

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

PRE RELEASE

	implement all features / fix all bugs that are to be included in this release.

	make sure everything compiles on the following platforms with their default toolchain:

	Ubuntu 12.04, 32-bit (gcc, clang)

	Ubuntu 12.04, 64-bit (gcc, clang)

	Ubuntu 14.04, 32-bit (gcc, clang)

	Ubuntu 14.04, 64-bit (gcc, clang)

	update VERSION in $root/CMakeLists.txt

	git-tag release and push tag to github

POST RELEASE

	upload to PPA via $root/contrib/ppa-release.sh

	trapni/xzero (for latest Ubuntu)

	trapni/xzero-precise (for Ubuntu 12.04)

	update website to point to the newest release and changelog on front-page.

director - x0 Load Balancing Plugin

Requirements

	support multiple backend protocols

	HTTP (via TCP and UNIX domain sockets)

	FastCGI (via TCP and UNIX domain sockets)

	active/standby/backup backend modes, where standby backends get only used when all active
backends are at its capacity limits (and/or offline/disabled).

	request queue with a per-director limit, used when no active nor standby backend can currently process

	support (per director) connect/read/write timeouts to backend

	support retrying requests and per-director retry-limits

	sticky offline mode
(when a backend becomes offline, it gets disabled, too,
so that it won’t be used again, once being back online)

	support dynamic directors

	adding/removing/editing backends at runtime

	storing backend configuration in some plain file in /var/lib/x0/director/$NAME.db

	client side routing

	provide admin JSON-API for browsing, controlling directors, its backends, and their states/stats.

Transparent Backend Transport API

The director API should support multiple different transport layers, such as
HTTP and FastCGI over TCP/IP but also UNIX domain sockets, in case some backend
service is running locally.

Resource Excaustion

Backend Concurrency Overloading

If the server receives more requests than any online active marked
backend can currently handle, online standby marked backends are used
to take over.

If even no online standby marked backend is available to serve the
incoming request, it gets queued and is processed either as soon as a backend
becomes available again, or its client receives a timeout response if
no backend became available in time.

If the queue becomes full, with a per-director set limit, the server responds
with a 503 (Service Unavailable) reply.

Host Memory

The service should not die, however, it will take some time until
x0 and all its plugins properly handle host memory excaustion.

File Descriptors

Same as with host memory, but easier handleble.

Backend Failure and Recovery

If a backend fails surving a request to the client, meaning, no data has
yet been sent to the client, the backend should not just be marked as Offline
but also, the request should directly be requeued to the next available
backend and retried up to M times with a timeout of N seconds.

If either limit has been reached without success, the client is to
receive a respective 5xx error response.

Backend Health Checking

Mode 1 (Lazy)

Backends are by default assumed to be in state Online.

If a backend fails to serve a request, e.g. due to networking or protocol
errors, the backend gets marked as Offline, and is in turn suspect to
health checks every N seconds, as defined per backend.

That means, health checks are only performed on offline backends, to
detect, when they’ve become online, again.
The health checks are disabled when the backend has been marked as online
and is in enabled-state.

If N successfull health checks pass, the backend
becomes Online again, and can receive new requests from this time on.

Mode 2 (Opportunistic)

Additionally to mode 1, the backends get checked for healthiness when
being idle for at least N seconds.

Performing a health check while being in Online mode charges one load unit,
so if the backend allows 3 concurrent requests, only 2 are left for real
requests.

Mode 3 (Paranoid)

Health checks are always performed, regardless of the backend’s state
and activity.

Sticky Offline Mode

There is a need for backends to stay out of the cluster, once being offline,
and must be enabled explicitely by the administrator (or by a script),
once it got ensured, that the code on that node is up-to-date, to not deliver
out-of-date content.

This sticky-mode not enabled by default.

Dynamic Directors

While it is possible to define a static set of backends, one may also
create a dynamic director, that is, its backends are managed dynamically
via the Director API and will be stored in a plain-text file in /var/lib/x0/
to preserve state over process restarts.

Director API

The director API is provided over HTTP, to allow inspecting the live state
of each director of x0.

Static directors can be inspected, and enabled/disabled at runtime.
But dynamic directors can be fully configured at runtime,
i.g adding new backends, removing or updating existing ones.

Implementation Details

Thread Safety

The core x0 API ensures, that every I/O activity, caused by its HTTP connection,
is always processed within the same worker thread, while listener sockets
always accept new connections on the first (main) worker and then schedule
them to the least active worker.

We assume, that I/O activity from origin servers are to be processed
within the same worker thread as the frontend connection.

Health check timers on the other hand do not have any frontend connection
associated and thus, are assigned to least active worker at the time
the timer gets spawned.

Stanzas

	HTTP request handlers MUST be executed within its designated worker thread.

	Director logic that is not primitiv and is not guarded by std::atomic MUST be
executed within the director’s designated worker thread.

	The request scheduler is executed within the directors designated worker thread.

	Health checks MUST be executed within the directors designated worker thread.

The above 4 stanzas draw the following implications:

	The request scheduler is accessed by any of the workers that are assigned to their
callers request handler.

TODO

	research for: multiple reader one writer (thread synchronization)

	possibly required for the least-load request scheduler

	question: do we want to be able to change the request scheduler algorithm at runtime?

	pro: flexible to admins

	con: flexibility constrain, possibly a performance constrain too

Ideas

Dynamic pass-handler:

director.create is passed an identifier, that is used to create a new
handler %s.pass (or director.%s.pass) with the director instance as context,

import director;

handler setup {
 listen 80;
 director.create 'app123'
 'node01' => 'http://10.10.40.3:8080/?capacity=4',
 'node02' => 'http://10.10.40.4:8080/?capacity=4'
}

handler main {
 app1.pass if req.path =^ '/special/'
}

Design

Example Configuration

import director;

handler setup {
 director.create 'app-cluster',
 'app01' => 'http://10.10.40.3:8080/?capacity=4',
 'app02' => 'http://10.10.40.4:8080/?capacity=4',
 'app03' => 'http://10.10.40.5:8080/?capacity=4',
 'app04' => 'http://10.10.40.6:8080/base/?capacity=8&disable',
 'app05' => 'http://10.10.40.7:8080/?capacity=4&backup',
 'app06' => 'fastcgi://10.10.40.8:8080/?capacity=4&backup',
 'app07' => 'fastcgi:///var/run/app.sock?capacity=4&backup',

 listen 80;
}

handler main {
 director.api '/x0/director'
 director.pass 'app-cluster';
}

Admin JSON API

By default, this API is not self-protected, but you can easily
configure with with basic-auth.

handler main {
 if req.path =^ '/x0' {
 auth.realm "http admin area"
 auth.userfile "/etc/htpasswd"
 auth.require

 director.api '/x0/director'
 status.api '/x0/status'
 errorlog.api '/x0/errorlog'
 }
}

Retrieving State of all Directors

curl -v http://localhost:8080/x0/director/

This will return a big application/json response containing
a list of all directors and their configuration and state.

Retrieving single Director State

curl -v http://localhost:8080/x0/director/app_cluster

Retrieves state of only one director, by name.

Updating a Director

curl -v http://localhost:8080/x0/director/app_cluster -X POST \
 -d health-check-host-header=example.com \
 -d health-check-request-path=/health \
 -d health-check-fcgi-script-filename= \
 -d queue-limit=128 \
 -d queue-timeout=10000 \
 -d retry-after=60 \
 -d max-retry-count=3 \
 -d sticky-offline-mode=false \
 -d scheduler=rr \
 -d cache-enabled=true \
 -d cache-deliver-active=true \
 -d cache-deliver-shadow=true \
 -d cache-default-ttl=30000 \
 -d cache-default-shadow-ttl=360000

You can reconfigure any of the directors parameters
unless this director has been created statically.

Director Properties

	health-check-host-header: defines the Host request-header to be passed when performing health-check requests

	health-check-request-path: the request-path to be passed when performing health-check requests

	health-check-fcgi-script-filename: this is a special property and only applies to FastCGI backends that
require a physical underlying file to actually serve the request (such as PHP). This value will
translate into the CGI environment variable called SCRIPT_FILENAME.

	queue-limit: maximum number of requests that may be enqueued at the same time.
Exceeding this value results into 503 (Service Unavailable) instead of enqueuing further.
This mechanism is to reduce resource excess.

	queue-timeout: The time-span in milliseconds how long a request may reside in the queue.
Exceeding this value will result into a 503 (Service Unavailable).

	retry-after: This value will give the client the delta in seconds when to retry
the failing request.
While all time-span values are usually given in milliseconds, this value is not, because
the HTTP protocol states, that the corresponding response header is given in seconds.

	max-retry-count: The number of attempts a request is being tried to be passed to one of the
existing backends. If a backend has been chosen and the request being passed, but the backend
fails connecting to its origin server, the request will be retried up to N times.
Exceeding this value will result into a 503 (Service Unavailable).

	sticky-offline-mode: When a backend becomes unavailable (offline) due to failures, then no further
attempts are made to deliver any further requests until its corresponding health monitor has
detected this backend to be online again.
Now, if this property is set to false, the backend may be included into the set of available backends again,
but if set to false, it will still become “Online” but also auto-disabled by the health monitor
to avoid serving requests by a backend that potentially has been to long offline, that it
might have old backend logig. So setting this value to true might be a wise consideration
in continuous developing production environments.

	scheduler: Defines the request scheduling algorithm. one of:

	rr: round-robing scheduling (default algorithm)

	chance: schedule by chance, ie. the first backend that can handle the request is used, resulting first fully loading a server before using the next..

	cache-enabled: … TODO

	cache-deliver-active: … TODO

	cache-deliver-shadow: … TODO

	cache-default-ttl: … TODO

	cache-default-shadow-ttl: … TODO

Retrieving Backend State

curl -v http://localhost:8080/x0/director/app_cluster/backend01

Retrieves state of only one backend from a director, by names.

Creating a new Backend

curl -v http://localhost:8080/x0/director/app_cluster/backends -X PUT \
 -d role=active \
 -d enabled=false \
 -d capacity=2 \
 -d health-check-mode=paranoid \
 -d health-check-interval=2 \
 -d protocol=http \
 -d hostname=127.0.0.1 \
 -d port=3101 \
 -d name=backend01

The name-parameter can be also specified as part of the URI path, which
will always be preferred via request body of name.

Others must be specified via request body.

Updating an existing Backend

curl -v http://localhost:8080/x0/director/app_cluster/backends/backend01 -X POST \
 -d role=active \
 -d enabled=false \
 -d capacity=2 \
 -d health-check-mode=paranoid \
 -d health-check-interval=2

You cannot edit all attributes, but:

	role

	enabled

	capacity

	health-check-mode

	health-check-interval

Updating name, protocol, hostname, or port would literally be the same as just creating a new backend.

Deleting a Backend

curl -v http://localhost:8080/x0/director/app_cluster/backends/backend01 -X DELETE

The wait parameter specifies whether or not to kill existing connections on
given backend or if the backend should wait for them to finish before getting
removed completely out of the cluster.

Deleted but not yet removed backends change their state to “Terminating”.

Plugin Improvement Ideas

Request Delivery Timings

Provide the ability to graph the average wait time of requests from the
point the plugin receied the request until they where actually accepted
by some backend to be processed.
This data might be interesting for very active clusters.

Very nice Web UI atop the JSON API

Paul Asmuth [http://github.com/paulasmuth] is working on this one. Thanks man. :-)

 Flow is a domain specific language to provide very flexible custom control flows to
host applications, such as an HTTP web server to let the operator control the
way your app the way he things.

Flow Virtual Machine

The Flow Virtual Machine is the backend to the Flow Language that implements
a bytecode VM interpreter to execute your control flow as fast as possible.

TODO

	find solution to support compress.types(string_array) alike signatures

	find solution to implement effective named based vhost matching (vhost.mapping)

	match-keyword, support multi-branch instruction (merely like tableswitch in JVM)

	regex primitive type

	direct-threaded VM impl and token-threaded-to-direct-threaded opcode transformer

Data Types

Numbers

Numbers are 64-bit signed. Booleans are represented as numbers.

Strings

All strings in flow are immutable. So all string instructions do not disinguish between
strings from constant table, dynamically allocated strings, or strings as retrieved from
another virtual machine instruction (such as a native function call).

Handler References

Handler references are passed as an index value into the programs handler table.
The native callee has to resolve this index into the handler’s object itself.

IP Addresses

(IPv4 and IPv6)

IPv4 could be directly represented via the least significant 32-bit from a number.

Cidr Network Notations

10.10.0.0/19
3ffe::/16

Arrays

["text/plain", "application/octet-stream"]

[0, 2, 4, 6, 8]

Instruction Stream

The program is stored as an array (stream) of fixed-length 32-bit instructions.

The opcode always takes the least-significant 8-bit of an instruction, also determining the
interpretation of the higher 24 bits to one of the variations as described below.

A register is always represented as an 8-bit index to the register array, effectively limiting
the total number of registers to 256.

Registers does not necessarily require them to be located in a CPU hardware
but can also be represented as software array.

In the following tables, the values have the following meaning:

	OP: opcode

	A: first operand

	B: second operand

	C: third operand

Instructions are represented as follows:

0 8 16 24 32 40 48 56 64
+----+---+---+---+---+---+---+---+ Instruction with no operands.
| OP | |
+----+---+---+---+---+---+---+---+

0 8 16 24 32 40 48 56 64
+----+---+---+---+---+---+---+---+ Instruction with one operand.
| OP | A | |
+----+---+---+---+---+---+---+---+

0 8 16 24 32 40 48 56 64
+----+---+---+---+---+---+---+---+ Instruction with two operands.
| OP | A | B | |
+----+---+---+---+---+---+---+---+

0 8 16 24 32 40 48 56 64
+----+---+---+---+---+---+---+---+ Instruction with three operands.
| OP | A | B | C |
+----+---+---+---+---+---+---+---+

Constants

Constants are all stored in a constant table, each type of constants in its own table.

	integer constants: 64-bit signed

	string constants: raw string plus its string length

	regular expression constants: defined as strings, but may be pre-compiled into dedicated AST for faster execution during runtime.

Opcodes

Instruction Prefixes

	V - variable

	N - integer constant

	I - immediate 16-bit integer literal

	S - string constant

	P - IP address

	R - regular expression

	A - array

Instruction Operand Types

	imm - immediate literal values

	num - offset into the register array, cast to an integer.

	str - offset into the register array, cast to a string object.

	var - immediate offset into the register array, any type.

	vres - same as var but used by to store the instruction’s result.

	vbase - same as var but used to denote the first of a consecutive list of registers.

	pc - jump program offsets, immedate offset into the program’s instruction array

Debug Ops

Opcode Mnemonic A B Description
--
0x?? NTICKS vres - dumps performance instruction counter into A
0x?? NDUMPN vbase imm dumps register contents of consecutive registers [vbase, vbase+N]

Conversion Ops

Opcode Mnemonic A B Description
--
0x?? S2I vres str A = atoi(B)
0x?? I2S vres num A = itoa(B)
0x?? P2S vres ip A = ip(B).toString()
0x?? C2S vres cidr A = cidr(B).toString()
0x?? R2S vres regex A = regex(B).toString()
0x?? SURLENC vres str A = urlencode(B)
0x?? SURLDEC vres str A = urldecode(B)

Unary Ops

Opcode Mnemonic A B Description
--
0x?? MOV vres var A = B /* raw register value copy */

Numerical Ops

Opcode Mnemonic A B C Description
--
0x?? NCONST vres imm - set integer A to value at constant integer pool's offset B
0x?? IMOV vres imm - set integer A to immediate 16-bit integer literal B
0x?? INEG vres imm - A = -B
0x?? NNEG vres var - A = -B
0x?? NNOT vres var - A = ~B
0x?? NADD vres var var A = B + C
0x?? NSUB vres var var A = B - C
0x?? NMUL vres var var A = B * C
0x?? NDIV vres var var A = B / C
0x?? NREM vres var var A = B % C
0x?? NSHL vres var var A = B << C
0x?? NSHR vres var var A = B >> C
0x?? NPOW vres var var A = B ** C
0x?? NAND vres var var A = B & C
0x?? NOR vres var var A = B | C
0x?? NXOR vres var var A = B ^ C
0x?? NCMPEQ vres var var A = B == C
0x?? NCMPNE vres var var A = B != C
0x?? NCMPLE vres var var A = B <= C
0x?? NCMPGE vres var var A = B >= C
0x?? NCMPLT vres var var A = B < C
0x?? NCMPGT vres var var A = B > C

String Ops

Opcode Mnemonic A B C Description
--
0x?? SCONST vres imm - A = stringConstantPool[B]
0x?? SADD vres str str A = B + C
0x?? SSUBSTR vres str - A = substr(B, C /* offset */, C + 1 /* count */)
0x?? SCMPEQ vres str str A = B == C
0x?? SCMPNE vres str str A = B != C
0x?? SCMPLE vres str str A = B <= C
0x?? SCMPGE vres str str A = B >= C
0x?? SCMPLT vres str str A = B < C
0x?? SCMPGT vres str str A = B > C
0x?? SCMPBEG vres str str A = B =^ C
0x?? SCMPEND vres str str A = B =$ C
0x?? SCMPSET vres str str A = B in C
0x?? SREGMATCH vres str regex A = B =~ C
0x?? SREGGROUP vres num - A = regex_group(B /* regex-context offset */)
0x?? SLEN vres str - A = strlen(B)
0x?? SMATCHEQ str imm - $pc = MatchSame[A].evaluate(str);
0x?? SMATCHBEG str imm - $pc = MatchBegin[A].evaluate(str);
0x?? SMATCHEND str imm - $pc = MatchEnd[A].evaluate(str);
0x?? SMATCHR str imm - $pc = MatchRegEx[A].evaluate(str);

IP Address Ops

Opcode Mnemonic A B C Description
--
0x?? PCONST vres imm - A = ipConstantPool[B]
0x?? PCMPEQ vres ip ip A = ip(B) == ip(C)
0x?? PCMPNE vres ip ip A = ip(B) != ip(C)

Cidr Ops

Opcode Mnemonic A B C Description
--
0x?? CCONST vres imm - A = cidrConstantPool[B]
0x?? CCMPEQ vres cidr cidr A = cidr(B) == cidr(C)
0x?? CCMPNE vres cidr cidr A = cidr(B) != cidr(C)
0x?? CCONTAINS vres cidr ip A = cidr(B).contains(ip(C))

Array Ops

Opcode Mnemonic A B C Description
--
0x?? ASNEW vres imm - vres = new Array<int>(imm)
0x?? ASINIT array index value array[index] = toString(value)
0x?? ANNEW vres imm - vres = new Array<int>(imm)
0x?? ANINIT vres index value array[index] = toNumber(value)
0x?? ANINITI vres index imm array[index] = value

Control Ops

Opcode Mnemonic A B C Description
--
0x?? JMP pc - - Unconditionally jump to $pc
0x?? CONDBR var pc - Conditionally jump to $pc if int(A) evaluates to true
0x?? EXIT imm - - End program with given boolean status code

Native Call Ops

Opcode Mnemonic A B C Description
--
0x?? CALL id argc argv Invoke native func with identifier A with B arguments.
 Return value is stored in C+0.
 Arguments are stored in C+N with 0 < N < argc.
0x?? HANDLER id argc argv Invoke native handler (can cause program to exit).
 Return code must be a boolean in B+0,
 and parameters are stored as for CALL.

Parameter Passing Conventions

Just like a C program, a consecutive array of argv[]’s is created, but where
argv[0] contains the result value (if any) and argv[1] to argv[argc - 1] will
contain the parameter values.

	Integers: register contents cast to a 64bit signed integer

	Boolean: as integer, false is 0, true is != 0

	String: register contents is cast to a VM internal String pointer.

	IPAddress: register contents is cast to a VM internal IPAddress pointer.

	Cidr: register contents is cast to a VM internal Cidr pointer.

	RegExp: register contents is cast to a VM internal RegExp pointer.

	Handler: register contents is an offset into the programs handler table.

	Array of V: conecutive registers as passed in argv directly represent the elements of the given array.

	Associative Array of (K, V): Keys are stored in argv[N+0] and values in argv[N+1].

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

