

WMLxGettext 2.x

Wmlxgettext is a python3.x tool that create a gettext translation file
(.po file) for a wesnoth campaign / era / add-on.

It will parse a list .cfg and .lua files and stores the info required to
create a nice .po file, than create the files.

From now on, the (old) perl script will be called “wmlxgettext 1.0”, while the
new python3 script will be called “wmlxgettext 2.x”

End-User documentation

The Documentation for End-Users eplains how to use the wmlxgettext tool.
It will explain what you can use into your .cfg (WML) and .lua files and
it will explain how to invoke wmlxgettext tool.

Source Code Documentation

The Source Code Documentation is directed to those ones that wants to contribute to
wmlxgettext development, or to those ones that wants to modify/fork this tool
for his own purposes.

The Source Code Documentation is not useful if you only need to learn how to use
wmlxgettext.

Special Thanks To:

	Elvish Hunter (wesnoth developer) for his very precious help.

	|Wolf| (python Italia) for his deep knowledge on python and his
precious help.

	celticminstrel (wesnoth developer) for explaining me how
to use the original perl wmlxgettext tool and for helping me to
improve the script.

	loonycyborg: for testing the script and reporting bugs.

Note

If you can find something crap in wmlxgettext code, it is only my fault.
People listed above are not responsible :)

Nobun

Documentation for End-Users

This the new release of wmlxgettext, rewritten from scratch in python 3.x.
Wmlxgettext is a python3 script that scans a list of .cfg (WML) and .lua files,
capturing all translatable string found in the files and creates a pot (.po)
file.

From now on, the (old) perl script will be called “wmlxgettext 1.0”, while the
new python3 script will be called “wmlxgettext 2.x”

	1. Supported Options for WML/Lua files
	1.1. #textdomain <new_current_domain>

	1.2. # wmlxgettext: <WML_CODE>

	1.3. # po: <addedinfo>

	1.4. # po-override: <override-info>

	1.5. Changing Domain in Lua code

	1.6. Special comments on Lua

	2. wmlxgettext: how to run
	2.1. Wmlxgettext with implicit list of files

	2.2. Wmlxgettext with explicit list of files

	2.3. Wmlxgettext with explicit list of files and output redirection

	2.4. Optional parameters

	3. Comparing perl vs python versions
	3.1. Error/Warning Messages are more understandable now

	3.2. Additional comments for translators are added to the right sentence only

1. Supported Options for WML/Lua files

When you create an add-on, you may want to see it translated in several
languages. You need to create your own .po file.
This short page assume you already know how to write a WML file (See also the
Official WML Reference [https://wiki.wesnoth.org/Referencewml]).

Here you will find some additional informations, useful for a good usage of
wmlxgettext.

Note

Paragraphs from 1.1 to 1.4 will talk about WML code;
paragraphs 1.5 and 1.6 will talk about Lua code.

1.1. #textdomain <new_current_domain>

You wesnoth add-on, must contain a textdomain. A textdomain is defined in your
_main.cfg file:

[textdomain]
 name="wesnoth-xyz"
 path="data/add-ons/xyz/translations"
[/textdomain]

Note

xyz can be everything. We will use xyz only as an example.

However, the what it is actually important for wmlxgettext is the following
line of text that must appear inside all your add-on files:

#textdomain wesnoth-xyz

This will change the current_domain. This is useful, since wmlxgettext will
capture only the sentences under the right textdomain (only the sentences under
the textdomain of your add-on, to avoid to add undesired sentences).

1.2. # wmlxgettext: <WML_CODE>

You may need to declare a macro definition that uses unbalanced tags like the
ABILITY_FEEDING macro defined on the WML core files:

#define ABILITY_FEEDING
comment omissed
[dummy]
 id=feeding
 name= _ "feeding"
 female_name= _ "female^feeding"
 description=_ " (description omissed)"
[/dummy]
wmlxgettext: [abilities]
[/abilities]

The example shows a macro wich has unbalanced tags, since there is a closing
tag [/abilities] but not the opening [abilities] tag.

Usually, when encountering unbalanced tags, wmlxgettext returns an error, but
this time the tags are unbalanced on purpose. This is where the special
comment # wmlxgettext: <WML_CODE> helps us.

Coming back to the example showed above, the comment
wmlxgettext: [abilties] will be ignored by the WML code (so the WML code
will be unbalanced, as desired); but wmlxgettext will read [abilities]
as an actual opened tag, thank of the # wmlxgettext: special comment.

In this way, wmlxgettext will open [abilities] tag when reading
wmlxgettext: [abilities], that will be sucessfully closed when the tag
[/abilities] found.

1.3. # po: <addedinfo>

Another special comment (not meaningful on actual WML code, but useful for
wmlxgettext purposes) is # po:. Here a fake example:

po: The speaker is still unknown for the player, but he is a male
[message]
 speaker=unknown_speaker
 message= _ "translatable message"
[/message]

The special comment # po: will add to the translator infos what follows.
This is the comments that will be displayed on pot file:

[message]: speaker=unknown_speaker
The speaker is still unknown for the player, but he is a male

The first line displayed to the translator is automaticly generated by
wmlxgettext (standard help message).

The second line displayed to the translator is what you typed after the special
comment # po:

1.4. # po-override: <override-info>

The special comment # po-override: is similar to # po: special comment
already showed before:

po-override: [message]: speaker=FinalBoss
[message]
 speaker=unknown_speaker
 message= _ "translatable message"
[/message]

This time, the special comment # po-override: will replace the default
(automaticly generated) message to the translator. This is, infact, the
comments that the translator will be see:

[message]: speaker=FinalBoss

This string will be displayed instead of the default one (in the example, the
default overriden message is [message]: speaker=unknown_speaker, wich is,
infact, not displayed since it is replaced by # po-override:).

Note

Unlike # po: you can use only ONE # po-override: for every
sentence. However you can use one or more # po: special comments
together with the # po-override: special comment.

1.5. Changing Domain in Lua code

Changing the current domain value in Lua uses is very different than the WML
counterpart.

	On WML you will change the current domain value with the
#textdomain directive

	On Lua code, instead, the same action is performed in a very
different way, using this code:

local _ = wesnoth.textdomain('wesnoth-xyz')

Note

xyz can be everything. We will use xyz only as an example.

In the example showed above we changed, in lua code, the current domain value
to wesnoth-xyz.

1.6. Special comments on Lua

On lua code you can also use those special comments BEFORE the translatable
string that will require an additional or overridden info:

	-- # po: <additional info for translator>

	-- # po-override: <info that overrides the default info>

Note

You can also use -- po: and -- po-override:, instead of -- # po:
and -- # po-override: Both forms are allowed.

Those special comments works in the same way as the # po: and
po-ovverride: special comments supported in WML code (see paragraphs
1.3 and 1.4).

Note

The special WML comment # wmlxgettext: is instead unsupported
in lua code.

(It is needed in WML code to avoid errors when tags are
unbalanced on purpose, so it is useless in lua code, wich is a
procedural language and not a ‘tagged’ language).

2. wmlxgettext: how to run

The previous chapter explained how to write a WML and a Lua file in the right
way:

	Avoiding unwanted errors using the special comment # wmlxgettext: on
WML code when you need to use unbalanced tags

	Customizing the message informations displayed to the translator using
the special comments # po: and # po-override:

	And remembering the #textdomain directive usage.

So we can assume here that all your .cfg and .lua files (used by your wesnoth
add-on) are ready to be parsed by wmlxgettext. But how to run wmlxgettext?

wmlxgettext requires to be called using some command line options (unless it
will included in the wesnoth GUI tool; in that case, you could use the GUI
instead).

Unlike wmlxgettext 1.0 (perl version), this version can be used in three
possible ways. They will be explained starting from the most suggested one,
finishing with the unsuggested one.

The last paragraph, instead, will explain the optional parameters that could
be used in any of the three usages explained in the previous paragraphs.

2.1. Wmlxgettext with implicit list of files

Note

This is the only way that 100% works under windows.

You can avoid to explicitly tells what files must be parsed by wmlxgettext.
This is how you can do it on windows:

c:\<pythondir>\python wmlxgettext --domain=DOMAIN_NAME --directory=YOUR_ADDON_DIRECTORY --recursive -o ./FILENAME.po

On linux/mac, you can simply use:

./wmlxgettext --domain=DOMAIN_NAME --directory=YOUR_ADDON_DIRECTORY --recursive -o ./FILENAME.po

without explicitly call the python 3.x interpreter.

2.1.1. –domain=DOMAIN_NAME

With the option --domain, wmlxgettext will know wich is the
textdomain used by your wesnoth add-on. For example, if your
_main.cfg will have:

[textdomain]
 name="wesnoth-xyz"
 path="data/add-ons/xyz/translations"
[/textdomain]

This is what you have to write into the --domain parameter:

--domain=wesnoth-xyz

2.1.2. –directory=ADDON_DIRECTORY

With the option --directory, wmlxgettext will know the starting path
where all following files/scandirs should be searched.
This is a fake example for windows:

--directory=c:\games\wesnoth\userdata\data\add-ons\YOUR_ADDON_DIRECTORY

2.1.3. –recursive

If --recursive option is used, wmlxgettext will scan recursively the
directory typed on the --directory option and collect all .cfg and .lua
files automaticly:

./wmlxgettext --domain=domain_name --directory=/home/user/games/wesnoth/userdata/add-ons/Invasion_from_the_Unknown --recursive -o ./file.po

In the example showed above, infact, wmlxgettext will watch the directory
/home/user/games/wesnoth/userdata/add-ons/Invasion_from_the_Unknown
and it will collect, recursively, all .cfg / .lua files inside that
directories (and subdirectories).

2.1.4. -o [OUTPUT_FILE]

If you use this option, wmlxgettext will actually create a .po file, saving it
as [OUTPUT_FILE].

The -o options accepts:

	either a file name with absolute path

	or a file name with relative path (for example: ./output.po)

	or it could setted to “-” (wmlxgettext -o - ...) to write output to stdout

Also the parameter --directory discussed before can accept both an
absolute path or a relative path starting from the current working directory
(for exaple: --directory=. will assign to the --directory option the
path of the current working directory).

2.2. Wmlxgettext with explicit list of files

Note

This method can work on windows only if the list of files is not very
long (windows cannot read a very-long command line).
Under windows is highly suggested to use the method described
in the previous paragraph (Wmlxgettext with implicit list of files)

Instead of delegating to wmlxgettext the job for you, you can explicitly tells
the complete list of files that wmlxgettext must parse:

./wmlxgettext --domain=domain_name --directory=/home/user/wesnoth/userdata/add-ons -o ./file.po Invasion_from_the_Unknown/_main.cfg Invasion_from_the_Unknown/other.cfg [...]

As the example shows, it is highly suggested to put the list of files
after all other options. This is why, in this case, the option
-o ./file.po is written before the file list starts.

Every file listed in list must be written as a relative path starting from the
--directory directory.

So, coming back to the example showed above:

	--directory is /home/user/wesnoth/userdata/add-ons

	file n.1 is Invasion_from_the_Unknown/_main.cfg

	file n.2 is Invasion_from_the_Unknown/other.cfg.

	This means that those two files will be searched and parsed:

	
	/home/user/wesnoth/userdata/add-ons/Invasion_from_the_Unknown/_main.cfg

	/home/user/wesnoth/userdata/add-ons/Invasion_from_the_Unknown/other.cfg

Note

DON’T use the --recursive option if you want to explicitly tell the
list of the files to parse. If the option --recursive is used, the
explicit list of file will be ignored.

2.3. Wmlxgettext with explicit list of files and output redirection

This is the unsuggested way to use wmlxgettext, since output redirection
can create issues. When writing to stoud, infact, the console will use its own
text codify instead of the UTF-8 codify you could expect.

For this reason, starting from version 2017.06.25.py3 the -o parameter
is becomed mandatory, to discourage printing the output to stdout for a casual
usage. So the old syntax used by wmlxgettext 1.x (perl version) is not anymore
supported.

So you couldn’t anymore invoke wmlxgettext like:

./wmlxgettext --domain=domain_name --directory=/home/user/wesnoth/userdata/add-ons Invasion_from_the_Unknown/_main.cfg Invasion_from_the_Unknown/other.cfg [...] > ./file.po

However it is still possible to print the output to stdout instead of to writing
an actual file, if you really need it:

./wmlxgettext -o - --domain=domain_name --directory=/home/user/wesnoth/userdata/add-ons Invasion_from_the_Unknown/_main.cfg Invasion_from_the_Unknown/other.cfg [...] | application_accepting_wmlxgettext_stout_as_input_pipe

If you use the special value “-” for -o parameter (like showed above), than
the output will be printed to stdout as desired.

This way printing to stdout would be possible only if explictly asked and only
when it is actually requested on purpose by the user.

It could be, obliovsly, possible to print a file into stdout and redirecting
the output to a file, but it is higly discouraged.
On a standard use case (creating a pot file for a wesnoth addon) you should
consider to use method 1 explained two paragraphs ago:

./wmlxgettext --domain=DOMAIN_NAME --directory=YOUR_ADDON_DIRECTORY --recursive -o ./FILENAME.po

2.4. Optional parameters

Wmlxgettext 2.0 supports also other optional parameters, not explained in the
previous paragraphs:

	--warnall: if used, wmlxgettext will show also optional warnings.

	--fuzzy: if used, all sentences stored in the .po file will be
marked as fuzzy. (By default, sentences will be not marked as fuzzy).

	--package-version: With this option, you can immediatly print the
package version number into the .po header infos. Usually you will
add manually this info, so it is more an “easter egg” than a feature.

	--no-text-colors: if you use this flag, you disable colors shown
in console when a warning/error message occurs.
This option will become useful if wmlxgettext will be added to the python
GUI for wesnoth tools (the code needed to ‘paint the colors’ must be
not executed when wmlxgettext is launched from GUI)

Finally there is a last option, that an end-user should never use:

	--initialdomain=INIT_DOMAIN: It tells the name of the
current domain when no #textdomain still found in .cfg/.lua file.
By default it is wesnoth (and don’t need to be changed).

3. Comparing perl vs python versions

wmlxgettext 2.x (this version), compared with wmlxgettext 1.0 (the old perl
script), has its pros:

	More flexible command line (the old one is however supported).

	More explicit (and more understandable) warning/error messages
returned to the end user.

	Optionally, can display a warning message if a WML macro is found into a
translatable string (translatable string with WML macro will never be
translated)

	Recognizes and captures lua bracketed strings

	Strings captured on a .lua file are reported to their right line
of code

	Additional comments for translators are added to the right sentence
only, avoiding to display it where it should not appear.

	Any file reference is written in a single line (like expected in a .po
file)

	Can be used also on windows (requires python 3.x, however)

	User is not forced to list, one by one, every file that wmlxgettext must
parse, but it can use instead the new --recursive option;
wmlxgettext will search itself all .cfg and .lua files stored there.

	Can be added to the python GUI for (used by all other wesnoth tools)

	The code, even if complex and long, is more modular, and could be
fixed/changed/forked in an easier way

	wmlxgettext 2.x sources are very deeply documented, in the
Source Code Documentation.

	Supports another custom directive: # po-override: that allows you to
override the automated WML/Lua list of informations, replacing it with
your own custom message. The # po: directive is still available,
since it allows you to ADD informations directed to the translator,
WITHOUT touching the automated WML/Lua list of informations. # po: and
po-override: directives can be used together on the same
translatable string. However only ONE occurrence of # po-override: can
be defined for every translatable string.

	But it has also its cons:

	
	code is much more huge (about 1400 lines of code splitted in several files)
against the 300-400 lines of code required by the perl version

	execution speed is a bit slower.

	The output created by wmlxgettext 2.x is not exactly the same as the one
created by wmlxgettext 1.0 (very small differences, however, nothing
really important).

In the following paragraphs of this page we will show deeply some of the
differences listed here above (only the most important ones that affect the
resulting output .po file) from this rewritten version of wmlxgettext (2.x) vs
the old version of wmlxgettext (1.0)

3.1. Error/Warning Messages are more understandable now

All type of error messages displayed by wmlxgettext 2.x is clear and intuitive,
unlike the error messages displayed by perl wmlxgettext (1.0).
We will show here only an example about what happens when unbalanced tags are
found by perl wmlxgettext (1.0) and by python wmlxgettext (2.x).

We will use this WML file (ztest.cfg):

#textdomain wesnoth-mytest

WML with unbalanced tag [scenario] ---> parsing this file will return an error
[scenario]
 id=my_scenario

As you can see the [scenario] tag is not closed, so both perl wmlxgettext (1.0)
and python wmlxgettext (2.x) will return an error.
Here is the error message displayed by perl wmlxgettext (1.0):

non-empty node stack at end of ztest.cfg at ./wmlxgettext line 203, <FILE> line 5.
WML seems invalid for ztest.cfg, node info extraction forfeited past the error point at ./wmlxgettext line 210.

Here, instead, is the most user-friendly error message displayed by python
wmlxgettext (2.x):

error: ztest.cfg:5: End of WML file reached, but some tags were not properly closed.
(nearest unclosed tag is: [scenario])

3.2. Additional comments for translators are added to the right sentence only

Additional comments for translator are additional informations useful to
instructs translators how to translate better a particular sentence.
Here we analyze the _main.cfg file of the mainline campaign Liberty (focus your
attention at lines from 22 to 27):

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

	#textdomain wesnoth-l
This version forked from 1.2, 2/10/2007, and prepared for mainline by ESR
[textdomain]
 name="wesnoth-l"
[/textdomain]

wmlscope: set export=no
[campaign]
 id=Liberty
 name= _ "Liberty"
 abbrev= _ "Liberty"
 rank=110
 first_scenario=01_The_Raid
 define=CAMPAIGN_LIBERTY
 icon="units/human-outlaws/fugitive.png~RC(magenta>red)"
 image="data/campaigns/Liberty/images/campaign_image.png"

 {CAMPAIGN_DIFFICULTY EASY "units/human-peasants/peasant.png~RC(magenta>red)" (_ "Peasant") (_ "Easy")} {DEFAULT_DIFFICULTY}
 {CAMPAIGN_DIFFICULTY NORMAL "units/human-outlaws/outlaw.png~RC(magenta>red)" (_ "Outlaw") (_ "Normal")}
 {CAMPAIGN_DIFFICULTY HARD "units/human-outlaws/fugitive.png~RC(magenta>red)" (_ "Fugitive") (_ "Difficult")}

 #po: Yes, that is "marchlanders", not "marshlanders".
 #po: "marchlander" is archaic English for an inhabitant of a border region.
 # wmllint: local spelling marchlanders
 description= _ "As the shadow of civil war lengthens across Wesnoth, a band of hardy marchlanders revolts against the tyranny of Queen Asheviere. To win their way to freedom, they must defeat not just the trained blades of Wesnothian troops but darker foes including orcs and undead.

" + _"(Intermediate level, 8 scenarios.)"

 [about]
 title = _ "Campaign Design"
 [entry]
 name = "Scott Klempner"
 [/entry]
 [/about]
 [about]
 title = _ "Prose-doctoring and preparation for mainline"
 [entry]
 name = "Eric S. Raymond (ESR)"
 [/entry]
 [/about]
 [about]
 title = _ "Campaign Maintenance"
 [entry]
 name = "Eric S. Raymond (ESR)"
 comment = "current maintainer"
 [/entry]
 [entry]
 name = "Lari Nieminen (zookeeper)"
 comment = "current maintainer"
 [/entry]
 [/about]
 [about]
 title = _ "Artwork and Graphics Design"
 [entry]
 name = "Brendan Sellner"
 [/entry]
 [entry]
 name = "Kathrin Polikeit (Kitty)"
 comment = "portraits"
 [/entry]
 [entry]
 name = "Shadow"
 [/entry]
 [entry]
 name = "Blarumyrran"
 comment = "story images, Rogue Mage line sprites"
 [/entry]
 [entry]
 name = "Sonny T Yamada (SkyOne)"
 comment = "Sprite animations (defense and attack) of Rogue Mage line"
 [/entry]
 [/about]
[/campaign]

#ifdef CAMPAIGN_LIBERTY

[binary_path]
 path=data/campaigns/Liberty
[/binary_path]

{campaigns/Liberty/utils}
{campaigns/Liberty/scenarios}

[+units]
 {campaigns/Liberty/units}
[/units]

#endif

wmllint: directory spelling Grey Relana Helicrom Fal Khag

As you can see, at line 22 and 23, there are two #po: special comments wich
add the additional information for translator about the usage of the
“marchlanders” word. It is an explaination related to the sentence used in the
description of the campaign where the “marchlanders” word is actually used.

So, in this case, you espect that the additional information is added only at
the description string:

"As the shadow of civil war lengthens across Wesnoth, a band of hardy marchlanders revolts against the tyranny of Queen Asheviere. To win their way to freedom, they must defeat not just the trained blades of Wesnothian troops but darker foes including orcs and undead.
"

Whell… perl wmlxgettext (1.0) add too many additional informations, as
it showed here:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

	#. [campaign]: id=Liberty
#. Yes, that is "marchlanders", not "marshlanders".
#. "marchlander" is archaic English for an inhabitant of a border region.
#. Yes, that is "marchlanders", not "marshlanders".
#. "marchlander" is archaic English for an inhabitant of a border region.
#: _main.cfg:10 _main.cfg:11
msgid "Liberty"
msgstr ""

#. [campaign]: id=Liberty
#. Yes, that is "marchlanders", not "marshlanders".
#. "marchlander" is archaic English for an inhabitant of a border region.
#: _main.cfg:18
msgid "Easy"
msgstr ""

#. [campaign]: id=Liberty
#. Yes, that is "marchlanders", not "marshlanders".
#. "marchlander" is archaic English for an inhabitant of a border region.
#: _main.cfg:18
msgid "Peasant"
msgstr ""

#. [campaign]: id=Liberty
#. Yes, that is "marchlanders", not "marshlanders".
#. "marchlander" is archaic English for an inhabitant of a border region.
#: _main.cfg:19
msgid "Normal"
msgstr ""

#. [campaign]: id=Liberty
#. Yes, that is "marchlanders", not "marshlanders".
#. "marchlander" is archaic English for an inhabitant of a border region.
#: _main.cfg:19
msgid "Outlaw"
msgstr ""

#. [campaign]: id=Liberty
#. Yes, that is "marchlanders", not "marshlanders".
#. "marchlander" is archaic English for an inhabitant of a border region.
#: _main.cfg:20
msgid "Fugitive"
msgstr ""

#. [campaign]: id=Liberty
#. Yes, that is "marchlanders", not "marshlanders".
#. "marchlander" is archaic English for an inhabitant of a border region.
#: _main.cfg:20
msgid "Difficult"
msgstr ""

#. [campaign]: id=Liberty
#. Yes, that is "marchlanders", not "marshlanders".
#. "marchlander" is archaic English for an inhabitant of a border region.
#: _main.cfg:25
msgid ""
"As the shadow of civil war lengthens across Wesnoth, a band of hardy marchlanders revolts against the tyranny of Queen Asheviere. To win their way to freedom, they must defeat not just the trained blades of Wesnothian troops but darker foes including orcs and undead.\n"
"\n"
""
msgstr ""

#. [campaign]: id=Liberty
#. Yes, that is "marchlanders", not "marshlanders".
#. "marchlander" is archaic English for an inhabitant of a border region.
#: _main.cfg:27
msgid "(Intermediate level, 8 scenarios.)"
msgstr ""

perl wmlxgettext print the additional information not only in the right
sentence (where the code is emphatize, that is the only point where the
additional information should be added: [line: 52-59]),
but also print the additional info where it makes no sense, for example on
msgid “Difficult” (where the detail about the usage of “marchlanders” word is
useless).

This functionality, instead, work correctly on python wmlxgettext (2.x):

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

	#. [campaign]: id=Liberty
#: _main.cfg:10
#: _main.cfg:11
msgid "Liberty"
msgstr ""

#. [campaign]: id=Liberty
#: _main.cfg:18
msgid "Peasant"
msgstr ""

#. [campaign]: id=Liberty
#: _main.cfg:18
msgid "Easy"
msgstr ""

#. [campaign]: id=Liberty
#: _main.cfg:19
msgid "Outlaw"
msgstr ""

#. [campaign]: id=Liberty
#: _main.cfg:19
msgid "Normal"
msgstr ""

#. [campaign]: id=Liberty
#: _main.cfg:20
msgid "Fugitive"
msgstr ""

#. [campaign]: id=Liberty
#: _main.cfg:20
msgid "Difficult"
msgstr ""

#. [campaign]: id=Liberty
#. Yes, that is "marchlanders", not "marshlanders".
#. "marchlander" is archaic English for an inhabitant of a border region.
#: _main.cfg:25
msgid ""
"As the shadow of civil war lengthens across Wesnoth, a band of hardy marchlanders revolts against the tyranny of Queen Asheviere. To win their way to freedom, they must defeat not just the trained blades of Wesnothian troops but darker foes including orcs and undead.\n"
"\n"
""
msgstr ""

#. [campaign]: id=Liberty
#: _main.cfg:27
msgid "(Intermediate level, 8 scenarios.)"
msgstr ""

As you can see, this time the additional information is added only when it
is expected to be stored (on the sentence where the “marchlanders” word
is used).

Source Code Documentation

This the new release of wmlxgettext, rewritten from scratch in python 3.x.
Wmlxgettext is a python3 script that scans a list of .cfg (WML) and .lua files,
capturing all translatable string found in the files and creates a pot (.po)
file.

From now on, the (old) perl script will be called “wmlxgettext 1.0”, while the
new python3 script will be called “wmlxgettext 2.x”.

Warning: this source documentation is a bit outdated. This documentation is
however still valid to understand the wmlxgettext source logic.
Please consider to take a look also to source code comments for a more updated
source documentation.

	1. Introduction
	1.1. Pros and Cons

	1.2. The new command line

	1.3. Output “lacks”

	2. Error and Warning messages
	2.1. About ansi_setEnabled function

	2.2. wmlerr() and wmlwarn() usage

	2.3. How wmlerr() and wmlwarn() internally works

	2.4. Using unittest with wmlerr()

	3. Introducing WML and Lua parser
	3.1. WML parsing fundamentals

	3.2. WML nodes

	3.3. The postring dictionary

	3.4. Converting WmlNodeSentence to PoCommentedString

	3.5. The nodemanip module

	3.6. Parsing Lua file (or lua code)

	4. The State Machine
	4.1. The State class

	4.2. State Sequence

	4.3. State Machine and nodemanip

	5. The last step: writing the .po file

	6. Deep explaination of all regular expressions
	6.1. Regexes used on WML States

	6.2. Regexes used on Lua States

	6.3. “Escape” regexp rules

1. Introduction

This part of the documentation is useful also for end-users not interested to
learn how the source code internally work.

1.1. Pros and Cons

wmlxgettext 2.x (this version), compared with wmlxgettext 1.0 (the old perl
script), has its pros:

	More flexible command line (the old one is however supported).

	More explicit (and more understandable) warning/error messages returned
to the end user.

	Optionally, can display a warning message if a WML macro is found into a
translatable string (translatable string with WML macro will never be
translated)

	Recognizes and captures lua bracketed strings

	Strings captured on a .lua file is reported to its right line of code

	Any file reference is written in a single line (like expected in a .po
file)

	Can be used also on windows (requires python 3.x, however)

	User is not forced to list, one by one, every file that wmlxgettext must
parse, but it can use instead the new --scandirs option.

	Can be added to the python GUI for (used by all other wesnoth tools)

	The code, even if complex and long, is more modular, and could be
fixed/changed/forked in an easier way

	wmlxgettext 2.x sources are very deeply documented here.

	Supports another custom directive: # po-override: that allows you to
override the automated WML/Lua list of informations, replacing it with
your own custom message. The # po: directive is still available,
since it allows you to ADD informations directed to the translator,
WITHOUT touching the automated WML/Lua list of informations. # po: and
po-override: directives can be used together on the same
translatable string. However only ONE occurrence of # po-override: can
be defined for every translatable string.

	But it has also its cons:

	
	code is much more huge (about 1400 lines of code splitted in several files)
against the 300-400 lines of code required by the perl version

	execution speed is slower.

	The output created by wmlxgettext 2.x is not exactly the same as the one
created by wmlxgettext 1.0 (very small differences, however, nothing
really important).

1.2. The new command line

wmlxgettxt 2.x could be invoked in the classical way:

./wmlxgettext --domain=DOMAIN --directory=DIRECTORY [FILELIST] > file.po

this syntax is required by wesnoth in order to build the pot target.
However this syntax must be considered deprecated for UMC developers.

This other syntax is suggested, instead:

./wmlxgettext -o file.po --domain=DOMAIN --directory=DIRECTORY [FILELIST]

Or, even better:

./wmlxgettext -o file.po --domain=DOMAIN --directory=YOUR_ADDON_DIRECTORY --recursive

Using those last two syntaxes, infact, the file file.po is directly created
by wmlxgettext instead of redirecting the output from stdout to the
desired file.

If you use the last syntax, wmlxgettext will scan for you (recursively) your
addon main directory and automaticly collect all .cfg and .lua files without
any need to list them one-by-one.

Moreover, wmlxgettext 2.x, supports more options, that can be listed with:

./wmlxgettext --help

The most useful added options are:

	--fuzzy: allows to create a .po file with all fuzzy strings

	--warnall: show optional warnings

1.3. Output “lacks”

The .po file created with wmlxgettext 2.x may store the sentences in a
different order. This becouse the list of the files could be read in a
different order. However, every translatable string related to the same file is
stored in the right order.

Lua function information (inside a .lua file or inside a lua code inside a WML
file) is more verbose (it is not so good as it may sounds, unluckly).
Wmlxgettext 2.x remembers some function names that wmlxgettext 1.0 forgets.

2. Error and Warning messages

When a WML or a Lua file contains a problem, wmlxgettext returns a warning
(if the problem is not critical) or an error (critical problem) to the
end-user to allow him/her to fix his own wesnoth addon.

When wmlxgettext must return an error, it calls wmlerr function; it calls
wmlwarn function when it should simply display a warning. Both wmlerr
and wmlwarn function are defined in ./pywmlx/wmlerr.py module.

When importing pywmlx, wmlxgettext will import only wmlerr and
wmlwarn functions (and ansi_setEnabled), since all other
classes/functions in ./pywmlx/wmlerr.py module are only internally required
by wmlerr and wmlwarn functions to work properly.

2.1. About ansi_setEnabled function

When you import pywmlx, also ansi_setEnabled function is imported from
./pywmlx/wmlerr.py module.

ansi_setEnabled accepts a boolean value (True or False). By default
it is setted to True, but it will be False if the flag
--no-ansi-colors was used in the command line:

./wmlxgettext:100
parser.add_argument(
 '--no-ansi-colors',
 action='store_false',
 default=True,
 dest='ansi_col',
 help=("By default warnings are displayed with colored text. You can " +
 "disable this feature using this flag.\n" +
 "This option doesn't have any effect on windows, since it " +
 "doesn't support ansi colors (on windows colors are ALWAYS" +
 'disabled).')
)
...
./wmlxgettext:141
pywmlx.ansi_setEnabled(args.ansi_col)

When calling this function, wmlxgettext instructs wmlerr and wmlwarn to
use (or to don’t use) ansi colors when displaying error messages.
Ansi colors, however, will be displayed only on Posix OSes (Linux and Mac) and
not on Windows, which doesn’t support ansi escape codes.

On windows platform, ansi_setEnable will be interally ignored, and
warning/error messages will be always displayed non-colored.

2.2. wmlerr() and wmlwarn() usage

wmlerr and wmlwarn functions requires the same parameters and they
will display the error/warning message in the same way.

wmlerr and wmlwarn requires those two string parameters:

	finfo: wich is filename:X (where filename is the
.cfg/.lua file that contains the problem, and X is the line number of
that file)

	message: the message to display

For example, when printing a warning, the warning message will displayed in
this way:

warning: filename:x: my_message

If coloured, “warning” will be blue, “filename:x” will be yellow, and
warning message will be white. The same colors will be applied to error
message, except the world “error” (wich replace the world “warning”) that
will be red.

The last difference:

	wmlerr stops wmlxgettext execution;

	wmlwarn, instead, does not stop wmlxgettext execution.

2.3. How wmlerr() and wmlwarn() internally works

wmlerr and wmlwarn internally behave very differently, since they
use python Exceptions / warning system.

wmlwarn calls warnings.warn function, wich was previously
overridden by my_showwarning fuction defined in ./pywmlx/wmlerr.py
module (line 67). Override was possible thank of:

./pywmlx/wmlerr.py: 75
warnings.showwarning = my_showwarning

wmlerr, instead, raise a python exception (that could be checked on
unittest: see Using unittest with wmlerr()) and replace its default
behaviuour with a custom one.

Python exception system, infact, is very useful while debugging code (it can
trace both errors and warnings), but needed the ovverrides already explained.
This becouse, by default, python shows line code of the script (in this
case: line code of wmlxgettext itself) when displaying and warning, and adds
tracback infos returned by the script.

Those kind of infos are completely undersired, since the warnings and errors
that wmlxgettext should return to the end-user, must say only infos that
end-user actually needs (only the errors and messages infos related to WML and
Lua files parsed by wmlxgettext)

Overrides made by my_showwarning (for warns) and by manually raising an
exception with a coustom behaviour (in wmlerr function, when an error
occurs) ensures that errors and messages will show only the infos that
are actually expected to be announced to the end-user.

Both wmlerr and wmlwarn, however, internally use
dualcol_message(finfo, message) and print_wmlerr(message, iserr)
functions. Those functions will correctly print error/warning message

[image: digraph wmlerr { node [shape="ellipse", style="filled", fillcolor="grey", fontname="DejaVu Sans Mono"] wmlerr1 [label="wmlerr/wmlwarn"] explain_dual [shape="box", fillcolor="purple", label="wmlerr/wmlwarn sends its own finfo, info"] dualcol [label="dualcol_message"] explain_dual2 [shape="box", fillcolor="purple", label="Dualcol will return an unique string \"fileinfo:x: message\"\n(\"fileinfo:x\" will be yellow, \"message\" will be white)"] wmlerr2 [label="wmlerr/wmlwarn"] explain_print [shape="box", fillcolor="purple", label="wmlerr/wmlwarn sends the string already obtained"] printx [label="print_wmlerr"] notex [shape="box", fillcolor="purple", label="The second parameter (iserror)\nis True when called by wmlerr (\"error:\" -> red)\nis False when called by wmlwarn (\"warning\" -> blue)"] msg [shape="box", fillcolor="purple", label="print_wmlerr actually prints the error/warning message to stderr"] wmlerr1 -> explain_dual -> dualcol -> explain_dual2 -> wmlerr2 wmlerr2 -> explain_print -> printx wmlerr2 -> notex -> printx printx -> msg }]
dualcol_message and print_wmlerr will not add colors:

	if current OS is Windows (even if ansi_setEnabled is True)

	or if --no-ansi-colors flag was used in command line
(ansi_setEnabled is False)

2.4. Using unittest with wmlerr()

wmlerr behave differently if the global variable is_utest (global
variable of module ./pywmlx/wmlerr.py) is False (default value) or if
it is True (must be True only on a unittest session).

During an unittest session, infact, it is required to change that value from
True to False, calling wmlerr_debug() function from your unittest
module. For this reason, unittest that requires to check wmlerr and
wmlwarn should also explicitly add this import:

from pywmlx.wmlerr import wmlerr_debug()

since wmlerr_debug() is not imported when you simply import pywmlx.
The function wmlerr_debug() must then be called somewhere on your unittest
function before using wmlerr().

After setting is_utest to False calling wmlerr_debug(), wmlerr
can raise the exception, maintaining the traceback infos required (on unittest
session) to verify that the exception was correctly raised.

3. Introducing WML and Lua parser

Wmlxgettext parse .lua and .cfg (WML) files line-by-line through his own
Finite State Machine (Deeply explained in the chapter The State Machine).

This chapter, instead, will explain, in general, how differently WML and Lua
codes are managed, and it will explain also:

	PoCommentedString class (module: ./pywmlx/postring.py)

	WmlNode class (module: ./pywmlx/postring.py)

	WmlNodeSentence class (module: ./pywmlx/postring.py)

	the ./pywmlx/nodemanip.py module

3.1. WML parsing fundamentals

WML (Wesnoth Markup Language) is a “tagged” language, like XML.
Every .cfg (WML) file contains a list of nested [tags] wich must be properly
closed. Here is a (fake) example of a WML file:

#textdomain your-textdomain-name
[scenario]
 id=scenario_id
 name= _ "scenario name (translatable)"
 map_data = ...

 [objective]
 description= _ "objective text (translatable)"
 [/objective]

 [event]
 name = "start"

 [message]
 message = _"I am saying something (translatable)"
 speaker = id_of_the_speaker
 [/message]

 [/event]
[/scenario]

wmlxgettext must collect all translatable strings, and must keep all important
infos contained inside every opened tag. For example, look at the following
tag:

[message]
 message = _"I am saying something (translatable)"
 speaker = id_of_the_speaker
[/message]

wmlxgettext must remember that the translatable string
“I am saying something (translatable)” appeared at line 15 of your file
some-file.cfg, inside a [message] tag with
speaker=id_of_the_speaker and store properly those infos into the .po
file.

Since the State Machine parser reads any file line-by-line, it is required to
store in memory all those infos, on memory nodes

3.2. WML nodes

Everytime a new open tag is found, a new node is added in memory.

Note

All the three cases showed here are managed in the same way. A new [tag]
node is always created:

	[tag] –> A new standard [tag] is opened.

	[+tag] –> A new updating [tag] is opened.

	[-tag] –> Another possible syntax

(+ and - starting sign will be ignored)

When a [tag] node has to be added in memory, a new WmlNode object is
created and added in memory.

A WmlNode object will contain those data infos:

	tagname: name of tag (it will be saved as “[tagname]”)

	fileref: filename containing the node (relative path)

	fileno: unique id value assigned by wmlxgettext for current file

	sentences: list of translatable strings found inside the node, stored
as WmlNodeSentence objects

	wmlinfos: list of wml infos (example: speaker=id_of_the_speaker).

	autowml: usually True. If False the wmlinfos list will
be not used.

This node will be closed when the right “tag-end-markup” ([/tag]) will
be found.

The class WmlNode also provides some functions that will be discussed later.

3.2.1. Storing translatable strings

When a translatable string will be found, it will be added in the current node.

Each time a new translatable string found, a new WmlNodeSentence object
will be added to the current WML node (but only if the current domain is equal
to the addon domain).

A WmlNodeSentence will have those properties:

	sentence: the translatable string (text)

	ismultiline: True if it is a multi-line string

	lineno: line number where the translatable string was located. (if
multi-line, the line number where the the string started).

	lineno_sub: The name is ambigous. This parameter (integer value) is a
progressive value, expecially useful when more than one string was stored
in the same line of the same file.

	overrideinfo: None or ‘string’. If
po-override: overrideinfo directive was found, the overrideinfo will
be stored here.

	self.addedinfo: None or list of strings. If one or more
po: addedinfo directive(s) found, the info will be added in this
list.

3.3. The postring dictionary

Writing a .po file is the final objective of wmlxgettext. Every translatable
string in a .po file must appear one time only, and must contain all
important useful infos (auto-captured infos and added infos by
the UMC developer with # po: addedinfos directive in .cfg file source).

Python dictionaries are pair of values (key, value) where ‘key’ is always
unique. Moreover it will allow to quickly search if a translatable string was
already stored in memory.

This dictionary is:

./wmlxgettext:144
sentlist = dict()

wich is also known and managed by the state machine parser (wich is discussed
in the next chapter).

The dictionary contains all sentences that wmlxgettext will actually write in
the .po file

	key: the key is a copy of the plain sentence (using only lower
letters). Since it is expected that all wesnoth extensions will use
english in their .cfg files the string.lower() python function was used
here.

	value: the value is the sentence, with all additional infos that will
be written in the .po file. This value is a PoCommentedString object.

So, before actually writing the .po file, wmlxgettext needs to create and
update its dictionary of PoCommentedString objects.

3.4. Converting WmlNodeSentence to PoCommentedString

When wmlxgettext parse a WML file, it must store WML nodes in memory.
Each WmlNode object may contain (or not) one or more translatable strings,
stored in node.sentences list (list of WmlNodeSentence objects).

Each time a WML node is closed, before removing the node from memory,
wmlxgettext will look at the WmlNode object, checking if it contains
WmlNodeSentence objects or not.

Every WmlNodeSentence object contained in WmlNode object will be
converted in a temporary PoCommentedString thank of the
nodesentence_to_posentence function provided by WmlNode class.

This function is very complex, since it must assemble a PoCommentedString
searching the required values in different places:

	some infos are stored in the WmlNode itself

	other infos are stored in WmlNode itself, but must be “assembled”.

	other infos are stored in the single WmlNodeSentece contained in the
WmlNode object.

3.4.1. PoCommentedString data infos

Now it is time to explain all data infos contained in a PoCommentedString:

	sentence = translatable string text.

	wmlinfos = list of wmlinfos.

	addedinfos = infos added with # po: something directives

	finfos = list of files and line number where any occurence of the
string was found.

	
	orderid = it is an (unique) tuple of three values:

	
	fileno: the file where the string was found the first time (file
with lower fileno id value.

	lineno: the line numeber, in fileno, where the string was found
the first time.

	lineno_sub: line_sub is a progressive value. It will be helpful to
assign the correct order of the sentences, when two or more sentences
were stored in the same file and in the same line.

	ismultiline = True if it is a multiline string.

The orderid tuple is very important, becouse, when wmlxgettext must write
down all PoCommentedString objects from the “postring” dictionary to the
.po file, it must print them in the right order (and not randomly):

./wmlxgettext:196
for posentence in sorted(sentlist.values(), key=lambda x: x.orderid):

When converting a WmlNodeSentence object to a PoCommentedString object,
WmlNode.assemble_orderid create the tuple of three values to pass to
PoCommentedString.orderid parameter:

	fileno (first value) –> comes from the WmlNode object containing
the WmlNodeSentence.

	lineno and lineno_sub –> comes from the single
WmlNodeSentence.

PoCommentedString and WmlNode both have a wmlinfos list,
but they are conceptually different:

	WmlNode.wlinfos contains single pieces of infos captured
on the WML node (example: speaker=speaker_name or id=value).

	Those single pieces must be assembled (with WmlNode.assemble_wmlinfo)
to create a single PoCommentedString.wmlinfos element.

	So, when converting a WmlNodeSentence to a PoCommentedString, all
wmlinfos contained in the WmlNodeSentence will add a single
PoCommentedString wmlinfo.

3.4.2. About overrideinfo and addedinfos

A WmlNodeSentence object can contain an override info. This will happen if
po-override: overrideinfo directive was found in the WML/Lua file.

The override info, if exists, will be written directly on PoCommentedString
as a PoCommentedString.wmlinfos element. WmlNode wmlinfos list will be
ignored for that WmlNodeSentence and assemble_wmlinfos will not
executed on that single conversion.

“Addedinfos”, instead, behave in the same way both in WmlNodeSentence and
in PoCommentedString objects. Those are additional infos to display to
translator. If a WmlNodeSentence object contains elements in addedinfos
list, those elements will be added in the PoCommentedString-addedinfos
list. This will happen if one or more # po: addedinfo directive(s) was
found in WML/Lua file.

3.4.3. Create a new dictionary key or update an existing one?

So, when closing a WML node, all WmlNodeSentence objects contained in that
WmlNode object will be converted to temporary PoCommentedString
objects.

Those temporary PoCommentedString objects will be not immediately stored
in the dictionary, since the dictionary must contain one instance only
of any sentence.

This why all temporary PoCommentedString objects created by
WmlNode.nodesentence_to_posentence function will be “scanned”.

	If a temporary PoCommentedString objects contains an instance of an
already existing translatable string, the dictionary key will be
updated (no new key will be added). The function
update_with_commented_string of the PoCommentedString object
contained in the dictionary key will be executed to update that
PoCommentedString object.

	If a temporary PoCommentedString object contains a new translatable
string not previously stored in the dictionary, this object will be simply
added in the dictionary

./pywmlx/nodemanip.py:15
def _closenode_update_dict(podict):
 if nodes[-1].sentences is not None:
 for i in nodes[-1].sentences:
 posentence = podict.get(i.sentence.lower())
 if posentence is None:
 podict[i.sentence.lower()] = (
 nodes[-1].nodesentence_to_posentence(i))
 else:
 posentence.update_with_commented_string(
 nodes[-1].nodesentence_to_posentence(i))

As you can see this check is actually performed inside the
./pywmlx/nodemanip.py module, explained in the next paragraph.

3.5. The nodemanip module

Note

Until now this chapter explained:

	The structure of WML language and why wmlxgettext use WmlNode objects
to store the WML tree structure in memory.

	WmlNodeSentence objects: the data type used by WmlNode objects
to internally store translatable string(s) found inside the WML node
stored in memory by that WmlNode object.

	PoCommentedString dictionary: where the translatable strings will be
stored, as PoCommentedString objects (where a PoCommentedString
object describe how actually the translatable string will be writte in
.po file)

	PoCommentedString objects data infos

	How and when WmlNodeSentence objects will be converted into
PoCommentedString objects

Now it is time to talk about ./pywmlx/nodemanip.py module, the module wich
actually manage when and how to store/clear WML nodes in memory.

Wmlxgettext main script file (or better, the state machine), infact, does
not directly create/delete WML nodes in memory, but it delegates this job to
the ./pywmlx/nodemanip.py module (from now on: nodemanip).

This approach ensure that wmlxgettext internal code will be safer and easier to
maintain than managing directly nodes in all the part of code where it will
be required to manipulate WML nodes.

3.5.1. Storing a new WML node

[image: digraph nodemanip01 { node [shape="box", style="filled", fillcolor="grey", fontname="DejaVu Sans Mono"] manip [shape="record", fillcolor="orange", label="{Nodemanip module|stores WML nodes in a list\n(on the global _nodes variable)}"] newnode [shape="ellipse", fillcolor="purple", label="A new WML node must be created"] nodelistquestion [shape="diamond", label="Is node list empty?"] nodelistempty [label="Create a ROOT node\n(tagname=\"\")"] createnode [label="Create the WML [tag] node"] manip -> newnode -> nodelistquestion nodelistquestion -> nodelistempty [label="yes"] nodelistempty -> createnode nodelistquestion -> createnode [label="no"] }]
nodemanip stores all WML nodes in a list, and not in a real tree structure.
This becouse, as explained in the very beginning of this chapter, WML language
is structured by nested tag, where any new child tag must be closed
before its parent tag. Coming back to the WML sample code showed on the
beginning of this chapter (with added comments):

[scenario] is the first tag encountered in the WML.
[scenario] tag is the parent of all following (nexted) WML tags and
it will be closed after all its child tags
[scenario]
 id=scenario_id
 name= _ "scenario name (translatable)"
 map_data = ...

 # [objective] tag does not have childs, so it will be closed immediately
 # after its opening
 [objective]
 description= _ "objective text (translatable)"
 [/objective]

 # again... [event] tag will have a child: the tag [message].
 # the tag [message] must be closed before the parent [event] tag.
 [event]
 name = "start"

 [message]
 message = _"I am saying something (translatable)"
 speaker = id_of_the_speaker
 [/message]

 [/event]
[/scenario]

So why WML nodes can be stored in a list:

	everytime a new node is added, we can simply add an element in the list.
The last item in the list is the last WML node opened.

	the last node in list, is the current node and it is the node we will must
close before all other nodes in memory

	when the current node (last node in list) is closed, it will be removed by
the list, so the last item on the list (the new current node) will be the
parent node, for example, look at the WML sample code above:

	when [event] tag is opened a new [event] node is added in node list.

	when [message] tag is opened, a new [message] node is added in node
list.

	when [/message] found, then the [message] node is removed from list and
the [event] tag will be now the last node in list (current node)

Coming back to the already displayed flow chart, we could notice that there is
a special ROOT node that it will be created by nodemanip. It is a fake node
required to avoid memory leaks and it will store all translatable strings
stored outside any tag (for example a translatable string inside a macro
definition). All captured wmlinfos in ROOT node will be ignored, since
autowml is setted to False.

ROOT node is also special becouse, when created, cannot be deleted until
the end of the WML file reached.

3.5.2. Deleting a WML node from memory

Clearing a WML node is the most important work performed by nodemanip
module since, before actually clearing the node from memory, we must verify
if the WML code is correctly written:

	the closing tag [/tagname] must be equal to the last [tagname] in
list (current WML node). Else, a critical error must be returned
(calling wmlerr function - wmlxgettext should stop execution)

	a critical error should be also returned when a close tag is unexpected at
all, since no tags are openend (the list of WML node is still empty or
the current WML node is the ROOT node).

All those checks is done by the closenode function on nodemanip module:

./pywmlx/nodemanip.py:73
def closenode(closetag, mydict, lineno):

But, even if the closing tag [/tagname] is the expected one, nodemanip
module does not immediately clear the node from the nodes’ list.

./pywmlx/nodemanip.py:15
def _closenode_update_dict(podict):
 if nodes[-1].sentences is not None:
 for i in nodes[-1].sentences:
 posentence = podict.get(i.sentence.lower())
 if posentence is None:
 podict[i.sentence.lower()] = (
 nodes[-1].nodesentence_to_posentence(i))
 else:
 posentence.update_with_commented_string(
 nodes[-1].nodesentence_to_posentence(i))

Note

_closenode_update_dict() function is internally called by
closenode() function of the nodemanip module.

As previously explained in Converting WmlNodeSentence to PoCommentedString
and all its subparagraphs, infact, nodemanip, before closing the node:

	it will convert all WmlNodeSentence objects contained into the pending
WmlNode object, before removing it from the list.

	all the PoCommentedString temporary values created by the conversion
will be used to update the dictionary (more details about this process
can be found at Converting WmlNodeSentence to PoCommentedString and
all its subparagraphs).

[image: digraph nodemanip02 { node [shape="box", style="filled", fillcolor="grey", fontname="DejaVu Sans Mono"] manip [fillcolor="orange", label="Nodemanip module"] delnode [shape="ellipse", fillcolor="purple", label="a WML [/closing_tag] found"] nodelistquestion [shape="diamond", label="Is that [/closing_tag] expected?"] no1 [shape="record", fillcolor="#ffaaaa", color="red", label="{node list is empty|no closing tag expected}"] no2 [shape="record", fillcolor="#ffaaaa", color="red", label="{current node is ROOT|no closing tag expected}"] no3 [shape="record", fillcolor="#ffaaaa", color="red", label="{current node.tagname \ndoes not match [/tagname]|another closing tag expected}"] err [color="red", label="critical error (wmlerr())"] yes [fillcolor="green", label="the [/closing_tag]\nis the expected one"] conv [label="take WmlNodeSentence objects\n and convert them in\ntemporary PoCommentedString objects"] upd [label="update dictionary using\n those temporary objects"] cle [label="and finally\nclear the node\nremoving it from list"] manip -> delnode -> nodelistquestion nodelistquestion -> yes [label="yes", color="darkgreen"] nodelistquestion -> no1 [label="no", color="red"] nodelistquestion -> no2 [label="no", color="red"] nodelistquestion -> no3 [label="no", color="red"] yes -> conv -> upd -> cle no1 -> err no2 -> err no3 -> err }]

3.5.3. Adding a new translatable string into the current WML node

Every translatable string found inside a WML file must be stored in the
current WML node as a WmlNodeSentence object.

Every time a new WML file is opened, the node list _nodes on nodemanip
module is empty (or better, is None).

Usually, a ROOT WML node is created before creating the first actual WML node.
This allows to store translatable strings located outside any tag.

But it could happen that a translatable string is found when node list is still
empty (and when ROOT node does not still exist).

This why the nodemanip.addNodeSentence function, before trying to add the
translatable string in current WML node, checks if the node list is not empty
(or better, is not None). If the node list is empty, it creates the ROOT
WML node and add the translatable string into that node.

3.5.4. What nodemanip does when end of WML file reached

When end of WML reached, nodemanip module will run its own closefile()
function. There are three possible cases, as showed in the following flow
chart:

[image: digraph nodemanip03 { rankdir=LF node [shape="box", style="filled", fillcolor="grey", fontname="DejaVu Sans Mono"] manip [fillcolor="orange" label="Nodemanip module"] endreach [shape="ellipse", fillcolor="purple" label="end of WML file reached"] func [shape="ellipse", fillcolor="purple" label="function nodemanip.closefile()\nwill be executed"] if1 [label="node list\nis empty"] if2 [label="node list\nONLY contains\nroot node"] if3 [color="red", fillcolor="#ffaaaa", label="Node list\ncontains root node\nAND other WML node(s)"] checkroot [label="Check root node\ntake WmlNodeSentence objects\n and convert them in\ntemporary PoCommentedString objects"] err [color="red", label="Critical error (wmlerr())"] upd [label="update dictionary using\n those temporary objects"] ok1 [shape="circle", fillcolor="green", label="OK"] {rank=same if1 if2 if3} {rank=same checkroot err} manip -> endreach -> func func -> if1 [color="darkgreen"] func -> if2 [color="darkgreen"] func -> if3 [color="red"] if1 -> ok1 if2 -> checkroot -> upd -> ok1 if3 -> err }]
Since the root node is not a standard WML node, and since it cannot be closed
by any tag, nodemanip needs to explicitly explore it when the end of the
WML file reached (otherwise the translatable strings stored in root node will
be not added in dictionary).

3.6. Parsing Lua file (or lua code)

Parsing a lua file (or a .lua code inside a WML file) is somewhat “easier”.
Here there is a sample .lua code (on an actual .lua file used by a wesnoth
addon (Invasion from the Unknown)).

-- Invasion From The Unknown campaign
-- note: the original code is slightly different than this one we are
-- showing in this sample code
-- original code can be found on file: lua/gui/bug.lua:163
local function preshow()
 local _ = wesnoth.textdomain('wesnoth-Invasion_from_the_Unknown')
 local msg = _ "An inconsistency has been detected"

 if report then
 msg = msg .. "\n\n" .. _ "Please report this to the maintainer!"
 end
 -- (other code here, omissed)
end

As the sample code shows, lua is a procedural language.
Wmlxgettext does not “parse” .lua code, but:

	captures translatable strings, directly as PoCommentedString
objects.

	the only “wmlinfo” captured inside a lua code is the last function
name found in the .lua file

Lua code used on wesnoth add-ons can recognize those directives:

	# po: <addedinfo> to add infos to write to translators

	# po-override: <override> to override wmlinfo

Unlike WML code the textdomain is changed with the line

local _ = wesnoth.textdomain('wesnoth-Invasion_from_the_Unknown')

Note

All “WML directives recognized by lua code” showed above must be written
inside lua comments (introduced by --), like the following code
sample:

-- # po: my additional info

You must write ONE directive at time, into a new line:

-- this is a good example
-- # po: my additional info

-- this is, instead, a bad example
somecode = somevalue -- # po: my additional info

The directive # wmlxgettext: <WML code> is instead not supported in Lua
code, since it is required by wmlxgettext only when parsing WML code (usually
that directive is used when it is required to use unbalanced tags, avoiding
error messages produced by unbalanced tags).

4. The State Machine

While developing this tool, one big issue was the WML parsing, since WML allow
to add nested Lua code.
The classical (perl) approach was to use two separate functions, one dedicated
to lua code, and one for WML.
The classical approach, however, can lead to some problems, when we face WML
file with nested Lua code, so why another approach is used here.

This release has an unique “parser”, using a finite state machine that reads
every line of a file (Lua or WML) and perform the proper action (running
a concrete state) when an important thing was found (for example,
a translatable string).

./wmlxgettext:146
pywmlx.statemachine.setup(sentlist, args.initdom, args.domain)
for fx in args.filelist:
 # omissing some code
 # ./wmlxgettext:157
 if fname[-4:].lower() == '.cfg':
 pywmlx.statemachine.run(filebuf=infile, fileref=fx,
 fileno=fileno, startstate='wml_idle', waitwml=True)
 if fname[-4:].lower() == '.lua':
 pywmlx.statemachine.run(filebuf=infile, fileref=fx,
 fileno=fileno, startstate='lua_idle', waitwml=False)

First of all, the state machine is initialized with the statemachine.setup()
function (called one time only during all the script execution).

Then wmlxgettext will execute statemachine.run() function every times we
open a new file (listed on args.filelist). This is the statemachine.run()
parameters list:

	filebuf: the file buffer to read

	fileref: the name of file (relative path to –directory)

	fileno: a progressive (and unique) id value assigned to the file

	startstate: the name of the state where the state machine must start.
Its value is assigned to ‘wml_idle’ for WML (.cfg) files or assigned
to ‘lua_idle’ for .lua files

	waitwml: Its value is True if we are parsing a WML file. It is
False if we are parsing a Lua file. Infact, only if a Lua code is
indented in a WML file you could “expect” to exit from lua parsing and
returning to WML parsing. In a .lua file, instead, you will have only
Lua code.

4.1. The State class

Now it is time to start to explain more deeply how the state machine works.
The State class has 3 properties:

	regex: it is the regular expression to match. If the regex matches,
than the run function will be executed.

	
	run (self, xline, lineno, match):

	
	xline: the line of the file we are parsing

	lineno: current line number

	match: the match object returned by re.match(regex)

	iffail: the state (state name) to reach if the regex does not match
(usually the next state).

The State class prototype (./pywmlx/state/state.py) does not contain any
actual code.
The concrete states are defined in ./pywmlx/state/lua_states.py and in
./pywmlx/state/wml_states.py using temporary classes (for better code
readability).

All states are stored in statemachine into a dictionary (_states) with:

	key = State name (example: ‘wml_idle’)

	value = concrete State object

4.1.1. Standard States

Standard states works exactly as previously explained:

[image: digraph stdstate { node [shape="ellipse", style="filled", fillcolor="grey", fontname="DejaVu Sans Mono"] state [label="State", shape="octagon"] match [label="regex matches", shape="box", fillcolor="purple"] run [label="Execute run()"] notmatch [label="regex DOES NOT match", shape="box", fillcolor="purple"] fail [label="ChangeState: 'iffail'"] exe [label="Returns a tuple:\n(non_consumed_line, new_state)", shape="box", fillcolor="cyan"] state -> match -> run -> exe state -> notmatch -> fail }]
The regexp is verified through re.match, so it maches only if the rule is
True at the very start of the line. If it matches, than run() is
executed.

	Run() returns a pair of values (tuple):

	
	xline: the non-consumed part of the line. If the line is to be
considered consumed, then xline will be setted to None

	nextstate: label of the next state to go. Usually it is ‘wml_idle’
or ‘lua_idle’ since the parsing is recursive.

If the regexp does not match, the iffail state will be reached. Usually the
iffail is equal to the “next state”. See State Sequence

4.1.2. Always-Run States

Always-run states are special states with regexp = None

Unlike standard states, an always-run state will always execute its own
run() function. An example of always-run state is ‘wml_idle’ state.

An always-run state does not actually require the iffail parameter. This
is why always-run states have iffail = None

4.2. State Sequence

Now it is the time to show the generic state sequence:

[image: digraph machine01 { node [shape="box", style="filled", fillcolor="grey", fontname="DejaVu Sans Mono"] idle [shape="ellipse", label="IDLE STATE", fillcolor="green"] idle2 [label="IDLE STATE of the other language", fillcolor="cyan"] preproc [label="Preprocessing and Comment STATES"] winfo [label="WML TAG/INFO STATES", fillcolor="yellow"] cstr [label="Capture String STATE (single-line?)", shape="box", color="red", fillcolor="#ffaaaa"] mult [label="Multi-Line String STATE", color="red", fillcolor="#ffaaaa"] change [label="Change language STATE"] end [shape="ellipse", label="FINAL STATE", fillcolor="green"] idle -> preproc [color="darkgreen"] preproc -> winfo -> cstr -> change -> end preproc -> idle [color="blue"] winfo -> idle [color="blue"] cstr -> idle [color="blue"] cstr -> mult [style="dotted", color="blue"] mult -> mult mult -> idle change -> idle2 [color="blue"] end -> idle [color="darkgreen"] }]
This is, more or less, the design that is applied both for WML and Lua states.
However the flow chart already displayed is mainly focused to WML states:

	
	Arrows:

	
	green -> Always-run states (IDLE and FINAL) always go into the
state pointed by the green arrow

	blue -> Standard state reach the State pointed by blue arrow when the
regex found a match.

	black -> Standard state reach the State pointed by black arrow when the
regex DOESN’T match

	
	Boxes/Ellipses:

	
	IDLE and FINAL states are special states that appears both in WML and in
Lua code. They are displayed in green circle since they are “always run”
states.

	Preprocessing States appears both in WML and Lua code, even if WML and
Lua use different states (for example, #wmlxgettext is not needed in
Lua code). They are standard states (grey box)

	‘wml_getinf’ and ‘wml_tag’ states appears only in WML states
(yellow box)

	String States (red boxes) behave very differently in WML and in Lua.

	Change Language State checks if WML code switch to Lua or vice-versa.
If the language is changed, the IDLE state of the other language will
be reached (cyan box).

4.2.1. IDLE and FINAL States

Both IDLE and FINAL states check if there is a pending string, and if it is so,
pending string will be stored in memory.

	WML: checks pymlx.state.machine._pending_wmlstring. If
pymlx.state.machine._pending_wmlstring is None there is no pending
WML string to store

	Lua: checks pymlx.state.machine._pending_luastring. If
pymlx.state.machine._pending_luastring is None there is no pending
Lua string to store

Both Lua and WML pending strings, before actually storing its own value,
perform some cheks:

	verify if it is a translatable string

	verify if the current domain is the same of the addon domain name

	if so, it fixes the string for storage, and then store it

However WML pending string is stored in a very different way then Lua pending
string:

	Lua pending string is directly stored, as a PoCommentedString, in the
“posentence dictionary”.

	WML pending string is, instead, stored in the current WML node as a
WmlNodeSentence. Only when the current WML node will be closed, all
WmlNodeSentence objects contained in the node will be stored in the
“posentence dictionary”. (See: The nodemanip module and
Converting WmlNodeSentence to PoCommentedString)

WmlFinalState always return the pair (xline, 'wml_idle') while
LuaFinalState always return the pair (xline, 'lua_idle'),
where xline is setted to None in both cases.
As previously explained, infact, when xline is None, the line is
considered completely consumed and the statemachine will read the next line
of the file.

Finally, the ‘lua_final’ state perform another action, but it will be
explain later. See About storing the last Lua function name.

4.2.2. Capture String States

When a string (translatable or not) is found, then the regexp of the proper
“Capture String” state matches. Captured string will be stored as
pymlx.state.machine._pending_wmlstring (WML string), or as
pymlx.state.machine._pending_luastring (Lua string).

Now it is the time to discuss deeply about those capturing string states.

4.2.2.1. Capture String: WML States

WML accepts only one syntax:

_ "translatable_string"

Only two states, then, required to capture strings:

./pywmlx/state/wml_states:161
class WmlStr01:
 # ...
./pywmlx/state/wml_states:190
class WmlStr10:

[image: digraph wmlstr { node [shape="record", style="filled", fillcolor="grey", fontname="DejaVu Sans Mono"] idle [shape="ellipse", label="WML IDLE STATE", fillcolor="green"] single [label="{WmlStr01|{(single line string)|(first line of multiline string)}}"] mult [label="{WmlStr10|(multiline string: from line 2 to last line)}", color="red", fillcolor="#ffaaaa"] nextstate [label="Next State", shape="box", fillcolor="orange"] single -> nextstate single -> idle [color="blue"] single -> mult [style="dotted", color="blue"] mult -> mult mult -> idle }]
More in details:

	WmlStr01 (‘wml_str01’): This state capture a single-line string
and also capture the FIRST LINE of a WML multiline string.

	If it is a single line string, the string will be stored in
pymlx.state.machine._pending_wmlstring. (Change to ‘wml_idle’
state).

	If the closing quote "
does not exist (multiline string) , then the matched string will be
saved in pymlx.state.machine._pending_wmlstring.
Following lines will be added to the pending string by the WmlStr10
State (change to ‘wml_str10’ state)

	WmlStr10 (‘wml_str10’): All following lines of the multiline
string will be added to pending string by this state
until the closing quote "
will be finded. This states recursively come back to itself, and, when
the string ends, state will be changed again to ‘wml_idle’

4.2.2.2. Capture String: Lua States

Unlike WML, Lua accepts three different syntaxes:

"string: type 1"

'string: type 2'

[[string: type 3]]

The third way (mostly suggested for multi-line lua strings) is even more
flexible than showed in the sample code above, as you can type any number
of equals symbols (from 0 to n) between the two brackets [[and]]

Note

In the example above, we wrote [[string: type3]], since it is the most
common way of defining a bracketed lua string, but we could also put any
number of equals symobols between brackets.

For example, we could have printed [==[string: type3]==] placing the
equal symbol two times. In that case, both opening and closing delimiter
must use the same amount of equal symbols.

Coming back to wmlxgettext, we shoud now notice that all this flexibility
allowed by the lua language (three ways to identify a string) means
“more states are required”. There are, infact, seven states this time:

./pywmlx/state/lua_states:71 (syntax "1": single-line or start multiline)
class LuaStr01:
 # ...
./pywmlx/state/lua_states:173 (syntax "1": multiline)
class LuaStr10:
 # ...
./pywmlx/state/lua_states:99 (syntax "2": single-line or start multiline)
class LuaStr02:
 # ...
./pywmlx/state/lua_states:193 (syntax "2": multiline)
class LuaStr20:
 # ...
./pywmlx/state/lua_states:127 (syntax "3": single-line ONLY)
class LuaStr03:
 # ...
./pywmlx/state/lua_states:149 (syntax "3": start multiline)
class LuaStr03o:
 # ...
./pywmlx/state/lua_states:211 (syntax "3": multiline [from line 2])
class LuaStr30:
 # ...

[image: digraph luastr { node [shape="record", style="filled", fillcolor="grey", fontname="DejaVu Sans Mono"] idle [shape="ellipse", label="LUA IDLE STATE", fillcolor="green"] str01 [label="{LuaStr01|type 1|{(single line)|(first line of multiline string)}}"] str10 [color="red", fillcolor="#ffaaaa", label="{LuaStr10|type 1|(multiline string: from line 2 to last line)}"] str02 [label="{LuaStr02|type 2|{(single line)|(first line of multiline string)}}"] str20 [color="red", fillcolor="#ffaaaa", label="{LuaStr20|type 2|(multiline string: from line 2 to last line)}"] str03 [label="{LuaStr03|type 3|(single line ONLY)}"] str03o [label="{LuaStr03o|type 3|(multiline string: line 1)}"] str30 [color="red", fillcolor="#ffaaaa", label="{LuaStr30|type 3|(multiline string: from line 2 to last line)}"] nextstate [label="Next State", shape="box", fillcolor="orange"] str01 -> str02 -> str03 -> str03o -> nextstate str01 -> idle [color="blue"] str01 -> str10 [style="dotted", color="blue"] str02 -> idle [color="blue"] str02 -> str20 [style="dotted", color="blue"] str03 -> idle [color="blue"] str03o -> str30 [color="blue"] str10 -> str10 str20 -> str20 str30 -> str30 str10 -> idle str20 -> idle str30 -> idle }]
This time the flow chart is not so easy to understand at a first sight, so
it requires a little explaination:

	
	Boxes/Ellipses:

	
	green -> always-run states (green arrow rule applied)

	orange -> used for “Next State”, for a better look

	red (LuaStr10 and LuaStr20): LuaStr10 and LuaStr20 are recursive
standard states. They can go back to theirself, until the end of the
multi-line string is matched
(when the multi-line string ends, ‘lua_idle’ state will be reached)
(no arrow rule: all arrows are black)

	red (LuaStr30): LuaStr30 is indeed an always-run state, but it
acts like a recursive standard state. The regular expression
evaluation is moved in the run() function since the regexp rule is
calculated on runtime.
If the regexp doesn’t match (current line of code does not end the
multiline string) than LuaStr30 comes back to itself (recursive
state). If the regexp does match, the multi-line string finished,
and LuaStr30 goes to LuaIdleState.

	grey -> standard states (black, blue and dotted blue arrow rules
applied)

	purple (ellipse) -> LuaStr30 can find (or not) the]==] symbol.
Purple ellipses shows what happen if]==] was found and if
]==] was NOT found (see where the black arrows will go).

	
	Arrow rules (when applied):

	
	green -> LuaStr31 is an always-run state. LuaStr31 will always
come back to LuaStr30 state

	blue -> when the state finds what it is searching, go to the state
pointed by blue arrow

	blue (dotted) -> LuaStr01 and LuaStr02 regex rule can match both
a single-line string AND the start of a multi-line string. If
the a multi-line string matched, than go to the state pointed by the
dotted blue arrow instead of the standard blue arrow

	black -> When the regex rule of the state fails (the state does
not find what it is searching). [except for red boxes]

4.2.3. About storing the last Lua function name

Unlike the WML states, there isn’t any Lua state that captures lua infos.
The only extra info that could be auto-cached inside a lua code is the name
of the last function opened / defined.

This kind of search required to use a specific regexp search, using
re.search instead of re.match.
Unlike all other searches, infact, we need to capture function name at
any point of the line we are parsing, or the regexp will not work properly.

But, as explained at the beginning of this page, the state machine relies on
re.match (best performance) to verify the regexp rule of every state. For
this reason,
LuaFinalState
searches by itself if there is a function name somewhere, and, if so, stores
the value into pywmlx.state.machine._pending_luafuncname.

4.3. State Machine and nodemanip

The previous chapter (Introducing WML and Lua parser) explained a lot of things, and
expecially:

	how WML nodes are stored in memory

	how nodemanip module manage WML nodes (See: The nodemanip module).

But, an important thing was omissed: nodemanip is used by the statemachine.

[image: digraph machine02 { node [shape="record", style="filled", fillcolor="grey", fontname="DejaVu Sans Mono"] machine [shape="box", fillcolor="orange", label="State Machine"] start [label="{Initialize nodemanip\neven if the parsed file\nis a .lua file|function nodemanip.newfile()}"] lua [shape="ellipse", fillcolor="purple", label="Lua file"] lua_explain [label="{Lua states DOES NOT use nodemanip|nodemanip is used ONLY on\npending Lua string to obtain\nfileref and fileno}"] wml [shape="ellipse", fillcolor="purple", label="WML file"] wml_explain [shape="box" label="WML states use nodemanip\nto perform any action"] machine -> start start -> lua -> lua_explain start -> wml -> wml_explain }]
When wmlxgettext import pywmlx, nodemanip module is not loaded in
pywmlx namespace: nodemanip is only internally used by state machine
(module ./pywmlx/state/machine.py).

5. The last step: writing the .po file

When the dictionary of PoCommentedString object is done (the end of the
last file is reached and nothing is left unparsed) it is the time to write
all the dictionary into an actual .po file:

./wmlxgettext:164
outfile = None
if args.outfile is None:
 outfile = sys.stdout
else:
 outfile_name = os.path.realpath(os.path.normpath(args.outfile))
 outfile = open(outfile_name, 'w')
pkgversion = args.package_version + '\\n"'
print('msgid ""\nmsgstr ""', file=outfile)
print('"Project-Id-Version:', pkgversion, file=outfile)
print('"Report-Msgid-Bugs-To: http://bugs.wesnoth.org/\\n"', file=outfile)
now = datetime.now()
cdate = str(now.year) + '-'
if now.month < 10:
 cdate = cdate + '0'
cdate = cdate + str(now.month) + '-'
if now.day < 10:
 cdate = cdate + '0'
cdate = cdate + str(now.day) + ' '
if now.hour < 10:
 cdate = cdate + '0'
cdate = cdate + str(now.hour) + ':'
if now.minute < 10:
 cdate = cdate + '0'
cdate = cdate + str(now.minute) + strftime("%z") + '\\n"'

print('"POT-Creation-Date:', cdate, file=outfile)
print('"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\\n"', file=outfile)
print('"Last-Translator: FULL NAME <EMAIL@ADDRESS>\\n"', file=outfile)
print('"Language-Team: LANGUAGE <LL@li.org>\\n"', file=outfile)
print('"MIME-Version: 1.0\\n"', file=outfile)
print('"Content-Type: text/plain; charset=UTF-8\\n"', file=outfile)
print('"Content-Transfer-Encoding: 8bit\\n"\n', file=outfile)

This part of code (into wmlxgettext main script file) writes down the
.po header informations:

msgid ""
msgstr ""
"Project-Id-Version: PACKAGE VERSION\n"
"Report-Msgid-Bugs-To: http://bugs.wesnoth.org/\n"
"POT-Creation-Date: 2016-02-19 17:59+0100\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"

After writing the header, it is the time to write the translatable strings:

./pywmlx/wmlxgettext:196
for posentence in sorted(sentlist.values(), key=lambda x: x.orderid):
 posentence.write(outfile, args.fuzzy)
 print('', file=outfile)

All PoCommentedString objects contained in dictionary will be written in
the correct order (thank of sorted() that sorts PoCommentedString
object by orderid value)

Every PoCommentedString object will be then written in .po file, calling
the PoCommentedString.write() function.

The PoCommentedString.write() function will:

	write wmlinfos and addedinfos on PoCommentedString object,
one by one, as #. <message to translator>

	write finfos on PoCommentedString object, one by one, as
#: path/to/file:x infos

	put the fuzzy flag if --fuzzy option was used in wmlxgettext command
line

	write translatable string into msgid "..." parameter in the proper
way

	add an empty line msgstr "" (where the translator will put the
translation into another language).

Now it is the time for the very last explaination:

./pywmlx/wmlxgettext:199
if args.outfile is not None:
 outfile.close()

If args.outfile is None, then the option -o output-file-name was
not used (output should be written in stdout like in wmlxgettext 1.0, and
it can be redirected to a file)

If args.outfile is not None, then an output file is directly
created by wmlxgettext itself (and that file buffer must be closed).

6. Deep explaination of all regular expressions

This part of the source documentation is a kind of an “appendix”, where all
regular expressions used in source code will be explained deeply

6.1. Regexes used on WML States

6.1.1. WML IDLE State

m = re.match(r'\s*$', xline)

If the line is actually empty (only contains tabs/spaces) it will be consumed
immediately. It is equal to that regular expression:

^\s*$

6.1.2. WmlCheckdomState

self.regex = re.compile(r'\s*#textdomain\s+(\S+)', re.I)

this is equal to that (case insensitive) regex:

^\s*#textdomain\s+(\S+)

At the start of the string will search for:

	spaces/tabs (from 0 to n)

	the character #.

	the word textdomain followed by one or more spaces

	one or more NO-SPACE characters, captured into group 1

6.1.3. WmlCheckpoState

rx = r'\s*#\s+(wmlxgettext|po-override|po):\s+(.+)'
self.regex = re.compile(rx, re.I)

wich is equal to that (case insensitive) regex:

^\s*#\s+(wmlxgettext|po-override|po):\s+(.+)

At the start of the string will search for:

	spaces/tabs (from 0 to n)

	the character #

	one or more space before an actual word

	one of those words: wmlxgettext, po-override or po captured into
group 1.

	followed by the character : and one or more spaces/tabs.

	followed by any number of any characters (at least 1) captured on group 2.

6.1.4. WmlCommentState

self.regex = re.compile(r'\s*#.+')

At the start of the string will search for:

	spaces/tabs (from 0 to n)

	the character # followed by any character

6.1.5. WmlTagState

Note

Special Thanks to:

	Soliton

	for pointing me that a tag name could, in theory, a number

	for having a very nice idea about how to distinguish a tag from an
array index (see the regexp explaination)

	celticminstrel

	for providing me a good regexp rule, that allowed me to
write down the regexp used in this state

rx = r'\s*(?:[^"]+\(\s*)?\s*\[\s*([\/+-]?)\s*([A-Za-z0-9_]+)\s*\]'
self.regex = re.compile(rx)

Before explaining what the regex searches, we need to explain why the regexp
was written in this way.

We must take mind that a WML tag (we now focus on open tag, but the discussion
is the same also on close tags) can appear in two different ways; this is the
first one:

first way: tagname can be defined at the start of the line
 [tagname]

In this case, the WML line we are parsing may have an arbitrary number of
spaces (or tabs) before the tagname, but nothing else must appear before the
[tagname]. This is the most common case where a tag is defined, but it is not
the only one; a tag can be added also in the body of a WML macro call as a part
of WML code passed as parameter to the macro.

So why a WML tag can also apper inside the body of a macro call, like showed
in this example:

{MACRO ([foo]
 bar = "baz"
 [/foo])}

	So, wmlxgettext had to face two corner problems:

	
	it should record the [foo] open tag inside the macro call,
or it will return an error when closing [/foo] tag will be found

	it should, however avoid to collect array indexes, thinking they are
tags, for example:

[$i], here, is not a tag, but it is an index value of the array my_array
value = my_array[$i]

So… how to distinguish tag from an array using a regexp? Well… a tagname,
when placed inside a WML macro call, should be ALWAYS immediately preceded by
(; nothing else than spaces can be putted before the parenthesis and the
tag definition.

After all those explainations we have almost all the informations required to
understand why the regexp used on WmlTagState is:

^\s*(?:[^"]+\(\s*)?\[\s*([\/+-]?)\s*([A-Za-z0-9_]+)\s*\]

As usual, at the start of the string, an arbitrary number of spaces or tabs
(^\s*) can be found.

	After that the regexp will consider two different scenarios:

	
	first scenario: [tagname] is defined inside a macro call

	second scenario: [tagname] stays alone (most common case)

On the fist scenario, the [tagname] is contained into a MACRO CALL, so we must
verify that the [tagname] definition immediately follows a parenthesis (,
except for spaces or tabs that can separates (and [tagname]:

(?:[^"]+\(\s*)?

This check is performed by the non-capturing group written above, wich can
occur one-time only (when tagname is contained in the macro definition)
or it can occur zero times (when the tagname stays alone in the line,
second scenario).

The non-capturing group will search for the last opening parenthesis
encountered (and following spaces) that satisfies the remaining part of the
regexp (explained later) wich search for [tagname].

This is, in particular, made by the second part of the non-capturing group:

\(\s*

But the non-capturing group will verify that no quote symbols (")
were found in the meantime:

[^"]+

The reason of this exclusion is related to the wmlxgettext state machine
design: the WmlTagState, infact, is evaluated before the WmlStr01 state
(wich will search WML strings, translatable or not).

Wich means: if we allowed WmlTagState to match a line containing a quotation,
we would let WmlTagState to consume all the matched line, including the
WML string, wich will never been evalated by WmlStr01 State. But we don’t
want that this event could happen.

[image: digraph wmlstr { rankdir=LF node [shape="ellipse", style="filled", fillcolor="grey", fontname="DejaVu Sans Mono"] wmltag [shape="box", fillcolor="green", label="WmlTagState regexp"] tagfound1 [label="[tag]\nstays alone"] tagfound2 [label="[tag] in macro-call"] question [shape="diamond", label="Are there\nquotes (\")\nbefore the [tag]?"] match [fillcolor="green", label="regex matches:\n[tagname] will be collected\nby WmlTagState"] nomatch [label="regex does not match:\nWmlStr01 can be reached"] wmlstr01 [label="WmlStr01 state can\ncollect the sentence\n included between quotes"] wmlstr02 [label="WmlStr01 state will consume the parsed line\n until the closing quote reached.\n (The quoted string will be removed\nfrom the line to parse)"] wmlstr03 [fillcolor="cyan", label="WmlTagState, next time,\n(when all quotes will be removed after executing WmlStr01 state)\nwill be able to match the [tagname]"] {rank=same tagfound1 tagfound2} {rank=same match nomatch} wmltag -> tagfound1 -> match wmltag -> tagfound2 -> question question -> nomatch [label="yes"] question -> match [label="no"] nomatch -> wmlstr01 -> wmlstr02 -> wmlstr03 -> match }]
So, coming back to the regexp:

^\s*(?:[^"]+\(\s*)?\[\s*([\/+-]?)\s*([A-Za-z0-9_]+)\s*\]

We said:

	^\s* will search for arbitrary number of spaces (or tabs) at the start
of the line

	(?:[^"]+\(\s*)? is the zero or one time non-campturing group that
verifies if the tag is included inside a macro call. Wmlxgettext will
search for a [tagname] wich is directly preceded by an opening
parenthesis and an arbitrary number of spaces (or tabs). In the meantime
it will verify that no quotations symbols (") can be found in the
meantime. If a quotation symbol will be found, the regexp will be fail, so
the WmlStr01 state can do its work (see the flow chart here above).

	\[\s*([\/+-]?)\s*([A-Za-z0-9_]+)\s*\] is the final part of the regexp
(valid both for tags placed alone and for tags placed inside a macro call)
that actually identify the tag. It will discussed here now.

The final part of the regular expression will search for [tagname],
[/tagname], [+tagname] or [-tagname] where any number of spaces can
be placed between [, tagname and].

If +, - or / symbol is used, any number of spaces can be placed
between the symbol, the [and the tagname.

The regular expression, in this final part will also do those tasks:

	it will store, on group(1), the symbol +, - or /.
If no symbol will be used, the group(1) will be an empty string.

	it will store, on group(2), the tagname. Characters allowed are only
letters, numbers, or underscore, so why the expression ([A-Za-z0-9_]+)
is used there (note that tagname must contain at least one character, this
is why the + quantifier was used).

Note

On group(1), as we said, we can find an empty string (no symbol used) or one
of those symbols: +, - and /.

	if / is found, then the tag is a closing tag

	if + is found, the tag is considered like a normal open tag, ignoring
the + symbol.

	if - is found, the tag is treated like [+tag].

Note that the [-tag] is not currently supported in WML code. Wmlxgettext
included the rule for the - symbol if, in a future, also the [-tag]
feature will ever included (thinking the chance of doing the opposite thing
that is done by the [+tag]).

6.1.6. WmlGetinfState

rx = (r'\s*(speaker|id|role|description|condition|type|race)' +
 r'\s*=\s*(.*)')
self.regex = re.compile(rx, re.I)

This case-insensitive regex will be search, start of the string, for:

	spaces/tabs (from 0 to n)

	one of the following words: speaker, id, role, description, condition,
type or race. The word will be captured into group 1.

	spaces/tabs (from 0 to n)

	the = character

	spaces/tabs (from 0 to n)

	any number of any character, captured by group 2. (this will be the value
assigned to the parameter captured by group 1).

Note

The WmlGetinfState and the state WmlStr01 could generate a bug,
without the proper cautions.
This is the reason why you can find this code into WmlGetinfState

if '"' in match.group(2):
 _nextstate = 'wml_str01'
 pywmlx.state.machine._pending_winfotype = match.group(1)

If a " sign was found in group 2, it means that the value assigned to
the parameter (for example, name="something") is a quoted string.
This string must be managed then by the state WmlStr01. State Machine
will remember that there is a pending wml info with quoted string.
the winfotype will store only the parameter at the moment, waiting for
WmlStr01 (that will process the quoted string)

6.1.7. State WmlStr01

This is the state wich will capture a wml string type 1 (“quoted string”)

rx = r'(?:[^"]*?)\s*(_?)\s*"((?:""|[^"])*)("?)'
self.regex = re.compile(rx)

the regexp used here is a bit complex, so it will be atomized:

^(?:[^"]*?)

without creating group ((?:) creates a non-capturing group), any number of
characters different than " will be found. But the search will be less
greedy than possible (thank the very last ? putted after *).
The “less greedy than possible” rule is necessary, othewhise the following
rule will be ignored:

\s*(_?)\s*"

we need, infact, to know if a string is translatable or not. We must see if a
_ sign was found before opening the quote. But the _ sign is different
than " sign, so if the previous rule was greedy, the regexp could never
capture on group 1 the _ sign.
Instead, since the non-capturing group (?:[^"]*?) is “less greedy than
possible” it will stops as soon the following rule
\s*(_?)\s*" will be true.

Since the rule \s*(_?)\s*" will check:

	spaces/tabs (from 0 to n)

	zero or one _ sign, captured on group 1, followed by spaces/tabs
(from 0 to n)

	followed by " sign

this means that the regexp, until now:

	is true even if something was found before _ "translatable string"

	will see if _ is used (group 1). Group 1 will be _ if the _
will be found, or it will be an empty string if the _ will not be
found (string is not translatable)

	it will check for opening quote " where the string actually starts.

Finally, the regexp continues with:

((?:""|[^"])*)("?)

This part of the regexp must be explained a bit. A WML string can contain two
following " signs if you want to use the " character inside your
string (for example, using a " sign in a message).
For this reason, if you find "" into a WML string, the string is not yet
finised.

So, this part of the regexp:

	create a new group 2 (with the outer parenthesis on
((?:""|[^"])*))

	that group 2 will capture any number of the things captured by the
inner parenthesis, wich doesn’t create any additional groups
(thank of the starting ?:).

	the “things” that can be captured on group 2, so, can be:

	either “”

	or any character different than "

	finally checks if there is the enclosing " sign and capture it to
group 3.

This is how this complex regexp works.

Note

it is the time to remember what the regexp capturing groups:

	group 1 -> can be _ or an empty string (to understand it the string
is translatable or not).

	group 2 -> it is the text

	group 3 -> can be " or an empty string. If it is an empty string,
(closing " sign not found) than the string is multi-line.

6.1.8. State WmlStr02

This is the state wich will capture a translatable wml string type 2
(_ <<translatable capitalized string>>)

rx = r'[^"]*_\s*<<(?:(.*?)>>|(.*))'
self.regex = re.compile(rx)

WmlStr02 is evalued after WmlCommentState (so it is evalued before
WmlStr01):

[^"]*_\s*<<

Unlike before, WmlStr02 will match ONLY if the string is translatable
(so non-translatable <<string>> will be ignored by regex).
The regex will also mach only if no quotes found before the underscore
marker followed by the << marker.

We said that WmlStr02 is evalued before WmlStr01, and that is the reason
why no quote should be found before WmlStr02 (the WmlStr01 must be evalued
and not skipped; so the WmlStr02 regex will fail, and the WmlStr01 state can
be reached to collect the WmlStr01).

(?:(.*?)>>|(.*))

The second (and last) part of the regex is a non-capturing group wich contains
two alternatives:

	(.*?)>> the first alternative matches if the close marker >>
is found (single line translatable string). The capture ends when the
first >> occurrence is found (non-greedy capture).
Text is captured on group 1.

	(.*) the second alternative matches all the text until the end of the
line (multi-line translatable string). Text is captured on group 2.

6.1.9. State WmlStr10

This is the state wich will capture multi-line wml “quoted” string (type 1)
from line 2 to the end

self.regex = re.compile(r'((?:""|[^"])*)("?)')

The regexp is musch more simplier than the one used by the state WmlStr01
even if it works in a very similar way.

The basic idea of this regexp is: <<we are parsing a multi line string and
this is NOT the first line of the string, so the starting part of the file line
must be contained into the string until the ending ``”`` will be found>>.

It will save, on group 1 and group 2, what the regexp used by WmlStr01 capture
on group 2 and group 3.

6.1.10. State WmlStr20

This is the state wich will capture multi-line wml <<capitalized>> string
(type 2) from line 2 to the end

WmlStr20 is a very particular state: it is structured as an always-run
state, but it works like a standard state.

There is a regex inside the run function wich is very simple:

(.*?)>>

This is a solution that allows WmlStr02 to stay there until the >> end
marker will be found somewhere. Infact:

	If the regex fails, WmlStr20 will recursively change to itself (it stays to
WmlStr20)

	If the regex matches, WmlStr20 will capture the text into group(1) and
then the state will be changed to wml_idle

6.1.11. WmlGoluaState

self.regex = re.compile(r'.*?<<\s*')

It will be check, from the start part of the string, any number of any
character (less greedy then possible) until << found (followed by any
number of spaces/tabs - from 0 to n).

If the regexp will mach, the State will consume the line until the last space
of the << symbol, and than switch to lua_idle state
(parse Lua language).

6.2. Regexes used on Lua States

Unlike WML states, we will not explain all the regexp used, since most of
them are very similar to the ones used on WML states

6.2.1. LuaCheckdomState

rx = (r'\s*(local)?\s+_\s*=\s*wesnoth\s*\.\s*textdomain\s*'
 r'''(?:\(\s*)?(["'])(.*?)\2''')
self.regex = re.compile(rx, re.I)

The regular expression used by LuaCheckdomState is very long, and it is
very different from the one used by WmlCheckdomState.
Changing the current domain in lua code, infact, requires a very different
syntax:

-- after executing the following line, the current domain
-- will be changed to: wesnoth-xyz
local _ = wesnoth.textdomain('wesnoth-xyz')

It is now the time to explain deeply the regexp used by LuaCheckdomState:

^\s*(local)?\s+_\s*=\s*wesnoth\s*\.\s*textdomain\s*(?:\(\s*)?(["'])(.*?)\2

The regexp can be dived in this way:

	^\s* –> Arbitrary number of spaces or tabs at the start of the line.

	(local\s+)? –> Optional local keyword. It is captured (if exists)
in group(1). If local keyword is not used and the --warnall command
line option is used, than a warning message is displayed.

	\s*=\s* –> the underscore symbol () followed by equal (=).
Any number of spaces or tab can be placed between underscore and equal;
any mymber of spaces or tab can be also placed after the equal symbol.

	wesnoth\s*\.\s*textdomain\s* –> look for wesnoth.textdomain.
Any number of spaces can be placed before and after the point symbol that
divides wesnoth and textdomain ;
any number of spaces can be placed after the textdomain word.

	(?:\(\s*)? –> This is a very important part of the regexp. This
non-capturing group will ensure that the regexp will
match when zero or one open paranthesis will follow
after wesnoth.textdomain. The open parenthesis is, infact, optional.

	(["']) –> Then a single or a double quote is expected, and it will
captured on group(2)

	(.*?) –> The actual textdomain will be captured on group(3)

	\2 –> the closing quote (what it was captured on group2, wich opened
the quote, must match be the same one that closes the quote)

Note

Special thanks to celticminstrel for providing me this regexp.

6.2.2. Lua “Comment” States

LuaCheckpoState and LuaCommentState use regexpes
very similar to the ones used on WmlCheckpoState and WmlCommentState.

Here the differences:

	You can also use -- po: and -- po-override: or you can use
-- # po: and -- # po-override: (both forms are allowed).

	# wmlxgettext: is not supported on lua code (it is useless)

	lua comment starts with -- and not with #

6.2.3. LuaStr01 and LuaStr02 States

We will display the LuaStr01 python code

rx = r'''(?:[^["']*?)(_?)\s*"((?:\\"|[^"])*)("?)'''
self.regex = re.compile(rx)

wich is equal to the following regexp:

^(?:[^["']*?)(_?)\s*"((?:\\"|[^"])*)("?)

The regexp used by LuaStr02 is more or less the same, infact it is equal to
the following regexp:

^(?:[^["']*?)(_?)\s*'((?:\\'|[^'])*)('?)

The basic logic of those regexp is more or less the same as the one used by
State WmlStr01.

As the regexp used by State WmlStr01, it can be divided in three parts:

	things before the strings starts

	check if the string is translatable, searching for _ sign rigtly
before the string starts (followed by any number of spaces-tabs).
(group 1 = _ or empty string)

	check for start quote (" for LuaStr01, ' for LuaStr02).

	check for text (group 2)

	check for quotation end (group 3) (if empty, is a multiline string).

The actual difference from the regexp used by State WmlStr01 is the
first part of the regexp rule:

(?:[^["']*?)

Instead of searching of all characters different than only the " symbol,
this regex will search all characters that will be neither ",
nor ', nor [.

This will avoid conflicts from the three possible syntaxes and it will ensure
that, if any of the regexp match, it will really match the first string,
avoiding that a lua string will be skipped.

Another difference is that the “non enclosing quote” is not "" like WML,
but it is escaped in a different way (\" or \'), this is why the
rule is a bit different also in the third part of the regexp rule.

6.2.4. LuaStr10 and LuaStr20 States

The basic idea is the same as the one used by State WmlStr01.

(See also: State WmlStr01 and LuaStr01 and LuaStr02 States).

6.2.5. LuaStr03 State

LuaStr03 regexp can is equal to the following regexp rule:

^(?:[^["']*?)(_?)\s*\[(=*)\[(.*?)]\2]

The first part of regexp (^(?:[^["']*?)) is already explained in
LuaStr01 and LuaStr02 States.

The second part of regexp((_?)\s*) captures _ on group 1 and collect
any following spaces/tabs (without storing them in groups).

The third part of regexp (\[(=*)\[) captures all equal symbols placed
between the two brackets and store them into group 2.

The fourth part of regexp ((.*?)) captures all characters contained between
the lua bracketed string delimiters (ending delimiter is defined by the last
part of the regexp). It captures the less charcaters than possible until the
end delimiter found

The last part of regexp (]\2]) will search the right lua bracketed string
end delimiter, checking how many equals symbols were captured on group 2
(\2 will search exactly what group 2 matched). So, if the group 2 is an
empty string, than]] will be the end delimiter searched by regexp.
If the group 2 is === (3 equals symbols) than the end delimiter will be
]===]… and so on.

Note

This regexp, unlike the one used on LuaStr01 and LuaStr02, does not
match at all if the right end-delimiter will be not found in the parsed line.
This is why lua bracketed strings (lua string type 3) require another state
that explicitly tells when the lua string type 3 is multiline.
And this is the rule defined on LuaStr03o, explained in the next
subparagraph.

6.2.6. LuaStr03o State

LuaStr03o State will match when the beginning of a lua multiline bracketed
string is found:

^(?:[^["']*?)(_?)\s*\[(=*)\[(.*)

	The state LuaStr03o will capture:

	
	on group 1: the _ symbol (if is used)

	on group 2: how many equal symbols where placed in the starting string
delimiter (for example the delimiter [=[will contain one equal
symbol between the two brackets)

	on group 3: the text of the first line of the string. This time the group 3
use greedy rule, capturing all following characters.
This is why, this time, the regexp will be True (will match) even if
nothing follows the [=[marker (multiline string).

Note

LuaStr03o, when creating the pending string (PendingLuaString object on
state machine), stores the amount of equals signs in the
PendingLuaString.numequals variable, wich will be used by LuaState30 to
calculate (on runtime) wich regexp should be actually used.

6.2.7. State LuaStr30

The LuaStr30 is a very particular state, wich is structured as an always-run
state, but it works like a standard state.

The regexp definition, infact, is not placed (as usual) in the State.regexp
parameter, defined in the __init__ function. This becouse all states are
stored in the state machine during the setup phase, before starting to parse
WML and Lua files. Wich means that all State.regexp values can be defined only
on the setup phase itself and they cannot change anymore.

But, this time, we require to use a regexp rule that search exactly wich is
the end delimiter for that one lua bracketed multiline string started on the
previous LuaStr03o state.

This why the regexp is defined directly in the run() function, wich explicitly
performs all actions usually done by statemachine when evaluating a
State.regexp.

This is the regexp that will be evaluated in the run() function:

^(.*?)]={n}]

where n is the exact number of equals symbols stored in the
PendingLuaString.numequals variable by LuaStr03o.

So, for example, if LuaStr03o.regex previously matched == on group 2 (wich
means that [==[was the opening delimiter used), then the regexp searched
by the run function will be:

^(.*?)]={2}]

Now it is the time to actually explain the regexp. We will focus the
explaination around this last concrete example (end delimiter must have exactly
two equal symbols between close brackets). So why, from now on, we will
explain the regexp:

^(.*?)]={2}]

This regexp will match if the line contains somewhere the]==] delimiter.
the final part of the regexp (]={2}]), infact, means:

	litteral]

	followed by = (two times)

	followed by]

If the delimiter]==] will be found, the regexp will match, the last part
of the string will be stored on group 1, than it will be added to the pending
string. LuaStr30 will go to LuaIdleState (parsed line will be not completely
consumed. Only what it will be matched will be removed from the parsed line.

If the delimiter]==] will not be found, than the regexp will not mach.
LuaStr30 will store all the parsed line into the pending lua string and consume
it at all, so the statemachine will be able to read the next line of code.
LuaStr30 will come back again to itself (it acts like a recursive state, in a
very similar way like the LuaStr10 and LuaStr20 states).

Note

The first part of the regexp (.*?) capture all characters using the
less greedy than possible rule, with the same effects explained on
State WmlStr01 (first part of the regexp where the less greedy rule
was used).

6.2.8. LuaFinalState

Lua Final States checks if the current parsing line contains a function name:

rx_str = (r'function\s+([a-zA-Z0-9_.]+)|' +
 r'([a-zA-Z0-9_.]+)\s*=\s*function'
)
rx = re.compile(rx_str, re.I)
m = re.search(rx, xline)

So it use re.search and not re.match as usual. This mean that we
don’t have a sort of an implicit caret symbol at the start of the regexp rule,
so the resulting regexp rule is:

function\s+([a-zA-Z0-9_.]+)|([a-zA-Z0-9_.]+)\s*=\s*function

Note

the regexp showed above is case insensitive (option re.I used on
re.compile function).

the regex will search:

	function <name_of_function>: where <name_of_function> will be
stored on group 1.

or it will search:

	<name_of_function> = function: this time <name_of_function> will
be stored on group 2.

6.3. “Escape” regexp rules

Translatable strings will be “reformatted” two times. The first time when they
will be stored from pending string to a PoCommentedString (or to a
WmlNodeSentece) object.

./pywmlx/state/machine.py (class PendingLuaString, function store)
if self.luatype == 'luastr2':
 self.luastring = re.sub(r"\'", r"'", self.luastring)
self.luastring = re.sub(r'(?<!\\)"', r'\"', self.luastring)

./pywmlx/state/machine.py (class PendingWmlString, function store)
self.wmlstring = re.sub('""', '"', self.wmlstring)

Those part of code will be replace the escaped quote found in that kind of
string ("" on WML and \" on Lua type 1 for symbol "; \' on
Lua type 2 for symbol ').

Those escape code will be replaced in those way:

	"" found on WML will be replaced by \"

	", if not preceded by \ will be replaced by \", on lua string

	\', found on Lua type 2, will be replaced by '.

This becouse, in the final .po file the quote string " must be escaped by
\, so the right escape code is \". The ' symbol, instead, don’t
require any escape.

So it’s the time to explain the regexp used on lua to verify if a " symbol
is not preceded by \:

(?<!\\)"

This is the regexp rule used by the last re.sub used by the function
PendingLuaString.store().

the (?<!\\) is a negative look-before rule. So the regex will match if
the " is found, but if the previous character is not \ infact:

	(?<!) identify the negative look-before

	\\ checks for the litteral character \.

We said that the translatable string is “reformatted” two times.

	the first time, when a new PoCommentedString or WmlNodeSentece
object is stored in memory.

	the second time when every single PoCommentedString object contained
in the dictionary will be written in the .po file, rightly before actually
writing it.

On this last step the sentence will be translated from:

this is the \"sentence\" before second formatting

to:

"this is the \"sentence\" before second formatting"

If the string is multiline, for example:

this is
a \"multiline\" string
stored here

they will be formatted to:

""
"this is\n"
"a \"multiline\" string\n"
"stored here"

It is possible to notice that, on multiline string, the new “formatting” will
create a first line with only "". It is not an error: it is expected since,
if the string is multiline, it is expected that "" will follow msgid
on the first line.

All other lines (except the very last one) will end with \n (new line
code).

All lines (included the very last one) will be enclosed in quotes (").

 _static/comment-bright.png

_images/graphviz-f129f046651065ad43a5a94826d0ba5ae188650b.png
ChangeState: ‘'iffail’

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/graphviz-961f588940cc923f7e4412fbc997f2595af5a574.png

_images/graphviz-b5117ed0445c5a0e4413da0e3d887ef144ccb968.png
y
node list
ONLY contains

node list
is empty

contains root node
root node AND other WML node(s)

Node list

A 4

Check root node
take WmlNodeSentence objects
and convert them in
temporary PoCommentedString objects

\

Critical error (wmlerr())

/

update dictionary using
those temporary objects

_images/graphviz-7eea3f4a0a55d143889fc822c1a861cbea384cce.png
[tag]
stays alone

[tag] in macro-call

Are there
quotes (")
before the [tag]?

regex does not match
WmlStr0l can be reached

WmlStr0l state can
collect the sentence
included between quotes

WmlStr0l state will consume the parsed line
until the closing quote reached.
(The quoted string will be removed

from the line to parse)

_images/graphviz-8f9a0948ca750462ad059bdaa110519e68affd24.png
Is node list empty?

Create a ROO
(tagname=

N,

Create the WML [tag] node

Ino

_images/graphviz-df47014634da1298a988c75743fbc15efb24f791.png
Initialize nodemanip
even if the parsed file
is a .lua file

function nodemanip.newfile()

Lua states DOES NOT use nodemanip

nodemanip is used ONLY on
pending Lua string to obtain
fileref and fileno

WML states use nodemanip
to perform any action

_static/minus.png

nav.xhtml

 Table of Contents

 		
 WMLxGettext 2.x

_images/graphviz-4024f4957f61726a0c0fff9441847751eeef7e63.png
Preprocessing and Comment STATES

Capture String STATE (single-line?)

e

<y

Change language STATE

Multi-Line String STATE

_static/up-pressed.png

_images/graphviz-6fb5312f2f89c769e92e5dca0578a630881fcd2f.png
WmlStrol

(single line string) | (first line of multiline string)

v
WmlStrl0
(multiline string: from line 2 to last line) :>

_static/up.png

_images/graphviz-268f85902f1cf6b120892730147ea3b8149154ad.png
vy
Is that [/closing_tag] expected?

current node.tagname

node list is empty current node is ROOT does not match [/tagname]

no closing tag expected no closing tag expected another closing tag expected

l _— |
take WmlNodeSe

ntence objects
critical error (wmlerr()) and convert them in
temporary PoCommentedString objects

A A
update dictionary using
those temporary objects

y
and finally
clear the node
removing it from list

_static/plus.png

_images/graphviz-2f3f20d1bd58e03e52ad2884dc1c9e7aede0cda1.png
LuaStrol

type 1

(single line) | (first line of multiline string)

\

LuaStr02
type 2
(single line) | (first line of multiline string)
A ‘\\\\\\\\\\\\\\“A
LuaStr20 LuaStro3
type 2 type 3
(multiline string: from line 2 to last line) (single line ONLY)
v
LuaStrl0 LuaStr03o
type 1 type 3
(multiline string: from line 2 to last line) (multiline string: line 1

/

(multiline string: from line 2 to last line)

LuaStr30
type 3

