
Wayward
Release 0.3.2

Jun 28, 2019

Contents

1 Installation 3

2 Usage 5

3 Origin and Relaunch 7

4 References 9

5 Contents 11
5.1 Installation . 11
5.2 Usage . 12
5.3 Origin and Relaunch . 12
5.4 References . 13
5.5 Changelog . 13
5.6 Indices and tables . 15

Python Module Index 23

Index 25

i

ii

Wayward, Release 0.3.2

Wayward is a Python package that helps to identify characteristic terms from single documents or groups of docu-
ments. It can be used for keyword extraction and several related tasks, and can create efficient sparse representations
for classifiers. It was originally created to provide term weights for word clouds.

Rather than use simple term frequency to estimate the importance of words and phrases, it weighs terms by statistical
models known as parsimonious language models. These models are good at picking up the terms that distinguish a
text document from other documents in a collection.

For this to work, a preferably large amount of documents is needed to serve as a background collection, to compare the
documents of interest to. This could be a random sample of newspaper articles, for instance, but for many applications
it works better to take a natural collection, such as a periodical publication, and to fit the model for separate parts (e.g.
individual issues, or yearly groups of issues).

See the References section for more information about parsimonious language models and their applications.

Wayward does not do visualization of word clouds. For that, you can paste its output into a tool like http://wordle.net
or the IBM Word-Cloud Generator.

Contents 1

http://wordle.net
http://www.alphaworks.ibm.com/tech/wordcloud

Wayward, Release 0.3.2

2 Contents

CHAPTER 1

Installation

Either install the latest release from PyPI:

$ pip install wayward

or clone the git repository, and use Poetry to install the package in editable mode:

$ git clone https://github.com/aolieman/wayward.git
$ cd wayward/
$ poetry install

3

https://poetry.eustace.io/docs/

Wayward, Release 0.3.2

4 Chapter 1. Installation

CHAPTER 2

Usage

>>> quotes = [
... "Love all, trust a few, Do wrong to none",
... ...
... "A lover's eyes will gaze an eagle blind. "
... "A lover's ear will hear the lowest sound.",
...]
>>> doc_tokens = [
... re.sub(r"[.,:;!?\"‘’]|'s\b", " ", quote).lower().split()
... for quote in quotes
...]

The ParsimoniousLM is initialized with all document tokens as a background corpus, and subsequently takes a
single document’s tokens as input. Its top() method returns the top terms and their probabilities:

>>> from wayward import ParsimoniousLM
>>> plm = ParsimoniousLM(doc_tokens, w=.1)
>>> plm.top(10, doc_tokens[-1])
[('lover', 0.1538461408077277),
('will', 0.1538461408077277),
('eyes', 0.0769230704038643),
('gaze', 0.0769230704038643),
('an', 0.0769230704038643),
('eagle', 0.0769230704038643),
('blind', 0.0769230704038643),
('ear', 0.0769230704038643),
('hear', 0.0769230704038643),
('lowest', 0.0769230704038643)]

The SignificantWordsLM is similarly initialized with a background corpus, but subsequently takes a group of
document tokens as input. Its group_top method returns the top terms and their probabilities:

>>> from wayward import SignificantWordsLM
>>> swlm = SignificantWordsLM(doc_tokens, lambdas=(.7, .1, .2))
>>> swlm.group_top(10, doc_tokens[-2:], fix_lambdas=True)

(continues on next page)

5

Wayward, Release 0.3.2

(continued from previous page)

[('much', 0.09077675276900632),
('lover', 0.06298706244865138),
('will', 0.06298706244865138),
('you', 0.04538837638450315),
('your', 0.04538837638450315),
('rhymes', 0.04538837638450315),
('speak', 0.04538837638450315),
('neither', 0.04538837638450315),
('rhyme', 0.04538837638450315),
('nor', 0.04538837638450315)]

See example/dickens.py for a runnable example with more realistic data.

6 Chapter 2. Usage

https://wayward.readthedocs.io/en/latest/examples/dickens.html

CHAPTER 3

Origin and Relaunch

This package started out as WeighWords, written by Lars Buitinck at the University of Amsterdam. It provides an
efficient parsimonious LM implementation, and a very accessible API.

A recent innovation in language modeling, Significant Words Language Models, led to the addition of a two-way
parsimonious language model to this package. This new version targets python 3.x, and after a long slumber deserved
a fresh name. The name “Wayward” was chosen because it is a near-homophone of WeighWords, and as a nod
to parsimonious language modeling: it uncovers which terms “depart” most from the background collection. The
parsimonization algorithm discounts terms that are already well explained by the background model, until the most
wayward terms come out on top.

See the Changelog for an overview of the most important changes.

7

https://github.com/larsmans/weighwords/
https://wayward.readthedocs.io/en/develop/changelog.html

Wayward, Release 0.3.2

8 Chapter 3. Origin and Relaunch

CHAPTER 4

References

D. Hiemstra, S. Robertson, and H. Zaragoza (2004). Parsimonious Language Models for Information Retrieval. Proc.
SIGIR‘04.

R. Kaptein, D. Hiemstra, and J. Kamps (2010). How different are Language Models and word clouds?. Proc. ECIR‘10.

M. Dehghani, H. Azarbonyad, J. Kamps, D. Hiemstra, and M. Marx (2016). Luhn Revisited: Significant Words
Language Models. Proc. CKIM‘16.

9

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.5806
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.189.822
https://djoerdhiemstra.com/wp-content/uploads/cikm2016.pdf
https://djoerdhiemstra.com/wp-content/uploads/cikm2016.pdf

Wayward, Release 0.3.2

10 Chapter 4. References

CHAPTER 5

Contents

Wayward is a Python package that helps to identify characteristic terms from single documents or groups of docu-
ments. It can be used for keyword extraction and several related tasks, and can create efficient sparse representations
for classifiers. It was originally created to provide term weights for word clouds.

Rather than use simple term frequency to estimate the importance of words and phrases, it weighs terms by statistical
models known as parsimonious language models. These models are good at picking up the terms that distinguish a
text document from other documents in a collection.

For this to work, a preferably large amount of documents is needed to serve as a background collection, to compare the
documents of interest to. This could be a random sample of newspaper articles, for instance, but for many applications
it works better to take a natural collection, such as a periodical publication, and to fit the model for separate parts (e.g.
individual issues, or yearly groups of issues).

See the References section for more information about parsimonious language models and their applications.

Wayward does not do visualization of word clouds. For that, you can paste its output into a tool like http://wordle.net
or the IBM Word-Cloud Generator.

5.1 Installation

Either install the latest release from PyPI:

$ pip install wayward

or clone the git repository, and use Poetry to install the package in editable mode:

$ git clone https://github.com/aolieman/wayward.git
$ cd wayward/
$ poetry install

11

http://wordle.net
http://www.alphaworks.ibm.com/tech/wordcloud
https://poetry.eustace.io/docs/

Wayward, Release 0.3.2

5.2 Usage

>>> quotes = [
... "Love all, trust a few, Do wrong to none",
... ...
... "A lover's eyes will gaze an eagle blind. "
... "A lover's ear will hear the lowest sound.",
...]
>>> doc_tokens = [
... re.sub(r"[.,:;!?\"‘’]|'s\b", " ", quote).lower().split()
... for quote in quotes
...]

The ParsimoniousLM is initialized with all document tokens as a background corpus, and subsequently takes a
single document’s tokens as input. Its top() method returns the top terms and their probabilities:

>>> from wayward import ParsimoniousLM
>>> plm = ParsimoniousLM(doc_tokens, w=.1)
>>> plm.top(10, doc_tokens[-1])
[('lover', 0.1538461408077277),
('will', 0.1538461408077277),
('eyes', 0.0769230704038643),
('gaze', 0.0769230704038643),
('an', 0.0769230704038643),
('eagle', 0.0769230704038643),
('blind', 0.0769230704038643),
('ear', 0.0769230704038643),
('hear', 0.0769230704038643),
('lowest', 0.0769230704038643)]

The SignificantWordsLM is similarly initialized with a background corpus, but subsequently takes a group of
document tokens as input. Its group_top method returns the top terms and their probabilities:

>>> from wayward import SignificantWordsLM
>>> swlm = SignificantWordsLM(doc_tokens, lambdas=(.7, .1, .2))
>>> swlm.group_top(10, doc_tokens[-2:], fix_lambdas=True)
[('much', 0.09077675276900632),
('lover', 0.06298706244865138),
('will', 0.06298706244865138),
('you', 0.04538837638450315),
('your', 0.04538837638450315),
('rhymes', 0.04538837638450315),
('speak', 0.04538837638450315),
('neither', 0.04538837638450315),
('rhyme', 0.04538837638450315),
('nor', 0.04538837638450315)]

See example/dickens.py for a runnable example with more realistic data.

5.3 Origin and Relaunch

This package started out as WeighWords, written by Lars Buitinck at the University of Amsterdam. It provides an
efficient parsimonious LM implementation, and a very accessible API.

A recent innovation in language modeling, Significant Words Language Models, led to the addition of a two-way
parsimonious language model to this package. This new version targets python 3.x, and after a long slumber deserved

12 Chapter 5. Contents

https://wayward.readthedocs.io/en/latest/examples/dickens.html
https://github.com/larsmans/weighwords/

Wayward, Release 0.3.2

a fresh name. The name “Wayward” was chosen because it is a near-homophone of WeighWords, and as a nod
to parsimonious language modeling: it uncovers which terms “depart” most from the background collection. The
parsimonization algorithm discounts terms that are already well explained by the background model, until the most
wayward terms come out on top.

See the Changelog for an overview of the most important changes.

5.4 References

D. Hiemstra, S. Robertson, and H. Zaragoza (2004). Parsimonious Language Models for Information Retrieval. Proc.
SIGIR‘04.

R. Kaptein, D. Hiemstra, and J. Kamps (2010). How different are Language Models and word clouds?. Proc. ECIR‘10.

M. Dehghani, H. Azarbonyad, J. Kamps, D. Hiemstra, and M. Marx (2016). Luhn Revisited: Significant Words
Language Models. Proc. CKIM‘16.

5.5 Changelog

All notable changes to this project should be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

5.5.1 [Unreleased]

•

5.5.2 [0.3.2] - 2019-06-09

Added

• Package documentation:

– Transclude basic instructions from README.

– Generate API documentation.

– Configuration for Read the Docs.

– Incorporate changelog via symlink.

– Add a Dickens example page.

• Docs build status and PyPI version badges in README.

5.5.3 [0.3.1] - 2019-06-05

Added

• This changelog.

5.4. References 13

https://wayward.readthedocs.io/en/develop/changelog.html
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.5806
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.189.822
https://djoerdhiemstra.com/wp-content/uploads/cikm2016.pdf
https://djoerdhiemstra.com/wp-content/uploads/cikm2016.pdf
https://keepachangelog.com/en/1.0.0/
https://semver.org/spec/v2.0.0.html

Wayward, Release 0.3.2

Changed

• Explicitly specified the readme in pyproject.toml.

• Updated install instructions for Poetry.

5.5.4 [0.3.0] - 2019-06-04

Added

• Significant Words Language Model.

• Pluggable specific terms estimator.

• Tests for PLM document model.

• Tests for SWLM model fit.

• Tests for model (non-)equivalence between PLM and SWLM.

• SWLM example in exmaple/dickens.py.

• Usage examples in README.

• Type hints in function annotations.

Changed

• Renamed package to Wayward.

• Replaced setup.py with pyproject.toml.

• ParsimoniousLM.top() now returns linear probabilities instead of log-probabilities.

Removed

• Dropped python 2.7 compatibility in favor of ^3.7.

Fixed

• KeyError when out-of-vocabulary terms occurred in a document.

5.5.5 [0.2.x] - 2011-11-13 to 2013-04-18

The WeighWords version from which Wayward was forked.

Some commits have been put on the master branch after bumping the version to 0.2. Since there is no git tag to pin
down what’s part of 0.2, I’ve mentioned both the version bump date, and the date of the latest commit that we use here.

14 Chapter 5. Contents

Wayward, Release 0.3.2

5.6 Indices and tables

• genindex

• modindex

• search

5.6.1 Dickens Example

In this example, three books by Charles Dickens are used as a background corpus. Each of the books is subsequently
used as a foreground model, and is parsimonized against the background corpus. This results in top terms that are
characteristic for specific books, when compared to common Dickensian language.

This is a minimalistic example, which only analyzes unigrams, and uses a background corpus of limited size. As
an exercise, one could expand this example with phrase modeling (e.g. as provided by gensim.phrases) to analyze
higher-order ngrams.

The full text of the input books was obtained from Project Gutenberg.

Running

First download (or clone) the source files from GitHub.

Then the example can be run from the example/ directory:

$ cd wayward/example
$ python dickens.py

Output

INFO:__main__:Fetching terms from Oliver Twist
INFO:__main__:Fetching terms from David Copperfield
INFO:__main__:Fetching terms from Great Expectations
INFO:wayward.parsimonious:Building corpus model
INFO:wayward.parsimonious:Building corpus model
INFO:wayward.parsimonious:Gathering term probabilities
INFO:wayward.parsimonious:EM with max_iter=50, eps=1e-05

... *omitted numpy warnings*

INFO:wayward.significant_words:Lambdas initialized to: Corpus=0.9, Group=0.01,
→˓Specific=0.09

Top 20 words in Oliver Twist:

PLM term PLM p SWLM term SWLM p
oliver 0.0824 oliver 0.1361
bumble 0.0372 sikes 0.0526
sikes 0.0332 bumble 0.0520
jew 0.0297 fagin 0.0477
fagin 0.0289 jew 0.0475
brownlow 0.0163 replied 0.0372
monks 0.0126 brownlow 0.0244

(continues on next page)

5.6. Indices and tables 15

https://radimrehurek.com/gensim/models/phrases.html
https://www.gutenberg.org/
https://github.com/aolieman/wayward/tree/master/example

Wayward, Release 0.3.2

(continued from previous page)

noah 0.0124 rose 0.0235
rose 0.0116 gentleman 0.0223
giles 0.0112 girl 0.0178
nancy 0.0109 nancy 0.0164
dodger 0.0107 dodger 0.0161
maylie 0.0093 monks 0.0159
bates 0.0088 noah 0.0156
beadle 0.0081 bates 0.0133
sowerberry 0.0079 giles 0.0118
yer 0.0077 maylie 0.0117
grimwig 0.0062 bill 0.0115
charley 0.0062 rejoined 0.0113
corney 0.0061 lady 0.0110

INFO:wayward.parsimonious:Gathering term probabilities
INFO:wayward.parsimonious:EM with max_iter=50, eps=1e-05

... *omitted wayward logging output*

INFO:wayward.significant_words:Lambdas initialized to: Corpus=0.9, Group=0.01,
→˓Specific=0.09

Top 20 words in David Copperfield:

PLM term PLM p SWLM term SWLM p
micawber 0.0367 micawber 0.0584
peggotty 0.0335 peggotty 0.0533
aunt 0.0330 aunt 0.0517
copperfield 0.0226 copperfield 0.0359
traddles 0.0218 traddles 0.0346
dora 0.0216 my 0.0295
agnes 0.0182 dora 0.0290
steerforth 0.0169 agnes 0.0285
murdstone 0.0138 steerforth 0.0259
uriah 0.0100 murdstone 0.0200
ly 0.0088 her 0.0171
dick 0.0085 mother 0.0157
wickfield 0.0084 uriah 0.0145
davy 0.0073 dick 0.0142
barkis 0.0067 ly 0.0140
trotwood 0.0065 wickfield 0.0128
spenlow 0.0064 davy 0.0105
ham 0.0057 trotwood 0.0099
heep 0.0055 barkis 0.0097
creakle 0.0054 ham 0.0094

INFO:wayward.parsimonious:Gathering term probabilities
INFO:wayward.parsimonious:EM with max_iter=50, eps=1e-05

... *omitted wayward logging output*

INFO:wayward.significant_words:Lambdas initialized to: Corpus=0.9, Group=0.01,
→˓Specific=0.09

Top 20 words in Great Expectations:

PLM term PLM p SWLM term SWLM p
(continues on next page)

16 Chapter 5. Contents

Wayward, Release 0.3.2

(continued from previous page)

joe 0.0732 joe 0.1346
pip 0.0335 pip 0.0614
havisham 0.0314 havisham 0.0559
herbert 0.0309 herbert 0.0502
wemmick 0.0280 estella 0.0471
estella 0.0265 wemmick 0.0456
jaggers 0.0239 jaggers 0.0409
biddy 0.0227 biddy 0.0404
pumblechook 0.0161 pumblechook 0.0275
wopsle 0.0118 wopsle 0.0192
drummle 0.0087 pocket 0.0186
provis 0.0067 sister 0.0152
orlick 0.0058 drummle 0.0132
compeyson 0.0057 aged 0.0097
aged 0.0056 marshes 0.0092
marshes 0.0052 orlick 0.0088
handel 0.0051 forge 0.0088
forge 0.0050 handel 0.0082
guardian 0.0047 provis 0.0074
trabb 0.0045 convict 0.0068

5.6.2 parsimonious module

class wayward.parsimonious.ParsimoniousLM(documents: Iterable[Iterable[str]], w:
numpy.floating, thresh: int = 0)

Bases: object

Language model for a set of documents.

Constructing an object of this class fits a background model. The top method can then be used to fit document-
specific models, also for unseen documents (with the same vocabulary as the background corpus).

References

D. Hiemstra, S. Robertson, and H. Zaragoza (2004). Parsimonious Language Models for Information Retrieval.
Proc. SIGIR‘04.

Parameters

• documents (iterable over iterable of str terms) – All documents that
should be included in the corpus model.

• w (float) – Weight of document model (1 - weight of corpus model).

• thresh (int) – Don’t include words that occur fewer than thresh times.

vocab
Mapping of terms to numeric indices

Type dict of term -> int

p_corpus
Log probability of terms in background model (indexed by vocab)

Type array of float

p_document
Log probability of terms in the last processed document model (indexed by vocab)

5.6. Indices and tables 17

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.4.5806

Wayward, Release 0.3.2

Type array of float

get_term_probabilities(log_prob_distribution: numpy.ndarray)→ Dict[str, float]
Align a term distribution with the vocabulary, and transform the term log probabilities to linear probabili-
ties.

Parameters log_prob_distribution (array of float) – Log probability of terms
which is indexed by the vocabulary.

Returns t_p_map – Dictionary of terms and their probabilities in the (sub-)model.

Return type dict of term -> float

top(k: int, d: Iterable[str], max_iter: int = 50, eps: float = 1e-05, w: Optional[numpy.floating] = None)
→ List[Tuple[str, float]]
Get the top k terms of a document d and their log probabilities.

Uses the Expectation Maximization (EM) algorithm to estimate term probabilities.

Parameters

• k (int) – Number of top terms to return.

• d (iterable of str terms) – Terms that make up the document.

• max_iter (int, optional) – Maximum number of iterations of EM algorithm to
run.

• eps (float, optional) – Epsilon: convergence threshold for EM algorithm.

• w (float, optional) – Weight of document model; overrides value given to
ParsimoniousLM

Returns t_p – Terms and their probabilities in the parsimonious model.

Return type list of (str, float)

5.6.3 significant_words module

class wayward.significant_words.SignificantWordsLM(documents: Iter-
able[Iterable[str]], lamb-
das: Tuple[numpy.floating,
numpy.floating, numpy.floating],
thresh: int = 0)

Bases: wayward.parsimonious.ParsimoniousLM

Language model that consists of three sub-models:

• Corpus model: represents term probabilities in a (large) background collection;

• Group model: parsimonious term probabilities in a group of documents;

• Specific model: represents the same group, but is biased towards terms that occur with a high frequency in
single docs, and a low frequency in others.

References

M. Dehghani, H. Azarbonyad, J. Kamps, D. Hiemstra, and M. Marx (2016). Luhn Revisited: Significant Words
Language Models. Proc. CKIM‘16.

Parameters

18 Chapter 5. Contents

https://djoerdhiemstra.com/wp-content/uploads/cikm2016.pdf
https://djoerdhiemstra.com/wp-content/uploads/cikm2016.pdf

Wayward, Release 0.3.2

• documents (iterable over iterable of str terms) – All documents that
should be included in the corpus model.

• lambdas (3-tuple of float) – Weight of corpus, group, and specific models. Will
be normalized if the weights in the tuple don’t sum to one.

• thresh (int) – Don’t include words that occur fewer than thresh times.

vocab
Mapping of terms to numeric indices

Type dict of term -> int

p_corpus
Log probability of terms in background model (indexed by vocab)

Type array of float

p_group
Log probability of terms in the last processed group model (indexed by vocab)

Type array of float

p_specific
Log probability of terms in the last processed specific model (indexed by vocab)

Type array of float

lambda_corpus
Log probability (weight) of corpus model for documents

Type array of float

lambda_group
Log probability (weight) of group model for documents

Type array of float

lambda_specific
Log probability (weight) of specific model for documents

Type array of float

See also:

wayward.parsimonious.ParsimoniousLM one-sided parsimonious model

fit_parsimonious_group(document_group: Iterable[Iterable[str]], max_iter: int = 50,
eps: float = 1e-05, lambdas: Optional[Tuple[numpy.floating,
numpy.floating, numpy.floating]] = None, fix_lambdas: bool =
False, parsimonize_specific: bool = False, post_parsimonize: bool
= False, specific_estimator: Callable[[Sequence[numpy.ndarray]],
numpy.ndarray] = <function mutual_exclusion>)→ Dict[str, float]

Estimate a document group model, and parsimonize it against fixed corpus and specific models. The
documents may be unseen, but any terms that are not in the vocabulary will be ignored.

Parameters

• document_group (iterable over iterable of str terms) – All docu-
ments that should be included in the group model.

• max_iter (int, optional) – Maximum number of iterations of EM algorithm to
run.

• eps (float, optional) – Epsilon: convergence threshold for EM algorithm.

5.6. Indices and tables 19

Wayward, Release 0.3.2

• lambdas (3-tuple of float, optional) – Weight of corpus, group, and spe-
cific models. Will be normalized if the weights in the tuple don’t sum to one.

• fix_lambdas (bool, optional) – Fix the weights of the three sub-models (i.e.
don’t estimate lambdas as part of the M-step).

• parsimonize_specific (bool, optional) – Bias the specific model towards
uncommon terms before applying the EM algorithm to the group model. This generally
results in a group model that stands out less from the corpus model.

• post_parsimonize (bool, optional) – Bias the group model towards uncom-
mon terms after applying the EM algorithm. This may be used to compensate when the
frequency of common terms varies much between the documents in the group.

• specific_estimator (callable, optional) – Function that estimates the spe-
cific terms model based on the document term frequencies of the doc group.

Returns t_p_map – Dictionary of terms and their probabilities in the group model.

Return type dict of term -> float

group_top(k: int, document_group: Iterable[Iterable[str]], **kwargs)→ List[Tuple[str, float]]
Get the top k terms of a document_group and their probabilities. This is a shortcut to retrieve the top terms
found by fit_parsimonious_group().

Parameters

• k (int) – Number of top terms to return.

• document_group (iterable over iterable of str terms) – All docu-
ments that should be included in the group model.

• kwargs – Optional keyword arguments for fit_parsimonious_group().

Returns t_p – Terms and their probabilities in the group model.

Return type list of (str, float)

See also:

SignificantWordsLM.fit_parsimonious_group()

static normalize_lambdas(lambdas: Tuple[numpy.floating, numpy.floating, numpy.floating])
→ Tuple[numpy.floating, numpy.floating, numpy.floating]

Check and normalize the initial lambdas of the three sub-models.

Parameters lambdas (3-tuple of float) – Weight of corpus, group, and specific mod-
els.

Returns lambdas – Normalized probability of corpus, group, and specific models.

Return type 3-tuple of float

5.6.4 specific_term_estimators module

exception wayward.specific_term_estimators.RequiresMultipleDocuments
Bases: Exception

20 Chapter 5. Contents

Wayward, Release 0.3.2

wayward.specific_term_estimators.idf_fallback_for_many_docs(document_term_frequencies:
Se-
quence[numpy.ndarray],
primary_estimator:
Callable[[Sequence[numpy.ndarray]],
numpy.ndarray],
fallback_thresh: int)

wayward.specific_term_estimators.inverse_doc_frequency(document_term_frequencies:
Sequence[numpy.ndarray])
→ numpy.ndarray

Estimate the fixed specific model with the inverse doc frequency method.

wayward.specific_term_estimators.me_up_to_40_docs(document_term_frequencies:
Sequence[np.ndarray], *, pri-
mary_estimator: SpecificTer-
mEstimator = <function mu-
tual_exclusion>, fallback_thresh:
int = 40)

wayward.specific_term_estimators.mutual_exclusion(document_term_frequencies:
Sequence[numpy.ndarray]) →
numpy.ndarray

Estimate the fixed specific model with the mutual exclusion method.

wayward.specific_term_estimators.requires_multiple_docs(estimator_func:
Callable[[Sequence[numpy.ndarray]],
numpy.ndarray])

Do not let the decorated function be called with fewer than two docs.

Parameters estimator_func (SpecificTermEstimator) –

Raises RequiresMultipleDocuments

Returns decorated_func

Return type SpecificTermEstimator

5.6.5 logsum module

Safe addition in log-space, taken from scikit-learn.

Authors: G. Varoquaux, A. Gramfort, A. Passos, O. Grisel

License: BSD

wayward.logsum.logsum(x: numpy.ndarray)→ numpy.ndarray
Computes the sum of x assuming x is in the log domain.

Returns log(sum(exp(x))) while minimizing the possibility of over/underflow.

Examples

>>> import numpy as np
>>> a = np.arange(10)
>>> np.log(np.sum(np.exp(a)))
9.4586297444267107
>>> logsum(a)
9.4586297444267107

5.6. Indices and tables 21

Wayward, Release 0.3.2

22 Chapter 5. Contents

Python Module Index

w
wayward.logsum, 21
wayward.parsimonious, 17
wayward.significant_words, 18
wayward.specific_term_estimators, 20

23

Wayward, Release 0.3.2

24 Python Module Index

Index

F
fit_parsimonious_group() (way-

ward.significant_words.SignificantWordsLM
method), 19

G
get_term_probabilities() (way-

ward.parsimonious.ParsimoniousLM method),
18

group_top() (wayward.significant_words.SignificantWordsLM
method), 20

I
idf_fallback_for_many_docs() (in module

wayward.specific_term_estimators), 20
inverse_doc_frequency() (in module way-

ward.specific_term_estimators), 21

L
lambda_corpus (way-

ward.significant_words.SignificantWordsLM
attribute), 19

lambda_group (way-
ward.significant_words.SignificantWordsLM
attribute), 19

lambda_specific (way-
ward.significant_words.SignificantWordsLM
attribute), 19

logsum() (in module wayward.logsum), 21

M
me_up_to_40_docs() (in module way-

ward.specific_term_estimators), 21
mutual_exclusion() (in module way-

ward.specific_term_estimators), 21

N
normalize_lambdas() (way-

ward.significant_words.SignificantWordsLM
static method), 20

P
p_corpus (wayward.parsimonious.ParsimoniousLM

attribute), 17
p_corpus (wayward.significant_words.SignificantWordsLM

attribute), 19
p_document (wayward.parsimonious.ParsimoniousLM

attribute), 17
p_group (wayward.significant_words.SignificantWordsLM

attribute), 19
p_specific (wayward.significant_words.SignificantWordsLM

attribute), 19
ParsimoniousLM (class in wayward.parsimonious),

17

R
requires_multiple_docs() (in module way-

ward.specific_term_estimators), 21
RequiresMultipleDocuments, 20

S
SignificantWordsLM (class in way-

ward.significant_words), 18

T
top() (wayward.parsimonious.ParsimoniousLM

method), 18

V
vocab (wayward.parsimonious.ParsimoniousLM at-

tribute), 17
vocab (wayward.significant_words.SignificantWordsLM

attribute), 19

W
wayward.logsum (module), 21
wayward.parsimonious (module), 17
wayward.significant_words (module), 18
wayward.specific_term_estimators (mod-

ule), 20

25

	Installation
	Usage
	Origin and Relaunch
	References
	Contents
	Installation
	Usage
	Origin and Relaunch
	References
	Changelog
	Indices and tables

	Python Module Index
	Index

