
WalkDir Documentation
Release 0.4.1.post1

Nick Coghlan

May 10, 2016

Contents

1 Walk Iterables 3

2 Path Iteration 5

3 Directory Walking 9

4 Examples 13

5 Obtaining the Module 15
5.1 Development and Support . 15
5.2 Release History . 15

6 Indices and tables 19

Python Module Index 21

i

ii

WalkDir Documentation, Release 0.4.1.post1

Module author: Nick Coghlan <ncoghlan@gmail.com>

The standard libary’s os.walk() iterator provides a convenient way to process the contents of a filesystem directory.
This module provides higher level tools based on the same interface that support filtering, depth limiting and handling
of symlink loops. The module also offers tools that flatten the os.walk() API into a simple iteration over filesystem
paths.

Contents 1

mailto:ncoghlan@gmail.com
http://docs.python.org/library/os.html#os.walk
http://docs.python.org/library/os.html#os.walk

WalkDir Documentation, Release 0.4.1.post1

2 Contents

CHAPTER 1

Walk Iterables

In this module, walk_iter refers to any iterable that produces path, subdirs, files triples sufficiently
compatible with those produced by os.walk().

The module is designed so that all purely filtering operations preserve the output of the underlying iterable. This means
that named tuples, tuples containing more than 3 values (such as those produced by os.fwalk()), and objects that
aren’t tuples at all but are still defined such that x[0], x[1], x[2] => dirpath, subdirs, files, can
be filtered without being converted to ordinary 3-tuples.

Changed in version 0.3: Objects produced by underlying iterables are now preserved instead of being coerced to
ordinary 3-tuples by filtering operations

3

http://docs.python.org/library/os.html#os.walk

WalkDir Documentation, Release 0.4.1.post1

4 Chapter 1. Walk Iterables

CHAPTER 2

Path Iteration

Four iterators are provided for iteration over filesystem paths:

file_paths(walk_iter)
Iterate over the files in directories visited by the underlying walk

Directory contents are emitted in the order visited, so the underlying walk may be either top-down or bottom-up.

dir_paths(walk_iter)
Iterate over the directories visited by the underlying walk

Directories are emitted in the order visited, so the underlying walk may be either top-down or bottom-up.

all_dir_paths(walk_iter)
Iterate over all directories reachable through the underlying walk

This covers:

•all visited directories (similar to dir_paths)

•all reported subdirectories of visited directories (even if not otherwise visited)

Example cases where the output may differ from dir_paths:

•all_dir_paths always includes symlinks to directories even when the underlying iterator doesn’t follow
symlinks

•all_dir_paths will include subdirectories of directories at the maximum depth in a depth limited walk

This iterator expects new root directories to be emitted by the underlying walk before any of their contents, and
hence requires a top-down traversal of the directory hierarchy.

New in version 0.4.

all_paths(walk_iter)
Iterate over all paths reachable through the underlying walk

This covers:

•all visited directories

•all files in visited directories

•all reported subdirectories of visited directories (even if not otherwise visited)

This iterator expects new root directories to be emitted by the underlying walk before any of their contents, and
hence requires a top-down traversal of the directory hierarchy.

Changed in version 0.4: This function now combines the output of file_paths() with that of
all_dir_paths() (previously it was the combination of file_paths() with dir_paths())

5

WalkDir Documentation, Release 0.4.1.post1

Except when the underlying iterable switches to a new root directory, the last two functions yield subdirectory paths
when visiting the parent directory, rather than when visiting the subdirectory.

For example, given the following directory tree:

>>> tree test
test
-- file1.txt
-- file2.txt
-- test2
| -- file1.txt
| -- file2.txt
| -- test3
-- test4

-- file1.txt
-- test5

all_paths will produce:

>>> from walkdir import filtered_walk, all_paths
>>> paths = all_paths(filtered_walk('test'))
>>> print('\n'.join(paths))
test
test/file1.txt
test/file2.txt
test/test2
test/test4
test/test2/file1.txt
test/test2/file2.txt
test/test2/test3
test/test4/file1.txt
test/test4/test5

all_dir_paths will produce:

>>> from walkdir import filtered_walk, all_dir_paths
>>> paths = all_dir_paths(filtered_walk('test'))
>>> print('\n'.join(paths))
test
test/test2
test/test4
test/test2/test3
test/test4/test5

dir_paths will produce:

>>> from walkdir import filtered_walk, dir_paths
>>> paths = dir_paths(filtered_walk('test'))
>>> print('\n'.join(paths))
test
test/test2
test/test2/test3
test/test4
test/test4/test5

And file_paths will produce:

>>> from walkdir import filtered_walk, file_paths
>>> paths = file_paths(filtered_walk('test'))
>>> print('\n'.join(paths))
test/file1.txt

6 Chapter 2. Path Iteration

WalkDir Documentation, Release 0.4.1.post1

test/file2.txt
test/test2/file1.txt
test/test2/file2.txt
test/test4/file1.txt

Note: When used with min_depth() the output will be produced as multiple independent walks of each directory
bigger than given min_depth.

Changed in version 0.4: Subdirectories are now emitted when visiting the parent directory, rather than when visiting
the subdirectory itself. This means that subdirectories may now be emitted without being visited (e.g. subdirectories of
directories visited by a depth-limited walk, symlinks to subdirectories when not following links), and all subdirectories
of a given parent directory are emitted as a contiguous block, rather than being interleaved with their respective file
listings.

7

WalkDir Documentation, Release 0.4.1.post1

8 Chapter 2. Path Iteration

CHAPTER 3

Directory Walking

A convenience API for walking directories with various options is provided:

filtered_walk(top, included_files=None, included_dirs=None, excluded_files=None, ex-
cluded_dirs=None, depth=None, followlinks=False, min_depth=None)

This is a wrapper around os.walk() and other filesystem traversal iterators, with these additional features:

•top may be either a string (which will be passed to os.walk()) or any iterable that produces sequences
with path, subdirs, files as the first three elements in the sequence

•allows independent glob-style filters for filenames and subdirectories

•allows a recursion depth limit to be specified

•allows a minimum depth to be specified to report only subdirectory contents

•emits a message to stderr and skips the directory if a symlink loop is encountered when following links

Filtered walks created by passing in a string are always top down, as the subdirectory listings must be altered to
provide a number of the above features.

include_files, include_dirs, exclude_files and exclude_dirs are used to apply the relevant filtering steps to the
walk.

A depth of None (the default) disables depth limiting. Otherwise, depth must be at least zero and indicates how
far to descend into the directory hierarchy. A depth of zero is useful to get separate filtered subdirectory and file
listings for top.

Setting min_depth allows directories higher in the tree to be excluded from the walk (e.g. a min_depth of 1
excludes top, but any subdirectories will still be processed)

followlinks enables symbolic loop detection (when set to True) and is also passed to os.walk() when top is
a string

The individual operations that support the convenience API are exposed using an itertools style iterator pipeline
model:

include_dirs(walk_iter, *include_filters)
Use fnmatch.fnmatch() patterns to select directories of interest

Inclusion filters are passed directly as arguments.

This filter works by modifying the subdirectory lists produced by the underlying iterator, and hence requires a
top-down traversal of the directory hierarchy.

include_files(walk_iter, *include_filters)
Use fnmatch.fnmatch() patterns to select files of interest

Inclusion filters are passed directly as arguments

9

http://docs.python.org/library/itertools.html#module-itertools
http://docs.python.org/library/fnmatch.html#fnmatch.fnmatch
http://docs.python.org/library/fnmatch.html#fnmatch.fnmatch

WalkDir Documentation, Release 0.4.1.post1

This filter does not modify the subdirectory lists produced by the underlying iterator, and hence supports both
top-down and bottom-up traversal of the directory hierarchy.

exclude_dirs(walk_iter, *exclude_filters)
Use fnmatch.fnmatch() patterns to skip irrelevant directories

Exclusion filters are passed directly as arguments

This filter works by modifying the subdirectory lists produced by the underlying iterator, and hence requires a
top-down traversal of the directory hierarchy.

exclude_files(walk_iter, *exclude_filters)
Use fnmatch.fnmatch() patterns to skip irrelevant files

Exclusion filters are passed directly as arguments

This filter does not modify the subdirectory lists produced by the underlying iterator, and hence supports both
top-down and bottom-up traversal of the directory hierarchy.

limit_depth(walk_iter, depth)
Limit the depth of recursion into subdirectories.

A depth of 0 limits the walk to the top level directory, a depth of 1 includes subdirectories, etc.

Path depth is calculated by counting directory separators, using the depth of the first path produced by the
underlying iterator as a reference point.

This filter works by modifying the subdirectory lists produced by the underlying iterator, and hence requires a
top-down traversal of the directory hierarchy.

min_depth(walk_iter, depth)
Only process subdirectories beyond a minimum depth

A depth of 1 omits the top level directory, a depth of 2 starts with subdirectories 2 levels down, etc.

Path depth is calculated by counting directory separators, using the depth of the first path produced by the
underlying iterator as a reference point.

Note: Since this filter doesn’t yield higher level directories, any subsequent directory filtering that relies on
updating the subdirectory list will have no effect at the minimum depth. Accordingly, this filter should only be
applied after any directory filtering operations.

Note: The result of using this filter is effectively the same as chaining multiple independent os.walk()
iterators using itertools.chain(). For example, given the following directory tree:

>>> tree test
test
-- file1.txt
-- file2.txt
-- test2
| -- file1.txt
| -- file2.txt
| -- test3
-- test4

-- file1.txt
-- test5

Then min_depth(os.walk("test"), depth=1) will produce the same output as
itertools.chain(os.walk("test/test2"), os.walk("test/test4")).

10 Chapter 3. Directory Walking

http://docs.python.org/library/fnmatch.html#fnmatch.fnmatch
http://docs.python.org/library/fnmatch.html#fnmatch.fnmatch
http://docs.python.org/library/os.html#os.walk
http://docs.python.org/library/itertools.html#itertools.chain

WalkDir Documentation, Release 0.4.1.post1

This filter works by modifying the subdirectory lists produced by the underlying iterator, and hence requires a
top-down traversal of the directory hierarchy.

handle_symlink_loops(walk_iter, onloop=None)
Handle symlink loops when following symlinks during a walk

By default, prints a warning and then skips processing the directory a second time.

This can be overridden by providing the onloop callback, which accepts the offending symlink as a parameter.
Returning a true value from this callback will mean that the directory is still processed, otherwise it will be
skipped.

This filter skips processing subdirectories by modifying the subdirectory lists produced by the underlying itera-
tor, and hence requires a top-down traversal of the directory hierarchy.

11

WalkDir Documentation, Release 0.4.1.post1

12 Chapter 3. Directory Walking

CHAPTER 4

Examples

Here are some examples of the module being used to explore the contents of its own source tree:

>>> from walkdir import filtered_walk, dir_paths, all_paths, file_paths
>>> files = file_paths(filtered_walk('.', depth=0,
... included_files=['*.py', '*.txt', '*.rst']))
>>> print '\n'.join(files)
./setup.py
./walkdir.py
./NEWS.rst
./test_walkdir.py
./LICENSE.txt
./VERSION.txt
./README.txt
>>> dirs = dir_paths(filtered_walk('.', depth=1, min_depth=1,
... excluded_dirs=['__pycache__', '.git']))
>>> print '\n'.join(dirs)
./docs
./dist
>>> paths = all_paths(filtered_walk('.', depth=1,
... included_files=['*.py', '*.txt', '*.rst'],
... excluded_dirs=['__pycache__', '.git']))
>>> print '\n'.join(paths)
.
./setup.py
./walkdir.py
./NEWS.rst
./test_walkdir.py
./LICENSE.txt
./VERSION.txt
./README.txt
./docs
./docs/index.rst
./docs/conf.py
./dist

13

WalkDir Documentation, Release 0.4.1.post1

14 Chapter 4. Examples

CHAPTER 5

Obtaining the Module

This module can be installed directly from the Python Package Index with pip:

pip install walkdir

Alternatively, you can download and unpack it manually from the walkdir PyPI page.

There are no operating system or distribution specific versions of this module - it is a pure Python module that should
work on all platforms.

Supported Python versions are 2.6, 2.7 and 3.1+.

5.1 Development and Support

WalkDir is developed and maintained on Gitub, with continuous integration services provided by Travis-CI.

Problems and suggested improvements can be posted to the issue tracker.

5.2 Release History

5.2.1 0.4.1 (2016-05-10)

• Include release date in release history

5.2.2 0.4 (2016-05-10)

• SEMANTIC CHANGE: to implement some of the fixes noted below, the all_paths iterator has been updated
to emit paths in the following order for each directory produced by the underling iterator:

– given directory if it appears to be a new root directory (i.e. it is not a subdirectory of the current root
directory)

– files in the given directory

– subdirectories of the given directory

Previously, directories were only emitted when walked by the underling iterator, which resulted in paths being
missed in some cases.

15

http://pypi.python.org
http://www.pip-installer.org
http://pypi.python.org/pypi/walkdir
https://github.com/ncoghlan/walkdir
https://travis-ci.org/ncoghlan/walkdir
https://github.com/ncoghlan/walkdir/issues

WalkDir Documentation, Release 0.4.1.post1

• Thanks go to Aviv Palivoda for being the driving force behind this release, especially in addressing a variety of
issues in the way directory filtering and symlinks to directories are handled.

• Issue #12: a new API, all_dir_paths has been added which, in addition to the directories visited by the
underlying walk, also emits:

– symlinks to directories when followlinks is disabled in the underlying iterator

– subdirectories of leaf directories when the directory tree depth of the underlying iterator has been limited
(for example, with the limit_depth filter)

• Issue #3: all_paths now correctly reports symlinks to directories as directory paths, even when
followlinks is disabled in the underlying iterator (fix contributed by Aviv Palivoda)

• Issue #4: all_paths now correctly reports subdirectories at the maximum depth when the limit_depth
filter is used to trim nested subdirectories (fix contributed by Aviv Palivoda)

• Issue #6: min_depth, all_paths, dir_paths, and file_paths all now work correctly with
os.fwalk and other underlying iterators that produce a sequence with more than 3 elements for each directory
(fix contributed by Aviv Palivoda)

• Issue #7: all filters now explicitly indicate in their documentation whether or not they support being used with
bottom-up traversal of the underlying directory hierarchy

• A temporary generated filesystem is now used to test symlink loop handling and other behaviours that require a
real filesystem (patch contributed by Aviv Palivoda)

• The correct error message is now emitted when an invalid maximum depth is passed to limit_depth on
Python 2.6 (fix contributed by Aviv Palivoda)

• The correct error message is now emitted when an invalid minimum depth is passed to min_depth on Python
2.6 (fix contributed by Aviv Palivoda)

• development has migrated from BitBucket to GitHub

5.2.3 0.3 (2012-01-31)

• (BitBucket) Issue #7: filter functions now pass the tuples created by underlying iterators through without modifi-
cation, using indexing rather than tuple unpacking to access values of interest. This means WalkDir now supports
any underlying iterable that produces items where x[0], x[1], x[2] refers to dirpath, subdirs,
files. For example, if the the iterable produces collections.namedtuple instances, those will be
passed through to the output of a filtered walk.

5.2.4 0.2.1 (2012-01-17)

• Add MANIFEST.in so PyPI package contains all relevant files

5.2.5 0.2 (2012-01-04)

• (BitBucket) Issue #6: Added a min_depth option to filtered_walk and a new min_depth filter func-
tion to make it easier to produce a list of full subdirectory paths

• (BitBucket) Issue #5: Renamed path iteration convenience APIs:

– iter_paths -> all_paths

– iter_dir_paths -> dir_paths

– iter_file_paths -> file_paths

16 Chapter 5. Obtaining the Module

WalkDir Documentation, Release 0.4.1.post1

• Moved version number to a VERSION.txt file (read by both docs and setup.py)

• Added NEWS.rst (and incorporated into documentation)

5.2.6 0.1 (2011-11-13)

• Initial release

5.2. Release History 17

WalkDir Documentation, Release 0.4.1.post1

18 Chapter 5. Obtaining the Module

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

19

WalkDir Documentation, Release 0.4.1.post1

20 Chapter 6. Indices and tables

Python Module Index

w
walkdir, 3

21

WalkDir Documentation, Release 0.4.1.post1

22 Python Module Index

Index

A
all_dir_paths() (in module walkdir), 5
all_paths() (in module walkdir), 5

D
dir_paths() (in module walkdir), 5

E
exclude_dirs() (in module walkdir), 10
exclude_files() (in module walkdir), 10

F
file_paths() (in module walkdir), 5
filtered_walk() (in module walkdir), 9

H
handle_symlink_loops() (in module walkdir), 11

I
include_dirs() (in module walkdir), 9
include_files() (in module walkdir), 9

L
limit_depth() (in module walkdir), 10

M
min_depth() (in module walkdir), 10

W
walkdir (module), 1

23

	Walk Iterables
	Path Iteration
	Directory Walking
	Examples
	Obtaining the Module
	Development and Support
	Release History

	Indices and tables
	Python Module Index

