

 Navigation

 	
 index

 	
 next |

 	xal 0.2.dev0 documentation

xal

Xal is a contextual execution framework for Python.
“xal” is the acronym of “eXecution Abstraction Layer”.

Warning

This project is experimental. Current goal is to implement a
proof-of-concept that can be shown to, discussed with or tried by users of
tools like subprocess, Fabric, zc.buildout, Salt...

Xal helps you create scripts to perform actions on a system, like managing
non-Python resources, independantly from the execution context.

The main motivation of this library is about sharing system scripts:

	scripts are written with session as argument, they use an high-level abstract
API;

	sessions are registries, they encapsulate API implementation: local Python
shell, Fabric, Salt...

Example

Let’s create a xal-compatible function. It takes the execution context as input
argument:

>>> def home_directory_exists(session):
... """Return True if home directory of session's user exists."""
... return session.dir.exists(session.dir.home)

Then create an execution session. The LocalSession used here is a
pre-configured registry:

>>> from xal.session.local import LocalSession
>>> session = LocalSession()

Finally run the function in the session:

>>> home_directory_exists(session)
True

Ressources

	Documentation: https://xal.readthedocs.org

	PyPI: https://pypi.python.org/pypi/xal

	Code repository: https://github.com/benoitbryon/xal

	Bugtracker: https://github.com/benoitbryon/xal/issues

	Continuous integration: https://travis-ci.org/benoitbryon/xal

Contents

	Installation

	Resources
	Paths, files and directories

	sh commands

	About xal
	Vision

	Alternatives and related projects

	License

	Authors & contributors

	Changelog

	Presentations
	Generic lightning-talk

	Poster session at EuroPython 2013

	Contributor guide
	Create tickets

	Fork and branch

	Setup a development environment

	The Makefile

	Test and build

 Copyright 2012-2015, Benoît Bryon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	xal 0.2.dev0 documentation

Installation

This code is open-source. See License for details.

If you want to contribute to the code and get a development environment, you
should go to Contributor guide documentation.

Install the package with your favorite Python installer. As an example, with
pip:

pip install xal

 Copyright 2012-2015, Benoît Bryon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	xal 0.2.dev0 documentation

Resources

Xal resources are Python representations of system resources such as files,
processes... One of xal’s main purpose is to define a consistent set of
resources with a reference API.

Implementation of resources is not xal’s main scope. xal focuses on API.
That said, as a proof of concept, xal implements some resource providers.

Warning

Work in progress!

The resources below are the ones currently implemented in xal. Since xal is
not mature yet, many resources have not been implemented yet. Learn more
about planned features in bugtracker [https://github.com/benoitbryon/xal/issues] [1].

Here are resources provided by xal itself.

	Paths, files and directories

	sh commands

References

	[1]	https://github.com/benoitbryon/xal/issues

 Copyright 2012-2015, Benoît Bryon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	xal 0.2.dev0 documentation

 	Resources

Paths, files and directories

xal provides an interface to browse directories and manage files.

fs API

FileSystem resource

	
class xal.fs.resource.FileSystem(path, *args, **kwargs)

	

>>> from xal.fs.resource import FileSystem
>>> def demo_resource(session):
... """Demonstrate use of ``FileSystem`` resource."""
... fs = session.fs # Just a shortcut.
...
... # ``session.fs`` is a resource factory.
... resource = fs('test-fs')
... assert isinstance(resource, FileSystem)
...
... # Just use path as strings.
... assert str(resource) == 'test-fs'
...
... # Paths remain relative until they are actually used. Absolute
... # values are used as soon as filesystem operation is performed.
... assert resource.is_relative()
... created_resource = resource.mkdir()
... assert created_resource.is_absolute()
... assert resource.is_relative() # Original value is preserved.
...
... # Cleanup.
... fs.rm(created_resource)

cd

	
FileSystem.cd()

	Change working directory.

>>> def demo_cd(session):
... """Demonstrate use of ``cd``."""
... fs = session.fs # Just a shortcut.
...
... # Let's create a new directory.
... path = fs.mkdir('test-fs')
...
... # Change working directory.
... initial_path = fs.cwd()
... assert fs.cwd() != path
... with fs.cd(path) as sub_path:
... assert fs.cwd() == path == sub_path
... assert sub_path.parent == initial_path
... assert fs.cwd() == initial_path
...
... # Also works without context manager.
... # Notice that once used, paths are absolute.
... rel_path = fs('test-fs')
... assert rel_path.is_relative()
... abs_path = rel_path.cd()
... assert abs_path.is_absolute()
...
... # Cleanup.
... fs.cd(initial_path)
... fs.rm(path)

mkdir

	
FileSystem.mkdir(mode=511, parents=False)

	Create directory.

>>> def demo_mkdir(session):
... """Demonstrate use of ``mkdir``."""
... fs = session.fs # Just a shortcut.
...
... # Let's create a new directory.
... assert not fs.exists('test-fs')
... path = fs.mkdir('test-fs')
... assert fs.exists('test-fs')
...
... # mkdir() returns absolute path, even if created from relative
... # value.
... assert str(path) != 'test-fs'
... assert path.is_absolute()
...
... # Cleanup.
... fs.rm(path)

Providers

Local

Let’s execute demo function above in local session.

First setup a local session:

>>> from xal.session.local import LocalSession
>>> session = LocalSession()

Then run generic code within specific session:

>>> demo_resource(session)
>>> demo_cd(session)
>>> demo_mkdir(session)

SSH using Fabric

Let’s do the same over SSH using Fabric!

Setup some SSH session:

>>> from xal.session.fabric import FabricSession
>>> session = FabricSession()
>>> session.client.connect('localhost')
True

Then run generic code within specific session:

>>> demo_resource(session)
>>> demo_cd(session)
>>> demo_mkdir(session)

 Copyright 2012-2015, Benoît Bryon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	xal 0.2.dev0 documentation

 	Resources

sh commands

XAL provides an interface to run shell commands through sh.

Tip

With a local session, XAL is a convenient subprocess wrapper.

Differences with subprocess

XAL’s sh interface is made to run sh commands in a session.
Think of the commands always run with sh -c.
Whereas Python’s subprocess sets shell=False by default.

This postulate influences design. XAL’s sh interface helps you create and run
commands through sh: pipes, redirects...

“sh” provider in session’s registry

Let’s start with a local session:

>>> from xal.session.local import LocalSession
>>> session = LocalSession()

By default, in LocalSession, “sh” provider is
xal.sh.local.LocalShProvider:

>>> session.registry.default('sh') # Doctest: +ELLIPSIS
<xal.sh.local.LocalShProvider object at 0x...>

For convenience, we will set sh as a shortcut for session.sh:

>>> sh = session.sh

The ShCommand resource

The sh interface can be used as a factory to create
xal.sh.resource.ShCommand resources:

>>> sh("echo -n 'Hello world!'") # Doctest: +ELLIPSIS
<xal.sh.resource.ShCommand object at 0x...>

Command resources are not executed automatically once created.
You have to run them explicitely. They are callables.
When called, they return a xal.sh.resource.ShResult instance:

>>> command = sh("echo -n 'Hello world!'")
>>> result = command()
>>> result # Doctest: +ELLIPSIS
<xal.sh.resource.ShResult object at 0x...>
>>> result.stdout
'Hello world!'
>>> result.return_code
0
>>> result.succeeded
True

Command constructor accepts strings or iterables:

>>> sh("echo -n 'Hello world!'")().stdout
'Hello world!'
>>> sh(["echo", "-n", "Hello world!"])().stdout
'Hello world!'

The sh interface has a run() shortcut that creates and runs Cmd
instances:

>>> sh.run("echo -n 'Hello world!'").stdout
'Hello world!'
>>> sh.run(["echo", "-n", "Hello world!"]).stdout
'Hello world!'
>>> command = sh("echo -n 'Hello world!'")
>>> sh.run(command).stdout
'Hello world!'

You can create a resource for later use in one or several sessions:

>>> hello = sh("echo -n 'Hello world!'")
>>> from xal.session.local import LocalSession
>>> session = LocalSession()
>>> session.sh.run(hello).stdout
'Hello world!'

Pipes

You can create and handle pipes, they are commands too:

>>> echo = sh("echo -e 'hello\nworld'")
>>> grep = sh("grep 'world'")
>>> piped = echo.pipe(grep)
>>> piped().stdout
'world\n'
>>> piped = echo | grep
>>> piped().stdout
'world\n'
>>> sh.run(echo | grep).stdout
'world\n'

 Copyright 2012-2015, Benoît Bryon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	xal 0.2.dev0 documentation

About xal

This section is about the project itself.

	Vision

	Alternatives and related projects

	License

	Authors & contributors

	Changelog

 Copyright 2012-2015, Benoît Bryon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	xal 0.2.dev0 documentation

 	About xal

Vision

XAL is a contextual execution framework for Python. Through its contextual
execution system, it makes a resource abstraction layer possible.

Contextual execution

In Python, there are several tools to perform actions on the local system. As
an example, the subprocess module makes it possible to run arbitrary shell
commands. So, let’s suppose you wrote a script that echoes “Hello world!” using
the shell:

import subprocess
subprocess.call(['echo', u'Hello world!'])

Then what if you want to run commands on a remote machine? You can write a
fabfile:

from fabric import api as fab_api

@fab_api.task
def hello():
 fab_api.run(['echo', 'Hello world!'])

Then what if you want to run the command as an admin? With Fabric:

from fabric import api as fab_api

@fab_api.task
def hello():
 fab_api.sudo(['echo', 'Hello world!'])

Then what if you want to run the command as a sudoer, on the local machine?
Fabric doesn’t provide a wrapper for that:

from fabric import api as fab_api

@fab_api.task
def hello():
 fab_api.local(['sudo', 'echo', 'Hello world!'])

Then what if you want to run it on a Windows machine? You’ll have to adapt the
code.

Then what if you migrate to another deployment tool, such as zc.buildout or
Salt? You’ll have to change the code.

Even with Fabric, we had to write 3 distinct scripts to be able to face all
situations. As developers, we’d like to write only one function, then pass it
parameters:

	run on local machine or on remote client;

	run as current user, as admin/root, or maybe as another user.

That’s why xal were created: write portable high-level system scripts.

A framework

There are so many commands and so many systems... it would be impossible to
support them all. And even if it was, it would be made of tons of code and
dependencies. That’s the first reason why XAL is a framework:

	focus on the API;

	allow plugins;

	keep framework lightweight.

Fully configurable, no global states

XAL is not designed to use global states. XAL registry is entirely
configurable: you can change providers’ mapping, configure providers or write
custom ones.

However, for convenience, XAL offers some configuration helpers, so that common
use cases are covered easily.

 Copyright 2012-2015, Benoît Bryon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	xal 0.2.dev0 documentation

 	About xal

Alternatives and related projects

This document presents other projects that provide similar or complementary
functionalities. It focuses on differences with xal.

Interfaces

	spur [https://pypi.python.org/pypi/spur/] [1] runs commands and manipulate files locally or over SSH using the same
interface.

Deployment utilities

	Puppet

	Chef

	salt

	zc.buildout

	fabric

	fabtools

	collective.hostout

Fabric

Fabric is great for performing simple tasks. When you want to perform complex
tasks, or when you want to reuse your tasks in several situations, you come to
reinvent provisioning tools. You’d better use fabric to run buildout recipes
(and write buildout recipes instead of fabric scripts), or use salt, or use
monitoring...

Fabtools

Fabtools is a provisioning library for Fabric. One strength is its simplicity.
But it’s also a drawback: it’s limited to Fabric (which itself is limited),
there are not so many “recipes”.

Salt

Salt is about remote execution, and via remote execution it can perform
provisioning.

Salt looks great, but as Chef of Puppet, it’s a complete software environment:
it uses zeromq, requires a server (master) and clients (minions). I mean, for
simple needs, it’s overkill.

As a developer, I like my development environment to keep as simple as
possible. And I like to isolate my projects from my personal system. I mean
I’d better install and run salt server on a VM than on my personal computer.
But in the same time, I can’t reproduce a complete production environment, i.e.
run one VM for salt master, one for the database server, one for the web
front-end, one for the shared filesystem... Cloud-computing is not the
definitive solution for me, because I often work offline (and I like it).

So... I’d like to have an alternative to Salt for simple architectures...
Fabric looks like one. But I currently can’t write scripts for both!

I’d like Salt modules (those who execute commands) to be packaged as
third-party libraries.

I’d like Salt to have a tiny Python client I could install on my personal
computer and use it as a remote-control for the master (kind of Chef’s knife,
but lighter).

zc.buildout and recipes

Recipes for zc.buildout allow you to configure script execution. A recipe have
install(), update() and uninstall() methods. It’s truly powerful on the local
machine. One strength of zc.buildout is isolation. One limit is that it is not
really meant to be run as a sudoer. You can, but it introduces some problems.
Running 2 buildouts, one as a sudoer, and another as a normal user, could solve
the problem, but then you have to protect yourself against running only one of
the two.

I’d like to invoke buildout as a sudoer, then, inside buildout configuration,
switch from one “context” to another, i.e. tell execute this recipe as sudoer,
this recipe as user “postgres”, this one as “myself”...

Another strength of zc.buildout is that it automatically discovers and installs
some dependencies, such as extensions and recipes. I guess we can’t have an
execution manager that implements all resources or providers, and that there
would be several candidates for some resources (such as “package”). So it would
be great if those dependencies where at least automatically discovered. And
whenever possible, automatically installed. I suppose that discovery could be
a feature bundled in the project, and installation would be implemented by
consumers (i.e. buildout, pip, salt...).

Subprocess and wrappers

subprocess

When you want to perform simple things, subprocess is a bit complicated, and
you’d like to have a simplified wrapper.

When you want to perform complex or repetitive tasks, you’d better write
wrappers for code readability and reusability.

So, imho, in any cases, sharing common wrappers would be useful. That’s for
the execution part.

About the contextual part, suprocess executes commands on the local system
with the current user, current environment...
I guess one would appreciate to use the same execution API whatever the
target system, user, environment...

Wrappers

	chut

	async_subprocess

	pyutilib.subprocess

	gevent_subprocess

	EasyProcess

	sarge

	seminode.utils.command

	Command

	commandwrapper

	desub

	extcmd

	iterpipes

	pbs

	pipeline

	sh

	subwrap

	cpopen

	shellout

	clom

	envoy

	extproc

	execute

Other

os and os.path

os and os.path are really useful in daily use, especially when you are dealing
with deployment or sysadmin scripts.

os and os.path provide operating system interfaces. As interfaces, the
implementation could vary depending on the environment. It currently depends
on local operating system. I guess one would appreciate if it depends on
contextual execution environment.

I’m not talking about rewriting os module. I’m talking about a third-party
provisioner which provides a higher-level interface, but with respect to
contextual execution environment. The implementation for local system should
use os.

References

	[1]	https://pypi.python.org/pypi/spur/

 Copyright 2012-2015, Benoît Bryon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	xal 0.2.dev0 documentation

 	About xal

License

Copyright (c) 2012-2013, Benoît Bryon.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of xal nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Copyright 2012-2015, Benoît Bryon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	xal 0.2.dev0 documentation

 	About xal

Authors & contributors

	Benoît Bryon <benoit@marmelune.net>

 Copyright 2012-2015, Benoît Bryon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	xal 0.2.dev0 documentation

 	About xal

Changelog

0.2 (unreleased)

	Nothing changed yet.

0.1 (2013-07-06)

	Feature #6 - Introduced proof of concept implementation of sh interface.
Using a basic implementation for local session, based on subprocess.

	Feature #7 - Proof of concept implementation of dir interface, with a
basic implementation for local session based on Python builtins (os, os.path,
...).

	Feature #8 - Introduced contextual execution architecture: session, registry,
providers, resources, client.

 Copyright 2012-2015, Benoît Bryon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	xal 0.2.dev0 documentation

Presentations

Here are some presentations (slides) about XAL.

	Generic lightning-talk

	Poster session at EuroPython 2013

 Copyright 2012-2015, Benoît Bryon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	xal 0.2.dev0 documentation

 	Presentations

XAL - execution abstration layer

Presentation of XAL [https://github.com/benoitbryon/xal] proof-of-concept,
by Benoit Bryon.

This work is licensed under a Creative Commons Attribution 3.0 Unported
License (CC BY 3.0) [http://creativecommons.org/licenses/by/3.0/]

Python for sysadmins

Python is great:

	shell, scripts, provisioners, frameworks...

	runs on almost any system

But...

It’s hard to write and share portable scripts

	environment vary: users, packages...

	provisioners are overkill: just want a shell or a simple script

	libraries are divided: fabric, buildout, salt...

Develop to XAL session

Write a script which takes a XAL session as argument:

def write_greetings(session):
 """Write 'Hello world!' in 'greetings.txt' file relative to user's home."""
 home = session.user.home
 file_path = session.file.join(home, 'greetings.txt')
 file_resource = session.file(file_path)
 if not file_resource.exists():
 file_resource.write('Hello world!')

Fabric

Use it in a fabfile:

from fabric.api import task
import write_greetings
import xal

@task
def hello_fabric():
 session = xal.fabric(sudoer=True)
 write_hello_world(session)

zc.buildout

In a buildout recipe:

import write_greetings
import xal

class HelloBuildout(object):
 def __init__(self, buildout, name, options):
 self.session = xal.buildout(buildout, name, options)

 def install(self):
 write_hello_world(self.session)

 def update(self)
 pass

Salt

As a salt module:

import write_greetings
import xal

def hello_salt():
 session = xal.salt(__salt__)
 write_greetings(session)

Shell

In an interactive shell:

import write_greetings
import xal
session = xal.local()
write_greeting(session)

Resources

XAL session is a proxy to resources:

	files, directories,

	users,

	processes,

	packages,

	your own customized resources...

Share and reuse scripts!

	Reduced cost of change

	Enhanced collaboration between projects related to deployment

=> What about scripts fabric, buildout, salt... can share on PyPI?

XAL is a proof of concept

	https://github.com/benoitbryon/xal

	feedback is welcome!

	are popular projects interested in?

 Copyright 2012-2015, Benoît Bryon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	xal 0.2.dev0 documentation

 	Presentations

xal

This document contains contents of xal poster session at EuroPython 2013 in
Florence, Italy [https://ep2013.europython.eu/].

	Poster as PDF:
https://github.com/benoitbryon/xal/raw/master/docs/presentations/2013-europython/poster.pdf

	Sources:
https://github.com/benoitbryon/xal/tree/master/docs/presentations/2013-europython

Abstract

XAL is a proof of concept designed to write high-level scripts you can reuse
within various tools such as Fabric, zc.buildout, Salt…

Python has strong features for sysadmin scripts: portability, a shell and great
libraries. But, currently, you develop using tool’s specific implementation. As
a consequence, users of each project develop different tools that do similar
things.

XAL proposes a new approach for system-related scripts: develop to a session.
Write scripts that get a session as argument. That session is an abstraction
layer for system resources such as files, users, packages… It is just like an
ORM abstracts the database implementation. This design makes it possible to
share sysadmin scripts that you can use within all those great Python tools
related to system and deployment. Reduced cost of change and improved
collaboration!

This poster will present the concepts of XAL. This project is a
proof-of-concept, so the author will be glad to get feedback, discuss the ideas
and, if you are interested in, sprint on it!

xal

	xal

	execution abstraction layer
for high-level system scripts

Develop to a session

def greetings(session):
 """Write 'Hello world!' in 'greetings.txt' file relative to user's home."""
 home = session.user.home
 file_path = session.file.join(home, u'greetings.txt')
 file_resource = session.file(file_path)
 with file_resource.open('w'):
 file_resource.write(u'Hello world!')

Run it anywhere

Shell

In an interactive shell:

>>> from europython import greetings
>>> import xal
>>> session = xal.LocalSession()
>>> greetings(session)

Fabric

In a fabfile:

from europython import greetings
import xal

def hello_fabric():
 session = xal.FabricSession(sudoer=True)
 greetings(session)

zc.buildout

In a buildout recipe:

from europython import greetings
import xal

class HelloBuildout(object):
 def __init__(self, buildout, name, options):
 self.session = xal.BuildoutSession(buildout, name, options)

 def install(self):
 greetings(self.session)

Salt

In a salt module:

from europython import greetings
import xal

def hello_salt():
 session = xal.SaltSession(__salt__)
 greetings(session)

Share libraries

xal enables wider cooperation in Python community

Improve your workflow

	Do not wait for full provisioning stack, enter your project ASAP

	First focus on what your script does

	Then configure execution environment

	Build the provisioning stack incrementally

	Change provisioner, keep deployment recipes

Exit the subprocess labyrinth

	subprocess

	async_subprocess

	chut

	clom

	Command

	commandwrapper

	cpopen

	desub

	EasyProcess

	envoy

	execute

	extcmd

	extproc

	gevent_subprocess

	iterpipes

	pbs

	pipeline

	pyutilib.subprocess

	sarge

	seminode.utils.command

	sh

	shellout

	spur

	subwrap

	... and more...

	... and maybe yours

Could xal help APIs converge?

Challenges

	xal needs strong APIs:

	run commands (subprocess wrapper)

	consistent set of resources (files, users...)

=> PEPs?

	Efficient and comprehensive session registry

	Preconfigured registries: fabric, salt, buildout, local session...

	Resolution of session’s dependencies

	Smart handling of NotImplementedError

	Unit tests with mocks, integration tests

xal is a proof of concept

https://xal.readthedocs.org

Credits, license

xal is released under BSD license
© 2012-2013, Benoît Bryon

 Copyright 2012-2015, Benoît Bryon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	xal 0.2.dev0 documentation

Contributor guide

This document provides guidelines for people who want to contribute to the
project.

Create tickets

Please use the bugtracker [https://github.com/benoitbryon/xal/issues] [1] before starting some work:

	check if the bug or feature request has already been filed. It may have been
answered too!

	else create a new ticket.

	if you plan to contribute, tell us, so that we are given an opportunity to
give feedback as soon as possible.

	Then, in your commit messages, reference the ticket with some
refs #TICKET-ID syntax.

Fork and branch

	Work in forks and branches.

	Prefix your branch with the ticket ID corresponding to the issue. As an
example, if you are working on ticket #23 which is about contribute
documentation, name your branch like 23-contribute-doc.

Setup a development environment

System requirements:

	Python [https://www.python.org] [2] version 2.6 or 2.7, available as python command.

Note

You may use Virtualenv [https://virtualenv.pypa.io/en/latest/] [3] to make sure the active python is the right
one.

	make and wget to use the provided Makefile.

Execute:

git clone git@github.com/benoitbryon/xal.git
cd xal/
make develop

If you cannot execute the Makefile, read it and adapt the few commands it
contains to your needs.

The Makefile

A Makefile is provided to ease development. Use it to:

	setup the development environment: make develop

	update it, as an example, after a pull: make update

	run tests: make test

	build documentation: make documentation

The Makefile is intended to be a live reference for the development
environment.

Test and build

Use the Makefile.

References

	[1]	https://github.com/benoitbryon/xal/issues

	[2]	https://www.python.org

	[3]	https://virtualenv.pypa.io/en/latest/

 Copyright 2012-2015, Benoît Bryon.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	xal 0.2.dev0 documentation

Index

 C
 | F
 | M

C

 	

 	cd() (xal.fs.resource.FileSystem method)

F

 	

 	FileSystem (class in xal.fs.resource)

M

 	

 	mkdir() (xal.fs.resource.FileSystem method)

 Copyright 2012-2015, Benoît Bryon.
 Created using Sphinx 1.2.2.

 _static/comment-bright.png

_static/down.png

_static/comment.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		xal 0.2.dev0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012-2015, Benoît Bryon.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up.png

_static/minus.png

