

Winternitz

This is the documentation of winternitz.

Note

Welcome to the documentation of the python winternitz package.
The package contains one-time-signature schemes, which are
most likely post-quantum secure.

Contents

	License

	Authors

	Changelog
	Pre Version 1.0

	Version 1.0

	Introduction
	Lamport one-time-signature scheme

	Winternitz extension

	Setup
	Test

	Generate documentation

	Usage
	WOTS

	WOTSPLUS

	Misc

	Module Reference
	winternitz package

	Contribution

Indices and tables

	Index

	Module Index

	Search Page

License

The MIT License (MIT)

Copyright (c) 2019 Harald Heckmann

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Contributors

	Harald Heckmann <harald.heckmann93@web.de>

Changelog

Pre Version 1.0

	Setup project (structure, travis, tox, coverage, sphinx, git-prehooks)

Version 1.0

	First fully tested and documented release of the winternitz package.

	Contains AbstractOTS base class for OTS implementations in this package

	Contains fully configurable Winternitz One-Time-Signature scheme

	Contains fully configurable Winternitz One-Time-Signature+ scheme

Introduction

Lamport invented an algorithm in 1979 which allowed one to create one-time-signatures
using a cryptographically secure one-way function. It is the basis for the Winternitz
one-time-signature algorithm. Winternitz added the possibility to adjust the tradeoff
between time- and space-complexity.

Lamport one-time-signature scheme

Lamport suggested to create two secret keys for each bit of a message which will
be signed. One for each value the bit can take. To derive the verification key,
each secret key is hashed once. Now you have a secret key and a verification key,
which consists of \(m\) 2-tuples of values, where \(m\) is the number
of bits of the message. The verification key is published.
The signature consists of \(m\) values. For each bit of the message you release a secret key from
the corresponding secret keys, depending on which value the bit has. All those secret
keys form the signature for the message. The verifier hashes each of your secret keys
once and compares it to one verification key for this position, depending on the value
of the bit. The signature is valid, if and only if all derived verification keys match with
your published verification key at the correct position of the 2-tuple, which is determined by the value
of the bit. This algorithm is quite fast
(comparing it to existing PQC-algorithms), but the signature sizes are huge.

Winternitz extension

Winternitz extended lamports algorithm by offering the possiblity to decide
how many bits will be signed together. The amount of numbers those bits can
represent is called the Winternitz parameter (\(w = 2^{bits}\)). This method offers the huge
advantage that the user of this algorithm can choose the time and space tradeoff
(whether speed or storage capacity is more relevant). A fingerprint of the message which
will be signed is split into groups of \(ceil(log_2(w))\) bits. Each of these groups gets one secret key.
Each verification key is derived by hashing the secret key for each group \(2^{w-1}\) times. All verification
keys will be published and represent one unified verification key. When signing a message, the
fingerprint of the message is split into groups of \(ceil(log2(w))\) bits. To create the signature, the
private key for each bit group is hashed \(bitgroup_value\) times, where \(bitgroup_value\) is the value
of the bitgroup. Additionally a (inverse sum) checksum is appended, which denies man-in-the-middle
attacks. The checksum is calculated from the signature, split into bit groups of \(ceil(log2(w))\) bits, and
signed. To verify the signature, the fingerprint of the message is first split into bit groups of \(ceil(log2(w)\)
bits each. The basic idea is to take the signature of each bit group, calculate the verification key
from it and finally compare it to the published verification key. Since the signature was hashed
\(bitgroup_value\) times, all you have to do to calculate the verification key from the signature
is to hash the signature \(2^{w-1} - bitgroup_value - 1\) times. Besides verifing the message, the verifier
must also calculate the checksum and verify it.

Setup

Requires: Python >= 3.4

Install package: pip install winternitz

Install test tools: pip install winternitz[TEST]

Install linter (for tox tests): pip install winternitz[LINT]

Install documentation tools: pip install winternitz[DOCS]

Install everything: pip install winternitz[ALL]

Test

Without tox (no linter checks): python setup.py test

With tox: python -m tox

Generate documentation

python setup.py docs

Usage

The package winternitz contains a module called signatures.
Within this package you can find the classes WOTS and WOTSPLUS.
Those classes can be used out of the box to sign or verify
messages

WOTS

import winternitz.signatures
Create signature and verify it with the same object
wots = winternitz.signatures.WOTS()
message = "My message in bytes format".encode("utf-8")
sig = wots.sign(message)
success = wots.verify(message=message, signature=sig["signature"])
print("Verification success: " + str(success))
Output: Verification success: True

If you don’t specify any values in the constructor of WOTS, it will use
the winternitz parameter 16 and the hash function sha512 as default parameters.
The private key will be generated from entropy. After you received the public key,
either through wots.pubkey or inside the dict that is returned by the
wots.sign(message) function call, you publish it. Verify that it was not modified.
In the best case a man-in-the-middle attack to modify your public key is impossible
by the design of the application. The last step is to publish your message and every
information in the dict that is returned by wots.sign(message), except the public
key (since it was already published). Publishing the fingerprint is optional, since it
is not essential for the signature verification. The signature dict contains the following
values:

{
 "w": winternitz parameter (Type: int),
 "fingerprint": message hash (Type: bytes),
 "hashalgo": hash algorithm (Type: str),
 "digestsize": hash byte count (Type: int),
 "pubkey": public key (Type: List[bytes]),
 "signature": signature (Type: List[bytes])
}

With that data, another person can verify the authenticity of your message:

Another person or machine wants to verify your signature:
get required hash function by comparing the name
published with local implementaitons
if sig["hashalgo"] == "openssl_sha512":
 hashfunc = winternitz.signatures.openssl_sha512
elif sig["hashalgo"] == "openssl_sha256":
 hashfunc = winternitz.signautres.openssl_sha256
else:
 raise NotImplementedError("Hash function not implemented")

wots_other = winternitz.signatures.WOTS(w=sig["w"], hashfunction=hashfunc,
 digestsize=sig["digestsize"], pubkey=sig["pubkey"])
success = wots_other.verify(message=message, signature=sig["signature"])
print("Verification success: " + str(success))
Output: Verification success: True

WOTSPLUS

import winternitz.signatures
wotsplus = winternitz.signatures.WOTSPLUS()
message = "My message in bytes format".encode("utf-8")
sig = wotsplus.sign(message)
success = wotsplus.verify(message=message, signature=sig["signature"])
print("Verification success: " + str(success))
Output: Verification success: True

If you don’t specify any values in the constructor of WOTSPLUS, it will use the winternitz parameter
16 and the hash function defaults to sha256. It further requires a pseudo random function, which defaults
to HMAC-sha256, as well as a seed which is also generated from entropy. For further
informations about functions and their parameters, visit the module reference in
this documentation. Since WOTS+ uses a pseudo random function and a seed to derive signatures and public
keys, they have to be published as well. In addition to the signature of WOTS, the returned dict contains
the following values:

{
 # ...
 "prf": pseudo random function (Type: str),
 "seed": Seed used in prf (Type: bytes)
}

Those arguments have to be specified in the constructor of WOTSPLUS in addition to those parameters
specified in WOTS.

Misc

The WOTS classes come with some features that will be explained in the following sections.

Fully configurable

The WOTS classes are fully parameterizable. You can specify anything that is specified
in the papers describing the algorithm, including the Winternitz parameter, the hash function,
the pseudo random function (WOTSPLUS), the seed (WOTSPLUS), the private key and the public key.
specifing both a private key and public key results in the public key beeing discarded.

On-demand generation of keys

If no private key or no public key is specified, they will be set to None. The same
goes for the seed in wots+. Only when they are required, they will be generated or
derived. This means that as long as you don’t execute repr(obj), str(obj), obj1 == obj2,
obj1 != obj2, obj.pubkey, obj.privkey, obj.sign(...) or obj.verify(...), where obj is a
WOTS object, the keys will stay None.

Code representation of WOTS objects

You can call repr(obj), where obj is a WOTS object, to get a line of code which contains
all information to initialize another object so that it is equal to obj. Executing obj2 = eval(repr(obj))
executes that code which is returned by repr(obj) and ultimately stores a copy of it in obj2.

Human readable string representation

You can call str(obj) to get a string which contains a human readable representation of that object.

Comparison of objects

You can compare two objects from this class obj1 == obj2 and obj1 != obj2

Optimizations

The code was carefully written to reduce execution times. It surely is not perfect and can still be optimized,
further time-critical sections could be coded as C extensions, but nevertheless in the current state it should
offer quite an efficient implementation. It defines __slots__ to reduce execution times and storage requirements
within the class. Implementation of parallelization is planned, but it is only usefull when using huge winternitz
parameters, since python can only execute code in parallel if you spawn a new process and the overhead of forking
a new python interpreter is not negliable.

winternitz

	winternitz package
	Submodules

	winternitz.signatures module

	Module contents

winternitz package

Submodules

winternitz.signatures module

	
class winternitz.signatures.AbstractOTS

	Bases: object [https://docs.python.org/3.7/library/functions.html#object]

OTS base class

Every class implementing OTS schemes in this package should implement the
functions defined in this base class

	
sign() → dict

	Sign a message

This function will create a valid signature for a message on success

	Parameters

	message – Encoded message to sign

	Returns

	A dictionary containing the fingerprint of the message, which was
created using the hash function that was specified during
initialization of this object, the signature and a public key
to verify the signature. Structure:

{
 "w": winternitz parameter (Type: int),
 "fingerprint": message hash (Type: bytes),
 "hashalgo": hash algorithm (Type: str),
 "digestsize": hash byte count (Type: int),
 "pubkey": public key (Type: List[bytes]),
 "signature": signature (Type: List[bytes])
}

	
verify(signature: List[bytes]) → bool

	Verify a message

Verify whether a signature is valid for a message

	Parameters

	
	message – Encoded message to verify

	signature – Signature that will be used to verify the message

	Returns

	Whether the verification succeded

	
class winternitz.signatures.WOTS(w: int = 16, hashfunction: Callable = <function openssl_sha512>, digestsize: int = 512, privkey: Optional[List[bytes]] = None, pubkey: Optional[List[bytes]] = None)

	Bases: winternitz.signatures.AbstractOTS

Winternitz One-Time-Signature

Fully configurable class in regards to Winternitz paramter, hash function,
private key and public key

	
__init__(w: int = 16, hashfunction: Callable = <function openssl_sha512>, digestsize: int = 512, privkey: Optional[List[bytes]] = None, pubkey: Optional[List[bytes]] = None) → None

	Initialize WOTS object

Define the parameters required to sign and verify a message

	Parameters

	
	w – The Winternitz parameter. A higher value reduces
the space complexity, but increases the time
complexity. It must be greater than 1 but less or
equal than \(2^{digestsize}\). To get the best
space to time complexity ratio, choose a value that
is a power of two.

	hashfunction – The hashfunction which will be used to derive
signatures and public keys. Specify a function
which takes bytes as an argument and returns
bytes that represent the hash.

	digestsize – The number of bits that will be emitted by the
specified hash function.

	privkey – The private key to be used for signing operations.
Leave None if it should be generated. In this case
it will be generated when it is required.

	pubkey – The public key to be used for verifying signatures.
Do not specify it if a private key was specified
or if it should be derived. It will be derived
when it is required.

	
digestsize

	Digest size getter

Get the digest size of the hash function

	Returns

	Digest size of the hash function

	
hashfunction

	Hash function getter

Get a reference to the current hash function

	Returns

	Reference to hash function

	
privkey

	Private key getter

Get a copy of the private key

	Returns

	Copy of the private key

	
pubkey

	Public key getter

Get a copy of the public key

	Returns

	Copy of the public key

	
sign(message: bytes) → dict

	Sign a message

This function will create a valid signature for a message on success

	Parameters

	message – Encoded message to sign

	Returns

	A dictionary containing the fingerprint of the message, which was
created using the hash function that was specified during
initialization of this object, the signature and a public key
to verify the signature. Structure:

{
 "w": winternitz parameter (Type: int),
 "fingerprint": message hash (Type: bytes),
 "hashalgo": hash algorithm (Type: str),
 "digestsize": hash byte count (Type: int),
 "pubkey": public key (Type: List[bytes]),
 "signature": signature (Type: List[bytes])
}

	
slots = ['__weakref__', '__w', '__hashfunction', '__digestsize', '__privkey', '__pubkey', '__msg_key_count', '__cs_key_count', '__key_count']

	

	
verify(message: bytes, signature: List[bytes]) → bool

	Verify a message

Verify whether a signature is valid for a message

	Parameters

	
	message – Encoded message to verify

	signature – Signature that will be used to verify the message

	Returns

	Whether the verification succeded

	
w

	Winternitz parameter getter

Get the Winternitz parameter

	Returns

	Winternitz parameter

	
class winternitz.signatures.WOTSPLUS(w: int = 16, hashfunction: Callable = <function openssl_sha256>, prf: Callable = <function hmac_openssl_sha256>, digestsize: int = 256, seed: Optional[bytes] = None, privkey: Optional[List[bytes]] = None, pubkey: Optional[List[bytes]] = None)

	Bases: winternitz.signatures.WOTS

Winternitz One-Time-Signature Plus

Fully configurable class in regards to Winternitz paramter, hash function,
pseudo random function, seed, private key and public key

	
__init__(w: int = 16, hashfunction: Callable = <function openssl_sha256>, prf: Callable = <function hmac_openssl_sha256>, digestsize: int = 256, seed: Optional[bytes] = None, privkey: Optional[List[bytes]] = None, pubkey: Optional[List[bytes]] = None)

	Initialize WOTS object

Define under which circumstances a message should be signed or verified

	Parameters

	
	w – The Winternitz parameter. A higher value reduces
the space complexity, but increases the time
complexity. It must be greater than 1 but less than
:math: 2^{digestsize}. To get the best space to
time complexity ratio, choose a value that is a
power of two.

	hashfunction – The hashfunction which will be used to derive
signatures and public keys. Specify a function
which takes bytes as an argument and returns
bytes that represent the hash.

	digestsize – The number of bits that will be emitted by the
specified hash function.

	privkey – The private key to be used for signing operations.
Leave None if it should be generated. In this case
it will be generated when it is required.

	pubkey – The public key to be used for verifying signatures.
Do not specify it if a private key was specified
or if it should be derived. It will be derived
when it is required.

	seed – Seed which is used in the pseudo random function to
generate bitmasks.

	prf – Pseudo random function which is used to generate
the bitmasks.

	
prf

	Pseudo random function getter

Get the pseudo random function. It is used to generate the bitmasks.

	Returns

	Reference to the pseudo random function

	
seed

	Seed getter

Get the seed which is used in the pseudo random function to generate
the bitmasks.

	Returns

	Seed for pseudo random function

	
sign(message: bytes) → dict

	Sign a message

This function will create a valid signature for a message on success

	Parameters

	message – Encoded message to sign

	Returns

	A dictionary containing the fingerprint of the message, which was
created using the hash function that was specified during
initialization of this object, the signature and a public key
to verify the signature. Structure:

{
 "w": winternitz parameter (Type: int),
 "fingerprint": message hash (Type: bytes),
 "hashalgo": hash algorithm (Type: str),
 "digestsize": hash byte count (Type: int),
 "pubkey": public key (Type: List[bytes]),
 "prf": pseudo random function (Type: str),
 "seed": Seed used in prf (Type: bytes),
 "signature": signature (Type: List[bytes])
}

	
slots = ['__weakref__', '__seed', '__prf']

	

	
verify(message: bytes, signature: List[bytes]) → bool

	Verify a message

Verify whether a signature is valid for a message

	Parameters

	
	message – Encoded message to verify

	signature – Signature that will be used to verify the message

	Returns

	Whether the verification succeded

	
winternitz.signatures.hmac_openssl_sha256(message: bytes, key: bytes) → bytes

	Peudo random function for key and bitmask generation

This functions wraps a pseudo random function in a way that it takes a
byte-sequence as an argument and returns a value which can be used for
further generation of keys.

	Parameters

	
	message – Byte-sequence to be hashed

	key – key to be used

	Returns

	HMAC-sha256 hash

	
winternitz.signatures.openssl_sha256(message: bytes) → bytes

	Hash function for signature and public key generation

This functions wraps a hashfunction in a way that it takes a byte-sequence
as an argument and returns the hash of that byte-sequence

	Parameters

	message – Byte-sequence to be hashed

	Returns

	Sha256 hash

	
winternitz.signatures.openssl_sha512(message: bytes) → bytes

	Hash function for signature and public key generation

This functions wraps a hashfunction in a way that it takes a byte-sequence
as an argument and returns the hash of that byte-sequence

	Parameters

	message – Byte-sequence to be hashed

	Returns

	Sha512 hash

Module contents

Contribution

This is an open-source project which was created to learn and to
have fast and easy access to winternitz signature schemes as a python
developer. This project can be optimized and extended, but
alone this is quite a difficult task. If you want to contribute,
feel free to create an issue or a pull request. If you plan to put
more than a couple of hours into extending this package, contact me please before
you begin to work on it harald.heckmann93@web.de. In case of implementing
new signature schemes, make sure that your OTS class does inherit from
winternitz.signatures.AbstractOTS.

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 winternitz	

 	
 	
 winternitz.signatures	

Index

 _
 | A
 | D
 | H
 | O
 | P
 | S
 | V
 | W

_

 	
 	__init__() (winternitz.signatures.WOTS method)

 	(winternitz.signatures.WOTSPLUS method)

A

 	
 	AbstractOTS (class in winternitz.signatures)

D

 	
 	digestsize (winternitz.signatures.WOTS attribute)

H

 	
 	hashfunction (winternitz.signatures.WOTS attribute)

 	
 	hmac_openssl_sha256() (in module winternitz.signatures)

O

 	
 	openssl_sha256() (in module winternitz.signatures)

 	
 	openssl_sha512() (in module winternitz.signatures)

P

 	
 	prf (winternitz.signatures.WOTSPLUS attribute)

 	
 	privkey (winternitz.signatures.WOTS attribute)

 	pubkey (winternitz.signatures.WOTS attribute)

S

 	
 	seed (winternitz.signatures.WOTSPLUS attribute)

 	sign() (winternitz.signatures.AbstractOTS method)

 	(winternitz.signatures.WOTS method)

 	(winternitz.signatures.WOTSPLUS method)

 	
 	slots (winternitz.signatures.WOTS attribute)

 	(winternitz.signatures.WOTSPLUS attribute)

V

 	
 	verify() (winternitz.signatures.AbstractOTS method)

 	(winternitz.signatures.WOTS method)

 	(winternitz.signatures.WOTSPLUS method)

W

 	
 	w (winternitz.signatures.WOTS attribute)

 	winternitz (module)

 	
 	winternitz.signatures (module)

 	WOTS (class in winternitz.signatures)

 	WOTSPLUS (class in winternitz.signatures)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Winternitz

 		
 License

 		
 Authors

 		
 Changelog

 		
 Pre Version 1.0

 		
 Version 1.0

 		
 Introduction

 		
 Lamport one-time-signature scheme

 		
 Winternitz extension

 		
 Setup

 		
 Test

 		
 Generate documentation

 		
 Usage

 		
 WOTS

 		
 WOTSPLUS

 		
 Misc

 		
 Fully configurable

 		
 On-demand generation of keys

 		
 Code representation of WOTS objects

 		
 Human readable string representation

 		
 Comparison of objects

 		
 Optimizations

 		
 Module Reference

 		
 winternitz package

 		
 Submodules

 		
 winternitz.signatures module

 		
 Module contents

 		
 Contribution

_static/up.png

_static/up-pressed.png

