

 Navigation

 	
 index

 	
 next |

 	WoTKit 1.6.0.SNAPSHOT documentation

Welcome to the WoTKit

The WoTKit is a web-centric toolkit that helps organizations manage sensors and actuators to collect, aggregate, store and process sensor data and react to changes in the physical and virtual world.

To get started quickly, see the Quick Start guide. For more information see consult the V1 API Reference.

Please send any questions and feedback to info@sensetecnic.com.

Guide

	1. WoTKit API Guides
	1. Organizations for Privacy and Visibility
	1.1. Private Sensors and Groups

	1.2. Creating an Organization

	2. Querying Sensor Data
	2.1. Recent Queries
	2.1.1. Recent Num Queries

	2.1.2. Recent Time Queries

	2.2. Time Range Queries
	2.2.1. Querying with Start and End

	2.2.2. Paging Through Data

	2.2.3. Advanced Time Range Queries

	2.2.4. Summary of Time Range Data Query

	2.3. Sensor Data Query Recipes
	2.3.1. Use start_id instead of start for start of query

	2.3.2. Making Start Inclusive

	2. V1 API Reference
	2.1. Authentication
	2.1.1. Methods privacy

	2.1.2. Keys and Basic Authentication

	2.1.3. Registered Applications and OAuth2

	2.1.4. Authorization Code Grant

	2.1.5. Password Grant

	2.1.6. Access Token Facts

	2.2. Error Reporting

	2.3. Sensors
	2.3.1. Querying Sensors

	2.3.2. Viewing a Single Sensor

	2.3.3. Creating/Registering a Sensor

	2.3.4. Creating/Registering multiple Sensors

	2.3.5. Updating a Sensor

	2.3.6. Deleting a Sensor

	2.4. Sensor Subscriptions
	2.4.1. Get Sensor Subscriptions

	2.4.2. Subscribe

	2.4.3. Unsubscribe

	2.5. Sensor Fields
	2.5.1. Querying Sensor Fields

	2.5.2. Updating a Sensor Field

	2.5.3. Deleting a Sensor Field

	2.6. Sensor Data
	2.6.1. Sending New Data

	2.6.2. Sending Bulk Data

	2.6.3. Deleting Data

	2.6.4. Raw Data Retrieval

	2.6.5. Formatted Data Retrieval

	2.6.6. Aggregated Data Retrieval

	2.7. Sensor Control Channel: Actuators
	2.7.1. Sending Actuator Messages

	2.7.2. Receiving Actuator Messages
	2.7.2.1. Subscribing to an Actuator Controller

	2.7.2.2. Query an Actuator

	2.8. Tags
	2.8.1. Querying Sensor Tags

	2.9. Users
	2.9.1. List/Query Users

	2.9.2. Viewing a Single User

	2.9.3. Creating/Registering a User

	2.9.4. Updating a User

	2.9.5. Deleting a User

	2.10. Organizations
	2.10.1. List/Query Organizations

	2.10.2. Viewing a Single Organization

	2.10.3. Creating/Registering an Organization

	2.10.4. Updating an Organization

	2.10.5. Deleting an Organization

	2.10.6. Organization Membership
	2.10.6.1. List all members of an Organization

	2.10.6.2. Add new members to an Organization

	2.10.6.3. Remove members from an Organization

	2.11. Sensor Groups
	2.11.1. Sensor Group Format

	2.11.2. List Groups

	2.11.3. Viewing a Single Sensor Group

	2.11.4. Creating a Sensor Group

	2.11.5. Modifying Sensor Group Fields

	2.11.6. Deleting a Sensor Group

	2.11.7. Adding a Sensor to Sensor Group

	2.11.8. Removing a Sensor from Sensor Group

	2.12. News

	2.13. Statistics

	2.14. Smart Streets Authentication
	2.14.1. Authenticating using Smart Streets Developer Keys

	3. V2 API Reference
	3.1. Sensor Data
	3.1.1. Sending New Data

	3.1.2. Updating a Range of Historical Data

	3.1.3. Retrieving a Single Data Item

	3.1.4. Retrieving Data Using Query

	3.1.5. Delete Data by Id

	3.1.6. Delete Data using Data Query

	3.2. Alerts
	3.2.1. Listing Alerts of an User

	3.2.2. Viewing an Alert

	3.2.3. Creating Alerts

	3.2.4. Updating Alerts

	3.2.5. Deleting Alerts

	3.3. Inbox
	3.3.1. Listing Inbox Messages of an User

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WoTKit 1.6.0.SNAPSHOT documentation

1. WoTKit API Guides

In this section we have listed tutorials which guide users through the API. For
reference documentation, refer to Sensor Data.

	1. Organizations for Privacy and Visibility
	1.1. Private Sensors and Groups

	1.2. Creating an Organization

	2. Querying Sensor Data
	2.1. Recent Queries
	2.1.1. Recent Num Queries

	2.1.2. Recent Time Queries

	2.2. Time Range Queries
	2.2.1. Querying with Start and End

	2.2.2. Paging Through Data

	2.2.3. Advanced Time Range Queries

	2.2.4. Summary of Time Range Data Query

	2.3. Sensor Data Query Recipes
	2.3.1. Use start_id instead of start for start of query

	2.3.2. Making Start Inclusive

 Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WoTKit 1.6.0.SNAPSHOT documentation

 	1. WoTKit API Guides

1. Organizations for Privacy and Visibility

WoTKit organizations are used to group sensors owned by an organization, and restrict the visibility of sensors and groups to other users in the system who are members of the same organization.

Organization members may have different roles: OWNER, ADMIN, and MEMBER.

	MEMBER - a member can view private sensors and groups in the organization. They cannot add sensors or groups to the organization, modify organization membership or roles, or delete the organization.

	ADMIN - an admin is a MEMBER who can add or remove members, and add or remove sensors and groups to an organization. They have read and write priveledges to sensors and groups.

	OWNER - an owner is an ADMIN who owns the organization and can delete the organization.

1.1. Private Sensors and Groups

When group or sensor is marked as private, it can only be viewed by organization members.

Note: when a group contains a mix of private and public sensors from different organizations, some sensors in a group may not be visible to all users in a given organization.

1.2. Creating an Organization

When you create an organization, you are the owner of that organization. As owner, you can add members, and assign roles.

 Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WoTKit 1.6.0.SNAPSHOT documentation

 	1. WoTKit API Guides

2. Querying Sensor Data

WoTKit provides flexibility in how you want to query your data. In the following
section, we walk through the different ways of building a query to get
sensor data out of wotkit. The queries are constructed using query parameters
which you append to a URL endpoint.

Generally, the use cases of the data api is to query for the raw time-series
data of a sensor or group of sensors. There are two different types of queries:
Recent Queries and Time Range Queries.

Recent Queries are used to easily look at recent information. The API
provides parameters for you to either:

	get n most recent sensor_data

	get sensor_data since t milliseconds in the past

	Time Range Queries are useful for going through data in the past.

	These queries allow you to page through data by specifying a start & end
point in time.

The following document will walk through some examples of how to take advantage
of Recent Queries and Time Range Queries

2.1. Recent Queries

In this section we’ll dive in quickly and briefly show an example of
Recent Num Queries and Recent Time Queries.

2.1.1. Recent Num Queries

By default, the data endpoint will return the 100 most recent queries. Try it
using a URL like this:

http://wotkit.sensetecnic.com/api/v2/sensors/sensetecnic.mule1/data

The response should look similar to the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	{
 "numFound": 100564,
 "data": [
 {
 "id": 47902511,
 "timestamp": "2013-11-29T00:46:36.056Z",
 "sensor_id": 1,
 "sensor_name": "sensetecnic.mule1",
 "value": 69,
 "lng": -123.17608,
 "lat": 49.14103
 },
 {
 "id": 47902514,
 "timestamp": "2013-11-29T00:46:39.556Z",
 "sensor_id": 1,
 "sensor_name": "sensetecnic.mule1",
 "value": 52,
 "lng": -123.17599,
 "lat": 49.13919
 },
 ... // more data
],
 "query": {
 "limit": 100,
 "recent_n": 100
 }
}

The data is returned in JSON. Generally, all list responses are returned in this
container to aid paging and debugging.

	Field
	Description

	numFound
	The total number of elements matching this query

	data
	The enclosed sensor_data. Always sorted from oldest to newest timestamp

	query
	Contains the interpreted query from the request. For debugging.

	metadata
	Extra information. Depends on use case.

The query field is particularly interesting because it tells you how the query
was interpreted. In this case, the query has a limit of 100
and a recent_n of 100. A recent_n query fetches the n most recent
items. This is useful when API users want to peek at the recent data without
having to construct complex queries.

In essence, the query we ran is a convenient default for the explicit version:

http://wotkit.sensetecnic.com/api/v2/sensors/sensetecnic.mule1/data?limit=100&recent_n=100

Next we can try a recent_t query, which looks up the timestamp

2.1.2. Recent Time Queries

Recent Time are very similar to Recent Num Queries. The difference is that
Recent Num Queries look at data count i.e. the last 10 elements, or the last 50
elements. Recent Time queries look at the timestamp instead. So, it’s useful for
where we’re interested in the elements from the last hour, or the 12 hours.

Request

http://wotkit.sensetecnic.com/api/v2/sensors/sensetecnic.mule1/data?recent_t=10000

Response

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	{
 "numFound": 3,
 "data": [
 {
 "id": 47967438,
 "timestamp": "2013-11-29T18:34:09.557Z",
 "sensor_id": 1,
 "sensor_name": "sensetecnic.mule1",
 "value": 62,
 "lng": -123.14509,
 "lat": 49.186
 },
 {
 "id": 47967445,
 "timestamp": "2013-11-29T18:34:13.059Z",
 "sensor_id": 1,
 "sensor_name": "sensetecnic.mule1",
 "value": 53,
 "lng": -123.1454,
 "lat": 49.18565
 },
 {
 "id": 47967446,
 "timestamp": "2013-11-29T18:34:16.557Z",
 "sensor_id": 1,
 "sensor_name": "sensetecnic.mule1",
 "value": 67,
 "lng": -123.14844,
 "lat": 49.18323
 }
],
 "query": {
 "limit": 100,
 "recent_t": 10000
 }
}

Looking at the query field this time, we can see it was interpreted as a
recent_t query. The query looked for items up to 10 seconds ago (10000
milliseconds). You can verify this by inspecting the timestamp of the data.

Note

When accessing WoTKit anonymously, the date string is set to UTC. If you
access it an api-key, the timezone will be set based on the account’s settings.

We’ve just shown you how to run both Recent Queries. One parameter to make
note of is the limit parameter. At the moment, limit is capped at 100 – which
restricts how much data you get in recent_n and recent_t queries. To overcome
this we will look into paging through historical data next.

2.2. Time Range Queries

At the end of the last section, we noted that there is a weakness in the recent
queries which limit your ability to sift through historical data. So, to look
through historical data, you can page through historical data using the
following query parameters. For the remainder of this, we will be working with
the sensor rymndhng.sdq-test.

2.2.1. Querying with Start and End

We’ll start with a simple practical example. We have a defined starting time and
ending time where we want to get all the data in between. I want to know what
data was there between start: "2013-11-21T11:00:51.000Z" to
end: "2013-11-29T22:59:54.862Z"

Note

It’s important to note that start is exclusive and end is
inclusive. i.e. for start=100 and end=200, then the query does the
following:

start < sensor_data.timestamp <= end

Query Parameters

	Query Parameter
	Value

	start
	1385031651000 (2013-11-21T11:00:51.000Z)

	end
	1385765994862 (2013-11-29T22:59:54.862Z)

Translating those two strings to milliseconds,
we end up with the request below. Execute it and follow the response.

Request

http://wotkit.sensetecnic.com/api/v2/sensors/rymndhng.sdq-test/data?start=1385031651000&end=1385765994862

Response

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

	{
 "numFound": 5,
 "data": [
 {
 "id": 48232725,
 "timestamp": "2013-11-29T22:59:09.472Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "valua": 81
 },
 {
 "id": 48232726,
 "timestamp": "2013-11-29T22:59:09.472Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "valua": 53
 },
 {
 "id": 48232727,
 "timestamp": "2013-11-29T22:59:19.633Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "valua": 0
 },
 {
 "id": 48232728,
 "timestamp": "2013-11-29T22:59:24.715Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "valua": 56
 },
 {
 "id": 48232729,
 "timestamp": "2013-11-29T22:59:54.862Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "value": 97
 }
],
 "query": {
 "end": 1385765994862,
 "start": 1385031651000,
 "limit": 100
 }
}

Once again, let’s look at the query parameter in the response to see what was
interpreted. We can see that start/end was interpreted in the query. Inspect the
timestamps of of both data points, we can see it’s between the start/end points,
specifically start < data[0].timestamp < ... < data[4].timestamp < end.

2.2.2. Paging Through Data

In the previous section, we gave a very naive example. In this case, only two
elements were in the range and therefore all the relevent data was returned.
Very often this isn’t the case – and you may want to sift through thousands of
entries at a time. To do this, we enabled paging through data entries. We’ll
also specify limit to 10 to make the Response more comprehenedable.

Let’s try to query all the data by choosing start: 0 and and a really large
end: 2000000000000.

Query Parameters

	Query Parameter
	Value

	start
	0 (1970-01-01T00:00:00.000Z）

	end
	2000000000000 (2033-05-18T03:33:20.000Z)

	limit
	3

Request

http://wotkit.sensetecnic.com/api/v2/sensors/rymndhng.sdq-test/data?start=0&end=2000000000000&limit=3

Response

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	{
 "numFound": 9,
 "data": [
 {
 "id": 48232722,
 "timestamp": "2013-11-21T10:58:51.000Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "value": 6.7
 },
 {
 "id": 48232723,
 "timestamp": "2013-11-21T10:59:51.000Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "value": 6.8
 },
 {
 "id": 48232724,
 "timestamp": "2013-11-21T11:00:51.000Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "value": 6.9
 }
],
 "query": {
 "end": 2000000000000,
 "start": 0,
 "limit": 3
 }
}

So this time, first we look at the query parameter. As mentioned previously, the
limit is currently capped at 3. So how do we know if we there’s more data? Well,
there is another field in the response which can help us: numFound.
numFound counts all the data found within the data range from start to end.
In this example, we know there’s more data because data.length < numFound.

Given this information, we can now continue paging data by setting offset.
We can retrieve the next page by choosing offset = data.size, in this case,
data.size is 10. Generally, we can page by specifying offset = prev_offset +
data.size. We can also figure out if we’re at the end of the data range
generally by testing that data.size + offset < numFound.

Now, let’s rerun the last query with an offset.

Query Parameters

	Parameter
	Value

	start
	0 (same as before

	end
	2000000000000 (same as before)

	limit
	10

	offset
	3

Request

http://wotkit.sensetecnic.com/api/v2/sensors/rymndhng.sdq-test/data?start=0&end=2000000000000&limit=3&offset=3

Response

{
 "numFound": 9,
 "data": [
 {
 "id": 48232725,
 "timestamp": "2013-11-29T22:59:09.472Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "valua": 81
 },
 {
 "id": 48232726,
 "timestamp": "2013-11-29T22:59:09.472Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "valua": 53
 },
 {
 "id": 48232727,
 "timestamp": "2013-11-29T22:59:19.633Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "valua": 0
 }
],
 "query": {
 "offset": 3,
 "end": 2000000000000,
 "start": 0,
 "limit": 3
 }

}

Once again, looking at the query, we can now see that offset is specfied as 3.
We can also verify that an offset was used by looking at id and
timestamp of the two responses. The last element of the first response
has id: 48232724 and timestamp: "2013-11-21T11:00:51.000Z". The
first element in the second response has id: 48232725 and timestamp:
"2013-11-29T22:59:09.472Z". You can easily verify that they are in sequence.

2.2.3. Advanced Time Range Queries

In general, using start, end, offset provides enough flexibility. However,
sensors are allowed to have multiple data on the same timestamp. This can easily
happen when historical data is PUT into the system. In other words, you
cannot expect timestamp to be unique for sensor data (generally they are good
enough). So, we introduce the idea of start_id and end_id to allow
precise selection of start and end elements.

We’ll start off with our first query
.. code-block:: javascript

http://wotkit.sensetecnic.com/api/v2/sensors/rymndhng.sdq-test/data?start=0&limit=4

Response

{
 "numFound": 9,
 "data": [
 {
 "id": 48232722,
 "timestamp": "2013-11-21T10:58:51.000Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "value": 6.7
 },
 {
 "id": 48232723,
 "timestamp": "2013-11-21T10:59:51.000Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "value": 6.8
 },
 {
 "id": 48232724,
 "timestamp": "2013-11-21T11:00:51.000Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "value": 6.9
 },
 {
 "id": 48232725,
 "timestamp": "2013-11-29T22:59:09.472Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "valua": 81
 }
],
 "query": {
 "start": 0,
 "limit": 4
 }
}

Now sometime in the future, we want to rerun the query using the information we
had previously. So, we’ll use the last item’s timestamp
(2013-11-29T22:59:09.472Z) as the start value.

Request

http://wotkit.sensetecnic.com/api/v2/sensors/rymndhng.sdq-test/data?start=1385765949472&limit=4

Response

{
 "numFound": 4,
 "data": [
 {
 "id": 48232727,
 "timestamp": "2013-11-29T22:59:19.633Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "valua": 0
 },
 {
 "id": 48232728,
 "timestamp": "2013-11-29T22:59:24.715Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "valua": 56
 },
 {
 "id": 48232729,
 "timestamp": "2013-11-29T22:59:54.862Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "value": 97
 },
 {
 "id": 48232730,
 "timestamp": "2013-11-29T23:00:24.862Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "value": 6.7
 }
],
 "query": {
 "start": 1385765949472,
 "limit": 4
 }
}

Everything looks fine and dandy doesn’t it? The timestamps are incremental, and
therefore all is well is it? Well, no it actually isn’t. There’s a problem which
we are unaware of. We’ve actually skipped an element because of duplicate
timestamps.

Run this request which querys the entire range and look at the data.

Request

http://wotkit.sensetecnic.com/api/v2/sensors/rymndhng.sdq-test/data

Response

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

	{
 "numFound": 9,
 "data": [
 {
 "id": 48232722,
 "timestamp": "2013-11-21T10:58:51.000Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "value": 6.7
 },
 {
 "id": 48232723,
 "timestamp": "2013-11-21T10:59:51.000Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "value": 6.8
 },
 {
 "id": 48232724,
 "timestamp": "2013-11-21T11:00:51.000Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "value": 6.9
 },
 {
 "id": 48232725,
 "timestamp": "2013-11-29T22:59:09.472Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "valua": 81
 },
 {
 "id": 48232726,
 "timestamp": "2013-11-29T22:59:09.472Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "valua": 53
 },
 {
 "id": 48232727,
 "timestamp": "2013-11-29T22:59:19.633Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "valua": 0
 },
 {
 "id": 48232728,
 "timestamp": "2013-11-29T22:59:24.715Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "valua": 56
 },
 {
 "id": 48232729,
 "timestamp": "2013-11-29T22:59:54.862Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "value": 97
 },
 {
 "id": 48232730,
 "timestamp": "2013-11-29T23:00:24.862Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "value": 6.7
 }
],
 "query": {
 "limit": 100,
 "recent_n": 10
 }
}

The highlighted lines for id: 48232726 did not exist in either of our
queries. In Querying with Start and End, we specified the second query did
exactly what you asked for: Query sensor data after timestamp 1385765949472
limit 3. So, to solve this, we introduce a new parameter start_id. This
parameter can be used in conjuction with start to specify specify which data
element’s id to start with. Essentially, sensor_data are uniquely identified
using this tuple (timestamp, id). So, let’s rerun the second query with
start_id: 48232725 from the first query.

Request

http://wotkit.sensetecnic.com/api/v2/sensors/rymndhng.sdq-test/data?start=1385765949472&limit=4&start_id=48232725

Response

{
 "numFound": 5,
 "data": [
 {
 "id": 48232726,
 "timestamp": "2013-11-29T22:59:09.472Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "valua": 53
 },
 {
 "id": 48232727,
 "timestamp": "2013-11-29T22:59:19.633Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "valua": 0
 },
 {
 "id": 48232728,
 "timestamp": "2013-11-29T22:59:24.715Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "valua": 56
 },
 {
 "id": 48232729,
 "timestamp": "2013-11-29T22:59:54.862Z",
 "sensor_id": 531,
 "sensor_name": "rymndhng.sdq-test",
 "value": 97
 }
],
 "query": {
 "start": 1385765949472,
 "limit": 4,
 "start_id": 48232725
 }
}

There, we got the response with id: 48232726. The start_id allowed us to
filter ids greater than 3. end_id works the same way as start_id if you
really need fine-grained control over the range of a data query.

2.2.4. Summary of Time Range Data Query

With all the information given, we can really condense the query parameters into
the following query. data_ts is the sensor data’s timestamp, and data_id
is the data’s id element.

Without start_id or end_id, the query range is done like this.

start < data_ts <= end

With start_id and/or end_id, the query range adds extra checks near the bounds

(start < data_ts <= end)
OR (data_ts = start AND data_id > start_id)
OR (data_ts = end AND data_id <= end_id)

Below is a quicky summary of what query parameter means:

	Parameter
	Type
	Description

	start
	timestamp
	The absolute starting point (in milliseconds since Jan 1, 1970).

	start_id
	id
	The starting id of sensor_data at timestamp start. Used for paging.

	end
	timestamp
	The absolute ending timestamp (in milliseconds since Jan 1, 1970)

	end_id
	timestamp
	The end id of sensor_data with timestamp end. Used for paging.

2.3. Sensor Data Query Recipes

In this section, we will highlight some novel ways of combining the information
above to query the data.

2.3.1. Use start_id instead of start for start of query

In the documentation, we used start_id alongisde start, but actually,
this is optional. If you use start_id without start, we will actually
lookup the timestamp of the element with id start_id, and then use that
as the starting timestamp.

2.3.2. Making Start Inclusive

From Summary of Time Range Data Query, it shows the start range is
exclusive. But, there is a way to make this inclusive. If you set start_id: 0,
it will make the data range inclusive.

 Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WoTKit 1.6.0.SNAPSHOT documentation

2. V1 API Reference

This section contains API References for V1 of WoTKit’s API. In addition to the
documentation posted here, our API can be explored using Swagger with the
following URL http://wotkit.sensetecnic.com/api/api-docs?path=v1.

	2.1. Authentication
	2.1.1. Methods privacy

	2.1.2. Keys and Basic Authentication

	2.1.3. Registered Applications and OAuth2

	2.1.4. Authorization Code Grant

	2.1.5. Password Grant

	2.1.6. Access Token Facts

	2.2. Error Reporting

	2.3. Sensors
	2.3.1. Querying Sensors

	2.3.2. Viewing a Single Sensor

	2.3.3. Creating/Registering a Sensor

	2.3.4. Creating/Registering multiple Sensors

	2.3.5. Updating a Sensor

	2.3.6. Deleting a Sensor

	2.4. Sensor Subscriptions
	2.4.1. Get Sensor Subscriptions

	2.4.2. Subscribe

	2.4.3. Unsubscribe

	2.5. Sensor Fields
	2.5.1. Querying Sensor Fields

	2.5.2. Updating a Sensor Field

	2.5.3. Deleting a Sensor Field

	2.6. Sensor Data
	2.6.1. Sending New Data

	2.6.2. Sending Bulk Data

	2.6.3. Deleting Data

	2.6.4. Raw Data Retrieval

	2.6.5. Formatted Data Retrieval

	2.6.6. Aggregated Data Retrieval

	2.7. Sensor Control Channel: Actuators
	2.7.1. Sending Actuator Messages

	2.7.2. Receiving Actuator Messages
	2.7.2.1. Subscribing to an Actuator Controller

	2.7.2.2. Query an Actuator

	2.8. Tags
	2.8.1. Querying Sensor Tags

	2.9. Users
	2.9.1. List/Query Users

	2.9.2. Viewing a Single User

	2.9.3. Creating/Registering a User

	2.9.4. Updating a User

	2.9.5. Deleting a User

	2.10. Organizations
	2.10.1. List/Query Organizations

	2.10.2. Viewing a Single Organization

	2.10.3. Creating/Registering an Organization

	2.10.4. Updating an Organization

	2.10.5. Deleting an Organization

	2.10.6. Organization Membership
	2.10.6.1. List all members of an Organization

	2.10.6.2. Add new members to an Organization

	2.10.6.3. Remove members from an Organization

	2.11. Sensor Groups
	2.11.1. Sensor Group Format

	2.11.2. List Groups

	2.11.3. Viewing a Single Sensor Group

	2.11.4. Creating a Sensor Group

	2.11.5. Modifying Sensor Group Fields

	2.11.6. Deleting a Sensor Group

	2.11.7. Adding a Sensor to Sensor Group

	2.11.8. Removing a Sensor from Sensor Group

	2.12. News

	2.13. Statistics

	2.14. Smart Streets Authentication
	2.14.1. Authenticating using Smart Streets Developer Keys

 Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WoTKit 1.6.0.SNAPSHOT documentation

 	2. V1 API Reference

2.1. Authentication

The WoTKit API supports three forms of authentication to control access to a user’s sensors
and other information on the WoTKit.

	Basic authentication using the user’s name and password

	Basic authentication with Keys (key id and key password)

	OAuth2 authorization of server-based Applications

Using the WoTKit portal, developers can create keys for use by one or more sensor gateways
or scripts. Users can also register new server side applications and then authorize
these applications to allow them to access a user’s sensors on their behalf.

Note

Most examples in this document use basic authentication with keys or WoTKit username and passwords. However,
OAuth2 authorization is also possible by removing the id and password and by appending an access_token parameter.
See apps-oauth-label for details.

2.1.1. Methods privacy

Some API methods are private and will return an HTTP status code of 403 Forbidden if accessed without authenticating the
request, while others are completely private or are restricted to certain users.
(Currently only system administrators have access to ALL methods),

Every method has a description of its private level in one of the following forms:

	Public accessible to all

	Private accessible only to authenticated users

	Public or Private accessible to all, but might return different results to authenticated users.

	Example of different results is the “get sensors” method, which might return a user’s private sensors when the method is called as an authenticated user.

	Admin accessible only to authenticated admin users

2.1.2. Keys and Basic Authentication

Keys are created on the WoTKit UI (http://wotkit.sensetecnic.com/wotkit/keys) and are unique to each user.

To grant a client access to your sensors, you can create a key. The client can then be supplied the auto-generated
‘key id’ and ‘key password’. These will act as username and password credentials, using basic authentication to access
sensors on the user’s behalf.

For instance, the following curl command uses a ‘key id’ and ‘key password’ to get information about the sensor sensetecnic.mule1.

(Please replace the {key_id} and {key_password} in the code with appropriate values copied from the WoTKit UI.)

example

curl --user {key_id}:{key_password} "http://wotkit.sensetecnic.com/api/sensors/sensetecnic.mule1"

This returns:

{
 "name":"mule1",
 "fields":[
 {"name":"lat","value":49.20532,"type":"NUMBER","index":0,
 "required":true,"longName":"latitude","lastUpdate":"2012-12-07T01:47:18.639Z"},
 {"name":"lng","value":-123.1404,"type":"NUMBER","index":1,
 "required":true,"longName":"longitude","lastUpdate":"2012-12-07T01:47:18.639Z"},
 {"name":"value","value":58.0,"type":"NUMBER","index":2,
 "required":true,"longName":"Data","lastUpdate":"2012-12-07T01:47:18.639Z"},
 {"name":"message","type":"STRING","index":3,
 "required":false,"longName":"Message"}
],
 "id":1,
 "visibility":PUBLIC,
 "owner":"sensetecnic",
 "description":"A big yellow taxi that travels from
 Vincent's house to UBC and then back.",
 "longName":"Big Yellow Taxi",
 "latitude":51.060386316691,
 "longitude":-114.087524414062,
 "lastUpdate":"2012-12-07T01:47:18.639Z"}
}

2.1.3. Registered Applications and OAuth2

The WoTKit supports the OAuth2 authorization framework as described in RFC 6749.

Applications are registered on the WoTKit UI (http://wotkit.sensetecnic.com/wotkit/apps) by an application developer. Applications can be installed by many users, but the application credentials called the client_id and client_secret are unique to that application.

Once registered, the client application then uses its ‘Client ID’ and generated ‘Application Secret’ as credentials in the OAuth2 authorization process to request permission to access WoTKit resources on a user’s behalf by generating an access token. Using an access token, the application can them make API calls to the WoTKit on behalf of the user – no further id/passwords are needed.

For example, the following curl command uses an access token to get information about the sensor sensetecnic.mule1.

example

curl "http://wotkit.sensetecnic.com/api/sensors/sensetecnic.mule1?access_token={access_token}"

The first step of OAuth 2 is to get authorization from the user. The WoTKit supports two grant types:

	Authorization Code for apps running on a web server

	Password for logging in with a username and password

2.1.4. Authorization Code Grant

In order to obtain an access token for a web server application using the Authorization Code grant, the following needs to be done:

	Request an authorization code by providing the ‘Client ID’ as follows:

http://wotkit.sensetecnic.com/api/oauth/authorize?client_id={application client id}
&response_type=code&redirect_uri={redirect uri}

	If the user has not previously logged into the WoTKit authorization server, a login page will be presented. A WoTKit user must first log in.

	Once logged in, a prompt will ask the user to authorize the ‘application client id’ to act on their behalf. Once authorized, an ‘authorization code’ is provided.

	Using the application credentials, this authorization code is exchanged for an access token used to access the WoTKit API.

Example: PHP file pointed to by {redirect_uri}

<?php
$code = $_GET['code'];
$access_token = "none";
$ch = curl_init();

if(isset($code)) {
 // try to get an access token
 $params = array("code" => $code,
 "client_id"=> {application client id},
 "client_secret" => {application secret},
 "redirect_uri" => {redirect uri},
 "grant_type" => "authorization_code");
 $data = ArraytoNameValuePairs ($params);

 curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
 curl_setopt($ch, CURLOPT_URL, "http://wotkit.sensetecnic.com/api/oauth/token");
 curl_setopt($ch, CURLOPT_POST, TRUE);
 curl_setopt($ch, CURLOPT_POSTFIELDS, $data);

 $access_token = json_decode($response)->access_token;
 }
 ?>

2.1.5. Password Grant

The password grant type can be used to exchange the user name and password for an access token directly. This is generally used by applications that are part of the WoTKit service, since they need to collect the user’s name and password.

To use the password grant type, you simply POST the name and password along with the client id and secret directly, in response you will receive an access token.

example

curl -d "grant_type=password&username={username}&password={password}&client_id={clientid}&client_secret={clientsecret}&scope=all" https://wotkit.sensetecnic.com/api/oauth/token

returns:

{
 "access_token":"{access_token}",
 "token_type":"bearer",
 "refresh_token":"{refresh_token}",
 "expires_in":43199,
 "scope":"all"
}

2.1.6. Access Token Facts

When obtaining an access token, the ‘response’ field holds the following useful information:

	response->access_token

	response->expires_in

	default value is approx. 43200 seconds (or 12 hrs)

 Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WoTKit 1.6.0.SNAPSHOT documentation

 	2. V1 API Reference

2.2. Error Reporting

Errors are reported with an HTTP status code accompanied by an error JSON object.
The object contains the status, an internal error code, user-displayable message, and an internal developer message.

For example, when a sensor cannot be found, the following error is returned:

HTTP/1.1 404 Not Found

{
 "error": {
 "status": 404,
 "code": 0,
 "message": "No thing with that id or name",
 "developerMessage": ["my_sensor"]
 }
}

 Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WoTKit 1.6.0.SNAPSHOT documentation

 	2. V1 API Reference

2.3. Sensors

A sensor represents a physical or virtual sensor or actuator. It contains a data stream made up of fields.

A sensor has the following attributes:

	Name
	Value Description

	id
	the numeric id of the sensor. This may be used in the API in place of the sensor name.

	name **
	
	the name of the sensor.

	
Note that the global name is {username}.{sensorname}.

When logged in as a the owner, you can refer to the sensor using only {sensorname}.

To access a public sensor created by another user, you can refer to it by its numeric id or the global name, {username}.{sensorname}.

	description **
	a description of the sensor for text searches.

	longName **
	longer display name of the sensor.

	url
	deprecated

	latitude
	
	the latitude location of the sensor in degrees.

	This is a static location used for locating sensors on a map and for location-based queries.
(Dynamic location (e.g. for mobile sensors) is in the lat and lng fields of sensor data.)

	longitude
	
	the longitude location of the sensor in degrees.

	This is a static location used for locating sensors on a map and for location-based queries.
(Dynamic location (e.g. for mobile sensors) is in the lat and lng fields of sensor data.)

	lastUpdate
	
	last update time in milliseconds.

	This is the last time sensor data was recorded, or an actuator script polled for control messages.

	visibility
	
PUBLIC: The sensor is publicly visible

ORGANIZATION: The sensor is visible to everyone in the same organization as the sensor

PRIVATE: The sensor is only visible to the owner. In any case posting data to the sensor is restricted to the sensor’s owner.

	owner
	the owner of the sensor

	fields
	the expected data fields, their type (number or string), units and if available, last update time and value.

	tags
	the list of tags for the sensor

	data
	sensor data (not shown yet)

** Required when creating a new sensor.

2.3.1. Querying Sensors

A list of matching sensors may also be queried by the system.

The current query parameters are as follows:

	Name
	Value Description

	scope
	
all - all sensors the current user has access to

subscribed - the sensors the user has subscribed to
| contributed - the sensors the user has contributed to the system.

	tags
	list of comma separated tags

	orgs
	list of comma separated organization names

	private
	
	true - private sensors only; **false** - public only

	deprecated, use visibility instead

	visibility
	filter by the visibility of the sensors, either of public, organization, or private

	text
	text to search for in the name, long name and description

	active
	when true, only returns sensors that have been updated in the last 15 minutes.

	offset
	offset into list of sensors for paging

	limit
	limit to show for paging. The maximum number of sensors to display is 1000.

	location
	
	geo coordinates for a bounding box to search within.

	
Format is yy.yyy,xx.xxx:yy.yyy,xx.xxx, and the order of the coordinates are North,West:South,East.

Example: location=56.89,-114.55:17.43,-106.219

To query for sensors, add query parameters after the sensors URL as follows:

	URL
	http://wotkit.sensetecnic.com/api/sensors?{query}

	Privacy
	Public or Private

	Format
	json

	Method
	GET

	Returns
	On error, an appropriate HTTP status code; On success, OK 204 and a list of sensor descriptions matching the query.

example

curl --user {id}:{password}
"http://wotkit.sensetecnic.com/api/sensors?tags=canada"

Output:

[
 {
 "tags":["data","vancouver","canada"],
 "latitude":0.0,
 "longitude":0.0,
 "longName":"api-data-test-1",
 "lastUpdate":"2013-01-26T01:55:36.514Z",
 "name":"api-data-test-1",
 "fields":
 [{"required":true, "longName":"latitude",
 "lastUpdate":"2013-01-26T01:55:36.514Z",
 "name":"lat", "value":39.0, "type":"NUMBER","index":0},
 {"required":true,"longName":"longitude",
 "lastUpdate":"2013-01-26T01:55:36.514Z",
 "name":"lng","value":85.0,"type":"NUMBER","index":1},
 {"required":true,"longName":"Data",
 "lastUpdate":"2013-01-26T01:55:36.514Z
 "name":"value","value":20.0,"type":"NUMBER","index":2},
 {"required":false,"longName":"Message",
 "lastUpdate":"2013-01-26T01:55:36.514Z",
 "name":"message","value":"test message to be active 164",
 "type":"STRING","index":3}],
 "id":69,
 "visibility":"PUBLIC",
 "owner":"roseyr",
 "description":"api-data-test-1"
 },

 {
 "tags":["data","canada","edmonton"],
 "latitude":0.0,
 "longitude":0.0,
 "longName":"api-data-test-2",
 "lastUpdate":"2013-01-26T01:55:42.400Z",
 "name":"api-data-test-2",
 "fields":
 [{"required":true,"longName":"latitude",
 "lastUpdate":"2013-01-26T01:55:37.537Z",
 "name":"lat","value":65.0,"type":"NUMBER","index":0},
 {"required":true,"longName":"longitude",
 "lastUpdate":"2013-01-26T01:55:37.537Z",
 "name":"lng","value":74.0,"type":"NUMBER","index":1},
 {"required":true,"longName":"Data",
 "lastUpdate":"2013-01-26T01:55:37.537Z",
 "name":"value","value":82.0,"type":"NUMBER","index":2},
 {"required":false,"longName":"Message",
 "lastUpdate":"2013-01-26T01:55:37.537Z",
 "name":"message","value":"test message to be active 110",
 "type":"STRING","index":3}],
 "id":70,
 "visibility":"PUBLIC",
 "owner":"roseyr",
 "description":"api-data-test-1"
 },

 {
 "tags":["data","canada","winnipeg"],
 "latitude":0.0,
 "longitude":0.0,
 "longName":"api-data-test-3",
 "lastUpdate":"2013-01-26T01:55:34.488Z",
 "name":"api-data-test-3",
 "fields":
 [{"required":true,"longName":"latitude","name":"lat","value":0.0,
 "type":"NUMBER","index":0},
 {"required":true,"longName":"longitude","name":"lng","value":0.0,
 "type":"NUMBER","index":1},
 {"required":true,"longName":"Data","name":"value","value":0.0,
 "type":"NUMBER","index":2},
 {"required":false,"longName":"Message","name":"message",
 "type":"STRING","index":3}],
 "id":71,
 "visibility":"PUBLIC",
 "owner":"roseyr",
 "description":"api-data-test-3"
 }
]

2.3.2. Viewing a Single Sensor

To view a single sensor, query the sensor by sensor name or id as follows:

	URL
	http://wotkit.sensetecnic.com/api/sensors/{sensorname}

	Privacy
	Public or Private

	Format
	json

	Method
	GET

	Returns
	Appropriate HTTP status code; OK 200 - if successful

example

curl --user {id}:{password}
"http://wotkit.sensetecnic.com/api/sensors/sensetecnic.mule1"

Output:

{
 "name":"mule1",
 "fields":[
 {"name":"lat","value":49.20532,"type":"NUMBER","index":0,
 "required":true,"longName":"latitude",
 "lastUpdate":"2012-12-07T01:47:18.639Z"},
 {"name":"lng","value":-123.1404,"type":"NUMBER","index":1,
 "required":true,"longName":"longitude",
 "lastUpdate":"2012-12-07T01:47:18.639Z"},
 {"name":"value","value":58.0,"type":"NUMBER","index":2,
 "required":true,"longName":"Data",
 "lastUpdate":"2012-12-07T01:47:18.639Z"},
 {"name":"message","type":"STRING","index":3,
 "required":false,"longName":"Message"}
],
 "id":1,
 "visibility":"PUBLIC",
 "owner":"sensetecnic",
 "description":"A big yellow taxi that travels
 from Vincent's house to UBC and then back.",
 "longName":"Big Yellow Taxi",
 "latitude":51.060386316691,
 "longitude":-114.087524414062,
 "lastUpdate":"2012-12-07T01:47:18.639Z"}
}

2.3.3. Creating/Registering a Sensor

To register a sensor, you POST a sensor resource to the url /sensors.

	The sensor resources is a JSON object.

	The “name”, “longName”, and “description” fields are required when creating a sensor.

	The “latitude” and “longitude” fields are optional and will default to 0 if not provided.

	The “visibility” field is optional and will default to “PUBLIC” if not provided.

	The “tags”, “fields” and “organization” information are optional.

	If “visibility” is set to ORGANIZATION, a valid “organization” must be supplied.

	The sensor name must be at least 4 characters long, contain only lowercase letters, numbers, dashes and underscores, and can start with a lowercase letter or an underscore only.

To create a sensor:

	URL
	http://wotkit.sensetecnic.com/api/sensors

	Privacy
	Private

	Format
	json

	Method
	POST

	Returns
	HTTP status code; Created 201 if successful; Bad Request 400 if sensor is invalid; Conflict 409 if sensor with the same name already exists

example

curl --user {id}:{password} --request POST --header "Content-Type: application/json"
--data-binary @test-sensor.txt 'http://wotkit.sensetecnic.com/api/sensors'

For this example, the file test-sensor.txt contains the following. This is the minimal information needed to
register a sensor resource.

{
 "visibility":"PUBLIC",
 "name":"taxi-cab",
 "description":"A big yellow taxi.",
 "longName":"Big Yellow Taxi",
 "latitude":51.060386316691,
 "longitude":-114.087524414062
}

2.3.4. Creating/Registering multiple Sensors

To register multiple sensors, you PUT a list of sensor resources to the url /sensors.

	The sensor resources is a JSON list of objects as described in Creating/Registering a Sensor.

	Limited to 100 new sensors per call. (subject to change)

	URL
	http://wotkit.sensetecnic.com/api/sensors

	Privacy
	Private

	Format
	json

	Method
	PUT

	Returns
	HTTP status code; Created 201 if successful; Bad Request 400 if sensor is invalid; Conflict 409 if sensor with the same name already exists ; On Created 201 or some errors (not all) you will receive a JSON dictionary where the keys are the sensor names and the values are true/false depending on whether creating the sensor succeeded. For Created 201 all values will be true.

2.3.5. Updating a Sensor

Updating a sensor is the same as registering a new sensor other than PUT is used and the sensor name or id is included in the URL.

Note that all top level fields supplied will be updated.

	You may update any fields except “id”, “name” and “owner”.

	Only fields that are present in the JSON object will be updated.

	If “visibility” is set to ORGANIZATION, a valid “organization” must be supplied.

	If “tags” list or “fields” list are included, they will replace the existing lists.

	If “visibility” is hardened (that is, the access to the sensor becomes more restrictive) then all currently subscribed users are automatically unsubscribed, regardless of whether they can access the sensor after the change.

To update a sensor owned by the current user:

	URL
	http://wotkit.sensetecnic.com/api/sensors/{sensorname}

	Privacy
	Private

	Format
	json

	Method
	PUT

	Returns
	HTTP status code; No Content 204 if successful

For instance, to update a sensor description and add tags:

example

curl --user {id}:{password} --request PUT --header "Content-Type: application/json"
--data-binary @update-sensor.txt 'http://wotkit.sensetecnic.com/api/sensors/taxi-cab'

The file update-sensor.txt would contain the following:

{
 "visibility":"PUBLIC",
 "name":"taxi-cab",
 "description":"A big yellow taxi. Updated description",
 "longName":"Big Yellow Taxi",
 "latitude":51.060386316691,
 "longitude":-114.087524414062,
 "tags": ["big", "yellow", "taxi"]
}

2.3.6. Deleting a Sensor

Deleting a sensor is done by deleting the sensor resource.

To delete a sensor owned by the current user:

	URL
	http://wotkit.sensetecnic.com/api/sensors/{sensorname}

	Privacy
	Private

	Format
	not applicable

	Method
	DELETE

	Returns
	HTTP status code; No Response 204 if successful

example

curl --user {id}:{password} --request DELETE
'http://wotkit.sensetecnic.com/api/sensors/test-sensor'

 Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WoTKit 1.6.0.SNAPSHOT documentation

 	2. V1 API Reference

2.4. Sensor Subscriptions

Sensor subscriptions are handled using the /subscribe URL.

2.4.1. Get Sensor Subscriptions

To view sensors that the current user is subscribed to:

	URL
	http://wotkit.sensetecnic.com/api/subscribe

	Privacy
	Private

	Format
	json

	Method
	GET

	Returns
	Appropriate HTTP status code; OK 200 - if successful

2.4.2. Subscribe

To subscribe to a non-private sensor or private sensor owned by the current user:

	URL
	http://wotkit.sensetecnic.com/api/subscribe/{sensorname}

	Privacy
	Private

	Format
	json

	Method
	PUT

	Returns
	HTTP status code; No Content 204 if successful

2.4.3. Unsubscribe

To unsubscribe from a sensor:

	URL
	http://wotkit.sensetecnic.com/api/subscribe/{sensorname}

	Privacy
	Private

	Format
	json

	Method
	DELETE

	Returns
	HTTP status code; No Content 204 if successful

 Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WoTKit 1.6.0.SNAPSHOT documentation

 	2. V1 API Reference

2.5. Sensor Fields

Sensor fields are the fields of data saved in a sensor stream. Together they make up the sensor schema.

Each sensor has the following default fields:

	Field Name
	Information

	value
	The numerical data for the sensor. Required.

	lat
	The latitude of the sensor. Required.

	lng
	The longitude of the sensor. Required.

	message
	The string message for the sensor. Not Required.

Each sensor field consists of the following:

	Field Name
	Information

	name
	The unique name for the sensor field. It is required when creating/updating/deleting a field and cannot be changed.

	longName
	The display name for the field.

	type
	Can be “NUMBER” or “STRING”. It is required when creating/updating a field.

	required
	Is a boolean field. If true, data sent to a sensor must include this field or an error will result. Optional.

	units
	Is a string. Optional.

	index
	The numerical index of the field used to maintain ordering. This field is automatically generated by the system and is read only.

	value
	The last value of this sensor field received by the sensor when sending data. This is a read only field set when the sensor receives data for this field.

	lastUpdate
	The time stamp of the last value sent to the field. This is a read only field set when the sensor receives data for this field.

2.5.1. Querying Sensor Fields

To retrieve the sensor fields for a specific sensor:

	URL
	http://wotkit.sensetecnic.com/api/sensors/{sensorname}/fields

	Privacy
	Public or Private

	Format
	json

	Method
	GET

	Returns
	Appropriate HTTP status code; OK 200 - if successful

To query a single sensor field for a specific sensor:

	URL
	http://wotkit.sensetecnic.com/api/sensors/{sensorname}/fields/{fieldName}

	Privacy
	Public or Private

	Format
	json

	Method
	GET

	Returns
	Appropriate HTTP status code; OK 200 - if successful

2.5.2. Updating a Sensor Field

You can update or add a sensor field by performing a PUT operation to the specified field. The field information is supplied in a JSON format.

If the sensor already has a field with the given name, it will be updated with new information. Otherwise, a new
field with that name will be created.

Notes:

	When inputting field data, the sub-fields “name” and “type” are required-both for adding a new field or updating an existing one.

	Read only sub-fields such as index, value and lastUpdate should not be supplied.

	The “name” sub-field of an existing field cannot be updated.

	For user defined fields, the “longName”, “type”, “required”, and “units” sub-fields may be updated.

	You cannot change the index of a field. If a field is deleted, the index of the following fields will be adjusted to maintain the field order.

To update/add a sensor field:

	URL
	http://wotkit.sensetecnic.com/api/sensors/{sensorname}/fields/{fieldname}

	Privacy
	Private

	Format
	json

	Method
	PUT

	Returns
	HTTP status code; No Content 204 if successful

For instance, to create a new field called “test-field”:

example

curl --user {id}:{password} --request POST
--header "Content-Type: application/json" --data-binary @field-data.txt
'http://wotkit.sensetecnic.com/api/sensors/test-sensor/fields/test-field'

The file field-data.txt could contain the following. (This is the minimal information needed to create a new field.)

{
 "name":"test-field",
 "type":"STRING"
}

To then update “test-field” sub-fields, the curl command would be used to send a PUT request.

example

curl --user {id}:{password} --request PUT
--header "Content-Type: application/json" --data-binary @field-data.txt
'http://wotkit.sensetecnic.com/api/sensors/test-sensor/fields/test-field'

And ‘’field-data.txt’’ could now contain the following.

{
 "name":"test-field",
 "type":"NUMBER",
 "longName":"Test Field",
 "required":true,
 "units":"mm"
}

2.5.3. Deleting a Sensor Field

You can delete an existing sensor field by performing a DELETE and including the field name in the URL.

To delete a sensor field:

	URL
	http://wotkit.sensetecnic.com/api/sensors/{sensorname}/fields/{fieldname}

	Privacy
	Private

	Format
	n/a

	Method
	DELETE

	Returns
	HTTP status code; No Content 204 if successful

 Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WoTKit 1.6.0.SNAPSHOT documentation

 	2. V1 API Reference

2.6. Sensor Data

In the WoTKit, sensor data consists of a timestamp followed by one or more named fields. There are a number of
reserved fields supported by the WoTKit:

	Reserved field name
	Description

	timestamp
	the time that the sensor data was collected. This is a long integer representing the number of milliseconds from Jan 1, 1970 UTC. Optional; if not supplied, a server-supplied timestamp will be used.

	id
	a unique identifier for the data reading. This is to distinguish one reading from another when they share the same timestamp. Read only; This field is read only and should not be sent by the client when sending new data.

	sensor_id
	the globally unique sensor id that produced the data. Read only; This is a read only field generated by the wotkit that should not be sent by a client when sending new data.

	sensor_name
	the globally unique sensor name, in the form {username}.{sensorname}. Read only; This is a read only field and should not be sent by the client when sending new data.

When a new sensor is created, a number of default fields are created by the wotkit for a sensor as follows. Note that these can be changed by editing the sensor fields.

In addition to these reserved fields, additional required or optional fields can be added by updating the sensor fields in the WoTKit UI
or sensor_fields in the API.

Note

* Python’s time.time() function generates the system time in seconds, not milliseconds.

To convert this to an integer in milliseconds use int(time.time()*1000).
Using Java: System.currentTime().

2.6.1. Sending New Data

To send new data to a sensor, POST name value pairs corresponding to the data fields
to the /sensors/{sensorname}/data URL.

There is no need to provide a timestamp since it will be assigned by the server. Data posted to the system
will be processed in real time.

To send new data:

	URL
	http://wotkit.sensetecnic.com/api/sensors/{sensorname}/data

	Privacy
	Private

	Format
	not applicable

	Method
	POST

	Returns
	HTTP status code; No Response 201 (Created) if successful

example

curl --user {id}:{password} --request POST
-d value=5 -d lng=6 -d lat=7 'http://wotkit.sensetecnic.com/api/sensors/test-sensor/data'

2.6.2. Sending Bulk Data

To send a range of data, you PUT data (rather than POST) data into the system.
Note that data PUT into the WoTKit will not be processed in real time, since it occurred in the past

	The data sent must contain a list of JSON objects containing a timestamp and a value.

	If providing a single piece of data, existing data with the provided timestamp will be deleted and replaced. Otherwise, the new data will be added.

	If providing a range of data, any existing data within this timestamp range will be deleted and replaced by the new data.

To update data:

	URL
	http://wotkit.sensetecnic.com/api/sensors/{sensorname}/data

	Privacy
	Private

	Format
	JSON

	Method
	PUT

	Returns
	HTTP status code; No Response 204 if successful

Example of valid data:

[{"timestamp":"2012-12-12T03:34:28.626Z","value":67.0,"lng":-123.1404,"lat":49.20532},
{"timestamp":"2012-12-12T03:34:28.665Z","value":63.0,"lng":-123.14054,"lat":49.20554},
{"timestamp":"2012-12-12T03:34:31.621Z","value":52.0,"lng":-123.14063,"lat":49.20559},
{"timestamp":"2012-12-12T03:34:35.121Z","value":68.0,"lng":-123.14057,"lat":49.20716},
{"timestamp":"2012-12-12T03:34:38.625Z","value":51.0,"lng":-123.14049,"lat":49.20757},
{"timestamp":"2012-12-12T03:34:42.126Z","value":55.0,"lng":-123.14044,"lat":49.20854},
{"timestamp":"2012-12-12T03:34:45.621Z","value":56.0,"lng":-123.14215,"lat":49.20855},
{"timestamp":"2012-12-12T03:34:49.122Z","value":55.0,"lng":-123.14727,"lat":49.20862},
{"timestamp":"2012-12-12T03:34:52.619Z","value":59.0,"lng":-123.14765,"lat":49.20868}]

example

curl --user {id}:{password} --request PUT --data-binary @data.txt
'http://wotkit.sensetecnic.com/api/sensors/test-sensor/data'

where data.txt contains JSON data similar to the above JSON array.

2.6.3. Deleting Data

Currently you can only delete data by timestamp, where timestamp is in numeric or ISO form.
Note that if more than one sensor data point has the same timestamp, they all will be deleted.

To delete data:

	URL
	http://wotkit.sensetecnic.com/api/sensors/{sensorname}/data/{timestamp}

	Privacy
	Private

	Format
	not applicable

	Method
	DELETE

	Returns
	HTTP status code; No Response 204 if successful

2.6.4. Raw Data Retrieval

To retrieve raw data use the following:

	URL
	http://wotkit.sensetecnic.com/api/sensors/{sensor-name}/data?{query-params}

	Privacy
	Public or Private

	Format
	json

	Method
	GET

	Returns
	On success, OK 200 with a list of timestamped data records.

The query parameters supported are the following:

	Name
	Value Description

	start
	the absolute start time of the range of data selected in milliseconds. (Defaults to current time.) May only be used in combination with another parameter.

	end
	the absolute end time of the range of data in milliseconds

	after
	the relative time after the start time, e.g. after=300000 would be 5 minutes after the start time (Start time MUST also be provided.)

	afterE
	the number of elements after the start element or time. (Start time MUST also be provided.)

	before
	the relative time before the start time. E.g. data from the last hour would be before=3600000 (If not provided, start time default to current time.)

	beforeE
	the number of elements before the start time. E.g. to get the last 1000, use beforeE=1000 (If not provided, start time default to current time.)

	reverse
	true: order the data from newest to oldest; false (default):order from oldest to newest

Note

These queries looks for timestamps > “start” and timestamps <= “end”

2.6.5. Formatted Data Retrieval

To retrieve data in a format suitable for Google Visualizations, we support an additional resource for retrieving data
called the dataTable.

	URL
	http://wotkit.sensetecnic.com/api/sensors/{sensor-name}/dataTable?{query-params}

	Privacy
	Public or Private

	Format
	json

	Method
	GET

	Returns
	On success, OK 200 with a list of timestamped data records.

In addition to the above query parameters, the following parameters are also supported:

	
	

	tqx
	A set of colon-delimited key/value pairs for standard parameters, defined here [http://code.google.com/apis/visualization/documentation/dev/implementing_data_source.html].

	tq
	A SQL clause to select and process data fields to return, explained here [http://code.google.com/apis/visualization/documentation/querylanguage.html].

Note

When using tq sql queries, they must be url encoded. When using tqx name/value pairs, the reqId parameter is necessary.

For instance, the following would take the “test-sensor”, select all data where value was greater than 20, and display
the output as an html table.

example

curl --user {id}:{password} http://wotkit.sensetecnic.com/api/sensors/test-sensor/
dataTable?tq=select%20*%20where%20value%3E20&reqId=1&out=html

2.6.6. Aggregated Data Retrieval

Aggregated data retrieval allows one to receive data from multiple sensors, queried using the same parameters as when
searching for sensors or sensor data. The query must be specified using one of the following 5 patterns.

Pattern 1 - With Start/End

	start
	The most recent starting time of the query. This value is optional and defaults to the current time.

	end
	A timestamp before the start time.

	limit
	Specifies the limit to return. This value is optional, with a default value of 1000.

	offset
	Specifies the offset to return. This value is optional, with a default value of 0.

Pattern 2 - With Start/After

	start
	A starting timestamp.

	after
	A relative timestamp after start.

	limit
	Specifies the limit to return. This value is optional, with a default value of 1000

	offset
	Specifies the offset to return. This value is optional, with a default value of 0

Pattern 3 - With Start/Before

	start
	A starting timestamp.

	before
	A relative timestamp before start.

	limit
	Specifies the limit to return. This value is optional, with a default value of 1000

	offset
	Specifies the offset to return. This value is optional, with a default value of 0

Pattern 4 - With Start/BeforeE

	start
	A starting timestamp.

	beforeE
	The number of elements to return before start

	offset
	Specifies the offset to return. This value is optional, with a default value of 0

Pattern 5 - With Start/AfterE

	start
	A starting timestamp.

	afterE
	The number of elements to return after start

	offset
	Specifies the offset to return. This value is optional, with a default value of 0

The following parameters may be added to any of the above patterns:
* scope
* tags
* private (deprecated, use visibility instead)
* visibility
* text
* active
* orderBy
* sensor: which groups data by sensor_id
* time (default): which orders data by timestamp, regardless of the sensor it comes from.

To receive data from more that one sensor, use the following:

	URL
	http://wotkit.sensetecnic.com/api/data?{query-param}={query-value}&{param}={value}...

	Privacy
	Public or Private

	Format
	json

	Method
	GET

	Returns
	On success, OK 200 with a list of timestamped data records.

example

curl --user {id}:{password}
"http://wotkit.sensetecnic.com/api/data?subscribed=all&beforeE=20&orderBy=sensor"

 Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WoTKit 1.6.0.SNAPSHOT documentation

 	2. V1 API Reference

2.7. Sensor Control Channel: Actuators

An actuator is a sensor that uses a control channel to actuate things. Rather than POSTing data to the WoTKit, an
actuator script or gateway polls the control URL for messages to affect the actuator, to do things like move a servo
motor, turn a light on or off, or display a message on a screen.

To demonstrate actuators, the control visualization that comes with the WoTKit sends three type of events to the sensor control channel:

	
	

	button
	‘on’ or ‘off’ to control a light, or switch.

	message
	text message for use by the actuator, for example to be shown on a message board or display.

	slider
	a numeric value to affect the position of something, such as a server motor.

Any name/value pair can be sent to an actuator in a message, these are just the names sent by the visualization.

2.7.1. Sending Actuator Messages

To send a control message to a sensor (actuator), POST name value pairs corresponding to the data fields
to the /sensors/{sensorname}/message URL.

	URL
	http://wotkit.sensetecnic.com/api/sensors/{sensorname}/message

	Privacy
	Public or Private

	Format
	json

	Method
	POST

	Returns
	On success, OK 200 (no content).

2.7.2. Receiving Actuator Messages

In order to receive messages from an actuator, you must own that actuator.

2.7.2.1. Subscribing to an Actuator Controller

First, subscribe to the controller by POSTing to /api/control/sub/{sensor-name}.
In return, we receive a json object containing a subscription id.

	URL
	http://wotkit.sensetecnic.com/api/control/sub/{sensor-name}

	Privacy
	Private

	Format
	json

	Method
	POST

	Returns
	On success, OK 200 with JSON containing subscription id.

Example subscription id returned:

{
 "subscription":1234
}

2.7.2.2. Query an Actuator

Using the subscription id, then poll the following resource:
/api/control/sub/{subscription-id}?wait=10.
The wait specifies the time to wait in seconds for a control message.
If unspecified, a default wait time of 10 seconds is used. The maximum wait time is 20 seconds.
The server will respond on timeout, or when a control messages is received.

	URL
	http://wotkit.sensetecnic.com/api/control/sub/{subscription-id}?wait={wait-time}

	Privacy
	Private

	Format
	json

	Method
	GET

	Returns
	On success, OK 200 with JSON containing control messages.

To illustrate, the following code snippet uses HTTP client libraries to subscribe and get actuator messages from
the server, and then print the data. Normally, the script would change the state of an actuator like a servo or a
switch based on the message received.

sample actuator code
import urllib
import urllib2
import base64
import httplib

try:
 import json
except ImportError:
 import simplejson as json

#note trailing slash to ensure .testactuator is not dropped as a file extension
actuator="mike.testactuator/"

authentication setup
conn = httplib.HTTPConnection("wotkit.sensetecnic.com")
base64string = base64.encodestring('%s:%s' % ('{id}', '{password}'))[:-1]
authheader = "Basic %s" % base64string
headers = {'Authorization': authheader}

#subscribe to the controller and get the subscriber ID
conn.request("POST", "/api/control/sub/" + actuator, headers=headers)
response = conn.getresponse()
data = response.read()

json_object = json.loads(data)
subId = json_object['subscription']

#loop to long poll for actuator messages
while 1:
 print "request started for subId: " + str(subId)
 conn.request("GET", "/api/control/sub/" + str(subId) + "?wait=10", headers=headers)
 response = conn.getresponse()
 data = response.read()

 json_object = json.loads(data)

 # change state of actuator based on json message received
 print json_object

 Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WoTKit 1.6.0.SNAPSHOT documentation

 	2. V1 API Reference

2.8. Tags

You can get a list of tags, either the most used by public sensors or by a sensor query.

2.8.1. Querying Sensor Tags

A list of matching tags. The query parameters are as follows:

	Name
	Value Description

	scope
	
all-all tags used by sensors that the current user has access to;
| subscribed-tags for sensors the user has subscribed to;
| contributed-tags for sensors the user has contributed to the system.

	private
	
	true - private sensors only; false - public only

	(Deprecated, use visibility instead)

	visibility
	filter by the visibility of the sensors, either of public, organization or private

	text
	text to search in the sensors’s name, long name and description

	active
	when true, only returns tags for sensors that have been updated in the last 15 minutes.

	offset
	offset into list of tags for paging

	limit
	limit to show for paging. The maximum number of tags to display is 1000.

	location
	
	geo coordinates for a bounding box to search within.

	Format is yy.yyy,xx.xxx:yy.yyy,xx.xxx, the order of the coordinates are North,West:South,East.
Example: location=56.89,-114.55:17.43,-106.219

To query for tags, add query parameters after the sensors URL as follows:

	URL
	http://wotkit.sensetecnic.com/api/tags?{query}

	Privacy
	Public or Private

	Format
	json

	Method
	GET

	Returns
	On error, an appropriate HTTP status code; On success, OK 200 and a list of tag count objects matching the query.

example

curl --user {id}:{password}
"http://wotkit.sensetecnic.com/api/sensors/tags?text=bicycles"

Output:

[
 {
 'name': 'bicycle',
 'count': 3,
 'lastUsed': 1370887340845
 },{
 'name': 'bike',
 'count': 3,
 'lastUsed': 1350687440754
 },{
 'name': 'montreal',
 'count': 1,
 'lastUsed': 1365857340341
 }
]

The lastUsed field represents the creation date of the newest sensor that uses this tag.

 Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WoTKit 1.6.0.SNAPSHOT documentation

 	2. V1 API Reference

2.9. Users

Admins can list, create and delete users from the system.

2.9.1. List/Query Users

A list of matching user may be queried by the system. The optional query parameters are as follows:

	Name
	Value Description

	text
	text to search for in the username, first name and/or last name

	reverse
	true to get the oldest users first; false (default) to get newest first

	offset
	offset into list of users for paging

	limit
	limit to show for paging. The maximum number of users to display is 1000.

To query for users, add query parameters after the sensors URL as follows:

	URL
	http://wotkit.sensetecnic.com/api/users?{query}

	Privacy
	Admin

	Format
	json

	Method
	GET

	Returns
	On error, an appropriate HTTP status code; On success, OK 200 and a list of users matching the query.

2.9.2. Viewing a Single User

To view a single user, query by username or id as follows:

	URL
	http://wotkit.sensetecnic.com/api/users/{username}

	Privacy
	Admin

	Format
	json

	Method
	GET

	Returns
	Appropriate HTTP status code; OK 200 - if successful

example

curl --user {id}:{password}
"http://wotkit.sensetecnic.com/api/users/1"

Output:

{
 'id': 1,
 'username': 'sensetecnic',
 'email': 'info@sensetecnic.com',
 'firstname': 'Sense',
 'lastname': 'Tecnic',
 'enabled': True,
 'accountNonExpired': True,
 'accountNonLocked': True,
 'credentialsNonExpired': True
}

2.9.3. Creating/Registering a User

To register a user, you POST a user resource to the url /users.

	The user resources is a JSON object.

	The “username”, “firstname”, “lastname”, “email”, and “password” fields are required when creating a user.

	The “timeZone” field is optional and defaults to UTC.

	The username must be at least 4 characters long.

To create a user:

	URL
	http://wotkit.sensetecnic.com/api/users

	Privacy
	Admin

	Format
	json

	Method
	POST

	Returns
	HTTP status code; Created 201 if successful; Bad Request 400 if user is invalid; Conflict 409 if user with the same username already exists

2.9.4. Updating a User

	You may only update the following fields: “firstname”, “lastname”, “email”, “timeZone” and “password”.

	Only fields that will be present in the JSON object will be updated. The rest will remain unchanged.

To update a user:

	URL
	http://wotkit.sensetecnic.com/api/users/{username}

	Privacy
	Admin

	Format
	json

	Method
	PUT

	Returns
	HTTP status code; No Content 204 if successful

2.9.5. Deleting a User

Deleting a user is done by deleting the user resource.

To delete a user:

	URL
	http://wotkit.sensetecnic.com/api/users/{username}

	Privacy
	Admin

	Format
	not applicable

	Method
	DELETE

	Returns
	HTTP status code; No Response 204 if successful

 Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WoTKit 1.6.0.SNAPSHOT documentation

 	2. V1 API Reference

2.10. Organizations

All users can see all organizations, and admins can manipulate them.

2.10.1. List/Query Organizations

A list of matching organizations may be queried by the system. The optional query parameters are as follows:

	Name
	Value Description

	text
	text to search for in the name, long name and/or description

	offset
	offset into list of organizations for paging

	limit
	limit to show for paging. The maximum number of organizations to display is 1000.

To query for organizations, add query parameters after the sensors URL as follows:

	URL
	http://wotkit.sensetecnic.com/api/orgs?{query}

	Privacy
	Public

	Format
	json

	Method
	GET

	Returns
	On error, an appropriate HTTP status code; On success, OK 200 and a list of organizations matching the query from newest to oldest.

2.10.2. Viewing a Single Organization

To view a single organization, query by name:

	URL
	http://wotkit.sensetecnic.com/api/orgs/{org-name}

	Privacy
	Public

	Format
	json

	Method
	GET

	Returns
	Appropriate HTTP status code; OK 200 - if successful

example

curl "http://wotkit.sensetecnic.com/api/orgs/electric-inc"

Output:

{
 "id": 4764,
 "name": "electric-inc",
 "longName": "Electric, Inc.",
 "description": "Electric, Inc. was established in 1970.",
 "imageUrl": "http://www.example.com/electric-inc-logo.png"
}

2.10.3. Creating/Registering an Organization

To register a new organization, you POST an organization resource to the url /org.

	The organization resources is a JSON object.

	The “name” and “longName” fields are required and must both be at least 4 characters long.

	The “imageUrl” and “description” fields are optional.

To create an organization:

	URL
	http://wotkit.sensetecnic.com/api/orgs

	Privacy
	Admin

	Format
	json

	Method
	POST

	Returns
	HTTP status code; Created 201 if successful; Bad Request 400 if organization is invalid; Conflict 409 if an organization with the same name already exists

2.10.4. Updating an Organization

	You may update any fields except “id” and “name”.

	Only fields that are present in the JSON object will be updated.

To update an organization:

	URL
	http://wotkit.sensetecnic.com/api/orgs/{org-name}

	Privacy
	Admin

	Format
	json

	Method
	PUT

	Returns
	HTTP status code; No Content 204 if successful

2.10.5. Deleting an Organization

Deleting an organization is done by deleting the organization resource.

To delete a user:

	URL
	http://wotkit.sensetecnic.com/api/orgs/{org-name}

	Privacy
	Admin

	Format
	not applicable

	Method
	DELETE

	Returns
	HTTP status code; No Content 204 if successful

2.10.6. Organization Membership

2.10.6.1. List all members of an Organization

To query for organization members:

	URL
	http://wotkit.sensetecnic.com/api/orgs/{org-name}/members

	Privacy
	Admin

	Format
	not applicable

	Method
	GET

	Returns
	On error, an appropriate HTTP status code; On success, OK 200 and a list of organization members.

2.10.6.2. Add new members to an Organization

To add new members to an organization, post a JSON array of usernames:

	URL
	http://wotkit.sensetecnic.com/api/orgs/{org-name}/members

	Privacy
	Admin

	Format
	json

	Method
	POST

	Returns
	On error, an appropriate HTTP status code; On success, OK 204.

Usernames that are already members, or usernames that do not exist, will be ignored.

For instance, to add the users “abe”, “beth”, “cecilia” and “dylan” to the organization “electric-inc”:

example

curl --user {id}:{password} --request POST
--header "Content-Type: application/json" --data-binary @users-list.txt
'http://wotkit.sensetecnic.com/api/orgs/electric-inc/members'

The file users-list.txt would contain the following.

["abe", "beth", "cecilia", "dylan"]

2.10.6.3. Remove members from an Organization

To remove members from an organization, DELETE a JSON array of usernames:

	URL
	http://wotkit.sensetecnic.com/api/orgs/{org-name}/members

	Privacy
	Admin

	Format
	json

	Method
	DELETE

	Returns
	On error, an appropriate HTTP status code; On success, OK 204.

Usernames that are not members, or usernames that do not exist, will be ignored.

 Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WoTKit 1.6.0.SNAPSHOT documentation

 	2. V1 API Reference

2.11. Sensor Groups

Sensor Groups are used to logically organize related sensors.
A Sensors can be a member of many groups.

Currently, all Sensor Groups have public visibility, but only the owner (creator) can add/remove sensors from the group.

Sensor Groups can be manipulated using a REST API in the following section

2.11.1. Sensor Group Format

All request body and response bodies use JSON. The following fields are present:

	Field Name
	Type
	Required
	Notes

	id
	Integer
	true
	The id contains a unique number which is used to identify the group

	name
	String[4,50]
	true
	The name is a system-unique string identifier for the group. Names must be lowercase containing alphanumeric, underscores or hyphens [a-z0-9_-]. The first character must be an alphabetic character

	longName
	String[,255]
	optional
	A readable name used for visual interfaces.

	owner
	String[4,50]
	true
	The name of the group’s owner. This field is set by the system and cannot be modified.

	description
	String[,255]
	optional
	A simple description of the group

	imageUrl
	String[,255]
	optional
	A string url to an image which can be used to represent this group

	sensors
	Array[Sensor]
	optional
	Contains a JSON list of sensors. This field is only useful for viewing sensors. To append/remove sensors from Sensor Groups, refer to Adding a Sensor to Sensor Group.

An example of a Sensor Group JSON would be follows:

{
 id: 49,
 name: "water-sensor",
 longName: "A water sensor",
 owner: "robertl",
 description: "This is a short description",
 imageUrl: "http://someurl.com/water-sensor.jpg"
 sensors: []
}

2.11.2. List Groups

Provides a list of groups on the system as an array using the JSON format specified in Sensor Group Format

	URL
	http://wotkit.sensetecnic.com/api/groups/

	Method
	GET

	Returns
	OK 200, along with list

example

curl --user {id}:{password} --request GET 'http://wotkit.sensetecnic.com/api/groups'

2.11.3. Viewing a Single Sensor Group

Similar to listing a group, but retrieving only a single sensor. Replace {group-name}
with group.id or group.name. The API accepts both formats

	URL
	http://wotkit.sensetecnic.com/api/groups/{group-name}

	Method
	GET

	Returns
	OK 200

example

curl --user {id}:{password} --request GET 'http://wotkit.sensetecnic.com/api/groups'

2.11.4. Creating a Sensor Group

To create a sensor group, append the Sensor Group contents following Sensor Group Format.

On creation, the id and owner fields are ignored because they are system generated.

	URL
	http://wotkit.sensetecnic.com/api/groups

	Method
	POST

	Returns
	If a sensor with the same name exists, ERROR 409. Otherwise, OK 204.

2.11.5. Modifying Sensor Group Fields

Modifying is similar to creation, the content is placed in the response body

Again, the id and owner fields in the JSON object are ignored if they are modified. The Sensor Group is specified by substituting {group-name} in the URL with either group.id or group.name. The API accepts both formats.

	URL
	http://wotkit.sensetecnic.com/api/groups/{group-name}

	Method
	PUT

	Returns
	If user has no permissions to edit group, returns UNAUTHORIZED 401, otherwise OK 204

2.11.6. Deleting a Sensor Group

Deleting a Sensor Group is fairly trivial, assuming you are the owner of the group.
A request body is unnecessary.

	URL
	http://wotkit.sensetecnic.com/api/groups/{group-name}

	Method
	DELETE

	Returns
	If user has no permissions to edit group, returns UNAUTHORIZED 401, otherwise OK 204

2.11.7. Adding a Sensor to Sensor Group

This is done by invoking the URL by replacing the specified parameters where
{group-name} can be group.id or group.name. {sensor-id} should
be sensor.id.

	URL
	http://wotkit.sensetecnic.com/api/groups/{group-name}/sensors/{sensor-id}

	Method
	POST

The response will contain one of the following response codes.

	Return Code
	Description

	OK 204
	No Content is given.

	400
	Sensor is already a member of sensor group

	401
	User is unauthorized to edit group.

2.11.8. Removing a Sensor from Sensor Group

The format is the same as Adding a Sensor to Sensor Group except replacing method with DELETE

	URL
	http://wotkit.sensetecnic.com/api/groups/{group-name}/sensors/{sensor-id}

	Method
	DELETE

The response will contain one of the following codes.

	Return Code
	Description

	OK 204
	No Content is given. If a sensor does not exist in a group, this is also returned.

	401
	User is unauthorized to edit group

 Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WoTKit 1.6.0.SNAPSHOT documentation

 	2. V1 API Reference

2.12. News

To get “news” (a list of interesting recent things that happened in the system):

	URL
	http://wotkit.sensetecnic.com/api/news

	Privacy
	Public

	Format
	not applicable

	Method
	GET

	Returns
	Appropriate HTTP status code; OK 200 - if successful

example

curl "http://wotkit.sensetecnic.com/api/news"

Output:

[{
 'timestamp': 1370910428123,
 'title': u'The sensor "Light Sensor" has updated data.',
 'url': u'/sensors/5/monitor'
},{
 'timestamp': 1370910428855,
 'title': u'The sensor "api-data-test-1" has updated data.',
 'url': u'/sensors/40/monitor'
}]

 Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WoTKit 1.6.0.SNAPSHOT documentation

 	2. V1 API Reference

2.13. Statistics

To get some statistics (eg. number of public sensors, active sensors, new sensors, etc...):

	URL
	http://wotkit.sensetecnic.com/api/stats

	Privacy
	Public

	Format
	not applicable

	Method
	GET

	Returns
	Appropriate HTTP status code; OK 200 - if successful

example

curl "http://wotkit.sensetecnic.com/api/stats"

Output:

{
 'total': 65437,
 'active': 43474,
 'new': {
 'day': 53,
 'week': 457,
 'month': 9123,
 'year': 40532
 }
}

 Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WoTKit 1.6.0.SNAPSHOT documentation

 	2. V1 API Reference

2.14. Smart Streets Authentication

The WoTKit API for Smart Streets supports basic authentication using user name and password, WoTKit keys, as well as a developer key. Note that Smart Streets does not support OAuth2.

2.14.1. Authenticating using Smart Streets Developer Keys

More on this to come

 Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WoTKit 1.6.0.SNAPSHOT documentation

3. V2 API Reference

This documentation is a work in process. It’s not production ready yet – but
feel free to look around.

	3.1. Sensor Data
	3.1.1. Sending New Data

	3.1.2. Updating a Range of Historical Data

	3.1.3. Retrieving a Single Data Item

	3.1.4. Retrieving Data Using Query

	3.1.5. Delete Data by Id

	3.1.6. Delete Data using Data Query

	3.2. Alerts
	3.2.1. Listing Alerts of an User

	3.2.2. Viewing an Alert

	3.2.3. Creating Alerts

	3.2.4. Updating Alerts

	3.2.5. Deleting Alerts

	3.3. Inbox
	3.3.1. Listing Inbox Messages of an User

 Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WoTKit 1.6.0.SNAPSHOT documentation

 	3. V2 API Reference

3.1. Sensor Data

In the WoTKit, sensor data consists of a timestamp followed by one or more named fields. There are a number of
reserved fields supported by the WoTKit:

	Reserved field name
	Description

	timestamp
	the time that the sensor data was collected. This is a long integer representing the number of milliseconds from Jan 1, 1970 UTC. Optional; if not supplied, a server-supplied timestamp will be used.

	id
	a unique identifier for the data reading. This is to distinguish one reading from another when they share the same timestamp. Read only; This field is read only and should not be sent by the client when sending new data.

	sensor_id
	the globally unique sensor id that produced the data. Read only; This is a read only field generated by the wotkit that should not be sent by a client when sending new data.

	sensor_name
	the globally unique sensor name, in the form {username}.{sensorname}. Read only; This is a read only field and should not be sent by the client when sending new data.

When a new sensor is created, a number of default fields are created by the wotkit for a sensor as follows. Note that these can be changed by editing the sensor fields.

	Default field name
	Description

	lat
	the current latitude location of the sensor in degrees (number). Needed for map visualizations.

	lng
	the current longitude location of the sensor in degrees (number). Needed for map visualizations.

	value
	the primary value of the sensor data collected (number). Needed for most visualizations.

	message
	a text message, for example a twitter message (text). Needed for text/newsfeed visualizations.

In addition to these default fields, additional fields can be added by updating
the sensor fields in the WoTKit UI or Sensor Fields in the API.

Note

Python’s time.time() function generates the system time in seconds, not
milliseconds. To convert this to an integer in milliseconds use
int(time.time()*1000).

In Javascript: var d = new Date(); d.getTime();

In Java: System.currentTime().

3.1.1. Sending New Data

To send new data to a sensor, POST name value pairs corresponding to the data
fields to /sensors/{sensorname}/data. There is no need to supply the sensor id, or sensor name fields since the sensor
is specified in the URL.

If a timestamp is not provided in the request body, it will be set to the current time by the
the server.

To send new data:

	URL
	http://wotkit.sensetecnic.com/api/v2/sensors/{sensorname}/data

	Privacy
	Private

	Format
	not applicable

	Method
	POST

	Returns
	HTTP status code; No Response 201 (Created) if successful

Example

curl --user {id}:{password} --request POST -d value=5 -d lng=6 -d lat=7
'http://wotkit.sensetecnic.com/api/sensors/test-sensor/data'

3.1.2. Updating a Range of Historical Data

To insert or update a range of historical data, you PUT data (rather than POST) data into the system.
Note that data PUT into the WoTKit will not be processed in real time, since it
occurred in the past.

	The request body must be a list of JSON objects containing a timestamp value.

	Any existing data within this timestamp range will be
deleted and replaced by the data supplied.

To update data:

	URL
	http://wotkit.sensetecnic.com/api/v2/sensors/{sensorname}/data

	Privacy
	Private

	Format
	JSON

	Method
	PUT

	Returns
	HTTP status code; No Response 204 if successful

Example of valid data:

[{"timestamp":"2012-12-12T03:34:28.626Z","value":67.0,"lng":-123.1404,"lat":49.20532},
{"timestamp":"2012-12-12T03:34:28.665Z","value":63.0,"lng":-123.14054,"lat":49.20554},
{"timestamp":"2012-12-12T03:34:31.621Z","value":52.0,"lng":-123.14063,"lat":49.20559},
{"timestamp":"2012-12-12T03:34:35.121Z","value":68.0,"lng":-123.14057,"lat":49.20716},
{"timestamp":"2012-12-12T03:34:38.625Z","value":51.0,"lng":-123.14049,"lat":49.20757},
{"timestamp":"2012-12-12T03:34:42.126Z","value":55.0,"lng":-123.14044,"lat":49.20854},
{"timestamp":"2012-12-12T03:34:45.621Z","value":56.0,"lng":-123.14215,"lat":49.20855},
{"timestamp":"2012-12-12T03:34:49.122Z","value":55.0,"lng":-123.14727,"lat":49.20862},
{"timestamp":"2012-12-12T03:34:52.619Z","value":59.0,"lng":-123.14765,"lat":49.20868}]

example

curl --user {id}:{password} --request PUT --data-binary @data.txt
'http://wotkit.sensetecnic.com/api/sensors/test-sensor/data'

where data.txt contains JSON data similar to the above JSON array.

3.1.3. Retrieving a Single Data Item

If you know the data element’s id, you can query for a single data element using
the following query.

	URL
	http://wotkit.sensetecnic.com/api/v2/sensors/{sensor-name}/data/{data_id}

	Privacy
	Public or Private, depending on sensor privacy

	Format
	json

	Method
	GET

	Returns
	On success, OK 200 with a list of timestamped data records.

3.1.4. Retrieving Data Using Query

To retrive sensor data over a time range you can use the following endpoint. An
interactive guide on how to use this endpoint is available at:
Querying Sensor Data.

	URL
	http://wotkit.sensetecnic.com/api/v2/sensors/{sensor-name}/data

	Privacy
	Public or Private, depending on sensor privacy

	Format
	json

	Method
	GET

	Returns
	On success, OK 200 with a list of timestamped data records.

The query parameters supported are the following. They can only be used
together if they appear in the same Group below.

	Parameter
	Group
	Type
	Description

	recent_t
	1
	integer
	Gets the elements up to recent_t milliseconds ago

	recent_n
	2
	integer
	Gets the n recent elements

	start
	3
	timestamp
	The absolute starting point (in milliseconds since Jan 1, 1970).

	start_id
	3
	id
	The starting id of sensor_data at timestamp start. Used for paging and to distinguish data elements that share the same timestamp.

	end
	3
	timestamp
	The absolute ending timestamp (in milliseconds since Jan 1, 1970)

	end_id
	3
	timestamp
	The end id of sensor_data with timestamp end. Used for paging.

	limit
	[2,3]
	integer
	specifies how many datapoints to see on each response

3.1.5. Delete Data by Id

Same as Retrieving a Single Data Item instead using HTTP Delete.

	URL
	http://wotkit.sensetecnic.com/api/v2/sensors/{sensorname}/data/{data_id}

	Privacy
	Private

	Format
	not applicable

	Method
	DELETE

	Returns
	HTTP status code; No Response 204 if successful

3.1.6. Delete Data using Data Query

Can delete using query parameters in Retrieving Data Using Query with the
restriction on only using group 3 parameters.

	URL
	http://wotkit.sensetecnic.com/api/v2/sensors/{sensorname}/data

	Privacy
	Private

	Format
	not applicable

	Method
	DELETE

	Returns
	HTTP status code; No Response 204 if successful

 Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	WoTKit 1.6.0.SNAPSHOT documentation

 	3. V2 API Reference

3.2. Alerts

An alert is set up by an user for notification purpose. Multiple conditions can be attached to an alert. Each condition is associated with a sensor field. An alert fires and sends a message to the owner’s inbox and email (if email functionality is enabled) when all of its attached conditions are satisfied. Currently, each user is limited to have a maximum of 20 alerts.

An alert has the following attributes:

	Name
	Value Description

	id
	the numeric id of the alert. It is automatically assigned when alert is created.

	name **
	the name of the alert.

	longName
	longer display name of the alert.

	description **
	a description of the alert.

	owner
	the user that creates the alert. The value of this field is automatically assigned as a user creates an alert.

	disabled
	
	the on/off state of the alert.

	
- If ‘disabled’ is ‘true’, the alert is switched off; it switches on if otherwise.

	inProgress
	
	whether conditions are still true after an alert has fired.

	
- inProgress is ‘true’ if all alert conditions remain true after an alert has fired. It becomes ‘false’ when any condition turns false. An alert gets fired when its inProgress state changes from false to true.

	template **
	The message template that is sent to the inbox when alert is fired.

	sendEmail **
	A boolean to enable/disable send email functionaity.

	conditions
	the list of alert conditions

** Required when creating a new alert.

An alert condition is composed of a sensor field, an operator for evaluation, and a value. It has the following attributes:

	Name
	Value Description

	sensorId
	the ID of the sensor associated with the condition

	field
	the field name to be compared of the chosen sensor

	operator
	
	the conditon operator, its value can be one of following:

	
‘LT’: Less Than

‘LE’: Less Than Or Equal To

‘GT’: Greater Than

‘GE’: Greater Than Or Equal To

‘EQ’: Equal

‘NEQ’: Not Equal

‘NULL’: Is Null

‘NOTNULL’: Is Not Null

	value
	value that the operator compares with

3.2.1. Listing Alerts of an User

To view a list of “alerts” created by an user:

	URL
	http://wotkit.sensetecnic.com/api/v2/alerts

	Privacy
	Private

	Format
	JSON

	Method
	GET

	Returns
	Appropriate HTTP status code; OK 200 - if successful

example

curl --user {id}:{password} "http://wotkit.sensetecnic.com/api/v2/alerts"

Sample Output:

 [{
 "id": 6,
 "owner": "crysng",
 "name": "temperature-alert",
 "longName": "Temperature Alert",
 "description": "This alert notifies user when Hydrogen Sulfide content and Wind speed is too high at Burnaby Burmount. ",
 "disabled": false,
 "inProgress": false,
 "template": "Hydrogen Sulfide and wind speed is high!",
 "sendEmail": true,
 "email": "rottencherries@hotmail.com",
 "conditions": [
 {
 "sensorId": 241,
 "field": "h2s",
 "operator": "GT",
 "value": 10
 },
 {
 "sensorId": 241,
 "field": "wspd",
 "operator": "GE",
 "value": 50
 }
]
},
{
 "id": 5,
 "owner": "crysng",
 "name": "test",
 "longName": "Moisture Sensor Alert",
 "description": "This alert fires when moisture level is too low. ",
 "disabled": false,
 "inProgress": false,
 "template": "Moisture level is too low, water the plant now!",
 "sendEmail": true,
 "email": "someone@email.com",
 "conditions": [
 {
 "sensorId": 504,
 "field": "value",
 "operator": "LT",
 "value": 3
 }
]
}]

3.2.2. Viewing an Alert

To view an alert, query the alert by its id as followed:

	URL
	http://wotkit.sensetecnic.com/api/v2/alerts/{alert id}

	Privacy
	Private

	Format
	json

	Method
	GET

	Returns
	Appropriate HTTP status code; OK 200 - if successful

example

curl --user {id}:{password}
"http://wotkit.sensetecnic.com/api/v2/alerts/5"

Output:

 {
 "id": 5,
 "owner": "crysng",
 "name": "test",
 "longName": "Moisture Sensor Alert",
 "description": "This alert fires when moisture level is too low. ",
 "disabled": false,
 "inProgress": false,
 "template": "Moisture level is too low, water the plant now!",
 "sendEmail": true,
 "email": "someone@email.com",
 "conditions": [
 {
 "sensorId": 504,
 "field": "value",
 "operator": "LT",
 "value": 3
 }
]
}

3.2.3. Creating Alerts

To create an alert, you POST an alert resource to the url /v2/alerts.

	The alert resource is a JSON object.

	The “name”, “description”, “template”, and “sendEmail” fields are required when creating an alert.

	The alert name must be at least 4 characters long, contain only lowercase letters, numbers, dashes and underscores, and can start with a lowercase letter or an underscore only.

To create an alert:

	URL
	http://wotkit.sensetecnic.com/api/v2/alerts

	Privacy
	Private

	Format
	json

	Method
	POST

	Returns
	HTTP status code; Created 201 if successful; Bad Request 400 if sensor is invalid; Conflict 409 if alert with the same name already exists

example1

curl --user {id}:{password} --request POST --header "Content-Type: application/json"
--data-binary @test-alert.txt 'http://wotkit.sensetecnic.com/api/v2/alerts'

For this example, the file test-alert.txt contains the following. This is the minimal information needed to create an alert.

{
 "name":"test alert",
 "description":"A test alert.",
 "template":"Template for test alert",
 "sendEmail":false
}

example2

Now, let’s create an alert with additional information and conditions. The file test-alert.txt contains the following.

{
 "name": "test alert 2",
 "longName": "Test Alert 2",
 "description": "This is test 2. ",
 "disabled": false,
 "template": "The alert test 2 has fired!! ",
 "sendEmail": true,
 "email": "someone@email.com",
 "conditions": [
 {
 "sensorId": 504,
 "field": "value",
 "operator": "LT",
 "value": 3
 },
 {
 "sensorId": 24,
 "field": "data",
 "operator": "NOTNULL"
 }
]
}

3.2.4. Updating Alerts

Updating an alert is the same as creating a new alert other than PUT is used and the alert id is included in the URL.

Note that all top level fields supplied will be updated.

	You may update any fields except “id”, and “owner”.

	Only fields that are present in the JSON object will be updated.

To update an alert owned by the current user:

	URL
	http://wotkit.sensetecnic.com/api/v2/alerts/{alert id}

	Privacy
	Private

	Format
	json

	Method
	PUT

	Returns
	HTTP status code; No Content 204 if successful

For instance, to update an alert:

example

curl --user {id}:{password} --request PUT --header "Content-Type: application/json"
--data-binary @update-alert.txt 'http://wotkit.sensetecnic.com/api/v2/alerts/{alert id}'

The file update-alert.txt would contain the following:

{
 "longName": "New Alert Name",
 "description":"Updated Description"
}

3.2.5. Deleting Alerts

Deleting an alert is done by deleting the alert resource.

To delete an alert owned by the current user:

	URL
	http://wotkit.sensetecnic.com/api/v2/alertss/{alert id}

	Privacy
	Private

	Format
	not applicable

	Method
	DELETE

	Returns
	HTTP status code; No Response 204 if successful

example

curl --user {id}:{password} --request DELETE
'http://wotkit.sensetecnic.com/api/v2/alerts/{alert id}'

 Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	WoTKit 1.6.0.SNAPSHOT documentation

 	3. V2 API Reference

3.3. Inbox

The Inbox is the storage place for inbox messages that are sent by an alert firing event.

An inbox message has the following attributes:

	Name
	Value Description

	id
	the numeric id of the message. It is automatically generated.

	timestamp
	the time that the message is sent to inbox.

	title
	title of the inbox message

	message
	the message content

	sendEmail
	the boolean variable of whether email functionality is enabled

	read
	the flag of whether the message is read

	sent
	the flag of whether an email is sent

3.3.1. Listing Inbox Messages of an User

To view a list of “inbox messages” of an user:

	URL
	http://wotkit.sensetecnic.com/api/v2/inbox

	Privacy
	Private

	Format
	JSON

	Method
	GET

	Returns
	Appropriate HTTP status code; OK 200 - if successful

example

curl --user {id}:{password} "http://wotkit.sensetecnic.com/api/v2/inbox"

Sample Inbox Messages Output:

[
 {
 "id": 5,
 "timestamp": "2014-04-17T00:51:41.701Z",
 "title": "Moisture Sensor Alert",
 "message": "Moisture level is too low, water the plant now!",
 "sendEmail": true,
 "email": "someone@email.com",
 "read": false,
 "sent": false
 }
]

 Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	WoTKit 1.6.0.SNAPSHOT documentation

Index

 A
 | B
 | C
 | D
 | F
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W

A

 	

 	Access Token

 	Actuator Messages

 	

 	
 see also Actuator Polling

 	
 see also Actuator Subscription

 	Actuator Polling

 	Actuator Subscription

 	Actuators

 	Acuator Example

 	Aggregated Sensor Data

 	

 	
 see also Sensor Data

 	

 	Alerts

 	Alerts Query

 	Alerts Query by ID

 	API Permissions

 	Applications

 	Authentication

B

 	

 	Bulk Sensor Data, [1]

 	

 	Sensor Data Creation, [1]

C

 	

 	Control Messages

 	

 	
 see also Controller Polling

 	
 see also Controller Subscription

 	Controller Polling

 	

 	Controller Subscription

 	Create Alert

D

 	

 	Default Sensor Fields

 	Delete Alert

 	

 	Delete Sensor

F

 	

 	Formatted Sensor Data

 	

 	
 see also Sensor Data Retrieval

I

 	

 	Inbox

 	Inbox Message Query

 	

 	Input

 	

 	
 see also Modules

K

 	

 	Keys

L

 	

 	Log

 	

 	
 see also Modules

M

 	

 	Methods Privacy

 	Modules

 	

 	Monitor View

 	Multiple Sensor Registration

 	

 	Sensor Registration

N

 	

 	News

 	

 	
 see also Statistics

O

 	

 	OAuth2

 	Organization Creation

 	Organization Deletion

 	Organization Member Creation

 	Organization Member Removal

 	

 	Organization Members

 	Organization Query

 	Organization Updating

 	Output

 	

 	
 see also Modules

P

 	

 	Process

 	

 	
 see also Modules

 	

 	Processor

Q

 	

 	Querying Sensor Data

R

 	

 	Raw Sensor Data

S

 	

 	Send Actuators Messages

 	Send Control Messages

 	Sensor Creation

 	Sensor Data

 	Sensor Data Creation, [1]

 	

 	Bulk Sensor Data, [1]

 	Sensor Data Deletion, [1]

 	Sensor Data Retrieval

 	

 	
 see also Formatted Sensor Data

 	Sensor Editing

 	Sensor Field Deletion

 	Sensor Field Update

 	

 	Sensor Fields

 	Sensor Fields Query

 	Sensor Registration

 	

 	Multiple Sensor Registration

 	Sensor Sub-Fields

 	Sensor Subscriptions

 	Sensors, [1]

 	SmartStreets

 	Statistics

 	

 	
 see also News

 	Subscribe to a Sensor

 	

 	Unsubscribe from a Sensor

T

 	

 	Tags

 	

 	
 see also Sensors

 	

 	Twitter Feed

 	

 	
 see also Modules

U

 	

 	Unsubscribe from a Sensor

 	

 	Subscribe to a Sensor

 	Update Alert

 	Update Sensors

 	User Creation

 	

 	User Deletion

 	User Information

 	User Queries

 	User Updating

W

 	

 	Widget Creation

 Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

 _static/up.png

user/user_dashboards.html

 Navigation

 		
 index

 		WoTKit 1.6.0.SNAPSHOT documentation »

11. Dashboards

Dashboards allow you to view multiple widgets displaying sensor data.

To view your dashboards, select the Dashboards tab.

When viewing a new dashboard, you will see the following view with a help message.
By default, there will be an empty dashboard labeled ‘untitled’.

From here, you can:
* Select an existing dashboards by clicking another dashboard on the left of the page.
* Add a new dashboard by clicking ‘’Add Dashboard’‘.
* Rename a dashboard by clicking on the Edit link.
* Delete a new dashboard by clicking ‘’Delete Dashboard’‘.

Note

You must have at least one dashboard at all times. If you only have one dashboard, it cannot be deleted.

[image: ../_images/Dashboard.jpg]

11.1. Adding Widgets to a Dashboard

To add a sensor widget to a dashboard:
* Select the “Dashboard” tab.
* Click on the dashboard that you wish to add a widget to.
* Click on ‘’Add Widgets’‘.
* Choose which widget to add, and click on its ‘’Add to Dashboard’’ button.

Note

This will add the widget to the last dashboard you viewed. If there are no widgets, you must create a widget by viewing a sensor. See ...

[image: ../_images/Add-to-Dashboard.jpg]
After adding a widget to a dashboard, the widgets will be displayed on the dashboard as shown. You can drag and resize them to any position on the dashboard.

[image: ../_images/Dashboard-Widgets.jpg]

 © Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

_static/down.png

user/quickstart.html

 Navigation

 		
 index

 		WoTKit 1.6.0.SNAPSHOT documentation »

1. Overview

The WoTKit lets you quickly publish, find and use interesting data streams in quick visualizations and your own applications;
from environmental sensors, GPS and on board data collection from vehicles, real time data feeds from mobile applications,
building sensors, and internet-sourced content. With the WoTKit you can easily add visualizations for display on a WoTKit
dashboard and create applications using the WoTKit API.

This quick start tutorial will get you started with the WoTKit.

2. Finding Sensors

The WoTKit hosts many interesting sensor streams. Some sensors on the system represent physical sensors and actuators such as temperature and light sensors connected to zigbee radios, or servo motors used to control things. Other sensors host data pulled from web sites and external sensor systems such as the power use of buildings or ferry locations.

To find interesting public sensors, you need not create an account. Simply hit the Sensor Search [http://wotkit.sensetecnic.com/wotkit/sensors] page and use the UI there to find sensors. The sensor search text box allows you to search by sensor name and description. Click on tags to find sensors that use the selected tags.

3. Viewing a Sensor

To sensor details and data click on the sensor in the list link in the map view in the sensor search page. This will bring up a monitor page where you get information about the sensors such as its name, contributor, location, a table containing the data stream. See the Yellow Taxi [http://wotkit.sensetecnic.com/wotkit/sensors/1/monitor] for example.

To do more with the WoTKit, you’ll need to create an account!

4. Create an Account

To create your own sensors or add visualizations to your own dashboards, you’ll need to create an account. To do so, click on the log in button on the top right, then click on the Create an Account button. Fill in the form and log in to the WoTKit.

5. Create a Widget

Now that we’re logged in, lets create a widget that displays sensor data on a dashboard using a line chart.

		First, choose a sensor that you would like to visualize using the sensor search [http://wotkit.sensetecnic.com/wotkit/sensors] page.

		Type in ‘light’ in the search area. Click on the sensor called ‘Light Sensor’ published by Sense Tecnic.

		In the sensor monitor view [http://wotkit.sensetecnic.com/wotkit//sensors/5/monitor], click on the Visualizations and Widgets tab on the lower half of the screen to view available visualizations for the sensor. Lets select the visualization we want. Feel free to try out available visualizations.

		Lets go with the Line Graph in the pop up. Click on the Create this Widget button to create a widget.

The widget will appear in the widget list [http://wotkit.sensetecnic.com/wotkit/widgets]. To add it to your default dashboard, click on
the Add to Dashboard button beside the widget.

The Widget will appear on your dashboard [http://wotkit.sensetecnic.com/wotkit/dashboards]. Feel free to move and resize the
widget where you like.

6. Adding your own Sensor

To add your own sensors to the WoTkit, you will first use the UI to create a sensor, create a key to generate credentials
for your sensor script to send data using the WoTKit API, then run your script to send data to the WoTKit.

		Create a sensor by clicking on the Sensors tab in the navigation bar to take you to the Sensor Search [http://wotkit.sensetecnic.com/wotkit/sensors] page. Click on the New Sensor button in the top right.

		Fill in the new sensor form. Lets call it ‘Test Sensor’ with the name ‘test-sensor’. Click on the map to set a location for your sensor.

		Once you’ve filled in the form, you can view the monitor page [http://wotkit.sensetecnic.com/wotkit/sensors/test-sensor/monitor] for that sensor.

At this point you’ve created a resource on the wotkit for your sensor. Now it is time to create a key to use in your
sensor scripts to send data to the WoTKit using the API.

		Create an API key by clicking on the Keys button in the navigation bar to take you to the Keys [http://wotkit.sensetecnic.com/wotkit/keys] page.

		Click on the New Key button in the top right.

		Fill in the new key form. Lets call the key a ‘Test Key’ since we’ll only use it for our test sensors.

Now that we’ve created a sensor resource and a key, lets write a script to send data to our sensor. Lets start with
something simple like sending a random value to the sensor using Python.

Here’s the code:

import random
import time
import datetime
import urllib
import urllib2
import base64

KEY_ID = 'PASTE_YOUR_KEY_ID_HERE'
KEY_PASS = 'PASTE_YOUR_KEY_PASSWORD_HERE'

if __name__ == '__main__':

 random.seed(time.time())

 # encode our key id and password
 base64string = base64.encodestring('%s:%s' % (KEY_ID, KEY_PASS))[:-1]

 # the URL for our sensor
 url = 'http://wotkit.sensetecnic.com/api/sensors/test-sensor/data'

 while 1:

 # get value from the sensor, in this case we'll just generate a random number
 value = random.randint(0,100)

 datafields = [('value','%d' % value)]

 params = urllib.urlencode(datafields)

 headers = {
 'User-Agent': 'httplib',
 'Content-Type': 'application/x-www-form-urlencoded',
 'Authorization': "Basic %s" % base64string
 }

 req = urllib2.Request(url,params,headers)
 try:
 result = urllib2.urlopen(req)

 except urllib2.URLError, e:
 print "error", e

 print 'random value sent: %d' % (value)

 time.sleep(2.0)

Be sure to paste your generated key id and password into the variables above and make sure the sensor name is the one
you chose for your sensor in the URL (we suggested ‘test-sensor’).

Now if all goes well, the script will send a random value to the wotkit every 2 seconds. View the monitor page [http://wotkit.sensetecnic.com/wotkit/sensors/test-sensor/monitor] to see the new data added to the data table below in near real time. Click on the ‘Visualizations and Widgets’ tab to visualize the data
with line charts and graphs.

7. Where to go from here

Consult the Welcome to the WoTKit for more information on using the WoTKit portal.

To create your own WoTKit applications, register sensors dynamically and take advantage of the WoTKit platform with your own applications, consult the V1 API Reference.

 © Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

_static/ajax-loader.gif

user/index.html

 Navigation

 		
 index

 		WoTKit 1.6.0.SNAPSHOT documentation »

User Guide

		1. Overview

		2. Finding Sensors

		3. Viewing a Sensor

		4. Create an Account

		5. Create a Widget

		6. Adding your own Sensor

		7. Where to go from here

		8. Overview
		8.1. Public Sensors

		8.2. Creating an Account

		9. User Information

		10. Sensors
		10.1. Registering a New Sensor

		10.2. Monitoring Sensors

		10.3. Creating a Widget Visualization

		10.4. Editing Sensor Information

		11. Dashboards
		11.1. Adding Widgets to a Dashboard

		12. Managing WoTKit API Clients
		12.1. Keys and Basic Authentication

		12.2. Applications and OAuth2 Authorization

		13. Processor
		13.1. Creating a Pipe
		13.1.1. Create/Edit Pipe screen components

		13.1.2. Module types

 © Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

_static/down-pressed.png

_static/comment-close.png

user/user_clients.html

 Navigation

 		
 index

 		WoTKit 1.6.0.SNAPSHOT documentation »

12. Managing WoTKit API Clients

Clients of the WoTKit API include third partly applications, sensor gateways, and scripts.

You can manage the access these clients have to your sensor data and remove the need for external clients to share your personal WoTKit name and password in one of two ways:

		Keys and Basic Authentication.

		Applications and OAuth2 Authorization.

Once granted access, WoTKit clients can create, modify, or delete sensors and sensor data on your behalf.

12.1. Keys and Basic Authentication

A user can generate a key id and key password for WoTKit API clients as follows:

		Select the “Keys” tab and click on the ‘’New Key’’ button.

		Fill out the form with information to identify how the key is used, and click ‘’Add’‘. Once created, a ‘key id’ and ‘key password’ will be generated.

		To view the key, click ‘’View Key’‘.

The generated ‘key id’ and ‘key password’ can be used as the name and password in the basic authentication headers used when accessing the WoTKit API.

[image: user/images/Keys.jpg]

12.2. Applications and OAuth2 Authorization

Applications are clients of the WoTKit that can access the WoTKit API on behalf of more than one user.
Application credentials provided during the registration process are unique to that application. All applications appear in the WoTKit application list. They can connect to the WoTKit on behalf of a WoTKit user using the OAuth2 authorization process.

To register a new WoTKit application:

		Select the user menu (located at the top right).

		Click on your user name in the top right, and select “Applications” from the drop down list. Click on the ‘’New Application’’ button.

		Fill out the form, and click ‘’Add’‘. Once registered with an ‘application client id’, an ‘application secret’ will be automatically generated.

		To view application information, click ‘’View details’‘.

Using the supplied ‘application client id’ and ‘application secret’ applications obtain an access token to access WoTKit sensors on behalf of a user.

For an application to obtain an access token it requests authorization.

		The application first requests an authorization code by providing its ‘application client id’ to the WoTKit using its OAuth2 endpoint:

http://wotkit.sensetecnic.com/api/oauth/authorize?client_id={application client id}&response_type=code&redirect_uri={redirect uri}

		If no user is currently logged in to the WoTKit, a login page will be presented. A WoTKit user must provide their user name and password to continue.

		A page will then ask the user to authorize the application to connect to the WoTKit on their behalf. Once authorized, the authorization code is provided to the application by redirection.

		The application receives the authorization code and exchanges it along with the application credentials for an access token to use the WoTKit API.

Please see the V1 API Reference and in particular Authentication for more details.

[image: ../_images/Applications.jpg]

 © Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

_static/up-pressed.png

user/user_user_info.html

 Navigation

 		
 index

 		WoTKit 1.6.0.SNAPSHOT documentation »

9. User Information

To edit your user profile information, select the user menu (located on the top right) and choose the Settings options.

You can update you name, email, time zone, or password there.

[image: ../_images/User-Menu.jpg]

 © Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

_static/comment.png

_static/file.png

_static/minus.png

_static/plus.png

api_v2/sensors.html

 Navigation

 		
 index

 		WoTKit 1.6.0.SNAPSHOT documentation »

Sensors

WIP

 © Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

user/user_overview.html

 Navigation

 		
 index

 		WoTKit 1.6.0.SNAPSHOT documentation »

8. Overview

With the WoTKit user interface, you can easily complete a wide range of tasks including registering sensors, subscribing to sensor feeds, and visualizing sensor data.

For information about the API including sending and receiving data from a sensor or an actuator, please see the V1 API Reference.

8.1. Public Sensors

The WoTKit allows you to view public sensors and their data without the need to create an account. Without logging in, click on the Sensors tab on the top navigation bar to view the list of public WoTKit sensors.

8.2. Creating an Account

To use other features of the WoTKit, you must create an account. To do so, click on the ‘Log In’ button on the top left, then click on the ‘Create an Account’ button in the log in page.

 © Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

user/user_processor.html

 Navigation

 		
 index

 		WoTKit 1.6.0.SNAPSHOT documentation »

13. Processor

The Processor is a component of the WoTKit that lets you create “Pipes” - visual scripts that take data from one
or more input sources, process that data in any way, and output that data to one or more
sensors and Sensor Control Channel: Actuators.

13.1. Creating a Pipe

		Click on Pipes and then on New Pipe.

		If you do not have any existing pipes, clicking on Pipes will redirect you to the New Pipe page automatically.

		Add modules to the pipe by dragging them from the Modules component and dropping them on the workspace.

		Each module will have an input dot on top and/or an output dot below

		To pipe information between modules, drag the output dot of one module to the input dot of another.

13.1.1. Create/Edit Pipe screen components

Processor UI

The Pipe Modules

[image: ../_images/modules.png]

		Menu (on top) - Actions to save, delete, and start or stop the pipe

		Modules (on the left) - Pipe modules that can be dragged and dropped into the workspace

		Workspace (centre) - The modules and their connections are displayed here

		Properties (on the right) - Basic properties of the pipe, such as name and description

		Monitor (on the right) - Custom ‘’Monitor’’ modules in the pipe can be viewed in this component

		Error Monitor (on the right) - WoTKit’s API responses to input/output actions (success or error messages)

		Minimap (on the right) - A minimap of the workspace

		Help (on the right) - A link to this document

13.1.2. Module types

		Input:

		
		Twitter feed - The name of a twitter feed to poll

		
		Updated every time a new tweet is tweeted by the account

		Fields that will be outputted by this module:

		message - The content of the tweet

		
		Sensor input - The name or ID of a WoTKit sensor that you have access to (either public, or private and owned by you)

		
		Updated every time a new datum is posted to the sensor

		Fields that will be outputted by this module:

		value - The value of the datum

		{any other field} - If the sensor has any other fields, they will appear by name here

		
		Process:

		
		
		Aggregator - Aggregates multiple sensors together

		
		Accepts multiple inputs

		Outputs the input values verbatim whenever an input is updated, and adds a _sensor field with the input sensor’s name

		Threshold Alert - TODO

		
		Sensor Subsample - Will only pass data from input to output at least that many seconds have passed after the last input

		
		Define the ‘’period’’ in seconds

		Any input sent during the defined period after the last input is suppressed

		
		Script - A custom Python script

		
		The input and output to/from the script are in the python dictionaries named called input and output

		
		For example, if you input a sensor to the script and output to another sensor and you want to multiply the value field by 2 and add 1 use the following script:

		output['value'] = input['value'] * 2 + 1

		Any entry in the output dictionary will be sent as the output of this script

		
		{named script} - A copy of the template that you defined in the Scripts page

		
		Note that this creates a copy of the template. Any changes made to this script will not reflect in the original template

		
		Log:

		
		Monitor - A debugging module. Will display everything that is sent to it’s input as a table in the Monitor component on this screen

		
		Output:

		
		Sensor output - Post the input to the named sensor

		Actuator output - Post the input to the named actuator

		
		Email output - Email the input to the provided email address

		
		To replace text with a value use the following syntax: ${value}

 © Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

_static/comment-bright.png

_images/modules.png
= Twitter Feed

— Sensorlnput

—, Sensor Output

— Actuator Oufput

25 Email Output

Jy Aggregator

A Threshold Aert

& Sensor Subsample
Honitor

L samt

search.html

 Navigation

 		
 index

 		WoTKit 1.6.0.SNAPSHOT documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

_images/Monitor-View.jpg
WoTKit Home Dashboards & Sensors Keys Sensor Search @ Help & Rosey Rasoda v
[2ec Bt Al

Yellow Taxi Recent Data

Abig yellow taxi that travels from Vincent's house to UBC and then back

Timestamp latitude longitude Speed Message
Name: mule1
Jan 29, 2013
Ia: 1 iy 4314103 12317608 52
Last update: Jan 29, 2013
01/20/2013 e 49141 42315896 56
04:43:00 PM
Jan 29, 2013
oy 49.16568 -123.16893 69
Jan 29, 2013
e 49.1628 12315885 69
| esensors | T
an 29,
© Unsutscrive e 44263PM SN2 ey i
TR SO0RICH a
& e Map Data - Terms o Use Report map error Jan 29, 2013
e 49.16312 -123.16875 68 i

Line Chart Preview Create a Line Chart Widget

7

|Mispeea | | Pause Widget Name

= Line Chart for Yellow Taxi

&

Widget Description
s .
Description of Line Chart for Yellow Taxi

50
16:4030 16:41:00 16:41:30 16:4200 16:4230 16:43:00

4

Configure Widget »

— Previous Next —

_images/Add-to-Dashboard.jpg
WOoTKit Home = Dashboards = Sensors Keys Sensor Search @ Help 2 Rosey Rasoda ~

Dashboards

[Z2) Line Chart for Yellow Taxi @ Edt
Description of Line Chart for Yellow Taxi
Sensor. Yellow Taxi | Visualization: inechart

_images/Dashboard.jpg
WOoTKit Home | Dashboards = Sensors Keys

DASHBOARDS

My Dashboard

© Add Dashboard

il Delete Dashboard

.l Add Widgets »

@ Help | & Rosey Rasoda ~

WoTKit Dashboard

To add a visualization widgst to the dashboard, you'l need to create a widget and add it to the dashboard as follows:

Click the ‘Sensors' tab to see the lst of available sensors
Find an interesting sensor. and click on the View Sensor button

Chaose the visualization you like for the sensor using the Previous’ and Next buttons below the visualization

Click the ‘Create Default Widget button. This will create a widget and take you to the widgets list page

Select the widget you created and click ‘Add to dashboard button to add it to the current dashboard

Click on the Dashboards' tab to take you back to this Dashboard page: your widget will appear on the page. You can then resize and move the widget as
you like

_images/Edit-Schema.jpg
WoTKit Home Dashboards = Sensors Keys Sensor Search @Help 2 Rosey Rasoda ~

Cancel Back Done

Schema Editor for api-data-test-1

Field Name Type Long Name Units Is Required Control
Tat NUMBER Tatitude true @ Edit
ing NUMBER longitude true @ Edit
value NUMBER Data true @ Edit

message STRING Message false @ Edit

ecnic Systems. | Terms of Use | Feedback

_images/Create-Widget.jpg
Line Chart Preview

)

88

&0

B

16:4030 16:

spesa

00 16:4130 16:42:00 16:4230 16:43:00

Pause

Create a Line Chart Widget

Widget Name.
Line Chart for Yellow Taxi

Widget Description

Description of Line Chart for Yellow Taxi

user/user_sensors.html

 Navigation

 		
 index

 		WoTKit 1.6.0.SNAPSHOT documentation »

10. Sensors

To view the sensor gallery, click on the Sensors tab.

All available sensors are listed here, with the ability to page through the list and perform queries on the available sensors, filter based on tags, organizations and visibility.

From there, there are three additional list views:

		All Available: display all of the sensors you can view on the WoTKit including public sensors, sensors that are in organizations you are a member of, and any private sensors you’ve contributed.

		Subscribed: showing all sensors to which the user has subscribed.

		Contributed: showing all sensors the user has added to the WoTKit.

These list views can be further narrowed as follows:
* Using the search bar at the top of the screen. This searches by text contained in the sensor name and description.

		Selecting a tag from the tag list displayed on the left of the screen.

		Selecting the Show Active button displayed on the left of the screen. Active sensors are those which have received data in the last 15 minutes.

In addition to this list view, a map view is available that is automatically centered on the sensors in your list view.

[image: ../_images/Sensors.jpg]

10.1. Registering a New Sensor

To add a new sensor, click Add New Sensor button.

From here, you can provide basic information about your sensor, including:

		
		Name

		
		Unique URL-friendly name for the sensor.

		
		Full Name

		
		Name for the sensor shown in various lists and views.

		
		Tags

		
		Tags for the sensor separated by commas.

		
		Description

		
		A description for the sensor.

		
		Latitude & Longitude

		
		The static location of the sensor entered manually or by using the provided map.

		
		Visibility

		
		A private sensor cannot be viewed by other users.

		The default is for a sensor to be public.

All fields except Description and Visibility are required.

Fill the necessary information and click the Add Sensor button.

[image: ../_images/Register-Sensor.jpg]

10.2. Monitoring Sensors

The sensor monitor view privides details about the sensor, recent data sent to a sensor, and a way to visualize sensor data.

To monitor a sensor, select the Sensors tab, find the sensor you want to monitor, and click on the sensor.

This page allows you to:

		Subscribe or Unsubscribe from this sensor data feed by clicking the corresponding button.

		View sensor data using a visualization for your sensor data.

		Customize and create a new dashboard widget. (For details, see see Creating a Widget and Adding Widgets to a Dashboard.)

If you contributed the sensor to the WoTKit, you can also:

		Delete the sensor by clicking the Delete button.

		Edit sensor information by clicking the Edit Sensor button. (For details,
see Editing Sensors.)

[image: ../_images/Monitor-View.jpg]

10.3. Creating a Widget Visualization

To create a widget for a sensor:

		
		On the Monitor View, choose a widget.

		
		Using the Previous and Next buttons to find the correct visualization.

		
		Create the widget using the Create Default Widget or Configure Widget button.

		
		Provide as much information for the widget as you would like.

Once the widget is created, you will be taken to the Widgets View.

[image: ../_images/Create-Widget.jpg]

10.4. Editing Sensor Information

Note

You can only edit sensors you have contributed to the WoTKit.

On the Monitor View, select the Edit Sensor button.

[image: ../_images/My-Sensor.jpg]
—

By clicking the Edit Sensor button, you can change the information you initially registered for the sensor.
(The existing information for the sensor will be present to help you edit what is there.)
Additionally, you may edit the fields for sensor data using the Edit Schema button.

[image: ../_images/Edit-Sensor.jpg]
—

By clicking the Edit Schema button, you may add, modify, or delete schema data fields properties for the sensor’s data. To add a new sensor field, for example, click the Add Field button.

[image: ../_images/Edit-Schema.jpg]

 © Copyright 2013, Sense Tecnic Systems, Inc.
 Created using Sphinx 1.2.2.

_images/Sensors.jpg
WoTKit Home

SENSORS

All Available

Contributed

Subscribed

Add New Sensor »

Dashboards

Sensors | Keys

[Yellow Taxi (sensetecnic mule1)

by Sense Tecnic

A big yellow taxi that travels from Vincent's
house to UBC and then back

Red Truck (sensetecnic.mule2)
by Sense Tecnic

A red truck that drives from UBC to
metrotown and back.

UPS Truck (sensetecnic.mule3)
by Sense Tecnic

AUPS truck that travels from UBC to
Redmond, WA and back.

{0) Random (sensetecnic random)
by Sense Tecnic
A fake sensor that generates random data

Next —

View Sensor

Subscribe

View Sensor

Subscripe

View Sensor

Subscrie

View Sensor

Subscrie

@ tep

2 Rosey Rasoda ~

_images/Edit-Sensor.jpg
[-
WOoTKit ~ Home Dashboards = Sensors Keys | SensorSearch

© Help ‘ 2 Rosey Rasoda ~

Click on the map to locate the sensor.

Edit a Sensor
Name:* | api-data-test-1 |
FullName: * | api-datatest-1 |
Tags:* | data, vancouver, canada |

Latitude:* | 0.0

\Caole Map data 62012 Google, INEGI - Temsof Use:

Longitude: * | 0.0 |

Description: | api-data-test-1 ‘

©2012 Sense Tecnic Systems. | Terms of Use | Feedback

_images/Dashboard-Widgets.jpg
WoTKit

Home

DASHBOARDS

untitied

My Dashboard

© Add Dashboard
i Delete Dashboard

il Add Widgets »

Dashboards.

Line Chart for Yellow Taxi

Sensors

Keys

Sensor Search

©0 | Column Chart for Red Truck

0
= spees | | Pause
e

w

‘oz s e mosto

@ tep

©0
70
65

: I IIII I
Y | moas
S

SIAIANNEAS
LR

2 Rosey Rasoda ~

>

_images/Register-Sensor.jpg
WoTKit

Home Dashboards

Sensors | Keys [Sensor Search | @Hep 2 RoseyRasosa~

Register a Sensor
Name - *
Full Name: *
Tags: *
Latitude: *
Longitude: *

Description

00

0.0

Private

] oo

| EditSchema |

*Required

Click on the map to locate the sensor.

_images/Applications.jpg
WoTKit Home Dashboards Sensors Keys

APPLICATIONS
Al

Name Description
Contributed
Installed mike-app.STS Mike Test App

| New Application »
©2012 Sense Tecnic Systems. | Terms of Use | Feedback

Sensor Search

| @teh

2 Rosey Rasoda ~ |

Settings

Applications

Sign out

View details » |

_images/User-Menu.jpg
WOoTKit | Home = Dashboards Sensors Keys Sensor Search @ Help | 2 Rosey Rasoda ~

Applications

Sign out

WoTKit

_images/My-Sensor.jpg
WOoTKit Home Dashboards | Sensors = Keys Sensor Search @ Help 2 Rosey Rasoda ~

api-data-test-1 Recent Data

api-data-test-1

Timestamp latitude longitude Data Message
Name aphdatatestl Jan 25, 2013 m & 5o test message to
e 55636 PM be active 164
Last update

011252013

05:55:36 PM

«Sensors

© Unsubscrive

Google

Line Chart Preview Create a Line Chart Widget

A | Pause | Widget Name
2010 Moata 0
20008 Line Chart for api-data-test-1
20000
19005 Widget Description
19580 Description of Line Chart for api-data-test-
19365 1
7%
y
Configure Widget »

— Previous Next —

