

 Navigation

 	
 index

 	WeIO latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/weio/checkouts/latest/doc/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/weio/checkouts/latest/doc/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	WeIO latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 weioPY.html

 Navigation

 		
 index

 		WeIO latest documentation »

 [image: WeIO pinout]

digitalWrite(pin, value)

Sets voltage to +3.3V or Ground on corresponding pin. This function takes two parameters : pin number and it’s state that can be HIGH = +3.3V or LOW = Ground.

from weioLib.weioIO import *
from weioLib.weioUserApi import attach, HIGH, LOW, shared

import time

def setup() :
 attach.process(blinky)

def blinky() :
 pause = 100
 while True:
 digitalWrite(20, HIGH)
 delay(pause)
 digitalWrite(20, LOW)
 delay(pause)

digitalRead(pin)

Reads actual voltage on corresponding pin. WeIO board is 5V TOLERANT. There are two possible answers : 0 if pin is connected to the Ground or 1 if positive voltage is detected. If only digitalRead function is provided, pin will be in HIGH Z state. See inputMode(pin,mode) [http://github.com/nodesign/weio/wiki/Weio-GPIO-API-using-UPER-board#inputmodepin-mode] function for more options.

from weioLib.weioIO import *
from weioLib.weioUserApi import attach, shared
import time

def setup() :
 attach.process(loop)

def loop() :
 pin = 25
 while True:
 val = digitalRead(pin)
 print (val)
 delay(20)

inputMode(pin, mode)

Sets input mode for digitalRead purpose. Available modes are : INPUT_HIGHZ, INPUT_PULLDOWN, INPUT_PULLUP
This function activates pullups, pulldowns or high Z state on declared pins. If inputMode function is not called and digitalRead is performed pin state will be in high Z by default

from weioLib.weioIO import *
from weioLib.weioUserApi import attach, shared, INPUT_PULLDOWN
import time

def setup() :
 attach.process(loop)

def loop() :
 pin = 25
 inputMode(pin,INPUT_PULLDOWN)
 while True:
 val = digitalRead(pin)
 print (val)
 delay(20)

analogRead(pin)

Reads input on specified Analog to Digital Convertor. ADC is available on pins from 25 to 32 Output is 10bits resolution or from 0-1023

from weioLib.weioIO import *
from weioLib.weioUserApi import attach, shared
import time

def setup() :
 attach.process(loop)

def loop() :
 while True:
 val = analogRead(25)
 print val
 delay(20)

pwmWrite(pin, value)

Pulse with modulation is available at 6 pins from 19-24 and has 16bits of precision. By default WeIO sets PWM frequency at 20000ms and 8bit precision or from 0-255. This setup is well situated for driving LED lighting. Precision and frequency can be changed separately by calling additional functions for other uses : setPwmPeriod and setPwmLimit. PWM can also drive two different frequencies on two separate banks of 3 pins. For this feature look functions : setPwmPeriod0, setPwmPeriod1, setPwmLimit0 and setPwmLimit1.

from weioLib.weioIO import *
from weioLib.weioUserApi import attach, shared

def setup() :
 attach.process(loop)

def loop() :

 while True:
 print "fade in"
 # count from 0 to 255 by 5
 for i in xrange(0,256,5):
 pwmWrite(19,i)
 pwmWrite(20,i)
 pwmWrite(21,i)
 delay(30)
 print "fade out"
 for i in xrange(0,256,5):
 pwmWrite(19,255-i)
 pwmWrite(20,255-i)
 pwmWrite(21,255-i)
 delay(30)

setPwmPeriod(period)

Overrides default value of 1000us to set new period value for whole 6 PWM pins. Period value must be superior than 0 and inferior than 65535.

from weioLib.weioIO import *
from weioLib.weioUserApi import attach, shared

def setup() :
 attach.process(loop)

def loop() :

 setPwmPeriod(500)
 while True:
 print "fade in"
 # count from 0 to 255 by 5
 for i in xrange(0,256,5):
 pwmWrite(19,i)
 pwmWrite(20,i)
 pwmWrite(21,i)
 delay(30)
 print "fade out"
 for i in xrange(0,256,5):
 pwmWrite(19,255-i)
 pwmWrite(20,255-i)
 pwmWrite(21,255-i)
 delay(30)

setPwmLimit(limit)

Overrides default limit of 8bits for PWM precision. This value sets PWM counting upper limit and it’s expressed as decimal value. This limit will be applied to all 6 PWM pins.

from weioLib.weioIO import *
from weioLib.weioUserApi import attach, shared

def setup() :
 attach.process(loop)

def loop() :
 setPwmLimit(512)
 while True:
 print "fade in"
 # count from 0 to 255 by 5
 for i in range(0,512):
 pwmWrite(19,i)
 pwmWrite(20,i)
 pwmWrite(21,i)
 delay(3)
 print "fade out"
 for i in range(0,512):
 pwmWrite(19,512-i)
 pwmWrite(20,512-i)
 pwmWrite(21,512-i)
 delay(3)

setPwmPeriod0(period) and setPwmPeriod1(period)

Sets specific period frequencies on two different PWM banks. PWM0 bank refers to pins : 19,20,21 and PWM1 bank refers to pins : 22,23,24. See setPwmPeriod(period) function for more details.

setPwmLimit0(limit) and setPwmLimit1(limit)

Sets specific PWM limit precision on two different PWM banks. PWM0 bank refers to pins : 19,20,21 and PWM1 bank refers to pins : 22,23,24. See setPwmLimit(limit) function for more details.

attachInterrupt(pin, mode, callback) and detachInterrupt(pin)

Attaches signal interrupt on pin and calls given function each time when signal condition is fulfilled. Signal can fire interrupt on these conditions : signal is HIGH, signal is LOW, signal CHANGE, signal RISING and signal FALLING. There can be 8 interruptions declared. If you want to stop interruption on pin call detachInterruption(pin) function.
Callback function that is provided will be filled in option by integer type of signal change that occurred. Use interruptType[iType] to decode integer in human readable format : RISING, FALLING,...

Comming soon...

This is attached callback to interrupt

Comming soon...

 © Copyright 2016.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		WeIO latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

_static/up.png

tornadoTutorial.html

 Navigation

 		
 index

 		WeIO latest documentation »

Tornado Programing Tutorial

Introduction

This tutorial explains the basics of Tornado Python server programming
and IOLoop concept.

Installation

Tornado can be installed automatically, via Pythin Installer, i.e. pip tool.

apt-get install python-setuptools
easy_install pip
pip install tornado
pip install sockjs-tornado

Quick Start

Tornado is a scalable, non-blocking web server and web application framework written in Python.
It uses IOLoop class, which implements an I/O event loop for non-blocking sockets.

Tornado is a server, so it listens on the port and opens sockets to the clients.

Clients send request to Tornado server via routes, and these are basically addresses in the browser.
For example, if Tornado serves and application on http://example.com and client goes to this page,
then this addres itself is the route / and http:/example.com/test is the route /test.

For each route Tornado installs handler that is called once a message comes via this route.

Code examples for Tornado always come on two sides : one is server side and another is client side.
One without another does not have a big meaning, and this must be always paired up for the application purposes.

Server side

import tornado.httpserver
import tornado.websocket
import tornado.ioloop
import tornado.web

Define handler
class MainHandler(tornado.web.RequestHandler):
 """Regular HTTP handler to serve the index page"""
 def get(self):
 self.render('index.html')

class TestHandler(tornado.websocket.WebSocketHandler):
 def open(self):
 print 'new connection'
 self.write_message("Hello World")

 def on_message(self, message):
 print 'message received %s' % message

 def on_close(self):
 print 'connection closed'

Create main application
application = tornado.web.Application([
 (r"/", MainHandler),
 (r'/test', TestHandler),
])

if __name__ == "__main__":
 import logging
 logging.getLogger().setLevel(logging.DEBUG)

 # Make an application into HTTP server
 http_server = tornado.httpserver.HTTPServer(application)
 http_server.listen(8888)

 logging.info(" [*] Listening on 0.0.0.0:8888")

 tornado.ioloop.IOLoop.instance().start()

Client Side

<!DOCTYPE html>
<head>
 <meta charset="utf-8">
 <title>Tornado Test</title>

 <script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script>

</head>
<body>
 <script>
 $(document).ready(function () {
 var ws;

 ws = new WebSocket("ws://" + "localhost" + ":" + "8888" + "/test");

 ws.onmessage = function(evt) {alert("message received: " + evt.data)};

 ws.onclose = function() { alert("Connection close"); };

 ws.onopen = function() {
 console.log("ws open");

 };

 });
 </script>

 <p>Tornado test</i></p>

</body>
</html>

Explanation

Server

Main Function

Main application is intantiated in tornado.web.Application(). Tuples (route, handler) are
provided as an argument.

Handlers are the callbacks that are called once the socket is open or recives a message
via given route from the client.

Tornados IOLoop is started in the end. Tornado turns in the loop and polls opens sockets,
receiving messages or sending them back. This way client side has impression that server
gives a data push only when something happens. In the reality, Tornado always loops,
polling for the new events.

Although this gives the impression of asynchroniosity, a care must be taket not to stop IOLoop
by executing some blocking call in Tornado. Better practice is to use subprocess and call
these functions in separate process from Tornado, talking to them via pipe or even better via
local (UNIX) socket. Sockets are better choice, as Tornado already implements a bunch of fuctions
to talk to the sockets, like read untill regexp and similar, which are missing for pipe reading.

Handlers

MainHandler() only renders index.html. As it lives on the route /, it is called immedialety when
we point the browser to : localhost:8888.

TestHandler() is called whenever WebSocket is opened on the route /test.
This is a JavaScript code example that opens /test route in the clients code :

ws = new WebSocket("ws://localhost:8888/test");

When this happens, open() function of TestHandler() class is called and the word
new connection is printed on the console from which we started Tornado. Also, just after that
a message Hello World is sent to the client via the same WebSocket (the one that goes ove /test route).

Client

HTML code is self evident, apart from the embedded JavaScript. This is where all the magic happends.

The line in the HTML <head> :

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script>

fetches jQuery and is very important. Using standard $(document).ready() jQuery function, we can create (i.e. open) WebSocket
via /test route.

As explained in the capter before, when opening WebSocket from the client via /test route is done,
Tornado server will notice the message (in this case open message) coming via this route, and will
immediately call TestHandler() to handle this message. As it this message is WebSocket opening call,
TestHandler.open() function will be called.

Since this function also sends some text back to the client via same WebSocket (in our case called ws),
ws.onmessage() function will be called on the client side.

N.B. To examine and debug JavaScript and console.log() calls in Chrome, use “Shift + Ctrl + J”.

SockJS

General problem with WebSocket approach is that it is not supported by every browser yet.
So code that works in Chrome will not work in some other browser for example.

SockJS is a wrapper around WebSocket API (if it is supported by browser) or emulator for the browsers
that do not support it. This way it gives unified programming interface for asynchronious web application
with server push (i.e. WebSocket technology).

From the SockJS documentation :

*SockJS is a browser JavaScript library that provides a WebSocket-like object.
SockJS gives you a coherent, cross-browser, Javascript API which creates a low latency, full duplex,
cross-domain communication channel between the browser and the web server.

Under the hood SockJS tries to use native WebSockets first.
If that fails it can use a variety of browser-specific transport protocols and presents
them through WebSocket-like abstractions.

SockJS is intended to work for all modern browsers and in environments which
don’t support WebSocket protcol, for example behind restrictive corporate proxies.*

Here is the example of using SockJS API with Tornado :

Server

from tornado import web, ioloop
from sockjs.tornado import SockJSRouter, SockJSConnection

class TestConnection(SockJSConnection):
 def on_message(self, msg):
 logging.info("Handshake successful")

 def on_open(self, info):
 logging.info("ON_OPEN")

if __name__ == '__main__':
 import logging
 logging.getLogger().setLevel(logging.DEBUG)

 TestRouter = SockJSRouter(TestConnection, '/test')

 app = web.Application(TestRouter.urls)
 app.listen(8081)

 logging.info(" [*] Listening on 0.0.0.0:8081/test")

 ioloop.IOLoop.instance().start()

Client

<!doctype html>
<html><head>
 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js"></script>
 <script src="http://cdn.sockjs.org/sockjs-0.3.min.js"></script>

 </head>

 <body lang="en">
 <h1>SockJS Echo example</h1>

 <script>
 var sockjs_url = 'http://localhost:8081/test';
 var sockjs = new SockJS(sockjs_url);

 sockjs.onopen = function() {console.log('[*] open', sockjs.protocol);};
 sockjs.onclose = function() {console.log('[*] close');};
 </script>

</body></html>

Explanation

SockJS mimics WebSockets API but instead of WebSocket there is a SockJS Javascript object.

First, you need to load SockJS JavaScript library, for example you can put that in your http head:

<script src="http://cdn.sockjs.org/sockjs-0.3.min.js"></script>

After the script is loaded you can establish a connection with the SockJS server. Here’s a simple example:

<script>
var sock = new SockJS('http://mydomain.com/my_prefix');
sock.onopen = function() {
 console.log('open');
};
sock.onmessage = function(e) {
 console.log('message', e.data);
};
sock.onclose = function() {
 console.log('close');
};
</script>

N.B You can observe console.log() messages in browser by pressing Ctrl+Shift+J in Chrome

JSON VS. XML

In different languages data is held in structures of different data types.
To exchange these data objects between server and client, they have to be serialized and sent over
TCP/IP (Internet) Socket, which can only transfer raw bytes - i.e. serialized data - and has
no notion of structure.

When data are fetched on the server side of the socket, they can be casted into appropriate structure.

But what if the data are fetched on the client side? While JavaScript can cast this data into some
internal structure, most often server sends HTML presentable strings themselfs.

This is where XML came into the play, because it became possible to describe a data structure
in the string format, and then send this string “as is”, i.e. as a an array of character bytes to the client.

JavaScript running on the client would then parse XML and pick up the structure members and present them
in right places.

XML

The XMLHttpRequest object is used to exchange data with a server behind the scenes.

The XMLHttpRequest object is a developer’s dream, because you can:

		Update a web page without reloading the page

		Request data from a server after the page has loaded

		Receive data from a server after the page has loaded

		Send data to a server in the background

All modern browsers have a built-in XML parser.

An XML parser converts an XML document into an XML DOM object - which can then be manipulated with JavaScript.

JSON

JSON, or JavaScript Object Notation, is a text-based open standard designed
for human-readable data interchange. It is derived from the JavaScript scripting
language for representing simple data structures and associative arrays, called objects.
Despite its relationship to JavaScript, it is language-independent, with parsers available for many languages.

The JSON format is often used for serializing and transmitting structured data over a network connection.
It is used primarily to transmit data between a server and web application, serving as an alternative to XML.

Server

from tornado import web, ioloop.
from sockjs.tornado import SockJSRouter, SockJSConnection

class EchoConnection(SockJSConnection):
 def on_message(self, msg):
 logging.info("Handshake successful")
 self.send(msg)

 def on_open(self, info):
 logging.info("ON_OPEN")

if __name__ == '__main__':
 import logging
 logging.getLogger().setLevel(logging.DEBUG)

 EchoRouter = SockJSRouter(EchoConnection, '/echo')

 app = web.Application(EchoRouter.urls)
 app.listen(8081)

 logging.info(" [*] Listening on 0.0.0.0:8081/echo")

 ioloop.IOLoop.instance().start()

Client

<!doctype html>
<html><head>
 <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js"></script>
 <script src="http://cdn.sockjs.org/sockjs-0.3.min.js"></script>
 <style>
 .box {
 width: 300px;
 float: left;
 margin: 0 20px 0 20px;
 }
 .box div, .box input {
 border: 1px solid;
 -moz-border-radius: 4px;
 border-radius: 4px;
 width: 100%;
 padding: 0px;
 margin: 5px;
 }
 .box div {
 border-color: grey;
 height: 300px;
 overflow: auto;
 }
 .box input {
 height: 30px;
 }
 h1 {
 margin-left: 30px;
 }
 body {
 background-color: #F0F0F0;
 font-family: "Arial";
 }
 </style>

</head><body lang="en">
 <h1>SockJS Echo example</h1>
 <div id="first" class="box">
 <div></div>
 <form><input autocomplete="off" value="Type here..."></input></form>
 </div>
 <script>
 //var sockjs_url = '/echo';
 var sockjs_url = 'http://localhost:8081/echo';
 var sockjs = new SockJS(sockjs_url);
 $('#first input').focus();

 var div = $('#first div');
 var inp = $('#first input');
 var form = $('#first form');

 var print = function(m, p) {
 p = (p === undefined) ? '' : JSON.stringify(p);
 div.append($("<code>").text(m + ' ' + p));
 div.append($("
"));
 div.scrollTop(div.scrollTop()+10000);
 };

 sockjs.onopen = function() {print('[*] open', sockjs.protocol);};
 sockjs.onmessage = function(e) {print('[.] message', e.data);};
 sockjs.onclose = function() {print('[*] close');};

 form.submit(function() {
 print('[] sending', inp.val());
 sockjs.send(inp.val());
 inp.val('');
 return false;
 });
 </script>
 </body></html>

Explanation

JavaScript

A JSON parser will recognize only JSON text, rejecting all scripts.
In browsers that provide native JSON support, JSON parsers are also much faster than eval.
It is expected that native JSON support will be included in the next ECMAScript standard.

var myJSONText = JSON.stringify(myObject, replacer);

A JSON stringifier goes in the opposite direction, converting JavaScript data structures into JSON text.
JSON does not support cyclic data structures, so be careful to not give cyclical
structures to the JSON stringifier.

var myObject = JSON.parse(myJSONtext, reviver);

Python

The json module provides an API similar to pickle for converting in-memory Python objects to a
serialized representation known as JavaScript Object Notation (JSON).
Unlike pickle, JSON has the benefit of having implementations in many languages
(especially JavaScript), making it suitable for inter-application communication.

Python makes a difference between “dump()” and “dumps()” mehods :
The pickle.dumps() function (note the ‘s’ at the end of the function name) performs the same
serialization as the pickle.dump() function. Instead of taking a stream object and writing
the serialized data to a file on disk, it simply returns the serialized data.

The encoder understands Python’s native types by default (string, unicode, int, float, list, tuple, dict).

import json

data = [{ 'a':'A', 'b':(2, 4), 'c':3.0 }]
print 'DATA:', repr(data)

data_string = json.dumps(data)
print 'JSON:', data_string

Values are encoded in a manner very similar to Python’s repr() output.

$ python json_simple_types.py

DATA: [{'a': 'A', 'c': 3.0, 'b': (2, 4)}]
JSON: [{"a": "A", "c": 3.0, "b": [2, 4]}]

Encoding, then re-decoding may not give exactly the same type of object.

import json

data = [{ 'a':'A', 'b':(2, 4), 'c':3.0 }]
data_string = json.dumps(data)
print 'ENCODED:', data_string

decoded = json.loads(data_string)
print 'DECODED:', decoded

print 'ORIGINAL:', type(data[0]['b'])
print 'DECODED :', type(decoded[0]['b'])

In particular, strings are converted to unicode and tuples become lists.

$ python json_simple_types_decode.py

ENCODED: [{"a": "A", "c": 3.0, "b": [2, 4]}]
DECODED: [{u'a': u'A', u'c': 3.0, u'b': [2, 4]}]
ORIGINAL: <type 'tuple'>
DECODED : <type 'list'>

Bootstrap

Twitter Bootstrap is a free collection of tools for creating websites and web applications.
It contains HTML and CSS-based design templates for typography, forms, buttons,
charts, navigation and other interface components, as well as optional JavaScript extensions.

Basically, it is HTML framework, used for crating static HTML sites with JavaScript.

Weio project uses it as the presentation layer, i.e. for creating the static content that will be presented
in the browser on the client side.

It also uses jQuery JavaScript library that seamlessly integrates into the Bootstrap to do browser side scripting
and communication to the Tornado server via SockJS Client JavaScript library.

Here is the example of the script that gets the Bootstrap and does Hello World :

#!/bin/bash

wget http://twitter.github.io/bootstrap/assets/bootstrap.zip
unzip bootstrap.zip
cd bootstrap/

cat << END > index.html
<!DOCTYPE html>
<head>
 <title>Twitter Bootstrap</title>
 <style type='text/css'></style>

 <link href="css/bootstrap.min.css" rel="stylesheet">
 <script src="js/bootstrap.min.js"></script>

</head>
<body>
 Hello World!
 <button type="button" class="btn">Button</button>
</body>
</html>
END

References

		https://github.com/sihirliparmakcan/simple_websocket_example

		http://srchea.com/blog/2011/12/build-a-real-time-application-using-html5-websockets/

		http://www.rabbitmq.com/blog/2011/09/13/sockjs-websocket-emulation/

		http://getpython3.com/diveintopython3/serializing.html

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

officialWebSite/pyAPI.html

 Navigation

 		
 index

 		WeIO latest documentation »

Boilerplate

Python boilerplate

This is “Hello world” program written in Python. It prints “hello world” on console and blinks LED.

from weioLib.weioIO import *
from weioLib.weioUserApi import attach

def setup():
 attach.process(myProcess)

def myProcess():
 print("Hello world")
 pause = 100
 while True:
 digitalWrite(20, HIGH)
 delay(pause)
 digitalWrite(20, LOW)
 delay(pause)

Digital I/O

digitalWrite(pin, value)

Sets voltage to +3.3V or Ground on corresponding pin. This function takes two parameters : pin number and it’s state that can be HIGH = +3.3V or LOW = Ground.

from weioLib.weioIO import *
from weioLib.weioUserApi import attach

def setup():
 attach.process(myProcess)

def myProcess():
 while True :
 digitalWrite(18,LOW)
 delay(70)
 digitalWrite(20,HIGH)
 delay(70)
 digitalWrite(19,LOW)
 delay(70)
 digitalWrite(18,HIGH)
 delay(70)
 digitalWrite(20,LOW)
 delay(70)
 digitalWrite(19,HIGH)
 delay(70)

digitalRead(pin)

Reads actual voltage on corresponding pin. WeIO board is 5V TOLERANT. There are two possible answers : 0 if pin is connected to the Ground or 1 if positive voltage is detected. If only digitalRead function is provided, pin will be in HIGH Z state. If pinMode function is not called and digitalRead is performed pin state will be in high Z by default. See inputMode(pin,mode) [http://github.com/nodesign/weio/wiki/Weio-GPIO-API-using-UPER-board#inputmodepin-mode] function for more options.

from weioLib.weioIO import *
from weioLib.weioUserApi import attach
import time

def setup() :
 attach.process(loop)

def loop() :
 pin = 25
 while True:
 val = digitalRead(pin)
 print (val)
 delay(20)

pinMode(pin, mode)

Sets pin mode for digitalRead purpose. Available modes are : INPUT_HIGHZ, INPUT_PULLDOWN, INPUT_PULLUP, OUTPUT
This function activates pullups, pulldowns, high Z state or output mode on declared pins. If pinMode function is not called and digitalRead is performed pin state will be in high Z by default

from weioLib.weioIO import *
from weioLib.weioUserApi import attach
import time

def setup() :
 attach.process(loop)

def loop() :
 pin = 25
 inputMode(pin,INPUT_PULLDOWN)
 while True:
 val = digitalRead(pin)
 print (val)
 delay(20)

Analog I/O

analogRead(pin)

Reads input on specified Analog to Digital Convertor. ADC is available on pins from 25 to 32 Output is 10bits resolution or from 0-1023. ATTENTION when used ADC voltage tolerance is 3.3V maximum. ADC circuit is NOT 5V tolerant

from weioLib.weioIO import *
from weioLib.weioUserApi import attach

def setup():
 attach.process(myProcess)

def myProcess():
 pin = 31
 while True:
 print "analogRead pin ",pin," = ",analogRead(pin)
 delay(20)

pwmWrite(pin, value)

Pulse with modulation is available at 6 pins from 19-24 and has 16bits of precision. By default WeIO sets PWM frequency at 20000ms and 8bit precision or from 0-255. This setup is well situated for driving LED lighting. Precision and frequency can be changed separately by calling additional functions for other uses : setPwmPeriod and setPwmLimit. PWM can also drive two different frequencies on two separate banks of 3 pins. For this feature look functions : setPwmPeriod0, setPwmPeriod1, setPwmLimit0 and setPwmLimit1.

from weioLib.weioIO import *
from weioLib.weioUserApi import attach

def setup() :
 attach.process(loop)

def loop() :

 while True:
 print "fade in"
 # count from 0 to 255
 for i in range(256):
 pwmWrite(18,i)
 pwmWrite(19,i)
 pwmWrite(20,i)
 delay(3)

 print "fade out"
 for i in range(256):
 pwmWrite(18,255-i)
 pwmWrite(19,255-i)
 pwmWrite(20,255-i)
 delay(3)

setPwmPeriod(period)

Overrides default value of 1000us to set new period value for whole 6 PWM pins. Period value must be superior than 0 and inferior than 65535.

from weioLib.weioIO import *
from weioLib.weioUserApi import attach

def setup() :
 attach.process(loop)

def loop() :

 setPwmPeriod(500)
 while True:
 print "fade in"
 # count from 0 to 255
 for i in range(256):
 pwmWrite(18,i)
 pwmWrite(19,i)
 pwmWrite(20,i)
 delay(3)

 print "fade out"
 for i in range(256):
 pwmWrite(18,255-i)
 pwmWrite(19,255-i)
 pwmWrite(20,255-i)
 delay(3)

setPwmLimit(limit)

Overrides default limit of 8bits for PWM precision. This value sets PWM counting upper limit and it’s expressed as decimal value. This limit will be applied to all 6 PWM pins.

from weioLib.weioIO import *
from weioLib.weioUserApi import attach

def setup() :
 attach.process(loop)

def loop() :
 setPwmLimit(512)
 while True:
 print "fade in"
 # count from 0 to 255 by 5
 for i in range(513):
 pwmWrite(19,i)
 pwmWrite(20,i)
 pwmWrite(21,i)
 delay(3)
 print "fade out"
 for i in range(0,513):
 pwmWrite(19,512-i)
 pwmWrite(20,512-i)
 pwmWrite(21,512-i)
 delay(3)

SPI protocol

initSPI(port, divider=1, mode=0)

Returns SPI object on specified port. There are 2 SPI ports on WeIO board. Port 0 on pins 2(MOSI),3(MISO),4(SCK) and Port 1 on pins 8(MOSI),9(MISO),10(SCK).
Optional parameters :
Divider is SPI clock divider. SPI clock speed will be maximum clock speed (2MHz) divided by this value. Optional, default 1.
Mode is SPI mode number defining clock polarity and clock edge. See SPI specification for more details. There are 4 possible modes (0-3)

This example uses chip 74HC595 serial-in parallel out converter
from weioLib.weioIO import *
from weioLib.weioUserApi import attach
import struct

def setup():
 attach.process(myProcess)

def myProcess():
 print("SPI starts")
 spi = initSPI(0) # init SPI on port 0 (pins : 2,3,4)
 chipSelect = 5
 while True :
 # run thru all 8 outputs of 74HC595
 b = 0
 for i in range(9):
 digitalWrite(chipSelect, LOW)
 spi.transaction(struct.pack("B", b))
 digitalWrite(chipSelect, HIGH)
 b = 1
 b = b<<i
 delay(100)

transaction(data, response = 0)

Sends byte/bytes of information and returns response if asked.

from weioLib.weioIO import *
from weioLib.weioUserApi import attach
import struct

def setup():
 attach.process(myProcess)

def myProcess():
 print("SPI starts")
 spi = initSPI(0) # init SPI on port 0 (pins : 2,3,4)
 chipSelect = 5
 while True :
 # run thru all 8 outputs of 74HC595
 b = 0
 for i in range(9):
 digitalWrite(chipSelect, LOW)
 spi.transaction(struct.pack("B", b))
 digitalWrite(chipSelect, HIGH)
 b = 1
 b = b<<i
 delay(100)

Interrupts

attachInterrupt(pin, mode, callback)

Attaches signal interrupt on pin and calls given function each time when signal condition is fulfilled. Signal can fire interrupt on these conditions : signal is HIGH, signal is LOW, signal CHANGE, signal RISING and signal FALLING. There can be total of 8 interruptions declared. If you want to stop interruption, call detachInterruption(pin) function.
Callback function that is provided will be filled in option by integer type of signal change that occurred. Use interruptType[iType] to decode integer in human readable format : RISING, FALLING,...

detachInterrupt(pin)

Attaches signal interrupt on pin and calls given function each time when signal condition is fulfilled. Signal can fire interrupt on these conditions : signal is HIGH, signal is LOW, signal CHANGE, signal RISING and signal FALLING. There can be 8 interruptions declared. If you want to stop interruption on pin call detachInterruption(pin) function.
Callback function that is provided will be filled in option by integer type of signal change that occurred. Use interruptType[iType] to decode integer in human readable format : RISING, FALLING,...

Comming soon...

This is attached callback to interrupt

Comming soon...

Temperature

getTemperature(unit=”C”)

Reads board temperature from LM75. By default temperature is expressed in Celzius degrees. To express temperature in other units available units are (“C”, “K” and “F”). Example, call getTemperature(“K”) to get temparature in Kelvin unit

from weioLib.weioIO import *
from weioLib.weioUserApi import attach

def setup():
 attach.process(myProcess)

def myProcess():
 while True: #create an infinite loop
 print getTemperature()
 delay(300) #stop during 300ms

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

