

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/wandrells-development-docs/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/wandrells-development-docs/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Development Docs

This is a personal programming guide and code base, to help myself when developing a software project.

It explains the methodologies I use and prefer, how to use them and if possible it explains decisions I took. This way I can keep a knowledge base, instead of going through a process of forgetting and re-learning when retaking an old project.

As it is just a helping tool, it does not aim to be an in-depth guide. It expects a certain grade of knowledge about computer science and software technologies.

	General information
	Development ecosystem

	Documentation

	Testing

	Continuous integration

	Code style

	Technologies and services
	git

	Travis

	GitHub

	Java
	Development ecosystem

	IDE

	Continuous integration

	Maven

	Python
	Development ecosystem

	IDE

	Continuous integration

	PyPi

	tox

Development Docs

This is a personal programming guide and code base, to help myself when developing a software project.

It explains the methodologies I use and prefer, how to use them and if possible it explains decisions I took. This way I can keep a knowledge base, instead of going through a process of forgetting and re-learning when retaking an old project.

As it is just a helping tool, it does not aim to be an in-depth guide. It expects a certain grade of knowledge about computer science and software technologies.

Reading the docs

The docs can be read in Gitbook [https://www.gitbook.com/book/bernardo-mg/development-docs], where they are deployed automatically.

Building the docs

The docs source is composed of markdown files, meant to be used with Gitbook [https://www.gitbook.com/].

Collaborate

Any kind of help with the project will be well received. Any recommendation or tip can be added to the issue management and will be taken into account.

Of course everybody is free to fork and adapt the project for their own use.

Issues management

Issues are managed at the GitHub project issues tracker [https://github.com/bernardo-mg/development-docs/issues], where any Github user may report bugs or ask for new features.

Getting the code

If you wish to fork or modify the code, visit the GitHub project page [https://github.com/bernardo-mg/development-docs], where the latest versions are always kept. Check the ‘master’ branch for the latest release, and the ‘develop’ for the current, and stable, development version.

License

The project has been released under the MIT License [http://www.opensource.org/licenses/mit-license.php].

Python development ecosystem

[image: Python development architecture]

Continuous integration

[image: CI flow]

Travis

Continuous Integration is handled through Travis CI [https://travis-ci.org/].

Status flags

A few flags, stored in environmental variables, are used to control the CI flow. These are required by the CI scripts [https://github.com/Bernardo-MG/ci-shell-scripts].

PyPi

PyPi [https://pypi.python.org/pypi] is a package repository for Python. Along with pip [https://pypi.python.org/pypi/pip] it can be used for dependency management.

Dependency management

This is already covered in the PyPi documentation and many tutorials.

It will be enough saying that dependencies are defined in the requirements.txt file inside the Python projects.

tox

tox [https://tox.readthedocs.io] automatizes Python tests. With it a set of testing environment are defined, and then used for various groups of tests.

Java IDE

Eclipse

PyCharm [https://www.jetbrains.com/pycharm/] is the recommended Python IDE.

Java development ecosystem

[image: Java development architecture]

IDE

Eclipse is the recommended Java IDE, it integrates with Maven and git.

CI

Travis is used for Continuous Integration.

Deployment to dependency repositories

Bintray, JCenter and Maven Central are used to deploy artifacts.

Maven

Maven [https://maven.apache.org/] is a project management tool for Java. In some aspects it may be too big, offering much more than what most people will need, and suffering integration problems with itself from time to time. Still, used with care it is really useful.

The main aspects used in the projects are:

	Dependency management

	Project management (building, running tests, deploying...)

	Generating documentation site

Dependency management

This is already covered in the Maven documentation and many tutorials.

Version management

It should be noted that Maven allows not only setting a project’s dependencies, but also the versions of those dependencies without adding them. This way if the dependencies are added into any kind of children POM the version is already set by default.

This is handled with the dependency management [https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Dependency_Management] and plugin management [https://maven.apache.org/pom.html#Plugin_Management] options.

Checking for updates

To check if there are newer versions for the dependencies the following command can be used:

mvn versions:display-dependency-updates versions:display-plugin-updates

Project management

Base POM

Common configuration for multiple projects should be kept inside a base POM. The main one is in the project plainly name base POM [https://github.com/Bernardo-MG/base-pom], a generic POM to be used in most kinds of Java projects.

Inside a base POM the following can be set up:

	Dependency and plugin versions

	Dependency and plugin dependencies, but only the bare minimum

	Profiles, for things such as deployment or testing

Running tests

The Surefire [http://maven.apache.org/surefire/maven-surefire-plugin/] and Failsafe [http://maven.apache.org/surefire/maven-failsafe-plugin/] plugins take care of running tests. It is recommended using the default test search methods, which will run all the test clases with “Test” in the name as unit test, and those with “IT” as integration tests. They will be found by scanning the test packages.

Command

To run both unit and integration tests the verify should be used:

mvn verify

Documentation site

Maven supports its own documentation generation tool the Maven site [https://maven.apache.org/plugins/maven-site-plugin/], handled through the plugin of the same name.

To keep the project self contained, and take full advantage of Maven, it is recommended using this for the project’s generated documentation.

By default the site is generated using an ugly and obsolete UI. For this reason a skin is provided, the docs Maven skin [https://github.com/Bernardo-MG/docs-maven-skin]. Using this the generated site becomes an HTML5 mobile-friendly page.

Command

Some reports will require the output from the tests. For this reason it is recommended running all the tests before generating the site:

mvn verify site

Default variables

Maven already contains several pre-set variables.

These are defined in the Maven Super POM [https://maven.apache.org/pom.html#The_Super_POM].

Array variables

If a variable contains several children they can be accesed as an array.

For example this gets the path to the first test resources directory:

${project.build.testResources[0].directory}

Continuous integration

[image: CI flow]

Travis

Continuous Integration is handled through Travis CI [https://travis-ci.org/].

Status flags

A few flags, stored in environmental variables, are used to control the CI flow. These are required by the CI scripts [https://github.com/Bernardo-MG/ci-shell-scripts].

Java artifacts deployment

Maven can be used to deploy Java artifacts. The JAR files are deployed to Bintray [https://bintray.com], from there replicated into JCenter [https://bintray.com/bintray/jcenter], and then to Maven Central [https://search.maven.org/].

Bintray has a guide [https://blog.bintray.com/2014/02/11/bintray-as-pain-free-gateway-to-maven-central/] detailing how to set this up.

Once this is set up, deployment is handled through CI, which will store the deployment passkey in a safe way.

Java IDE

Eclipse

Eclipse [https://eclipse.org/] is the recommended Java IDE.

Code style

Eclipse supports XML configuration for its code style formatter. The following files are recommended configurations:

	Java code style [https://github.com/Bernardo-MG/eclipse-code-style/blob/master/Eclipse-Format-Java.xml], a mix of various standards.

GitHub

Recommended free version control repository [https://github.com/].

Travis CI

Recommended free CI service [https://travis-ci.org/].

Check their docs [https://docs.travis-ci.com/].

Configuration

The CI process is prepared with the help of a YAML file. These are the .travis.yml files found in the projects.

git

Recommended version control tool.

Configuration files

Projects include a .gitignore and a .gitattributes files.

The first indicates all the files and folders which should not be persisted into the code repository, mostly to avoid saving generated content, test results or IDE configuration files.

The attributes file maps file extensions to content types, this way, for example, it is possible telling git that the xml extension is used only for text files and never for binaries.

Sample files

These files include the recommended configurations:

Git flow

The most popular methodology for using git is git flow [http://nvie.com/posts/a-successful-git-branching-model/].

	Github’s git ignore file examples [https://github.com/github/gitignore]

	Various git attributes file examples [https://github.com/alexkaratarakis/gitattributes]

Development ecosystem

Setting up an usable architecture is the first step when begginning to work, but it does not stop once the IDE is running and the code starts to be coded.

The environment is dependant of the technology being used, and may require setting up servers, or registering into third party services. But it always follows a similar pattern.

[image: Generic development environment]

The usual components of any development environment are:

Component|Usage|Example
—|—|—
Code repository|Store for the version control system, which allows several people to access and use it|Github, Bitbucket
Continuous integration|Service for handling tasks after changes are committed to a project|Travis, Jenkins
Dependencies management tool|Application which handles the project dependencies|Maven, npm, pip
Dependencies repository|Store with libraries and projects to be used as dependencies|Bintray, PyPi, Maven Repository
Documentation server|A server for files which document the project|Any static content server
IDE|Integrated Development Environment, comprehensive application to help programming|Eclipse, Pycharm
Packaging management tool|Application which handles the project building process|webpack
Project management tool|Application which handles the repetitive, complex and common tasks of project building|Maven
Reporting services|Service for generating any kind of report, such as code coverage or code quality|Coveralls, Landscape
Version control system|System which keeps track and a history of all the changes in code|svn, git

These are just the components which take a direct part in the project lifecycle. A few other important components, such as issues tracking, or test runners, are not included, but they will be touched in their own sections.

When analysing the development environment the first place to look at is the IDE, as it will be the main interface for the developer. This should be able to integrate with the other components and services, the most important being the version control system.

Code style

Code style decisions are meant to make the code easier to understand. This is achieved following the most popular standards as close as possible.

References

	Google Code Style Guides [https://google.github.io/styleguide/]

Tabs

Tabulations should be avoided. The common alternative for them is using three or four spaces. The recommended number is three, just because it makes the code look more compact.

Testing

Tests are the way to ensure the code behaves as expected and wished. There are many ways to handle testing during development, but first we need to find out which types of test exist, and which ones we want to use.

The two most common kinds of test, the ones everybody talks about, are unit and integration tests. But there are other kinds, which may or not be also unit and integration tests, such as smoke tests or regression tests. Sometimes the difference between one kind to another is not too clear, and each person will have their own description, and opinions, about them. But in general terms these would be the ones we want to remember:

Type of test|Verifies...
—|—
Acceptance|..that the code does what it was designed to
Black box|...a piece of code where the exact workings of the internal logic is unknown
Integration|...the combined logic of several components
Regression|...that the code still is working
Smoke|...that the code does not burst into flames when run
Stress|...that the code can keep working under severe stress
Unit|...the smallest possible piece of logic
White box|...a piece of code where the internal logic can be probed

When to use tests

Tests are to be run with each code change to validate them. The CI process should take care of this, to ensure the code base is always in a valid state, or that any potential error is identified.

Test do not make a program bug free, but they remove to need to start and manually test the application after each modification.

Continuous integration

After each commit the CI service will take care of validating the changes, building/publishing artifacts and messaging services.

[image: CI flow]

Scripts

There is a repository containing scripts [https://github.com/Bernardo-MG/ci-shell-scripts] developed to help during the CI process. This allows reusing code and instructions, just by copying the repository contents.

Documentation

Documentation should aim to cover two usecases:

	Developers, who must be able to understand the implementation

	Users, who must be able to understand the API

Documentation components

There is not a single way to document a project, but the following should be part of any project:

	Readme

	License info

	Generated documentation site

	Issues tracking

The readme and license info are included in the project folder, at its root so they are among the first files to be noticed, but the other two should be accessible through a remote server.

There are several services and applications for the issues tracker, and there are some for generated documentation, such as RTD [https://readthedocs.org/] or GitBook [https://www.gitbook.com], but in some cases the documentation will require a static content server, for example when generating a Maven site [https://maven.apache.org/plugins/maven-site-plugin/].

Readme

The readme should give a quick introduction to the project. It is not a manual by itself, but a quick start guide. After reading it anybody should be able to know what the project is about, who is working on it and where to start if he wants to use or modify it.

Currently the readmes are being divided into the following sections:

	Introduction

	Features

	Documentation

	Usage, including prerequisites and installation

	How to collaborate

	License

Diagrams

Visual diagrams are a helpful tool for documentation. These should follow the UML specifications.

The tool used for creating them us UMLet [http://www.umlet.com/], a free Eclipse-based UML editor. It is very simple, and this allows a lot of flexibility, but is not capable of auto generating code.

References

	Write the Docs [http://www.writethedocs.org/guide/]

 _images/dev_eco_general.png
Remote

Dependencies 3 |

repository

Reporting 3] Documentation 3]

i

o o

?Changes ho

Coderepostory 3 |

Dependencies

©

Code versioning

©

Local

IDE =]

Dependencies 3 |

management

Version control 3]

_images/dev_eco_python.png
Documentation server

soecoron B

server

«Deps repor 3

PyPI

«Reportings 3 | Maven site |]

Coveralls

©

Dependencies

¢ __©

o B]

Travis CI

(5smus update
k[/ Qchanges hook

«Code repostory» 3 |
Github

Code versioning

©

Local

«IDE» El

eprmngy 3]

pip

Pycharm
s cortn 5]
Git

_images/ci_general_activity.png
[valid changes]

[invalid changes]

Build Message
arning artifacts services

Publish
artif

_images/ci_java_activity.png
mun verify

[valid changes]

[invalid changes]

site
mvn site:deploy

mvn deploy

Mark build as invalid
on Github

_static/comment-close.png

_static/up.png

_images/ci_java_activity1.png
mun verify

[valid changes]

[invalid changes]

site
mvn site:deploy

mvn deploy

Mark build as invalid
on Github

_static/minus.png

_images/dev_eco_java.png
Dependency repos

SCenter] Documentaton server
L } Synch
Staticcontent 3 |
Publish server

Maven central 3] Bitay 3] waven site []

Publish

Publish
wr 8]

Travis CI

Demorone 1
v Qcmges ook

«Coce repository» 53]
Github

Depend
ependencies Code versioning

@ O

Local
- DE> 2]
Eclipse
eprojoctmngy B | | eversion conton3]
Maven Git
Plugin {

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

