
webassets Documentation
Release 0.12.1

Michael Elsdörfer

Dec 10, 2018

Contents

1 Introduction 1

2 Framework integration 3

3 Detailed documentation 37

Python Module Index 45

i

ii

CHAPTER 1

Introduction

webassets is a general, dependency-independent library for managing the assets of your web application. It can merge
and compress your CSS and JavaScript files, supporting a wide variety of different filters, and supports working with
compilers like CoffeeScript or Sass.

1

webassets Documentation, Release 0.12.1

2 Chapter 1. Introduction

CHAPTER 2

Framework integration

For some web frameworks, webassets provides special integration. If you are using one of the supported frame-
works, go to the respective page:

2.1 Using webassets in standalone mode

You don’t need to use one of the frameworks into which webassets can integrate. Using the underlying facilities
directly is almost as easy.

And depending on what libraries you use, there may still be some things webassets can help you with, see Integration
with other libraries.

2.1.1 Quick Start

First, create an environment instance:

from webassets import Environment
my_env = Environment(

directory='../static/media',
url='/media')

As you can see, the environment requires two arguments:

• the path in which your media files are located

• the url prefix under which the media directory is available. This prefix will be used when generating output urls.

Next, you need to define your assets, in the form of so called bundles, and register them with the environment. The
easiest way to do it is directly in code:

from webassets import Bundle
js = Bundle('common/jquery.js', 'site/base.js', 'site/widgets.js',

(continues on next page)

3

webassets Documentation, Release 0.12.1

(continued from previous page)

filters='jsmin', output='gen/packed.js')
my_env.register('js_all', js)

However, if you prefer, you can of course just as well define your assets in an external config file, and read them from
there. webassets includes a number of helper classes for some popular formats like YAML.

Using the bundles

Now with your assets properly defined, you want to merge and minify them, and include a link to the compressed
result in your web page. How you do this depends a bit on how your site is rendered.

>>> my_env['js_all'].urls()
('/media/gen/packed.js?9ae572c',)

This will always work. You can call your bundle’s urls() method, which will automatically merge and compress
the source files, and return the url to the final output file. Or, in debug mode, it would return the urls of each source
file:

>>> my_env.debug = True
>>> my_env['js_all'].urls()
('/media/common/jquery.js',
'/media/site/base.js',
'/media/site/widgets.js',)

Take these urls, pass them to your templates, or otherwise ensure they’ll be used on your website when linking to your
Javascript and CSS files.

For some templating languages, webassets provides extensions to access your bundles directly within the template.
See Integration with other libraries for more information.

Using the Command Line Interface

See Command Line Interface.

2.1.2 Further Reading

The environment

The environment has two responsibilities: One, it acts as a registry for bundles, meaning you only have to pass around
a single object to access all your bundles.

Also, it holds the configuration.

Registering bundles

Bundles can be registered with the environment:

my_bundle = Bundle(...)
environment.register('my_bundle', my_bundle)

A shortcut syntax is also available - you may simply call register() with the arguments which you would pass to
the Bundle constructor:

4 Chapter 2. Framework integration

webassets Documentation, Release 0.12.1

environment.register('my_bundle', 'file1.js', 'file2.js', output='packed.js')

The environment allows dictionary-style access to the registered bundles:

>>> len(environment)
1

>>> list(environment)
[<Bundle ...>]

>>> environment['my_bundle']
<Bundle ...>

Configuration

The environment supports the following configuration options:

Environment.directory
The base directory to which all paths will be relative to, unless load_path are given, in which case this will
only serve as the output directory.

In the url space, it is mapped to urls.

Environment.url
The url prefix used to construct urls for files in directory .

To define url spaces for other directories, see url_mapping.

Environment.debug
Enable/disable debug mode. Possible values are:

False Production mode. Bundles will be merged and filters applied.

True Enable debug mode. Bundles will output their individual source files.

“merge” Merge the source files, but do not apply filters.

Environment.auto_build
Controls whether bundles should be automatically built, and rebuilt, when required (if set to True), or whether
they must be built manually be the user, for example via a management command.

This is a good setting to have enabled during debugging, and can be very convenient for low-traffic sites in
production as well. However, there is a cost in checking whether the source files have changed, so if you care
about performance, or if your build process takes very long, then you may want to disable this.

By default automatic building is enabled.

Environment.url_expire
If you send your assets to the client using a far future expires header (to minimize the 304 responses your server
has to send), you need to make sure that assets will be reloaded by the browser when they change.

If this is set to True, then the Bundle URLs generated by webassets will have their version (see
Environment.versions) appended as a querystring.

An alternative approach would be to use the %(version)s placeholder in the bundle output file.

The default behavior (indicated by a None value) is to add an expiry querystring if the bundle does not use a
version placeholder.

2.1. Using webassets in standalone mode 5

webassets Documentation, Release 0.12.1

Environment.versions
Defines what should be used as a Bundle version.

A bundle’s version is what is appended to URLs when the url_expire option is enabled, and the version can
be part of a Bundle’s output filename by use of the %(version)s placeholder.

Valid values are:

timestamp The version is determined by looking at the mtime of a bundle’s output file.

hash (default) The version is a hash over the output file’s content.

False, None Functionality that requires a version is disabled. This includes the url_expire
option, the auto_build option, and support for the %(version)s placeholder.

Any custom version implementation.

Environment.manifest
A manifest persists information about the versions bundles are at.

The Manifest plays a role only if you insert the bundle version in your output filenames, or append the version
as a querystring to the url (via the url_expire option). It serves two purposes:

• Without a manifest, it may be impossible to determine the version at runtime. In a deployed app, the
media files may be stored on a different server entirely, and be inaccessible from the application code. The
manifest, if shipped with your application, is what still allows to construct the proper URLs.

• Even if it were possible to determine the version at runtime without a manifest, it may be a costly process,
and using a manifest may give you better performance. If you use a hash-based version for example, this
hash would need to be recalculated every time a new process is started.

Valid values are:

"cache" (default) The cache is used to remember version information. This is useful to avoid
recalculating the version hash.

"file:{path}" Stores version information in a file at {path}. If not path is given, the manifest
will be stored as .webassets-manifest in Environment.directory.

"json:{path}" Same as “file:{path}”, but uses JSON to store the information.

False, None No manifest is used.

Any custom manifest implementation.

Environment.cache
Controls the behavior of the cache. The cache will speed up rebuilding of your bundles, by caching individual
filter results. This can be particularly useful while developing, if your bundles would otherwise take a long time
to rebuild.

Possible values are:

False Do not use the cache.

True (default) Cache using default location, a .webassets-cache folder inside directory .

custom path Use the given directory as the cache directory.

Environment.load_path
An list of directories that will be searched for source files.

If this is set, source files will only be looked for in these directories, and directory is used as a location for
output files only.

To modify this list, you should use append_path(), since it makes it easy to add the corresponding url prefix
to url_mapping.

6 Chapter 2. Framework integration

webassets Documentation, Release 0.12.1

Environment.url_mapping
A dictionary of directory -> url prefix mappings that will be considered when generating urls, in addition to the
pair of directory and url, which is always active.

You should use append_path() to add directories to the load path along with their respective url spaces,
instead of modifying this setting directly.

Filter configuration

In addition to the standard options listed above, you can set custom configuration values using Environment.
config. This is so that you can configure filters through the environment:

environment.config['sass_bin'] = '/opt/sass/bin/sass')

This allows the Sass filter to find the sass binary.

Note: Filters usually allow you to define these values as system environment variables as well. That is, you could also
define a SASS_BIN environment variable to setup the filter.

Bundles

A bundle is simply a collection of files that you would like to group together, with some properties attached to tell
webassets how to do its job. Such properties include the filters which should be applied, or the location where the
output file should be stored.

Note that all filenames and paths considered to be relative to the directory setting of your environment, and
generated urls will be relative to the url setting.

Bundle('common/inheritance.js', 'portal/js/common.js',
'portal/js/plot.js', 'portal/js/ticker.js',
filters='jsmin',
output='gen/packed.js')

A bundle takes any number of filenames, as well as the following keyword arguments:

• filters - One or multiple filters to apply. If no filters are specified, the source files will merely be merged
into the output file. Filters are applied in the order in which they are given.

• merge - If True (the default), All source files will be merged and the result stored at output. Otherwise,
each file will be processed separately.

• output - Name/path of the output file. A %(version)s placeholder is supported here, which will be re-
placed with the version of the file. See URL Expiry (cache busting). If merge is True, this argument is required
and you can also use these placeholders: - %(name)s Just the name of the source file, without path or extension
(eg: ‘common’) - %(path)s The path and name of the source file (eg: ‘portal/js/common’) - %(ext)s The
extension of source file (eg: ‘js’)

• depends - Additional files that will be watched to determine if the bundle needs to be rebuilt. This is usually
necessary if you are using compilers that allow @import instructions. Commonly, one would use a glob
instruction here for simplicity:

Bundle(depends=('**/*.scss'))

Warning: Currently, using depends disables caching for a bundle.

2.1. Using webassets in standalone mode 7

webassets Documentation, Release 0.12.1

Nested bundles

Bundles may also contain other bundles:

from webassets import Bundle

all_js = Bundle(
jQuery
Bundle('common/libs/jquery/jquery.js',

'common/libs/jquery/jquery.ajaxQueue.js',
'common/libs/jquery/jquery.bgiframe.js',),

jQuery Tools
Bundle('common/libs/jqtools/tools.tabs.js',

'common/libs/jqtools/tools.tabs.history.js',
'common/libs/jqtools/tools.tabs.slideshow.js'),

Our own stuff
Bundle('common/inheritance.js', 'portal/js/common.js',

'portal/js/plot.js', 'portal/js/ticker.js'),
filters='jsmin',
output='gen/packed.js')

Here, the use of nested Bundle objects to group the JavaScript files together is purely aesthetical. You could just as
well pass all files as a flat list. However, there are some more serious application as well. One of them is the use of
CSS compilers. Another would be dealing with pre-compressed files:

If you are using a JavaScript library like jQuery, you might find yourself with a file like jquery.min.js in your
media directory, i.e. it is already minified - no reason to do it again.

While I would recommend always using the raw source files, and letting webassets do the compressing, if you do
have minified files that you need to merge together with uncompressed ones, you could do it like so:

register('js-all',
'jquery.min.js',
Bundle('uncompressed.js', filters='jsmin'))

Generally speaking, nested bundles allow you to apply different sets of filters to different groups of files, but still
everything together into a single output file.

Some things to consider when nesting bundles:

• Duplicate filters are only applied once (the leaf filter is applied).

• If a bundle that is supposed to be processed to a file does not define an output target, it simply serves as a
container of its sub-bundles, which in turn will be processed into their respective output files. In this case it
must not have any files of its own.

• A bundle with merge=False cannot contain nested bundles.

Building bundles

Once a bundle is defined, the thing you want to do is build it, and then include a link to the final merged and compressed
output file in your site.

There are different approaches.

8 Chapter 2. Framework integration

http://jquery.com/

webassets Documentation, Release 0.12.1

In Code

For starters, you can simply call the bundle’s urls() method:

>>> env['all_js'].urls()
('/media/gen/packed.js',)

Depending on the value of environment.debug. it will either return a list of all the bundle’s source files, or the
merged file pointed to by the bundle’s output option - all relative to the environment.url setting.

urls() will always ensure that the files behind the urls it returns actually exist. That is, it will merge and compress
the source files in production mode when first called, and update the compressed assets when it detects changes. This
behavior can be customized using various environment configuration values.

Call urls() once per request, and pass the resulting list of urls to your template, and you’re good to go.

In templates

For some template languages, webassets includes extensions which allow you to access the bundles you defined.
Further, they usually allow you to define bundles on-the-fly, so you can reference your assets directly from within your
templates, rather than predefining them in code.

For example, there is a template tag for Jinja2, which allows you do something like this:

{% assets filters="cssmin,datauri", output="gen/packed.css", "common/jquery.css",
→˓"site/base.css", "site/widgets.css" %}
...

Management command

In some cases you might prefer to cause a manual build of your bundles from the command line. See Command Line
Interface for more information.

Command Line Interface

While it’s often convenient to have webassets automatically rebuild your bundles on access, you sometimes may prefer
to build manually, for example for performance reasons in larger deployments.

webassets provides a command line interface which is supposed to help you manage your bundles manually. However,
due to the generic nature of the webassets core library, it usually needs some help setting up.

You may want to check the integration page to see if webassets already provides helpers to expose the command line
within your framework. If that is not the case, read on.

Build a custom command line client

In most cases, you can simply wrap around the webassets.script.main function. For example, the command
provided by Flask-Assets looks like this:

class ManageAssets(flaskext.script.Command):
def __init__(self, assets_env):

self.env = assets_env

(continues on next page)

2.1. Using webassets in standalone mode 9

webassets Documentation, Release 0.12.1

(continued from previous page)

def handle(self, app, prog, name, remaining_args):
from webassets import script
script.main(remaining_args, env=self.env)

In cases where this isn’t possible for some reason, or you need more control, you can work directly with the
webassets.script.CommandLineEnvironment class, which implements all the commands as simple meth-
ods.

import logging
from webassets.script import CommandLineEnvironment

Setup a logger
log = logging.getLogger('webassets')
log.addHandler(logging.StreamHandler())
log.setLevel(logging.DEBUG)

cmdenv = CommandLineEnvironment(assets_env, log)
cmdenv.invoke('build')

This would also work
cmdenv.build()

You are responsible for parsing the command line in any way you see fit (using for example the optparse or
argparse libraries, or whatever your framework provides as a command line utility shell), and then invoking the
corresponding methods on your instance of CommandLineEnvironment.

Included Commands

The following describes the commands that will be available to you through the webassets CLI interface.

build

Builds all bundles, regardless of whether they are detected as having changed or not.

watch

Start a daemon which monitors your bundle source files, and automatically rebuilds bundles when a change is detected.

This can be useful during development, if building is not instantaneous, and you are losing valuable time waiting for
the build to finish while trying to access your site.

clean

Will clear out the cache, which after a while can grow quite large.

Included Filters

The following filters are included in webassets, though some may require the installation of an external library, or
the availability of external tools.

10 Chapter 2. Framework integration

https://docs.python.org/3/library/optparse.html#module-optparse
https://docs.python.org/3/library/argparse.html#module-argparse

webassets Documentation, Release 0.12.1

You can also write custom filters.

Javascript cross-compilers

class webassets.filter.babel.Babel(**kwargs)
Processes ES6+ code into ES5 friendly code using Babel.

Requires the babel executable to be available externally. To install it, you might be able to do:

$ npm install --global babel-cli

You probably also want some presets:

$ npm install --global babel-preset-es2015

Example python bundle:

es2015 = get_filter('babel', presets='es2015')
bundle = Bundle('**/*.js', filters=es2015)

Example YAML bundle:

es5-bundle:
output: dist/es5.js
config:

BABEL_PRESETS: es2015
filters: babel
contents:

- file1.js
- file2.js

Supported configuration options:

BABEL_BIN The path to the babel binary. If not set the filter will try to run babel as if it’s in the system
path.

BABEL_PRESETS Passed straight through to babel --presets to specify which babel presets to use

BABEL_EXTRA_ARGS A list of manual arguments to be specified to the babel command

BABEL_RUN_IN_DEBUG May be set to False to make babel not run in debug

Javascript compressors

rjsmin

class webassets.filter.rjsmin.RJSMin(**kwargs)
Minifies Javascript by removing whitespace, comments, etc.

Uses the rJSmin library, which is included with webassets. However, if you have the external package installed,
it will be used instead. You may want to do this to get access to the faster C-extension.

Supported configuration options:

RJSMIN_KEEP_BANG_COMMENTS (boolean) Keep bang-comments (comments starting with an excla-
mation mark).

2.1. Using webassets in standalone mode 11

https://babeljs.io/
http://opensource.perlig.de/rjsmin/

webassets Documentation, Release 0.12.1

yui_js

Minify Javascript and CSS with YUI Compressor.

YUI Compressor is an external tool written in Java, which needs to be available. One way to get it is to install the
yuicompressor package:

pip install yuicompressor

No configuration is necessary in this case.

You can also get YUI compressor a different way and define a YUI_COMPRESSOR_PATH setting that points to the
.jar file. Otherwise, an environment variable by the same name is tried. The filter will also look for a JAVA_HOME
environment variable to run the .jar file, or will otherwise assume that java is on the system path.

class webassets.filter.yui.YUIJS(**kwargs)

closure_js

Minify Javascript with Google Closure Compiler.

Google Closure Compiler is an external tool written in Java, which needs to be available. One way to get it is to install
the closure package:

pip install closure

No configuration is necessary in this case.

You can also define a CLOSURE_COMPRESSOR_PATH setting that points to the .jar file. Otherwise, an environ-
ment variable by the same name is tried. The filter will also look for a JAVA_HOME environment variable to run the
.jar file, or will otherwise assume that java is on the system path.

Supported configuration options:

CLOSURE_COMPRESSOR_OPTIMIZATION Corresponds to Google Closure’s compilation level parameter.

CLOSURE_EXTRA_ARGS A list of further options to be passed to the Closure compiler. There are a lot of them.

For options which take values you want to use two items in the list:

['--output_wrapper', 'foo: %output%']

uglifyjs

class webassets.filter.uglifyjs.UglifyJS(**kwargs)
Minify Javascript using UglifyJS.

The filter requires version 2 of UglifyJS.

UglifyJS is an external tool written for NodeJS; this filter assumes that the uglifyjs executable is in the path.
Otherwise, you may define a UGLIFYJS_BIN setting.

Additional options may be passed to uglifyjs using the setting UGLIFYJS_EXTRA_ARGS, which expects
a list of strings.

12 Chapter 2. Framework integration

http://developer.yahoo.com/yui/compressor/
http://pypi.python.org/pypi/yuicompressor
https://code.google.com/p/closure-compiler/
http://pypi.python.org/pypi/closure
https://code.google.com/closure/compiler/docs/compilation_levels.html
https://github.com/mishoo/UglifyJS/

webassets Documentation, Release 0.12.1

jsmin

class webassets.filter.jsmin.JSMin(**kwargs)
Minifies Javascript by removing whitespace, comments, etc.

This filter uses a Python port of Douglas Crockford’s JSMin, which needs to be installed separately.

There are actually multiple implementations available, for example one by Baruch Even. Easiest to install via
PyPI is the one by Dave St. Germain:

$ pip install jsmin

The filter is tested with this jsmin package from PyPI, but will work with any module that exposes a
JavascriptMinify object with a minify method.

If you want to avoid installing another dependency, use the webassets.filter.rjsmin.RJSMin filter
instead.

jspacker

class webassets.filter.jspacker.JSPacker(**kwargs)
Reduces the size of Javascript using an inline compression algorithm, i.e. the script will be unpacked on the
client side by the browser.

Based on Dean Edwards’ jspacker 2, as ported by Florian Schulze.

slimit

class webassets.filter.slimit.Slimit(**kwargs)
Minifies JS.

Requires the slimit package (https://github.com/rspivak/slimit), which is a JavaScript minifier written in
Python. It compiles JavaScript into more compact code so that it downloads and runs faster.

It offers mangle and mangle_toplevel options through SLIMIT_MANGLE and
SLIMIT_MANGLE_TOPLEVEL

CSS compressors

cssmin

class webassets.filter.cssmin.CSSMin(**kwargs)
Minifies CSS.

Requires the cssmin package (http://github.com/zacharyvoase/cssmin), which is a port of the YUI CSS com-
pression algorithm.

cssutils

class webassets.filter.cssutils.CSSUtils(**kwargs)
Minifies CSS by removing whitespace, comments etc., using the Python cssutils library.

Note that since this works as a parser on the syntax level, so invalid CSS input could potentially result in data
loss.

2.1. Using webassets in standalone mode 13

http://www.crockford.com/javascript/jsmin.html
http://dean.edwards.name/packer/
https://github.com/rspivak/slimit
http://github.com/zacharyvoase/cssmin
http://cthedot.de/cssutils/

webassets Documentation, Release 0.12.1

yui_css

class webassets.filter.yui.YUICSS(**kwargs)

cleancss

class webassets.filter.cleancss.CleanCSS(**kwargs)
Minify css using Clean-css.

Clean-css is an external tool written for NodeJS; this filter assumes that the cleancss executable is in the
path. Otherwise, you may define a CLEANCSS_BIN setting.

Additional options may be passed to cleancss binary using the setting CLEANCSS_EXTRA_ARGS, which
expects a list of strings.

slimmer_css

class webassets.filter.slimmer.CSSSlimmer(**kwargs)
Minifies CSS by removing whitespace, comments etc., using the Python slimmer library.

rcssmin

class webassets.filter.rcssmin.RCSSMin(**kwargs)
Minifies CSS.

Requires the rcssmin package (https://github.com/ndparker/rcssmin). Alike ‘cssmin’ it is a port of the YUI
CSS compression algorithm but aiming for speed instead of maximum compression.

Supported configuration options: RCSSMIN_KEEP_BANG_COMMENTS (boolean)

Keep bang-comments (comments starting with an exclamation mark).

JS/CSS compilers

postcss

class webassets.filter.postcss.PostCSS(**kwargs)
Processes CSS code using PostCSS.

Requires the postcss executable to be available externally. To install it, you might be able to do:

$ npm install --global postcss

You should also install the plugins you want to use:

$ npm install --global postcss-cssnext

You can configure postcss in postcss.config.js:

module.exports = {
plugins: [

require('postcss-cssnext')({
// optional configuration for cssnext

(continues on next page)

14 Chapter 2. Framework integration

https://github.com/GoalSmashers/clean-css/
http://pypi.python.org/pypi/slimmer/
https://github.com/ndparker/rcssmin
http://postcss.org/

webassets Documentation, Release 0.12.1

(continued from previous page)

})
],

};

Supported configuration options:

POSTCSS_BIN Path to the postcss executable used to compile source files. By default, the filter will attempt
to run postcss via the system path.

POSTCSS_EXTRA_ARGS Additional command-line options to be passed to postcss using this setting,
which expects a list of strings.

clevercss

class webassets.filter.clevercss.CleverCSS(**kwargs)
Converts CleverCSS markup to real CSS.

If you want to combine it with other CSS filters, make sure this one runs first.

less

class webassets.filter.less.Less(**kwargs)
Converts less markup to real CSS.

This depends on the NodeJS implementation of less, installable via npm. To use the old Ruby-based version
(implemented in the 1.x Ruby gem), see Less.

Supported configuration options:

LESS_BIN (binary) Path to the less executable used to compile source files. By default, the filter will attempt
to run lessc via the system path.

LESS_LINE_NUMBERS (line_numbers) Outputs filename and line numbers. Can be either ‘comments’,
which will output the debug info within comments, ‘mediaquery’ that will output the information within
a fake media query which is compatible with the SASSPath to the less executable used to compile source
files.

LESS_RUN_IN_DEBUG (run_in_debug) By default, the filter will compile in debug mode. Since the less
compiler is written in Javascript and capable of running in the browser, you can set this to False to have
your original less source files served (see below).

LESS_PATHS (paths) Add include paths for less command line. It should be a list of paths relatives to Envi-
ronment.directory or absolute paths. Order matters as less will pick the first file found in path order.

LESS_AS_OUTPUT (boolean) By default, this works as an “input filter”, meaning less is called for each
source file in the bundle. This is because the path of the source file is required so that @import directives
within the Less file can be correctly resolved.

However, it is possible to use this filter as an “output filter”, meaning the source files will first be concate-
nated, and then the Less filter is applied in one go. This can provide a speedup for bigger projects.

Compiling less in the browser

less is an interesting case because it is written in Javascript and capable of running in the browser. While for
performance reason you should prebuild your stylesheets in production, while developing you may be interested
in serving the original less files to the client, and have less compile them in the browser.

2.1. Using webassets in standalone mode 15

http://sandbox.pocoo.org/clevercss/
http://lesscss.org/

webassets Documentation, Release 0.12.1

To do so, you first need to make sure the less filter is not applied when Environment.debug is True. You
can do so via an option:

env.config['less_run_in_debug'] = False

Second, in order for the less to identify the less source files as needing to be compiled, they have to be referenced
with a rel="stylesheet/less" attribute. One way to do this is to use the Bundle.extra dictionary,
which works well with the template tags that webassets provides for some template languages:

less_bundle = Bundle(
'**/*.less',
filters='less',
extra={'rel': 'stylesheet/less' if env.debug else 'stylesheet'}

)

Then, for example in a Jinja2 template, you would write:

{% assets less_bundle %}
<link rel="{{ EXTRA.rel }}" type="text/css" href="{{ ASSET_URL }}">

{% endassets %}

With this, the <link> tag will sport the correct rel value both in development and in production.

Finally, you need to include the less compiler:

if env.debug:
js_bundle.contents += 'http://lesscss.googlecode.com/files/less-1.3.0.min.js'

less_ruby

class webassets.filter.less_ruby.Less(**kwargs)
Converts Less markup to real CSS.

This uses the old Ruby implementation available in the 1.x versions of the less gem. All 2.x versions of the gem
are wrappers around the newer NodeJS/Javascript implementation, which you are generally encouraged to use,
and which is available in webassets via the Less filter.

This filter for the Ruby version is being kept around for backwards-compatibility.

Supported configuration options:

LESS_RUBY_PATH (binary) Path to the less executable used to compile source files. By default, the filter
will attempt to run lessc via the system path.

sass

class webassets.filter.sass.Sass(**kwargs)
Converts Sass markup to real CSS.

Requires the Sass executable to be available externally. To install it, you might be able to do:

$ sudo gem install sass

By default, this works as an “input filter”, meaning sass is called for each source file in the bundle. This is
because the path of the source file is required so that @import directives within the Sass file can be correctly
resolved.

16 Chapter 2. Framework integration

http://lesscss.org/
http://sass-lang.com/

webassets Documentation, Release 0.12.1

However, it is possible to use this filter as an “output filter”, meaning the source files will first be concatenated,
and then the Sass filter is applied in one go. This can provide a speedup for bigger projects.

To use Sass as an output filter:

from webassets.filter import get_filter
sass = get_filter('sass', as_output=True)
Bundle(...., filters=(sass,))

However, if you want to use the output filter mode and still also use the @import directive in your Sass files, you
will need to pass along the load_paths argument, which specifies the path to which the imports are relative
to (this is implemented by changing the working directory before calling the sass executable):

sass = get_filter('sass', as_output=True, load_paths='/tmp')

With as_output=True, the resulting concatenation of the Sass files is piped to Sass via stdin (cat ... |
sass --stdin ...) and may cause applications to not compile if import statements are given as relative
paths.

For example, if a file foo/bar/baz.scss imports file foo/bar/bat.scss (same directory) and the
import is defined as @import "bat"; then Sass will fail compiling because Sass has naturally no information
on where baz.scss is located on disk (since the data was passed via stdin) in order for Sass to resolve the
location of bat.scss:

Traceback (most recent call last):
...
webassets.exceptions.FilterError: sass: subprocess had error: stderr=(sass):1:
→˓File to import not found or unreadable: bat. (Sass::SyntaxError)

Load paths:
/path/to/project-foo

on line 1 of standard input
Use --trace for backtrace.

, stdout=, returncode=65

To overcome this issue, the full path must be provided in the import statement, @import "foo/bar/bat",
then webassets will pass the load_paths argument (e.g., /path/to/project-foo) to Sass via its -I
flags so Sass can resolve the full path to the file to be imported: /path/to/project-foo/foo/bar/bat

Support configuration options:

SASS_BIN The path to the Sass binary. If not set, the filter will try to run sass as if it’s in the system path.

SASS_STYLE The style for the output CSS. Can be one of expanded (default), nested, compact or
compressed.

SASS_DEBUG_INFO If set to True, will cause Sass to output debug information to be used by the FireSass
Firebug plugin. Corresponds to the --debug-info command line option of Sass.

Note that for this, Sass uses @media rules, which are not removed by a CSS compressor. You will thus
want to make sure that this option is disabled in production.

By default, the value of this option will depend on the environment DEBUG setting.

SASS_LINE_COMMENTS Passes --line-comments flag to sass which emit comments in the generated
CSS indicating the corresponding source line.

Note that this option is disabled by Sass if --style compressed or --debug-info options are
provided.

Enabled by default. To disable, set empty environment variable SASS_LINE_COMMENTS= or pass
line_comments=False to this filter.

2.1. Using webassets in standalone mode 17

webassets Documentation, Release 0.12.1

SASS_AS_OUTPUT By default, this works as an “input filter”, meaning sass is called for each source file
in the bundle. This is because the path of the source file is required so that @import directives within the
Sass file can be correctly resolved.

However, it is possible to use this filter as an “output filter”, meaning the source files will first be concate-
nated, and then the Sass filter is applied in one go. This can provide a speedup for bigger projects.

It will also allow you to share variables between files.

SASS_SOURCE_MAP If provided, this will generate source maps in the output depending on the type speci-
fied. By default this will use Sass’s auto. Possible values are auto, file, inline, or none.

SASS_LOAD_PATHS It should be a list of paths relatives to Environment.directory or absolute paths. Order
matters as sass will pick the first file found in path order. These are fed into the -I flag of the sass command
and is used to control where sass imports code from.

SASS_LIBS It should be a list of paths relatives to Environment.directory or absolute paths. These are fed into
the -r flag of the sass command and is used to require ruby libraries before running sass.

scss

class webassets.filter.sass.SCSS(*a, **kw)
Version of the sass filter that uses the SCSS syntax.

compass

class webassets.filter.compass.Compass(**kwargs)
Converts Compass .sass files to CSS.

Requires at least version 0.10.

To compile a standard Compass project, you only need to have to compile your main screen.sass, print.
sass and ie.sass files. All the partials that you include will be handled by Compass.

If you want to combine the filter with other CSS filters, make sure this one runs first.

Supported configuration options:

COMPASS_BIN The path to the Compass binary. If not set, the filter will try to run compass as if it’s in the
system path.

COMPASS_PLUGINS Compass plugins to use. This is equivalent to the --require command line option
of the Compass. and expects a Python list object of Ruby libraries to load.

COMPASS_CONFIG An optional dictionary of Compass configuration options. The values are emitted as
strings, and paths are relative to the Environment’s directory by default; include a project_path
entry to override this.

The sourcemap option has a caveat. A file called _.css.map is created by Compass in the tempdir (where
_.scss is the original asset), which is then moved into the output_path directory. Since the tempdir is created
one level down from the output path, the relative links in the sourcemap should correctly map. This file,
however, will not be versioned, and thus this option should ideally only be used locally for development
and not in production with a caching service as the _.css.map file will not be invalidated.

pyscss

class webassets.filter.pyscss.PyScss(**kwargs)
Converts Scss markup to real CSS.

18 Chapter 2. Framework integration

http://compass-style.org/
http://compass-style.org/help/documentation/configuration-reference/
http://sass-lang.com/

webassets Documentation, Release 0.12.1

This uses PyScss, a native Python implementation of the Scss language. The PyScss module needs to be in-
stalled. It’s API has been changing; currently, version 1.1.5 is known to be supported.

This is an alternative to using the sass or scss filters, which are based on the original, external tools.

Note: The Sass syntax is not supported by PyScss. You need to use the sass filter based on the original Ruby
implementation instead.

Supported configuration options:

PYSCSS_DEBUG_INFO (debug_info) Include debug information in the output for use with FireSass.

If unset, the default value will depend on your Environment.debug setting.

PYSCSS_LOAD_PATHS (load_paths) Additional load paths that PyScss should use.

Warning: The filter currently does not automatically use Environment.load_path for this.

PYSCSS_STATIC_ROOT (static_root) The directory PyScss should look in when searching for include files
that you have referenced. Will use Environment.directory by default.

PYSCSS_STATIC_URL (static_url) The url PyScss should use when generating urls to files in
PYSCSS_STATIC_ROOT. Will use Environment.url by default.

PYSCSS_ASSETS_ROOT (assets_root) The directory PyScss should look in when searching for things like
images that you have referenced. Will use PYSCSS_STATIC_ROOT by default.

PYSCSS_ASSETS_URL (assets_url) The url PyScss should use when generating urls to files in
PYSCSS_ASSETS_ROOT. Will use PYSCSS_STATIC_URL by default.

PYSCSS_STYLE (style) The style of the output CSS. Can be one of nested (default), compact,
compressed, or expanded.

libsass

class webassets.filter.libsass.LibSass(**kwargs)
Converts Sass markup to real CSS.

Requires the libsass package (https://pypi.python.org/pypi/libsass):

pip install libsass

libsass is binding to C/C++ implementation of a Sass compiler Libsass

Configuration options:

LIBSASS_STYLE (style) an optional coding style of the compiled result. choose one of: nested (default),
expanded, compact, compressed

LIBSASS_INCLUDES (includes) an optional list of paths to find @imported SASS/CSS source files

LIBSASS_AS_OUTPUT use this filter as an “output filter”, meaning the source files will first be concatenated,
and then the Sass filter is applied.

See libsass documentation for full documentation about these configuration options:

http://hongminhee.org/libsass-python/sass.html#sass.compile

2.1. Using webassets in standalone mode 19

https://github.com/Kronuz/pyScss
http://sass-lang.com/
https://pypi.python.org/pypi/libsass
http://dahlia.kr/libsass-python
https://github.com/hcatlin/libsass
http://hongminhee.org/libsass-python/sass.html#sass.compile

webassets Documentation, Release 0.12.1

Example:

Define a bundle for style.scss that contains @imports to files in subfolders:

Bundle('style.scss', filters='libsass', output='style.css', depends='**/*.scss')

node-sass

class webassets.filter.node_sass.NodeSass(**kwargs)
Converts Scss markup to real CSS.

This uses node-sass which is a wrapper around libsass.

This is an alternative to using the sass or scss filters, which are based on the original, external tools.

Supported configuration options:

NODE_SASS_DEBUG_INFO (debug_info) Include debug information in the output

If unset, the default value will depend on your Environment.debug setting.

NODE_SASS_LOAD_PATHS (load_paths) Additional load paths that node-sass should use.

NODE_SASS_STYLE (style) The style of the output CSS. Can be one of nested (default), compact,
compressed, or expanded.

NODE_SASS_CLI_ARGS (cli_args) Additional cli arguments

node-scss

class webassets.filter.node_sass.NodeSCSS(*a, **kw)
Version of the node-sass filter that uses the SCSS syntax.

stylus

class webassets.filter.stylus.Stylus(**kwargs)
Converts Stylus markup to CSS.

Requires the Stylus executable to be available externally. You can install it using the Node Package Manager:

$ npm install -g stylus

Supported configuration options:

STYLUS_BIN The path to the Stylus binary. If not set, assumes stylus is in the system path.

STYLUS_PLUGINS A Python list of Stylus plugins to use. Each plugin will be included via Stylus’s
command-line --use argument.

STYLUS_EXTRA_ARGS A Python list of any additional command-line arguments.

STYLUS_EXTRA_PATHS A Python list of any additional import paths.

20 Chapter 2. Framework integration

http://sass-lang.com/
http://learnboost.github.com/stylus/
http://npmjs.org/

webassets Documentation, Release 0.12.1

coffeescript

class webassets.filter.coffeescript.CoffeeScript(**kwargs)
Converts CoffeeScript to real JavaScript.

If you want to combine it with other JavaScript filters, make sure this one runs first.

Supported configuration options:

COFFEE_NO_BARE Set to True to compile with the top-level function wrapper (suppresses the –bare option
to coffee, which is used by default).

typescript

class webassets.filter.typescript.TypeScript(**kwargs)
Compile TypeScript to JavaScript.

TypeScript is an external tool written for NodeJS. This filter assumes that the tsc executable is in the path.
Otherwise, you may define the TYPESCRIPT_BIN setting.

To specify TypeScript compiler options, TYPESCRIPT_CONFIG may be defined. E.g.:
--removeComments true --target ES6.

requirejs

class webassets.filter.requirejs.RequireJSFilter(**kwargs)
Optimizes AMD-style modularized JavaScript into a single asset using RequireJS.

This depends on the NodeJS executable r.js; install via npm:

$ npm install -g requirejs

Details on configuring r.js can be found at http://requirejs.org/docs/optimization.html#basics.

Supported configuration options:

executable (env: REQUIREJS_BIN)

Path to the RequireJS executable used to compile source files. By default, the filter will attempt to
run r.js via the system path.

config (env: REQUIREJS_CONFIG)

The RequireJS options file. The path is taken to be relative to the Environment.directory (by default
is /static).

baseUrl (env: REQUIREJS_BASEURL)

The baseUrl parameter to r.js; this is the directory that AMD modules will be loaded from. The
path is taken relative to the Environment.directory (by default is /static). Typically, this is used in
conjunction with a baseUrl parameter set in the config options file, where the baseUrl value in the
config file is used for client-side processing, and the value here is for server-side processing.

optimize (env: REQUIREJS_OPTIMIZE)

The optimize parameter to r.js; controls whether or not r.js minifies the output. By default, it is
enabled, but can be set to none to disable minification. The typical scenario to disable minification is
if you do some additional processing of the JavaScript (such as removing console.log() lines)
before minification by the rjsmin filter.

2.1. Using webassets in standalone mode 21

http://jashkenas.github.com/coffee-script/
http://www.typescriptlang.org
http://requirejs.org/
http://requirejs.org/docs/optimization.html#basics

webassets Documentation, Release 0.12.1

extras (env: REQUIREJS_EXTRAS)

Any other command-line parameters to be passed to r.js. The string is expected to be in unix shell-
style format, meaning that quotes can be used to escape spaces, etc.

run_in_debug (env: REQUIREJS_RUN_IN_DEBUG)

Boolean which controls if the AMD requirejs is evaluated client-side or server-side in debug mode.
If set to a truthy value (e.g. ‘yes’), then server-side compilation is done, even in debug mode. The
default is false.

Client-side AMD evaluation

AMD modules can be loaded client-side without any processing done on the server-side. The advantage to this
is that debugging is easier because the browser can tell you which source file is responsible for a particular line
of code. The disadvantage is that it means that each loaded AMD module is a separate HTTP request. When
running client-side, the client needs access to the config – for this reason, when running in client-side mode, the
webassets environment must be adjusted to include a reference to this configuration. Typically, this is done by
adding something similar to the following during webassets initialization:

if env.debug and not env.config.get('requirejs_run_in_debug', True):
env['requirejs'].contents += ('requirejs-browser-config.js',)

And the file requirejs-browser-config.js will look something like:

require.config({baseUrl: '/static/script/'});

Set the run_in_debug option to control client-side or server-side compilation in debug.

JavaScript templates

jst

class webassets.filter.jst.JST(**kwargs)
This filter processes generic JavaScript templates. It will generate JavaScript code that runs all files through a
template compiler, and makes the templates available as an object.

It was inspired by Jammit.

For example, if you have a file named license.jst:

<div class="drivers-license">
<h2>Name: <%= name %></h2>
Hometown: <%= birthplace %>

</div>

Then, after applying this filter, you could use the template in JavaScript:

JST.license({name : "Moe", birthplace : "Brooklyn"});

The name of each template is derived from the filename. If your JST files are spread over different directories,
the path up to the common prefix will be included. For example:

Bundle('templates/app1/license.jst', 'templates/app2/profile.jst',
filters='jst')

22 Chapter 2. Framework integration

http://documentcloud.github.com/underscore/#template

webassets Documentation, Release 0.12.1

will make the templates available as app1/license and app2/profile.

Note: The filter is “generic” in the sense that it does not actually compile the templates, but wraps them in a
JavaScript function call, and can thus be used with any template language. webassets also has filters for specific
JavaScript template languages like DustJS or Handlebars, and those filters precompile the templates on the
server, which means a performance boost on the client-side.

Unless configured otherwise, the filter will use the same micro-templating language that Jammit uses, which is
turn is the same one that is available in underscore.js. The JavaScript code necessary to compile such templates
will implicitly be included in the filter output.

Supported configuration options:

JST_COMPILER (template_function) A string that is inserted into the generated JavaScript code in place
of the function to be called that should do the compiling. Unless you specify a custom function here, the
filter will include the JavaScript code of it’s own micro-templating language, which is the one used by
underscore.js and Jammit.

If you assign a custom function, it is your responsibility to ensure that it is available in your final JavaScript.

If this option is set to False, then the template strings will be output directly, which is to say, JST.foo
will be a string holding the raw source of the foo template.

JST_NAMESPACE (namespace) How the templates should be made available in JavaScript. Defaults to
window.JST, which gives you a global JST object.

JST_BARE (bare) Whether everything generated by this filter should be wrapped inside an anonymous func-
tion. Default to False.

Note: If you enable this option, the namespace must be a property of the window object, or you won’t
be able to access the templates.

JST_DIR_SEPARATOR (separator) The separator character to use for templates within directories. Defaults
to ‘/’

handlebars

class webassets.filter.handlebars.Handlebars(**kwargs)
Compile Handlebars templates.

This filter assumes that the handlebars executable is in the path. Otherwise, you may define a
HANDLEBARS_BIN setting.

Note: Use this filter if you want to precompile Handlebars templates. If compiling them in the browser is
acceptable, you may use the JST filter, which needs no external dependency.

Warning: Currently, this filter is not compatible with input filters. Any filters that would run during the
input-stage will simply be ignored. Input filters tend to be other compiler-style filters, so this is unlikely to
be an issue.

2.1. Using webassets in standalone mode 23

http://documentcloud.github.com/underscore/#template
http://documentcloud.github.com/underscore/#template
http://documentcloud.github.com/underscore/#template
http://documentcloud.github.com/underscore/#template
http://handlebarsjs.com/

webassets Documentation, Release 0.12.1

dustjs

class webassets.filter.dust.DustJS(**kwargs)
DustJS templates compilation filter.

Takes a directory full .dust files and creates a single Javascript object that registers to the dust global when
loaded in the browser:

Bundle('js/templates/', filters='dustjs')

Note that in the above example, a directory is given as the bundle contents, which is unusual, but required by
this filter.

This uses the dusty compiler, which is a separate project from the DustJS implementation. To install dusty
together with LinkedIn’s version of dustjs (the original does not support NodeJS > 0.4):

npm install dusty
rm -rf node_modules/dusty/node_modules/dust
git clone https://github.com/linkedin/dustjs node_modules/dust

Note: To generate the DustJS client-side Javascript, you can then do:

cd node_modules/dust
make dust
cp dist/dist-core...js your/static/assets/path

For compilation, set the DUSTY_PATH=.../node_modules/dusty/bin/dusty. Optionally, set
NODE_PATH=.../node.

Other

cssrewrite

class webassets.filter.cssrewrite.CSSRewrite(replace=False)
Source filter that rewrites relative urls in CSS files.

CSS allows you to specify urls relative to the location of the CSS file. However, you may want to store your
compressed assets in a different place than source files, or merge source files from different locations. This
would then break these relative CSS references, since the base URL changed.

This filter transparently rewrites CSS url() instructions in the source files to make them relative to the location
of the output path. It works as a source filter, i.e. it is applied individually to each source file before they are
merged.

No configuration is necessary.

The filter also supports a manual mode:

get_filter('cssrewrite', replace={'old_directory':'/custom/path/'})

This will rewrite all urls that point to files within old_directory to use /custom/path as a prefix instead.

You may plug in your own replace function:

24 Chapter 2. Framework integration

http://akdubya.github.com/dustjs/

webassets Documentation, Release 0.12.1

get_filter('cssrewrite', replace=lambda url: re.sub(r'^/?images/', '/images/',
→˓url))
get_filter('cssrewrite', replace=lambda url: '/images/'+url[7:] if url.startswith(
→˓'images/') else url)

datauri

class webassets.filter.datauri.CSSDataUri(**kwargs)
Will replace CSS url() references to external files with internal data: URIs.

The external file is now included inside your CSS, which minimizes HTTP requests.

Note: Data Uris have clear disadvantages, so put some thought into if and how you would like to use them.
Have a look at some performance measurements.

The filter respects a DATAURI_MAX_SIZE option, which is the maximum size (in bytes) of external files to
include. The default limit is what I think should be a reasonably conservative number, 2048 bytes.

cssprefixer

class webassets.filter.cssprefixer.CSSPrefixer(**kwargs)
Uses CSSPrefixer to add vendor prefixes to CSS files.

autoprefixer

class webassets.filter.autoprefixer.AutoprefixerFilter(**kwargs)
Prefixes vendor-prefixes using autoprefixer <https://github.com/ai/autoprefixer>, which uses the Can I Use?
<http://www.caniuse.com> database to know which prefixes need to be inserted.

This depends on the autoprefixer <https://github.com/ai/autoprefixer> command line tool being installed (use
npm install autoprefixer).

Supported configuration options:

AUTOPREFIXER_BIN Path to the autoprefixer executable used to compile source files. By default, the filter
will attempt to run autoprefixer via the system path.

AUTOPREFIXER_BROWSERS The browser expressions to use. This corresponds to the --browsers
<value> flag, see the –browsers documentation <https://github.com/ai/autoprefixer#browsers>. By de-
fault, this flag won’t be passed, and autoprefixer’s default will be used.

Example:

AUTOPREFIXER_BROWSERS = ['> 1%', 'last 2 versions', 'firefox 24', 'opera 12.1
→˓']

AUTOPREFIXER_EXTRA_ARGS Additional options may be passed to autoprefixer using this set-
ting, which expects a list of strings.

2.1. Using webassets in standalone mode 25

http://en.wikipedia.org/wiki/Data_URI_scheme
http://stackoverflow.com/questions/5258057/images-in-css-or-html-as-data-base64
http://www.ravelrumba.com/blog/data-uris-for-css-images-more-tests-more-questions/
http://github.com/myfreeweb/cssprefixer/

webassets Documentation, Release 0.12.1

jinja2

class webassets.filter.jinja2.Jinja2(**kwargs)
Process a file through the Jinja2 templating engine.

Requires the jinja2 package (https://github.com/mitsuhiko/jinja2).

The Jinja2 context can be specified with the JINJA2_CONTEXT configuration option or directly with con-
text={. . . }. Example:

Bundle('input.css', filters=Jinja2(context={'foo': 'bar'}))

Additionally to enable template loading mechanics from your project you can provide JINJA2_ENV or
jinja2_env arg to make use of already created environment.

spritemapper

class webassets.filter.spritemapper.Spritemapper(**kwargs)
Generate CSS spritemaps using Spritemapper, a Python utility that merges multiple images into one and gener-
ates CSS positioning for the corresponding slices. Installation is easy:

pip install spritemapper

Supported configuration options:

SPRITEMAPPER_PADDING A tuple of integers indicating the number of pixels of padding to place between
sprites

SPRITEMAPPER_ANNEAL_STEPS Affects the number of combinations to be attempted by the box packer
algorithm

Note: Since the spritemapper command-line utility expects source and output files to be on the filesystem,
this filter interfaces directly with library internals instead. It has been tested to work with Spritemapper version
1.0.

Creating custom filters

Creating custom filters can be easy, or very easy.

Before we get to that though, it is first necessary to understand that there are two types of filters: input filters and
output filters. Output filters are applied after the complete content after all a bundle’s contents have been merged
together. Input filters, on the other hand, are applied to each source file after it is read from the disk. In the case of
nested bundles, input filters will be passed down, with the input filters of a parent bundle are applied before the output
filter of a child bundle:

child_bundle = Bundle('file.css', filters='yui_css')
Bundle(child_bundle, filters='cssrewrite')

In this example, because cssrewrite acts as an input filter, what will essentially happen is:

yui_css(cssrewrite(file.css))

To be even more specific, since a single filter can act as both an input and an output filter, the call chain will actually
look something like this:

26 Chapter 2. Framework integration

https://github.com/mitsuhiko/jinja2
http://yostudios.github.com/Spritemapper/

webassets Documentation, Release 0.12.1

cssrewrite.output(yui_css.output((cssrewrite.input((yui_css.input(file.css)))))

The usual reason to use an input filter is that the filter’s transformation depends on the source file’s filename. For
example, the cssrewrite filter needs to know the location of the source file relative to the final output file, so it can
properly update relative references. Another example are CSS converters like less, which work relative to the input
filename.

With that in mind. . .

The very easy way

In the simplest case, a filter is simply a function that takes two arguments, an input stream and an output stream.

def noop(_in, out, **kw):
out.write(_in.read())

That’s it! You can use this filter when defining your bundles:

bundle = Bundle('input.js', filters=(noop,))

If you are using Jinja2, you can also specify the callable inline, provided that it is available in the context:

{% assets filters=(noop, 'jsmin') ... %}

It even works when using Django templates, although here, you are of course more limited in terms of syntax; if you
want to use multiple filters, you need to combine them:

{% assets filters=my_filters ... %}

Just make sure that the context variable my_filters is set to your function.

Note that you currently cannot write input filters in this way. Callables always act as output filters.

The easy way

This works by subclassing webassets.filter.Filter. In doing so, you need to write a bit more code, but
you’ll be able to enjoy a few perks.

The noop filter from the previous example, written as a class, would look something like this:

from webassets.filter import Filter

class NoopFilter(Filter):
name = 'noop'

def output(self, _in, out, **kwargs):
out.write(_in.read())

def input(self, _in, out, **kwargs):
out.write(_in.read())

The output and input methods should look familiar. They’re basically like the callable you are already familiar
with, simply pulled inside a class.

Class-based filters have a name attribute, which you need to set if you want to register your filter globally.

2.1. Using webassets in standalone mode 27

webassets Documentation, Release 0.12.1

The input method will be called for every source file, the output method will be applied once after a bundle’s
contents have been concatenated.

Among the kwargs you currently receive are:

• source_path (only for input()): The filename behind the in stream, though note that other input filters
may already have transformed it.

• output_path: The final output path that your filters work will ultimatily end up in.

Note: Always make your filters accept arbitrary **kwargs. The API does allow for additional values to be passed
along in the future.

Registering

The name wouldn’t make much sense, if it couldn’t be used to reference the filter. First, you need to register the class
with the system though:

from webassets.filter import register_filter
register_filter(NoopFilter)

Or if you are using yaml then use the filters key for the environment:

directory: .
url: /
debug: True
updater: timestamp
filters:

- my_custom_package.my_filter

After that, you can use the filter like you would any of the built-in ones:

{% assets filters='jsmin,noop' ... %}

Options

Class-based filters are used as instances, and as such, you can easily define a __init__ method that takes arguments.
However, you should make all parameters optional, if possible, or your filter will not be usable through a name
reference.

There might be another thing to consider. If a filter is specified multiple times, which sometimes can happen unsus-
pectingly when bundles are nested within each other, it will only be applied a single time. By default, all filters of the
same class are considered the same. In almost all cases, this will be just fine.

However, in case you want your filter to be applicable multiple times with different options, you can implement the
unique method and return a hashable object that represents data unique to this instance:

class FooFilter(Filter):
def __init__(self, *args, **kwargs):

self.args, self.kwargs = args, kwargs
def unique(self):

return self.args, self.kwargs

28 Chapter 2. Framework integration

webassets Documentation, Release 0.12.1

This will cause two instances of this filter to be both applied, as long as the arguments given differ. Two instances with
the exact same arguments will still be considered equal.

If you want each of your filter’s instances to be unique, you can simply do:

def unique(self):
return id(self)

Useful helpers

The Filter base class provides some useful features.

setup()

It’s quite common that filters have dependencies - on other Python libraries, external tools, etc. If you want to provide
your filter regardless of whether such dependencies are matched, and fail only if the filter is actually used, implement
a setup() method on your filter class:

class FooFilter(Filter):
def setup(self):

import foolib
self.foolib = foolib

def apply(self, _in, out):
self.foolib.convert(...)

options

Some filters will need to be configured. This can of course be done by passing arguments into __init__ as explained
above, but it restricts you to configuring your filters in code, and can be tedious if necessary every single time the filter
is used.

In some cases, it makes more sense to have an option configured globally, like the path to an external binary. A number
of the built-in filters do this, allowing you to both specify a config variable in the webassets Environment instance,
or as an OS environment variable.

class FooFilter(Filter):
options = {

'binary': 'FOO_BIN'
}

If you define a an options attribute on your filter class, these options will automatically be supported both by your
filter’s __init__, as well as via a configuration or environment variable. In the example above, you may pass binary
when creating a filter instance manually, or define FOO_BIN in Environment.config, or as an OS environment
variable.

get_config()

In cases where the declarative approach of the options attribute is not enough, you can implement custom options
yourself using the Filter.get_config() helper:

2.1. Using webassets in standalone mode 29

webassets Documentation, Release 0.12.1

class FooFilter(Filter):
def setup(self):

self.bin = self.get_config('BINARY_PATH')

This will check first the configuration, then the environment for BINARY_PATH, and raise an exception if nothing is
found.

get_config() allows you to specify different names for the setting and the environment variable:

self.get_config(setting='ASSETS_BINARY_PATH', env='BINARY_PATH')

It also supports disabling either of the two, causing only the other to be checked for the given name:

self.get_config(setting='ASSETS_BINARY_PATH', env=False)

Finally, you can easily make a value optional using the require parameter. Instead of raising an exception,
get_config() then returns None. For example:

self.java = self.get_config('JAVA_BIN', require=False) or 'java'

Abstract base classes

In some cases, you might want to have a common base class for multiple filters. You can make the base class abstract
by setting name to None explicitly. However, this is currently only relevant for the built-in filters, since your own
filters will not be registered automatically in any case.

More?

You can have a look inside the webassets.filter module source code to see a large number of example filters.

Assets can be filtered through one or multiple filters, modifying their contents (think minification, compression).

CSS compilers

CSS compilers intend to improve upon the default CSS syntax, allow you to write your stylesheets in a syntax more
powerful, or more easily readable. Since browsers do not understand this new syntax, the CSS compiler needs to
translate its own syntax to original CSS.

webassets includes builtin filters for a number of popular CSS compilers, which you can use like any other filter.
There is one problem though: While developing, you will probably want to disable asset packaging, and instead work
with the uncompressed assets (i.e., you would disable the environment.debug option). However, you still need to apply
the filter for your CSS compiler, since otherwise, the Browser wouldn’t understand your stylesheets.

For this reason, such compiler filters run even when in debug mode:

less = Bundle('css/base.less', 'css/forms.less',
filters='less,cssmin', output='screen.css')

The above code block behaves exactly like you would want it to: When debugging, the less files are compiled to CSS,
but the code is not minified. In production, both filters are applied.

Sometimes, you need to merge together good old CSS code, and you have a compiler that, unlike less, cannot
process those. Then you can use a child bundle:

30 Chapter 2. Framework integration

webassets Documentation, Release 0.12.1

sass = Bundle('*.sass', filters='sass', output='gen/sass.css')
all_css = Bundle('css/jquery.calendar.css', sass,

filters='cssmin', output="gen/all.css")

In the above case, the sass filter is only applied to the Sass source files, within a nested bundle (which needs it’s own
output target!). The minification is applied to all CSS content in the outer bundle.

Loaders

Using these helper classes, you can define your bundles or even your complete environment in some external data
source, rather than constructing them in code.

class webassets.loaders.YAMLLoader(file_or_filename)
Will load an environment or a set of bundles from YAML files.

load_bundles(environment=None)
Load a list of Bundle instances defined in the YAML file.

Expects the following format:

bundle-name:
filters: sass,cssutils
output: cache/default.css
contents:

- css/jquery.ui.calendar.css
- css/jquery.ui.slider.css

another-bundle:
...

Bundles may reference each other:

js-all:
contents:

- jquery.js
- jquery-ui # This is a bundle reference

jquery-ui:
contents: jqueryui/*.js

If an environment argument is given, it’s bundles may be referenced as well. Note that you may pass
any compatibly dict-like object.

Finally, you may also use nesting:

js-all:
contents:

- jquery.js
This is a nested bundle
- contents: "*.coffee"
filters: coffeescript

load_environment()
Load an Environment instance defined in the YAML file.

Expects the following format:

directory: ../static
url: /media

(continues on next page)

2.1. Using webassets in standalone mode 31

http://en.wikipedia.org/wiki/YAML

webassets Documentation, Release 0.12.1

(continued from previous page)

debug: True
updater: timestamp
filters:

- my_custom_package.my_filter
config:

compass_bin: /opt/compass
another_custom_config_value: foo

bundles:
...

All values, including directory and url are optional. The syntax for defining bundles is the same as
for load_bundles().

Sample usage:

from webassets.loaders import YAMLLoader
loader = YAMLLoader('asset.yml')
env = loader.load_environment()

env['some-bundle'].urls()

class webassets.loaders.PythonLoader(module_name)
Basically just a simple helper to import a Python file and retrieve the bundles defined there.

load_bundles()
Load Bundle objects defined in the Python module.

Collects all bundles in the global namespace.

load_environment()
Load an Environment defined in the Python module.

Expects as default a global name environment to be defined, or overridden by passing a string
module:environment to the constructor.

Integration with other libraries

While the webassets core is designed to work with any WSGI application, also included are some additional utilities
for some popular frameworks and libraries.

Jinja2

A Jinja2 extension is available as webassets.ext.jinja2.AssetsExtension. It will provide a {%
assets %} tag which allows you to reference your bundles from within a template to render its urls.

It also allows you to create bundles on-the-fly, thus making it possible to define your assets entirely within your
templates.

If you are using Jinja2 inside of Django, see this page.

Setting up the extension

32 Chapter 2. Framework integration

http://elsdoerfer.name/docs/django-assets/jinja2.html

webassets Documentation, Release 0.12.1

from jinja2 import Environment as Jinja2Environment
from webassets import Environment as AssetsEnvironment
from webassets.ext.jinja2 import AssetsExtension

assets_env = AssetsEnvironment('./static/media', '/media')
jinja2_env = Jinja2Environment(extensions=[AssetsExtension])
jinja2_env.assets_environment = assets_env

After adding the extension to your Jinja 2 environment, you need to make sure that it knows about your webassets.
Environment instance. This is done by setting the assets_environment attribute.

Using the tag

To output a bundle that has been registered with the environment, simply pass its name to the tag:

{% assets "all_js", "ie_js" %}
<script type="text/javascript" src="{{ ASSET_URL }}"></script>

{% endassets %}

The tag will repeatedly output its content for each ASSET_URL of each bundle. In the above case, that might be the
output urls of the all_js and ie_js bundles, or, in debug mode, urls referencing the source files of both bundles.

If you pass something to the tag that isn’t a known bundle name, it will be considered a filename. This allows you to
define a bundle entirely within your templates:

{% assets filters="cssmin,datauri", output="gen/packed.css", "common/jquery.css",
→˓"site/base.css", "site/widgets.css" %}
...

Of course, this means you can combine the two approaches as well. The following code snippet will merge together
the given bundle and the contents of the jquery.js file that was explicitly passed:

{% assets output="gen/packed.js", "common/jquery.js", "my-bundle" %}
...

Custom resolvers

The resolver is a pluggable object that webassets uses to find the contents of a Bundle on the filesystem, as well as
to generate the correct urls to these files.

For example, the default resolver searches the Environment.load_path, or looks within Environment.
directory . The webassets Django integration will use Django’s staticfile finders to look for files.

For normal usage, you will not need to write your own resolver, or indeed need to know how they work. However, if
you want to integrate webassets with another framework, or if your application is complex enough that it requires
custom file referencing, read on.

The API as webassets sees it

webassets expects to find the resolver via the Environment.resolver property, and expects this object to
provide the following methods:

2.1. Using webassets in standalone mode 33

https://github.com/miracle2k/django-assets

webassets Documentation, Release 0.12.1

Resolver.resolve_source(ctx, item)
Given item from a Bundle’s contents, this has to return the final value to use, usually an absolute filesystem
path.

Note: It is also allowed to return urls and bundle instances (or generally anything else the calling Bundle
instance may be able to handle). Indeed this is the reason why the name of this method does not imply a return
type.

The incoming item is usually a relative path, but may also be an absolute path, or a url. These you will commonly
want to return unmodified.

This method is also allowed to resolve item to multiple values, in which case a list should be returned. This is
commonly used if item includes glob instructions (wildcards).

Note: Instead of this, subclasses should consider implementing search_for_source() instead.

Resolver.resolve_output_to_path(ctx, target, bundle)
Given target, this has to return the absolute filesystem path to which the output file of bundle should be
written.

target may be a relative or absolute path, and is usually taking from the Bundle.output property.

If a version-placeholder is used (%(version)s, it is still unresolved at this point.

Resolver.resolve_source_to_url(ctx, filepath, item)
Given the absolute filesystem path in filepath, as well as the original value from Bundle.contents
which resolved to this path, this must return the absolute url through which the file is to be referenced.

Depending on the use case, either the filepath or the item argument will be more helpful in generating the
url.

This method should raise a ValueError if the url cannot be determined.

Resolver.resolve_output_to_url(ctx, target)
Given target, this has to return the url through which the output file can be referenced.

target may be a relative or absolute path, and is usually taking from the Bundle.output property.

This is different from resolve_source_to_url() in that you do not passed along the result of
resolve_output_to_path(). This is because in many use cases, the filesystem is not available at the
point where the output url is needed (the media server may on a different machine).

Methods to overwrite

However, in practice, you will usually want to override the builtin Resolver, and customize it’s behaviour where
necessary. The default resolver already splits what is is doing into multiple methods; so that you can either override
them, or refer to them in your own implementation, as makes sense.

Instead of the official entrypoints above, you may instead prefer to override the following methods of the default
resolver class:

Resolver.search_for_source(ctx, item)
Called by resolve_source() after determining that item is a relative filesystem path.

You should always overwrite this method, and let resolve_source() deal with absolute paths, urls and
other types of items that a bundle may contain.

34 Chapter 2. Framework integration

webassets Documentation, Release 0.12.1

Resolver.search_load_path(ctx, item)
This is called by search_for_source() when a Environment.load_path is set.

If you want to change how the load path is processed, overwrite this method.

Helpers to use

The following methods of the default resolver class you may find useful as helpers while implementing your subclass:

Resolver.consider_single_directory(directory, item)
Searches for item within directory. Is able to resolve glob instructions.

Subclasses can call this when they have narrowed done the location of a bundle item to a single directory.

Resolver.glob(basedir, expr)
Evaluates a glob expression. Yields a sorted list of absolute filenames.

Resolver.query_url_mapping(ctx, filepath)
Searches the environment-wide url mapping (based on the urls assigned to each directory in the load path).
Returns the correct url for filepath.

Subclasses should be sure that they really want to call this method, instead of simply falling back to super().

Example: A prefix resolver

The following is a simple resolver implementation that searches for files in a different directory depending on the first
directory part.

from webassets.env import Resolver

class PrefixResolver(Resolver):

def __init__(self, prefixmap):
self.map = prefixmap

def search_for_source(self, ctx, item):
parts = item.split('/', 1)
if len(parts) < 2:

raise ValueError(
'"%s" not valid; a static path requires a prefix.' % item)

prefix, name = parts
if not prefix in self.map:

raise ValueError(('Prefix "%s" of static path "%s" is not '
'registered') % (prefix, item))

For the rest, defer to base class method, which provides
support for things like globbing.
return self.consider_single_directory(self.map[prefix], name)

Using it:

env = webassets.Environment(path, url)
env.resolver = PrefixResolver({

'app1': '/var/www/app1/static',
'app2': '/srv/deploy/media/app2',

(continues on next page)

2.1. Using webassets in standalone mode 35

webassets Documentation, Release 0.12.1

(continued from previous page)

})
bundle = Bundle(

'app2/scripts/jquery.js',
'app1/*.js',

)

Other implementations

• django-assets Resolver (search for class DjangoResolver).

• Flask-Assets Resolver (search for class FlaskResolver).

• pyramid_webassets Resolver (search for class PyramidResolver).

FAQ

Is there a cache-busting feature?

Yes! See URL Expiry (cache busting).

Relative URLs in my CSS code break if the merged asset is written to a different location than the
source files. How do I fix this?

Use the builtin cssrewrite filter which will transparently fix url() instructions in CSS files on the fly.

I am using a CSS compiler and I need its filter to apply even in debug mode!

See CSS compilers for how this is best done.

Is Google App Engine supported?

Yes. Due to the way Google App Engine works (static files are stored on separate servers), you need to build your
assets locally, possibly using one of the management commands provided for your preferred framework, and then
deploy them.

In production mode, you need to disable the Environment.auto_build setting.

For URL expiry functionality, you need to use a manifest that holds version information. See URL Expiry (cache
busting).

There is a barebone Google App Engine example in the examples/appengine/ folder.

36 Chapter 2. Framework integration

https://github.com/miracle2k/django-assets/blob/master/django_assets/env.py
https://github.com/miracle2k/flask-assets/blob/master/src/flask_assets.py
https://github.com/sontek/pyramid_webassets/blob/master/pyramid_webassets/__init__.py
https://github.com/miracle2k/webassets/blob/master/examples/appengine/

CHAPTER 3

Detailed documentation

This documentation also includes some pages which are applicable regardless of the framework used:

3.1 URL Expiry (cache busting)

3.1.1 For beginners

You are using webassets because you care about the performance of your site. For the same reason, you have
configured your web server to send out your media files with a so called far future expires header: Your web server
sets the Expires header to some date many years in the future. Your user’s browser will never spend any time trying
to retrieve an updated version.

Note: Of course, the user’s browser will already use the Etag and Last-Modified/If-Modified-Since to
avoid downloading content it has already cached, and if your web server isn’t misconfigured entirely, this will work.
The point of far future expires is to get rid of even those requests which would return only a 304 Not Modified
response.

What if you actually deploy an update to your site? Now you need to convince the browser to download new versions
of your assets after all, but you have just told it not to bother to check for new versions. You work around this by
modifying the URL with which the asset is included. There are two distinct ways to so:

1) Append a version identifier as a querystring:

http://www.example.org/media/print.css?acefe50

2) Add a version identifier to the actual filename:

http://www.example.org/media/print.acefe50.css

How webassets helps you do this is explained in the sections below.

37

webassets Documentation, Release 0.12.1

Note: Even if you are not using far future expires headers, you might still find webassets expiry features useful to
navigate around any funny browser caching behaviour that might require a Shift-reload.

3.1.2 What is the version of a file

To expire an URL, it is modified with a version identifier. What is this identifier? By default, webassets will create
an MD5-hash of the file contents, and use the first few characters as the file version. webassets also allows you to
use the last modified timestamp of the file. You can configure this via the versions option:

env = Environment(...)
env.versions = 'hash' # the default
env.versions = 'hash:32' # use the full md5 hash
env.versions = 'timestamp' # use the last modified timestamp

It is generally recommended that you use a hash as the version, since it will remain the same as long as the content
does not change, regardless of any filesystem metadata, which can change for any number of reasons.

3.1.3 Expire using a querystring

webassetswill automatically add the version as a querystring to the urls it generates, by virtue of the url_expire
option defaulting to True. If you want to be explicit:

env = Environment(...)
env.url_expire = True

There is nothing else you need to do here. The URLs that are generated might look like this:

/media/print.css?acefe50

However, while the default, expiring with a querystring is not be the best option:

3.1.4 Expire using the filename

Adding the version as a querystring has two problems. First, it may not always be a browser that implements caching
through which we need to bust. It is said that certain (possibly older) proxies do ignore the querystring with respect to
their caching behavior.

Second, in certain more complex deployment scenarios, where you have multiple frontend and/or multiple backend
servers, an upgrade is anything but instantaneous. You need to be able to serve both the old and the new version of
your assets at the same time. See for example how this affects you when using Google App Engine.

To expire using the filename, you add a %(version)s placeholder to your bundle output target:

bundle = Bundle(..., output='screen.%(version)s.css')

The URLs that are generated might look like this:

/media/screen.acefe50.css

Note: webassets will use this modified filename for the actual output files it writes to disk, as opposed to just
modifying the URL it generates. You do not have to configure your web server to do any rewriting.

38 Chapter 3. Detailed documentation

http://bjk5.com/post/4918954974/js-css-packaging-to-minimize-requests-and-randomly-evil

webassets Documentation, Release 0.12.1

3.1.5 About manifests

Note: This is mostly an advanced feature, and you might not have to bother with it at all.

webassets supports Environment-wide manifests. A manifest remembers the current version of every bundle. What
is this good for?

1) Speed. Calculating a hash can be expensive. Even if you are using timestamp-based versions, that still means a
stat-request to your disk.

Note: Note that even without a manifest, webassets will cache the version in memory. It will only need to
be calculated once per process. However, if you have many bundles, and a very busy site, a manifest will allow
you to both skip calculating the version (e.g. creating a hash), as well as read the versions of all bundles into
memory at once.

Note: If you are using automatic building, all of this is mostly not true. In order to determine whether a rebuild
is required, webassets will need to check the timestamps of all files involved in any case. It goes without
saying that using automatic building on a production site is a convenience feature for small sites, and at odds
with counting paper clips in the form of filesystem stat calls.

2) Making it possible to know the version in the first place.

Depending on your configuration and deployment, consider that it might not actually be possible for
webassets to know what the version is.

If you are using a hash-based version, and your bundle’s output target has a placeholder, there is no way to know
what the version is, unless is has been written to a manifest during the build process.

The timestamp-based versioning mechanism can actually look at the source files to determine the version. But,
in more complex deployments, the source files might not actually be available to read - they might be on a
completely different server altogether.

A manifest allows version information to be persisted.

In practice, by default the version information will be written to the cache. You can explicitly request this behaviour
be setting the manifest option:

env = Environment(...)
env.manifest = 'cache'

In a simple setup, where you are separately building on your local machine during development, and building on the
web server for production (maybe via the automatic building feature, enabled by default), this is exactly would you
want. Don’t worry about it.

There is a specific deployment scenario where you want to prebuild your bundles locally, and for either of the two
reasons above want to include the version data pre-made when you deploy your app to the web server. In such a case,
it is not helpful to have the versions stored in the cache. Instead, webassets provides a manifest type that writes all
information to a single file:

env = Environment(...)
env.manifest = 'file'
env.manifest = 'file:/tmp/manifest.to-be-deployed' # explicit filename

3.1. URL Expiry (cache busting) 39

webassets Documentation, Release 0.12.1

You can then just copy this one file to the web server, and webassets will know all about the versions without
having to consult the media files.

Note: The file is a pickled dict.

3.2 Upgrading

When upgrading from an older version, you might encounter some backwards incompatibility. The webassets API
is not stable yet.

3.2.1 In 0.10

• The ResolverAPI has changed. Rather than being bound to an environment via the constructor, the individual
methods now receive a ‘‘ctx‘ object, which allows access to the environment’s settings.

See the page on implementing resolvers.

• The Bundle.build() and Bundle.url() methods no longer accept an environment argument. To work
with a Bundle that is not attached to an environment already, use the following syntax instead:

with bundle.bind(env):
bundle.build()

• Filters can no longer access a self.env attribute. It has been renamed to self.ctx, which provides a
compatible object.

3.2.2 In 0.9

• Python 2.5 is no longer supported.

• The API of the BaseCache.get() method has changed. It no longer receives a python keyword argument. This
only affects you if you have implemented a custom cache class.

3.2.3 In 0.8

• django-assets is no longer included! You need to install it’s package separately. See the current development
version.

Warning: When upgrading, you need to take extra care to rid yourself of the old version of webassets
before installing the separate django-assets package. This is to avoid that Python still finds the old
django_assets module that used to be included with webassets.

In some cases, even pip uninstall webassets is not enough, and old *.pyc files are kept around.
I recommend that you delete your old webassets install manually from the filesystem. To find out where it is
stored, open a Python shell and do:

>>> import webassets
>>> webassets
<module 'webassets' from '/usr/local/lib/python2.7/dist-packages/webassets/src/
→˓webassets/__init__.pyc'>

40 Chapter 3. Detailed documentation

https://github.com/miracle2k/django-assets
https://github.com/miracle2k/django-assets

webassets Documentation, Release 0.12.1

• Some filters now run in debug mode. Specifically, there are two things that deserve mention:

– cssrewrite now runs when debug="merge". This is always what is wanted; it was essentially a bug
that this didn’t happen before.

– All kinds of compiler-style filters (Sass, less, Coffeescript, JST templates etc). all now run in debug mode.
The presence of such a filter causes bundles to be merged even while debug=True.

In practice, if you’ve been using custom bundle debug values to get such compilers to run, this will
continue to work. Though it can now be simplified. Code like this:

Bundle(
Bundle('*.coffee', filters='coffeescript', debug=False)
filters='jsmin')

can be replaced with:

Bundle('*.coffee', filters='coffeescript,jsmin')

which has the same effect, which is that during debugging, Coffeescript will be compiled, but not mini-
mized. This also allows you to define bundles that use compilers from within the templates tags, because
nesting is no longer necessary.

However, if you need to combine Coffeescript files (or other files needing compiling) with regular CSS or
JS files, nesting is still required:

Bundle('*.js'
Bundle('*.coffee', filters='coffeescript'),
filters='jsmin')

If for some reason you do not want these compilers to run, you may still use a manual debug value to
override the behavior. A case where this is useful is the less filter, which can be compiled in the browser:

Bundle('*.less', filters='less', debug=True)

Here, as long as the environment is in debug mode, the bundle will output the source urls, despite the
less filter normally forcing a merge.

As part of this new feature, the handling of nested bundle debug values has changed such that in rare cases you
may see a different outcome. In the unlikely case that you are using these a lot, the rule is simple: The debug
level can only ever be decreased. Child bundles cannot cannot do “more debugging” than their parent, and if
Environment.debug=False, all bundle debug values are effectively ignored.

• The internal class names of filters have been renamed. For example, JSMinFilter is now simply JSMin.
This only affects you if you reference these classes directly, rather than using their id (such as jsmin), which
should be rare.

• Removed the previously deprecated rebuild alias for the build command.

• Subtly changed how the auto_build setting affects the Bundle.build() method: It doesn’t anymore.
Instead, the setting now only works on the level of Bundle.urls(). The new behaviour is more consistent,
makes more sense, and simplifies the code.

The main backwards-incompatiblity caused by this is that when environment.auto_build=False, and
you are calling bundle.build() without specifying an explicit force argument, it used to be the case that
force=True was assumed, i.e. the bundle was built without looking at the timestamps to see if a rebuild is
necessary. Now, the timestamps will be checked, unless force=True is explicitly given.

In case you don’t want to pass force=True, you can instead also set the Environment.updater property
to False; without an updater to check timestamps, every build() call will act as if force=True.

3.2. Upgrading 41

webassets Documentation, Release 0.12.1

Note: This only affects you if you work with the Bundle.build() and Bundle.url() methods directly.
The behavior of the command line interface, or the template tags is not affected.

• The implementation of the CommandLineEnvironment has changed, and each command is now a separate
class. If you have been subclassing CommandLineEnvironment to override individual command methods
like CommandLineEnvironment.build(), you need to update your code.

• The JavaMixin helper class to implement Java-based filters has been removed, and in it’s stead there is now
a JavaTool base class that can be used.

• The code to resolve bundle contents has been refactored. As a result, the behavior of the semi-
internal method Bundle.resolve_contents() has changed slightly; in addition, the Environment.
_normalize_source_path() method used mainly by extensions like Flask-Assets has been re-
moved. Instead, extensions now need to implement a custom Resolver. The Environment.absurl
method has also disappeared, and replacing it can now be done via a custom Resolver` class.

• Environment.directory now always returns an absolute path; if a relative path is stored, it is based off
on the current working directory. This spares a lot of calls to os.abspath throughout the code. If you need
the original value you can always use environment.config['directory'].

• If the JST_COMPILER option of the jst filter is set to False (as opposed to the default value, None), the
templates will now be output as raw strings. Before, False behaved like None and used the builtin compiler.

• The API of the concat() filter method has changed. Instead of a list of hunks, it is now given a list of 2-tuples
of (hunk, info_dict).

• The internal JSTTemplateFilter base class has changed API. - concat filter - jst handlebar filters have
changed, use concat, base class has changed

3.2.4 In 0.7

There are some significant backwards incompatible changes in this release.

• The Environment.updater property (corresponds to the ASSETS_UPDATER setting) can no longer be set
to False or "never" in order to disable the automatic rebuilding. Instead, this now needs to be done using
Environment.auto_build, or the corresponding ASSETS_AUTO_BUILD setting.

• The Environment.expire (ASSETS_EXPIRE) option as been renamed to Environment.
url_expire (ASSETS_URL_EXPIRE), and the default value is now True.

• To disable automatic building, set the new Environment.auto_build (ASSETS_AUTO_BUILD) option
to False. Before, this was done via the Environment.updater, which is now deprecated.

Other changes:

• If Environment.auto_build is disabled, the API of Bundle.build() now assumes a default value of True
for the force argument. This should not cause any problems, since it is the only call signature that really
makes sense in this case.

• The former less filter, based on the old Ruby version of lessCSS (still available as the 1.x Ruby gems, but no
longer developed) has been renamed less_ruby, and less now uses the new NodeJS/Javascript implemen-
tation, which a while ago superseded the Ruby one.

• The rebuild command (of the command line mode) has been renamed to build.

• The command line interface now requires the external dependency argparse on Python versions 2.6 and
before. argparse is included with Python starting with version 2.7.

• PythonLoader.load_bundles() now returns a dict with the bundle names as keys, rather than a list.

42 Chapter 3. Detailed documentation

webassets Documentation, Release 0.12.1

• Filters now receive new keyword arguments. The API now officially requires filters to accept arbitrary
**kwargs for compatibility with future versions. While the documentation has always suggested **kwargs
be used, not all builtin filters followed this rule. Your custom filters may need updating as well.

• Filter classes now longer get an auto-generated name. If you have a custom filter and have not explicitly given
it a name, you need to do this now if you want to register the filter globally.

• django_assets no longer tries to load a global assets.py module (it will still find bundles defined in
application-level assets.py files). If you want to define bundles in other modules, you now need to list those
explicitly in the ASSETS_MODULES setting.

3.2.5 In 0.6

• The Environment.updater class no longer support custom callables. Instead, you need to subclass
BaseUpdater. Nobody is likely to use this feature though.

• The cache is no longer debug-mode only. If you enable Environment.cache (ASSETS_CACHE in
django-assets), the cache will be enabled regardless of the Environment.debug/ASSETS_DEBUG
option. If you want the old behavior, you can easily configure it manually.

• The Bundle.build method no longer takes the no_filters argument. This was always intended for
internal use and its existence not advertised, so its removal shouldn’t cause too many problems.

• The Bundle.build method now returns a list of FileHunk objects, rather than a single one. It now works
for container bundles (bundles which only have other bundles for children, not files), rather than raising an
exception.

• The rebuild command now ignores a debug=False setting, and forces a build in production mode instead.

3.2.6 In 0.4

• Within django_assets. the semantics of the debug setting have changed again. It once again allows you
to specifically enable debug mode for the assets handling, irrespective of Django’s own DEBUG setting.

• RegistryError is now RegisterError.

• The ASSETS_AUTO_CREATE option no longer exists. Instead, automatic creation of bundle output files is now
bound to the ASSETS_UPDATER setting. If it is False, i.e. automatic updating is disabled, then assets won’t
be automatically created either.

3.2.7 In 0.2

• The filter API has changed. Rather than defining an apply method and optionally an is_source_filter
attribute, those now have been replaced by input() and output() methods. As a result, a single filter can
now act as both an input and an output filter.

3.2.8 In 0.1

• The semantics of the ASSETS_DEBUG setting have changed. In 0.1, setting this to True meant enable the
django-assets debugging mode. However, django-assets now follows the default Django DEBUG set-
ting, and ASSETS_DEBUG should be understood as meaning how to behave when in debug mode. See AS-
SETS_DEBUG for more information.

3.2. Upgrading 43

webassets Documentation, Release 0.12.1

• ASSETS_AUTO_CREATE now causes an error to be thrown if due it it being disabled a file cannot be created.
Previously, it caused the source files to be linked directly (as if debug mode were active).

This was done due to Explicit is better than implicit, and for security considerations; people
might trusting their comments to be removed. If it turns out to be necessary, the functionality to fall back to
source could be added again in a future version through a separate setting.

• The YUI Javascript filter can no longer be referenced via yui. Instead, you need to explicitly specify which
filter you want to use, yui_js or yui_css.

44 Chapter 3. Detailed documentation

Python Module Index

w
webassets.filter, 30
webassets.filter.closure, 12
webassets.filter.yui, 12

45

webassets Documentation, Release 0.12.1

46 Python Module Index

Index

A
auto_build (webassets.env.Environment attribute), 5
AutoprefixerFilter (class in webas-

sets.filter.autoprefixer), 25

B
Babel (class in webassets.filter.babel), 11

C
cache (webassets.env.Environment attribute), 6
CleanCSS (class in webassets.filter.cleancss), 14
CleverCSS (class in webassets.filter.clevercss), 15
CoffeeScript (class in webassets.filter.coffeescript),

21
Compass (class in webassets.filter.compass), 18
consider_single_directory() (webas-

sets.env.Resolver method), 35
CSSDataUri (class in webassets.filter.datauri), 25
CSSMin (class in webassets.filter.cssmin), 13
CSSPrefixer (class in webassets.filter.cssprefixer), 25
CSSRewrite (class in webassets.filter.cssrewrite), 24
CSSSlimmer (class in webassets.filter.slimmer), 14
CSSUtils (class in webassets.filter.cssutils), 13

D
debug (webassets.env.Environment attribute), 5
directory (webassets.env.Environment attribute), 5
DustJS (class in webassets.filter.dust), 24

G
glob() (webassets.env.Resolver method), 35

H
Handlebars (class in webassets.filter.handlebars), 23

J
Jinja2 (class in webassets.filter.jinja2), 26
JSMin (class in webassets.filter.jsmin), 13
JSPacker (class in webassets.filter.jspacker), 13

JST (class in webassets.filter.jst), 22

L
Less (class in webassets.filter.less), 15
Less (class in webassets.filter.less_ruby), 16
LibSass (class in webassets.filter.libsass), 19
load_bundles() (webassets.loaders.PythonLoader

method), 32
load_bundles() (webassets.loaders.YAMLLoader

method), 31
load_environment() (webas-

sets.loaders.PythonLoader method), 32
load_environment() (webas-

sets.loaders.YAMLLoader method), 31
load_path (webassets.env.Environment attribute), 6

M
manifest (webassets.env.Environment attribute), 6

N
NodeSass (class in webassets.filter.node_sass), 20
NodeSCSS (class in webassets.filter.node_sass), 20

P
PostCSS (class in webassets.filter.postcss), 14
PyScss (class in webassets.filter.pyscss), 18
PythonLoader (class in webassets.loaders), 32

Q
query_url_mapping() (webassets.env.Resolver

method), 35

R
RCSSMin (class in webassets.filter.rcssmin), 14
RequireJSFilter (class in webas-

sets.filter.requirejs), 21
resolve_output_to_path() (webas-

sets.env.Resolver method), 34

47

webassets Documentation, Release 0.12.1

resolve_output_to_url() (webas-
sets.env.Resolver method), 34

resolve_source() (webassets.env.Resolver
method), 33

resolve_source_to_url() (webas-
sets.env.Resolver method), 34

RJSMin (class in webassets.filter.rjsmin), 11

S
Sass (class in webassets.filter.sass), 16
SCSS (class in webassets.filter.sass), 18
search_for_source() (webassets.env.Resolver

method), 34
search_load_path() (webassets.env.Resolver

method), 34
Slimit (class in webassets.filter.slimit), 13
Spritemapper (class in webas-

sets.filter.spritemapper), 26
Stylus (class in webassets.filter.stylus), 20

T
TypeScript (class in webassets.filter.typescript), 21

U
UglifyJS (class in webassets.filter.uglifyjs), 12
url (webassets.env.Environment attribute), 5
url_expire (webassets.env.Environment attribute), 5
url_mapping (webassets.env.Environment attribute), 6

V
versions (webassets.env.Environment attribute), 5

W
webassets.filter (module), 10, 30
webassets.filter.closure (module), 12
webassets.filter.yui (module), 12

Y
YAMLLoader (class in webassets.loaders), 31
YUICSS (class in webassets.filter.yui), 14
YUIJS (class in webassets.filter.yui), 12

48 Index

	Introduction
	Framework integration
	Detailed documentation
	Python Module Index

