

Wespipeline

An implementation of a whole exome analysis pipeline using Luigi [https://github.com/spotify/luigi/] for workflow management.

[image: Steps Logo]

This package provides with the implementation of tasks for executing partial or complete variant calling
analysis with the advantages of having a workflow manager: dependency resolution, execution planner,
modularity, monitoring and historic.

Documentation for the latest version is being hosted by readthedocs [https://wespipeline.readthedocs.io/en/latest/]

Installation

Wespipeline is available through pip, conda and manual installation. Install it from the package repositories
pip3 install wespipeline conda install -c jancho wespipeline, or download the project and build from source:
git clone https://github.com/Janchorizo/wespipeline.git && cd wespipeline && python3 setup.py install.

Notice that executing the analysis will involve different additional dependencies depending on the steps that executed and the
parameters set for these. All possible are cited below and can be downloaded with the Anaconda distribution:

	Secuence retrieval : Sra Toolkit, Fastqc

	Reference genome retrieval : No needed dependency

	Secuence alignment : Bwa

	Alignment processing : Bwa Samtools,

	Variant calling : Freebayes, Varscan, Gatk, Deepvariant

	Variant calling evaluation : Vcf tools

In addition to the dependencies, conda can be used for installing the wespipeline package. An example for
installing the miniconda distribution, the package and the dependencies is:

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.sh
bash ~/miniconda.sh -b -p $HOME/miniconda
export PATH="$HOME/miniconda/bin:$PATH"
source $HOME/miniconda/bin/activate && \
 conda config --add channels bioconda && \
 conda config --add channels conda-forge && \
 conda config --add channels jancho && \
 conda install -y samtools && \
 conda install -y bwa && \
 conda install -y picard && \
 conda install -y platypus-variant && \
 conda install -y varscan && \
 conda install -y freebayes && \
 conda install -y fastqc && \
 conda install -y sra-tools && \
 conda install -y wespipeline

rm ~/miniconda.sh

Getting started

Installing or downloading the package will provide with a higher level task per step of the
analysis, each of which can be executed in a similar fashion to other Luigi tasks.

Each of the six steps have a higher level task that can be scheduled in a similar fashion
to other Luigi tasks:

python3 -m luigi --module wespipeline.<module> <Taskname> --<Taskname>-param value

Download the sequences using the NCBI accession number.

python3 -m luigi --module wespipeline.fastq FastqRetrieval \
 --FastqRetrieval-paired-end true \
 --FastqRetrieval-accession-number SRR9209557 \
 --FastqRetrieval-create-report true

Or an external url.

python3 -m luigi --module wespipeline.fastq FastqRetrieval \
 --FastqRetrieval-paired-end true \
 --FastqRetrieval-compressed false \
 --FastqRetrieval-accession-number SRR9209557 \
 --FastqRetrieval-create-report true

Download the reference genome and create a report using FastqC.

python3.6 -m luigi --module tasks.reference ReferenceRetrieval
 --workers 3 \
 --ReferenceGenome-ref-url ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/hg19.2bit \
 --ReferenceGenome-from2bit True \
 --GlobalParams-base-dir ./tfm_experiment \
 --GlobalParams-log-dir .logs \
 --GlobalParams-exp-name hg19

Or run the whole analysis, specifying the parameters for each of the steps.

python3 -m luigi --module tasks.vcf VariantCalling
 --workers 3
 --VariantCalling-use-platypus true
 --VariantCalling-use-freebayes true
 --VariantCalling-use-samtools false
 --VariantCalling-use-gatk false
 --VariantCalling-use-deepcalling false
 --AlignProcessing-cpus 6
 --FastqAlign-cpus 6
 --FastqAlign-create-report True
 --GetFastq-gz-compressed True
 --GetFastq-fastq1-url ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/Garvan_NA12878_HG001_HiSeq_Exome/NIST7035_TAAGGCGA_L001_R1_001.fastq.gz
 --GetFastq-fastq2-url ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/Garvan_NA12878_HG001_HiSeq_Exome/NIST7035_TAAGGCGA_L001_R2_001.fastq.gz
 --GetFastq-from-ebi False
 --GetFastq-paired-end True
 --ReferenceGenomeRetrieval-ref-url ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/hg19.2bit --ReferenceGenomeRetrieval-from2bit True
 --GlobalParams-base-dir ./tfm_experiment
 --GlobalParams-log-dir .logs
 --GlobalParams-exp-name hg19

Tasks implemented

	Module

	Task

	reference

	ReferenceGenomeRetrieval

	fastq

	FastqRetrieval

	align

	FastqAlignment

	processalign

	FastqProcessing

	variantcalling

	VariantCalling

	processalign

	VariantProcessing

Acknowledgements

Special thanks to professor Luis Antonio Miguel Quintales for all the guidance and help provided during the
development of this project.

Wespipeline : A whole exome secuencing variant calling pipeline

Using the pipeline

	Requirements
	Python dependencies

	External dependencies

	Installing through Anaconda distributions

	Installation
	Usage

	Configuration
	Making Luigi task historic persistent

	Running the pipeline
	Executing tasks
	Secuence retrieval

	Reference genome retrieval

	Secuence alignment

	Alignment processing

	Variant calling

	Variant calling evaluation

	Global vs task specific parameters

	Whole analysis example

The analysis pipeline

	The analysis pipeline
	Secuence retrieval

	Reference genome retrieval

	Secuence alignment

	Alignment processing

	Variant calling

	Variant calling evaluation

	Case of study

Implementation

	Steps
	Basic Luigi Task class implementation

	Managing coupling in tasks

	How to edit or extend the pipeline
	Replacing an existing task for another with the same funtionallity

	Adding new tasks to an existing step

	Adding upstream dependencies within a step, that should be exectued after the rest of the tasks

	wespipeline
	wespipeline package

Indices and tables

	Index

	Module Index

	Search Page

Requirements

Python dependencies

Wespipeline depends on an existing installation of the library Luigi [https://pypi.org/project/luigi/].
If this package was installed following the recomended steps, this dependency should be fulfilled.

External dependencies

Whole exome sequencing variant calling analysis needs for external programs for
doing both the processing, and the analysis and summaries. Following is a list of
the different dependencies.

Optionally, some type of database is needed for making use of the persistent storage
of executions. In the configuration proposed, is used.

Even though pip packages dependencies are resolved upon installation, third party tools are not.
These extra dependencies are not compulsary for all executions of the pipeline, but depend on the
parameters and tasks selected.

Each of the dependencies correspond to a specific need in one or more of the steps, and thus
are organized in that manner bellow.

	Secuence retrieval : Sra Toolkit, Fastqc

	Reference genome retrieval : No needed dependency

	Secuence alignment : Bwa

	Alignment processing : Bwa Samtools,

	Variant calling : Freebayes, Varscan, Gatk, Deepvariant

	Variant calling evaluation : Vcf tools

Installing through Anaconda distributions

Even though most of the programs listed can be installed through various different ways, I
encourage the use of the Anaconda Distribution [https://www.anaconda.com/distribution/], one of the biggest platforms for
installing the tools from well trusted sources. Optionally, Miniconda [https://docs.conda.io/en/latest/miniconda.html] can be used too
for a lighter version of the package manager.

Installing miniconda is a simple task. Following an example installation for a x64 linux machine:

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.
bash ~/miniconda.sh -b -p $HOME/miniconda && rm ~/miniconda.sh
export PATH="$HOME/miniconda/bin:$PATH"

Beware that, in order for the utilities and installed packages to be accessible the environment
must be activated:

source $HOME/miniconda/bin/activate

The package archive is distributed through different channels, two of which are needed for the
installation of these packages. Easier than specifying the channel for each command is adding the channels:

conda config --add channels bioconda
conda config --add channels conda-forge

Installing from the repositories is a simple task doable through one-liner commands. Following
is an elaborated list of the installation commands for all of the external depenedencies listed
above, and a command for instaling them together:

Installing Samtools

conda install -y samtools

Installing Bwa

conda install -y bwa

Installing Picard

conda install -y picard

Installing Platypus

conda install -y platypus-variant

Installing Varscan

conda install -y varscan

Installing Freebayes

conda install -y freebayes

Installing VCFtools

conda install -y vcftools

Installing Fastqc

conda install -y fastqc

Installing Sra Toolkit

conda install -y sra-tools

Installing all dependencies with a single command:

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.sh
bash ~/miniconda.sh -b -p $HOME/miniconda
export PATH="$HOME/miniconda/bin:$PATH"
source $HOME/miniconda/bin/activate && \
 conda config --add channels bioconda && \
 conda config --add channels conda-forge && \
 conda install -y samtools && \
 conda install -y bwa && \
 conda install -y picard && \
 conda install -y platypus-variant && \
 conda install -y varscan && \
 conda install -y freebayes && \
 conda install -y vcftools && \
 conda install -y gatk && \
 conda install -y vt

rm ~/miniconda.sh

Installation

Run `pip install wespipeline` to install the latest stable version from PyPI. Documentation for the
latest release is hosted on readthedocs.

To install from source, download the project `git clone https://github.com/janchorizo/wespipeline.git`
and run `python3 setup.py install` in the root directoy.

Usage

Each of the modules in the package contains tasks for executing a specific setp in the analysis pipline.
Use Luigi’s typipcal call format for launching the execution of a task:

`luigi -m wespipeline.reference GetReference --GlobalParams-exp-name hg19 --workers 2 --local-scheduler`

Configuration

Within the scope of the analysis, there are a set of options that can be set for
adjusting the experiment to one’s neccesities. There are, however, other configuration
options that affect the environment in which the pipeline is executed:

Making Luigi task historic persistent

Luigi offers a web interface for monitoring and analysing the execution of the pipeline.
However, it may be the case that a persistent history may be used for later analysis.

For this, Luigi offers a -at the moment beta- option for accessing the excutions through
the /history api.

Running the pipeline

Executing tasks

The execution of the tasks follows the same as other Luigi tasks,
using each of the provided modules to execute one of the defined steps
of the analysis.

Secuence retrieval

Retrieving the secuencing is a step that takes into account wether the experiment
is paired end, or the sources are gz compressed.

Several options can be configured for selecting the source for the exome sequences:

	The origin of the files

	Wether the files are compressed

	Wether the experiment is paired end

Different sources can be set, in which case the one used for retrieving will be
the following:

	Files accessible localy

	Files specified by the NCBI accession number.

	External sources set by their url

Warning

This task will fail along with the upstream tasks if the quality report
is selected but Fastqc [https://www.bioinformatics.babraham.ac.uk/projects/fastqc/] is not
installed.

In the case of using the NCBI accession number, the compressed is ignored as
it is already handled with the fastq-dump tool from the Sra toolkit.

Warning

This task will fail along with the upstream tasks if the accession number
is used but Sra toolkit [https://www.ncbi.nlm.nih.gov/sra/docs/toolkitsoft/] is not
installed.

The execution of this step with all the posible parameters is the following:

luigi --module wespipeline.fastq GetFastq \
 --GetFastq-paired-end true \
 --GetFastq-compressed true \
 --GetFastq-fastq1-local-file ./experiment_1.fastq.gz \
 --GetFastq-fastq2-local-file ./experiment_2.fastq.gz \
 --GetFastq-accession_number SRRXXXXXX
 --GetFastq-fastq1-url ftp.archive.x/exp/exome_1.fastq.gz \
 --GetFastq-fastq2-url ftp.archive.x/exp/exome_2.fastq.gz

Note

Eventhough parameters for the selected task GetFastq can be set directly,
it is encourage to prepend the task name in order to keep the call consistent and
distinguish them from parameters set to other tasks.

Note

Note that GloablParams is used for setting common pipeline wide parameters.

This task is used required by the Align task. If the secuences are available locally,
set the fastqx-local-file parameter to the correspondent path; for instance, for
a set of fastq files relative to the current directory that don’t require to be uncompressed
the following command would be used:

luigi --module wespipeline.fastq GetFastq \
 --GetFastq-paired-end true \
 --GetFastq-fastq1-local-file ./experiment_1.fastq \
 --GetFastq-fastq2-local-file ./experiment_2.fastq

Reference genome retrieval

The reference genome, essential for more steps than the alignment, may be obtained
in 2bit format (and then converted to fa).

Secuence alignment

Aligning the secuencing against the reference genome is a process that produces a not
sorted, nor indexed, sam file.

Alignment processing

Processing the alignment includes sorting, indexing and removing duplicates from the
original alignment. In the end, it produces a bam and bai file.

Variant calling

Variants can be obatined with different tools; each of which depends in the reference
genome retrieval (wespipeline.reference.ReferenceGenome) and the align processing step
(wespipeline.processalign.AlignProcessing).

The desired tools to be used are specified as boolean parameters, from a total of five
eligible:

	Platypus

	Freebayes

	DeepVariant

	Gatk

	Samtools

Warning

DeepVariant requires Docker [https://www.docker.com/] to be installed. Additionally,
it needs the Python Docker package for Luigi to interact with it; this last one is a dependency
specified in the package, so it will be automatically installed if wespipeline is installed with
a package manager.

An example for using DeepVariant on reference genome, and bam files located in the current directory
would be the following:

python3 -m luigi --module wespipeline.vcf VariantCalling
--VariantCalling-use-deepvariant True \
--VariantCalling-cpus 2 \
--ReferenceGenome-reference-local-file hg19.fa \
--AlignProcessing-no-dup-bam-local-file hg19_nodup.bam \
--AlignProcessing-no-dup-bai-local-file hg19_nodup.bam.bai \
--GlobalParams-exp-name hg19 \
--GlobalParams-base-dir . \
--GlobalParams-log-dir . \

Variant calling evaluation

Variant calling comparation and estatistical summaries for the variants identifyed.

Global vs task specific parameters

Luigi provides a convenient way to expose a task’ parameters both for Python code
task instancetiating, and command line usage. The modular approach taken for the
design of the pipeline

Whole analysis example

The following command allows to execute the pipeline for…

nohup python3.6 -m luigi --module wespipeline.vcf_analysis VariantCallingAnalysis \
--workers 3 \
--VariantCalling-use-platypus true \
--VariantCalling-use-freebayes true \
--VariantCalling-use-samtools false \
--VariantCalling-use-gatk false \
--VariantCalling-use-deepcalling false \
--AlignProcessing-cpus 6 \
--FastqAlign-cpus 6 \
--FastqAlign-create-report True \
--GetFastq-gz-compressed True \
--GetFastq-fastq1-url
ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/Garvan_NA12878_HG001
_HiSeq_Exome/NIST7035_TAAGGCGA_L001_R1_001.fastq.gz \
--GetFastq-fastq2-url
ftp://ftp-trace.ncbi.nih.gov/giab/ftp/data/NA12878/Garvan_NA12878_HG001_HiSeq_Exome/NIST7035_TAAGGCGA_L001_R2_001.fastq.gz \
--GetFastq-from-ebi False \
--GetFastq-paired-end True \
--ReferenceGenome-ref-url
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/hg19.2bit \ --ReferenceGenome-from2bit True \
--GlobalParams-base-dir ./tfm_experiment \
--GlobalParams-log-dir .logs \
--GlobalParams-exp-name hg19 &

The analysis pipeline

Although the basic pipeline for analyzing whole exome sequencing, as propuested in NCBI, consists of
three basic phases (secuencing retrieval, aliengment, and variant calling), more steps are distinguished
to make the pipeline more flexible:

	Secuence retrieval

	Reference genome retrieval

	Secuence alignment

	Alignment processing

	Variant calling

	Variant calling evaluation

Secuence retrieval

[image: Steps Logo]

Retrieving the secuencing is a step that takes into account wether the experiment
is paired end, or the sources are gz compressed.

Reference genome retrieval

[image: Steps Logo]

The reference genome, essential for more steps than the alignment, may be obtained
in 2bit format (and then converted to fa).

Secuence alignment

[image: Steps Logo]

Aligning the secuencing against the reference genome is a process that produces a not
sorted, nor indexed, sam file.

Alignment processing

[image: Steps Logo]

Processing the alignment includes sorting, indexing and removing duplicates from the
original alignment. In the end, it produces a bam and bai file.

Variant calling

[image: Steps Logo]

The process of identifying variants within the secuenced exome.

Variant calling evaluation

[image: Steps Logo]

Variant calling comparation and estatistical summaries for the variants identifyed.

Case of study

asd

Steps

Basic Luigi Task class implementation

Luigi’s scheduler allows the execution of the task specified and the
dependency resolution based on the execution of the requires method from
the Task implementation.

Any Task in Luigi has the following general structure:

class MyTask([luigi.Task, luigi.WrapperTask, luigi.contrib.ExternalProgramTask, ...]):
 param1 = luigi.Parameter(default=[value], description=[string])
 param2 = luigi.Parameter(default=[value], description=[string])
 . . .
 paramN = luigi.Parameter(default=[value], description=[string])

 def requires(self):
 return SomeTask()

 return [
 SomeTask(param=[value]),
 OtherTask(),
]

 return {
 'a':SomeTask(param=[value]),
 'b':OtherTask(),
 }

 def output(self):
 returns luigi.LocalTarget([path])

 returns [luigi.LocalTarget([path]), luigi.contrib.mongodb.MongoTarget]

 returns {
 'c':luigi.LocalTarget([path]),
 'd'luigi.contrib.mongodb.MongoTarget
 }

	Parameters are exposed in the command line interface, showing the optional argument description if provided.

	The requires method can return nothing, a Task instance, or an structure containing Task intances. These tasks will be accessible from within the class through the input method: self.input(); which will preserve the structure that was retrieved in the method.

	The output method can return nothing, a luigi.Target instance, or an structure containing Target intances. These targets will be accessible from within the class through the output method: self.output(); which will preserve the structure that was retrieved in the method. This is the first method executed,and used to find out if the Task needs to be runned.

Additionally, depending on the specific Task class on which it inherits, the class may have some other specific methods,
such as the run method for executing Python code, or the program_args for returning the arguments for external program
executions.

Managing coupling in tasks

The analysis here proposed needs for various tasks within each of the different steps. However, if they are
implemented following the previous structure, maintaining and extending the pipeline would we too complicated; let’s
see this in the following example:

import luigi
from somePackage import ExtTask

class FinalTask(luigi.Task):
 param = luigi.Parameter(default=[value])

 def requires(self):
 return IntermediateTask(param=param)

 def output(self):
 returns luigi.LocalTarget(pathA)

 def run(self):
 pass

class IntermediateTask(luigi.Task):
 param = luigi.Parameter()

 def requires(self):
 return InitialTask(param=self.param)

 def output(self):
 returns luigi.LocalTarget(path2)

 def run(self):
 pass

class InitialTask(luigi.Task):
 param = luigi.Parameter()

 def requires(self):
 return ExtTask(param2='1234')

 def output(self):
 returns luigi.LocalTarget(path1)

 def run(self):
 print(self.param1)

Here, a couple of problems arise related to the fact that:
* Only the first task makes use of the parameter param, but all of the previous tasks need to have it in order to pass it.

	If at any point it is needed to change the class required by `FinalTask`, it would be neccessary to know what input `FinalTask` expects, what parameters `InitialTask` needs in order to preserve its interface, and change in `FinalTask` the name of the class that is being sustituted.

	This last point can be impossible for the case of tasks required in many others, where identitying each place where it is being used is too difficoult.

	This complicates even more when external tasks are imported, such as `ExtTask`.

	If this pipeline was to be extended, it would be necessary to know in advance what parameters and results would the new task need to forward in order to keep the pipeline working, and the previous upstream dependency would need to be edited to include the new task.

These problems make it difficult to create a modular pipeline. To solve it, the following was done:

A lightweight class (MetaOutputHandler)
was implemented to set the output of a task based on the input. This means that inputs are forwarded, and allows for implementing higher
level of abstraction tasks that allow to require al neccessary tasks for a step while making the outputs accessible.

Each step of the analysis is implemented in a separate module, with a high level abstraction Task subclass as the entrypoint.

Using this type of tasks allows too for putting parameters together, so that only one task exposes parameters; which makes it easier to
use in a decoupled way.

An example of this type of Task is the ` <>`_.

class FastqAlign(utils.MetaOutputHandler, luigi.WrapperTask):
 """Higher level task for the alignment of fastq files.

 It is given preference to local files over processing the alignment
 in order to reduce computational overhead.

 Alignment is done with the Bwa mem utility.

 Parameters:
 fastq1_local_file (str): String indicating the location of a local
 Sam file for the alignment.
 cpus (int): Integer indicating the number of cpus that can be used for
 the alignment.

 Output:
 A dict mapping keys to `luigi.LocalTarget` instances for each of the
 processed files.
 The following keys are available:

 'sam' : Local file with the alignment.

 """

 sam_local_file = luigi.Parameter(default='', description='Optional file path for the aligned sam file. If set, the alignment will be skipped.')
 cpus = luigi.Parameter(default='', description="Number of cpus to be used by each task thread.")

 def requires(self):
 if self.sam_local_file != '':
 return {'sam': utils.LocalFile(file_path=self.sam_local_file)}
 else:
 return {'sam' : BwaAlignFastq()}

This task doesn’t do any actual computation, but requires the Task neccessary for obtaining the fastq alignment. Even though that
right now Bwa is being used, changing the task for another one would be easy; as other tasks require wespipeline.align.FastqAlign,
and do not care about the tasks required by it. An example below:

import luigi
from wespipeline.align import FastqAlign

class MyTask(luigi.Task):

 def requires(self):
 return FastqAlign(cpus=2)

 def output(self):
 returns luigi.LocalTarget("/.../output.txt")

 def run(self):
 print(self.input()['sam'])

As shown, `MyTask` requires the higher level task, uses the outputs of the tasks in that step, and accesses the output through
an interface which is agnostic from the actual implementation of the task.

Morover, parameters set in this higher Task can be accesses from any other by using an instance (`FastqAlign().sam_local_file`);
this means that there is no longer a need for propagating unused parameters.

How to edit or extend the pipeline

Three main use cases can be distinguished:

	Replacing an existing task for another that serves the same function.

	Adding new tasks to an existing step.

	Adding upstream dependencies within a step, that should be exectued after

the rest of the tasks of the step.

Replacing an existing task for another with the same funtionallity

All tasks implemented in a module serve for one of the two possible objectives: fulfilling other tasks
dependencies, or providing with part (or the whole) output of the step.

The first step is identifying which of this two is the case. In both cases it must mantain
the parameters and out put format in order for it work as expected; however, if relacing an intermediate task,
the upstream tasks should be changed to this new one instead.

In the case of a task that provides part of the output for the higher level task of the module, it
only requires to replace the previous task with the new one in the high level task.

class HighLevelTask(utils.MetaOutputHandler, luigi.WrapperTask):

 param1 = luigi.Parameter(default="", description="")
 local_file = luigi.Parameter(default='', description="")

 def requires(self):
 dependencies = dict()

 dependencies.update({'a': SomeTask()})
 dependencies.update({'b': OtherTask()})

 return dependencies

Beware that high level tasks expose the outputs of all involved tasks of the step, making each output accesible in
a dictionary which keys should remain intact in order to preserve the well functioning tasks dependent on this.

Warning

In the example above, the output of SomeTask and OtherTask maintains the original structure. Be carefull not
to change the expected result as this would enter be conflict with what other task would expect to receive from the
higher level task.

Adding new tasks to an existing step

When new, independent, tasks are desired to be run for a step, it is only needed to add them to the dictionary containing the
dependencies.

It is important to add them in the requires method in order for the output of this new task to be checked. This allows
Luigi to identify when the step has been completely runned, or if needs to run part -or the whole- of the tasks.

Note

If parameters for the new task are set in the higher level task too, it will allow the users to specify them through
the same manner as for other tasks without knowing the specific name of this new task: –HigherLevelTask-the-parameter value
will be accessible through the command line. Prefer this way rather than making the user know what other tasks in the step
need its parameters to be set.

Note

Note too that if parameters for the new task are set in the higher level task, removing the task will not brake
dependencies on the step that set this parameter; whilst it will cause an error when a user tries setting a parameter in a
task that is not longer available.

Adding upstream dependencies within a step, that should be exectued after the rest of the tasks

A slightly different to the previous use case may occur: the necessity of adding a task that needs to be executed after
some step, but which is related to the same one.

When adding functionality that is related to a step, it is best to add it in the same module.

For this, it is possible to replace the base class luigi.WrapperTask with luigi.Task:

	wespipeline.MetaOutputHandler allows to define the output of a class based on the input; which is similar to the

behaviour of luigi.WrapperTask, but with the addition of propagating the input.
* If any of the dependencies is not fulfilled, the task will run. Thus, requiring the dependencies and then executing
the run method.
* From within the run method, any task can yield dynamic dependencies; we can use this to launch the execution of
our step related upstream dependencies.

class HighLevelTask(utils.MetaOutputHandler, luigi.Task):

 param1 = luigi.Parameter(default="", description="")
 local_file = luigi.Parameter(default='', description="")

 def requires(self):
 dependencies = dict()

 dependencies.update({'a': SomeTask()})
 dependencies.update({'b': OtherTask()})

 return dependencies

 def run(self):
 yield UpstreamTask(aoutput=self.input()['a'])

Thus, this approach allows to extend the step with extra tasks, that can use the outputs without
the need of newer dependencies or affecting the interface that the step provides to other task requiring it.

Warning

The default behaviour of a task is running first the output method to check if the task has
already been executed correctly; which -in the case of classes inheriting from wespieline.MetaOutputHandler-
is equivalent to checking the fulfillment of the dependencies.
Therefore, if all the inputs are already present, the upstream tasks will be nor executed or even checked.

Note

The default behaviour can be changed by overwritting the ** method, and returning False when the task
should be runned. Then, if False is always returned, upstream dependencies will always be launched.

Even though, it is best adviced to remove outputs when forced returning False in order to ensure no duplicate or strange
behaviour occurs because of the output already existing, this not the case for high level tasks.

This task does not produce the output, but rather forwards its inputs; thus removing the output may cause side effects.

class HighLevelTask(utils.MetaOutputHandler, luigi.Task):
 force = luigi.BoolParameter()
 param1 = luigi.Parameter(default="", description="")
 local_file = luigi.Parameter(default='', description="")

 def complete(self):
 outputs = luigi.task.flatten(self.output())

 for output in outputs:
 if self.force and output.exists():
 output.remove()

 return all(map(lambda output: output.exists(), outputs))

 def requires(self):
 dependencies = dict()

 dependencies.update({'a': SomeTask()})
 dependencies.update({'b': OtherTask()})

 return dependencies

 def run(self):
 yield UpstreamTask(output=self.input()['a'])

The example above would work well if HighLevelTask did not inherit from wespieline.MetaOutputHandler.
The following is a better suited implementation, where all dependencies (included UpstreamTask) will be
check for completition and launched for execution if it is not the case, preserving the desired order:

class HighLevelTask(utils.MetaOutputHandler, luigi.Task):
 param1 = luigi.Parameter(default="", description="")
 local_file = luigi.Parameter(default='', description="")

 def complete(self):
 return False

 def requires(self):
 dependencies = dict()

 dependencies.update({'a': SomeTask()})
 dependencies.update({'b': OtherTask()})

 return dependencies

 def run(self):
 yield UpstreamTask(output=self.input()['a'])

Upon execution,dependencies will be checked first, ceating if neccessary the outputs for the task. The the run method will
be checked and executed if neccessary.

wespipeline

	wespipeline package
	Submodules

	wespipeline.align module

	wespipeline.fastq module

	wespipeline.processalign module

	wespipeline.reference module

	wespipeline.utils module

	wespipeline.vcf module

	wespipeline.vcfanalysis module

	Module contents

wespipeline package

Submodules

wespipeline.align module

	
class wespipeline.align.BwaAlignFastq(*args, **kwargs)

	Bases: luigi.contrib.external_program.ExternalProgramTask

Task used for aligning fastq files against the reference genome.

It requires the output of both the wespipeline.reference.ReferenceGenome and
wespipeline.fastq.GetFastq higher level tasks in order to proceed with
the alignment.

If wespipeline.utils.GlobalParams.exp_name is set, it will be used for giving name
to the Sam file produced.

	Parameters

	none –

	Output:
	A luigi.LocalTarget instance for the aligned sam file.

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
program_args()

	Override this method to map your task parameters to the program arguments

	Returns

	list to pass as args to subprocess.Popen

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
class wespipeline.align.FastqAlign(*args, **kwargs)

	Bases: wespipeline.utils.MetaOutputHandler, luigi.task.Task

Higher level task for the alignment of fastq files.

It is given preference to local files over processing the alignment
in order to reduce computational overhead.

Alignment is done with the Bwa mem utility.

	Parameters

	
	fastq1_local_file (str) – String indicating the location of a local
Sam file for the alignment.

	cpus (int) – Integer indicating the number of cpus that can be used for
the alignment.

	Output:
	A dict mapping keys to luigi.LocalTarget instances for each of the
processed files.
The following keys are available:

‘sam’ : Local file with the alignment.

	
cpus = <luigi.parameter.Parameter object>

	

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
run()

	The task run method, to be overridden in a subclass.

See Task.run

	
sam_local_file = <luigi.parameter.Parameter object>

	

wespipeline.fastq module

	
class wespipeline.fastq.FastqcQualityCheck(*args, **kwargs)

	Bases: luigi.contrib.external_program.ExternalProgramTask

Task used for creating a quality report on fastq files.

The report is created using the Fastqc utility, reulsting on an
html report, an a zip folder containing more detailed information
about the quality of the reads.

	Parameters

	fastq_file (str) – Path for the fastq file to be analyzed.

	Output:
	html (luigi.LocalTarget) : File containing the report for fastqc quality.

	
fastq_file = <luigi.parameter.Parameter object>

	

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
program_args()

	Override this method to map your task parameters to the program arguments

	Returns

	list to pass as args to subprocess.Popen

	
class wespipeline.fastq.GetFastq(*args, **kwargs)

	Bases: wespipeline.utils.MetaOutputHandler, luigi.task.Task

Higher level task for the retrieval of the experiment fastq files.

Three diferent sources for the fastq files are accepted: an existing local
file, an NCBI accession number for the reads, and an external url indicating
the location for the resources. The order in which the sources will be searched
is the same as above: it is given preference to local files over external
resources in order to reduce computational overhead, and NCBI accession number
over external resources for reproducibility reasons.

	Parameters

	
	fastq1_local_file (str) – String indicating the location of a local
compressed fastq file.

	fastq2_local_file (str) – String indicating the location of a local
compressed fastq file.

	fastq1_url (str) – Url indicating the location of the resource for
the compressed fastq file.

	fastq2_url (str) – Url indicating the location of the resource for
the compressed fastq file.

	paired_end (bool) – Non case sensitive boolean indicating wether
the reads are paired_end.

	compressed (bool) – Non case sensitive boolean indicating wether
the reads are compressed.

	create_report (bool) – A non case-sensitive boolean indicating wether
to create a quality check report.

	Output:
	A dict mapping keys to luigi.LocalTarget instances for each of the
processed files.
The following keys are available:

‘fastq1’ : Local file with the fastq file with the experiment’s reads.
‘fastq2’ : In case of paired end experiments, a local file with the fastq

file with the experiment’s reads.

	
accession_number = <luigi.parameter.Parameter object>

	

	
compressed = <luigi.parameter.BoolParameter object>

	

	
create_report = <luigi.parameter.BoolParameter object>

	

	
fastq1_local_file = <luigi.parameter.Parameter object>

	

	
fastq1_url = <luigi.parameter.Parameter object>

	

	
fastq2_local_file = <luigi.parameter.Parameter object>

	

	
fastq2_url = <luigi.parameter.Parameter object>

	

	
paired_end = <luigi.parameter.BoolParameter object>

	

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
run()

	The task run method, to be overridden in a subclass.

See Task.run

	
class wespipeline.fastq.SraToolkitFastq(*args, **kwargs)

	Bases: luigi.contrib.external_program.ExternalProgramTask

Task used for downloading fastq files from the NVBI archive.

In case of the reads to be paired end, the output will consist
of two separate fastq files.

	The output file(s) will have for name the accession number and,
	in the case of paired end reads, a suffix identifying each
of the two fastq.

	Parameters

	
	accession_number (str) – NCBI accession number for the experiment.

	paired_end (bool) – Non case sensitive boolean indicating wether
the reads are paired_end.

	Output:
	A dict mapping keys to luigi.LocalTarget instances for each of the
processed files.
The following keys are available:

‘fastq1’ : Local file with the fastq file with the experiment’s reads.
‘fastq2’ : In case of paired end experiments, a local file with the fastq

file with the experiment’s reads.

	
accession_number = <luigi.parameter.Parameter object>

	

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
paired_end = <luigi.parameter.BoolParameter object>

	

	
program_args()

	Override this method to map your task parameters to the program arguments

	Returns

	list to pass as args to subprocess.Popen

	
class wespipeline.fastq.UncompressFastqgz(*args, **kwargs)

	Bases: luigi.task.Task

Task for uncompressing fastq files.

The task uses utils.UncompressFile for uncompressing into fastq.
If both fastq_local_file and fastq_url are set, the local file will
have preference; thus reducing the overhead in the process.

	Parameters

	
	fastq_local_file (str) – String indicating the location of a local
compressed fastq file.

	fastq_url (str) – Url indicating the location of the resource for
the compressed fastq file.

	output_file (str) – String indicating the desired location and name
the output uncompressed fastq file.

	Output:
	A luigi.LocalTarget instance for the uncompressed fastq file.

	
fastq_local_file = <luigi.parameter.Parameter object>

	

	
fastq_url = <luigi.parameter.Parameter object>

	

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
output_file = <luigi.parameter.Parameter object>

	

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
run()

	The task run method, to be overridden in a subclass.

See Task.run

wespipeline.processalign module

	
class wespipeline.processalign.AlignProcessing(*args, **kwargs)

	Bases: wespipeline.utils.MetaOutputHandler, luigi.task.Task

Higher level task for the alignment of fastq files.

It is given preference to local files over processing the alignment
in order to reduce computational overhead.

If the bam and bai local files are set, they will be used instead of
the

Alignment is done with the Bwa mem utility.

	Parameters

	
	bam_local_file (str) – String indicating the location of a local
bam file with the sorted alignment. If set, this file will not be created.

	bai_local_file (str) – String indicating the location of a local
bai file with the index for the alignment. If set, this file will not be created.

	no_dup_bam_local_file (str) – String indicating the location of a local
sam file without the duplicates. If set, this file will not be created.

	no_dup_bai_local_file (str) – String indicating the location of a local
file with the index for the bam file without duplicates. If set, this
file will not be created.

	cpus (int) – Integer indicating the number of cpus that can be used for
the alignment.

	Output:
	A dict mapping keys to luigi.LocalTarget instances for each of the
processed files.
The following keys are available:

‘bam’ : Local file with the sorted alignment.
‘bai’ : Local file with the alignment index.
‘bamNoDup’ : Local sorted file with duplicates removed.
‘indexNoDup’ : Local file with the index for sorted alignment without duplicates.

	
bai_local_file = <luigi.parameter.Parameter object>

	

	
bam_local_file = <luigi.parameter.Parameter object>

	

	
cpus = <luigi.parameter.IntParameter object>

	

	
no_dup_bai_local_file = <luigi.parameter.Parameter object>

	

	
no_dup_bam_local_file = <luigi.parameter.Parameter object>

	

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
run()

	The task run method, to be overridden in a subclass.

See Task.run

	
class wespipeline.processalign.IndexBam(*args, **kwargs)

	Bases: luigi.contrib.external_program.ExternalProgramTask

Task used for indexing the Bam file.

The wespipeline.utils.GlobalParams.exp_name will be used for giving name
to the Bai file produced.

	Parameters

	none –

	Output:
	A luigi.LocalTarget instance for the index Bai file.

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
program_args()

	Override this method to map your task parameters to the program arguments

	Returns

	list to pass as args to subprocess.Popen

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
class wespipeline.processalign.IndexNoDup(*args, **kwargs)

	Bases: luigi.contrib.external_program.ExternalProgramTask

Task used for indexing the Bam file without duplicates.

The wespipeline.utils.GlobalParams.exp_name will be used for giving name
to the Bai file produced.

	Parameters

	none –

	Output:
	A luigi.LocalTarget instance for the index Bai file.

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
program_args()

	Override this method to map your task parameters to the program arguments

	Returns

	list to pass as args to subprocess.Popen

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
class wespipeline.processalign.PicardMarkDuplicates(*args, **kwargs)

	Bases: luigi.contrib.external_program.ExternalProgramTask

Task used for removing duplicates from the Bam file.

The wespipeline.utils.GlobalParams.exp_name will be used for giving name
to the Bam file produced.

	Parameters

	none –

	Output:
	A luigi.LocalTarget instance for the Bam file without the duplicates.

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
program_args()

	Override this method to map your task parameters to the program arguments

	Returns

	list to pass as args to subprocess.Popen

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
class wespipeline.processalign.SortSam(*args, **kwargs)

	Bases: luigi.contrib.external_program.ExternalProgramTask

Task used for sorting the alignment sam file.

It requires the output of the wespipeline.reference.FastqAlign step.

The wespipeline.utils.GlobalParams.exp_name will be used for giving name
to the Bam file produced.

	Parameters

	none –

	Output:
	A luigi.LocalTarget instance for the sorted Sam Bam file.

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
program_args()

	Override this method to map your task parameters to the program arguments

	Returns

	list to pass as args to subprocess.Popen

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

wespipeline.reference module

	
class wespipeline.reference.BwaIndex(*args, **kwargs)

	Bases: luigi.contrib.external_program.ExternalProgramTask

Task user for indexing the reference genome .fa file with the bwa index utility.

Aligning the reference genome helps reducing access time drastically.

	Parameters

	None –

	Output:
	A set of five files are result of indexing the reference genome. The extensions
for each of the files are ‘.amb’, ‘.ann’, ‘.bwt’, ‘.pac’, ‘.sa’.

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
program_args()

	Override this method to map your task parameters to the program arguments

	Returns

	list to pass as args to subprocess.Popen

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
class wespipeline.reference.FaidxIndex(*args, **kwargs)

	Bases: luigi.contrib.external_program.ExternalProgramTask

Task user for indexing the reference genome .fa file with the samtools faidx utility.

Aligning the reference genome helps reducing access time drastically.

	Parameters

	None –

	Output:
	A luigi.LocalTarget for the .fai index file for the reference genome .

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
program_args()

	Override this method to map your task parameters to the program arguments

	Returns

	list to pass as args to subprocess.Popen

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
class wespipeline.reference.GetProgram(*args, **kwargs)

	Bases: luigi.contrib.external_program.ExternalProgramTask

Task user for downloading and giving execution permissions to the 2bit program.

The task gives execute permissions to the conversion utility for 2bit files
to be converted to fa files which can then be used for aligning the sequences.

The source for the program is ftp://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/twoBitToFa.

	Parameters

	none –

	Output:
	A luigi.LocalTarget for the executable.

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
program_args()

	Override this method to map your task parameters to the program arguments

	Returns

	list to pass as args to subprocess.Popen

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
class wespipeline.reference.GetReferenceFa(*args, **kwargs)

	Bases: wespipeline.utils.MetaOutputHandler, luigi.task.WrapperTask

Task user for obtaining the reference genome .fa file.

This task will retrieve an external genome or use a provided local one, and convert
it from 2bit format to .fa if neccessary.

	Parameters

	
	ref_url (str) – Url for the resource with the reference genome.

	reference_local_file (str) – Path for the reference genome 2bit file. If given
the ref_url parameter will be ignored.

	from2bit (bool) – Non case sensitive boolean indicating wether the reference genome
if in 2bit format. Defaults to false.

	Output:
	A luigi.LocalTarget for the reference genome fa file.

	
from2bit = <luigi.parameter.BoolParameter object>

	

	
ref_url = <luigi.parameter.Parameter object>

	

	
reference_local_file = <luigi.parameter.Parameter object>

	

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
class wespipeline.reference.PicardDict(*args, **kwargs)

	Bases: luigi.contrib.external_program.ExternalProgramTask

Task user for creating a dict file with the reference genome .fa file with the picard utility.

	Parameters

	None –

	Output:
	A luigi.LocalTarget for the .fai index file for the reference genome .

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
program_args()

	Override this method to map your task parameters to the program arguments

	Returns

	list to pass as args to subprocess.Popen

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
class wespipeline.reference.ReferenceGenome(*args, **kwargs)

	Bases: wespipeline.utils.MetaOutputHandler, luigi.task.Task

Higher level task for retrieving the reference genome.

It is given preference to local files over downloading the reference. However the
indexing of the reference genome is always done using GloablParams.exp_name and
GlobalParams.base_dir for determining filenames and location for newer files
respectively.

The indexing is done using both Samtools and Bwa toolkits.

	Parameters

	
	reference_local_file (str) – Optional string indicating the location for the reference genome. If set, it will not be downloaded.

	ref_url (str) – Url for the download of the reference genome.

	from2bit (bool) – A boolean [True, False] indicating whether the reference genome must be converted from 2bit.

	Output:
	A dict mapping keys to luigi.LocalTarget instances for each of the processed files.
The following keys are available:

‘faidx’ : Local file with the index, result of indexing with Samtools.
‘bwa’ : Set of five files, result of indexing the reference genome with Bwa.
‘fa’ : Local file with the reference genome.

	
from2bit = <luigi.parameter.BoolParameter object>

	

	
ref_url = <luigi.parameter.Parameter object>

	

	
reference_local_file = <luigi.parameter.Parameter object>

	

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
run()

	The task run method, to be overridden in a subclass.

See Task.run

	
class wespipeline.reference.TwoBitToFa(*args, **kwargs)

	Bases: luigi.contrib.external_program.ExternalProgramTask

Task user for Converting 2bit files to the fa format.

The task will use a local executable or require the task for obtaining it, and
use with the reference genome.

	Parameters

	
	ref_url (str) – Url for the resource with the reference genome.

	reference_local_file (str) – Path for the reference genome 2bit file. If given
the ref_url parameter will be ignored.

	Output:
	A luigi.LocalTarget for the reference genome fa file.

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
program_args()

	Override this method to map your task parameters to the program arguments

	Returns

	list to pass as args to subprocess.Popen

	
ref_url = <luigi.parameter.Parameter object>

	

	
reference_local_file = <luigi.parameter.Parameter object>

	

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

wespipeline.utils module

	
class wespipeline.utils.GlobalParams(*args, **kwargs)

	Bases: luigi.task.Config

Task used for specifying globally accessible parameters.

Parameters defined in this class are task independent and should
mantain low.

	Parameters

	
	exp_name (str) – Name for the experiment. Useful for defining file names.

	log_dir (str) – Absolute path for the logs of the application.

	base_dir (str) – Absolute path to the directory where files are expected
to appear if not specifyed differently.

	
base_dir = <luigi.parameter.Parameter object>

	

	
exp_name = <luigi.parameter.Parameter object>

	

	
log_dir = <luigi.parameter.Parameter object>

	

	
class wespipeline.utils.GunzipFile(*args, **kwargs)

	Bases: luigi.contrib.external_program.ExternalProgramTask

Task for unzipping compressed files.

Gunzip will allways do the process inplace, deleting the extension.

	Parameters

	input_file (str) – Absolute path to the compressed file.

	
input_file = <luigi.parameter.Parameter object>

	

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
program_args()

	Override this method to map your task parameters to the program arguments

	Returns

	list to pass as args to subprocess.Popen

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
class wespipeline.utils.LocalFile(*args, **kwargs)

	Bases: luigi.task.Task

Helper task for making.

No extra processing is done in the task. It allows to make tasks
dependent on files using the same strategy as with other tasks.

	Parameters

	file (str) – Absolute path to the file to be tested.

	
file = <luigi.parameter.Parameter object>

	

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
run()

	The task run method, to be overridden in a subclass.

See Task.run

	
class wespipeline.utils.MetaOutputHandler

	Bases: object

Helper class for propagating inputs in WrapperTasks

	
output()

	

	
class wespipeline.utils.UncompressFile(*args, **kwargs)

	Bases: luigi.contrib.external_program.ExternalProgramTask

Task for unzipping compressed files to a desired location.

Gunzip will allways do the process inplace, deleting the extension. This
task allows to select the destination.

This operation

	Parameters

	
	input_file (str) – Absolute path to the compressed file.

	output_file (str) – Absolute path to the desired final location.

	copy (bool) – Non case sensitive boolean indicating wether to copy or
to move the file. Defaults to false.

	
copy = <luigi.parameter.BoolParameter object>

	

	
input_file = <luigi.parameter.Parameter object>

	

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
output_file = <luigi.parameter.Parameter object>

	

	
program_args()

	Override this method to map your task parameters to the program arguments

	Returns

	list to pass as args to subprocess.Popen

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
class wespipeline.utils.Wget(*args, **kwargs)

	Bases: luigi.contrib.external_program.ExternalProgramTask

Task for downloading files using the tool wget.

	Parameters

	
	url (str) – Url indicating the location of the resource to be retreived.

	output_file (str) – Absolute path for the destiny location of the retrived resource.

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
output_file = <luigi.parameter.Parameter object>

	

	
program_args()

	Override this method to map your task parameters to the program arguments

	Returns

	list to pass as args to subprocess.Popen

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
url = <luigi.parameter.Parameter object>

	

wespipeline.vcf module

	
class wespipeline.vcf.DeepvariantCallVariants(*args, **kwargs)

	Bases: luigi.contrib.external_program.ExternalProgramTask

Task used for identifying varinats in the bam file provided using DeepVariant.

	Parameters

	model_type (str) – A string defining the model to use for the variant calling. Valid options are [WGS,WES,PACBIO].

	Dependencies:
	ReferenceGenome
AlignProcessing

	Output:
	A luigi.LocalTarget instance for the index vcf file.

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
program_args()

	Override this method to map your task parameters to the program arguments

	Returns

	list to pass as args to subprocess.Popen

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
class wespipeline.vcf.DeepvariantDockerTask(*args, **kwargs)

	Bases: luigi.contrib.docker_runner.DockerTask

Task used for identifying varinats in the bam file provided using DeepVariant.

	Parameters

	model_type (str) – A string defining the model to use for the variant calling. Valid options are [WGS,WES,PACBIO].

	Dependencies:
	ReferenceGenome
AlignProcessing

	Output:
	A luigi.LocalTarget instance for the index vcf file.

	
BIN_VERSION = '0.8.0'

	

	
property binds

	Override this to mount local volumes, in addition to the /tmp/luigi
which gets defined by default. This should return a list of strings.
e.g. [‘/hostpath1:/containerpath1’, ‘/hostpath2:/containerpath2’]

	
property command

	

	
create_gvcf = <luigi.parameter.BoolParameter object>

	

	
property image

	

	
model_type = <luigi.parameter.Parameter object>

	

	
property mount_tmp

	

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
class wespipeline.vcf.DockerGatkCallVariants(*args, **kwargs)

	Bases: luigi.contrib.docker_runner.DockerTask

Task used for identifying varinats in the bam file provided using DeepVariant.

	Parameters

	model_type (str) – A string defining the model to use for the variant calling. Valid options are [WGS,WES,PACBIO].

	Dependencies:
	ReferenceGenome
AlignProcessing

	Output:
	A luigi.LocalTarget instance for the index vcf file.

	
BIN_VERSION = '0.8.0'

	

	
property binds

	Override this to mount local volumes, in addition to the /tmp/luigi
which gets defined by default. This should return a list of strings.
e.g. [‘/hostpath1:/containerpath1’, ‘/hostpath2:/containerpath2’]

	
property command

	

	
property image

	

	
model_type = <luigi.parameter.Parameter object>

	

	
property mount_tmp

	

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
class wespipeline.vcf.FreebayesCallVariants(*args, **kwargs)

	Bases: luigi.contrib.external_program.ExternalProgramTask

Task used for identifying varinats in the bam file provided using Freebayes.

The wespipeline.utils.GlobalParams.exp_name will be used for giving name
to the vcf produced.

	Parameters

	none –

	Dependencies:
	ReferenceGenome
AlignProcessing

	Output:
	A luigi.LocalTarget instance for the index vcf file.

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
program_args()

	Override this method to map your task parameters to the program arguments

	Returns

	list to pass as args to subprocess.Popen

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
class wespipeline.vcf.GatkCallVariants(*args, **kwargs)

	Bases: luigi.contrib.external_program.ExternalProgramTask

Task used for identifying varinats in the bam file provided using GatkCallVariants.

The wespipeline.utils.GlobalParams.exp_name will be used for giving name
to the vcf produced.

	Parameters

	none –

	Dependencies:
	ReferenceGenome
AlignProcessing

	Output:
	A luigi.LocalTarget instance for the index vcf file.

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
program_args()

	Override this method to map your task parameters to the program arguments

	Returns

	list to pass as args to subprocess.Popen

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
class wespipeline.vcf.PlatypusCallVariants(*args, **kwargs)

	Bases: luigi.contrib.external_program.ExternalProgramTask

Task used for identifying varinats in the bam file provided using Platypus.

The wespipeline.utils.GlobalParams.exp_name will be used for giving name
to the vcf produced.

	Parameters

	none –

	Dependencies:
	ReferenceGenome
AlignProcessing

	Output:
	A luigi.LocalTarget instance for the index vcf file.

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
program_args()

	Override this method to map your task parameters to the program arguments

	Returns

	list to pass as args to subprocess.Popen

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
class wespipeline.vcf.VariantCalling(*args, **kwargs)

	Bases: wespipeline.utils.MetaOutputHandler, luigi.task.Task

Higher level task for the alignment of fastq files.

It is given preference to local files over processing the alignment
in order to reduce computational overhead.

If the bam and bai local files are set, they will be used instead of
the

Alignment is done with the Bwa mem utility.

	Parameters

	
	use_platypus (bool) – A non-case sensitive boolean indicating wether to use Platypus for variant callign.

	use_freebayes (bool) – A non-case sensitive boolean indicating wether to use Freebayesfor variant callign.

	use_samtools (bool) – A non-case sensitive boolean indicating wether to use Samtools for variant callign.

	use_gatk (bool) – A non-case sensitive boolean indicating wether to use Gatk for variant callign.

	use_deepvariant (bool) – A non-case sensitive boolean indicating wether to use DeepVariant for variant callign.

	vcf_local_files (string) – A comma delimited list of vfc files to be used instead of using the variant calling tools.

	cpus (int) – Number of cpus that are available for each of the methods selected.

	Output:
	A dict mapping keys to luigi.LocalTarget instances for each of the
processed files.
The following keys are available:

‘platypus’ : Local file with the variant calls obtained using Platypus.
‘freebayes’ : Local file with the variant calls obtained using Freevayes.
‘Varscan’ : Local sorted file with variant calls obtained using Varscan.
‘gatk’ : Local file with the variant calls obtained using GATK.
‘deepvariant’ : Local file with the variant calls obtained using DeepVariant.

	
cpus = <luigi.parameter.IntParameter object>

	

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
run()

	The task run method, to be overridden in a subclass.

See Task.run

	
use_deepvariant = <luigi.parameter.BoolParameter object>

	

	
use_freebayes = <luigi.parameter.BoolParameter object>

	

	
use_gatk = <luigi.parameter.BoolParameter object>

	

	
use_platypus = <luigi.parameter.BoolParameter object>

	

	
use_varscan = <luigi.parameter.BoolParameter object>

	

	
vcf_local_files = <luigi.parameter.Parameter object>

	

	
class wespipeline.vcf.VarscanCallVariants(*args, **kwargs)

	Bases: luigi.contrib.external_program.ExternalProgramTask

Task used for identifying varinats in the bam file provided using Varscan..

The wespipeline.utils.GlobalParams.exp_name will be used for giving name
to the vcf produced.

	Parameters

	none –

	Dependencies:
	ReferenceGenome
AlignProcessing

	Output:
	A luigi.LocalTarget instance for the index vcf file.

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
program_args()

	Override this method to map your task parameters to the program arguments

	Returns

	list to pass as args to subprocess.Popen

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

wespipeline.vcfanalysis module

	
class wespipeline.vcfanalysis.DockerVTnormalizeVCF(*args, **kwargs)

	Bases: luigi.contrib.docker_runner.DockerTask

	
VERSION = '0.57721--hdf88d34_2'

	

	
biallelic_block_substitutions = <luigi.parameter.BoolParameter object>

	

	
biallelic_clumped_variant = <luigi.parameter.BoolParameter object>

	

	
property binds

	Override this to mount local volumes, in addition to the /tmp/luigi
which gets defined by default. This should return a list of strings.
e.g. [‘/hostpath1:/containerpath1’, ‘/hostpath2:/containerpath2’]

	
property command

	

	
decomposes_multiallelic_variants = <luigi.parameter.BoolParameter object>

	

	
property image

	

	
property mount_tmp

	

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
vcf = <luigi.parameter.Parameter object>

	

	
class wespipeline.vcfanalysis.NormalizeVcfFiles(*args, **kwargs)

	Bases: wespipeline.utils.MetaOutputHandler, luigi.task.Task

docstring for NormalizeVcfFiles

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
run()

	The task run method, to be overridden in a subclass.

See Task.run

	
class wespipeline.vcfanalysis.VTnormalizeVCF(*args, **kwargs)

	Bases: luigi.contrib.external_program.ExternalProgramTask

	
out = <luigi.parameter.Parameter object>

	

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
program_args()

	Override this method to map your task parameters to the program arguments

	Returns

	list to pass as args to subprocess.Popen

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
vcf = <luigi.parameter.Parameter object>

	

	
class wespipeline.vcfanalysis.VariantCallingAnalysis(*args, **kwargs)

	Bases: luigi.task.Task

Higher level task for comparing variant calls.

Comparing variant calls is a delicate task that increments in complexity when
dealing in diploid sequences (such us the human genome), where different variants
can appear in the same position in each of the pair chromomes.

The normalization is done with vt, and the comparison with VcfTools

	Parameters

	None –

	Output:
	None. The resulting files are not provided as task output. Each of the n vcf files is analyzed and comparied by pairs.
It is a total of 2n-1 files.

	
normalize = <luigi.parameter.BoolParameter object>

	

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
run()

	The task run method, to be overridden in a subclass.

See Task.run

	
class wespipeline.vcfanalysis.VcftoolsCompare(*args, **kwargs)

	Bases: luigi.contrib.external_program.ExternalProgramTask

Task used for comparing a pair of vcf files using VcfTools.

	Parameters

	
	vcf1 (str) – Absolute path to the first file to be compared.

	vcf2 (str) – Absolute path to the second file to be compared.

	Dependencies:
	None

	Output:
	A luigi.LocalTarget instance for the result of comparing the files.

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
program_args()

	Override this method to map your task parameters to the program arguments

	Returns

	list to pass as args to subprocess.Popen

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
vcf1 = <luigi.parameter.Parameter object>

	

	
vcf2 = <luigi.parameter.Parameter object>

	

	
class wespipeline.vcfanalysis.VcftoolsDepthAnalysis(*args, **kwargs)

	Bases: luigi.contrib.external_program.ExternalProgramTask

Task used for extracting basic statistics for the variant calls using VcfTools.

	Parameters

	vcf (str) – Absolute path to the file with the variant annotations.

	Dependencies:
	None

	Output:
	A luigi.LocalTarget instance for the file with the vcf statistics.

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
program_args()

	Override this method to map your task parameters to the program arguments

	Returns

	list to pass as args to subprocess.Popen

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
vcf = <luigi.parameter.Parameter object>

	

	
class wespipeline.vcfanalysis.VcftoolsFreqAnalysis(*args, **kwargs)

	Bases: luigi.contrib.external_program.ExternalProgramTask

Task used for extracting basic statistics for the variant calls using VcfTools.

	Parameters

	vcf (str) – Absolute path to the file with the variant annotations.

	Dependencies:
	None

	Output:
	A luigi.LocalTarget instance for the file with the vcf statistics.

	
output()

	The output that this Task produces.

The output of the Task determines if the Task needs to be run–the task
is considered finished iff the outputs all exist. Subclasses should
override this method to return a single Target or a list of
Target instances.

	Implementation note
	If running multiple workers, the output must be a resource that is accessible
by all workers, such as a DFS or database. Otherwise, workers might compute
the same output since they don’t see the work done by other workers.

See Task.output

	
program_args()

	Override this method to map your task parameters to the program arguments

	Returns

	list to pass as args to subprocess.Popen

	
requires()

	The Tasks that this Task depends on.

A Task will only run if all of the Tasks that it requires are completed.
If your Task does not require any other Tasks, then you don’t need to
override this method. Otherwise, a subclass can override this method
to return a single Task, a list of Task instances, or a dict whose
values are Task instances.

See Task.requires

	
vcf = <luigi.parameter.Parameter object>

	

Module contents

	
wespipeline.name = 'wespipeline_pkg'

	

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 wespipeline	

 	
 	
 wespipeline.align	

 	
 	
 wespipeline.fastq	

 	
 	
 wespipeline.processalign	

 	
 	
 wespipeline.reference	

 	
 	
 wespipeline.utils	

 	
 	
 wespipeline.vcf	

 	
 	
 wespipeline.vcfanalysis	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	accession_number (wespipeline.fastq.GetFastq attribute)

 	(wespipeline.fastq.SraToolkitFastq attribute)

 	
 	AlignProcessing (class in wespipeline.processalign)

B

 	
 	bai_local_file (wespipeline.processalign.AlignProcessing attribute)

 	bam_local_file (wespipeline.processalign.AlignProcessing attribute)

 	base_dir (wespipeline.utils.GlobalParams attribute)

 	biallelic_block_substitutions (wespipeline.vcfanalysis.DockerVTnormalizeVCF attribute)

 	biallelic_clumped_variant (wespipeline.vcfanalysis.DockerVTnormalizeVCF attribute)

 	BIN_VERSION (wespipeline.vcf.DeepvariantDockerTask attribute)

 	(wespipeline.vcf.DockerGatkCallVariants attribute)

 	
 	binds() (wespipeline.vcf.DeepvariantDockerTask property)

 	(wespipeline.vcf.DockerGatkCallVariants property)

 	(wespipeline.vcfanalysis.DockerVTnormalizeVCF property)

 	BwaAlignFastq (class in wespipeline.align)

 	BwaIndex (class in wespipeline.reference)

C

 	
 	command() (wespipeline.vcf.DeepvariantDockerTask property)

 	(wespipeline.vcf.DockerGatkCallVariants property)

 	(wespipeline.vcfanalysis.DockerVTnormalizeVCF property)

 	compressed (wespipeline.fastq.GetFastq attribute)

 	copy (wespipeline.utils.UncompressFile attribute)

 	
 	cpus (wespipeline.align.FastqAlign attribute)

 	(wespipeline.processalign.AlignProcessing attribute)

 	(wespipeline.vcf.VariantCalling attribute)

 	create_gvcf (wespipeline.vcf.DeepvariantDockerTask attribute)

 	create_report (wespipeline.fastq.GetFastq attribute)

D

 	
 	decomposes_multiallelic_variants (wespipeline.vcfanalysis.DockerVTnormalizeVCF attribute)

 	DeepvariantCallVariants (class in wespipeline.vcf)

 	
 	DeepvariantDockerTask (class in wespipeline.vcf)

 	DockerGatkCallVariants (class in wespipeline.vcf)

 	DockerVTnormalizeVCF (class in wespipeline.vcfanalysis)

E

 	
 	exp_name (wespipeline.utils.GlobalParams attribute)

F

 	
 	FaidxIndex (class in wespipeline.reference)

 	fastq1_local_file (wespipeline.fastq.GetFastq attribute)

 	fastq1_url (wespipeline.fastq.GetFastq attribute)

 	fastq2_local_file (wespipeline.fastq.GetFastq attribute)

 	fastq2_url (wespipeline.fastq.GetFastq attribute)

 	fastq_file (wespipeline.fastq.FastqcQualityCheck attribute)

 	fastq_local_file (wespipeline.fastq.UncompressFastqgz attribute)

 	
 	fastq_url (wespipeline.fastq.UncompressFastqgz attribute)

 	FastqAlign (class in wespipeline.align)

 	FastqcQualityCheck (class in wespipeline.fastq)

 	file (wespipeline.utils.LocalFile attribute)

 	FreebayesCallVariants (class in wespipeline.vcf)

 	from2bit (wespipeline.reference.GetReferenceFa attribute)

 	(wespipeline.reference.ReferenceGenome attribute)

G

 	
 	GatkCallVariants (class in wespipeline.vcf)

 	GetFastq (class in wespipeline.fastq)

 	GetProgram (class in wespipeline.reference)

 	
 	GetReferenceFa (class in wespipeline.reference)

 	GlobalParams (class in wespipeline.utils)

 	GunzipFile (class in wespipeline.utils)

I

 	
 	image() (wespipeline.vcf.DeepvariantDockerTask property)

 	(wespipeline.vcf.DockerGatkCallVariants property)

 	(wespipeline.vcfanalysis.DockerVTnormalizeVCF property)

 	
 	IndexBam (class in wespipeline.processalign)

 	IndexNoDup (class in wespipeline.processalign)

 	input_file (wespipeline.utils.GunzipFile attribute)

 	(wespipeline.utils.UncompressFile attribute)

L

 	
 	LocalFile (class in wespipeline.utils)

 	
 	log_dir (wespipeline.utils.GlobalParams attribute)

M

 	
 	MetaOutputHandler (class in wespipeline.utils)

 	model_type (wespipeline.vcf.DeepvariantDockerTask attribute)

 	(wespipeline.vcf.DockerGatkCallVariants attribute)

 	
 	mount_tmp() (wespipeline.vcf.DeepvariantDockerTask property)

 	(wespipeline.vcf.DockerGatkCallVariants property)

 	(wespipeline.vcfanalysis.DockerVTnormalizeVCF property)

N

 	
 	name (in module wespipeline)

 	no_dup_bai_local_file (wespipeline.processalign.AlignProcessing attribute)

 	
 	no_dup_bam_local_file (wespipeline.processalign.AlignProcessing attribute)

 	normalize (wespipeline.vcfanalysis.VariantCallingAnalysis attribute)

 	NormalizeVcfFiles (class in wespipeline.vcfanalysis)

O

 	
 	out (wespipeline.vcfanalysis.VTnormalizeVCF attribute)

 	output() (wespipeline.align.BwaAlignFastq method)

 	(wespipeline.fastq.FastqcQualityCheck method)

 	(wespipeline.fastq.SraToolkitFastq method)

 	(wespipeline.fastq.UncompressFastqgz method)

 	(wespipeline.processalign.IndexBam method)

 	(wespipeline.processalign.IndexNoDup method)

 	(wespipeline.processalign.PicardMarkDuplicates method)

 	(wespipeline.processalign.SortSam method)

 	(wespipeline.reference.BwaIndex method)

 	(wespipeline.reference.FaidxIndex method)

 	(wespipeline.reference.GetProgram method)

 	(wespipeline.reference.PicardDict method)

 	(wespipeline.reference.TwoBitToFa method)

 	(wespipeline.utils.GunzipFile method)

 	(wespipeline.utils.LocalFile method)

 	(wespipeline.utils.MetaOutputHandler method)

 	(wespipeline.utils.UncompressFile method)

 	(wespipeline.utils.Wget method)

 	(wespipeline.vcf.DeepvariantCallVariants method)

 	(wespipeline.vcf.DeepvariantDockerTask method)

 	(wespipeline.vcf.DockerGatkCallVariants method)

 	(wespipeline.vcf.FreebayesCallVariants method)

 	(wespipeline.vcf.GatkCallVariants method)

 	(wespipeline.vcf.PlatypusCallVariants method)

 	(wespipeline.vcf.VarscanCallVariants method)

 	(wespipeline.vcfanalysis.DockerVTnormalizeVCF method)

 	(wespipeline.vcfanalysis.NormalizeVcfFiles method)

 	(wespipeline.vcfanalysis.VTnormalizeVCF method)

 	(wespipeline.vcfanalysis.VariantCallingAnalysis method)

 	(wespipeline.vcfanalysis.VcftoolsCompare method)

 	(wespipeline.vcfanalysis.VcftoolsDepthAnalysis method)

 	(wespipeline.vcfanalysis.VcftoolsFreqAnalysis method)

 	
 	output_file (wespipeline.fastq.UncompressFastqgz attribute)

 	(wespipeline.utils.UncompressFile attribute)

 	(wespipeline.utils.Wget attribute)

P

 	
 	paired_end (wespipeline.fastq.GetFastq attribute)

 	(wespipeline.fastq.SraToolkitFastq attribute)

 	PicardDict (class in wespipeline.reference)

 	PicardMarkDuplicates (class in wespipeline.processalign)

 	PlatypusCallVariants (class in wespipeline.vcf)

 	program_args() (wespipeline.align.BwaAlignFastq method)

 	(wespipeline.fastq.FastqcQualityCheck method)

 	(wespipeline.fastq.SraToolkitFastq method)

 	(wespipeline.processalign.IndexBam method)

 	(wespipeline.processalign.IndexNoDup method)

 	(wespipeline.processalign.PicardMarkDuplicates method)

 	(wespipeline.processalign.SortSam method)

 	(wespipeline.reference.BwaIndex method)

 	(wespipeline.reference.FaidxIndex method)

 	(wespipeline.reference.GetProgram method)

 	(wespipeline.reference.PicardDict method)

 	(wespipeline.reference.TwoBitToFa method)

 	(wespipeline.utils.GunzipFile method)

 	(wespipeline.utils.UncompressFile method)

 	(wespipeline.utils.Wget method)

 	(wespipeline.vcf.DeepvariantCallVariants method)

 	(wespipeline.vcf.FreebayesCallVariants method)

 	(wespipeline.vcf.GatkCallVariants method)

 	(wespipeline.vcf.PlatypusCallVariants method)

 	(wespipeline.vcf.VarscanCallVariants method)

 	(wespipeline.vcfanalysis.VTnormalizeVCF method)

 	(wespipeline.vcfanalysis.VcftoolsCompare method)

 	(wespipeline.vcfanalysis.VcftoolsDepthAnalysis method)

 	(wespipeline.vcfanalysis.VcftoolsFreqAnalysis method)

R

 	
 	ref_url (wespipeline.reference.GetReferenceFa attribute)

 	(wespipeline.reference.ReferenceGenome attribute)

 	(wespipeline.reference.TwoBitToFa attribute)

 	reference_local_file (wespipeline.reference.GetReferenceFa attribute)

 	(wespipeline.reference.ReferenceGenome attribute)

 	(wespipeline.reference.TwoBitToFa attribute)

 	ReferenceGenome (class in wespipeline.reference)

 	requires() (wespipeline.align.BwaAlignFastq method)

 	(wespipeline.align.FastqAlign method)

 	(wespipeline.fastq.GetFastq method)

 	(wespipeline.fastq.UncompressFastqgz method)

 	(wespipeline.processalign.AlignProcessing method)

 	(wespipeline.processalign.IndexBam method)

 	(wespipeline.processalign.IndexNoDup method)

 	(wespipeline.processalign.PicardMarkDuplicates method)

 	(wespipeline.processalign.SortSam method)

 	(wespipeline.reference.BwaIndex method)

 	(wespipeline.reference.FaidxIndex method)

 	(wespipeline.reference.GetProgram method)

 	(wespipeline.reference.GetReferenceFa method)

 	(wespipeline.reference.PicardDict method)

 	(wespipeline.reference.ReferenceGenome method)

 	(wespipeline.reference.TwoBitToFa method)

 	(wespipeline.utils.GunzipFile method)

 	(wespipeline.utils.UncompressFile method)

 	(wespipeline.utils.Wget method)

 	(wespipeline.vcf.DeepvariantCallVariants method)

 	(wespipeline.vcf.DeepvariantDockerTask method)

 	(wespipeline.vcf.DockerGatkCallVariants method)

 	(wespipeline.vcf.FreebayesCallVariants method)

 	(wespipeline.vcf.GatkCallVariants method)

 	(wespipeline.vcf.PlatypusCallVariants method)

 	(wespipeline.vcf.VariantCalling method)

 	(wespipeline.vcf.VarscanCallVariants method)

 	(wespipeline.vcfanalysis.DockerVTnormalizeVCF method)

 	(wespipeline.vcfanalysis.NormalizeVcfFiles method)

 	(wespipeline.vcfanalysis.VTnormalizeVCF method)

 	(wespipeline.vcfanalysis.VariantCallingAnalysis method)

 	(wespipeline.vcfanalysis.VcftoolsCompare method)

 	(wespipeline.vcfanalysis.VcftoolsDepthAnalysis method)

 	(wespipeline.vcfanalysis.VcftoolsFreqAnalysis method)

 	
 	run() (wespipeline.align.FastqAlign method)

 	(wespipeline.fastq.GetFastq method)

 	(wespipeline.fastq.UncompressFastqgz method)

 	(wespipeline.processalign.AlignProcessing method)

 	(wespipeline.reference.ReferenceGenome method)

 	(wespipeline.utils.LocalFile method)

 	(wespipeline.vcf.VariantCalling method)

 	(wespipeline.vcfanalysis.NormalizeVcfFiles method)

 	(wespipeline.vcfanalysis.VariantCallingAnalysis method)

S

 	
 	sam_local_file (wespipeline.align.FastqAlign attribute)

 	
 	SortSam (class in wespipeline.processalign)

 	SraToolkitFastq (class in wespipeline.fastq)

T

 	
 	TwoBitToFa (class in wespipeline.reference)

U

 	
 	UncompressFastqgz (class in wespipeline.fastq)

 	UncompressFile (class in wespipeline.utils)

 	url (wespipeline.utils.Wget attribute)

 	use_deepvariant (wespipeline.vcf.VariantCalling attribute)

 	
 	use_freebayes (wespipeline.vcf.VariantCalling attribute)

 	use_gatk (wespipeline.vcf.VariantCalling attribute)

 	use_platypus (wespipeline.vcf.VariantCalling attribute)

 	use_varscan (wespipeline.vcf.VariantCalling attribute)

V

 	
 	VariantCalling (class in wespipeline.vcf)

 	VariantCallingAnalysis (class in wespipeline.vcfanalysis)

 	VarscanCallVariants (class in wespipeline.vcf)

 	vcf (wespipeline.vcfanalysis.DockerVTnormalizeVCF attribute)

 	(wespipeline.vcfanalysis.VTnormalizeVCF attribute)

 	(wespipeline.vcfanalysis.VcftoolsDepthAnalysis attribute)

 	(wespipeline.vcfanalysis.VcftoolsFreqAnalysis attribute)

 	
 	vcf1 (wespipeline.vcfanalysis.VcftoolsCompare attribute)

 	vcf2 (wespipeline.vcfanalysis.VcftoolsCompare attribute)

 	vcf_local_files (wespipeline.vcf.VariantCalling attribute)

 	VcftoolsCompare (class in wespipeline.vcfanalysis)

 	VcftoolsDepthAnalysis (class in wespipeline.vcfanalysis)

 	VcftoolsFreqAnalysis (class in wespipeline.vcfanalysis)

 	VERSION (wespipeline.vcfanalysis.DockerVTnormalizeVCF attribute)

 	VTnormalizeVCF (class in wespipeline.vcfanalysis)

W

 	
 	wespipeline (module)

 	wespipeline.align (module)

 	wespipeline.fastq (module)

 	wespipeline.processalign (module)

 	
 	wespipeline.reference (module)

 	wespipeline.utils (module)

 	wespipeline.vcf (module)

 	wespipeline.vcfanalysis (module)

 	Wget (class in wespipeline.utils)

Steps

The following are the detailed description of the steps and considerations
regarding these steps.

 _static/file.png

_static/minus.png

_static/plus.png

_images/steps.png
Fastq retrieval

Variant calling
comparison

Sorting of the
alignment

Align sequences

Process alignment

Variant calling

_images/vcf.png
Variant cllng fle

Call varisnts

Cven)

 Variant caling is dono with oachy

afthe selected toolsamang the.
Tallowing
Platypus, FrooBayes, Samtools,
Gatk. DeepCalling

_images/process.png
Index alignment
fe— " Sitnout
auplicates

Indes e or
alignment (Bai)

N

Sorted alignment
e >
(Bany

Indes il or the
Sorted aligoment. [——
(Bal)

Sorted algnment
> " ithaut

Sarting of the
ignment

Inde sarted
alignment e

Remare
auplicates

_images/reference.png
Downlasd

o] Reference genomo

reerence genome T
Tabit, Lo~
ndex e orthe
Convert refrence Reference genome ndex reference oo e
Dovenios pf TwoBitTWOR: & gename (20t 1o o ‘Genatne reference
From 20107 s conversion tonl (cecutable) i
Doveniosd
N & reerence genome

[

_images/vcftools.png
Variant cllng fle
(ven.

Creato all possible
paircombinations

Creato all possible

v

paircombinations

Retrieve statstics
o ach et s

000

Previous tothe snslysis snd
comparion, nomalization and
fillring may bo usefu to b
appled in rder o incroase
Confdence

nav.xhtml

 Table of Contents

 		
 Wespipeline

 		
 Requirements

 		
 Python dependencies

 		
 External dependencies

 		
 Installing through Anaconda distributions

 		
 Installation

 		
 Usage

 		
 Configuration

 		
 Making Luigi task historic persistent

 		
 Running the pipeline

 		
 Executing tasks

 		
 Secuence retrieval

 		
 Reference genome retrieval

 		
 Secuence alignment

 		
 Alignment processing

 		
 Variant calling

 		
 Variant calling evaluation

 		
 Global vs task specific parameters

 		
 Whole analysis example

 		
 The analysis pipeline

 		
 Secuence retrieval

 		
 Reference genome retrieval

 		
 Secuence alignment

 		
 Alignment processing

 		
 Variant calling

 		
 Variant calling evaluation

 		
 Case of study

 		
 Steps

 		
 Basic Luigi Task class implementation

 		
 Managing coupling in tasks

 		
 How to edit or extend the pipeline

 		
 Replacing an existing task for another with the same funtionallity

 		
 Adding new tasks to an existing step

 		
 Adding upstream dependencies within a step, that should be exectued after the rest of the tasks

 		
 wespipeline

 		
 wespipeline package

 		
 Submodules

 		
 wespipeline.align module

 		
 wespipeline.fastq module

 		
 wespipeline.processalign module

 		
 wespipeline.reference module

 		
 wespipeline.utils module

 		
 wespipeline.vcf module

 		
 wespipeline.vcfanalysis module

 		
 Module contents

_images/align.png
Align reference

v

‘genome.

Alignment (Sam)

T is imprtant o make suro to
include Hoth soquences i caso of
" paired end experiment

_images/fastq.png
Rotriove soquence.
Cista)

—
—p{ btsin oot o cucomprsea
i
&
o™, | Do Somence R
‘sequence. ! (fastq.gz) ‘sequence.
s
o | ot o et end
e T ety
o

sequence

Sequencel fasta)

