
winss
Release dev

Dec 13, 2017

Fundamentals

1 run 3

2 finish 5

3 supervise 7

4 down 9

5 timeout-finish 11

6 env 13

7 log 15

8 Components 17
8.1 winss-supervise.exe . 17
8.2 winss-svscan.exe . 18
8.3 winss-log.exe . 19
8.4 winss-svc.exe . 21
8.5 winss-svok.exe . 22
8.6 winss-svstat.exe . 22
8.7 winss-svwait.exe . 23
8.8 winss-svscanctl.exe . 24

9 Windows Supervision Suite 27
9.1 About . 27
9.2 Definitions . 27
9.3 Components . 27
9.4 Library . 28

i

ii

winss, Release dev

A service directory may contain the following:

Fundamentals 1

winss, Release dev

2 Fundamentals

CHAPTER 1

run

A file run which contains the executable and the arguments to run the service. It is read and the process described in
the contents are started every time the service must be started.

Note:

• The startup location for the executable will be the service directory itself.

• Environment variable substitution will be performed on the process described by run before executing. Addi-
tional environment variables can be created as mentioned below.

3

winss, Release dev

4 Chapter 1. run

CHAPTER 2

finish

An optional finish file which will run after the run process has finished. By default, the finish process must do its work
and exit in less than 5 seconds; if it takes more than that, it is killed. The maximum duration of a finish execution can
be configured via the timeout-finish file mentioned below.

Note: Similarly with run, environment variables will be substituted with the addition of
SUPERVISE_RUN_EXIT_CODE which has the exit code of the run process. Additional environment vari-
ables mentioned below will also be available to the finish process.

5

winss, Release dev

6 Chapter 2. finish

CHAPTER 3

supervise

A directory named supervise, which is automatically created by winss-supervise.exe to store its information. This
directory must be writable.

7

winss, Release dev

8 Chapter 3. supervise

CHAPTER 4

down

An optional, empty file down, which if exists will make the default state down and not up such that when winss-
supervise.exe starts then the run process will not be started until signaled using winss-svc.exe -u.

9

winss, Release dev

10 Chapter 4. down

CHAPTER 5

timeout-finish

An optional file timeout-finish which contains an unsigned integer that is the maximum number of milliseconds after
which the finish process can execute for. It will be terminated after this period has expired. A value of 0 allows the
finish process to run forever.

11

winss, Release dev

12 Chapter 5. timeout-finish

CHAPTER 6

env

An optional directory named env which contains files that represent the environment variable names and their contents
are the values of the environment variables. For example a file named env/USER with the contents foo would be
USER=foo when running a process. Like the contents of run and finish, the values can be substituted with current
environment variables. Using this you can append to the PATH rather than overwriting it.

Multiple env dirs are supported if you make env a file and put the paths to each env dir into the file separated by a new
line.

13

winss, Release dev

14 Chapter 6. env

CHAPTER 7

log

An optional service directory named log, which if exists and winss-supervise.exe is started by winss-svscan.exe, then
the winss-svscan.exe process will start an additional winss-supervise.exe on the log service directory with the standard
input piped from the standard output of the former winss-supervise.exe process. For example if the service foo has
a log folder then both foo and foo/log will be supervised and the output of foo will be sent to the input of foo/log.
Typically winss-log.exe can be used to log although not necessarily.

Warning: There may be additional files/directories which will be used by winss-supervise.exe in the future. The
only file/directory which is guaranteed never to be used by winss-supervise.exe is data. It is therefore recom-
mended that any specific application data in that file/directory.

15

winss, Release dev

16 Chapter 7. log

CHAPTER 8

Components

Important: Some components like winss-svscan.exe require the PATH environment to be set correctly. To run these
commands please append the install directory to the PATH.

8.1 winss-supervise.exe

winss-supervise.exe monitors a service, making sure it stays alive, sending notifications to registered processes when
it dies, and providing an interface to control its state.

Usage: winss-supervise.exe [options] servicedir

Options:
--help Print usage and exit.
--version Print the current version of winss and exit.
-v[<level>], --verbose[=<level>]

Sets the verbose level

• winss-supervise.exe changes directory to servicedir service directory.

• It exits 100 if another winss-supervise.exe process is already monitoring this service.

• If the default state is up and not down then winss-supervise.exe starts the run process.

• If the env dir exists then a new environment block will be constructed and the run process will be started with
the new environment block.

• If the run process fails to start then it will wait 10 seconds before trying to start again. It does not execute finish
on failure to execute run.

• When run dies, winss-supervise.exe will start the finish process if it exists, with the exit code of run. The
following environment variables will be set:

17

winss, Release dev

SUPERVISE_RUN_EXIT_CODE
The exit code of the run process will be set for the finish process.

• By default, finish must exit in less than 5-seconds and will be terminated if still running. This timeout can be
customized using the timeout-finish file.

• When finish dies (or is killed), winss-supervise.exe will wait at least 1-second before starting run again to avoid
busy-looping if run exits too quickly.

• If finish exits with 125, then winss-supervise.exe will not restart the run process. This can be used to signify
permanent failure to start the service or you want to control the service coming up manually.

Note: The run process will be sent a CTRL-BREAK signal when it is asked to exit. By default the CTRL-BREAK
will exit the program but it can be handled and used to exit the program cleanly.

See also:

winss-svc.exe Can be used to send commands to the winss-supervise.exe process; mostly to change the service state.

winss-svok.exe Can be used to check whether a winss-supervise.exe is successfully running.

winss-svstat.exe Can be used to check the status of a service.

8.2 winss-svscan.exe

winss-svscan.exe starts and monitors a collection of winss-supervise.exe processes in a scan directory, each of these
processes monitoring a single service. It is designed to be either the root or a branch of a supervision tree.

Usage: winss-svscan-g.exe [options] [scandir]

Options:
--help Print usage and exit.
--version Print the current version of winss and exit.
-v[<level>], --verbose[=<level>]

Sets the verbose level.
-t<rescan>, --timeout=<rescan>

Sets the rescan timeout.
-s, --signals

Divert signals.

• If given a scandir is specified then that is used. Otherwise then the current directory is used.

• It exits 100 if another winss-svscan.exe process is already monitoring this scan directory.

• If the ./.winss-svscan control directory does not exist, winss-svscan.exe creates it. However, it is recommended
to already have a .winss-svscan subdirectory in your scan directory directory, because winss-svscan.exe may try
to launch .winss-svscan/finish at some point.

• If the env dir exists within ./.winss-svscan then the current environment will be applied to the scan process.

• winss-svscan.exe performs an initial scan of its scan directory.

• winss-svscan.exe then occasionally runs scans based on the timeout specified or asked to do so by winss-
svscanctl.exe.

• winss-svscan.exe runs until it is told to stop via winss-svscanctl.exe, or a signal. Then it starts the .winss-
svscan/finish program.

18 Chapter 8. Components

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682541(v=vs.85).aspx

winss, Release dev

8.2.1 Options

-s, –signals By default, winss-svscan.exe will handle any termination signals that it receives and attempt
to propagate these and close. Using divert signals it will instead launch the process defined in
.winss-svscan/SIGTERM.

winss-svscan.exe will not exit its loop on its own when it receives a termination signal and the -s
option has been given. To make it exit its loop, invoke a winss-svscanctl.exe command from the
signal handling process. For instance, a .winss-svscan/SIGTERM file could point to a Powershell
script like the following:

cleanup here
& winss-svscanctl.exe -q .

If an action cannot be taken (the relevant file doesn’t exist, or cannot run, or any kind of error
happens), winss-svscan.exe prints a warning message but does nothing else with the signal.

-t<rescan>, –timeout=<rescan> Perform a scan every rescan milliseconds. If rescan is 0 (the de-
fault), automatic scans are never performed after the first one and winss-svscan.exe will only detect
new services when told to via a winss-svscanctl.exe -a command. It is strongly discouraged to set
rescan to a positive value under 500.

8.2.2 Scan

Every rescan milliseconds, or upon receipt of a winss-svscanctl.exe -a command, winss-svscan.exe runs a scanner
routine.

The scanner scans the current directory for subdirectories (or symbolic links to directories), which must be service
directories. It skips names starting with dots.

For every new subdirectory dir it finds, the scanner spawns a winss-supervise.exe process on it. If dir/log exists,
it spawns a winss-supervise.exe process on both dir and dir/log, and creates a pipe from the service’s stdout to the
logger’s stdin. This is starting the service, with or without a corresponding logger. Every service the scanner finds is
flagged as “active”.

The scanner remembers the services it found. If a service has been started in an earlier scan, but the current scan
can’t find the corresponding directory, the service is then flagged as inactive. No command is sent to stop inactive
winss-supervise.exe processes (unless the administrator uses winss-svscanctl.exe -n), but inactive winss-supervise.exe
processes will not be restarted if they die.

Note: winss-supervise.exe is used by winss-svscan.exe and must be in the PATH.

See also:

winss-svscanctl.exe Can be used to send commands to the winss-svscan.exe process; mostly to signal a rescan.

8.3 winss-log.exe

winss-log.exe is a reliable logging program with automated log rotation.

Usage: winss-log.exe [options] script

Options:
--help Print usage and exit.

8.3. winss-log.exe 19

winss, Release dev

--version Print the current version of winss and exit.
-v[<level>], --verbose[=<level>]

Sets the verbose level.

winss-log.exe reads and compiles logging script to an internal form. Then it reads its standard input, line by line, and
performs actions on it, following the script it is given. It does its best to ensure there is never any log loss. It exits
cleanly when stdin closes.

Note: The current logging script is limited to a single set of settings which can rotate files which exceed size s, keep
n backups and output to a single logdir.

8.3.1 Logdirs

A logdir (logging directory) is a place where logs are stored. Currently winss-log.exe can only be configured to output
to a single directory.

A logdir may contain the following files:

• current: the file where the current log stream is appended to.

• @timestamp.u: old log files which have been rotated.

Rotation

When the current file gets too big then a rotation occurs. The archived log file will be in the form @timestamp.u
where timestamp is the number of seconds since the epoch. If there are too many archived log files in the logdir, the
older ones are then removed. The logging stream will continue to log to a brand new current file.

8.3.2 Script

When starting up, winss-log.exe reads its arguments one by one; this argument sequence, or directive sequence, forms
a logging script which tells winss-log.exe what to log, where, and how.

Every directive can be a control directive or an action directive. A valid logging script always contains at least one
action directive; every action directive can be preceded by zero or more control directives. winss-log.exe will exit 100
if the script is invalid.

Control

These directives tune winss-log.exe‘s behavior for the next actions.

• n number: next logdirs will contain up to number archived log files. If there are more, the oldest archived log
files will be suppressed, only the latest number will be kept. By default, number is 10.

• s filesize: next rotations will occur when current log files approach filesize bytes. By default, filesize is 99999; it
cannot be set lower than 4096 or higher than 16777215.

• T: the selected line will be prepended with a ISO 8601 timestamp.

20 Chapter 8. Components

winss, Release dev

Action

These directives determine what winss-log.exe actually does with the logs.

• dir (must start with ‘.’ or ‘[A-Z]:’): logdir. winss-log.exe will log the line into the log dir. winss-log.exe must
have the right to write to the log dir.

The drive letter needs to be different from a control directive otherwise it will not be interpreted as a
log dir. Unfortunately UNC paths are not supported at this time but this will solve this issue.

Examples

winss-log.exe n20 s1000000 .

8.4 winss-svc.exe

winss-svc.exe sends commands to a running winss-supervise.exe process. In other words, it’s used to control a super-
vised process.

Usage: winss-svc.exe [options] servicedir

Options:
--help Print usage and exit.
--version Print the current version of winss and exit.
-v[<level>], --verbose[=<level>]

Sets the verbose level.
-k, --kill

Terminate the process.
-t, --term

Send a CTRL+BREAK to the process
-o, --once

Equivalent to '-uO'.
-d, --down

Stop the supervised process.
-u, --up

Starts the supervised process.
-x, --exit

Stop the process and supervisor.
-O, --onceatmost

Only run supervised process once.
-T<ms>, --timeout=<ms>

Wait timeout in milliseconds if -w is specified.
-w<dDur>, --wait=<dDur>

Wait on (d)own/finishe(D)/(u)p/(r)estart.

winss-svc.exe sends the given series of commands in the order given to the winss-supervise.exe process monitoring the
service directory, then exits 0. It exists 111 if it cannot send a command, or 100 if no winss-supervise.exe process is
running on service directory

8.4.1 Options

-k, –kill Instruct the supervisor to kill the supervised process.

-t, –term Instruct the supervisor to send a Control-Break to the supervised process.

8.4. winss-svc.exe 21

winss, Release dev

-o, –once Equivalent to “-uO”.

-d, –down If the supervised process is up, send it a Control-Break. Do not restart it.

-u, –up If the supervised process is down, start it. Automatically restart it when it dies.

-x, –exit When the service is asked to be down and the supervised process dies, winss-supervise.exe will
exit too. This command should normally never be used on a working system.

-O, –onceatmost Do not restart the supervised process when it dies. If it is down when the command is
received, do not even start it.

-t<ms>, –timeout=<ms> If the -wstate option has been given, -T specifies a timeout (in milliseconds)
after which winss-svc.exe will exit 1 with an error message if the service still hasn’t reached the
desired state. By default, the timeout is 0, which means that winss-svc.exe will block indefinitely.

-wd, –wait=d winss-svc.exe will not exit until the service is down, i.e. until the run process has died.

-wD, –wait=D winss-svc.exe will not exit until the service is down and ready to be brought up, i.e. a
possible finish script has exited.

-wu, –wait=u winss-svc.exe will not exit until the service is up, i.e. there is a process running the run
executable.

-wr, –wait=r winss-svc.exe will not exit until the service has been started or restarted.

See also:

winss-svwait.exe Can be used to wait on the winss-supervise.exe process without sending any commands.

8.5 winss-svok.exe

winss-svok.exe checks whether a service directory is currently supervised.

Usage: winss-svok.exe [options] servicedir

Options:
--help Print usage and exit.
--version Print the current version of winss and exit.
-v[<level>], --verbose[=<level>]

Sets the verbose level.

winss-svok.exe exits 0 if there is a winss-supervise.exe process monitoring the servicedir service directory, or 1 if there
is not.

8.6 winss-svstat.exe

winss-svstat.exe prints a short, human-readable summary of the state of a process monitored by winss-supervise.exe.

Usage: winss-svstat.exe [options] servicedir

Options:
--help Print usage and exit.
--version Print the current version of winss and exit.
-v[<level>], --verbose[=<level>]

Sets the verbose level.

22 Chapter 8. Components

winss, Release dev

winss-svstat.exe gives information about the process being monitored at the servicedir service directory, then exits 0.
The information includes the following:

• whether the process is up or down, and if it’s up, the number of seconds that it has been up.

• the process’ pid, if it is up, or its last exit code or terminating signal, if it is down.

• what its default state is, if it is different from its current state.

• the number of seconds since it last changed states.

• whether the A service is ready and if it is, the number of seconds that it has been. A A service reported as down
and ready simply means that it is ready to be brought up. A service is down and not ready when it is in the
cleanup phase, i.e. the finish script is still being executed.

8.6.1 Exit Codes

• 0: success

• 1: winss-supervise.exe not running on servicedir service directory

• 100: wrong usage

• 111: system call failed

8.7 winss-svwait.exe

winss-svwait.exe blocks until a collection of supervised services goes up, or down.

winss-svwait.exe only waits for notifications; it never polls.

Usage: winss-svwait.exe [options] servicedir

Options:
--help Print usage and exit.
--version Print the current version of winss and exit.
-v[<level>], --verbose[=<level>]

Sets the verbose level.
-u, --up

Wait until the services are up.
-d, --down

Wait until the services are down.
-D, --finished

Wait until the services are really down.
-o, --or

Wait until one of the services comes up or down.
-a, --and

Wait until all of the services comes up or down.
-t<ms>, --timeout=<ms>

Wait timeout in milliseconds.

winss-svwait.exe monitors one or more service directories given as its arguments, waiting for a state (ready, up or
down) to happen. It exits 0 when the wanted condition becomes true.

8.7. winss-svwait.exe 23

winss, Release dev

8.7.1 Options

-u, –up winss-svwait.exe will wait until the services are up, as reported by winss-supervise.exe. This is
the default; it is not reliable, but it does not depend on specific support in the service programs.

-d, –down winss-svwait.exe will wait until the services are down.

-D, –finished winss-svwait.exe will wait until the services are down and the cleanup scripts in finish for
every servicedir have finished executing (or have timed out and been killed).

-o, –or winss-svwait.exe will wait until one of the given services comes up or down.

-a, –and winss-svwait.exe will wait until all of the given services comes up or down. This is the default.

-t<ms>, –timeout=<ms> If the requested events have not happened after timeout milliseconds, winss-
svwait.exe will print a message to stderr and exit 1. By default, timeout is 0, which means no time
limit.

Note:

• winss-svwait.exe should be given one or more service directories as arguments, not a scan directory. If you need
to wait for a whole scan directory, give all its contents as arguments to winss-svwait.exe.

• winss-svwait.exe will only work on service directories that are already active, i.e. have a winss-supervise.exe
process running on them. It will not work on a service directory where winss-supervise.exe has not been started
yet.

See also:

winss-svc.exe Can be used to send commands to the winss-supervise.exe process.

8.8 winss-svscanctl.exe

winss-svscanctl.exe sends commands to a running winss-svscan.exe process.

Usage: winss-svscanctl.exe [options] scandir

Options:
--help Print usage and exit.
--version Print the current version of winss and exit.
-v[<level>], --verbose[=<level>]

Sets the verbose level.
-a, --alarm

Perform a scan of scandir.
-b, --abort

Close svscan only.
-n, --nuke

Prune supervision tree.
-q, --quit

Stop supervised process and svscan.

winss-svscanctl.exe sends the given series of commands to the winss-svscan.exe process monitoring the scandir scan
directory, then exits 0. It exits 111 if it cannot send a command, or 100 if no winss-svscan.exe process is running on
scandir.

24 Chapter 8. Components

winss, Release dev

8.8.1 Options

-a, –alarm winss-svscan.exe will immediately perform a scan of scandir to check for services.

-b, –abort winss-svscan.exe will run into its finishing procedure. It will not kill any of the maintained
winss-supervise.exe processes.

-n, –nuke winss-svscan.exe will kill all the winss-supervise.exe processes it has launched but that did not
match a service directory last time scandir was scanned, i.e. it prunes the supervision tree so that
it matches exactly what was in scandir at the time of the last scan. A Control-Break is sent to
the winss-supervise.exe processes supervising services and also the winss-supervise.exe processes
supervising loggers.

8.8. winss-svscanctl.exe 25

winss, Release dev

26 Chapter 8. Components

CHAPTER 9

Windows Supervision Suite

9.1 About

winss is a Morgan Stanley port of s6. Details of how to get started on winss either from source or pre-build binaries is
available in the readme.

Email Contact the development team.

9.2 Definitions

Important:

Service In Windows a service typically involves developing for the Windows Service API which would be started
using Service Control Manager. Here a service means a long running console application.

Service Directory A service directory is a directory containing all the information related to a service and forms the
base of the components below.

See here for more information.

Scan Directory A scan directory is a directory containing a list of service directories, or symbolic links pointing to
service directories.

9.3 Components

• winss-supervise.exe: monitors a long-lived process/service.

• winss-svscan.exe: starts and monitors a collection of winss-supervise.exe processes.

• winss-log.exe: reliable logging program with automated log rotation.

27

http://skarnet.org/software/s6
https://github.com/Morgan-Stanley/winss/blob/master/README.md
mailto:treadmill-core@morganstanley.com

winss, Release dev

• winss-svc.exe: sends commands to a running winss-supervise.exe process.

• winss-svok.exe: checks whether a service directory is currently supervised

• winss-svstat.exe: prints a short, human-readable summary of the state of the process monitored by winss-
supervise.exe.

• winss-svwait.exe: blocks until a collection of winss-supervise.exe processes goes up, or down.

• winss-svscanctl.exe: sends commands to a running winss-svscan.exe process.

9.4 Library

Details of the winss lib can be found here.

28 Chapter 9. Windows Supervision Suite

lib/index.html

Index

E
environment variable

SUPERVISE_RUN_EXIT_CODE, 5, 17

S
Scan Directory, 27
Service, 27
Service Directory, 27
SUPERVISE_RUN_EXIT_CODE, 5

29

	run
	finish
	supervise
	down
	timeout-finish
	env
	log
	Components
	winss-supervise.exe
	winss-svscan.exe
	winss-log.exe
	winss-svc.exe
	winss-svok.exe
	winss-svstat.exe
	winss-svwait.exe
	winss-svscanctl.exe

	Windows Supervision Suite
	About
	Definitions
	Components
	Library

