

wrfxpy

wrfxpy is a set of software modules that provide functionality
related to running WPS and WRF [http://www.openwfm.org/].

In particular, the modules herein can:

	manipulate wps/input/fire namelists

	place and setup domains dynamically

	download GRIB files from various GRIB sources

	execute geogrid, ungrib, metgrid, real, WRF

	monitor WRF execution

	perform fuel moisture data assimilation using RAWS observations from the Mesowest network

	postprocess netCDF files [http://www.unidata.ucar.edu/software/netcdf/] to generate raster images or KMZ raster files

	assemble simulation outputs into coherent packages for visualization and synchronize them with a remote wrfxweb server

Basic topics

	Installation

	Quickstart

	Forecasting

	Standalone scripts

Advanced topics

	Catalog and manifest

Indices and tables

	Index

	Module Index

	Search Page

Installation

Recommended method

We recommend using the Anaconda Python [https://www.continuum.io/downloads] distribution.
Alternative installation instructions are given at the bottom.

WPS/WRF-SFIRE

Please follow the instructions on OpenWFM [http://www.openwfm.org] to run WPS/WRF with real data.
Ensure that you have working WPS/WRF installation is available and compatible with the MPI on your cluster.
Note that wrfxpy will not modify the WPS/WRF installation, instead for each job, it will clone their directories
into its workspace.

Attention

Past this point, you should be able to run a fire simulation yourself,
that is have a working WPS/WRF-SFIRE installation including WPS-GEOG
and fuels/topography downloaded. You should be able to submit a parallel
job into your cluster/supercomputer to run wrf.exe

Python and packages

Download and install the Python 2 Anaconda Python [https://www.continuum.io/downloads] distribution for your platform. We recommend an installation into the users home directory.

	::

	wget https://repo.continuum.io/archive/Anaconda2-5.3.0-Linux-x86_64.sh
chmod +x Anaconda2-5.3.0-Linux-x86_64.sh
./Anaconda2-5.3.0-Linux-x86_64.sh

Install pre-requisites:

conda install basemap netcdf4 pyproj paramiko dill
conda install -c conda-forge simplekml pygrib f90nml
conda install -c anaconda numpy
pip install MesoPy
pip install python-cmr

	Add your environment (~/.custom.csh) the following line

	setenv PROJ_LIB “$HOME/anaconda2/share/proj”

	or if you are using bash to ~/.profile or ~/.bashrc

	export PROJ_LIB=”$HOME/anaconda2/share/proj”

Note that conda and pip are package managers available in the Anaconda Python distribution.

wrfxpy

Next, clone the wrfxpy code:

git clone https://github.com/openwfm/wrfxpy.git

configuration

And finally, a etc/conf.json file must be created with the keys discussed below. A template file etc/conf.json.initial is provided as a starting point.

Configure the system directories, WPS/WRF-SFIRE locations and workspace locations by editing the following keys:

"workspace_path": "wksp"
"wps_install_path": "path/to/WPS"
"wrf_install_path": "path/to/WRF"
"sys_install_path": "/path/to/wrfxpy"
"wps_geog_path" : "/path/to/wps-geogrid"

Optionally, the wrfxpy installation can be connected to a visualization server wrfxweb [https://github.com/vejmelkam/wrfxweb]. The following keys are all optional (and only used if the postprocessed results of simulations are uploaded).

"shuttle_ssh_key": "path/to/your/priv_ssh_key/to/remote/host",
"shuttle_remote_user" : "remote_username",
"shuttle_remote_host" : "remote_hostname",
"shuttle_remote_root" : "remote directory for output storage"

This concludes the etc/conf.json file.

Next, wrfxpy needs to know how jobs are submitted on your cluster. Create an entry for your cluster, here we use speedy as an example:

{
 "speedy" : {
 "qsub_cmd" : "qsub",
 "qsub_script" : "etc/qsub/speedy.sub"
 }
}

And then the file etc/qsub/speedy.sub should contain a submission script template, that makes use of the following variables supplied by wrfxpy based on job configuration:

	%(nodes)d the number of nodes requested

	%(ppn)d the number of processors per node requested

	%(wall_time_hrs)d the number of hours requested

	%(exec_path)d the path to the wrf.exe that should be executed

	%(cwd)d the job working directory

	%(task_id)d a task id that can be used to identify the job

	%(np)d the total number of processes requested, equals nodes x ppn

Note that not all keys need to be used, as shown in the speedy example:

#$ -S /bin/bash
#$ -N %(task_id)s
#$ -wd %(cwd)s
#$ -l h_rt=%(wall_time_hrs)d:00:00
#$ -pe mpich %(np)d
mpirun_rsh -np %(np)d -hostfile $TMPDIR/machines %(exec_path)s

The script template should be derived from a working submission script.

Attention

You are now ready for your first fire simulation, continue with Quickstart.

Custom installation

If Anaconda python is not practical, a different python distribution can be used. Below is a list of packages the system requires:

	Python 2.7+ [https://www.python.org/download/releases/2.7/]

	Basemap [http://matplotlib.org/basemap/] to render the rasters

	simplekml [https://simplekml.readthedocs.org/en/latest/] to build KMZ files

	f90nml [https://pypi.python.org/pypi/f90nml] to manipulate Fortran namelists

	pyproj [https://pypi.python.org/pypi/pyproj] to place domains dynamically in LCC projection

	paramiko [https://pypi.python.org/pypi/paramiko] to communicate over SSH with remote hosts

	netCDF4 [https://pypi.python.org/pypi/netCDF4] to manipulate WPS and WRF files

	MesoPy [https://pypi.python.org/pypi/MesoPy] to retrieve fuel moisture observations from Mesowest

wrfxpy is installed by cloning a GitHub repository

git clone https://github.com/openwfm/wrfxpy.git

Configure wrfxpy by editing etc/conf.json as above and then continue with Quickstart.

Quickstart

Important

It is imperative that a working WRF-SFIRE installation is available.
Please first follow the installation instructions Installation.

First fire forecast

The simplest way to start is to invoke the standalone script

./simple_forecast.sh

The script will ask you a series of questions with sensible defaults and at the
end will create a JSON configuration file and finish with instructions on how to
run the simulation.

Example fire forecast

To perform a fire forecast, the script forecast.sh has to be executed with
a JSON configuration file as an argument, for example:

./forecast.sh <json-configuration-file>

An example configuration script is examples/simple_fire.json, also listed here for
convenience. The script has most of the values filled out but there are some placeholders.

Please set the following values:

	geogrid_path should point to the directory with your WPS-GEOG data

	num_nodes are the number of nodes to use for the parallel job

	ppn the number of processors per node to use

	wall_time_hrs number of hours of wall time to reserve for the job

	qsys the queueing subsystem id which point into etc/clusters.json

{
 "grid_code": "test",
 "grib_source": "NAM",
 "wps_namelist_path": "etc/nlists/default.wps",
 "wrf_namelist_path": "etc/nlists/default.input",
 "fire_namelist_path": "etc/nlists/default.fire",
 "emissions_namelist_path": "etc/nlists/default.fire_emissions",
 "geogrid_path": "/path/to/your/WPS-GEOG",
 "num_nodes": 10,
 "ppn": 12,
 "wall_time_hrs": 3,
 "qsys": "sge",
 "start_utc": "T-30",
 "end_utc": "T+300",
 "domains" : {
 "1" : {
 "cell_size" : [1000, 1000],
 "domain_size" : [91, 91],
 "center_latlon" : [39.1, -105.9],
 "truelats" : [38.5, 39.6],
 "stand_lon" : -105.9,
 "time_step" : 5,
 "history_interval" : 15,
 "geog_res" : "0.3s",
 "subgrid_ratio" : [50, 50]
 }
 },
 "ignitions" : {
 "1" : [{
 "start_delay_s" : 600,
 "duration_s" : 240,
 "lat" : 39.894264,
 "long" : -103.903222
 }]
 },
 "postproc" : {
 "1" : ["T2", "PSFC", "WINDSPD", "WINDVEC", "FIRE_AREA", "FGRNHFX", "FLINEINT", "SMOKE_INT"]
 }
}

This example configuration runs a fire simulation with the following settings:

	a single domain configuration with a domain placed approximately around an ignition point

	use NAM [http://www.nco.ncep.noaa.gov/pmb/products/nam/] as the source for initial and boundary conditions

	start at time now minus 30 mins and run a 5 hour simulation

	use 10 nodes, 12 CPU cores per node, allow a wall time of 3 hrs, the queue manager is SGE (Sun Grid Engine)

	use the default WPS/WRF/fire/emissions namelists as base

	ignite the fire 600s after the start of the simulation and deactivate the ignition after 4 minutes.

	generate surface temperature maps, wind information and fire fields for domain 1, the where the fire is burning

Tip

To learn how to configure jobs in more detail, refer to Forecasting.

Forecasting

The script forecast.sh serves to run weather forecasts, fire danger forecasts and fire
simulations depending on its settings.

The script requires a JSON configuration file to control its execution, for an example refer
to the Quickstart. The configuration file is JSON dictionary with the keys described
in the following sections. Not all keys are required.

Domains

Domains are shared by WPS and by WRF and as they are very important, they have their own section.
All domains are given in the key domains : [dict].

The first domain is always the top-level domain, and subsequent domains are always child domains
such that their parent is always defined before they are. Each domain can be precomputed or
dynamically placed. In the following, we detail configuration of each type.

Note: in the input namelist, wrfxpy will set the top level domain as specified, while
all other domains will be nested.

All domains must have the following keys:

	history_interval : [integer] the history interval in minutes, default is 60

	parent_id : [integer] the id of the parent domain (can omit for parent domain with id=1)

A top-level precomputed domain must have the following keys:

Example:

"domains" : {
 "1" : {
 "time_step" : 5,
 "precomputed" : "path/to/precomputed/geo_em.dYY.nc",
 "history_interval" : 15
 }

This will cause the use of the domain as precomputed in colorado_domain_1.nc with a time step of 5 seconds and
a history interval of 15 mins. All spatial information will be retrieved from the netCDF file.

Top-level dynamically placed

A top-level dynamically placed domain must have the following keys:

	time_step : [integer] time step in seconds

	subgrid_ratio : [integer, integer] the refinement ratio for x and y direction for the fire grid, default is 1, 1

	cell_size : [integer, integer] the size of one grid cell in meters in DX, DY order (placed)

	domain_size : [integer, integer] the number of grid points in longitudinal and latitudinal direction (placed)

	geog_res : [string] the resolution of geographical/fuel data to use for the domain (placed)

	center_latlon : [float, float] the latitude and longitude of grid center (placed)

	truelats : [float, float] the true lattitudes of the LCC projection

	stand_lon : [float] the standard longitude of the LCC projection

Example:

"domains" : {
 "1" : {
 "cell_size" : [1000, 1000],
 "domain_size" : [101, 101],
 "center_latlon" : [39.894264, -103.903222],
 "truelats" : [39.2, 40.5],
 "stand_lon" : -103.903222,
 "time_step" : 5,
 "history_interval" : 15,
 "geog_res" : ".3s",
 "subgrid_ratio" : [40, 40]
 }
}

This will set up a top level domain domain with cell size 1km and 101x101 grid points, centered on the location [39.894264, -103.903222],
with true latitudes and standard longitude as provided. The time step will be 5 seconds and history interval will be 15 mins.
High resolution .3s geographical/fuel data will be used to construct the domain. The domain will have a fire grid 25m x 25m.

If the domain is precomputed, the following key must be set:

	precomputed : [string] the precomputed geo_em.dYY.nc file path relative to wrfxpy installation

Then, all values are loaded from the geo_em.dYY.nc file except for time_step and history_interval.

Child domain statically placed

A child domain requires the following keys:

	parent_time_step_ratio : [int] ratio of child time step to parent time step

	parent_cell_size_ratio : [int] ratio of the size of the child cell to the parent cell

	parent_start : [int, int] the x, y coordinates of the parent grid where this grid starts

	parent_end : [int, int] the x, y coordinates of the parent grid where this grid ends

Example

"domains" : {
 "1" : {
 "time_step" : 5,
 "history_interval" : 30,
 "precomputed" : "precomputed/my_grids/colorado_domain_1.nc"
 },
 "2" : {
 "parent_id" : 1,
 "parent_time_step_ratio" : 4,
 "history_interval" : 30,
 "precomputed" : "precomputed/my_grids/colorado_domain_2.nc"
 }
}

If the child domain is precomputed, again all these values are read in from the geo_em file automatically except
timing information: parent_time_step_ratio must still be set.

	precomputed : [string] the precomputed geo_em.dYY.nc file path relative to wrfxpy installation

Child domain placed by bounding box

	parent_cell_size_ratio : [int] the ratio of cell size to parent cell size

	parent_time_step_ratio : [int] ratio of child time step to parent time step

	bounding_box : [float, float, float, float] the bounding box the domain should enclose as [min_lon, min_lat, max_lon, max_lat]

Examples

"domains" : {
 "1" : {
 "time_step" : 50,
 "history_interval" : 30,
 "precomputed" : "precomputed/my_grids/colorado_domain_1.nc"
 },
 "2" : {
 "parent_cell_size_ratio" : 3,
 "parent_time_step_ratio" : 3,
 "bounding_box" : [-105, 39, -105.5, 39.5],
 "history_interval" : 15,
 "geog_res" : ".3s",
 "subgrid_ratio" : [50, 50]
 "parent_time_step_ratio: [int]``
 }
}

The value must be a dictionary mapping geo_em.dYY.nc files to their actual location.

WRF-SFIRE inputs

All of the following keys are required.

	grid_code : [string] the grid code is part of the job id and semantically should identify the configured grid

	grib_source : [string] must be one of NAM, NARR or HRRR

	geogrid_path : [string] the path to WPS GEOG data directory

	start_utc : [esmf_time] the start time of the simulation in ESMF format

	end_utc : [esmf_time] the end time of the simulation in ESMF format

The keys in the remainder of this section are optional.

	ignitions : [dict] (optional) is a dictionary of domains (string identifier, e.g. “1”) to a list of ignitions that should be added to the domain, each being a dictionary with the following keys:

	time_utc : [esmf_time] time of ignition

	duration_s : [int] the length of time the ignition is active

	latlon : [int] the latitude and longitude of the ignition point

Including this option causes the fire model to be switched on in each domain listed. A total of five ignitions is allowed (combined for all domains). For example

"ignitions" : {
 "1" : [],
 "2" : [{
 "time_utc" : "2016-03-30_13:14:00",
 "duration_s" : 240,
 "latlon" : [39.894264, -103.903222]
 }]
}

This would ignite a single fire 10 minutes after simulation start at the given lat/lon, hold the ignition for 4 minutes. In the first domain, the fuel moisture model will be switched on and fire danger calculations will be performed.

Important

	All ignitions are point ignitions.

	All ignitions have a rate of spread parameter set to 1m/s and the maximum radius 200 m, see WRF-SFIRE documentation [http://www.openwfm.org/wiki/WRF-Fire_ignition]

	If a domain is listed without any ignitions, the fire model is switched on and computes quantities related to fire danger, such as fire spread rates, fuel moisture values, etc.

Namelist templates

All of the following keys are required.

	wps_namelist_path : [string] the WPS namelist template

	wrf_namelist_path : [string] the WRF namelist template

	fire_namelist_path : [string] the fire namelist template

	emissions_namelist_path : [string] the file_emissions namelist template

Parallel job configuration

The following keys are required.

	num_nodes : [int] the number of parallel nodes to use for WRF execution

	ppn : [int] the number of processors per node to request

	wall_time_hrs : [int] the wall time to request from the schedule in hours

	qman : [string] the queue manager to use, must be sge

Fuel moisture data assimilation

The key fuel_moisture_da is optional. If given, it needs to contain two keys:

	domains : [list(int)] a list of domains for which to run data assimilation

Important

In addition to this, the file etc/tokens.json must contain the key mesowest_token : [string],
which will be used to access the Mesowest API (you must obtain one here Mesowest [http://synopticlabs.org/api/signup/]).

The data assimilation code will download 10-hr fuel moisture observations from stations in the domain area and assimilate them into the equilibrium.

Example:

"fuel_moisture_da" : {
 "domains" : [1]
}

Postprocessing

The key postproc, when present contains a dictionary keyed by domain id (string), which identifies the variables to postprocess for each domain.
For each listed variable, a PNG and a KMZ file is created and if required, a colorbar (configured in var_wisdom).

Additionally, if a remote visualization server is configured in etc/conf.json, the postprocessed rasters can be automatically sent either during the forecast itself or after the forecast is complete.

Example without remote shuttling:

"postproc" : {
 "1" : ["T2", "PSFC", "WINDSPD"],
 "2" : ["T2", "FIRE_AREA", "WINDVEC"]
}

In this example, the postprocessed raster files are generated in the products subdirectory of the workspace directory where the job is executing.

Example with remote shuttling:

"postproc" : {
 "1" : ["T2", "PSFC", "WINDSPD"],
 "shuttle" : "on_completion",
 "description" : "This should be a user-readable string that will be displayed to the user"
}

The second example will send the complete visualization package to the remote server after the forecast is complete.
The description string should be a short descriptive identifier of the simulation.
This text will be shown to the user in the initial catalog menu on wrfxweb and thus also shouldn’t be too long.

Standalone scripts

Although wrfxpy is meant to be an integrated system, some functionalities
are exposed through separate scripts. These are detailed in this section.

Domain setup

The script domain_setup.sh accepts a domain configuration description and
injects the domain configuration into a WPS nmelist file and into an input
namelist file. Please refer to the domain configuration description in Forecasting.

Example:

./domain_setup.sh my_domains.json namelist.wps namelist.input

Assuming that my_domains.json contains the following:

{
 "1" : {
 "cell_size" : [1000, 1000],
 "domain_size" : [91, 91],
 "center_latlon" : [39.1, -105.9],
 "truelats" : [38.5, 39.6],
 "stand_lon" : -105.9,
 "time_step" : 5,
 "history_interval" : 15,
 "geog_res" : "0.3s",
 "subgrid_ratio" : [50, 50]
 }
}

Then both namelists will be setup for a single-domain configuration (1km grid
cell size, 91 x 91 domain size, 20m fire grid).

Note

The namelist files are overwritten.

Grib retrieval and examination

The script grib_retr.sh accepts fourth arguments, the grib source identifier,
the UTC start, the end time of a simulation in ESMF format and the ingest directory.

Example:

./grib_retr.sh HRRR 2016-03-26_14:00:00 2016-03-26_19:00:00 ingest

This will find out which GRIB2 files are required to perform this simulation and
will download them into subdirectories of the ingest directory.

Tip

Using the wrfxpy ingest directory (or the same directory) consistently will make
best use of the transparent local caching functionality. Any files that have already
been downloaded are not re-downloaded.

The script grib_tool.sh allows the user to list the contents of a GRIB1/2 file and
to convert it to a netCDF file.

Examples:

./grib_tool.sh list <grib-filename>

./grib_tool.sh to_netcdf <input-grib-filename> <message-to-convert> <output-netcdf-file>

Postprocessing

The script postprocess.sh accepts four arguments, the wrfout file to process,
the variables to postprocess (or an instruction file, see below), the prefix on which
to base the filenames and the skip (the script will process every skip-th frame).
The script always generates PNG files and KMZ files for each variable and timestamp.

Example:

./postprocess.sh /path/to/wrfout T2,PSFC my_directory/file_prefix 1

Alternatively, instead of listing the variables, a more detailed configuration controlling
the colormaps, ranges and other parameters can be specified:

./postprocess.sh /path/to/wrfout @var_instructions my_directory/file_prefix 1

Where the file var_instructions contains:

{
 "FGRNHFX" : {
 "name" : "Grnd Heat flux",
 "colorbar" : "W/m^2",
 "colormap" : "jet",
 "transparent_values" : [0, 1],
 "scale" : [0, 6]
 }
}

Will show the colorbar in W/m^2 units and change the displayed variable name to
Grnd Heat flux, set the colormap to jet, ensure that values between 0 and 1
are not shown and fix the scale from 0 to 6.

Tip

For the default and more information on values that can be set, examine src/vis/var_wisdom.py.

Fuel moisture DA

The script apply_fmda.sh accepts a single wrfinput path argument and
performs a data assimilation step using background covariance.

Example:

./apply_fmda.sh wrfinput_d01

The script will read in the timestamp from the wrfinput file, determine it’s
physical extent (lat/lon) and download all observations of 10-hr fuel moisture
valid at that time available in the region. Then the equilibrium fuel moisture
content is computed and adjusted with respect to the observations using the
background covariance. The updated values are written back into the fuel moisture
file.

SSH Shuttle

The script ssh_shuttle.sh accepts a local directory a remote directory name and an identifier
and uploads the entire local directory with simulation results to the remote host configured in conf.json and registers the simulation in the catalog.json file on the remote server.

Examples:

./ssh_shuttle.sh wksp/my-simulation/products test_fire_april test_fire_april

The script scans all the files in wksp/my-simulation/products and uses SFTP to put them onto the remote host. The remote directory must be either an absolute path or (recommended) should be relative to the remote host root setup in conf.json. The identifier will be used as the description and also as the key under which the simulation is stored in catalog.json on the remote host.

Data cleanup

The script cleanup.sh provides functionality to:

	list all simulations that are available on a configured visualization server,

	remove a selected simulation, freeing up diskspace.

Examples:

./cleanup.sh list

./cleanup.sh delete <simulation-id-from-list>

Catalog and manifest

This document describes the catalog format and the manifest format.
The catalog file collects computed simulations for the visualizaion server
and points to the manifest file for each simulation.
The manifest contains postprocessed rasters pertaining to a single simulation.

Catalog

The file catalog.json in the root visualization directory of the wrfxweb
visualization system is a JSON file which stores the following information about each simulation:

	manifest_path : [string] the path to the manifest string

	description : [string] a description that is shown in the selection menu to a user

	from_utc : [esmf_time] the start time of the simulation in ESMF format

	to_utc : [esmf_time] the end time of the simulation in ESMF format

Example:

{
 "patch_fire": {
 "manifest_path": "patch3/patch.json",
 "description": "Patch Springs Fire [UT]",
 "to_utc": "2013-08-19_09:00:00",
 "from_utc": "2013-08-11_00:00:00"
 },
 "test_fire_3": {
 "manifest_path": "test_fire_3/wfc-two-domain-fire.json",
 "description": "2-domain test fire, viscosity=0",
 "to_utc": "2016-04-08_23:00:00",
 "from_utc": "2016-04-08_18:00:00"
 },
 .
 .
 .
}

Manifest

The manifest file is a JSON file that collects information on which domains, timestamps
and variables are generated from a simulation. The top-level object is a dictionary keyed
by string domain identifier (“1”, “2”, …) and contains an object keyed by ESMF time
(“2016-03-30_00:00:00”, …) which in turn contains a dictionary keyed by variable names
(e.g. “T2”, “WINDVEC”, …). The postprocessing results for each variable are represented
by dictionary keys as follows:

	colobar : [string] (optional) path to the colorbar, if any

	raster : [string] path to the display raster (PNG file)

	kml : [string] (optional) path to the KMZ file for possible download

	coords : [string] the corner coordinates of the PNG file (geolocation)

An partial example of one variable in a file is below:

{
 "1" : {
 .
 .
 "2016-03-30_16:15:00" : {
 .
 .
 "FMC_G": {
 "colorbar": "patch-2013-08-14_12:00:00-FMC_G-cb.png",
 "raster": "patch-2013-08-14_12:30:00-FMC_G-raster.png",
 "kml": "patch-2013-08-14_12:30:00-FMC_G.kmz",
 "coords": [
 [-113.15496826171875, 39.978614807128906],
 [-112.26193237304688, 39.978614807128906],
 [-112.26193237304688, 40.65946960449219],
 [-113.15496826171875, 40.65946960449219]
]
 }
 }
 }
}

 Python Module Index

 i |
 v |
 w

 		 	

 		
 i	

 	
 	
 ingest	

 		 	

 		
 v	

 	
 	
 vis	

 		 	

 		
 w	

 	
 	
 wrf	

Index

 C
 | E
 | G
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | U
 | V
 | W

C

 	
 	check_output() (wrf.wrf_exec.Geogrid method)

 	(wrf.wrf_exec.Metgrid method)

 	(wrf.wrf_exec.Real method)

 	(wrf.wrf_exec.Ungrib method)

 	
 	check_variable() (wrf.wrf_data.WRFModelData method)

 	compute_rainfall_per_timestep() (wrf.wrf_data.WRFModelData method)

E

 	
 	equilibrium_moisture() (wrf.wrf_data.WRFModelData method)

 	execute() (wrf.wrf_exec.Executor method)

 	(wrf.wrf_exec.Real method)

 	
 	Executor (class in wrf.wrf_exec)

G

 	
 	Geogrid (class in wrf.wrf_exec)

 	get_domain_extent() (wrf.wrf_data.WRFModelData method)

 	get_field() (wrf.wrf_data.WRFModelData method)

 	
 	get_gmt_times() (wrf.wrf_data.WRFModelData method)

 	get_lats() (wrf.wrf_data.WRFModelData method)

 	get_lons() (wrf.wrf_data.WRFModelData method)

 	get_moisture_equilibria() (wrf.wrf_data.WRFModelData method)

I

 	
 	ingest (module)

L

 	
 	latlon_to_ij() (wrf.wps_domains.WPSDomainLCC method)

 	
 	load_data() (wrf.wrf_data.WRFModelData method)

M

 	
 	Metgrid (class in wrf.wrf_exec)

O

 	
 	OutputCheckFailed

P

 	
 	prepare_for_geogrid() (wrf.wps_domains.WPSDomainConf method)

 	
 	prepare_for_metgrid() (wrf.wps_domains.WPSDomainConf method)

R

 	
 	Real (class in wrf.wrf_exec)

S

 	
 	slice_field() (wrf.wrf_data.WRFModelData method)

 	submit() (wrf.wrf_exec.Submitter method)

 	(wrf.wrf_exec.WRF method)

 	
 	Submitter (class in wrf.wrf_exec)

U

 	
 	Ungrib (class in wrf.wrf_exec)

 	
 	update_inputnl() (wrf.wps_domains.WPSDomainLCC method)

 	update_wpsnl() (wrf.wps_domains.WPSDomainLCC method)

V

 	
 	vis (module)

W

 	
 	WPSDomainConf (class in wrf.wps_domains)

 	WPSDomainLCC (class in wrf.wps_domains)

 	
 	WRF (class in wrf.wrf_exec)

 	wrf (module)

 	WRFModelData (class in wrf.wrf_data)

fmda module

The fmda module contains code that performs fuel moisture data assimilation.

In particular, the module can:

	open a wrfinput/wrfoutput file, extract meteorological data,

	compute the equilibrium moisture (or run fuel moisture model for a few steps)

	retrieve fuel moisture observations from the Mesowest [http://mesowest.org] API service

	perform a Kalman filter update on the computed moisture

	store the analysis back in the processed file

ingest module

The ingest module contains code that retrieves external data required
for wrxpy to function, such as GRIB2 files or satellite observations.

vis module

wrf module

The wrf module contains functions related to WRF/WPS.

	
class wrf.wps_domains.WPSDomainLCC(dom_id, cfg, parent=None)

	A top-level Lambert Conic Conformal projection domain.

	
latlon_to_ij(lat, lon)

	Convert latitude and longitude into grid coordinates.

If this is a child domain, it asks it’s parent to do the projectiona and then
remaps it into its own coordinate system via parent_start and cell size ratio.

	Parameters

	
	lat – latitude

	lon – longitude

	Returns

	the i, j position in grid coordinates

	
update_inputnl(nml)

	Update the WRF input namelist according to the domain configuration.

	Parameters

	nml – the namelist dictionary

	
update_wpsnl(nml)

	Update the share and geogrid section of the WPS namelist.

	Parameters

	nml_geogrid – a dictionary containing the geogrid section of the WPS namelist

	
class wrf.wps_domains.WPSDomainConf(cfg)

	Represents a domain configuration for WPS, that is one or more domains with
one top-level domain.

	
prepare_for_geogrid(wps_nml, input_nml=None, wrfxpy_dir=None, wps_dir=None)

	Update the namelists for geogrid processing - write the domain configurations.
Additionally

	Parameters

	
	wps_nml – the WPS namelist

	input_nml – the input namelist, if None that skipped

	wrfxpy_dir – the installation directory of wrfxpy (if None, no linking is done)

	wps_dir – the WPS working directory

	
prepare_for_metgrid(wps_nml)

	Set all domains that we use to active.

	Parameters

	wps_nml – the WPS namelist

	
class wrf.wrf_data.WRFModelData(path, variables=['T2', 'Q2', 'PSFC', 'RAINNC', 'RAINC'])

	This class represents information obtained from a wrfout or wrfinput as generated by WPS or WRF.
Methods for loading data and deriving new variables on the fly are provided.

	
check_variable(V, name, mn, mx)

	Check if the variable V is outside the range [mn,mx].

	
compute_rainfall_per_timestep()

	Compute the rainfall per timestep at each grid point from
WRF variables RAINNC and RAINC.

	
equilibrium_moisture()

	Uses the fields of the WRF model to compute the equilibrium
field.

	
get_domain_extent()

	Return smallest enclosing aligned rectangle of domain.
return is a tuple (min(lon), min(lat), max(lon), max(lat)).

	
get_field(field_name)

	Return the field with the name field_name.

	
get_gmt_times()

	Returns the local time (depends on time zone set).

	
get_lats()

	Return lattitute of grid points.

	
get_lons()

	Return longitude of grid points.

	
get_moisture_equilibria()

	Return the drying and wetting equilibrium.

	
load_data(var_names)

	Loads selected variables from the wrfinput/wrfoutput file.

The spatiotemporal information is always loaded: ‘XLAT’, ‘XLONG’, ‘Times’.

	Parameters

	var_names – list of variables to load (beyond ‘XLAT’, ‘XLONG’ and ‘Times’)

	
slice_field(field_name)

	Remove the temporal dimension from the field by only keeping
the field for the first time instant.

	
exception wrf.wrf_exec.OutputCheckFailed

	Carries info about the failure of a subprocess execution.

	
class wrf.wrf_exec.Executor(work_dir, exec_name)

	A class that handles execution of external processes for the system with
make-like functionality.

This class works for serially (not using MPI) and synchronously
(not using a queuing system) launched executables.

	
execute()

	Execute the file in given working directory.

The execute method first checks whether the expected output is present and
if it indicates success, if yes, nothing is executed. If not, the file is executed
and its output is redirected: stdout goes to <exec_name>.stdout, stderr goes to <exec_name>.stderr
Then the output is checked for markers indicating success, if found, function returns.
Otherwise an exception is raised indicating the external process failed.

	Returns

	raises OutputCheckFailed if return code is non-zero

	
class wrf.wrf_exec.Geogrid(work_dir)

	Handles geogrid.exe execution.

	
check_output()

	Checks if the output file for geogrid contains the string “Successful completion of geogrid.”

	Returns

	returns self on success, else raises OutputCheckFailed

	
class wrf.wrf_exec.Ungrib(work_dir)

	Handles ungrib.exe execution.

	
check_output()

	Checks if the output file for ungrib contains the string “Successful completion of ungrib.”

	Returns

	raises OutputCheckFailed

	
class wrf.wrf_exec.Metgrid(work_dir)

	Handles metgrid.exe execution.

	
check_output()

	Checks if the output file for metgrid contains the string “Successful completion of metgrid.”

	Returns

	raises OutputCheckFailed

	
class wrf.wrf_exec.Real(work_dir)

	Handles real.exe execution.

	
check_output()

	Checks if the output file for real contains the string “SUCCESS COMPLETE REAL_EM INIT”

	Returns

	raises OutputCheckFailed

	
execute()

	Execute real.exe in given working directory.

This method is redefined here as real.exe needs special treatment. DMPAR compilation of WRF
causes real.exe to output stdout and stderr into rsl.out.0000 and rsl.error.0000 respectively.
We don’t redirect these (we can’t) but we rename the output files after the fact.

NOTE: on some machines it is OK to run real.exe from command line, but generally mpirun is required!

	Returns

	raises OutputCheckFailed if return code is non-zero

	
class wrf.wrf_exec.Submitter(work_dir, qsys_id)

	Class that abstract jobs that must be submitted to a queue manager.

	
submit(task_id, exec_path, nodes, ppn, wall_time_hrs)

	Build a job script and submit it to the queue manager.

	Parameters

	
	task_id – the name of the task in the queue

	exec_path – the path to the parallel executable

	nodes – number of nodes to request for parallel job

	ppn – processors per nodes to request

	wall_time_hrs – wall time to request for job

	Returns

	job number string to be used in further queue manager commands

	
class wrf.wrf_exec.WRF(work_dir, qman)

	Handles job submission for wrf.exe into a job manager.

	
submit(task_id, nodes, ppn, wall_time_hrs)

	Submits a WRF job with the given parameters via queue manager setup during construction.

Fills out executable name and lets submitter do the heavy lifting.

	Parameters

	
	task_id – the name of the task in the queue

	nodes – number of nodes to request for parallel job

	ppn – processors per nodes to request

	wall_time_hrs – wall time to request for job

	Returns

	job number string to be used in further queue manager commands

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 wrfxpy

 		
 Installation

 		
 Recommended method

 		
 WPS/WRF-SFIRE

 		
 Python and packages

 		
 wrfxpy

 		
 configuration

 		
 Custom installation

 		
 Quickstart

 		
 First fire forecast

 		
 Example fire forecast

 		
 Forecasting

 		
 Domains

 		
 Top-level dynamically placed

 		
 Child domain statically placed

 		
 Child domain placed by bounding box

 		
 WRF-SFIRE inputs

 		
 Namelist templates

 		
 Parallel job configuration

 		
 Fuel moisture data assimilation

 		
 Postprocessing

 		
 Standalone scripts

 		
 Domain setup

 		
 Grib retrieval and examination

 		
 Postprocessing

 		
 Fuel moisture DA

 		
 SSH Shuttle

 		
 Data cleanup

 		
 Catalog and manifest

 		
 Catalog

 		
 Manifest

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

