protocol

xnd supports importing PEP-3118 buffers.


From NumPy

Import a simple ndarray:

>>> import numpy as np
>>> from xnd import *
>>> x = np.array([[[0,1,2], [3,4,5]], [[6,7,8], [9,10,11]]])
>>> y = xnd.from_buffer(x)
>>> y.type
ndt("2 * 2 * 3 * int64")
>>> y.value
[[[0, 1, 2], [3, 4, 5]], [[6, 7, 8], [9, 10, 11]]]





Import an ndarray with a struct dtype:

>>> x = np.array([(1000, 400.25, 'abc'), (-23, -1e10, 'cba')],
...              dtype=[('x', '<i4'), ('y', '>f4'), ('z', 'S3')])
>>> y = xnd.from_buffer(x)
>>> y.type
ndt("2 * {x : int32, y : >float32, z : fixed_bytes(size=3)}")
>>> y.value
[{'x': 1000, 'y': 400.25, 'z': b'abc'}, {'x': -23, 'y': -10000000000.0, 'z': b'cba'}]











          

      

      

    

  

    
      
          
            
  
Quick Start


Prerequisites

Python2 is not supported. If not already present, install the Python3
development packages:

# Debian, Ubuntu:
sudo apt-get install gcc make
sudo apt-get install python3-dev

# Fedora, RedHat:
sudo yum install gcc make
sudo yum install python3-devel

# openSUSE:
sudo zypper install gcc make
sudo zypper install python3-devel

# BSD:
# You know what to do.

# Mac OS X:
# Install Xcode and Python 3 headers.








Install

If pip [http://pypi.python.org/pypi/pip] is present on the system, installation
should be as easy as:

pip install xnd





Otherwise:

tar xvzf xnd.2.0b1.tar.gz
cd xnd.2.0b1
python3 setup.py install








Windows

Refer to the instructions in the vcbuild directory in the source distribution.







          

      

      

    

  

    
      
          
            
  
libgumath

libgumath is a library for dispatching computational kernels using
ndtypes function signatures.  Kernels are multimethods and can be
JIT-generated and inserted in lookup tables at runtime.

Kernels target XND containers.

libgumath has a small number of generic math library kernels.



	Data structures
	Kernel signatures

	Kernel set

	Kernel set initialization

	Multimethod struct





	Functions
	Create a new multimethod

	Add a kernel to a multimethod

	Select a kernel based on the input types

	Apply a kernel to input





	Builtin kernels
	Unary kernels

	Binary kernels













          

      

      

    

  

    
      
          
            
  
Data structures

libgumath is a lightweight library for managing and dispatching computational
kernels that target XND containers.

Functions are multimethods in a lookup table. Typically, applications that
use libgumath should create a new lookup table for each namespace. For example,
Python modules generally should have a module-specific lookup table.


Kernel signatures

typedef int (* gm_xnd_kernel_t)(xnd_t stack[], ndt_context_t *ctx);





The signature of an xnd kernel. stack contains incoming and outgoing
arguments. In case of an error, kernels are expected to set a context error
message and return -1.

In case of success, the return value is 0.

typedef int (* gm_strided_kernel_t)(char **args, intptr_t *dimensions, intptr_t *steps, void *data);





The signature of a NumPy compatible kernel.  These signatures are for
applications that want to use existing NumPy compatible kernels on XND
containers.

XND containers are automatically converted to a temporary ndarray before
kernel application.




Kernel set

/* Collection of specialized kernels for a single function signature. */
typedef struct {
   ndt_t *sig;
   const ndt_constraint_t *constraint;

   /* Xnd signatures */
   gm_xnd_kernel_t C;       /* dispatch ensures c-contiguous */
   gm_xnd_kernel_t Fortran; /* dispatch ensures f-contiguous */
   gm_xnd_kernel_t Xnd;     /* selected if non-contiguous or both C and Fortran are NULL */

   /* NumPy signature */
   gm_strided_kernel_t Strided;
} gm_kernel_set_t;





A kernel set contains the function signature, an optional constraint function,
and up to four specialized kernels, each of which may be NULL.

The dispatch calls the kernels in the following order of preference:

If the inner dimensions of the incoming arguments are C-contiguous, the C
kernel is called first. In case of Fortran inner dimensions, Fortran
is called first.

If an Xnd kernel is present, it is called next, then the Strided kernel.




Kernel set initialization

typedef struct {
   const char *name;
   const char *sig;
   const ndt_constraint_t *constraint;

   gm_xnd_kernel_t C;
   gm_xnd_kernel_t Fortran;
   gm_xnd_kernel_t Xnd;
   gm_strided_kernel_t Strided;
} gm_kernel_init_t;

int gm_add_kernel(gm_tbl_t *tbl, const gm_kernel_init_t *kernel, ndt_context_t *ctx);





The gm_kernel_init_t is used for initializing a kernel set.  Usually, a C
translation unit contains an array of hundreds of gm_kernel_init_t structs
together with a function that initializes a specific lookup table.




Multimethod struct

/* Multimethod with associated kernels */
typedef struct gm_func gm_func_t;
typedef const gm_kernel_set_t *(*gm_typecheck_t)(ndt_apply_spec_t *spec,
                  const gm_func_t *f, const ndt_t *in[], int nin, ndt_context_t *ctx);
struct gm_func {
   char *name;
   gm_typecheck_t typecheck; /* Experimental optimized type-checking, may be NULL. */
   int nkernels;
   gm_kernel_set_t kernels[GM_MAX_KERNELS];
};





This is the multimethod struct for a given function name.  Each multimethod has
a nkernels associated kernel sets with unique type signatures.

If typecheck is NULL, the generic libndtypes multimethod dispatch is used
to locate the kernel. This is an O(N) operation, whose search time is negligible
for large array operations.

The typecheck field can be set to an optimized lookup function that has
internal knowledge of kernel set locations.  The only restriction to the
function is that it must behave exactly as the generic libndtypes typecheck.







          

      

      

    

  

    
      
          
            
  
Functions


Create a new multimethod

gm_func_t *gm_add_func(gm_tbl_t *tbl, const char *name, ndt_context_t *ctx);





Add a new multimethod with no associated kernels to a lookup table.  If
name is already present in tbl or if name contains invalid characters,
return NULL and set an error.

On success, return the pointer to the new multimethod.  The multimethod
belongs to tbl.




Add a kernel to a multimethod

int gm_add_kernel(gm_tbl_t *tbl, const gm_kernel_init_t *kernel, ndt_context_t *ctx);





Add a kernel set to a multimethod.  For convenience the multimethod is
created and inserted into the table if not already present.

int gm_add_kernel_typecheck(gm_tbl_t *tbl, const gm_kernel_init_t *kernel, ndt_context_t *ctx, gm_typecheck_t f);





Add a kernel set to a multimethod, using a custom typecheck function.
For convenience, the multimethod is created and inserted into the table
if not already present.




Select a kernel based on the input types

gm_kernel_t gm_select(ndt_apply_spec_t *spec, const gm_tbl_t *tbl, const char *name,
                      const ndt_t *in_types[], int nin, const xnd_t args[],
                      ndt_context_t *ctx);





The function looks up a multimethod by name, using table tbl.  If the
multimethod has an optimized custom typecheck function, it is called on
the input types for kernel selection.

Otherwise, the generic ndt_typecheck is called on each kernel associated
with the multimethod in order to find a match for the input arguments.




Apply a kernel to input

int gm_apply(const gm_kernel_t *kernel, xnd_t stack[], int outer_dims, ndt_context_t *ctx);





Apply a kernel to input arguments. stack is expected to contain a list of
input arguments followed by output arguments.  outer_dims are the number
of dimensions to traverse before applying the kernel to the inner dimensions.







          

      

      

    

  

    
      
          
            
  
Builtin kernels

libgumath has a number of builtin kernels that use optimized type checking
and kernel lookup.


Unary kernels

int gm_init_unary_kernels(gm_tbl_t *tbl, ndt_context_t *ctx);





Add all builtin unary kernels to tbl.  The kernels include fabs,
exp, exp2, expm1, log, log2, log10, log1p, logb, sqrt,
cbrt, sin, cos, tan, asin, acos, atan, sinh, cosh, tanh,
asinh, acosh, atanh, erf, erfc, lgamma, tgamma, ceil,
floor, trunc, round, rearbyint.




Binary kernels

int gm_init_binary_kernels(gm_tbl_t *tbl, ndt_context_t *ctx);





Add all binary kernels to tbl.  The kernels currently only include
add, subtract, multiply, divide.







          

      

      

    

  

    
      
          
            
  
gumath

The gumath Python module provides the infrastructure for managing and
dispatching libgumath kernels.  Kernels target xnd containers from the
xnd Python module.

gumath supports modular namespaces.  Typically, a namespace is implemented
as one Python module that uses gumath for calling kernels.

The xndtools project automates generating kernels and creating namespace
modules.



	Builtin functions









          

      

      

    

  

    
      
          
            
  
Builtin functions

The gumath.functions module wraps the builtin libgumath kernels and serves
as an example of a modular namespace.


All builtin functions

>>> from gumath import functions as fn
>>> dir(fn)
['__doc__', '__file__', '__loader__', '__name__', '__package__', '__spec__', 'acos', 'acosh', 'add', 'asin', 'asinh', 'atan', 'atanh', 'bitwise_and', 'bitwise_or', 'bitwise_xor', 'cbrt', 'ceil', 'copy', 'cos', 'cosh', 'divide', 'erf', 'erfc', 'exp', 'exp2', 'expm1', 'fabs', 'floor', 'greater', 'greater_equal', 'invert', 'less', 'less_equal', 'lgamma', 'log', 'log10', 'log1p', 'log2', 'logb', 'multiply', 'nearbyint', 'negative', 'round', 'sin', 'sinh', 'sqrt', 'subtract', 'tan', 'tanh', 'tgamma', 'trunc']








Unary functions

>>> from xnd import xnd
>>> x = xnd([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
>>> fn.log(x)
xnd([[0.0, 0.6931471805599453, 1.0986122886681098], [1.3862943611198906, 1.6094379124341003, 1.791759469228055]],
    type='2 * 3 * float64')





On an array with a float64 dtype, log works as expected.

>>> x = xnd([[1, 2, 3], [4, 5, 6]])
>>> x.type
ndt("2 * 3 * int64")
>>> fn.log(x)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: invalid dtype





This function call would require an implicit inexact conversion from int64 to
float64.  All builtin libgumath kernels only allow exact conversions, so the
example fails.

>>> x = xnd([[1, 2, 3], [4, 5, 6]], dtype="int32")
>>> fn.log(x)
xnd([[0.0, 0.6931471805599453, 1.0986122886681098], [1.3862943611198906, 1.6094379124341003, 1.791759469228055]],
    type='2 * 3 * float64')





int32 to float64 conversions are exact, so the call succeeds.







          

      

      

    

  

    
      
          
            
  
xndtools

xndtools is a Python package containing development tools for the XND project.


kernel_generator

Python package for generating gumath kernels from C function prototypes.



	Kernel generator








Notes

Developer notes



	Notes








Tutorials

Tutorials on using XND tools.



	Generating new kernels for gumath

	Running kernels on the GPU











          

      

      

    

  

    
      
          
            
  
Kernel generator

kernel_generator is a Python package for generating gumath kernels
from C function prototypes.





          

      

      

    

  

    
      
          
            
  
Notes

Developer notes on xnd project.



	Representation of XND objects
	Embedding data in memory

	Typing the data
	Arrays
	Abstract array ndtypes

	Concrete array ndtypes





















          

      

      

    

  

    
      
          
            
  
Representation of XND objects

The XND project aims at providing a set of C libraries for storing
data (libxnd), for describing the data (libndtypes), and for
manipulating the data (libgumath). Each library is developed
separately, however, libxnd requires libndtypes, and libgumath depends
on both libxnd and libndtypes. In this note libxnd and libndtypes are
discussed, in particular, how xnd objects are represented in memory
and what are the relations between various members of data structures.


Embedding data in memory

In libxnd the data is stored using the following data strucure:

xnd_master_t
  flags : uint32_t
  master : xnd_t

xnd_t
  bitmap : xnd_bitmap_t
  index : int64_t
  type : ndt_t*
  ptr : char*

xnd_bitmap_t
  data : uint8_t*
  size : int64_t
  next : xnd_bitmap_t*

ndt_bytes_t
  size : int64_t
  data : uint8_t*





where * represents pointer values of the corresponding data types.
The corresponding C typedef definitions are in libxnd/xnd.h.

A short decription of data type members is given in the following table:







	Member

	Description





	xnd_master_t::flags

	Contains ownership information about the data, type, and ptr members. Needed for memory management.



	xnd_master_t::master

	An xnd view of data.



	xnd_t::bitmap

	Implements optional value support.



	xnd_t::index

	Linear index of data items. Used only when type->tag is FixedDim|VarDim (data is an array of items).



	xnd_t::type

	Points to a type value (ndt_t is provided by libndtypes, see below).



	xnd_t::ptr

	Points to a computer memory where data is embedded. Data can be stored as bytes (ptr points to ndt_bytes_t value) or referred by its pointer value (ptr points to data value pointer). In the case of arrays and type->ndim==0, ptr points to the data item given by index.



	xnd_bitmap_t::data

	Points to a bitmap data. Each data item (in ptr) has the corresponding bit value in data. Bit value 0 means that data item value has been provided.



	xnd_bitmap_t::size

	Number of subtree bitmaps. This is nonzero when type->tag is Tuple|Record|Ref|Constr|Nominal.



	xnd_bitmap_t::next

	Refers to bitmaps of subtrees. Used when data has tree-like structure.



	ndt_bytes_t::size

	Number of bytes needed to store data.



	ndt_bytes_t::data

	Points to computer memory where data is stored as bytes.






Note that the linear index is varied during iterations.




Typing the data

Typing the data means attaching a meaning to a junk of data stored in
computer memory.  The libndtypes implements data types using ndtypes
type language ( Blaze datashape) that combines the shape and element
type information in one unit. Note that ndtypes is similar to the
Python based implementation of Blaze datashape but there are several
differences to make these distinct.

Ndtypes uses the following data structure:

ndt_t
  tag : enum ndt {Module, Function, AnyKind, ..., Typevar}
  access : enum ndt_access {Abstract, Concrete}
  flags : uint32_t
  ndim : int
  datasize : int64_t
  align : uint16_t

  // Abstract part
  union
    Module
      name : char*
      type : ndt_t*
    Function
      nin : int64_t
      nout : int64_t
      nargs : int64_t
      types : ndt_t**
    FixedDim | SymbolicDim | EllipsisDim | Constr
      shape : int64_t
      type : ndt_t*
    VarDim | Ref
      type : ndt_t*
    Tuple
      flag : enum ndt_variadic {Nonvariadic, Variadic}
      shape : int64_t
      types : ndt_t**
    Record
      flag : enum ndt_variadic
      shape : int64_t
      names : char**
      types : ndt_t**

  Concrete
    union
      FixedDim
        itemsize : int64_t
        step : int64_t
      VarDim
        flag : enum ndt_offsets {InternalOffsets, ExternalOffsets}
        itemsize : int64_t
        noffsets : int32_t
        offsets : int32_t*
        nslices : int
        slices : ndt_slice_t*;
      Tuple | Record
        offset : int64_t*
        align : uint16_t*
        pad : uint16_t*
      Nominal
        name : char*
        type : ndt_t*
        meth : ndt_methods_t*
      Categorical
        ntypes : int64_t
        types : ndt_value_t*
      FixedString
        size : int64_t
        encoding : enum ndt_encoding {Ascii, Utf8, Utf16, Utf32, Ucs2}
      FixedBytes
        size : int64_t
        align : uint16_t
      Bytes
        align : uint16_t
      Char
        encoding : enum ndt_encoding
      Typevar
        name : char*





While the definition of ndt_t looks long, the union parts share
the same memory and the interpretation of this depends on the
ndtypes kind (specified by ndt_t::tag member).

Note that ndt_t holds both the shape and item type information of
the xnd view object.

The ndtypes implementation ndt_t can be used in two modes,
abstract or concrete, specified by ndt_t::access member.  The
ndtypes is in concrete mode when it contains enough information
needed to compute what is the contiguous memory size (datasize)
that fits the first and last item of the data. Otherwise the
ndtypes is in abstract mode.

The abstract ndtypes can be used only as patterns.  The concrete
ndtypes can be used as patterns as well as for describing the
structure of a data stored in a xnd view object (xnd_t instance).

Here follows a summary of data type members:







	Member

	Description





	xnd_t::tag

	Specifies ndtypes kind.



	xnd_t::access

	Specifies ndtypes mode, abstract or concrete.



	xnd_t::flags

	Contains various information about the data type: endianess, optional, subtree, ellipses.



	xnd_t::ndim

	Specifies dimension index. Ndtypes with ndim==0 is interpreted as the ndtypes of a scalar value.



	xnd_t::datasize

	Size of data item in bytes [undefined in abstract mode]



	xnd_t::align

	Alignemnt of data in bytes [undefined in abstract mode]



	xnd_t::Module

	Abstract part of Module type kind.



	...

	…



	xnd_t::Concrete::FixedDim

	Concrete part of FixedDim type kind.



	...

	…






In the following each ndtypes kind is described in separate subsections.


Arrays

Array is a data structure that contains data items of the same data
type.  When data items use the same amount of memory, representation
of an array is particularly simple: one only needs to know the
location of the first data item in memory and the byte-size of data
item type in order to have access to any data item in the array.
However, there exists data types such as strings or ragged arrayswhere
the data item byte-size depends on the data item content and a more
general representation of array structure is needed.

In libndtypes several kinds of array representations are supported.

In abstract mode one can represent arrays of different item types
(named type variable), of different dimensions (ellipses), and of
different shapes (symbolic dimensions) using a single ndtypes
instance. The purpose of such ndtypes instances is to define
patterns of arrays that is used in libgumath. The libgumath library
provides computational kernels that implement algorithms to manipulate
data with specific structure. The kernels can be called only on data
that ndtypes matches the signature of a particular kernel.

In concrete mode the main purpose of a ndtypes instance is to provide
information how to access the data items in an array (using also the member xnd_t::index).


Abstract array ndtypes

Ndtypes is in abstract mode when ndt_t::access==Abstract.







	Member

	Description





	ndt_t::tag==FixedDim

	Ndtypes represents an array dimension with fixed shape value



	ndt_t::FixedDim::shape

	Specifies the shape value of the array dimension



	ndt_t::FixedDim::type

	Points to data item type specification.



	xnd_t::datasize

	undefined



	xnd_t::align

	undefined



	xnd_t::Concrete::...

	undefined






Undefined means that the value is set to 0 or NULL.

Note that FixedDim ndtypes is in abstract mode when type ndtypes is in abstract mode.







	Member

	Description





	ndt_t::tag==VarDim

	Ndtypes represents an array dimension that shape may vary



	ndt_t::VarDim::type

	Points to data item type specification.



	xnd_t::datasize

	undefined



	xnd_t::align

	undefined



	xnd_t::Concrete::...

	undefined












	Member

	Description





	ndt_t::tag==SymbolicDim

	Ndtypes represents an array dimension that shape is a symbolic.



	ndt_t::SymbolicDim::name

	Contains symbol name.



	ndt_t::SymbolicDim::type

	Points to data item type specification.



	xnd_t::datasize

	undefined



	xnd_t::align

	undefined



	xnd_t::Concrete::...

	undefined






The shape symbol must start with a capital letter.







	Member

	Description





	ndt_t::tag==EllipsisDim

	Ndtypes represents 0 or more dimensions.



	ndt_t::EllipsisDim::name

	Contains ellipsis name.



	ndt_t::EllipsisDim::type

	Points to data item type specification.



	xnd_t::datasize

	undefined



	xnd_t::align

	undefined



	xnd_t::Concrete::...

	undefined






The named ellipsis name must start with a capital letter or be equal
to 'var'.  Ellipsis var... is special and it is used only for
ragged arrays (when ndt_t::tag==VarDim).




Concrete array ndtypes

Ndtypes is in concrete mode when ndt_t::access==Concrete.

In the case of fixed shape arrays we have:







	Member

	Description





	ndt_t::tag==FixedDim

	Ndtypes represents an array dimension with fixed shape value



	ndt_t::FixedDim::shape

	Specifies the shape value of the array dimension



	ndt_t::FixedDim::type

	Points to data item type specification.



	xnd_t::datasize

	Specifies the byte-size of array data



	xnd_t::align

	Alignment of data item.



	xnd_t::Concrete::FixedDim::itemsize

	Specifies the byte-size of array item.



	xnd_t::Concrete::FixedDim::step

	Specifies the byte-step to the next item in array. E.g. in the case of slice view the step is a integer multiple of itemsize.






Note that the datasize is defined as the byte-size of memory that
is occupied between the first and the last array item (including the
items that are discarded due to slicing with step!=1). So,
datasize does not correspond to the size of memory needed to hold
the data defined by xnd view, it only defines the upper bound.

In the case of ragged arrays we have:







	Member

	Description





	ndt_t::tag==VarDim

	Ndtypes represents an array dimension that shape may vary



	ndt_t::FixedDim::type

	Points to data item type specification.



	xnd_t::datasize

	Specifies the byte-size of array data



	xnd_t::align

	Alignment of data item.



	xnd_t::Concrete::VarDim::flag

	Specifies the ownership of offsets data.



	xnd_t::Concrete::VarDim::itemsize

	Specifies the byte-size of array item.



	xnd_t::Concrete::VarDim::noffsets

	Specifies the byte-size of offsets member.



	xnd_t::Concrete::VarDim::offsets

	


	xnd_t::Concrete::VarDim::nslices

	Specifies the byte-size of slices member.



	xnd_t::Concrete::VarDim::slices

	















          

      

      

    

  

    
      
          
            
  
Generating new kernels for gumath

Operations on XND containers live in the gumath [https://github.com/plures/gumath] library. It already provides binary
operations like add, subtract, multiply and divide, and unary operations like
abs, exponential, logarithm, power, trigonometric functions, etc. They can
operate on various data types, e.g. int32 or float64. But you might want
to create your own kernel, either from a code that you wrote or from an existing
library. This tutorial will show how to do that using the kernel generator from
XND Tools.


Kernel generator

XND Tools [https://github.com/plures/xndtools] provide development tools for
XND. Among them, xndtools.kernel_generator facilitates the creation of new
kernels by semi-automatically wrapping e.g. C code. Fortran will be supported in
the future, as there are tons of high performance libraries out there.


Wrapping C code

Let’s say we want to make a kernel out of the following C function, which just
squares a number:

// file: square.c

#include "square.h"

double square(double a)
{
    return a * a;
}





This is the implementation of the function that we want to turn into a kernel,
but the kernel generator is only concerned about its prototype, which looks like
this:

// file: square.h

extern double square(double);





Note the extern keyword: because this header file will be used by the kernel
generator to build the kernel, the square function will be assumed to be
available somewhere else. We will then be able to compile the kernel and the
square.c file independently, and link them later. This is not so important
in our simple example, but it could be if we were wrapping an existing library
like LAPACK, which has its own build process. The kernel generator doesn’t need
to know how to build the library, all it needs is a header file with the
function prototypes.

Now run the following command:

$ xnd_tools config square.h





This creates an initial kernel configuration file square-kernels.cfg, which
looks like this:

[MODULE square]
typemaps =
      double: float64
includes =
      square.h
include_dirs =

libraries =

library_dirs =

header_code =
kinds = Xnd
ellipses = ..., var...

[KERNEL square]
skip = # REMOVE THIS LINE WHEN READY
prototypes =
      double square(double   a);
description =
dimension =
input_arguments = a
inplace_arguments =
inout_arguments =
output_arguments =
hide_arguments =





For this simple kernel, we don’t actually have to change anything, so we’ll just
remove the skip line as indicated, and save the file.

The next step is about creating the interface to gumath, and registering our
square function as a kernel. The following command will create a
square-kernels.c file:

$ xnd_tools kernel square-kernels.cfg





For now we are still in the C world, so we also need to expose our kernel to
Python. This is done by creating an extension module. Fortunately, XND tools
does that for us as well. The following command will create the
square-python.c file. Note that it also creates the square-kernels.c
file if it does not already exists, so the previous command is not necessary
here.

$ xnd_tools module square-kernels.cfg





Assuming the variable $SITE_PACKAGES contains the path to your Python
site-packages directory, where xnd, ndtypes, gumath and
xndtools are installed (given by python -c "from distutils.sysconfig
import get_python_lib; print(get_python_lib())"), you can compile the square
function, its kernel, and create a static library with the following commands:

$ gcc -fPIC                                   \
  -c square.c                                 \
  -c square-kernels.c -fPIC                   \
  -I$SITE_PACKAGES/ndtypes                    \
  -I$SITE_PACKAGES/xnd                        \
  -I$SITE_PACKAGES/gumath                     \
  -I$SITE_PACKAGES/xndtools/kernel_generator
$ ar rcs libsquare-kernels.a square-kernels.o square.o





Then building a C extension for CPython can be done using distutils. It just
needs a setup.py script, which for our simple case looks like this:

# file: setup.py

from distutils.core import setup, Extension
from distutils.sysconfig import get_python_lib

site_packages = get_python_lib()
libs = ['ndtypes','gumath', 'xnd']
lib_dirs = [f'{site_packages}/{lib}' for lib in libs]

module1 = Extension('square',
                    include_dirs = lib_dirs,
                    libraries = ['square-kernels'] + libs,
                    library_dirs = ['.'] + lib_dirs,
                    sources = ['square-python.c'])

setup (name = 'square',
       version = '1.0',
       description = 'This is a gumath kernel extension that squares an XND container',
       ext_modules = [module1])





Finally, we can build and install our extension with the following command:

$ python setup.py install





If everything went fine, we can now test it in the Python console:

>>> from xnd import xnd
>>> from square import square
>>> a = xnd([1., 2., 3.])
>>> a
xnd([1.0, 2.0, 3.0], type='3 * float64')
>>> square(a)
xnd([1.0, 4.0, 9.0], type='3 * float64')













          

      

      

    

  

    
      
          
            
  
Running kernels on the GPU

We will see how we can run kernels on the GPU. The following is a typical CUDA
code which adds the elements of two arrays of a given size:

// file: add_gpu.cu

#include "gpu.h"

__global__
void add(int n, float* x, float* y, float* r)
{
    int index = blockIdx.x * blockDim.x + threadIdx.x;
    int stride = blockDim.x * gridDim.x;
    for (int i = index; i < n; i += stride)
        r[i] = x[i] + y[i];
}

void add_gpu(int n, float* x, float* y, float* r)
{
    int blockSize = 256;
    int numBlocks = (n + blockSize - 1) / blockSize;
    add<<<numBlocks, blockSize>>>(n, x, y, r);
    cudaDeviceSynchronize();
}





The add function is called a CUDA kernel (not to be confused with the
gumath kernels!). This is what will actually run on the GPU. The reason why
a GPU is faster than a CPU is because it can massively parallelize
computations, and this is why we have these index and stride variables:
the kernel will be applied on different parts of the data at the same time.

Our gumath kernel however will use the add_gpu function, which
internally calls add with a special CUDA syntax and some extra-parameters
(basically specifying how much it will be parallelized). The
cudaDeviceSynchronize() function call blocks the CPU execution until all
GPU computations are done.

The GPU has its own memory, which is different from the CPU memory. When we
want to do a computation on the GPU, we first have to copy the data from the
CPU side to the GPU side, and when we want to retrieve the results from the
GPU, we have to copy its data back to the CPU. This can be taken care of by the
so called “unified memory”, which provides a single memory space accessible by
the GPU and the CPU. The following file contains functions to allocate memory
in the unified memory and to delete it, here again through special CUDA
functions:

// file: gpu.cu

#include "gpu.h"

float* get_array(int n)
{
    float* x;
    cudaMallocManaged(&x, n * sizeof(float));
    return x;
}

void del_array(float* x)
{
    cudaFree(x);
}





Now let’s see how the gpu.h file looks like:

// file: gpu.h

extern "C" void add_gpu(int n, float* x, float* y, float *r);
extern "C" float* get_array(int n);
extern "C" void del_array(float* x);





It consists of the prototypes of the add_gpu function for which we want to
make a kernel, and the get_array and del_array functions which we will
use to manage the memory for our data. Note the extern "C" declaration:
because nvcc (the CUDA compiler) is a C++ compiler, we need to expose them
as C functions to Python.

Since gpu.cu only manages the GPU memory, and is independent of the
gumath kernel generation, we will simply access its functions through a
shared library.  This is how we compile it:

$ nvcc -o libgpu.so --compiler-options "-fPIC" --shared gpu.cu





This gives us a libgpu.so library that we can interface with in Python using
ctypes. The following code wraps the C functions to Python functions:

# file: gpu.py

import ctypes
import numpy as np
from xnd import xnd

gpu = ctypes.CDLL('./libgpu.so')
gpu.get_array.restype = ctypes.POINTER(ctypes.c_float)
gpu.del_array.argtypes = [ctypes.POINTER(ctypes.c_float), ]

def xnd_gpu(size):
    addr = gpu.get_array(size)
    a = np.ctypeslib.as_array(addr, shape=(size,))
    x = xnd.from_buffer(a)
    return x, addr

def del_gpu(addr):
    gpu.del_array(addr)





xnd_gpu returns an XND container (and its data pointer) whose data live in
the unified memory, and del_gpu frees the memory referenced by a pointer.

Now we need to generate the gumath kernel for our add_gpu function. We
save its prototype in the following file:

// file: add_gpu.h

extern void add_gpu(int n, float* x, float* y, float *r);





The corresponding configuration file looks like this:

# file: add_gpu-kernels.cfg

[MODULE add_gpu]
typemaps =
     float: float32
     int: int32
includes =
     add_gpu.h
include_dirs =
sources =
     add_gpu.c

libraries =

library_dirs =

header_code =
kinds = C
ellipses = none

[KERNEL add_gpu]
prototypes =
     void add_gpu(int   n, float *  x, float *  y, float *  r);
description =
dimension = x(n), y(n), r(n)
input_arguments = x, y
inplace_arguments = r
hide_arguments = n = len(x)





We can now generate the kernel:

$ xnd_tools kernel add_gpu-kernels.cfg
$ xnd_tools module add_gpu-kernels.cfg





And create a static library:

$ nvcc --compiler-options '-fPIC' -c add_gpu.cu
$ gcc -fPIC                                               \
  -c add_gpu-kernels.c                                    \
  -c $SITE_PACKAGES/xndtools/kernel_generator/xndtools.c  \
  -I$SITE_PACKAGES/xndtools/kernel_generator              \
  -I$SITE_PACKAGES/xnd                                    \
  -I$SITE_PACKAGES/ndtypes                                \
  -I$SITE_PACKAGES/gumath
$ ar rcs libadd_gpu-kernels.a add_gpu.o add_gpu-kernels.o xndtools.o





Finally, launch python setup.py install with this setup.py file:

# file: setup.py

from distutils.core import setup, Extension
from distutils.sysconfig import get_python_lib

site_packages = get_python_lib()
lib_dirs = [f'{site_packages}/{i}' for i in ['ndtypes', 'gumath', 'xnd']]

module1 = Extension('add_gpu',
                    include_dirs = lib_dirs,
                    libraries = ['add_gpu-kernels', 'ndtypes','gumath', 'xnd', 'cudart', 'stdc++'],
                    library_dirs = ['.', '/usr/local/cuda-9.2/lib64'] + lib_dirs,
                    sources = ['add_gpu-python.c'])

setup (name = 'add_gpu',
       version = '1.0',
       description = 'This is a gumath kernel extension that adds two XND containers on the GPU',
       ext_modules = [module1])





If everything went fine, you should be able to run the kernel on the GPU:

>>> from gpu import xnd_gpu, del_gpu
>>> from add_gpu import add_gpu
>>> size = 1 << 20
>>> x0, a0 = xnd_gpu(size)
>>> x1, a1 = xnd_gpu(size)
>>> x2, a2 = xnd_gpu(size)
>>> for i in range(size):
...     x0[i] = i
...     x1[i] = 1
>>> x0
xnd([0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, ...], type='1048576 * float32')
>>> x1
xnd([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, ...], type='1048576 * float32')
>>> add_gpu(x0, x1, x2)
>>> x2
xnd([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, ...], type='1048576 * float32')
>>> del_gpu(a0)
>>> del_gpu(a1)
>>> del_gpu(a2)









          

      

      

    

  

    
      
          
            
  
Releases


v0.2.0b2 (February 5th 2018)

Second release (beta2). This release addresses several build and packaging issues:



	Avoid copying libraries into the Python package if system libraries are used.


	The build and install partially relied on the dev setup (ndtypes checked out
in the xnd directory).  This dependency has been removed.


	The conda build now supports separate library and Python module installs.


	Configure now has a –without-docs option for skipping the doc install.


	The generated parsers are now checked into the source tree to avoid
bison/flex dependencies and unnecessary rebuilds after cloning.


	Non-API global symbols are hidden on Linux (as long as the compiler
supports gcc pragmas).


	The conda build supports separate library and Python module installs.


	Configure now has a –without-docs option for skipping the doc install.










v0.2.0b1 (January 20th 2018)

First release (beta1).
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