Performance Monitoring using Pecos

Contents

1

2

3

10

11

12

13

14

15

Overview

Installation

Simple example

Time series data
Translation dictionary
Time filter

Quality control tests
Performance metrics
Composite signals
Configuration file
Task scheduler
Results

Custom applications
Copyright and license

References

Bibliography

Release 0.1

Apr 19, 2016

10
10
12
12
13

13

1 Overview

Pecos is an open-source python package designed to monitor performance of time series data, subject to a series of
quality control tests. The software includes methods to run quality control tests defined by the user and generate
reports which include performance metrics, test results, and graphics. The software can be customized for specific
applications. Some high-level features include:

Pecos uses Pandas DataFrames [McKinney2013] for time series analysis. This dependency facilitates a wide
range of analysis options and date-time functionality.

Data columns can be easily reassigned to common names through the use of a translation dictionary. Translation
dictionaries also allow data columns to be grouped for analysis.

Time filters can be used to eliminate data at specific times from quality control tests (i.e. early evening and late
afternoon).

Application specific models can be incorporated into performance monitoring tests.
General and custom performance metrics can be saved to keep a running history of system health.

Analysis can be setup to run on an automated schedule (i.e. Pecos can be run each day to analyze data collected
on the previous day).

HTML formatted reports can be sent via email or hosted on a website.

2 Installation

Pecos requires Python 2.7 along with several python package dependencies. Information on installing and using
python can be found at https://www.python.org/. Python distributions, such as Python(x,y) and Anaconda, can also be
used to manage the Python interface. These distributions include the Python packages needed for Pecos.

To install Pecos using pip:

pip install pecos

To build Pecos from source using git:

git clone https://github.com/kaklise/pecos
cd pecos
python setup.py install

Python package dependencies include:

Pandas [McKinney2013]: analyze and store time series data, http://pandas.pydata.org/
Numpy [vanderWalt2011]: support large, multi-dimensional arrays and matrices, http://www.numpy.org/

Matplotlib [Hunter2007]: produce figures, http://matplotlib.org/

Optional python packages include:

pyyaml: store configuration options in human readable data format, http://pyyaml.org/

win32com: send email

All other dependencies are part of the Python Standard Library.

To use Pecos, import the package from within a python console:

import pecos

https://www.python.org/
http://pandas.pydata.org/
http://www.numpy.org/
http://matplotlib.org/
http://pyyaml.org/

3 Simple example

A simple example is included in the examples/simple directory. This example uses data from an excel file, simple.xlsx,
which contains 4 columns of data (A through D).

* A =elapsed time in days

* B = uniform random number between 0 and 1
e C=5sin(10*A)

* D=C+(B-0.5)2

The data includes missing timestamps, duplicate timestamps, non-monotonic timestamps, corrupt data, data out of
expected range, data that doesn’t change, and data that changes abruptly.

* Missing timestamp at 5:00

* Duplicate timestamp 17:00

* Non-monotonic timestamp 19:30

¢ Column A has the same value (0.5) from 12:00 until 14:30

* Column B is below the expected lower bound of 0 at 6:30 and above the expected upper bound of 1 at 15:30
* Column C has corrupt data (-999) between 7:30 and 9:30

¢ Column C does not follow the expected sine function from 13:00 until 16:15. The change is abrupt and gradually
corrected.

e Column D is missing data from 17:45 until 18:15

The script, simple_example.py (shown below), is used to run quality control analysis using Pecos. The script performs
the following steps:

* Define input for quality control tests, including

Expected frequency of the timestamp

Time filter to exclude data points early and late in the day

Corrupt data values

Upper and lower bounds for data range and data increments
— sine wave model to compute measurement error

¢ Load time series data from an excel file

* Run quality control tests

* Generate an HTML report, test results CSV file, and performance metrics CSV file

mwn

In this example, simple time series data is used to demonstrate basic functions

in pecos.

* Data is loaded from an excel file which contains four columns of values that
follow linear, random, and sine models.

* A translation dictionary is defined to map and group the raw data into
common names for analysis

* A time filter is established to screen out data between 3 AM and9 PM

* The data is loaded into a pecos PerformanceMonitoring class and a series of
quality control tests are run, including range tests and increment tests

* The results are printed to csv and html reports
mmn

import pecos

import pandas as pd

import matplotlib.pyplot as plt
import os

import numpy as np

Initialize logger
pecos.logger.initialize ()

Input

system_name = 'Simple'

data_file = 'simple.xlsx'

translation_dictonary = {
'Linear': ['A'],
'Random': ['B'],

'Wave': ['C','D']}
expected_frequency = 900
time_filter_min = 3%x3600
time_filter max = 21x3600
corrupt_values = [-999]
range_bounds = {

'Random': [0, 117,

'Wave': [-1, 11,

'Wave Absolute Error': [None, 0.25]}
increment_bounds = {

'Linear': [0.0001, None],

'Random': [0.0001, None],

'Wave': [0.0001, 0.51}

Define output files and directories
results_directory = 'Results'
if not os.path.exists(results_directory):
os.makedirs (results_directory)
results_subdirectory = os.path.join(results_directory, system_name + '_ 2015 01_01")
if not os.path.exists (results_subdirectory):
os.makedirs (results_subdirectory)

metrics_file = os.path.join(results_directory, system _name + ' _metrics.csv')
test_results_file = os.path.join(results_subdirectory, system_name + '_test_results.csv
report_file = os.path.join(results_subdirectory, system_name + '.html'")

Create an PerformanceMonitoring instance
pm = pecos.monitoring.PerformanceMonitoring /()

Populate the PerformanceMonitoring instance

df = pd.read_excel (data_file)

pm.add_dataframe (df, system_name)
pm.add_translation_dictonary(translation_dictonary, system_name)

Check timestamp
pm.check_timestamp (expected_frequency)

Generate time filter

clock_time = pm.get_clock_time ()

time_filter = (clock_time > time_filter_min) & (clock_time < time_filter_max)
pm.add_time_filter (time_filter)

Check missing
pm.check_missing ()

Check corrupt
pm.check_corrupt (corrupt_values)

Add composite signals

elapsed_time= pm.get_elapsed_time ()

wave_model = np.sin(10x (elapsed_time/86400))

wave_model.columns=["'Wave Model']

pm.add_signal ('Wave Model', wave_model)

wave_mode_abs_error = np.abs(np.subtract (pm.df[pm.trans['Wave']], wave_model))
wave_mode_abs_error.columns=['Wave Absolute Error C', 'Wave Absolute Error D']
pm.add_signal ('Wave Absolute Error', wave_mode_abs_error)

Check range
for key,value in range_bounds.items () :
pm.check_range (value, key)

Check increment
for key,value in increment_bounds.items () :
pm.check_increment (value, key)

Compute metrics
mask = pm.get_test_results_mask ()
QCI = pecos.metrics.qgci(mask, pm.tfilter)

Create a custom graphic

plt.figure(figsize = (7.0,3.5))

ax = plt.gcal()

df .plot (ax=ax, ylim=[-1.5,1.5])

plt.savefig(os.path. join(results_subdirectory, system_name+' custom_1.jpg"))

Write metrics, test results, and report files

pecos.lio.write_metrics (metrics_file, QCI)
pecos.io.write_test_results(test_results_file, pm.test_results)
pecos.io.write_monitoring_report (report_file, results_subdirectory, pm, QCI)

Results are saved in examples/simple/Results. Results include:
e HTML report, Simple_2015_01_01/Simple.html (shown below), includes summary tables and graphics

¢ Test results CSV file, Simple_2015_01_01/Simple_test_results.csv, includes information from the summary
tables

 Performance metric CSV file, Simple_metrics.csv, includes a quality control index based on the analysis.

4 Time series data

Pandas DataFrames store 2D data with labeled columns. Pecos uses Pandas DataFrames to store and analyze data
indexed by time. Pandas includes a wide range of time series analysis and date-time functionality. To import pandas:

’import pandas as pd

Pandas includes many built-in functions to read data from csv, excel, sql, etc. For example, data can be loaded from
an excel file using:

‘df = pd.read_excel ('data.xlsx")

The PerformanceMonitoring class is the base class used by Pecos to define performance monitoring analysis. To get
started, an instance of the PerformanceMonitoring class is created:

‘pm = pecos.monitoring.PerformanceMonitoring ()

The DataFrame can then be added to the PerformanceMonitoring object as follows:

‘pm.add_dataframe(df, system_name)

Multiple DataFrames can be added to the PerformanceMonitoring object. The ‘system_name’ is used to distinquish
DataFrames.

DataFrames are accessed using:

’pm.df

5 Translation dictionary

A translation dictionary maps database column names into common names. The translation dictionary can also be
used to group columns with similar properties into a single variable.

Each entry in a translation dictionary is a key:value pair where ‘key’ is the common name of the data and ‘value’ is
a list of original column names in the database. For example, {temp: [temp]l,temp2]} means that columns named
‘templ’ and ‘temp2’ in the database file are assigned to the common name ‘temp’ in Pecos. In the simple example,
the following translation dictionary is used to rename column ‘A’ to ‘Linear’, ‘B’ to ‘Random’, and group columns
‘C’ and ‘D’ to “Wave’:

trans = {
Linear: [A],
Random: [B],
Wave: [C,D]}

The translation dictionary can then be added to the PerformanceMonitoring object as follows:

pm.add_translation_dictonary(trans, system_name)

If no translation is desired (i.e. raw column names are used), a 1:1 map can be generated using the following code:

trans = dict(zip(df.columns, [[col] for col in df.columns]))
pm.add_translation_dictonary(trans, system_name)

As with DataFrames, multiple translation dictionaries can be added to the PerformanceMonitoring object, distin-
guished by the ‘system_name’.

Keys defined in the translation dictionary can be used in quality control tests, for example:

]pm.check_range ([-1,11, 'Wave')

Inside Pecos, the translation dictionary is used to index into the DataFrame, for example:

’pm.df[pm.trans['Wave'L

returns columns C and D from the DataFrame.

6 Time filter

A time filter is a Boolean time series that indicates if specific timestamps should be used in quality control tests. The
time filter can be defined using elapsed time, clock time, or other custom algorithms. Pecos includes methods to get
the elapsed and clock time of the DataFrame (in seconds).

The following example defines a time filter between 3 AM and 9 PM:

clock_time = pm.get_clock_time ()
time_filter = (clock_time > 3+x3600) & (clock_time < 21x3600)

The time filter can also be defined based on sun position, see pv_example.py in the examples/pv directory.

The time filter can then be added to the PerformanceMonitoring object as follows:

‘pm.add_time_filter(time_filter)

7 Quality control tests

Pecos includes several quality control tests. When a test fails, information is stored in a summary table. This informa-
tion is used to create the final report. For each test, the minimum number of consecutive failures can be specified for
reporting. Quality controls tests fall into five categories.

7.1 Timestamp test

The check_timestamp method can be used to check the time index for missing, duplicate, and non-monotonic indexes.
By using Pandas DataFrames, Pecos is able to take advantage of a wide range of timestamp strings, including UTC
offset. If a duplicate timestamp is found, Pecos keeps the first occurrence. If timestamps are not monotonic, the
timestamps are reordered. For this reason, the timestamp should be corrected before other quality control tests are run.
Input includes:

» Expected frequency of the time series in seconds
* Minimum number of consecutive failures for reporting (default = 1 timestamp)

For example:

pm.check_timestamp (60)

checks for missing, duplicate, and non-monotonic indexes assuming an expected frequency of 60 seconds.

7.2 Missing data test
The check_missing method can be used to check for missing values. Unlike missing timestamps, missing data only
impacts a subset of data columns. NaN is included as missing. Input includes:

¢ Data column (default = all columns)

* Minimum number of consecutive failures for reporting (default = 1 timestamp)

For example:

pm.check_missing('Wave', min_failures=5)

checks for missing data in the columns associated with the key ‘Wave’. Warnings are only reported if there are 5
consecutive failures.

7.3 Corrupt data test

The check_corrupt method can be used to check for corrupt values. Input includes:
e List of corrupt values
¢ Data column (default = all columns)
* Minimum number of consecutive failures for reporting (default = 1 timestamp)

For example:

pm.check_corrupt ([-999, 999])

checks for data with values -999 or 999 in the entire DataFrame.

7.4 Range test

The check_range method can be used to check that data is within an expected range. Range tests are very flexible. The
test can be also be used to compare modeled vs. measured values (i.e. absolute error or relative error) or relationships
between data columns (i.e. column A divided by column B). An upper bound, lower bound or both can be specified.
Additionally, the data can be smoothed using a rolling mean. Input includes:

» Upper and lower bound

¢ Data column (default = all columns)

* Rolling mean window (default = 1 timestamp, which indicates no rolling mean)
¢ Minimum number of consecutive failures for reporting (default = 1 timestamp)

For example:

pm.check_range ([None, 1], 'A', rolling_window=2)

checks for values greater than 1 in the columns associated with the key ‘A’, using a rolling average of 2 time steps.

7.5 Increment test

The check_increment method can be used to check that the difference between consecutive data values (or other
specified increment) is within an expected range. This method can be used to test if data is not changing or if the
data has an abrupt change. Like the check_range method, the user can specify if the data should be smoothed using a
rolling mean. Input includes:

» Upper and lower bound

¢ Data column (default = all columns)

¢ Increment used for difference calculation (default = 1 timestamp)

* Flag indicating if the absolute value is taken (default = True)

* Rolling mean window (default = 1 timestamp, which indicates no rolling mean)
¢ Minimum number of consecutive failures for reporting (default = 1 timestamp)

For example:

pm.check_increment ([None, 0.000001], min_failure=60)

checks if value increments are greater than 0.000001 for 60 consecutive time steps:

pm.check_increment ([-800, None], absolute_value = False)

checks if value increments decrease by more than -800 in a single time step.

8 Performance metrics

Pecos can be used to track performance of time series data over time. The quality control index (QCI) is a general
metric which indicates the percent of the data points that passed quality control tests. Duplicate and non-monotonic
indexes are not counted as failed tests (duplicates are removed and non-monotonic indexes are reordered). QCI is
defined as:

_ ZdeD ZtET Xat
|DT|

QCI

where D is the set of data columns and 7' is the set of timestamps in the analysis. X, is a data point for column d
time t° that passed all quality control test. | DT| is the number of data points in the analysis.

A value of 1 indicates that all data passed all tests. For example, if the data consists of 10 columns and 720 times that
are used in the analysis, then | DT'| = 7200. If 7000 data points pass all quality control tests, then the QCI is 0.972.

To compute QCI:

‘QCI = pecos.metrics.qgci (pm)

Additional metrics can be added to the QCI dataframe and saved to a file:

‘pecos.io.write_metrics(metrics_filename, QCI)

If ‘metrics_filename’ already exists, the metrics will be appended to the file.

9 Composite signals

Composite signals are used to generate new data columns based on existing data. Composite signals can be used to
add modeled data values or relationships between data columns. Data created from composite signals can be used in
the quality control tests.

The following example adds ‘Wave Model’ data to the PerformanceMonitor object:

elapsed_time= pm.get_elapsed_time ()
wave_model = np.sin(1l0x (elapsed_time/86400))
wave_model.columns=['Wave Model']
pm.add_signal ('Wave Model', wave_model)

10 Configuration file

A configuration file can be used to store information about data and quality control tests. The configuration file is not
used directly within Pecos, therefore there are no specific formatting requirements. Configuration files can be useful
when using the same python script to analyze several systems that have slight differences.

The simple example includes a configuration file that defines system specifications, translation dictionary, composite
signals, corrupt values, and bounds for range and increment tests.

Specifications:
Frequency: 900
Multiplier: 10

Translation:
Linear: [A]
Random: [B]
Wave: [C,D]

Composite Signals:

- Wave Model: "np.sin(* /86400)"

— Wave Absolute Error: "np.abs (np.subtract (, {Wave Model}))"
Time Filter: " (> 3%3600) & (< 21x3600)"
Corrupt Values: [-999]

Range Bounds:
Random: [0, 1]
Wave: [-1, 1]
Wave Absolute Error: [None, 0.2]

Increment Bounds:
Linear: [0.0001, None]
Random: [0.0001, None]
Wave: [0.0001, 0.5]

In the configuration file, composite signals and time filters can be defined using strings of python code. Numpy (and
other python modules if needed) can be used for computation. Strings of python code should be thoroughly tested
by the user. A list of key:value pairs can be used to specify the order of evaluation.

When using a string of python code, keywords in {} are expanded using the following rules in this order:
1. Keywords ELAPSED_TIME and CLOCK_TIME return time in seconds
2. Keywords that are a key in the translation dictionary return ‘pm.df[pm.trans[Keyword]]’
3. Keywords that are a key in a user specified dictionary of constants, specs, return ‘specs[Keyword]’.

The values in specs can be used to generate a time filter, define upper and lower bounds in quality control tests, define
system latitude and longitude, or other constants needed in composite equations, for example:

specs = {
'Frequency': 900,
'Multiplier': 10,
'Latitude': 35.054,
'Longitude': -106.539}

Strings are evaluated and added to the dataframe using the following code:

signal = pm.evaluate_string(raw_column_name, string, specs)
pm.add_signal (trans_column_name, signal)

If the string evaluation fails, the error message is printed in the final report.

The script, simple_example_using_config.py, in the examples/simple directory uses a configuration file and string
evaluation.

10

11 Task scheduler

To run Pecos on an automated schedule, create a task using your operating systems task scheduler. On Windows, open
the Control Panel and search for Schedule Tasks. The task can be set to run at a specified time and the action can be
set to run a batch file (.bat or .cmd file name extension), which calls a python driver script. For example, the following
batch file runs driver.py:

cd your_working_directory
C:\Python27\python.exe driver.py

12 Results

When a test fails, information is stored in:

‘pm.test_results

Test results includes the following information:
* System Name: System name associated with the data file
* Variable Name: Column name in the data file
* Start Date: Start time of the failure
* End Date: : End time of the failure
* Timesteps: The number of consecutive timesteps involved in the failure

e Error Flag: Error messages include:

Duplicate timestamp
— Nonmonotonic timestamp

Missing data (used for missing data and missing timestamp)

Corrupt data

Data > upper bound, value

Data < lower bound, value

Increment > upper bound, value

Increment < lower bound, value

Pecos can be used to generate an HTML report, test results CSV file, and a performance metrics CSV File.

12.1 Monitoring report

The monitoring report include the start and end time for analysis, custom graphics and performance metrics, a table
that includes test results, graphics associated with the test results (highlighting data points that failed a quality control
tests), notes on runtime errors and warnings, and (optionally) the configuration options used in the analysis.

e Custom Graphics: Custom graphics can be created for a specific applications. These graphics are included at
the top of the report. Any graphic with the name custom in the subdirectory are included in the custom graphics
section. By default, no custom graphics are generated.

* Performance Metrics: Performance metrics are displayed in a table.

11

* Test Results Test results contain information stored in pm.test_results Graphics follow that display the data
point(s) that caused the failure.

* Notes: Notes include Pecos runtime errors and warnings. Notes include:

— Empty/missing database

Formatting error in the translation dictionary

Insufficient data for a specific quality control test

Insufficient data or error when evaluating string

* Configuration Options: Optional. Configuration options used in the analysis.

The following method can be used to write a monitoring report:

‘pecos.io.write_monitoring_report()

12.2 Test results

The test results CSV file contains information stored in pm.test_results.

The following method can be used to write test results:

‘pecos.io.write_test_results()

12.3 Performance metrics

The performance metrics CSV file contains metrics. Values are appended each time an analysis is run.

The following method can be used to write metrics to a file:

‘pecos.io.write_metrics()

12.4 Dashboard

To compare performance of several systems, key graphics and metrics can be gathered in a dashboard view. For
example, the dashboard can contain multiple rows (one for each system) and multiple columns (one for each location).
The dashboard can be linked to specific monitoring reports for more detailed information.

For each row and column in the dashboard, the following information can be specified
 Text (i.e. general information about the system/location)
* Graphics (i.e. a list of custom graphics)
* Table (i.e. a Pandas DataFrame with performance metrics)
* Link (i.e. the path to monitoring report for detailed information)

The following method can be used to write a monitoring report:

pecos.io.write_dashboard()

Pecos includes a dashboard example, dashboard_example.py, in the examples/dashboard directory.

12

13 Custom applications

Pecos can be customized for specific applications. Python scripts can be added to initialize data and add application
specific models. Additional quality control tests can be added by inheriting from the PerformanceMonitoring class.

13.1 PV system monitoring

For PV systems, the translation dictionary can be used to group data according to the system architecture, which
can include multiple strings and modules. The time filter can be defined based on sun position and system location.
The data objects used in Pecos are compatible with pvlib, which can be used to model PV systems /[Stein2016]
(https://github.com/pvlib/pvlib-python). Pecos also includes a function to read Campbell Scientific ascii file format
and functions to compute pv performance metrics (i.e. performance ratio, clearness index).

Pecos includes a PV system example, pv_example.py, in the examples/pv directory. The example uses graphics
functions in pv_graphics.py.

13.2 Performance metrics

The performance metrics file, created by Pecos, can be used in additional analysis to track system health over time.

Pecos includes a performance metrics example (based on PV metrics), metrics_example.py, in the examples/metrics
directory.

14 Copyright and license

Copyright 2016 Sandia Corporation. Under the terms of Contract DE-AC04-94AL.85000 with Sandia Corporation,
the U.S. Government retains certain rights in this software.

This software is distributed under the Revised BSD License. Pecos also leverages a variety of third-party software
packages, which have separate licensing policies.

Revised BSD License

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

» Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

+ Neither the name of Sandia National Laboratories, nor the names of
its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS"™ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

13

https://github.com/pvlib/pvlib-python

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

15 References

References

[Hunter2007] John D. Hunter. Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering, 9,
90-95 (2007), DOI:10.1109/MCSE.2007.55

[McKinney2013] McKinney W. (2013) Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython

[Stein2016] J.S. Stein, W.F. Holmgren, J. Forbess, and C.W. Hansen, PVLIB: Open Source Photovoltaic Performance
Modeling Functions for Matlab and Python, in 43rd Photovoltaic Specialists Conference, 2016

[vanderWalt2011] Stefan van der Walt, S. Chris Colbert and Gael Varoquaux. The NumPy Array: A Struc-
ture for Efficient Numerical Computation, Computing in Science & Engineering, 13, 22-30 (2011),
DOI:10.1109/MCSE.2011.37

14

	Overview
	Installation
	Simple example
	Time series data
	Translation dictionary
	Time filter
	Quality control tests
	Performance metrics
	Composite signals
	Configuration file
	Task scheduler
	Results
	Custom applications
	Copyright and license
	References
	Bibliography

