

xdmenu : an extensible dmenu wrapper

[image: Build Status] [https://travis-ci.org/cblegare/xdmenu] [image: Released on PyPI] [https://pypi.python.org/pypi/xdmenu`] [image: Latest Documentation] [https://xdmenu.readthedocs.io/en/latest/?badge=latest] [image: Coverage Report] [https://codecov.io/gh/cblegare/xdmenu] [image: GNU Lesser General Public License v3] [http://www.gnu.org/licenses/lgpl-3.0]

Extensible wrapper for dmenu [http://tools.suckless.org/dmenu/].

dmenu is a dynamic menu for X, originally designed for dwm. It manages
large numbers of user-defined menu items efficiently.

	Source code on GitHub [https://github.com/cblegare/xdmenu]

	Latest documentation [https://xdmenu.readthedocs.io/en/latest]

xdmenu is free software and licensed under the GNU Lesser General Public
License v3.

Features

	Many options available in patches built in

	Additional options can be added

	Easy to extend for other tools such as Rofi [https://davedavenport.github.io/rofi/]

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the cblegare/pythontemplate [https://github.com/cblegare/pythontemplate]
project template.

Contents:

	Installation
	Stable release

	From sources

	Usage

Project Information

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	History
	1.0.1 (2017-06-01)

	1.0.0 (2017-06-01)

	License

	Credits
	Contributors

Development resources

	Setup Script
	running tests

	checking code style

	building source distirbutions

	building binary distributions

	building html documentation

	cleaning your workspace

	Automated tests
	Unit tests

	Integration tests

	Functional tests

	Regression tests

	All Automated tests
	tests package

	API documentation
	xdmenu package

Indices and tables

	Index

	Module Index

	Search Page

Installation

xdmenu uses and needs an implementation of dmenu. This means a command
line program that reads lines from stdin, presents these lines to the user as
a menu and prints the chosen lines to stdout.

	dmenu [http://tools.suckless.org/dmenu/]

	dmenu is a dynamic menu for X, originally designed for dwm. It manages
large numbers of user-defined menu items efficiently.

	dmenu2 [https://bitbucket.org/melek/dmenu2]

	dmenu2 is the fork of original dmenu - an efficient dynamic menu for X,
patched with XFT, quiet, x & y, token, fuzzy matching, follow focus, tab
nav, filter.

Added option to set screen on which dmenu apperars, as long as opacity,
window class and window name. Also allows to dim screen with selected color
and opacity while dmenu2 is running.

Added underline color and height. (options -uc and -uh)

	Rofi [https://davedavenport.github.io/rofi/]

	Rofi, like dmenu, will provide the user with a textual list of options
where one or more can be selected. This can either be, running an
application, selecting a window or options provided by an external script.

Stable release

To install xdmenu, run this command in your terminal:

$ pip install xdmenu

This is the preferred method to install xdmenu, as it will always install the
most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for xdmenu can be downloaded from the Github repo [https://github.com/cblegare/xdmenu].

You can either clone the public repository:

$ git clone git://github.com/cblegare/xdmenu

Or download the tarball [https://github.com/cblegare/xdmenu/tarball/master]:

$ curl -OL https://github.com/cblegare/xdmenu/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

xdmenu is a wrapper API for dmenu [http://tools.suckless.org/dmenu/]. The original use case of xdmenu was
to ease the integration of dmenu with Qtile [http://www.qtile.org], a window manager written in
Python.

The simplest possible usage of this wrapper is through the xdmenu.dmenu()
function. Here is an example usage:

>>> from xdmenu import dmenu
>>> dmenu(['foo', 'bar']) # shows a menu window with choices on one line
['bar'] # the user picked 'bar'
>>> dmenu(['foo', 'bar'], lines=2) # shows a menu window with two lines
['foo'] # the user picked 'foo'

	
xdmenu.dmenu(choices, dmenu=None, **kwargs)

	Run dmenu with configuration provided in **kwargs.

	Parameters:	
	choices (list) – Choices to put in menu

	dmenu (xdmenu.BaseMenu) – A xdmenu.BaseMenu instance to use.
If not provided, a default one will be created.

	**kwargs – Any of the supported argument added via
xdmenu.BaseMenu.add_arg().

	Returns:	All the choices made by the user.

	Return type:	list

See also

xdmenu.BaseMenu.run()

The xdmenu package also provides the xdmenu.Dmenu class. This
class can be provided with default configuration values to customize the
behavior of dmenu.

	
class xdmenu.Dmenu(proc_runner=None, **kwargs)

	An extensible dmenu wrapper that already supports all usual arguments.

	Parameters:	
	dmenu (str) – See xdmenu.BaseMenu()

	proc_runner (Callable[[list, list], str]) – See
xdmenu.BaseMenu()

	bottom (bool) – dmenu appears at the bottom of the screen.
Equivalent for the -b command line option of dmenu.

	grab (bool) – dmenu grabs the keyboard before reading stdin. This
is faster, but will lock up X until stdin reaches end-of-file.
Equivalent for the -f command line option of dmenu.

	insensitive (bool) – dmenu matches menu items case insensitively.
Equivalent for the -i command line option of dmenu.

	lines (int) – dmenu lists items vertically, with the given number of
lines. Equivalent for the -l command line option of dmenu.

	monitor (int) – dmenu is displayed on the monitor number supplied.
Monitor numbers are starting from 0. Equivalent for the -m
command line option of dmenu.

	prompt (str) – defines the prompt to be displayed to the left of the
input field. Equivalent for the -p command line option of
dmenu.

	font (str) – defines the font or font set used. Equivalent for the
-fn command line option of dmenu.

	normal_bg_color (str) – defines the normal background color. #RGB,
#RRGGBB, and X color names are supported. Equivalent for the
-nb command line option of dmenu.

	normal_fg_color (str) – defines the normal foreground color.
Equivalent for the -nf command line option of dmenu.

	selected_bg_color (str) – defines the selected background color.
Equivalent for the -sb command line option of dmenu.

	selected_fg_color (str) – defines the selected foreground color.
Equivalent for the -sf command line option of dmenu.

	windowid (str) – embed into windowid.

Run dmenu using xdmenu.BaseMenu.run() which all child class should have.

	
BaseMenu.run(choices, **kwargs)

	

	Parameters:	
	choices (list) – Choices to put in menu

	**kwargs – See xdmenu.BaseMenu.configure(), except that
values are no kept for a later call to dmenu

Examples

>>> # We mock the _run_dmenu_process function for this example
>>> # to be runnable even if dmenu is not installed
>>> # The mock mimics a user choosing the first choice
>>> m = Dmenu(proc_runner=_mock_dmenu_process)
>>> m.run(['foo', 'bar'])
['foo']

	Returns:	All the choices made by the user. In order to have multiple
results, a custom build of dmenu may be required since the
original version may not support selecting many items.

	Return type:	list

If you only want to get the command line arguments, simply use
xdmenu.BaseMenu.make_cmd()

	
BaseMenu.make_cmd(**kwargs)

	Build the list of command line arguments to dmenu.

	Parameters:	**kwargs – See xdmenu.BaseMenu.configure(), except that
values are no kept for a later call to dmenu

	Returns:	
	List of command parts ready to sead to

	subprocess.Popen

	Return type:	list

Examples

>>> menu = Dmenu()
>>> menu.make_cmd()
['dmenu']
>>> menu.make_cmd(bottom=True)
['dmenu', '-b']
>>> menu.make_cmd(lines=2, prompt='-> ',)
['dmenu', '-l', '2', '-p', '-> ']

Since xdmenu is intended to be extensible, you can add supported options
using xdmenu.BaseMenu.add_arg()

	
BaseMenu.add_arg(name, converter, default=None)

	Extend this wrapper by registering a new dmenu argument.

You can also use this to change the behavior of existing arguments.

	Parameters:	
	name (str) – The name of the supported keyword argument for this
wrapper.

	converter (Callable[[Any], Iterable]) – A function that converts the
configured value to a list of command line arguments to dmenu.

	default (Optional[Any]) – The default configured value.

Examples

Let’s wrap the usage of a -foo argument that a dmenu fork could
possibly support.

>>> def to_bottom(arg):
... return ['-foo'] if arg else []
>>> menu = Dmenu()
>>> menu.add_arg('foo', to_bottom, default=False)
>>> menu.make_cmd()
['dmenu']
>>> menu.make_cmd(foo=True)
['dmenu', '-foo']

xdmenu also provides a wrapper for dmenu2 [https://bitbucket.org/melek/dmenu2]. See xdmenu.Dmenu2.

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at
https://github.com/cblegare/xdmenu/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about the build an version of dmenu that you use.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

xdmenu could always use more documentation, whether as part of the official
xdmenu docs, in docstrings, or even on the web in blog posts, articles, and
such.

Submit Feedback

The best way to send feedback is to file an issue at
https://github.com/cblegare/xdmenu/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up xdmenu for
local development.

	Fork the xdmenu repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/xdmenu.git

	Install your local copy into a virtualenv. Assuming you have Python 3.5
installed, this is how you set up your fork for local development:

$ python3 -m venv xdmenu
$ cd xdmenu/
$ bin/pip install --editable . # or bin/python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and
the tests, including testing other Python versions with tox:

$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7 and up. Check
https://travis-ci.org/cblegare/xdmenu/pull_requests
and make sure that the tests pass for all supported Python versions.

Also, have a look at the full-fledged Setup Script!

Thanks :)

History

1.0.1 (2017-06-01)

	Fixed: Infinite recursive loop when using Dmenu2 constructor

1.0.0 (2017-06-01)

	First release on PyPI.

License

GNU LESSER GENERAL PUBLIC LICENSE

 Version 3, 29 June 2007

 xdmenu
 Copyright (C) 2017 Charles Bouchard-Légaré

 xdmenu is free software: you can redistribute it and/or modify
 it under the terms of the GNU Lesser General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 xdmenu is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public License
 along with xdmenu. If not, see <http://www.gnu.org/licenses/>.

Credits

Contributors

	Charles Bouchard-Légaré <cblegare.atl@ntis.ca>

Setup Script

The setup.py file is a swiss knife for various tasks.

Start by creating a virtual python environment:

$ python -m venv .

You now can use this isolated clean python environment:

$ bin/python --version
Python 3.5.2

You may also activate it for the current shell. POSIX shells would use:

$. bin/activate

running tests

We use py.test [http://doc.pytest.org/en/latest/] for running tests because it is amazing. Run it by invoking
the simple test alias of setup.py:

$ bin/python setup.py test

This will also check codestyle and test coverage.

checking code style

We use flake8 [https://flake8.readthedocs.io/en/latest/] for enforcing coding standards. Run it by invoking
the simple lint alias of setup.py:

$ bin/python setup.py lint

building source distirbutions

Standard sdist is supported:

$ bin/python setup.py sdist

building binary distributions

Use the wheel distribution standard [http://pythonwheels.com/]:

$ bin/python setup.py bdist_wheel

building html documentation

Use setup.py to build the documentation:

$ bin/python setup.py docs

A make [https://www.gnu.org/software/make/] implementation is not required on any platform, thanks to the
setup.Documentation class.

	
class setup.Documentation(dist, **kw)

	Make the documentation (without the Make program).

Note

This command will not allow any warning from Sphinx [http://www.sphinx-doc.org/], treating
them as errors.

Construct the command for dist, updating
vars(self) with any keyword parameters.

cleaning your workspace

We also included a custom command which you can invoke through setup.py:

$ bin/python setup.py clean

The setup.Clean command is set to clean the following file patterns:

	
class setup.Clean(dist, **kw)

	Custom clean command to tidy up the project.

Construct the command for dist, updating
vars(self) with any keyword parameters.

	
default_patterns = ['build', 'dist', '*.egg-info', '*.egg', '*.pyc', '*.pyo', '*~', '__pycache__', '.tox', '.coverage', 'htmlcov']

	

Automated tests

The tests package provides automated testing for
`xdmenu`.

Tests are known to assess software behavior and find bugs. They are also
used as part of the code’s documentation, as a design tool or for preventing
regressions.

See also:

	http://stackoverflow.com/questions/4904096/whats-the-difference-between-unit-functional-acceptance-and-integration-test

	http://stackoverflow.com/questions/520064/what-is-unit-test-integration-test-smoke-test-regression-test

Unit tests

Exercise the smallest pieces of testable software in the application to
determine whether they behave as expected.

Unit tests should not

	call out into (non-trivial) collaborators,

	access the network,

	hit a database,

	use the file system or

	spin up a thread.

Most of the unit tests can be found directory in the code documentation
and are run using doctest [https://docs.python.org/3/library/doctest.html]. When they cannot be simple or extensible
enough with impeding readability, they should be written in the
tests.unit package.

Integration tests

Verify the communication paths and interactions between components to detect
interface defects.

The line between unit and integration tests may become blurry. When in doubt,
you are most certainly thinking integration tests. Write those in the
tests.integration package.

Functional tests

Functional tests check a particular feature for correctness by comparing
the results for a given input against the specification. They are often used
as an executable definition of a user story. Write those in the
tests.functional package.

Regression tests

A test that was written when a bug was found (and then fixed). It ensures
that this specific bug will not occur again. The full name is non-regression
test. It can also be a test made prior to changing an application to make
sure the application provides the same outcome. Put these in the
tests.regression package.

All Automated tests

	tests package
	Subpackages
	tests.functional package

	tests.integration package

	tests.regression package

	tests.unit package

tests package

Subpackages

	tests.functional package

	tests.integration package

	tests.regression package

	tests.unit package

tests.functional package

Functional tests for xdmenu.

tests.integration package

Integration tests for xdmenu.

tests.regression package

Non-regression tests for xdmenu.

tests.unit package

Unit tests for xdmenu.

Most of unit tests are doctests directly next to the production code.

API documentation

	xdmenu package

xdmenu package

Package main definition.

	
xdmenu.dmenu(choices, dmenu=None, **kwargs)

	Run dmenu with configuration provided in **kwargs.

	Parameters:	
	choices (list) – Choices to put in menu

	dmenu (xdmenu.BaseMenu) – A xdmenu.BaseMenu instance to use.
If not provided, a default one will be created.

	**kwargs – Any of the supported argument added via
xdmenu.BaseMenu.add_arg().

	Returns:	All the choices made by the user.

	Return type:	list

See also

xdmenu.BaseMenu.run()

	
class xdmenu.BaseMenu(dmenu=None, proc_runner=None, **kwargs)

	Bases: object

An extensible dmenu wrapper.

	Parameters:	
	dmenu (str) – dmenu executable to use.

	proc_runner (Callable[[list, list], str]) – a function that calls
dmenu as a subprocess and returns the output. This defaults to
a simple call to subprocess.Popen.

	**kwargs – See xdmenu.BaseMenu.configure()

	
add_arg(name, converter, default=None)

	Extend this wrapper by registering a new dmenu argument.

You can also use this to change the behavior of existing arguments.

	Parameters:	
	name (str) – The name of the supported keyword argument for this
wrapper.

	converter (Callable[[Any], Iterable]) – A function that converts the
configured value to a list of command line arguments to dmenu.

	default (Optional[Any]) – The default configured value.

Examples

Let’s wrap the usage of a -foo argument that a dmenu fork could
possibly support.

>>> def to_bottom(arg):
... return ['-foo'] if arg else []
>>> menu = Dmenu()
>>> menu.add_arg('foo', to_bottom, default=False)
>>> menu.make_cmd()
['dmenu']
>>> menu.make_cmd(foo=True)
['dmenu', '-foo']

	
configure(**kwargs)

	Set a value to any of the supported argument added.

See also

xdmenu.BaseMenu.add_arg().

	Parameters:	**kwargs – Keywords are mapped to the name of the argument, and
the value is kept for a future call to dmenu.

	
make_cmd(**kwargs)

	Build the list of command line arguments to dmenu.

	Parameters:	**kwargs – See xdmenu.BaseMenu.configure(), except that
values are no kept for a later call to dmenu

	Returns:	
	List of command parts ready to sead to

	subprocess.Popen

	Return type:	list

Examples

>>> menu = Dmenu()
>>> menu.make_cmd()
['dmenu']
>>> menu.make_cmd(bottom=True)
['dmenu', '-b']
>>> menu.make_cmd(lines=2, prompt='-> ',)
['dmenu', '-l', '2', '-p', '-> ']

	
run(choices, **kwargs)

	

	Parameters:	
	choices (list) – Choices to put in menu

	**kwargs – See xdmenu.BaseMenu.configure(), except that
values are no kept for a later call to dmenu

Examples

>>> # We mock the _run_dmenu_process function for this example
>>> # to be runnable even if dmenu is not installed
>>> # The mock mimics a user choosing the first choice
>>> m = Dmenu(proc_runner=_mock_dmenu_process)
>>> m.run(['foo', 'bar'])
['foo']

	Returns:	All the choices made by the user. In order to have multiple
results, a custom build of dmenu may be required since the
original version may not support selecting many items.

	Return type:	list

	
version(dmenu=None)

	Return dmenu version string.

	Parameters:	dmenu (str) – dmenu executable to use. Defaults to the one
configured in self.

	Returns:	The configured dmenu’s version string

	Return type:	str

	
class xdmenu.Dmenu(proc_runner=None, **kwargs)

	Bases: xdmenu.BaseMenu

An extensible dmenu wrapper that already supports all usual arguments.

	Parameters:	
	dmenu (str) – See xdmenu.BaseMenu()

	proc_runner (Callable[[list, list], str]) – See
xdmenu.BaseMenu()

	bottom (bool) – dmenu appears at the bottom of the screen.
Equivalent for the -b command line option of dmenu.

	grab (bool) – dmenu grabs the keyboard before reading stdin. This
is faster, but will lock up X until stdin reaches end-of-file.
Equivalent for the -f command line option of dmenu.

	insensitive (bool) – dmenu matches menu items case insensitively.
Equivalent for the -i command line option of dmenu.

	lines (int) – dmenu lists items vertically, with the given number of
lines. Equivalent for the -l command line option of dmenu.

	monitor (int) – dmenu is displayed on the monitor number supplied.
Monitor numbers are starting from 0. Equivalent for the -m
command line option of dmenu.

	prompt (str) – defines the prompt to be displayed to the left of the
input field. Equivalent for the -p command line option of
dmenu.

	font (str) – defines the font or font set used. Equivalent for the
-fn command line option of dmenu.

	normal_bg_color (str) – defines the normal background color. #RGB,
#RRGGBB, and X color names are supported. Equivalent for the
-nb command line option of dmenu.

	normal_fg_color (str) – defines the normal foreground color.
Equivalent for the -nf command line option of dmenu.

	selected_bg_color (str) – defines the selected background color.
Equivalent for the -sb command line option of dmenu.

	selected_fg_color (str) – defines the selected foreground color.
Equivalent for the -sf command line option of dmenu.

	windowid (str) – embed into windowid.

	
class xdmenu.Dmenu2(proc_runner=None, **kwargs)

	Bases: xdmenu.Dmenu

A wrapper for dmenu2 [https://bitbucket.org/melek/dmenu2].

This wrapper also supports all of xdmenu.Dmenu arguments in
addition to the ones below.

	Parameters:	
	dmenu (str) – See xdmenu.BaseMenu()

	proc_runner (Callable[[list, list], str]) – See
xdmenu.BaseMenu()

	filter (bool) – activates filter mode. All matching items currently
shown in the list will be selected, starting with the item that
is highlighted and wrapping around to the beginning of the
list. Equivalent for the -r command line option of dmenu2.

	fuzzy (bool) – dmenu uses fuzzy matching. It matches items that have
all characters entered, in sequence they are entered, but there
may be any number of characters between matched characters.
For example it takes txt makes it to *t*x*t glob
pattern and checks if it matches. Equivalent for the -z
command line option of dmenu2.

	token (bool) – dmenu uses space-separated tokens to match menu
items. Using this overrides fuzzy option. Equivalent for the
-t command line option of dmenu2.

	mask (bool) – dmenu masks input with asterisk characters (*).
Equivalent for the -mask command line option of dmenu2.

	screen (int) – dmenu apears on the specified screen number. Number
given corresponds to screen number in X configuration.
Equivalent for the -s command line option of dmenu2.

	window_name (str) – defines window name for dmenu. Defaults to
“dmenu”. Equivalent for the -name command line option of
dmenu2.

	window_class (str) – defines window class for dmenu. Defaults to
“Dmenu”. Equivalent for the -class command line option of
dmenu2.

	opacity (float) – defines window opacity for dmenu. Defaults to 1.0.
Equivalent for the -o command line option of dmenu2.

	dim (float) – enables screen dimming when dmenu appers. Takes dim
opacity as argument. Equivalent for the -dim command line
option of dmenu2.

	dim_color (str) – defines color of screen dimming. Active only when
-dim in effect. Defautls to black (#000000). Equivalent for the
-dc command line option of dmenu2.

	height (int) – defines the height of the bar in pixels. Equivalent
for the -h command line option of dmenu2.

	xoffset (int) – defines the offset from the left border of the
screen. Equivalent for the -x command line option of
dmenu2.

	yoffset (int) – defines the offset from the top border of the
screen. Equivalent for the -y command line option of
dmenu2.

	width (int) – defines the desired menu window width. Equivalent for
the -w command line option of dmenu2.

	
exception xdmenu.DmenuError(args, stderr)

	Bases: Exception

Something went wrong with dmenu.

	
exception xdmenu.DmenuUsageError(args, stderr)

	Bases: xdmenu.DmenuError

Some arguments to dmenu where invalid.

 Python Module Index

 t |
 x

 		 	

 		
 t	

 	[image: -]
 	
 tests	

 	
 	
 tests.functional	

 	
 	
 tests.integration	

 	
 	
 tests.regression	

 	
 	
 tests.unit	

 		 	

 		
 x	

 	
 	
 xdmenu	

Index

 A
 | B
 | C
 | D
 | M
 | R
 | T
 | V
 | X

A

 	
 	add_arg() (xdmenu.BaseMenu method)

B

 	
 	BaseMenu (class in xdmenu)

C

 	
 	Clean (class in setup)

 	
 	configure() (xdmenu.BaseMenu method)

D

 	
 	default_patterns (setup.Clean attribute)

 	Dmenu (class in xdmenu)

 	dmenu() (in module xdmenu)

 	
 	Dmenu2 (class in xdmenu)

 	DmenuError

 	DmenuUsageError

 	Documentation (class in setup)

M

 	
 	make_cmd() (xdmenu.BaseMenu method)

R

 	
 	run() (xdmenu.BaseMenu method)

T

 	
 	tests (module)

 	tests.functional (module)

 	
 	tests.integration (module)

 	tests.regression (module)

 	tests.unit (module)

V

 	
 	version() (xdmenu.BaseMenu method)

X

 	
 	xdmenu (module)

 _static/comment.png

_static/down.png

_static/comment-close.png

_static/up.png

nav.xhtml

 Table of Contents

 		xdmenu : an extensible dmenu wrapper

 		Installation

 		Stable release

 		From sources

 		Usage

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		History

 		1.0.1 (2017-06-01)

 		1.0.0 (2017-06-01)

 		License

 		Credits

 		Contributors

 		Setup Script

 		running tests

 		checking code style

 		building source distirbutions

 		building binary distributions

 		building html documentation

 		cleaning your workspace

 		Automated tests

 		Unit tests

 		Integration tests

 		Functional tests

 		Regression tests

 		All Automated tests

 		tests package

 		Subpackages

 		API documentation

 		xdmenu package

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/comment-bright.png

_static/up-pressed.png

_static/file.png

_static/plus.png

