

Wormhole documentation

Tutorial

	Binary Classification on the Criteo CTR Dataset

User Guide

	Build & Run
	Prerequisites

	Build

	Run

	Setup an EC2 Cluster from Scratch

	Input Data
	Data Formats

	Data Sources

	Linear Method
	Configuration

	Performance

	Factorization Machine
	Configuration

	Performance

Developer Guide

Binary Classification on the Criteo CTR Dataset

This tutorial gives a step-by-step example for training a binary classifier on
the Criteo Kaggle CTR competetion dataset [https://www.kaggle.com/c/criteo-display-ad-challenge/]. In this dataset, each
example (text line) presents a displayed ad with the label clicked (+1) or not
(-1). The goal is to predict the probability of being clicked for a new ad.
This is a standard click-through rate (CTR) estimation problem.

In the following we assume a recent Ubuntu (>= 13.10) and bash is used, it should
apply to other Linux distributions and Mac OS X too.

Preparation

We first build wormhole using 4 threads:

git clone https://github.com/dmlc/wormhole
cd wormhole && make deps -j4 && make -j4

Then download the dataset, which has two text files train.txt and
test.txt. Even though wormhole can directly read these two files, we split
train.txt to multiple files to easy training and validation. The following
command divides train.txt into multiple 300MB size files, and store them in
a compressed row block (crb) format:

wget https://s3-eu-west-1.amazonaws.com/criteo-labs/dac.tar.gz
tar -zxvf dac.tar.gz
mkdir data
wormhole/bin/convert.dmlc -data_in train.txt -format_in criteo -data_out data/train -format_out libsvm -part_size 300

Linear Method

We first learn a linear logistic regression using
linear.dmlc. We train on the first 20 parts and validate the model on the
last 6 parts. A sparse regularizer \(4 |w|_1\) is used to control the model
complexity. Furthermore, we solve the problem via asynchronous SGD with
minibatch size 10000 and learning rate 0.1.

Now generate the configuration file (learn more):

cat >train.conf <<EOF
train_data = "data/train-part_[0-1].*"
val_data = "data/train-part_2.*"
data_format = "libsvm"
model_out = "model/criteo"
lambda_l1 = 4
lr_eta = .1
minibatch = 10000
max_data_pass = 1
EOF

We train the model using 10 workers and 10 servers:

mkdir model
wormhole/tracker/dmlc_local.py -n 10 -s 10 wormhole/bin/linear.dmlc train.conf

A possible training log is

2015-07-22 04:50:55,285 INFO start listen on 192.168.0.112:9091
connected 10 servers and 10 workers
training #iter = 1
sec #example delta #ex |w|_0 logloss AUC accuracy
 1 1.8e+06 1.8e+06 30509 0.507269 0.758684 0.769462
 2 3.7e+06 1.9e+06 50692 0.469855 0.782046 0.780102
 3 5.5e+06 1.9e+06 70856 0.462922 0.785047 0.784311
 4 7.5e+06 2e+06 85960 0.462718 0.786288 0.783614
 ...
 18 3.4e+07 2e+06 231968 0.453590 0.793880 0.789032
 19 3.6e+07 2e+06 242017 0.454674 0.794033 0.788652
 20 3.7e+07 8.4e+05 248066 0.461133 0.791255 0.784265
validating #iter = 1
sec #example delta #ex |w|_0 logloss AUC accuracy
 30 4.6e+07 9.3e+06 248066 0.459048 0.791334 0.785863
hit max number of data passes
saving final model to model/criteo
training is done!

Then we can perform prediction using the trained model. Generate the prediction
config file

cat >pred.conf <<EOF
val_data = "test.txt"
data_format = "criteo_test"
model_in = "model/criteo"
predict_out = "output/criteo"
EOF

and predict:

mkdir output
wormhole/tracker/dmlc_local.py -n 10 -s 10 wormhole/bin/linear.dmlc pred.conf
cat output/criteo* >pred.txt

Then the i-th line of pred.txt will contains the prediction \(p=\langle
w, x \rangle\) for be i-th example (line) in test.txt. We can convert it into
a probability by \(1/(1+\exp(-p))\).

Factorization Machine

Factorization machine learns an additional embedding comparing to the linear
model, which catches the high-order interactions between features. The usage of
difacto.dmlc is similar to linear.dmlc. First generate the configure
file

cat >train.conf <<EOF
train_data = "data/train-part_[0-1].*"
val_data = "data/train-part_2.*"
data_format = "libsvm"
model_out = "model/criteo"
embedding {
 dim = 16
 threshold = 16
 lambda_l2 = 0.0001
}
lambda_l1 = 4
lr_eta = .01
max_data_pass = 1
minibatch = 1000
early_stop = 1
EOF

Then train the model:

wormhole/tracker/dmlc_local.py -n 10 -s 10 wormhole/bin/difacto.dmlc train.conf

We can reuse the previous pred.conf for prediction::
config file

cat >pred.conf <<EOF
val_data = "data/train-part_2.*"
data_format = "libsvm"
model_in = "model/criteo"
predict_out = "output/criteo"
embedding {
 dim = 16
 threshold = 16
 lambda_l2 = 0.0001
}
EOF

and predict:

wormhole/tracker/dmlc_local.py -n 10 -s 10 wormhole/bin/difacto.dmlc pred.conf
cat output/criteo* >pred.txt

What’s Next?

	Use another dataset with different formats or storing on HDFS, Amazon S3

	Train the model over multiple machines on Apache Yarn, Amazon EC2

Build & Run

Prerequisites

Wormhole can be built on both Linux and Mac OS X. Some apps are also tested on Windows. To build wormhole, both git and a recent C++ compiler supporting C++11,
such as g++ >= 4.8 and clang >= 3.5, are required. Install them on

	Ubuntu >= 13.10:

$ sudo apt-get update && sudo apt-get install -y build-essential git

	Older version Ubuntu via ppa:ubuntu-toolchain-r/test [http://ubuntuhandbook.org/index.php/2013/08/install-gcc-4-8-via-ppa-in-ubuntu-12-04-13-04/]:

	Centos via devtoolset [http://linux.web.cern.ch/linux/devtoolset/]

	Mac OS X: can either use the clang provided by command line tools or download
a compiled gcc from hpc.sourceforge.net [http://hpc.sourceforge.net/]

Build

Type make to build all apps. It may take several minutes for the first
time due to building all dependencies such as gflags. There are several options for advanced usages.

	make xgboost

	selectively builds xgboost. Similarly for linear, difactor, ...

	make -j4

	uses 4 threads for parallel building. For the first building, we suggest to build
deps and apps separately: make deps -j4 && make -j4

	make CXX=g++-4.9

	uses a different compiler

	make DEPS_PATH=your_path

	changes the path of the deps. In default all deps will be installed on
wormhole/deps. We can change the path if them are installed on another
place.

	make USE_HDFS=1

	supports read/write HDFS. It requires libhdfs, which is often installed
with Hadoop. Apparently Cloudera only ships static version of libhdfs.
Hortonworks includes the shared version but not in the lib/native folder.
Used ldconfig etc to point compiler, linker and runtime to correct location.

	make USE_S3=1

	supports read/write AWS S3. libcurl4-openssl-dev is required, it can be
installed via sudo apt-get install libcurl4-openssl-dev on Ubuntu

	make dmlc=<dmlc_core_path>

	in order to run XGBOOST in distributed mode on YARN. Combine with USE_HDFS=1.

Run

Wormhole runs both in a laptop and in a cluster. A typical command to run a
application:

$ tracker/dmlc_xxx.py -n num_workers [-s num_servers] app_bin app_conf

	tracker/dmlc_xxx.py

	the tracker provided by dmlc-core to launch jobs on various platforms

	-n

	number of workers

	-s

	number of servers. Only required for parameter server applications

	app_bin

	the binary of the application, which is available under bin/

	app_conf

	the text configuration file specifying dataset and learning method, see
each app’s documents for details

Local machine

The following command runs linear logistic regression using two workers and a
single server on a small dataset:

$ tracker/dmlc_local.py -n 2 -s 1 bin/linear.dmlc learn/linear/guide/demo.conf

Apache Yarn

First make sure the environments HADOOP_HOME and JAVA_HOME are set
properly. Next compile the Yarn tracker:

$ cd repo/dmlc-core/yarn && ./build.sh

Then a Yarn job can be submitted via tracker/dmcl_yarn.py. For
example, the following codes run xgboost on Yarn

hdfs_path=/your/path

hadoop fs -mkdir ${hdfs_path}/data
hadoop fs -put learn/data/agaricus.txt.train ${hdfs_path}/data
hadoop fs -put learn/data/agaricus.txt.test ${hdfs_path}/data

tracker/dmlc_yarn.py -n 4 --vcores 2 bin/xgboost.dmlc \
 learn/xgboost/mushroom.hadoop.conf nthread=2 \
 data=hdfs://${hdfs_path}/data/agaricus.txt.train \
 eval[test]=hdfs://${hdfs_path}/data/agaricus.txt.test \
 model_out=hdfs://${hdfs_path}/mushroom.final.model

Run tracker/dmlc_yarn.py -h for more details.

Sun Grid Engine

Use tracker/dmlc_sge.py

MPI

Wormhole can be run over multiple machines via mpirun, which is often
convenient for a small cluster. Assume file hosts stores the hostnames of
all machines, then use:

$ tracker/dmlc_mpi.py -n num_workers -s num_servers -H hosts bin conf

to launch wormhole on these machines. See next section for an example to setup a
cluster with mpirun.

Setup an EC2 Cluster from Scratch

In this section we give a tutorial to setup a small cluster and launch wormhole
jobs on Amazon EC2.

	Assume all data are stored Amazon S3.

	Use a middle range instance as the master node to build wormhole and submit jobs,
and several high end instances to do the computations.

	Use NFS to dispatch binaries and configurations and mpirun to launch
jobs.

Setup the master node

First launch an Ubuntu 14.04 instance as the master node. It is mainly used for
compiling codes, a middle end instance such as c4.xlarge is often good
enough. Install required libraries via:

$ sudo apt-get update && sudo apt-get install -y build-essential git libcurl4-openssl-dev

Then build wormhole with S3 support:

$ git clone https://github.com/dmlc/wormhole.git
$ cd wormhole && make deps -j4 && make -j4 USE_S3=1

Next setup NFS:

$ sudo apt-get install nfs-kernel-server mpich2
$ echo "/home/ubuntu/ *(rw,sync,no_subtree_check)" | sudo tee /etc/exports
$ sudo service nfs-kernel-server start

Finally copy the pem file used to access the master node to master node’s
~/.ssh/id_rsa so that this node can access to all other machines.

Setup the slave nodes

First launch several Ubuntu 12.04 instances with the same pem file as the slaves
nodes. High-end instances such as c4.4xlarge and c4.8xlarge are
recommended. Save their private IPs in file hosts:

$ cat hosts
172.30.0.172
172.30.0.171
172.30.0.170

Then install both NFS and mpirun on these slave nodes. Assume the master node has
private IP 172.30.0.160:

while read h; do
 echo $h
 ssh -o StrictHostKeyChecking=no $h <<'ENDSSH'
sudo apt-get update
sudo apt-get install -y nfs-common mpich2
sudo mount 172.30.0.160:/home/ubuntu /home/ubuntu
ENDSSH
done <hosts

Next install depended libraries on all slave nodes:

$ mpirun -hostfile hosts sudo apt-get install -y build-essential libcurl4-openssl-dev

Put all things together

Test if everything is OK:

$ mpirun -hostfile hosts uname -a
$ mpirun -hostfile hosts ldd wormhole/bin/linear.dmlc

Now we can submit jobs from the master node via:

$ wormhole/tracker/dmlc_mpi.py -n ? -s ? -H hosts wormhole/bin/? ?.conf

Input Data

Wormhole supports various input data sources and formats.

Data Formats

Both text and binary formats are supported.

LIBSVM

Wormhole supports a more general version of the LIBSVM format. Each example is
presented as a text line:

label feature_id[:weight] feature_id[:weight] ... feature_id[:weight]

	label

	a float label

	feature_id

	a unsigned 64-bit integer feature index. It is not required to be
continuous.

	weight:

	the according float weight, which is optional

Compressed Row Block (CRB)

This is a compressed binary data format. One can use bin/text2crb to convert
any supported data format into it.

Customized Format

Adding a customized format requires only two steps.

	Define a subclass to implement the function ParseNext of ParserImpl [https://github.com/dmlc/dmlc-core/blob/master/src/data/parser.h]. Examples:
	Parse the text Criteo CTR dataset criteo_parser [https://github.com/dmlc/wormhole/blob/master/learn/base/criteo_parser.h]

	Parse the binary crb format: crb_parser [https://github.com/dmlc/wormhole/blob/master/learn/base/crb_parser.h]

	Then add the this new parser to a reader. For example,
adding them in the minibatch reader [https://github.com/dmlc/wormhole/blob/master/learn/base/minibatch_iter.h]

Data Sources

Besides standard filesystems, wormhole supports the following distributed
filesystems.

HDFS

To support HDFS, compile with the flag USE_HDFS=1 such as make
USE_HDFS=1 or set the flag in config.mk. An example filename of a HDFS
file

hdfs:///user/you/ctr_data/day_0

Amazon S3

To supports Amazon S3, compile with the flag USE_S3=1. Besides, one needs to
set the environment variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY properly. For example, add the following two lines in
~/.bashrc (replace the strings with your AWS credentials [http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSCredentials.html]):

export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

An example filename of a S3 file

s3://ctr-data/day_0

Microsoft Azure Blob Storage (Alpha support)

To support Azure blob storage, compile with the flag USE_AZURE=1 and DEPS_PATH=deps, which needs the Azure C++ Storage SDK (https://github.com/Azure/azure-storage-cpp)

	Install Azure Storage SDK (TODO: move to make/deps.mk) ::

	sudo apt-get -y install libboost1.54-all-dev libssl-dev cmake libxml++2.6-dev libxml++2.6-doc uuid-dev

cd deps && mkdir -p lib include

git clone https://git.codeplex.com/casablanca
cd casablanca/Release
mkdir build.release
cd build.release
CXX=g++ cmake .. -DCMAKE_BUILD_TYPE=Release
make -j4
cp Binaries/libcpprest* ../../../lib
cp -r ../include/* ../../../include/
cd ../../..

git clone https://github.com/Azure/azure-storage-cpp
cd azure-storage-cpp/Microsoft.WindowsAzure.Storage
mkdir build.release
cd build.release
CASABLANCA_DIR=../../../../casablanca/ CXX=g++ cmake .. -DCMAKE_BUILD_TYPE=Release
make -j4
cp Binaries/libazurestorage* ../../../lib
cp -r ../includes/* ../../../include/
cd ../../../..

One also needs to set the environment variables properly
(About Azure storage account [https://azure.microsoft.com/en-us/documentation/articles/storage-create-storage-account/]):

export AZURE_STORAGE_ACCOUNT=mystorageaccount
export AZURE_STORAGE_ACCESS_KEY=EXAMPLEKEY
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/dmlc-core/deps/lib

	An example filename of an Azure file ::

	azure://container/agaricus.txt.test

Linear Method

Given data pairs \((x,y)\), the linear method learns the model vector
\(w\) by minizing the following objective function:

\[\sum_{(x,y)} \ell(y, \langle x, w \rangle) + \lambda_1 |w|_1 + \lambda_2 \|w\|_2^2\]

where \(\ell(y, p)\) is the loss function, see Config.Loss.

Configuration

The configuration is defined in the protobuf file config.proto [https://github.com/dmlc/wormhole/blob/master/learn/linear/config.proto]

Input & Output

	Type
	Field
	Description

	string
	train_data
	The training data, can be either a directory or a wildcard filename

	string
	val_data
	The validation or test data, can be either a directory or a wildcard filename

	string
	data_format
	data format. supports libsvm, crb, criteo, adfea, ...

	string
	model_out
	model output filename

	string
	model_in
	model input filename

	string
	predict_out
	the filename for prediction output. if specified, then run/ prediction. otherwise run training

Model and Optimization

	Type
	Field
	Description

	Config.Loss
	loss
	the loss function. default is LOGIT

	float
	lambda_l1
	l1 regularizer: \(\lambda_1 |w|_1\)

	float
	lambda_l2
	l2 regularizer: \(\lambda_2 \|w\|_2^2\)

	Config.Algo
	algo
	the learning method, default is FTRL

	int32
	minibatch
	the size of minibatch. the smaller, the faster the convergence, but the/ slower the system performance

	int32
	max_data_pass
	the maximal number of data passes

	float
	lr_eta
	the learning rate \(\eta\) (or \(\alpha\)). often uses the largest/ value when not diverged

Config.Loss

	Name
	Description

	SQUARE
	square loss: \(\frac12 (p-y)^2\)

	LOGIT
	logistic loss: \(\log(1+\exp(-yp))\)

	SQUARE_HINGE
	squared hinge loss: \(\max\left(0, (1-yp)^2\right)\)

Config.Algo

	Name
	Description

	SGD
	asynchronous minibatch SGD

	ADAGRAD
	similar to SGD, but use adagrad

	FTRL
	similar to ADAGRAD, but use FTRL for better sparsity

Adavanced Configurations

	Type
	Field
	Description

	int32
	save_iter
	save model for every k data pass. default is -1, which only saves for the/ last iteration

	int32
	load_iter
	load model from the k-th iteration. default is -1, which loads the last/ iteration model

	bool
	local_data
	give a worker the data only if it can access. often used when the data has/ been dispatched to workers’ local filesystem

	int32
	num_parts_per_file
	virtually partition a file into n parts for better loadbalance. default is 10

	int32
	rand_shuffle
	randomly shuffle data for minibatch SGD. a minibatch is randomly picked from/ rand_shuffle * minibatch examples. default is 10.

	float
	neg_sampling
	down sampling negative examples in the training data. no in default

	bool
	prob_predict
	if true, then outputs a probability prediction. otherwise \(\langle x, y \rangle\)

	float
	dropout
	the probably to set a gradient to 0. no in default

	float
	print_sec
	print the progress every n sec during training. 1 sec in default

	float
	lr_beta
	learning rate \(\beta\), 1 in default

	int32
	num_threads
	number of threads used by a worker / a server. 2 in default

	int32
	max_concurrency
	the maximal concurrent minibatches being processing at the same time for/ sgd, and the maximal concurrent blocks for block CD. 2 in default.

	bool
	key_cache
	cache the key list on both sender and receiver to reduce communication/ cost. it may increase the memory usage

	bool
	msg_compression
	compression the message to reduce communication cost. it may increase the/ computation cost.

	int32
	fixed_bytes
	convert floating-points into fixed-point integers with n bytes. n can be 1,/ 2 and 3. 0 means no compression.

Performance

Factorization Machine

Difacto is refined factorization machine (FM) with sparse memory adaptive
constraints.

Given an example \(x \in \mathbb{R}^d\) and an embedding
dimension \(k\), FM models the example by

\[f(x) = \langle w, x \rangle + \frac{1}{2} \|V x\|_2^2 - \sum_{i=1}^d x_i^2 \|V_i\|^2_2\]

where \(w \in \mathbb{R}^d\) and \(V \in \mathbb{R}^{d \times k}\)
are the models we need to learn. The learning objective function is

\[\frac 1{|X|}\sum_{(x,y)} \ell(f(x), y)+ \lambda_1 |w|_1 +
\frac12 \sum_{i=1}^d \left[\lambda_i w_i^2 + \mu_i \|V_i\|^2\right]\]

where the first sparse regularizer \(\lambda_1 |w|_1\) induces a sparse
\(w\), while the second term is a frequency adaptive regularization, which
places large penalties for more frequently features.

Furthermore, Difacto adds two heuristics constraints

	\(V_i = 0\) if \(w_i = 0\), namely we mark the embedding for feature i
is inactive if the according linear term is filtered out by the sparse
regularizer. (You can disable it by l1_shrk = false)

	\(V_i = 0\) if the occur of feature i is less the a threshold. In other
words, Difacto does not learn an embedding for tail features. (You can specify
the threshold via threshold = 10)

Train by Asynchronous SGD. w is updated via FTRL while V via adagrad.

Configuration

The configure is defined in the protobuf file config.proto [https://github.com/dmlc/wormhole/blob/master/learn/difacto/config.proto]

Input & Output

	Type
	Field
	Description

	string
	train_data
	The training data, can be either a directory or a wildcard filename

	string
	val_data
	The validation or test data, can be either a directory or a wildcard filename

	string
	data_format
	data format. supports libsvm, crb, criteo, adfea, ...

	string
	model_out
	model output filename

	string
	model_in
	model input filename

	string
	predict_out
	the filename for prediction output. if specified, then run/ prediction. otherwise run training

Model and Optimization

	Type
	Field
	Description

	float
	lambda_l1
	l1 regularizer for \(w\): \(\lambda_1 |w|_1\)

	float
	lambda_l2
	l2 regularizer for \(w\): \(\lambda_2 \|w\|_2^2\)

	float
	lr_eta
	learning rate \(\eta\) (or \(\alpha\)) for \(w\)

	Config.Embedding
	embedding
	the embedding \(V\)

	int32
	minibatch
	the size of minibatch. the smaller, the faster the convergence, but the/ slower the system performance

	int32
	max_data_pass
	the maximal number of data passes

	bool
	early_stop
	stop earilier if the validation objective is less than prev_obj - min_objv_decr

Config.Embedding

embedding \(V\). basic:

	Type
	Field
	Description

	int32
	dim
	the embedding dimension \(k\)

	int32
	threshold
	features with occurence < threshold have no embedding (\(k=0\))

	float
	lambda_l2
	l2 regularizer for \(V\): \(\lambda_2 \|V_i\|_2^2\)

advanced:

	Type
	Field
	Description

	float
	init_scale
	V is initialized by uniformly random weight in/ [-init_scale, +init_scale]

	float
	dropout
	apply dropout on the gradient of \(V\). no in default

	float
	grad_clipping
	project the gradient of \(V\) into \([-c c]\). no in default

	float
	grad_normalization
	normalized the l2-norm of gradient of \(V\). no in default

	float
	lr_eta
	learning rate \(\eta\) for \(V\). if not specified, then share the same with \(w\)

	float
	lr_beta
	leanring rate \(\beta\) for \(V\).

Adavanced Configurations

	Type
	Field
	Description

	int32
	save_iter
	save model for every k data pass. default is -1, which only saves for the/ last iteration

	int32
	load_iter
	load model from the k-th iteration. default is -1, which loads the last/ iteration model

	bool
	local_data
	give a worker the data only if it can access. often used when the data has/ been dispatched to workers’ local filesystem

	int32
	num_parts_per_file
	virtually partition a file into n parts for better loadbalance. default is 10

	int32
	rand_shuffle
	randomly shuffle data for minibatch SGD. a minibatch is randomly picked from/ rand_shuffle * minibatch examples. default is 10.

	float
	neg_sampling
	down sampling negative examples in the training data. no in default

	bool
	prob_predict
	if true, then outputs a probability prediction. otherwise \(\langle x, y \rangle\)

	float
	print_sec
	print the progress every n sec during training. 1 sec in default

	float
	lr_beta
	learning rate \(\beta\), 1 in default

	float
	min_objv_decr
	the minimal objective decrease in early stop

	bool
	l1_shrk
	use or not use the contraint \(V_i = 0\) if \(w_i = 0\). yes in default

	int32
	num_threads
	number of threads used within a worker and a server

	int32
	max_concurrency
	the maximal concurrent minibatches being processing at the same time for/ sgd, and the maximal concurrent blocks for block CD. 2 in default.

	bool
	key_cache
	cache the key list on both sender and receiver to reduce communication/ cost. it may increase the memory usage

	bool
	msg_compression
	compression the message to reduce communication cost. it may increase the/ computation cost.

	int32
	fixed_bytes
	convert floating-points into fixed-point integers with n bytes. n can be 1,/ 2 and 3. 0 means no compression.

Performance

Index

 nav.xhtml

 Table of Contents

 		Wormhole documentation

 		Binary Classification on the Criteo CTR Dataset

 		Preparation

 		Linear Method

 		Factorization Machine

 		What's Next?

 		Build & Run

 		Prerequisites

 		Build

 		Run

 		Local machine

 		Apache Yarn

 		Sun Grid Engine

 		MPI

 		Setup an EC2 Cluster from Scratch

 		Setup the master node

 		Setup the slave nodes

 		Put all things together

 		Input Data

 		Data Formats

 		LIBSVM

 		Compressed Row Block (CRB)

 		Customized Format

 		Data Sources

 		HDFS

 		Amazon S3

 		Microsoft Azure Blob Storage (Alpha support)

 		Linear Method

 		Configuration

 		Input & Output

 		Model and Optimization

 		Adavanced Configurations

 		Performance

 		Factorization Machine

 		Configuration

 		Input & Output

 		Model and Optimization

 		Adavanced Configurations

 		Performance

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

