
Walter Documentation
Release 0.1

Adam Brenecki

Aug 18, 2017

Contents

1 Installation 3

2 Usage 5

3 Documentation Contents 7
3.1 API . 7
3.2 Contribution Guide . 9

4 Indices and tables 11

i

ii

Walter Documentation, Release 0.1

Warning: Walter is pre-release software. Expect the API to change without notice, and expect this documentation
to have lots of sharp edges.

Walter is a configuration library, inspired by python-decouple, and intended to replace direct access to os.environ
in Django settings.py files (although it is by no means Django-specific). It currently supports Python 3.5+.

It differs from other, similar libraries for two reasons:

• It will let you specify your configuration parameters in one place and have auto-generated Sphinx documenta-
tion, just like with Python code. (Work on this hasn’t been started yet.)

• When your users try to start up your app with invalid configuration, the error message they get shows a list of
all of the errors with every configuration parameter, not just the first one.

Contents 1

https://pypi.python.org/pypi/python-decouple

Walter Documentation, Release 0.1

2 Contents

CHAPTER 1

Installation

pip install walter

3

Walter Documentation, Release 0.1

4 Chapter 1. Installation

CHAPTER 2

Usage

from walter.config import Config

Your configuration needs to be wrapped in a context manager,
so Walter can collect all the errors and display them at the end.
with Config("SGC", "Dialer") as config:

Read a configuration value with config.get()
SECRET_KEY = config.get('SECRET_KEY')

Convert the returned value to something other than a string with cast.
DEBUG = config.get('DEBUG', cast=bool)

You can pass any function that takes a string to `cast`.
Here, we're using a third party function to parse a database URL
string into a Django-compatible dictionary.
DATABASES = {

'default': config.get('DATABASE_URL', cast=dj_database_url.parse),
}

You can also make a parameter optional by giving it a default.
RAVEN_DSN = config.get('RAVEN_DSN', default=None)

Last but not least, help_text is displayed in your Sphinx docs.
SITE_NAME = config.get('SITE_NAME',

help_text="Displayed to users in the admin")

5

Walter Documentation, Release 0.1

6 Chapter 2. Usage

CHAPTER 3

Documentation Contents

API

Config

class walter.config.Config(author, name, sources=None, search_path=None)
Creates a config object.

Parameters

• author (str) – Name of the person or company that created this program. Used on
Windows to set the default search path.

• name (str) – Name of this program. Used on Windows to set the default search path.

• sources (iterable) – An iterable of Source objects to pull configuration from. De-
faults to the following:

– EnvironmentSource

– IniFileSource

• search_path (iterable) – An iterable of directories to search for configuration files.
Defaults to the current directory, followed by an appropriate user and site config directory
depending on the operating system.

get(key, cast=None, help_text=None)
Get a configuration parameter.

Parameters

• key (str) – The name of the configuration parameter to get.

• cast (function) – A function to call on the returned parameter to convert it to the
appropriate value.

• help_text (str) – Help text to display to the user, explaining the usage of this param-
eter.

7

https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str
https://docs.python.org/2/library/functions.html#str

Walter Documentation, Release 0.1

Sources

Built-In

class walter.sources.EnvironmentSource(prefix=’‘)
Source that extracts values from environment variables.

Parameters prefix (str) – Prefix to expect at the beginning of environment variable names.

class walter.sources.IniFileSource(filename=None, **kwargs)
Source that extracts values from .ini files.

Files should be in the format expected by configparser.ConfigParser.

Parameters section – Section header to look for settings under. Defaults

to settings. :type section: str

Creating Your Own

class walter.sources.Source
Base class for configuration sources.

To implement a simple (non-file-based) configuration source, subclass this class and override __getitem__.

__getitem__ should return a string, or raise KeyError if a key isn’t found in the configuration source.

If you are implementing an ambient configuration source (e.g. one that reads from environment variables,
command-line args, a single file in a well-known location, or something else that doesn’t depend on Walter’s
search path), you can expose your Source subclass to users directly. If instead you are implementing a file-
based source, see also FileSource.

class walter.sources.FileSource(filename=None, **kwargs)
Base class for file-based configuration sources.

Because Walter implements searching for configuration files internally, and allows for a mix of different types
of configuration files, a file-based configuration source consists of two classes.

One is the actual source itself. This is a subclass of Source — not this class — and behaves like a normal
source, except it takes a file-like object as its first positional argument, and it is an implementation detail that is
not exposed to your users.

The other is the “meta-source”, which is a subclass of FileSource. It is responsible for two things: determin-
ing which filenames match the source, and creating new source objects from files. Users will create an instance
of the meta-source and pass that to Walter, which will use it to create source instances.

While it is possible to override match_filename() and create() entirely, most meta-sources should be
able to get by with simply setting two properties and adding a docstring:

•source_class, your actual source class.

•pattern, a default file pattern to match on, which can be either a shell glob or a compiled regular
expression.

Unless you override __init__, your meta-source will accept a filename arg that allows users to override
pattern; any other keyword arguments given to the meta-source will be passed through to the source itself.

create(file_obj)
Return a new source with the given file object.

Returns A new source object.

8 Chapter 3. Documentation Contents

https://docs.python.org/2/library/functions.html#str

Walter Documentation, Release 0.1

match_filename(filename)
Test a filename to see if it matches this source.

Returns Whether the filename matches this source.

Return type bool

Contribution Guide

Walter’s code is currently hosted on GitLab at abre/walter. If you’re not familiar with GitLab, it’s very similar to
GitHub; you can sign in with your GitHub account, and then fork, modify and file merge requests.

Setting Up

• To install Walter for development, run pip install -e .[dev,docs].

• Tests are written using pytest; just run the command pytest to run them.

• Documentation is built with Sphinx. You can just run cd docs; make html and browse the generated
HTML files, but if you install devd and modd, then run the command modd, you’ll get a nice live-reloading
view served on localhost port 8000 (or run e.g. env PORT=1337 modd to serve on a different port).

3.2. Contribution Guide 9

https://docs.python.org/2/library/functions.html#bool
https://gitlab.com/abre/walter
https://github.com/cortesi/devd
https://github.com/cortesi/modd

Walter Documentation, Release 0.1

10 Chapter 3. Documentation Contents

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

11

Walter Documentation, Release 0.1

12 Chapter 4. Indices and tables

Index

C
Config (class in walter.config), 7
create() (walter.sources.FileSource method), 8

E
EnvironmentSource (class in walter.sources), 8

F
FileSource (class in walter.sources), 8

G
get() (walter.config.Config method), 7

I
IniFileSource (class in walter.sources), 8

M
match_filename() (walter.sources.FileSource method), 8

S
Source (class in walter.sources), 8

13

	Installation
	Usage
	Documentation Contents
	API
	Contribution Guide

	Indices and tables

