

Welcome to WfEpy’s documentation!

Contents:

	API
	Decorators

	Examples
	Simple

	Branches

WfEpy

WfEpy (Workflow Engine for Python) is Python library for creating workflows
and automating various processes. It is designed to be as simple as possible so
developers can focus on tasks logic, not how to execute workflow, store state,
etc.

Individual steps in workflow are simply functions with decorator and transitions
between tasks are also defined by decorators. Everything what developer needs to
do is add few decorators to functions that implements tasks logic. This library
is then used to build graph from tasks and transitions and execute tasks in
workflow by traversing graph and calling task functions. Context passed to each
function is arbitrary user object that can be used to store data, connect to
other services or APIs, …

@wfepy.task()
@wfepy.start_point()
@wfepy.followed_by('make_coffee')
def start(context):
 ...

@wfepy.task()
@wfepy.followed_by('drink_coffee')
def make_coffee(context):
 ...

@wfepy.task()
@wfepy.followed_by('end')
def drink_coffee(context):
 ...

@wfepy.task()
@wfepy.end_point()
def end(context):
 ...

WfEpy does not provide any server scheduler or something like that. It was
designed to be used in scripts, that are for example periodically executed by
cron. If workflow have task that cannot be finished in single run library
provides way how to store current state of runner including user data and
restore it on next run.

import coffee_workflow

wf = wfepy.Workflow()
wf.load_tasks(coffee_workflow)

runner = wf.create_runner()
if restore_state:
 runner.load('state-file')

runner.run()

runner.dump('state-file')

This simple design provides many options how to execute your workflow and
customize it. This was also reason why this library was created, we don’t want
to manage new service/server that executes few simple workflows. We would like
to use service we already have, for example Jenkins, cron, …

Installation

Install it using pip

pip3 install wfepy

or clone repository

git clone https://github.com/redhat-aqe/wfepy.git
cd wfepy

and install Python package including dependencies

python3 setup.py install

API

	
class wfepy.Workflow

	Workflow graph - collection of tasks.

	Variables

	task – collection of tasks, dict with tasks name as key

	
check_graph()

	Check workflow graph - if some task is missing, all task are marked
properly as start, join or end points, …

	Raises

	WorkflowError – when there are some problems with workflow graph

	
create_runner(*args, **kwargs)

	Create Runner from this workflow.

	
end_points

	List of names of tasks that are marked as end points.

	
load_tasks(module)

	Load tasks from module and add them to workflow graph. Can be also
module name, then module will be get from sys.module by that name.

	Raises

	WorkflowError – if name of loaded task is not unique

	
start_points

	List of names of tasks that are marked as start points.

	
class wfepy.Runner(workflow, context=None)

	Workflow execution engine.

	Variables

	
	workflow – Workflow

	context – arbitrary user object, passed to all tasks

	state – state of execution

	
dump(file_path)

	Dump runner to file. Stored dump contains context and
state so runner execution can be restored and finished later.

	
finished

	Workflow execution finished. True when reached end points and there is
no task that should be executed.

	
load(file_path)

	Load runner from file. See also dump().

	
run()

	Execute tasks from workflow.

Some tasks might end in state in which they cannot be executed (waiting
for external event or join point waiting for preceding tasks). If there
is no task that can be executed run will stop executing and
finished property will be False. In that case run should be
called again (with some delay or runner can be dumped to file by
dump() and executed later).

See TaskState for list of task states.

	
task_execute(task)

	Execute Task.

	
transition_eval(transition)

	Evauluate Transition.cond.

	
class wfepy.Task(func, name=NOTHING, labels=NOTHING)

	Workflow task. Wraps function for use in workflow.

Wrapped function must accept context from Runner via only parameter
and should return True or False whether task was completed and
execution can continue with following tasks.

If wrapped function returned False execution will stop and task will be
executed again in next run. This way can be implemented waiting, eg. for
external event.

	Variables

	
	function – wrapped function

	name – task name (by default function name)

	labels – task labels

	followed_by – connection to next tasks (set of Transition)

	preceded_by – names of preceding tasks, generated by Workflow

	is_start_point – task is start point of workflow

	is_join_point – task is join point of multiple tasks

	is_end_point – task is end point of workflow

	
has_labels(labels, reducer=<built-in function any>)

	Check if task has labels.

Reducer is used to reduce multi-labels check to single boolean value.
all checks if task have all labels, any checks if task has at least
one of labels.

	
class wfepy.TaskState

	Enumeration of task states.

	Variables

	
	NEW – task new in queue

	WAITING – task is waiting, function returned False

	BLOCKED – task is waiting for completion of preceding tasks

	READY – task is ready for execution

	COMPLETE – task was executed and will be expanded

	CANCELED – task was not executed because transition condition was not met

[image: digraph TaskState { _start [label="" style=invis] _end [label="" style=invis] _start_canceled [label="" style=invis] _end_canceled [label="" style=invis] { rank=same; _start, _start_canceled } { rank=same; _end, _end_canceled } { rank=same; COMPLETE, CANCELED } { rank=same; READY, WAITING, BLOCKED } _start -> NEW -> READY -> COMPLETE -> _end _start_canceled -> CANCELED -> _end_canceled READY -> WAITING [label="executed but not done\n(task returned False)"] WAITING -> READY [label="rescheduled\non next run"] NEW -> BLOCKED [label="task is join point"] BLOCKED -> READY [label="preceeding tasks finished"] }]

	
class wfepy.Transition(dest, cond=None)

	Transition to following task.

	Variables

	
	dest – name of following task

	cond – condition whether following task should be executed, function
that will receive context from Runner and must return bool
(allows to create conditional branching and looping in graph)

	
class wfepy.WorkflowError

	Generic workflow error.

Decorators

	
class wfepy.DecoratorStack(function, decorator_list=NOTHING)

	Utility to collect function decorators and execute them in reverse order at
once.

	
classmethod add(decorator)

	Create decorator function that will create DecoratorStack using
create() and add decorator to list of decorators.

	
add_decorator(decorator)

	Add decorator to stack.

	
apply_to(func)

	Apply decorators to func and return new func created by chain of
decorators.

Return value of each function is used as argument of next function and
first function will receive func as argument.

	
classmethod create(func)

	Create new DecoratorStack from function or other stack.

	
classmethod reduce(decorator)

	Create decorator function that will create DecoratorStack using
create(), add decorator to list of decorators and apply decorators
from stack to decorated function.

	
wfepy.task(*args, **kwargs)

	Decorator to mark function as workflow task. See Task for arguments
documentation.

	
wfepy.followed_by(*args, **kwargs)

	Add transition to next task. See Transition for arguments
documentation.

	
wfepy.start_point()

	Mark task as start point. See Task.

	
wfepy.join_point()

	Mark task as join point. See Task.

	
wfepy.end_point()

	Mark task as end point. See Task.

Examples

Simple

Whole worfklow is build from tasks and connections between them.

Tasks are functions with task() decorator and connection between tasks is
defined by followed_by() decorator. First argument of followed_by()
decorator is name of next tasks, that should be executed when current task is
finished.

Tasks names are intentionally strings so you don’t need to care about imports or
order of declarations in file. But that is not requirement, followed_by()
also accept other tasks (function decorated with task()).

import wfepy as wf

@wf.task()
@wf.start_point()
@wf.followed_by('make_coffee')
def start(ctx):
 # All tasks must return True or False if they were finished or waiting for
 # some external event or something and must be executed again later.
 return True

@wf.task()
@wf.followed_by('drink_coffee')
def make_coffee(ctx):
 return True

@wf.task()
@wf.followed_by('end')
def drink_coffee(ctx):
 import random
 if not random.choice([True, False]):
 # Still drinking. Returing False means this task was not completed and
 # must be executed again on next run.
 return False
 return True

@wf.task()
@wf.end_point()
def end(ctx):
 return True

Workflow can be converted to graph. Nice to have in documentation or for
debugging purposes. Even this workflow is pretty simple, real-world workflow can
be complex with lot of tasks declared across many files, with conditional
branches, …

[image: digraph Workflow { drink_coffee [fillcolor=white style="solid,filled"] drink_coffee -> end end [fillcolor=red style="bold,filled"] make_coffee [fillcolor=white style="solid,filled"] make_coffee -> drink_coffee start [fillcolor=green style="bold,filled"] start -> make_coffee }]

Finally, workflow can be executed. Example script that will execute workflow from
example above.

import logging
import wfepy
import wfepy.utils

logging.basicConfig(level=logging.INFO)

Import module with tasks.
import simple

Create new workflow.
wf = wfepy.Workflow()
Load tasks from module and add them to workflow.
wf.load_tasks(simple)
Check if graph is OK, all tasks are defined, decorated correctly, ...
wf.check_graph()

Render graph.
wfepy.utils.render_graph(wf, 'basic.gv')

Create runner for workflow.
runner = wf.create_runner()

Execute workflow.
runner.run()

Check if workflow finished, no tasks are waiting.
while not runner.finished:
 logging.info('Workflow is not finished, trying run it again...')
 runner.run()

Output from script

INFO:wfepy.workflow:Executing task start
INFO:wfepy.workflow:Task start is complete
INFO:wfepy.workflow:Executing task make_coffee
INFO:wfepy.workflow:Task make_coffee is complete
INFO:wfepy.workflow:Executing task drink_coffee
INFO:wfepy.workflow:Task drink_coffee is waiting

INFO:root:Workflow is not finished, trying run it again...
INFO:wfepy.workflow:Executing task drink_coffee
INFO:wfepy.workflow:Task drink_coffee is waiting

INFO:root:Workflow is not finished, trying run it again...
INFO:wfepy.workflow:Executing task drink_coffee
INFO:wfepy.workflow:Task drink_coffee is complete
INFO:wfepy.workflow:Executing task end
INFO:wfepy.workflow:Task end is complete
INFO:wfepy.workflow:Reached end point end

Task drink_coffee was waiting for something and no other tasks could be
executed, so process stopped.

Waiting tasks are tasks that returned False while finished tasks must return
True. This allow implement waiting for events, for example when user must
add comment to Jira task before process can continue.

Branches

Task can be also followed by multiple tasks so process will be executing
multiple task branches in parallel. Task are not executed in parallel by threads
or processes but it still can be used to execute as much as possible tasks if
task in one branch is waiting.

Looking at coffee drinking example, you can do some other things while waiting
until coffee and while drinking.

import random
import wfepy as wf

@wf.task()
@wf.start_point()
@wf.followed_by('make_coffee')
@wf.followed_by('check_reddit')
def start(ctx):
 return True

@wf.task()
@wf.followed_by('drink_coffee')
def make_coffee(ctx):
 return True

@wf.task()
@wf.followed_by('write_some_code')
def check_reddit(ctx):
 return True

@wf.task()
@wf.followed_by('end')
def write_some_code(ctx):
 return random.choice([True, False])

@wf.task()
@wf.followed_by('end')
def drink_coffee(ctx):
 return random.choice([True, False])

@wf.task()
@wf.join_point()
@wf.end_point()
def end(ctx):
 return True

Task start has multiple followed_by decorations so when this task
finish, process will expand followed by list and start executing tasks from both
branches. In the end of workflow branches are joined in end task. Join
points must be explicitly marked by join_point decorator to avoid mistakes.

If you forgot to mark join point (or start point or end point)
wfepy.Workflow.check_graph() will raise error and you should fix it.

[image: digraph Workflow { check_reddit [fillcolor=white style="solid,filled"] check_reddit -> write_some_code drink_coffee [fillcolor=white style="solid,filled"] drink_coffee -> end end [fillcolor=red style="bold,filled"] make_coffee [fillcolor=white style="solid,filled"] make_coffee -> drink_coffee start [fillcolor=green style="bold,filled"] start -> check_reddit start -> make_coffee write_some_code [fillcolor=white style="solid,filled"] write_some_code -> end }]

Index

 A
 | C
 | D
 | E
 | F
 | H
 | J
 | L
 | R
 | S
 | T
 | W

A

 	
 	add() (wfepy.DecoratorStack class method)

 	
 	add_decorator() (wfepy.DecoratorStack method)

 	apply_to() (wfepy.DecoratorStack method)

C

 	
 	check_graph() (wfepy.Workflow method)

 	
 	create() (wfepy.DecoratorStack class method)

 	create_runner() (wfepy.Workflow method)

D

 	
 	DecoratorStack (class in wfepy)

 	
 	dump() (wfepy.Runner method)

E

 	
 	end_point() (in module wfepy)

 	
 	end_points (wfepy.Workflow attribute)

F

 	
 	finished (wfepy.Runner attribute)

 	
 	followed_by() (in module wfepy)

H

 	
 	has_labels() (wfepy.Task method)

J

 	
 	join_point() (in module wfepy)

L

 	
 	load() (wfepy.Runner method)

 	
 	load_tasks() (wfepy.Workflow method)

R

 	
 	reduce() (wfepy.DecoratorStack class method)

 	
 	run() (wfepy.Runner method)

 	Runner (class in wfepy)

S

 	
 	start_point() (in module wfepy)

 	
 	start_points (wfepy.Workflow attribute)

T

 	
 	Task (class in wfepy)

 	task() (in module wfepy)

 	task_execute() (wfepy.Runner method)

 	
 	TaskState (class in wfepy)

 	Transition (class in wfepy)

 	transition_eval() (wfepy.Runner method)

W

 	
 	Workflow (class in wfepy)

 	
 	WorkflowError (class in wfepy)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to WfEpy’s documentation!

 		
 API

 		
 Decorators

 		
 Examples

 		
 Simple

 		
 Branches

_static/down-pressed.png

_images/graphviz-61dcce8b23fe779dbdcbd9c68a177766948dce9a.png
make_coffee

e

drink_coffee

0

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_images/graphviz-a00cac862acfb6d9a8bcc6580b1662a7e317855d.png
BLOCKED

preceeding tasks finished

executed but not done
(task returned False)

COMPLETE

rescheduled
on next run

CANCELED

_images/graphviz-ce2b1e736a797fcaf7bbd7bb92c18419127a825f.png
check_reddit

drink_coffee

_static/comment-bright.png

