

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

	Simple setup

	Installing Project source code

	Detailed setup

	Installing Windows Substem for Linux

	Installing pip

	Installing virtualenv

	Installing Project source code

	Installing npm dependencies

	Configuring The Server

	Starting The Server

	Building the Project

Development Environment setup

For testing code locally, you will need a very basic setup. There are a few requirements. These instructions have been made for working with Linux, Windows and MacOSX. You need:

	Python [https://www.python.org/] 2.7

	Node.js [https://nodejs.org/en/download/] Current LTS version

	GitHub [https://github.com] account

	Git [https://git-scm.com/download/win]

Note: Windows users should install the Windows Subsystem for Linux [https://docs.microsoft.com/en-us/windows/wsl/install-win10] with the Ubuntu distribution and continue setup in the Installing Windows Substem for Linux section. It may be possible to get the application running via other means, but we don’t offer support for other setups.

Note: A cloud IDE such as Cloud 9 [https://c9.io] can also be used. If you take this route, please update to the latest Python version with the following. (This is to avoid InsecurePlatformWarning errors that arise when the default Python 2.7.6 is used).

sudo apt-add-repository ppa:fkrull/deadsnakes-python2.7
sudo apt-get update
sudo apt-get install python2.7 python2.7-dev

In Ubuntu, sometimes even after installing Node.js, the command node -v does not show the installed version. To complete installation, a symbolic link has to be created to the sbin folder.

#remove old symbolic links if any
sudo rm -r /usr/bin/node

#add new symbolic link
sudo ln -s /usr/bin/nodejs /usr/bin/node
sudo ln -s /usr/bin/nodejs /usr/sbin/node

Note: If in Windows 10 you receive an error message about already having node installed, it can be fixed by removing existing installations and installing again. You probably only want to do this if you don’t rely on existing node setups for other projects.

removing existing nodejs installations
sudo apt-get --purge remove node
sudo apt-get --purge remove nodejs

installing
curl -sL https://deb.nodesource.com/setup_10.x | sudo -E bash -
sudo apt-get install -y nodejs
sudo apt-get install -y build-essential

Simple setup
Initializing Project source code

```bash
# clone the repo
git clone https://github.com/<username>/webcompat.com.git #replace your github username
# change to directory
cd webcompat.com
# initializing project
npm run setup





Note: if you got an error message, you may need to install pip before running npm run setup again.

Note: if you get an error message about missing rights to install the setup through npm, please do not run sudo npm. You just need to fix you permissions [https://coderwall.com/p/t2mc9g/don-t-sudo-npm] for usr/local.


Detailed setup (All platforms)


Installing Windows Substem for Linux

Once Windows Subsystem for Linux [https://docs.microsoft.com/en-us/windows/wsl/install-win10] and Ubuntu distribution are installed, open the Ubuntu terminal and finish any installation prompts, if necessary.

From the terminal, you can install python, pip, and nodejs and npm with the following commands:

sudo apt-get update
sudo apt-get install python
sudo apt-get install python-pip
sudo apt-get install nodejs
sudo apt install npm





It’s a good idea to update npm after this (to speed up npm install): sudo npm install npm -g

At this point, you can skip over the Installing pip section and continue with the Installing virtualenv directions.




Installing pip

We use pip2 to install other Python packages. You may need to install pip2 if you haven’t done so for another project or Python development, or only have Python 3 installed on your system.

To determine if you need to install pip2, type the following command into the terminal:

pip2 --version





If you get an error message, follow the docs on installing Pip [https://pip.pypa.io/en/stable/installing/] for your platform.

Note: Windows and Linux users can do the following via the terminal:

sudo apt install python-pip








Installing virtualenv

Virtual Environment [https://virtualenv.pypa.io/en/stable/] is a tool to create isolated environments for different projects so as to prevent conflicts.

# Install virtualenv
[sudo] pip2 install virtualenv








Installing Project source code

# clone the repo. Change <username> to your Github username
git clone git@github.com:<username>/webcompat.com.git
# change to directory
cd webcompat.com
# set up virtual environment
virtualenv env
source env/bin/activate
# optionally install Pillow image lib dependencies (only required if you plan on hacking on image upload features)
#  OSX: http://pillow.readthedocs.org/en/3.0.x/installation.html#os-x-installation
#  Windows: http://pillow.readthedocs.org/en/3.0.x/installation.html#windows-installation
#  Linux: http://pillow.readthedocs.org/en/3.0.x/installation.html#linux-installation
# install rest of dependencies
pip2 install -r config/requirements.txt
# In Ubuntu: if ImportError: No module named flask.ext.github occurs, it means the dependencies in requirements.txt are installed in /usr/lib instead of <project_repository>/env/python<version>/site-packages.
# In this case, use virtual environment's pip from <project_repository>/env/lib/pip folder of the project repository instead of the global pip.








Installing npm dependencies

We use a handful of npm packages to build the project.

Install npm dependencies:

npm install





When that is done, you can build the site via the npm run build command (if you miss this step, when you try to start the server and view the site locally or run functional tests, you won’t get the compiled css or templates!):

npm run build





Note: if you get an error message about missing rights to install the setup through npm, please do not run sudo npm. You just need to fix you permissions [https://coderwall.com/p/t2mc9g/don-t-sudo-npm] for usr/local.






Configuring The Server




Test repository

You need to create a repository on GitHub which is used to submit issues via the GitHub API. For example, the user miketaylr has created a repository called “test-repo [https://github.com/miketaylr/test-repo]” for this purpose.

Important: Your repository needs to have the same milestones like we have in our test-repository [https://github.com/webcompat/webcompat-tests/milestones].




Store your settings

### Store your settings

```bash
set up secrets.py, filling in appropriate secrets and pointers to repos
Mac / Linux
cp config/secrets.py.example config/secrets.py
Windows
copy config/secrets.py.example config/secrets.py

Note: If you are using Cloud 9, you have to update run.py and replace app.run(host=os.getenv("IP", "0.0.0.0"), port=int(os.getenv("PORT", 8080))).

You can now edit secrets.py and

	Add the right values to the repo issues URIs. ISSUES_REPO_URI = "<user>/<repo>/issues". For example, miketaylr’s setup needs to say ISSUES_REPO_URI = "miketaylr/test-repo/issues"

	You have the option of creating a “bot account” (a dummy account for the purpose of testing), or using your own account for local development. Either way, you’ll need a personal access token to proceed —

 this is the oauth token we use to report issues on behalf of people who don’t want to give GitHub oauth access (or don’t have GitHub accounts).

The instructions for creating a personal access token [http://help.github.com/articles/creating-an-access-token-for-command-line-use] are given on GitHub. Select public_repo to grant access to the public repositories through the personal access token. Once you have created the token you can add it in the variable OAUTH_TOKEN = "". More advanced users might want to create an environment variable called OAUTH_TOKEN. Either way is fine.

	Add the client id and client secret to secrets.py. If you’re part of the webcompat GitHub organization, you can get the client id and client secret from GitHub [https://github.com/organizations/webcompat/settings/applications/]. Otherwise, create your own test and production applications (instructions here [https://github.com/settings/applications/new]) —

 when prompted for a “Authorization callback URL”, use http://localhost:5000/callback,(Cloud 9 users should use http://yourapp.c9users.io:8000/callbackinstead) and take note of the client id and client secret GitHub gives you.

When you have the client id and client secret put them in the corresponding lines in secrets.py for the localhost application:

We're running on localhost, use the test application
GITHUB_CLIENT_ID = os.environ.get('FAKE_ID') or "<client id goes here>"
GITHUB_CLIENT_SECRET = os.environ.get('FAKE_SECRET') or "<client secret goes here>"

Note: You can ignore the FAKE_ID and FAKE_SECRET environment variables, we use that as a hack for automated tests.

	Click on login to authorize the application and get access to the issues.
[image: Login]

Note: If you get a 404 at GitHub when clicking “Login”, it means you haven’t filled in the GITHUB_CLIENT_ID or GITHUB_CLIENT_SECRET in secrets.py.

[image: Auth 404]

Starting The Server

start local server
python run.py

or

start local server
npm run start

You should now have a local instance of the site running at http://localhost:5000/.

Getting error messages?

Please file bugs [https://github.com/webcompat/webcompat.com/issues/new] in case you need further assistance.
First you should have a look at the logs located in webcompat.com/tmp.

When you start the local server, it will also print the location to the console:

> python run.py
Statuses Initialization…
Writing logs to: /Users/acooluser/projects/webcompat.com/tmp
…

Building the Project

After certain kinds of changes are made, you need to build the project before serving it from a webserver will work

	CSS: a build will run cssnext, combine custom media queries, and concat all source files into webcompat.dev.css. You’ll need to re-build the CSS to see any changes, so it’s recommended to use a watch task (see npm run watch).

	JS: a build will run eslint, minify and concat source files.

	JS templates (.jst files): if you are making changes to a Backbone template in a .jst file, you will need to re-run the build command to update the pre-compiled templates.js file before you will see the results.

	HTML templates: the changes should be served from disk without the need for rebuilding

	Python: the Flask local server will detect changes and restart automatically. No need to re-build.

You can build the entire project (CSS and JavaScript files and optimize images) by executing this command on Mac/Linux:

npm run build

and this command on Windows:

npm run watch

Linting static JS files with project coding styles.

linting style JS
npm run lint

Fixing static JS files with project coding styles, if an error occurs.

fixing linting style JS
npm run fix

By default, a build will not optimize images (which is done before deploys). If you’d like to optimize images, you can run npm run imagemin.

	Pull Request Guidelines

	Coding Style and Project Conventions

Pull Request Guidelines

All code contributions should come in the form of a pull request, as a topic branch.

	Have a quick search through existing issues and pull requests so you don’t waste any of your time.

	If no existing issue covers the change you want to make, please open a new issue [https://github.com/webcompat/webcompat.com/issues/new] before you start coding.

	Fork repository

[image: master]

You’ll probably want to set up a local development environment to get that far. If you’ve already been through this process, make sure you’ve set the main repo as an upstream remote [https://help.github.com/articles/configuring-a-remote-for-a-fork/] and make sure your fork is up to date [https://help.github.com/articles/syncing-a-fork/] before sending pull requests.

	Make your changes in a new branch

makes sure, you are on the master branch
git checkout master

if you are SURE your fork is up-to-date
git pull origin master

OR
if you are NOT SURE your fork is up-to-date
git pull upstream master

creates new branch
git checkout -b issues/NumberOfIssue/VersionOfPR

	Create your patch; commit your changes. Referencing the issue number you’re working on from the message is recommended.

Note: Please keep the title under 50 chars. If you’d like to provide more information, just add the details to the commit body.

check for changed files
git status

add files to commit, e.g. as following
git add file.js foldername/foldername2/file2.js

add commit message including issue number
git commit -m 'Issue #NumberOfIssue - Fixes broken layout on mobile browsers'

	Push your branch to GitHub:

git push origin issues/NumberOfIssue/VersionOfPR

	If you want to discuss your code or ask questions, please comment in the corresponding issue. You can link to the code you have pushed to your repository to ask for code review.

	When your code is ready to be integrated into the project, use the GitHub site to send a pull request [https://help.github.com/articles/creating-a-pull-request] to webcompat.com:master, aka the master branch of the repo you forked from. This will be the default choice.

[image: master]

	Set the title of the pull request to reference the issue number. Please keep the title short, but descriptive or it will be cut off. You can provide further information in the commit body.

Fixes #NumberOfIssue - Fixes broken layout on mobile browsers

Note: Fix or Fixes are keywords recognized automatically and will close the issue when the pull request gets merged.

	When sending the pull request do not forget to call out someone for review by using the following convention:

r? @miketaylr

This will notify the person that your request is waiting for a review for merging. Ask a review only by one person, this will avoid misunderstandings and the ball is dropped. (Python: karlcow, miketaylr. JavaScript: magsout, miketaylr, tagawa, zoepage CSS: magsout, zoepage).

	Continue discussion in the pull request.

The discussion might lead to modify or abandon this specific pull request. This is the place where you can have a code review.

	Once the Pull Request got an explicit r+ from the reviewer(s), it is the responsibility of the reviewer (or the admin) to merge the branch. A pull request submitter should never merge the pull request themselves.

The repo owners might choose to self-merge for urgent security or hot fixes.

After all that, if you’d like, you can send a pull request to add your name to our humans.txt file.

For product and design contributions, check out the Design Repo [https://github.com/webcompat/design].

Coding Style and Project Conventions

Syntax

Try to take care to follow existing conventions. Some of these are defined in an .editorconfig [https://github.com/webcompat/webcompat.com/blob/master/.editorconfig] file. You can download the plugin for your editor here http://editorconfig.org/#download.

Python

As we are still very early in the project, we do not yet have that many conventions for naming, routes, APIs. If in doubt, ask us or open an issue. All Python code should pass pep8 [http://pep8.readthedocs.org/en/1.4.6/intro.html].

You can check this by installing the pep8 module.

sudo pip install pep8

Once at the root of the project you can run it with

pep8 --show-source --show-pep8 .

That will show you the list of errors and their explanations. Another tool, we have used for checking consistency of the code is flake8 + hacking. Hacking [https://github.com/openstack-dev/hacking] is a set of OpenStack guidelines [http://docs.openstack.org/developer/hacking/] which is used by the community for the stability of their projects. You will see that there’s nothing really hard about it.

sudo pip install hacking

will install the relevant flake8 and hacking modules. In the same fashion, if you do

flake8 .

You will get in return the list of mistakes. Some of the basics recommendations are:

	Modules are sorted by alphabetical order.

	Do not do relative imports (such as from .foo import bar)

	Import only modules not function name (because of possible name clashes)

	Group modules by categories (sys, libraries, project)

	When multilines docstrings are used. The first sentence is short and explains the module. Separated by a blank line.

	docstrings sentences are finished by a period.

When in doubt, follow the conventions you see used in the source already.

CSS

We use cssnext as a tool for compiling css.

This is a CSS transpiler (CSS4+ to CSS3) that allows you to use tomorrow's CSS syntax today. It transforms CSS specs that are not already implemented in popular browsers into more compatible CSS.

More info here : https://github.com/cssnext/cssnext

Naming conventions

We use a very simple syntax based on BEM and it looks like:

	ComponentName

	ComponentName–modifierName

	ComponentName-descendantName

	ComponentName.is-stateOfComponent

CSS and JS

All classes that depend on javascript are prefixed by js-* . These classes are handled by JavaScript, no styles are applied.

Folder and file

The main stylesheet is main.css. There are @import statements to all other files, which are stored in the folder: Components, Page, layout, vendor.

Framework, plugin

We do not use frameworks. However we use libraries, such suitcss-components-grid, suitcss-utils-display.

Javascript

The js folder contains two subfolders: lib contains all project source files and vendor contains all third party libraries. The files out of the two sub folders contain the compiled source code.

Note: All code changes should be made to the files in lib

Linting

To make it easier for everyone to contribute, we use eslint [http://eslint.org/] for JavaScript and stylelint [https://stylelint.io/] for CSS to keep the code base steady. You can view the JavaScript’s rules in our ESLint config [https://github.com/webcompat/webcompat.com/blob/master/.eslintrc#L34] and the CSS’s rules in our stylelint config [https://github.com/webcompat/webcompat.com/blob/master/.stylelintrc#L3]. For further explanation of the rules, please have a look at the ESLint documentation [http://eslint.org/docs/rules/] and stylelint documentation [https://stylelint.io/user-guide/rules/].

For the linting process, we use Prettier [http://jlongster.com/A-Prettier-Formatter].

In order to avoid errors during a Pull Request, npm run lint will be executed before each commit.

npm run lint checks all relevant JavaScript and CSS files and displays, if something needs to be fixed.

If you get an error displayed, there are two ways to fix it.

	You can run npm run lint:fix automatically, which is great for small issues like missing spaces or lines in various files.

	You can correct it manually as every error message includes the file and line of the error as well as the rule which was violated will be displayed..

Hopefully this will help you clear up a few struggles.

Production Server Setup

The current instance of webcompat.com has a nginx front server in front of the Flask application. These are the few things you need to know if you wanted to replicate the current configuration of the server. You will need to adjust for your own environment.

The configuration file is often located at something similar to:

/etc/nginx/sites-available/webcompat.com.conf

It depends on your local system. So we encourage you to read any documentation of your local server. You would then create a symbolic link to your local /etc/nginx/sites-enabled/. The gist of the nginx configuration file holds into

server {
 listen 80;
 root $HOME/webcompat.com;
 error_log $LOGS/nginx-error.log;
 server_name webcompat.com;
 location / {
 # serve static assets, or pass off requests to uwsgi/python
 try_files $HOME/webcompat.com/webcompat/static/$uri $uri @wc;
 }
 location @wc {
 uwsgi_pass unix:///tmp/uwsgi.sock;
 include uwsgi_params;
 }
 }

We also have the following content type handlers.

##
Gzip Settings
##

gzip on;
gzip_disable "msie6";

gzip_vary on;
gzip_proxied any;
gzip_comp_level 6;
gzip_buffers 16 8k;
gzip_http_version 1.0;

Turn on gzip for all content types that should benefit from it.
gzip_types application/ecmascript;
gzip_types application/javascript;
gzip_types application/json;
gzip_types application/pdf;
gzip_types application/postscript;
gzip_types application/x-javascript;
gzip_types image/svg+xml;
gzip_types text/css;
gzip_types text/csv;
"gzip_types text/html" is assumed.
gzip_types text/javascript;
gzip_types text/plain;
gzip_types text/xml;

We are also using uWSGI [http://uwsgi-docs.readthedocs.org/en/latest/index.html].

upstream uwsgicluster {
 server 127.0.0.1:8080;
}

with the following configuration file uwsgi.conf

our uWSGI script to run webcompat.com

description "uwsgi service"
start on runlevel [2345]
stop on runlevel [06]

respawn

.ini files for staging.webcompat.com (staging.ini) and webcompat.com (production.ini) are in $HOME/vassals
exec /usr/local/bin/uwsgi --emperor $HOME/vassals

We have been using uWSGI Emperor [http://uwsgi-docs.readthedocs.org/en/latest/Emperor.html] to manage two environments for staging and production. It gives us the possibility to test features which are not yet fully ready for production without messing the actual site.

production.ini

[uwsgi]

socket = $FOO/uwsgi.sock
chmod-socket = 666
chdir = $HOME/webcompat.com/
env = PRODUCTION=1
master = true
module = webcompat
callable = app
logto = $LOGS/uwsgi.log
buffer-size = 8192

and development.ini

[uwsgi]

socket = $FOO/uwsgi-staging.sock
chmod-socket = 664
gid = webcompat
uid = webcompat
chdir = $FOO/staging.webcompat.com/
env = DEVELOPMENT=1
module = webcompat
callable = app
logto = $FOO/staging-uwsgi.log
buffer-size = 8192

	Running Tests

	Functional Tests

	Functional Tests using Fixture Data

	Writing Tests

	Python Unit Tests

	JS Functional Tests

Running Tests

You can run the Python unit tests from the project root with the nosetests command.

You can also run them with following:

npm run test:python

Running functional tests is a bit more involved. You can also run both test suites at once (see the next section).

Tests are also run automatically on Travis [https://travis-ci.org/webcompat/webcompat.com] for each commit. If you would like to skip running tests for a given commit, you can use use the magical [ci skip] string in your commit message. See the Travis docs [http://docs.travis-ci.com/user/how-to-skip-a-build/#Not-All-Commits-Need-CI-Builds] for more info.

Functional Tests

We use Intern [http://theintern.io/] to run functional tests.

Note: This version is known to work with Firefox 50.1.0. If things aren’t working with the current stable version of Firefox, please file a bug! [https://github.com/webcompat/webcompat.com/issues/new].

Be sure that you have installed local npm dependencies and run the build before trying to run functional tests - if not, you will notice problems with the css. See dev env setup for details.

Installing Java

Java is used to run Selenium functional tests. Version 1.8.0+ is required.

To test if your version of Java is recent enough, type the java -version into your terminal.

> java -version
java version "1.8.0_51"
Java(TM) SE Runtime Environment (build 1.8.0_51-b16)
Java HotSpot(TM) 64-Bit Server VM (build 25.51-b03, mixed mode)

OS X:

Download from java.com/en/download/ [https://www.java.com/en/download/].

Ubuntu:

sudo add-apt-repository ppa:webupd8team/java
sudo apt-get update
sudo apt-get install oracle-java8-installer

The firefox binary will also need to be in your PATH. Here’s how this can be done on OS X:

export PATH="/Applications/Firefox.app/Contents/MacOS/:$PATH"

If you are a member of webcompat organization in GitHub, edit config/secrets.py. The value of ISSUES_REPO_URI is the path of the repository containing test issues.

Change the value to : ISSUES_REPO_URI = 'webcompat/webcompat-tests/issues'.

Start the application server in test mode:

source env/bin/activate && python run.py -t

or with the short form

npm run start:test

We start the server in test mode to mock the communications with GitHub API servers using local fixture data. The files in /tests/fixtures/ directory will be served as responses.

In a separate terminal window or tab, run the tests:

npm run test:js

You can also run the functional tests as well as the python tests in a seperate tab, after starting the server with:

npm test

Shortly after running this command, you should see the browser open and various pages appear and disappear automatically for a minute or two. The tests are complete when the browser window closes and you see a report of how many passed or failed in the terminal window that you ran the intern-runner command in.

To run a single test suite, where foo.js is the file found in the tests/functional directory:

Note: the extra -- is how you pass arguments to the npm script. Don’t forget it!

npm run test:js -- --functionalSuites=tests/functional/foo.js

To filter which tests within a single test suite you run, you can use the --grep argument:

npm run test:js -- --functionalSuites=tests/functional/foo.js --grep=tacos

This will run any test within the foo.js suite that has “tacos” in its name.

Right now the tests are running in Firefox and Chrome as a default. You can specify which browsers you want to test with using the browsers argument. Like this:

npm run test:js -- --browsers=chrome

By default, Chrome and Firefox will run in headless mode. To display the browser UI when running tests, use the --showBrowser arguement:

npm run test:js -- --showBrowser

For a list of the recognized browser names, just refer to Browser enum [http://seleniumhq.github.io/selenium/docs/api/javascript/module/selenium-webdriver/index_exports_Browser.html]

Adding Fixtures

To indicate that the app should send fixture data, use the @mockable_response decorator for an API endpoint.

If the endpoint you are trying to mock has GET parameters, you will need to create a file that has the GET parameters encoded in the filename. The source of @mockable_repsonse explains how this is done:

if get_args:
 # if there are GET args, encode them as a hash so we can
 # have different fixture files for different response states
 checksum = hashlib.md5(json.dumps(get_args)).hexdigest()
 file_path = FIXTURES_PATH + request.path + "." + checksum
 print('Expected fixture file: ' + file_path + '.json')

You can look at the server console’s Expected fixture file: message to know what file it is expecting.

Writing Tests

Contributions that add or modify major functionality to the project should typically come with tests to ensure we’re not breaking things (or won’t in the future!). There’s always room for more testing, so general contributions in this form are always welcome.

Python Unit Tests

Our Python unit tests are vanilla flavored unittest [https://docs.python.org/2/library/unittest.html] tests. Unit tests placed in the tests directory will be automatically detected by nose—

no manual registration is necessary.

Unit tests are preferred for features or functionality that are independent of the browser front-end, i.e., API responses, application routes, etc.

Important documentation links:

	Writing nose tests [https://nose.readthedocs.org/en/latest/writing_tests.html]

	unittest [https://docs.python.org/2/library/unittest.html]

	Testing Flask [http://flask.pocoo.org/docs/0.10/testing/]

JS Functional Tests

Functional tests are written in JavaScript, using Intern [http://theintern.io/]. There’s a nice guide on the Intern wiki [https://github.com/theintern/intern/wiki/Writing-Tests-with-Intern#functional-testing] that should explain enough to get you started.

Important documentation links:

	Leadfoot [https://theintern.github.io/leadfoot/]: the library that drives the browser (via Selenium).

	ChaiJS [http://chaijs.com/api/assert/]: the library used for assertions.

	Intern wiki [https://github.com/theintern/intern/wiki]: contains useful examples.

It’s also recommended to look at the other test files in the tests/functional directory to see how things are commonly done.

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/HHtMlPhAod.png
Q Search i= Allissues © Login

_images/YVlLDGItPf-3000x3000.png
1 | [Py .. [Pt

_images/8FDA5bVc7l.png
® 06 /" Q Page not found - GitHub % ‘\+

@ GitHub, Inc. (US) https://github.com/login/oauth/authorize?scope=public_repo&redirect_uri=http%3A%2F¥%2Flocalhost

This is not the
web page you
are looking for.

Find code, projects, and people on GitHub:

_images/forked.png
@Unwatch~ 10 HUnstar 4 Y Fork 13

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up.png

_static/up-pressed.png

