
Wagtail Documentation
Release 1.6.3

Torchbox

February 16, 2017





Contents

1 Index 3
1.1 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Usage guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Advanced topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
1.4 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
1.5 Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
1.6 Using Wagtail: an Editor’s guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
1.7 Contributing to Wagtail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
1.8 Release notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Python Module Index 257

i



ii



Wagtail Documentation, Release 1.6.3

Wagtail is an open source CMS written in Python and built on the Django web framework.

Below are some useful links to help you get started with Wagtail.

• First steps

– Getting started

– Your first Wagtail site

– Demo site

• Using Wagtail

– Page models

– Writing templates

– Using images in templates

– Search

– Third-party tutorials

• For editors

– Editors guide

Contents 1

https://www.python.org/
https://www.djangoproject.com/


Wagtail Documentation, Release 1.6.3

2 Contents



CHAPTER 1

Index

Getting started

Wagtail is built on the Django web framework, so this document assumes you’ve already got the essentials installed.
But if not, those essentials are:

• Python

• pip (Note that pip is included by default with Python 2.7.9 and later and Python 3.4 and later)

We’d also recommend Virtualenv, which provides isolated Python environments:

• Virtualenv

Important: Before installing Wagtail, it is necessary to install the libjpeg and zlib libraries, which provide support
for working with JPEG, PNG and GIF images (via the Python Pillow library). The way to do this varies by platform -
see Pillow’s platform-specific installation instructions.

With the above installed, the quickest way to install Wagtail is:

pip install wagtail

(sudo may be required if installing system-wide or without virtualenv)

Once installed, Wagtail provides a command similar to Django’s django-admin startproject which stubs
out a new site/project:

wagtail start mysite

This will create a new folder mysite, based on a template containing all you need to get started. More information
on that template is available here.

Inside your mysite folder, we now just run the setup steps necessary for any Django project:

pip install -r requirements.txt
./manage.py migrate
./manage.py createsuperuser
./manage.py runserver

Your site is now accessible at http://localhost:8000, with the admin backend available at
http://localhost:8000/admin/.

This will set you up with a new standalone Wagtail project. If you’d like to add Wagtail to an existing Django project
instead, see Integrating Wagtail into a Django project.

3

https://www.djangoproject.com/
https://www.python.org/downloads/
https://pip.pypa.io/en/latest/installing.html
https://virtualenv.pypa.io/en/latest/installation.html
http://pillow.readthedocs.org/en/latest/installation.html#external-libraries


Wagtail Documentation, Release 1.6.3

There are a few optional packages which are not installed by default but are recommended to improve performance or
add features to Wagtail, including:

• Elasticsearch.

• Feature Detection.

Your first Wagtail site

Note: This tutorial covers setting up a brand new Wagtail project. If you’d like to add Wagtail to an existing Django
project instead, see Integrating Wagtail into a Django project.

1. Install Wagtail and its dependencies:

pip install wagtail

2. Start your site:

wagtail start mysite
cd mysite

Wagtail provides a start command similar to django-admin.py startproject. Running wagtail
start mysite in your project will generate a new mysite folder with a few Wagtail-specific extras, in-
cluding the required project settings, a “home” app with a blank HomePage model and basic templates and a
sample “search” app.

3. Install project dependencies:

pip install -r requirements.txt

This ensures that you have the relevant version of Django for the project you’ve just created.

4. Create the database:

python manage.py migrate

If you haven’t updated the project settings, this will be a SQLite database file in the project directory.

5. Create an admin user:

python manage.py createsuperuser

6. python manage.py runserver If everything worked, http://127.0.0.1:8000 will show you a welcome
page

You can now access the administrative area at http://127.0.0.1:8000/admin

Extend the HomePage model

Out of the box, the “home” app defines a blank HomePage model in models.py, along with a migration that creates
a homepage and configures Wagtail to use it.

Edit home/models.py as follows, to add a body field to the model:

from __future__ import unicode_literals

from django.db import models

4 Chapter 1. Index

http://127.0.0.1:8000
http://127.0.0.1:8000/admin


Wagtail Documentation, Release 1.6.3

from wagtail.wagtailcore.models import Page
from wagtail.wagtailcore.fields import RichTextField
from wagtail.wagtailadmin.edit_handlers import FieldPanel

class HomePage(Page):
body = RichTextField(blank=True)

content_panels = Page.content_panels + [
FieldPanel('body', classname="full")

]

body is defined as RichTextField, a special Wagtail field. You can use any of the Django core fields.
content_panels define the capabilities and the layout of the editing interface. More on creating Page models.

Run python manage.py makemigrations, then python manage.py migrate to update the database
with your model changes. You must run the above commands each time you make changes to the model definition.

You can now edit the homepage within the Wagtail admin area (go to Explorer, Homepage, then Edit) to see the new
body field. Enter some text into the body field, and publish the page.

The page template now needs to be updated to reflect the changes made to the model. Wagtail uses nor-
mal Django templates to render each page type. It automatically generates a template filename from the
model name by separating capital letters with underscores (e.g. HomePage becomes home_page.html). Edit
home/templates/home/home_page.html to contain the following:

{% extends "base.html" %}

{% load wagtailcore_tags %}

{% block body_class %}template-homepage{% endblock %}

{% block content %}
{{ page.body|richtext }}

1.1. Getting started 5

https://docs.djangoproject.com/en/1.8/ref/models/fields/


Wagtail Documentation, Release 1.6.3

6 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

{% endblock %}

Wagtail template tags

Wagtail provides a number of template tags & filters which can be loaded by including {% load
wagtailcore_tags %} at the top of your template file.

In this tutorial, we use the richtext filter to escape and print the contents of a RichTextField:

{% load wagtailcore_tags %}
{{ page.body|richtext }}

Produces:

<div class="rich-text">
<p>

<b>Welcome</b> to our new site!
</p>

</div>

Note: You’ll need to include {% load wagtailcore_tags %} in each template that uses Wagtail’s tags.
Django will throw a TemplateSyntaxError if the tags aren’t loaded.

A basic blog

We are now ready to create a blog. To do so, run python manage.py startapp blog to create a new app in
your Wagtail site.

Add the new blog app to INSTALLED_APPS in mysite/settings/base.py.

The following example defines a basic blog post model in blog/models.py:

1.1. Getting started 7



Wagtail Documentation, Release 1.6.3

from django.db import models

from wagtail.wagtailcore.models import Page
from wagtail.wagtailcore.fields import RichTextField
from wagtail.wagtailadmin.edit_handlers import FieldPanel
from wagtail.wagtailsearch import index

class BlogPage(Page):
date = models.DateField("Post date")
intro = models.CharField(max_length=250)
body = RichTextField(blank=True)

search_fields = Page.search_fields + [
index.SearchField('intro'),
index.SearchField('body'),

]

content_panels = Page.content_panels + [
FieldPanel('date'),
FieldPanel('intro'),
FieldPanel('body', classname="full")

]

Note: On Wagtail versions before 1.5, search_fields needs to be defined as a tuple:

search_fields = Page.search_fields + (
index.SearchField('intro'),
index.SearchField('body'),

)

Create a template at blog/templates/blog/blog_page.html:

{% extends "base.html" %}

{% load wagtailcore_tags %}

{% block body_class %}template-blogpage{% endblock %}

{% block content %}
<h1>{{ page.title }}</h1>
<p class="meta">{{ page.date }}</p>

<div class="intro">{{ page.intro }}</div>

{{ page.body|richtext }}
{% endblock %}

Run python manage.py makemigrations and python manage.py migrate.

Image support

Wagtail provides support for images out of the box. To add them to your model:

8 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

1.1. Getting started 9



Wagtail Documentation, Release 1.6.3

from django.db import models

from wagtail.wagtailcore.models import Page
from wagtail.wagtailcore.fields import RichTextField
from wagtail.wagtailadmin.edit_handlers import FieldPanel
from wagtail.wagtailimages.edit_handlers import ImageChooserPanel
from wagtail.wagtailsearch import index

class BlogPage(Page):
main_image = models.ForeignKey(

'wagtailimages.Image',
null=True,
blank=True,
on_delete=models.SET_NULL,
related_name='+'

)
date = models.DateField("Post date")
intro = models.CharField(max_length=250)
body = RichTextField(blank=True)

search_fields = Page.search_fields + [
index.SearchField('intro'),
index.SearchField('body'),

]

content_panels = Page.content_panels + [
FieldPanel('date'),
ImageChooserPanel('main_image'),

10 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

FieldPanel('intro'),
FieldPanel('body'),

]

Run python manage.py makemigrations and python manage.py migrate.

Adjust your blog page template to include the image:

{% extends "base.html" %}

{% load wagtailcore_tags wagtailimages_tags %}

{% block body_class %}template-blogpage{% endblock %}

{% block content %}
<h1>{{ page.title }}</h1>
<p class="meta">{{ page.date }}</p>

{% if page.main_image %}
{% image page.main_image width-400 %}

{% endif %}

<div class="intro">{{ page.intro }}</div>

{{ page.body|richtext }}
{% endblock %}

You can read more about using images in templates in the docs.

Blog Index

Let us extend the Blog app to provide an index.

class BlogIndexPage(Page):
intro = RichTextField(blank=True)

content_panels = Page.content_panels + [
FieldPanel('intro', classname="full")

]

The above creates an index type to collect all our blog posts.

blog/templates/blog/blog_index_page.html

{% extends "base.html" %}

{% load wagtailcore_tags %}

{% block body_class %}template-blogindexpage{% endblock %}

{% block content %}
<h1>{{ page.title }}</h1>

<div class="intro">{{ page.intro|richtext }}</div>
{% endblock %}

1.1. Getting started 11



Wagtail Documentation, Release 1.6.3

12 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Related items

Let’s extend the BlogIndexPage to add related links. The related links can be BlogPages or external links. Change
blog/models.py to

from django.db import models

from modelcluster.fields import ParentalKey

from wagtail.wagtailcore.models import Page, Orderable
from wagtail.wagtailcore.fields import RichTextField
from wagtail.wagtailadmin.edit_handlers import (FieldPanel,

InlinePanel,
MultiFieldPanel,
PageChooserPanel)

from wagtail.wagtailimages.edit_handlers import ImageChooserPanel
from wagtail.wagtailsearch import index

# ...

class LinkFields(models.Model):
link_external = models.URLField("External link", blank=True)
link_page = models.ForeignKey(

'wagtailcore.Page',
null=True,
blank=True,
related_name='+'

)

@property
def link(self):

if self.link_page:
return self.link_page.url

else:
return self.link_external

panels = [
FieldPanel('link_external'),
PageChooserPanel('link_page'),

]

class Meta:
abstract = True

# Related links
class RelatedLink(LinkFields):

title = models.CharField(max_length=255, help_text="Link title")

panels = [
FieldPanel('title'),
MultiFieldPanel(LinkFields.panels, "Link"),

]

class Meta:
abstract = True

1.1. Getting started 13



Wagtail Documentation, Release 1.6.3

class BlogIndexPage(Page):
intro = RichTextField(blank=True)

content_panels = Page.content_panels + [
FieldPanel('intro', classname="full"),
InlinePanel('related_links', label="Related links"),

]

class BlogIndexRelatedLink(Orderable, RelatedLink):
page = ParentalKey('BlogIndexPage', related_name='related_links')

Extend blog_index_page.html to show related items

{% extends "base.html" %}

{% load wagtailcore_tags %}

{% block body_class %}template-blogindexpage{% endblock %}

{% block content %}
<h1>{{ page.title }}</h1>

<div class="intro">{{ page.intro|richtext }}</div>

{% if page.related_links.all %}
<ul>

{% for item in page.related_links.all %}
<li><a href="{{ item.link }}">{{ item.title }}</a></li>

{% endfor %}

14 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

</ul>
{% endif %}

{% endblock %}

You now have a fully working blog with featured blog posts.

Where next

• Read the Wagtail topics and reference documentation

• Learn how to implement StreamField for freeform page content

• Browse through the advanced topics section and read third-party tutorials

1.1. Getting started 15



Wagtail Documentation, Release 1.6.3

Demo site

To create a new site on Wagtail we recommend the wagtail start command in Getting started, however a demo
site exists containing example page types and models. We also recommend you use the demo site for testing during
development of Wagtail itself.

The repo and installation instructions can be found here: https://github.com/torchbox/wagtaildemo

Integrating Wagtail into a Django project

Wagtail provides the wagtail start command and project template to get you started with a new Wagtail project
as quickly as possible, but it’s easy to integrate Wagtail into an existing Django project too.

Wagtail is currently compatible with Django 1.8, 1.9 and 1.10. First, install the wagtail package from PyPI:

pip install wagtail

or add the package to your existing requirements file. This will also install the Pillow library as a dependency, which
requires libjpeg and zlib - see Pillow’s platform-specific installation instructions.

Settings

In your settings file, add the following apps to INSTALLED_APPS:

'wagtail.wagtailforms',
'wagtail.wagtailredirects',
'wagtail.wagtailembeds',
'wagtail.wagtailsites',
'wagtail.wagtailusers',
'wagtail.wagtailsnippets',
'wagtail.wagtaildocs',
'wagtail.wagtailimages',
'wagtail.wagtailsearch',
'wagtail.wagtailadmin',
'wagtail.wagtailcore',

'modelcluster',
'taggit',

Add the following entries to MIDDLEWARE_CLASSES:

'wagtail.wagtailcore.middleware.SiteMiddleware',
'wagtail.wagtailredirects.middleware.RedirectMiddleware',

Add a STATIC_ROOT setting, if your project does not have one already:

STATIC_ROOT = os.path.join(BASE_DIR, 'static')

Add a WAGTAIL_SITE_NAME - this will be displayed on the main dashboard of the Wagtail admin backend:

WAGTAIL_SITE_NAME = 'My Example Site'

Various other settings are available to configure Wagtail’s behaviour - see Configuring Django for Wagtail.

URL configuration

Now make the following additions to your urls.py file:

16 Chapter 1. Index

https://github.com/torchbox/wagtaildemo
http://pillow.readthedocs.org/en/latest/installation.html#external-libraries


Wagtail Documentation, Release 1.6.3

from wagtail.wagtailadmin import urls as wagtailadmin_urls
from wagtail.wagtaildocs import urls as wagtaildocs_urls
from wagtail.wagtailcore import urls as wagtail_urls

urlpatterns = [
...
url(r'^cms/', include(wagtailadmin_urls)),
url(r'^documents/', include(wagtaildocs_urls)),
url(r'^pages/', include(wagtail_urls)),
...

]

The URL paths here can be altered as necessary to fit your project’s URL scheme.

wagtailadmin_urls provides the admin interface for Wagtail. This is separate from the Django admin interface
(django.contrib.admin); Wagtail-only projects typically host the Wagtail admin at /admin/, but if this would
clash with your project’s existing admin backend then an alternative path can be used, such as /cms/ here.

wagtaildocs_urls is the location from where document files will be served. This can be omitted if you do not
intend to use Wagtail’s document management features.

wagtail_urls is the base location from where the pages of your Wagtail site will be served. In the above example,
Wagtail will handle URLs under /pages/, leaving the root URL and other paths to be handled as normal by your
Django project. If you want Wagtail to handle the entire URL space including the root URL, this can be replaced with:

url(r'', include(wagtail_urls)),

In this case, this should be placed at the end of the urlpatterns list, so that it does not override more specific URL
patterns.

Finally, your project needs to be set up to serve user-uploaded files from MEDIA_ROOT. Your Django project may
already have this in place, but if not, add the following snippet to urls.py:

from django.conf import settings
from django.conf.urls.static import static

urlpatterns = [
# ... the rest of your URLconf goes here ...

] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)

Note that this only works in development mode (DEBUG = True); in production, you will need to configure your
web server to serve files from MEDIA_ROOT. For further details, see the Django documentation: Serving files up-
loaded by a user during development and Deploying static files.

With this configuration in place, you are ready to run ./manage.py migrate to create the database tables used
by Wagtail.

User accounts

Superuser accounts receive automatic access to the Wagtail admin interface; use ./manage.py
createsuperuser if you don’t already have one. Custom user models are supported, with some restric-
tions; Wagtail uses an extension of Django’s permissions framework, so your user model must at minimum inherit
from AbstractBaseUser and PermissionsMixin.

Start developing

You’re now ready to add a new app to your Django project (via ./manage.py startapp - remember to add it to
INSTALLED_APPS) and set up page models, as described in Your first Wagtail site.

1.1. Getting started 17

https://docs.djangoproject.com/en/1.9/howto/static-files/#serving-files-uploaded-by-a-user-during-development
https://docs.djangoproject.com/en/1.9/howto/static-files/#serving-files-uploaded-by-a-user-during-development
https://docs.djangoproject.com/en/1.9/howto/static-files/deployment/


Wagtail Documentation, Release 1.6.3

Note that there’s one small difference when not using the Wagtail project template: Wagtail creates an initial homepage
of the basic type Page, which does not include any content fields beyond the title. You’ll probably want to replace
this with your own HomePage class - when you do so, ensure that you set up a site record (under Settings / Sites in
the Wagtail admin) to point to the new homepage.

Usage guide

Page models

Each page type (a.k.a. content type) in Wagtail is represented by a Django model. All page models must inherit from
the wagtail.wagtailcore.models.Page class.

As all page types are Django models, you can use any field type that Django provides. See Model field reference for
a complete list of field types you can use. Wagtail also provides RichTextField which provides a WYSIWYG
editor for editing rich-text content.

Django models

If you’re not yet familiar with Django models, have a quick look at the following links to get you started:
• Creating models
• Model syntax

An example Wagtail page model

This example represents a typical blog post:

from django.db import models

from modelcluster.fields import ParentalKey

from wagtail.wagtailcore.models import Page, Orderable
from wagtail.wagtailcore.fields import RichTextField
from wagtail.wagtailadmin.edit_handlers import FieldPanel, MultiFieldPanel, InlinePanel
from wagtail.wagtailimages.edit_handlers import ImageChooserPanel
from wagtail.wagtailsearch import index

class BlogPage(Page):

# Database fields

body = RichTextField()
date = models.DateField("Post date")
feed_image = models.ForeignKey(

'wagtailimages.Image',
null=True,
blank=True,
on_delete=models.SET_NULL,
related_name='+'

)

# Search index configuration

18 Chapter 1. Index

https://docs.djangoproject.com/en/1.9/ref/models/fields/
https://docs.djangoproject.com/en/1.9/intro/tutorial02/#creating-models
https://docs.djangoproject.com/en/1.9/topics/db/models/


Wagtail Documentation, Release 1.6.3

search_fields = Page.search_fields + [
index.SearchField('body'),
index.FilterField('date'),

]

# Editor panels configuration

content_panels = Page.content_panels + [
FieldPanel('date'),
FieldPanel('body', classname="full"),
InlinePanel('related_links', label="Related links"),

]

promote_panels = [
MultiFieldPanel(Page.promote_panels, "Common page configuration"),
ImageChooserPanel('feed_image'),

]

# Parent page / subpage type rules

parent_page_types = ['blog.BlogIndex']
subpage_types = []

class BlogPageRelatedLink(Orderable):
page = ParentalKey(BlogPage, related_name='related_links')
name = models.CharField(max_length=255)
url = models.URLField()

panels = [
FieldPanel('name'),
FieldPanel('url'),

]

Important: Ensure that none of your field names are the same as your class names. This will cause errors due to the
way Django handles relations (read more). In our examples we have avoided this by appending “Page” to each model
name.

Writing page models

Here we’ll describe each section of the above example to help you create your own page models.

Database fields

Each Wagtail page type is a Django model, represented in the database as a separate table.

Each page type can have its own set of fields. For example, a news article may have body text and a published date,
whereas an event page may need separate fields for venue and start/finish times.

In Wagtail, you can use any Django field class. Most field classes provided by third party apps should work as well.

Wagtail also provides a couple of field classes of its own:

1.2. Usage guide 19

https://github.com/torchbox/wagtail/issues/503
https://code.djangoproject.com/wiki/DjangoResources#Djangoapplicationcomponents


Wagtail Documentation, Release 1.6.3

• RichTextField - For rich text content

• StreamField - A block-based content field (see: Freeform page content using StreamField)

For tagging, Wagtail fully supports django-taggit so we recommend using that.

Search

The search_fields attribute defines which fields are added to the search index and how they are indexed.

This should be a list of SearchField and FilterField objects. SearchField adds a field for full-text
search. FilterField adds a field for filtering the results. A field can be indexed with both SearchField and
FilterField at the same time (but only one instance of each).

In the above example, we’ve indexed body for full-text search and date for filtering.

The arguments that these field types accept are documented in Indexing extra fields.

Editor panels

There are a few attributes for defining how the page’s fields will be arranged in the page editor interface:

• content_panels - For content, such as main body text

• promote_panels - For metadata, such as tags, thumbnail image and SEO title

• settings_panels - For settings, such as publish date

Each of these attributes is set to a list of EditHandler objects, which defines which fields appear on which tabs and
how they are structured on each tab.

Here’s a summary of the EditHandler classes that Wagtail provides out of the box. See Available panel types for
full descriptions.

Basic

These allow editing of model fields. The FieldPanel class will choose the correct widget based on the type of the
field, though StreamField fields need to use a specialised panel class.

• FieldPanel

• StreamFieldPanel

Structural

These are used for structuring fields in the interface.

• MultiFieldPanel - For grouping similar fields together

• InlinePanel - For inlining child models

• FieldRowPanel - For organising multiple fields into a single row

Chooser

ForeignKey fields to certain models can use one of the below ChooserPanel classes. These add a nice modal
chooser interface, and the image/document choosers also allow uploading new files without leaving the page editor.

• PageChooserPanel

• ImageChooserPanel

• DocumentChooserPanel

• SnippetChooserPanel

20 Chapter 1. Index

https://django-taggit.readthedocs.org/en/latest/


Wagtail Documentation, Release 1.6.3

Note: In order to use one of these choosers, the model being linked to must either be a page, image, document or
snippet.

To link to any other model type, you should use FieldPanel, which will create a dropdown box.

Customising the page editor interface The page editor can be customised further. See Customising the editing
interface.

Parent page / subpage type rules

These two attributes allow you to control where page types may be used in your site. It allows you to define rules like
“blog entries may only be created under a blog index”.

Both take a list of model classes or model names. Model names are of the format app_label.ModelName. If the
app_label is omitted, the same app is assumed.

• parent_page_types limits which page types this type can be created under

• subpage_types limits which page types can be created under this type

By default, any page type can be created under any page type and it is not necessary to set these attributes if that’s the
desired behaviour.

Setting parent_page_types to an empty list is a good way of preventing a particular page type from being created
in the editor interface.

Template rendering

Each page model can be given an HTML template which is rendered when a user browses to a page on the site frontend.
This is the simplest and most common way to get Wagtail content to end users (but not the only way).

Adding a template for a page model

Wagtail automatically chooses a name for the template based on the app label and model class name.

Format: <app_label>/<model_name (snake cased)>.html

For example, the template for the above blog page will be: blog/blog_page.html

You just need to create a template in a location where it can be accessed with this name.

Template context

Wagtail renders templates with the page variable bound to the page instance being rendered. Use this to access
the content of the page. For example, to get the title of the current page, use {{ page.title }}. All variables
provided by context processors are also available.

Customising template context All pages have a get_context method that is called whenever the template is
rendered and returns a dictionary of variables to bind into the template.

To add more variables to the template context, you can override this method:

1.2. Usage guide 21

https://docs.djangoproject.com/en/1.8/ref/templates/api/#subclassing-context-requestcontext


Wagtail Documentation, Release 1.6.3

class BlogIndexPage(Page):
...

def get_context(self, request):
context = super(BlogIndexPage, self).get_context(request)

# Add extra variables and return the updated context
context['blog_entries'] = BlogPage.objects.child_of(self).live()
return context

The variables can then be used in the template:

{{ page.title }}

{% for entry in blog_entries %}
{{ entry.title }}

{% endfor %}

Changing the template

Set the template attribute on the class to use a different template file:

class BlogPage(Page):
...

template = 'other_template.html'

Dynamically choosing the template The template can be changed on a per-instance basis by defining a
get_template method on the page class. This method is called every time the page is rendered:

class BlogPage(Page):
...

use_other_template = models.BooleanField()

def get_template(self, request):
if self.use_other_template:

return 'blog/other_blog_page.html'

return 'blog/blog_page.html'

In this example, pages that have the use_other_template boolean field set will use the
blog/other_blog_page.html template. All other pages will use the default blog/blog_page.html.

More control over page rendering

All page classes have a serve() method that internally calls the get_context and get_template methods
and renders the template. This method is similar to a Django view function, taking a Django Request object and
returning a Django Response object.

This method can also be overridden for complete control over page rendering.

For example, here’s a way to make a page respond with a JSON representation of itself:

22 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

from django.http import JsonResponse

class BlogPage(Page):
...

def serve(self, request):
return JsonResponse({

'title': self.title,
'body': self.body,
'date': self.date,

# Resizes the image to 300px width and gets a URL to it
'feed_image': self.feed_image.get_rendition('width-300').url,

})

Inline models

Wagtail can nest the content of other models within the page. This is useful for creating repeated fields, such as related
links or items to display in a carousel. Inline model content is also versioned with the rest of the page content.

Each inline model requires the following:

• It must inherit from wagtail.wagtailcore.models.Orderable

• It must have a ParentalKey to the parent model

Note: django-modelcluster and ParentalKey

The model inlining feature is provided by django-modelcluster and the ParentalKey field type must be imported
from there:

from modelcluster.fields import ParentalKey

ParentalKey is a subclass of Django’s ForeignKey, and takes the same arguments.

For example, the following inline model can be used to add related links (a list of name, url pairs) to the BlogPage
model:

from django.db import models
from modelcluster.fields import ParentalKey
from wagtail.wagtailcore.models import Orderable

class BlogPageRelatedLink(Orderable):
page = ParentalKey(BlogPage, related_name='related_links')
name = models.CharField(max_length=255)
url = models.URLField()

panels = [
FieldPanel('name'),
FieldPanel('url'),

]

To add this to the admin interface, use the InlinePanel edit panel class:

1.2. Usage guide 23

https://github.com/torchbox/django-modelcluster


Wagtail Documentation, Release 1.6.3

content_panels = [
...

InlinePanel('related_links', label="Related links"),
]

The first argument must match the value of the related_name attribute of the ParentalKey.

Working with pages

Wagtail uses Django’s multi-table inheritance feature to allow multiple page models to be used in the same tree.

Each page is added to both Wagtail’s builtin Page model as well as its user-defined model (such as the BlogPage
model created earlier).

Pages can exist in Python code in two forms, an instance of Page or an instance of the page model.

When working with multiple page types together, you will typically use instances of Wagtail’s Page
model, which don’t give you access to any fields specific to their type.

# Get all pages in the database
>>> from wagtail.wagtailcore.models import Page
>>> Page.objects.all()
[<Page: Homepage>, <Page: About us>, <Page: Blog>, <Page: A Blog post>, <Page: Another Blog post>]

When working with a single page type, you can work with instances of the user-defined model. These give access to
all the fields available in Page, along with any user-defined fields for that type.

# Get all blog entries in the database
>>> BlogPage.objects.all()
[<BlogPage: A Blog post>, <BlogPage: Another Blog post>]

You can convert a Page object to its more specific user-defined equivalent using the .specific property. This may
cause an additional database lookup.

>>> page = Page.objects.get(title="A Blog post")
>>> page
<Page: A Blog post>

# Note: the blog post is an instance of Page so we cannot access body, date or feed_image

>>> page.specific
<BlogPage: A Blog post>

Tips

Friendly model names

You can make your model names more friendly to users of Wagtail by using Django’s internal Meta class with a
verbose_name, e.g.:

class HomePage(Page):
...

class Meta:
verbose_name = "homepage"

24 Chapter 1. Index

https://docs.djangoproject.com/en/1.8/topics/db/models/#multi-table-inheritance


Wagtail Documentation, Release 1.6.3

When users are given a choice of pages to create, the list of page types is generated by splitting your model names
on each of their capital letters. Thus a HomePage model would be named “Home Page” which is a little clumsy.
Defining verbose_name as in the example above would change this to read “Homepage”, which is slightly more
conventional.

Page QuerySet ordering

Page-derived models cannot be given a default ordering by using the standard Django approach of adding an
ordering attribute to the internal Meta class.

class NewsItemPage(Page):
publication_date = models.DateField()
...

class Meta:
ordering = ('-publication_date', ) # will not work

This is because Page enforces ordering QuerySets by path. Instead, you must apply the ordering explicitly when
constructing a QuerySet:

news_items = NewsItemPage.objects.live().order_by('-publication_date')

Custom Page managers

You can add a custom Manager to your Page class. Any custom Managers should inherit from
wagtail.wagtailcore.models.PageManager:

from django.db import models
from wagtail.wagtailcore.models import Page, PageManager

class EventPageManager(PageManager):
""" Custom manager for Event pages """

class EventPage(Page):
start_date = models.DateField()

objects = EventPageManager()

Alternately, if you only need to add extra QuerySet methods, you can inherit from
wagtail.wagtailcore.models.PageQuerySet, and call from_queryset() to build a custom
Manager:

from django.db import models
from django.utils import timezone
from wagtail.wagtailcore.models import Page, PageManager, PageQuerySet

class EventPageQuerySet(PageQuerySet):
def future(self):

today = timezone.localtime(timezone.now()).date()
return self.filter(start_date__gte=today)

class EventPage(Page):
start_date = models.DateField()

objects = PageManager.from_queryset(EventPageQuerySet)

1.2. Usage guide 25



Wagtail Documentation, Release 1.6.3

Writing templates

Wagtail uses Django’s templating language. For developers new to Django, start with Django’s own template docu-
mentation: https://docs.djangoproject.com/en/dev/topics/templates/

Python programmers new to Django/Wagtail may prefer more technical documentation:
https://docs.djangoproject.com/en/dev/ref/templates/api/

You should be familiar with Django templating basics before continuing with this documentation.

Templates

Every type of page or “content type” in Wagtail is defined as a “model” in a file called models.py. If your site has
a blog, you might have a BlogPage model and another called BlogPageListing. The names of the models are
up to the Django developer.

For each page model in models.py, Wagtail assumes an HTML template file exists of (almost) the same name.
The Front End developer may need to create these templates themselves by refering to models.py to infer template
names from the models defined therein.

To find a suitable template, Wagtail converts CamelCase names to snake_case. So for a BlogPage, a template
blog_page.html will be expected. The name of the template file can be overridden per model if necessary.

Template files are assumed to exist here:

name_of_project/
name_of_app/

templates/
name_of_app/

blog_page.html
models.py

For more information, see the Django documentation for the application directories template loader.

Page content

The data/content entered into each page is accessed/output through Django’s {{ double-brace }} notation.
Each field from the model must be accessed by prefixing page.. e.g the page title {{ page.title }} or another
field {{ page.author }}.

Additionally request. is available and contains Django’s request object.

Static assets

Static files e.g CSS, JS and images are typically stored here:

name_of_project/
name_of_app/

static/
name_of_app/

css/
js/
images/

models.py

26 Chapter 1. Index

https://docs.djangoproject.com/en/dev/topics/templates/
https://docs.djangoproject.com/en/dev/ref/templates/api/
https://docs.djangoproject.com/en/dev/ref/templates/api/


Wagtail Documentation, Release 1.6.3

(The names “css”, “js” etc aren’t important, only their position within the tree.)

Any file within the static folder should be inserted into your HTML using the {% static %} tag. More about it:
Static files (tag).

User images

Images uploaded to a Wagtail site by its users (as opposed to a developer’s static files, mentioned above) go into the
image library and from there are added to pages via the page editor interface.

Unlike other CMSs, adding images to a page does not involve choosing a “version” of the image to use. Wagtail has
no predefined image “formats” or “sizes”. Instead the template developer defines image manipulation to occur on the
fly when the image is requested, via a special syntax within the template.

Images from the library must be requested using this syntax, but a developer’s static images can be added via conven-
tional means e.g img tags. Only images from the library can be manipulated on the fly.

Read more about the image manipulation syntax here Using images in templates.

Template tags & filters

In addition to Django’s standard tags and filters, Wagtail provides some of its own, which can be load-ed just like
any other.

Images (tag)

The image tag inserts an XHTML-compatible img element into the page, setting its src, width, height and
alt. See also More control over the img tag.

The syntax for the image tag is thus:

{% image [image] [resize-rule] %}

For example:

{% load wagtailimages_tags %}
...

{% image page.photo width-400 %}

<!-- or a square thumbnail: -->
{% image page.photo fill-80x80 %}

See Using images in templates for full documentation.

Rich text (filter)

This filter takes a chunk of HTML content and renders it as safe HTML in the page. Importantly, it also expands
internal shorthand references to embedded images, and links made in the Wagtail editor, into fully-baked HTML
ready for display.

Only fields using RichTextField need this applied in the template.

{% load wagtailcore_tags %}
...
{{ page.body|richtext }}

1.2. Usage guide 27

https://docs.djangoproject.com/en/dev/topics/templates/#custom-tag-and-filter-libraries
https://docs.djangoproject.com/en/dev/topics/templates/#custom-tag-and-filter-libraries


Wagtail Documentation, Release 1.6.3

Responsive Embeds Wagtail includes embeds and images at their full width, which may overflow the bounds of the
content container you’ve defined in your templates. To make images and embeds responsive – meaning they’ll resize
to fit their container – include the following CSS.

.rich-text img {
max-width: 100%;
height: auto;

}

.responsive-object {
position: relative;

}

.responsive-object iframe,

.responsive-object object,

.responsive-object embed {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;

}

Internal links (tag)

pageurl Takes a Page object and returns a relative URL (/foo/bar/) if within the same Site as the current page,
or absolute (http://example.com/foo/bar/) if not.

{% load wagtailcore_tags %}
...
<a href="{% pageurl page.blog_page %}">

slugurl Takes any slug as defined in a page’s “Promote” tab and returns the URL for the matching Page. Like
pageurl, this will try to provide a relative link if possible, but will default to an absolute link if the Page is on a
different Site. This is most useful when creating shared page furniture, e.g. top level navigation or site-wide links.

{% load wagtailcore_tags %}
...
<a href="{% slugurl page.your_slug %}">

Static files (tag)

Used to load anything from your static files directory. Use of this tag avoids rewriting all static paths if hosting
arrangements change, as they might between development and live environments.

{% load static %}
...
<img src="{% static "name_of_app/myimage.jpg" %}" alt="My image"/>

Notice that the full path name is not required and the path snippet you enter only need begin with the parent app’s
directory name.

28 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Wagtail User Bar

This tag provides a contextual flyout menu for logged-in users. The menu gives editors the ability to edit the current
page or add a child page, besides the options to show the page in the Wagtail page explorer or jump to the Wagtail
admin dashboard. Moderators are also given the ability to accept or reject a page being previewed as part of content
moderation.

{% load wagtailuserbar %}
...
{% wagtailuserbar %}

By default the User Bar appears in the bottom right of the browser window, inset from the edge. If this conflicts with
your design it can be moved by passing a parameter to the template tag. These examples show you how to position the
userbar in each corner of the screen:
...
{% wagtailuserbar 'top-left' %}
{% wagtailuserbar 'top-right' %}
{% wagtailuserbar 'bottom-left' %}
{% wagtailuserbar 'bottom-right' %}
...

The userbar can be positioned where it works best with your design. Alternatively, you can position it with a css rule
in your own CSS files, for example:

.wagtail-userbar {
top: 200px !important;
left: 10px !important;

}

Varying output between preview and live

Sometimes you may wish to vary the template output depending on whether the page is being previewed or viewed
live. For example, if you have visitor tracking code such as Google Analytics in place on your site, it’s a good idea
to leave this out when previewing, so that editor activity doesn’t appear in your analytics reports. Wagtail provides a
request.is_preview variable to distinguish between preview and live:

{% if not request.is_preview %}
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
...

</script>
{% endif %}

Using images in templates

The image tag inserts an XHTML-compatible img element into the page, setting its src, width, height and
alt. See also More control over the img tag.

The syntax for the tag is thus:

{% image [image] [resize-rule] %}

For example:

1.2. Usage guide 29



Wagtail Documentation, Release 1.6.3

{% load wagtailimages_tags %}
...

<!-- Display the image scaled to a width of 400 pixels: -->
{% image page.photo width-400 %}

<!-- Display it again, but this time as a square thumbnail: -->
{% image page.photo fill-80x80 %}

In the above syntax example [image] is the Django object refering to the image. If your page model defined a field
called “photo” then [image] would probably be page.photo. The [resize-rule] defines how the image is
to be resized when inserted into the page. Various resizing methods are supported, to cater to different use cases (e.g.
lead images that span the whole width of the page, or thumbnails to be cropped to a fixed size).

Note that a space separates [image] and [resize-rule], but the resize rule must not contain spaces. The width
is always specified before the height. Resized images will maintain their original aspect ratio unless the fill rule is
used, which may result in some pixels being cropped.

The available resizing methods are as follows:

max (takes two dimensions)

{% image page.photo max-1000x500 %}

Fit within the given dimensions.

The longest edge will be reduced to the matching dimension specified. For example, a portrait image of width
1000 and height 2000, treated with the max-1000x500 rule (a landscape layout) would result in the image
being shrunk so the height was 500 pixels and the width was 250.

min (takes two dimensions)

{% image page.photo min-500x200 %}

Cover the given dimensions.

This may result in an image slightly larger than the dimensions you specify. A square image of width 2000 and
height 2000, treated with the min-500x200 rule would have its height and width changed to 500, i.e matching
the width of the resize-rule, but greater than the height.

width (takes one dimension)

{% image page.photo width-640 %}

Reduces the width of the image to the dimension specified.

height (takes one dimension)

{% image page.photo height-480 %}

Resize the height of the image to the dimension specified..

fill (takes two dimensions and an optional -c parameter)

{% image page.photo fill-200x200 %}

Resize and crop to fill the exact dimensions specified.

This can be particularly useful for websites requiring square thumbnails of arbitrary images. For example, a
landscape image of width 2000 and height 1000 treated with the fill200x200 rule would have its height
reduced to 200, then its width (ordinarily 400) cropped to 200.

30 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

This resize-rule will crop to the image’s focal point if it has been set. If not, it will crop to the centre of the
image.

On images that won’t upscale

It’s possible to request an image with fill dimensions that the image can’t support without upscaling. e.g. an
image of width 400 and height 200 requested with fill-400x400. In this situation the ratio of the requested
fill will be matched, but the dimension will not. So that example 400x200 image (a 2:1 ratio) could become
200x200 (a 1:1 ratio, matching the resize-rule).

Cropping closer to the focal point

By default, Wagtail will only crop enough to change the aspect ratio of the image to match the ratio in the
resize-rule.

In some cases (e.g. thumbnails), it may be preferable to crop closer to the focal point, so that the subject of the
image is more prominent.

You can do this by appending -c<percentage> at the end of the resize-rule. For example, if you would like
the image to be cropped as closely as possible to its focal point, add -c100:

{% image page.photo fill-200x200-c100 %}

This will crop the image as much as it can, without cropping into the focal point.

If you find that -c100 is too close, you can try -c75 or -c50. Any whole number from 0 to 100 is accepted.

original (takes no dimensions)

{% image page.photo original %}

Renders the image at its original size.

Note: Wagtail does not allow deforming or stretching images. Image dimension ratios will always be kept. Wag-
tail also does not support upscaling. Small images forced to appear at larger sizes will “max out” at their native
dimensions.

More control over the img tag

Wagtail provides two shortcuts to give greater control over the img element:

1. Adding attributes to the {% image %} tag

Extra attributes can be specified with the syntax attribute="value":

{% image page.photo width-400 class="foo" id="bar" %}

You can set a more relevant alt attribute this way, overriding the one automatically generated from the title of the
image. The src, width, and height attributes can also be overridden, if necessary.

2. Generating the image “as foo” to access individual properties

Wagtail can assign the image data to another variable using Django’s as syntax:

{% image page.photo width-400 as tmp_photo %}

<img src="{{ tmp_photo.url }}" width="{{ tmp_photo.width }}"
height="{{ tmp_photo.height }}" alt="{{ tmp_photo.alt }}" class="my-custom-class" />

1.2. Usage guide 31



Wagtail Documentation, Release 1.6.3

This syntax exposes the underlying image Rendition (tmp_photo) to the developer. A “Rendition” contains the
information specific to the way you’ve requested to format the image using the resize-rule, i.e. dimensions and source
URL.

If your site defines a custom image model using AbstractImage, any additional fields you add to an image (e.g. a
copyright holder) are not included in the rendition.

Therefore, if you’d added the field author to your AbstractImage in the above example, you’d access it using {{
page.photo.author }} rather than {{ tmp_photo.author }}.

(Due to the links in the database between renditions and their parent image, you could access it as {{
tmp_photo.image.author }}, but that has reduced readability.)

Note: The image property used for the src attribute is actually image.url, not image.src.

The attrs shortcut

You can also use the attrs property as a shorthand to output the attributes src, width, height and alt in one
go:

<img {{ tmp_photo.attrs }} class="my-custom-class" />

Images embedded in rich text

The information above relates to images defined via image-specific fields in your model. However, images can also be
embedded arbitrarily in Rich Text fields by the page editor (see Rich Text (HTML)).

Images embedded in Rich Text fields can’t be controlled by the template developer as easily. There are no image
objects to work with, so the {% image %} template tag can’t be used. Instead, editors can choose from one of a
number of image “Formats” at the point of inserting images into their text.

Wagtail comes with three pre-defined image formats, but more can be defined in Python by the developer. These
formats are:

Full width Creates an image rendition using width-800, giving the <img> tag the CSS class full-width.

Left-aligned Creates an image rendition using width-500, giving the <img> tag the CSS class left.

Right-aligned Creates an image rendition using width-500, giving the <img> tag the CSS class right.

Note: The CSS classes added to images do not come with any accompanying stylesheets, or inline styles. e.g. the
left class will do nothing, by default. The developer is expected to add these classes to their front end CSS files, to
define exactly what they want left, right or full-width to mean.

For more information about image formats, including creating your own, see Image Formats in the Rich Text Editor

Search

Wagtail provides a comprehensive and extensible search interface. In addition, it provides ways to promote search
results through “Editor’s Picks”. Wagtail also collects simple statistics on queries made through the search interface.

32 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Indexing

To make a model searchable, you’ll need to add it into the search index. All pages, images and documents are indexed
for you, so you can start searching them right away.

If you have created some extra fields in a subclass of Page or Image, you may want to add these new fields to the
search index too so that a user’s search query will match on their content. See Indexing extra fields for info on how to
do this.

If you have a custom model that you would like to make searchable, see Indexing custom models.

Updating the index

If the search index is kept separate from the database (when using Elasticsearch for example), you need to keep
them both in sync. There are two ways to do this: using the search signal handlers, or calling the update_index
command periodically. For best speed and reliability, it’s best to use both if possible.

Signal handlers Changed in version 0.8: Signal handlers are now automatically registered

wagtailsearch provides some signal handlers which bind to the save/delete signals of all indexed models. This
would automatically add and delete them from all backends you have registered in WAGTAILSEARCH_BACKENDS.
These signal handlers are automatically registered when the wagtail.wagtailsearch app is loaded.

The update_index command Wagtail also provides a command for rebuilding the index from scratch.

./manage.py update_index

It is recommended to run this command once a week and at the following times:

• whenever any pages have been created through a script (after an import, for example)

• whenever any changes have been made to models or search configuration

The search may not return any results while this command is running, so avoid running it at peak times.

Indexing extra fields

Warning: Indexing extra fields is only supported with ElasticSearch as your backend. If you’re using the database
backend, any other fields you define via search_fields will be ignored.

Fields must be explicitly added to the search_fields property of your Page-derived model, in order for
you to be able to search/filter on them. This is done by overriding search_fields to append a list of extra
SearchField/FilterField objects to it.

Example This creates an EventPage model with two fields: description and date. description is
indexed as a SearchField and date is indexed as a FilterField

from wagtail.wagtailsearch import index
from django.utils import timezone

class EventPage(Page):
description = models.TextField()
date = models.DateField()

1.2. Usage guide 33



Wagtail Documentation, Release 1.6.3

search_fields = Page.search_fields + [ # Inherit search_fields from Page
index.SearchField('description'),
index.FilterField('date'),

]

# Get future events which contain the string "Christmas" in the title or description
>>> EventPage.objects.filter(date__gt=timezone.now()).search("Christmas")

index.SearchField These are used for performing full-text searches on your models, usually for text fields.

Options

• partial_match (boolean) - Setting this to true allows results to be matched on parts of words. For example,
this is set on the title field by default, so a page titled Hello World! will be found if the user only types Hel
into the search box.

• boost (int/float) - This allows you to set fields as being more important than others. Setting this to a high
number on a field will cause pages with matches in that field to be ranked higher. By default, this is set to 2 on
the Page title field and 1 on all other fields.

• es_extra (dict) - This field is to allow the developer to set or override any setting on the field in the Elastic-
Search mapping. Use this if you want to make use of any ElasticSearch features that are not yet supported in
Wagtail.

index.FilterField These are added to the search index but are not used for full-text searches. Instead, they
allow you to run filters on your search results.

index.RelatedFields This allows you to index fields from related objects. It works on all types of related
fields, including their reverse accessors.

For example, if we have a book that has a ForeignKey to its author, we can nest the author’s name and
date_of_birth fields inside the book:

class Book(models.Model, indexed.Indexed):
...

search_fields = [
index.SearchField('title'),
index.FilterField('published_date'),

index.RelatedFields('author', [
index.SearchField('name'),
index.FilterField('date_of_birth'),

]),
]

This will allow you to search for books by their author’s name.

It works the other way around as well. You can index an author’s books, allowing an author to be searched for by the
titles of books they’ve published:

class Author(models.Model, indexed.Indexed):
...

search_fields = [

34 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

index.SearchField('name'),
index.FilterField('date_of_birth'),

index.RelatedFields('books', [
index.SearchField('title'),
index.FilterField('published_date'),

]),
]

Filtering on index.RelatedFields

It’s not possible to filter on any index.FilterFields within index.RelatedFields using the
QuerySet API. However, the fields are indexed, so it should be possible to use them by querying Elastic-
search manually.
Filtering on index.RelatedFields with the QuerySet API is planned for a future release of Wagtail.

Indexing callables and other attributes

Note: This is not supported in the Database Backend (default)

Search/filter fields do not need to be Django model fields. They can also be any method or attribute on your model
class.

One use for this is indexing the get_*_display methods Django creates automatically for fields with choices.

from wagtail.wagtailsearch import index

class EventPage(Page):
IS_PRIVATE_CHOICES = (

(False, "Public"),
(True, "Private"),

)

is_private = models.BooleanField(choices=IS_PRIVATE_CHOICES)

search_fields = Page.search_fields + [
# Index the human-readable string for searching.
index.SearchField('get_is_private_display'),

# Index the boolean value for filtering.
index.FilterField('is_private'),

]

Callables also provide a way to index fields from related models. In the example from Inline Panels and Model
Clusters, to index each BookPage by the titles of its related_links:

class BookPage(Page):
# ...
def get_related_link_titles(self):

# Get list of titles and concatenate them
return '\n'.join(self.related_links.all().values_list('name', flat=True))

search_fields = Page.search_fields + [
# ...

1.2. Usage guide 35



Wagtail Documentation, Release 1.6.3

index.SearchField('get_related_link_titles'),
]

Indexing custom models

Any Django model can be indexed and searched.

To do this, inherit from index.Indexed and add some search_fields to the model.

from wagtail.wagtailsearch import index

class Book(index.Indexed, models.Model):
title = models.CharField(max_length=255)
genre = models.CharField(max_length=255, choices=GENRE_CHOICES)
author = models.ForeignKey(Author)
published_date = models.DateTimeField()

search_fields = [
index.SearchField('title', partial_match=True, boost=10),
index.SearchField('get_genre_display'),

index.FilterField('genre'),
index.FilterField('author'),
index.FilterField('published_date'),

]

# As this model doesn't have a search method in its QuerySet, we have to call search directly on the backend
>>> from wagtail.wagtailsearch.backends import get_search_backend
>>> s = get_search_backend()

# Run a search for a book by Roald Dahl
>>> roald_dahl = Author.objects.get(name="Roald Dahl")
>>> s.search("chocolate factory", Book.objects.filter(author=roald_dahl))
[<Book: Charlie and the chocolate factory>]

Searching

Searching QuerySets

Wagtail search is built on Django’s QuerySet API. You should be able to search any Django QuerySet provided the
model and the fields being filtered on have been added to the search index.

Searching Pages Wagtail provides a shortcut for searching pages: the .search() QuerySet method. You can
call this on any PageQuerySet. For example:

# Search future EventPages
>>> from wagtail.wagtailcore.models import EventPage
>>> EventPage.objects.filter(date__gt=timezone.now()).search("Hello world!")

All other methods of PageQuerySet can be used with search(). For example:

# Search all live EventPages that are under the events index
>>> EventPage.objects.live().descendant_of(events_index).search("Event")
[<EventPage: Event 1>, <EventPage: Event 2>]

36 Chapter 1. Index

https://docs.djangoproject.com/en/1.8/ref/models/querysets/


Wagtail Documentation, Release 1.6.3

Note: The search() method will convert your QuerySet into an instance of one of Wagtail’s SearchResults
classes (depending on backend). This means that you must perform filtering before calling search().

Searching Images, Documents and custom models Wagtail’s document and image models provide a search
method on their QuerySets, just as pages do:

>>> from wagtail.wagtailimages.models import Image

>>> Image.objects.filter(uploaded_by_user=user).search("Hello")
[<Image: Hello>, <Image: Hello world!>]

Custom models can be searched by using the search method on the search backend directly:

>>> from myapp.models import Book
>>> from wagtail.wagtailsearch.backends import get_search_backend

# Search books
>>> s = get_search_backend()
>>> s.search("Great", Book)
[<Book: Great Expectations>, <Book: The Great Gatsby>]

You can also pass a QuerySet into the search method which allows you to add filters to your search results:

>>> from myapp.models import Book
>>> from wagtail.wagtailsearch.backends import get_search_backend

# Search books
>>> s = get_search_backend()
>>> s.search("Great", Book.objects.filter(published_date__year__lt=1900))
[<Book: Great Expectations>]

Specifying the fields to search By default, Wagtail will search all fields that have been indexed using
index.SearchField.

This can be limited to a certian set of fields by using the fields keyword argument:

# Search just the title field
>>> EventPage.objects.search("Event", fields=["title"])
[<EventPage: Event 1>, <EventPage: Event 2>]

Changing search behaviour

Search operator New in version 1.2.

The search operator specifies how search should behave when the user has typed in multiple search terms. There are
two possible values:

• “or” - The results must match at least one term (default for Elasticsearch)

• “and” - The results must match all terms (default for database search)

Both operators have benefits and drawbacks. The “or” operator will return many more results but will likely contain a
lot of results that aren’t relevent. The “and” operator only returns results that contain all search terms, but require the
user to be more precise with their query.

1.2. Usage guide 37



Wagtail Documentation, Release 1.6.3

We recommend using the “or” operator when ordering by relevance and the “and” operator when ordering by anything
else (note: the database backend doesn’t currently support ordering by relevance).

Here’s an example of using the operator keyword argument:

# The database contains a "Thing" model with the following items:
# - Hello world
# - Hello
# - World

# Search with the "or" operator
>>> s = get_search_backend()
>>> s.search("Hello world", Things, operator="or")

# All records returned as they all contain either "hello" or "world"
[<Thing: Hello World>, <Thing: Hello>, <Thing: World>]

# Search with the "and" operator
>>> s = get_search_backend()
>>> s.search("Hello world", Things, operator="and")

# Only "hello world" returned as that's the only item that contains both terms
[<Thing: Hello world>]

For page, image and document models, the operator keyword argument is also supported on the QuerySet’s
search method:

>>> Page.objects.search("Hello world", operator="or")

# All pages containing either "hello" or "world" are returned
[<Page: Hello World>, <Page: Hello>, <Page: World>]

Custom ordering New in version 1.2.

By default, search results are ordered by relevance, if the backend supports it. To preserve the QuerySet’s existing
ordering, the order_by_relevance keyword argument needs to be set to False on the search() method.

For example:

# Get a list of events ordered by date
>>> EventPage.objects.order_by('date').search("Event", order_by_relevance=False)

# Events ordered by date
[<EventPage: Easter>, <EventPage: Halloween>, <EventPage: Christmas>]

An example page search view

Here’s an example Django view that could be used to add a “search” page to your site:

# views.py

from django.shortcuts import render

from wagtail.wagtailcore.models import Page
from wagtail.wagtailsearch.models import Query

38 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

def search(request):
# Search
search_query = request.GET.get('query', None)
if search_query:

search_results = Page.objects.live().search(search_query)

# Log the query so Wagtail can suggest promoted results
Query.get(search_query).add_hit()

else:
search_results = Page.objects.none()

# Render template
return render(request, 'search_results.html', {

'search_query': search_query,
'search_results': search_results,

})

And here’s a template to go with it:

{% extends "base.html" %}
{% load wagtailcore_tags %}

{% block title %}Search{% endblock %}

{% block content %}
<form action="{% url 'search' %}" method="get">

<input type="text" name="query" value="{{ search_query }}">
<input type="submit" value="Search">

</form>

{% if search_results %}
<ul>

{% for result in search_results %}
<li>

<h4><a href="{% pageurl result %}">{{ result }}</a></h4>
{% if result.search_description %}

{{ result.search_description|safe }}
{% endif %}

</li>
{% endfor %}

</ul>
{% elif search_query %}

No results found
{% else %}

Please type something into the search box
{% endif %}

{% endblock %}

Promoted search results

“Promoted search results” allow editors to explicitly link relevant content to search terms, so results pages can contain
curated content in addition to results from the search engine.

This functionality is provided by the wagtailsearchpromotions contrib module.

1.2. Usage guide 39



Wagtail Documentation, Release 1.6.3

Backends

Wagtailsearch has support for multiple backends, giving you the choice between using the database for search or an
external service such as Elasticsearch. The database backend is enabled by default.

You can configure which backend to use with the WAGTAILSEARCH_BACKENDS setting:

WAGTAILSEARCH_BACKENDS = {
'default': {

'BACKEND': 'wagtail.wagtailsearch.backends.db',
}

}

AUTO_UPDATE

New in version 1.0.

By default, Wagtail will automatically keep all indexes up to date. This could impact performance when editing
content, especially if your index is hosted on an external service.

The AUTO_UPDATE setting allows you to disable this on a per-index basis:

WAGTAILSEARCH_BACKENDS = {
'default': {

'BACKEND': ...,
'AUTO_UPDATE': False,

}
}

If you have disabled auto update, you must run the update_index command on a regular basis to keep the index in sync
with the database.

ATOMIC_REBUILD

New in version 1.1.

By default (when using the Elasticsearch backend), when the update_index command is run, Wagtail deletes the
index and rebuilds it from scratch. This causes the search engine to not return results until the rebuild is complete and
is also risky as you can’t rollback if an error occurs.

Setting the ATOMIC_REBUILD setting to True makes Wagtail rebuild into a separate index while keep the old index
active until the new one is fully built. When the rebuild is finished, the indexes are swapped atomically and the old
index is deleted.

Warning: Experimental feature
This feature is currently experimental. Please use it with caution.

BACKEND

Here’s a list of backends that Wagtail supports out of the box.

40 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Database Backend (default) wagtail.wagtailsearch.backends.db

Changed in version 1.1: Before 1.1, the full path to the backend class had to be specified:
wagtail.wagtailsearch.backends.db.DBSearch

The database backend is very basic and is intended only to be used in development and on small sites. It cannot order
results by relevance, severely hampering its usefulness when searching a large collection of pages.

It also doesn’t support:

• Searching on fields in subclasses of Page (unless the class is being searched directly)

• Indexing callables and other attributes

• Converting accented characters to ASCII

If any of these features are important to you, we recommend using Elasticsearch instead.

Elasticsearch Backend wagtail.wagtailsearch.backends.elasticsearch

Changed in version 1.1: Before 1.1, the full path to the backend class had to be specified:
wagtail.wagtailsearch.backends.elasticsearch.ElasticSearch

Prerequisites are the Elasticsearch service itself and, via pip, the elasticsearch-py package:

Note: Wagtail doesn’t support Elasticsearch 2.0 yet; please use 1.x in the meantime. Elasticsearch 2.0 support is
scheduled for a future release.

pip install elasticsearch

The backend is configured in settings:

WAGTAILSEARCH_BACKENDS = {
'default': {

'BACKEND': 'wagtail.wagtailsearch.backends.elasticsearch',
'URLS': ['http://localhost:9200'],
'INDEX': 'wagtail',
'TIMEOUT': 5,

}
}

Other than BACKEND, the keys are optional and default to the values shown. In addition, any other keys are passed
directly to the Elasticsearch constructor as case-sensitive keyword arguments (e.g. ’max_retries’: 1).

If you prefer not to run an Elasticsearch server in development or production, there are many hosted services available,
including Bonsai, who offer a free account suitable for testing and development. To use Bonsai:

• Sign up for an account at Bonsai

• Use your Bonsai dashboard to create a Cluster.

• Configure URLS in the Elasticsearch entry in WAGTAILSEARCH_BACKENDS using the Cluster URL from your
Bonsai dashboard

• Run ./manage.py update_index

Rolling Your Own Wagtail search backends implement the interface defined in
wagtail/wagtail/wagtailsearch/backends/base.py. At a minimum, the backend’s search()
method must return a collection of objects or model.objects.none(). For a fully-featured search backend,
examine the Elasticsearch backend code in elasticsearch.py.

1.2. Usage guide 41

https://www.elastic.co/downloads/past-releases/elasticsearch-1-7-3
http://elasticsearch-py.readthedocs.org
https://bonsai.io/signup
https://bonsai.io/signup


Wagtail Documentation, Release 1.6.3

Indexing

To make objects searchable, they must first be added to the search index. This involves configuring the models and
fields that you would like to index (which is done for you for Pages, Images and Documents), and then actually
inserting them into the index.

See Updating the index for information on how to keep the objects in your search index in sync with the objects in
your database.

If you have created some extra fields in a subclass of Page or Image, you may want to add these new fields to the
search index, so a user’s search query can match the Page or Image’s extra content. See Indexing extra fields.

If you have a custom model which doesn’t derive from Page or Image that you would like to make searchable, see
Indexing custom models.

Searching

Wagtail provides an API for performing search queries on your models. You can also perform search queries on
Django QuerySets.

See Searching.

Backends

Wagtail provides two backends for storing the search index and performing search queries: Elasticsearch and the
database. It’s also possible to roll your own search backend.

See Backends

Snippets

Snippets are pieces of content which do not necessitate a full webpage to render. They could be used for making
secondary content, such as headers, footers, and sidebars, editable in the Wagtail admin. Snippets are Django models
which do not inherit the Page class and are thus not organized into the Wagtail tree. However, they can still be made
editable by assigning panels and identifying the model as a snippet with the register_snippet class decorator.

Snippets lack many of the features of pages, such as being orderable in the Wagtail admin or having a defined URL.
Decide carefully if the content type you would want to build into a snippet might be more suited to a page.

Snippet Models

Here’s an example snippet from the Wagtail demo website:

from django.db import models
from django.utils.encoding import python_2_unicode_compatible

from wagtail.wagtailadmin.edit_handlers import FieldPanel
from wagtail.wagtailsnippets.models import register_snippet

...

@register_snippet
@python_2_unicode_compatible # provide equivalent __unicode__ and __str__ methods on Python 2
class Advert(models.Model):

url = models.URLField(null=True, blank=True)

42 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

text = models.CharField(max_length=255)

panels = [
FieldPanel('url'),
FieldPanel('text'),

]

def __str__(self):
return self.text

The Advertmodel uses the basic Django model class and defines two properties: text and URL. The editing interface
is very close to that provided for Page-derived models, with fields assigned in the panels property. Snippets do not
use multiple tabs of fields, nor do they provide the “save as draft” or “submit for moderation” features.

@register_snippet tells Wagtail to treat the model as a snippet. The panels list defines the fields to
show on the snippet editing page. It’s also important to provide a string representation of the class through def
__str__(self): so that the snippet objects make sense when listed in the Wagtail admin.

Including Snippets in Template Tags

The simplest way to make your snippets available to templates is with a template tag. This is mostly done with vanilla
Django, so perhaps reviewing Django’s documentation for django custom template tags will be more helpful. We’ll
go over the basics, though, and point out any considerations to make for Wagtail.

First, add a new python file to a templatetags folder within your app. The demo website, for instance uses the
path wagtaildemo/demo/templatetags/demo_tags.py. We’ll need to load some Django modules and
our app’s models, and ready the register decorator:

from django import template
from demo.models import *

register = template.Library()

...

# Advert snippets
@register.inclusion_tag('demo/tags/adverts.html', takes_context=True)
def adverts(context):

return {
'adverts': Advert.objects.all(),
'request': context['request'],

}

@register.inclusion_tag() takes two variables: a template and a boolean on whether that template should
be passed a request context. It’s a good idea to include request contexts in your custom template tags, since some
Wagtail-specific template tags like pageurl need the context to work properly. The template tag function could take
arguments and filter the adverts to return a specific model, but for brevity we’ll just use Advert.objects.all().

Here’s what’s in the template used by this template tag:

{% for advert in adverts %}
<p>

<a href="{{ advert.url }}">
{{ advert.text }}

</a>
</p>

{% endfor %}

1.2. Usage guide 43

https://docs.djangoproject.com/en/dev/howto/custom-template-tags/


Wagtail Documentation, Release 1.6.3

Then, in your own page templates, you can include your snippet template tag with:

{% load wagtailcore_tags demo_tags %}

...

{% block content %}

...

{% adverts %}

{% endblock %}

Binding Pages to Snippets

In the above example, the list of adverts is a fixed list, displayed independently of the page content. This might be
what you want for a common panel in a sidebar, say – but in other scenarios you may wish to refer to a particular
snippet from within a page’s content. This can be done by defining a foreign key to the snippet model within your
page model, and adding a SnippetChooserPanel to the page’s content_panels list. For example, if you
wanted to be able to specify an advert to appear on BookPage:

from wagtail.wagtailsnippets.edit_handlers import SnippetChooserPanel
# ...
class BookPage(Page):

advert = models.ForeignKey(
'demo.Advert',
null=True,
blank=True,
on_delete=models.SET_NULL,
related_name='+'

)

content_panels = Page.content_panels + [
SnippetChooserPanel('advert'),
# ...

]

The snippet could then be accessed within your template as page.advert.

To attach multiple adverts to a page, the SnippetChooserPanel can be placed on an inline child object of
BookPage, rather than on BookPage itself. Here this child model is named BookPageAdvertPlacement
(so called because there is one such object for each time that an advert is placed on a BookPage):

from django.db import models

from wagtail.wagtailcore.models import Page, Orderable
from wagtail.wagtailsnippets.edit_handlers import SnippetChooserPanel

from modelcluster.fields import ParentalKey

...

class BookPageAdvertPlacement(Orderable, models.Model):
page = ParentalKey('demo.BookPage', related_name='advert_placements')
advert = models.ForeignKey('demo.Advert', related_name='+')

class Meta:

44 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

verbose_name = "advert placement"
verbose_name_plural = "advert placements"

panels = [
SnippetChooserPanel('advert'),

]

def __str__(self):
return self.page.title + " -> " + self.advert.text

class BookPage(Page):
...

content_panels = Page.content_panels + [
InlinePanel('advert_placements', label="Adverts"),
# ...

]

These child objects are now accessible through the page’s advert_placements property, and from there we can
access the linked Advert snippet as advert. In the template for BookPage, we could include the following:

{% for advert_placement in page.advert_placements.all %}
<p>

<a href="{{ advert_placement.advert.url }}">
{{ advert_placement.advert.text }}

</a>
</p>

{% endfor %}

Making Snippets Searchable

If a snippet model inherits from wagtail.wagtailsearch.index.Indexed, as described in Indexing custom
models, Wagtail will automatically add a search box to the chooser interface for that snippet type. For example, the
Advert snippet could be made searchable as follows:
...

from wagtail.wagtailsearch import index

...

@register_snippet
class Advert(index.Indexed, models.Model):

url = models.URLField(null=True, blank=True)
text = models.CharField(max_length=255)

panels = [
FieldPanel('url'),
FieldPanel('text'),

]

search_fields = [
index.SearchField('text', partial_match=True),

]

1.2. Usage guide 45



Wagtail Documentation, Release 1.6.3

Tagging snippets

Adding tags to snippets is very similar to adding tags to pages. The only difference is that
taggit.manager.TaggableManager should be used in the place of ClusterTaggableManager.

from modelcluster.fields import ParentalKey
from modelcluster.models import ClusterableModel
from taggit.models import TaggedItemBase
from taggit.managers import TaggableManager

class AdvertTag(TaggedItemBase):
content_object = ParentalKey('demo.Advert', related_name='tagged_items')

@register_snippet
class Advert(ClusterableModel):

...
tags = TaggableManager(through=AdvertTag, blank=True)

panels = [
...
FieldPanel('tags'),

]

The documentation on tagging pages has more information on how to use tags in views.

Freeform page content using StreamField

StreamField provides a content editing model suitable for pages that do not follow a fixed structure – such as blog
posts or news stories – where the text may be interspersed with subheadings, images, pull quotes and video. It’s also
suitable for more specialised content types, such as maps and charts (or, for a programming blog, code snippets). In
this model, these different content types are represented as a sequence of ‘blocks’, which can be repeated and arranged
in any order.

For further background on StreamField, and why you would use it instead of a rich text field for the article body, see
the blog post Rich text fields and faster horses.

StreamField also offers a rich API to define your own block types, ranging from simple collections of sub-blocks
(such as a ‘person’ block consisting of first name, surname and photograph) to completely custom components with
their own editing interface. Within the database, the StreamField content is stored as JSON, ensuring that the full
informational content of the field is preserved, rather than just an HTML representation of it.

Using StreamField

StreamField is a model field that can be defined within your page model like any other field:

from django.db import models

from wagtail.wagtailcore.models import Page
from wagtail.wagtailcore.fields import StreamField
from wagtail.wagtailcore import blocks
from wagtail.wagtailadmin.edit_handlers import FieldPanel, StreamFieldPanel
from wagtail.wagtailimages.blocks import ImageChooserBlock

class BlogPage(Page):
author = models.CharField(max_length=255)
date = models.DateField("Post date")

46 Chapter 1. Index

https://torchbox.com/blog/rich-text-fields-and-faster-horses/


Wagtail Documentation, Release 1.6.3

body = StreamField([
('heading', blocks.CharBlock(classname="full title")),
('paragraph', blocks.RichTextBlock()),
('image', ImageChooserBlock()),

])

content_panels = Page.content_panels + [
FieldPanel('author'),
FieldPanel('date'),
StreamFieldPanel('body'),

]

Note: StreamField is not backwards compatible with other field types such as RichTextField. If you need to migrate
an existing field to StreamField, refer to Migrating RichTextFields to StreamField.

The parameter to StreamField is a list of (name, block_type) tuples. ‘name’ is used to identify the block
type within templates and the internal JSON representation (and should follow standard Python conventions for vari-
able names: lower-case and underscores, no spaces) and ‘block_type’ should be a block definition object as described
below. (Alternatively, StreamField can be passed a single StreamBlock instance - see Structural block types.)

This defines the set of available block types that can be used within this field. The author of the page is free to use
these blocks as many times as desired, in any order.

Basic block types

All block types accept the following optional keyword arguments:

default The default value that a new ‘empty’ block should receive.

label The label to display in the editor interface when referring to this block - defaults to a prettified version of the
block name (or, in a context where no name is assigned - such as within a ListBlock - the empty string).

icon The name of the icon to display for this block type in the menu of available block types. For a list of icon names,
see the Wagtail style guide, which can be enabled by adding wagtail.contrib.wagtailstyleguide
to your project’s INSTALLED_APPS.

template The path to a Django template that will be used to render this block on the front end. See Template
rendering.

The basic block types provided by Wagtail are as follows:

CharBlock

wagtail.wagtailcore.blocks.CharBlock

A single-line text input. The following keyword arguments are accepted:

required (default: True) If true, the field cannot be left blank.

max_length, min_length Ensures that the string is at most or at least the given length.

help_text Help text to display alongside the field.

TextBlock

wagtail.wagtailcore.blocks.TextBlock

1.2. Usage guide 47



Wagtail Documentation, Release 1.6.3

A multi-line text input. As with CharBlock, the keyword arguments required, max_length, min_length
and help_text are accepted.

EmailBlock

wagtail.wagtailcore.blocks.EmailBlock

A single-line email input that validates that the email is a valid Email Address. The keyword arguments required
and help_text are accepted.

For an example of EmailBlock in use, see Example: PersonBlock

IntegerBlock

wagtail.wagtailcore.blocks.IntegerBlock

A single-line integer input that validates that the integer is a valid whole number. The keyword arguments required,
max_value, min_value and help_text are accepted.

For an example of IntegerBlock in use, see Example: PersonBlock

FloatBlock

wagtail.wagtailcore.blocks.FloatBlock

A single-line Float input that validates that the value is a valid floating point number. The keyword arguments
required, max_value and min_value are accepted.

DecimalBlock

wagtail.wagtailcore.blocks.DecimalBlock

A single-line decimal input that validates that the value is a valid decimal number. The keyword arguments
required, max_value, min_value, max_digits and decimal_places are accepted.

For an example of DecimalBlock in use, see Example: PersonBlock

RegexBlock

wagtail.wagtailcore.blocks.RegexBlock

A single-line text input that validates a string against a regex expression. The regular expression used for validation
must be supplied as the first argument, or as the keyword argument regex. To customise the message text used
to indicate a validation error, pass a dictionary as the keyword argument error_messages containing either or
both of the keys required (for the message shown on an empty value) or invalid (for the message shown on a
non-matching value):

blocks.RegexBlock(regex=r'^[0-9]{3}$', error_message={
'invalid': "Not a valid library card number."

})

The keyword arguments regex, required, max_length, min_length and error_messages are accepted.

48 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

URLBlock

wagtail.wagtailcore.blocks.URLBlock

A single-line text input that validates that the string is a valid URL. The keyword arguments required,
max_length, min_length and help_text are accepted.

BooleanBlock

wagtail.wagtailcore.blocks.BooleanBlock

A checkbox. The keyword arguments required and help_text are accepted. As with Django’s
BooleanField, a value of required=True (the default) indicates that the checkbox must be ticked in order
to proceed. For a checkbox that can be ticked or unticked, you must explicitly pass in required=False.

DateBlock

wagtail.wagtailcore.blocks.DateBlock

A date picker. The keyword arguments required and help_text are accepted.

TimeBlock

wagtail.wagtailcore.blocks.TimeBlock

A time picker. The keyword arguments required and help_text are accepted.

DateTimeBlock

wagtail.wagtailcore.blocks.DateTimeBlock

A combined date / time picker. The keyword arguments required and help_text are accepted.

RichTextBlock

wagtail.wagtailcore.blocks.RichTextBlock

A WYSIWYG editor for creating formatted text including links, bold / italics etc.

RawHTMLBlock

wagtail.wagtailcore.blocks.RawHTMLBlock

A text area for entering raw HTML which will be rendered unescaped in the page output. The keyword arguments
required, max_length, min_length and help_text are accepted.

Warning: When this block is in use, there is nothing to prevent editors from inserting malicious scripts into the
page, including scripts that would allow the editor to acquire administrator privileges when another administrator
views the page. Do not use this block unless your editors are fully trusted.

1.2. Usage guide 49



Wagtail Documentation, Release 1.6.3

ChoiceBlock

wagtail.wagtailcore.blocks.ChoiceBlock

A dropdown select box for choosing from a list of choices. The following keyword arguments are accepted:

choices A list of choices, in any format accepted by Django’s choices parameter for model fields:
https://docs.djangoproject.com/en/stable/ref/models/fields/#field-choices

required (default: True) If true, the field cannot be left blank.

help_text Help text to display alongside the field.

ChoiceBlock can also be subclassed to produce a reusable block with the same list of choices everywhere it is used.
For example, a block definition such as:

blocks.ChoiceBlock(choices=[
('tea', 'Tea'),
('coffee', 'Coffee'),

], icon='cup')

could be rewritten as a subclass of ChoiceBlock:

class DrinksChoiceBlock(blocks.ChoiceBlock):
choices = [

('tea', 'Tea'),
('coffee', 'Coffee'),

]

class Meta:
icon = 'cup'

StreamField definitions can then refer to DrinksChoiceBlock() in place of the full ChoiceBlock defini-
tion.

PageChooserBlock

wagtail.wagtailcore.blocks.PageChooserBlock

A control for selecting a page object, using Wagtail’s page browser. The following keyword arguments are accepted:

required (default: True) If true, the field cannot be left blank.

can_choose_root (default: False) If true, the editor can choose the tree root as a page. Normally this would be
undesirable, since the tree root is never a usable page, but in some specialised cases it may be appropriate. For
example, a block providing a feed of related articles could use a PageChooserBlock to select which subsection
of the site articles will be taken from, with the root corresponding to ‘everywhere’.

DocumentChooserBlock

wagtail.wagtaildocs.blocks.DocumentChooserBlock

A control to allow the editor to select an existing document object, or upload a new one. The keyword argument
required is accepted.

50 Chapter 1. Index

https://docs.djangoproject.com/en/stable/ref/models/fields/#field-choices


Wagtail Documentation, Release 1.6.3

ImageChooserBlock

wagtail.wagtailimages.blocks.ImageChooserBlock

A control to allow the editor to select an existing image, or upload a new one. The keyword argument required is
accepted.

SnippetChooserBlock

wagtail.wagtailsnippets.blocks.SnippetChooserBlock

A control to allow the editor to select a snippet object. Requires one positional argument: the snippet class to choose
from. The keyword argument required is accepted.

EmbedBlock

wagtail.wagtailembeds.blocks.EmbedBlock

A field for the editor to enter a URL to a media item (such as a YouTube video) to appear as embedded media on the
page. The keyword arguments required, max_length, min_length and help_text are accepted.

Structural block types

In addition to the basic block types above, it is possible to define new block types made up of sub-blocks: for example,
a ‘person’ block consisting of sub-blocks for first name, surname and image, or a ‘carousel’ block consisting of an
unlimited number of image blocks. These structures can be nested to any depth, making it possible to have a structure
containing a list, or a list of structures.

StructBlock

wagtail.wagtailcore.blocks.StructBlock

A block consisting of a fixed group of sub-blocks to be displayed together. Takes a list of (name,
block_definition) tuples as its first argument:

('person', blocks.StructBlock([
('first_name', blocks.CharBlock(required=True)),
('surname', blocks.CharBlock(required=True)),
('photo', ImageChooserBlock()),
('biography', blocks.RichTextBlock()),

], icon='user'))

Alternatively, the list of sub-blocks can be provided in a subclass of StructBlock:

class PersonBlock(blocks.StructBlock):
first_name = blocks.CharBlock(required=True)
surname = blocks.CharBlock(required=True)
photo = ImageChooserBlock()
biography = blocks.RichTextBlock()

class Meta:
icon = 'user'

1.2. Usage guide 51



Wagtail Documentation, Release 1.6.3

The Meta class supports the properties default, label, icon and template, which have the same meanings
as when they are passed to the block’s constructor.

This defines PersonBlock() as a block type that can be re-used as many times as you like within your model
definitions:

body = StreamField([
('heading', blocks.CharBlock(classname="full title")),
('paragraph', blocks.RichTextBlock()),
('image', ImageChooserBlock()),
('person', PersonBlock()),

])

Further options are available for customising the display of a StructBlock within the page editor - see Custom
editing interfaces for StructBlock.

ListBlock

wagtail.wagtailcore.blocks.ListBlock

A block consisting of many sub-blocks, all of the same type. The editor can add an unlimited number of sub-blocks,
and re-order and delete them. Takes the definition of the sub-block as its first argument:

('ingredients_list', blocks.ListBlock(blocks.CharBlock(label="Ingredient")))

Any block type is valid as the sub-block type, including structural types:

('ingredients_list', blocks.ListBlock(blocks.StructBlock([
('ingredient', blocks.CharBlock(required=True)),
('amount', blocks.CharBlock()),

])))

StreamBlock

wagtail.wagtailcore.blocks.StreamBlock

A block consisting of a sequence of sub-blocks of different types, which can be mixed and reordered at will. Used
as the overall mechanism of the StreamField itself, but can also be nested or used within other structural block types.
Takes a list of (name, block_definition) tuples as its first argument:

('carousel', blocks.StreamBlock(
[

('image', ImageChooserBlock()),
('quotation', blocks.StructBlock([

('text', blocks.TextBlock()),
('author', blocks.CharBlock()),

])),
('video', EmbedBlock()),

],
icon='cogs'

))

As with StructBlock, the list of sub-blocks can also be provided as a subclass of StreamBlock:

class CarouselBlock(blocks.StreamBlock):
image = ImageChooserBlock()
quotation = blocks.StructBlock([

('text', blocks.TextBlock()),

52 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

('author', blocks.CharBlock()),
])
video = EmbedBlock()

class Meta:
icon='cogs'

Since StreamField accepts an instance of StreamBlock as a parameter, in place of a list of block types, this
makes it possible to re-use a common set of block types without repeating definitions:

class HomePage(Page):
carousel = StreamField(CarouselBlock())

Example: PersonBlock

This example demonstrates how the basic block types introduced above can be combined into a more complex block
type based on StructBlock:

from wagtail.wagtailcore import blocks

class PersonBlock(blocks.StructBlock):
name = blocks.CharBlock()
height = blocks.DecimalBlock()
age = blocks.IntegerBlock()
email = blocks.EmailBlock()

class Meta:
template = 'blocks/person_block.html'

Template rendering

StreamField provides an HTML representation for the stream content as a whole, as well as for each individual block.
To include this HTML into your page, use the {% include_block %} tag:

{% load wagtailcore_tags %}

{% include_block page.body %}

In the default rendering, each block of the stream is wrapped in a <div class="block-my_block_name">
element (where my_block_name is the block name given in the StreamField definition). If you wish to provide your
own HTML markup, you can instead iterate over the field’s value, and invoke {% include_block %} on each
block in turn:

{% load wagtailcore_tags %}

<article>
{% for block in page.body %}

<section>{% include_block block %}</section>
{% endfor %}

</article>

For more control over the rendering of specific block types, each block object provides block_type and value
properties:

{% load wagtailcore_tags %}

1.2. Usage guide 53



Wagtail Documentation, Release 1.6.3

<article>
{% for block in page.body %}

{% if block.block_type == 'heading' %}
<h1>{{ block.value }}</h1>

{% else %}
<section class="block-{{ block.block_type }}">

{% include_block block %}
</section>

{% endif %}
{% endfor %}

</article>

By default, each block is rendered using simple, minimal HTML markup, or no markup at all. For example, a
CharBlock value is rendered as plain text, while a ListBlock outputs its child blocks in a <ul> wrapper. To override
this with your own custom HTML rendering, you can pass a template argument to the block, giving the filename
of a template file to be rendered. This is particularly useful for custom block types derived from StructBlock:

('person', blocks.StructBlock(
[

('first_name', blocks.CharBlock(required=True)),
('surname', blocks.CharBlock(required=True)),
('photo', ImageChooserBlock()),
('biography', blocks.RichTextBlock()),

],
template='myapp/blocks/person.html',
icon='user'

))

Or, when defined as a subclass of StructBlock:

class PersonBlock(blocks.StructBlock):
first_name = blocks.CharBlock(required=True)
surname = blocks.CharBlock(required=True)
photo = ImageChooserBlock()
biography = blocks.RichTextBlock()

class Meta:
template = 'myapp/blocks/person.html'
icon = 'user'

Within the template, the block value is accessible as the variable value:

{% load wagtailimages_tags %}

<div class="person">
{% image value.photo width-400 %}
<h2>{{ value.first_name }} {{ value.surname }}</h2>
{{ value.biography }}

</div>

Since first_name, surname, photo and biography are defined as blocks in their own right, this could also be
written as:

{% load wagtailcore_tags wagtailimages_tags %}

<div class="person">
{% image value.photo width-400 %}
<h2>{% include_block value.first_name %} {% include_block value.surname %}</h2>
{% include_block value.biography %}

54 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

</div>

Writing {{ my_block }} is roughly equivalent to {% include_block my_block %}, but the short form is
more restrictive, as it does not pass variables from the calling template such as request or page; for this reason,
it is recommended that you only use it for simple values that do not render HTML of their own. For example, if our
PersonBlock used the template:

{% load wagtailimages_tags %}

<div class="person">
{% image value.photo width-400 %}
<h2>{{ value.first_name }} {{ value.surname }}</h2>

{% if request.user.is_authenticated %}
<a href="#">Contact this person</a>

{% endif %}

{{ value.biography }}
</div>

then the request.user.is_authenticated test would not work correctly when rendering the block through
a {{ ... }} tag:

{# Incorrect: #}

{% for block in page.body %}
{% if block.block_type == 'person' %}

<div>
{{ block }}

</div>
{% endif %}

{% endfor %}

{# Correct: #}

{% for block in page.body %}
{% if block.block_type == 'person' %}

<div>
{% include_block block %}

</div>
{% endif %}

{% endfor %}

Like Django’s {% include %} tag, {% include_block %} also allows passing additional variables to the
included template, through the syntax {% include_block my_block with foo="bar" %}:

{# In page template: #}

{% for block in page.body %}
{% if block.block_type == 'person' %}

{% include_block block with classname="important" %}
{% endif %}

{% endfor %}

{# In PersonBlock template: #}

<div class="{{ classname }}">
...

</div>

1.2. Usage guide 55



Wagtail Documentation, Release 1.6.3

The syntax {% include_block my_block with foo="bar" only %} is also supported, to specify that
no variables from the parent template other than foo will be passed to the child template. As well as passing
variables from the parent template, block subclasses can pass additional template variables of their own by overriding
the get_context method:

import datetime

class EventBlock(blocks.StructBlock):
title = blocks.CharBlock(required=True)
date = blocks.DateBlock(required=True)

def get_context(self, value):
context = super(EventBlock, self).get_context(value)
context['is_happening_today'] = (value['date'] == datetime.date.today())
return context

class Meta:
template = 'myapp/blocks/event.html'

In this example, the variable is_happening_today will be made available within the block template.

BoundBlocks and values

All block types, not just StructBlock, accept a template parameter to determine how they will be rendered on a
page. However, for blocks that handle basic Python data types, such as CharBlock and IntegerBlock, there are
some limitations on where the template will take effect, since those built-in types (str, int and so on) cannot be
‘taught’ about their template rendering. As an example of this, consider the following block definition:

class HeadingBlock(blocks.CharBlock):
class Meta:

template = 'blocks/heading.html'

where blocks/heading.html consists of:

<h1>{{ value }}</h1>

This gives us a block that behaves as an ordinary text field, but wraps its output in <h1> tags whenever it is rendered:

class BlogPage(Page):
body = StreamField([

# ...
('heading', HeadingBlock()),
# ...

])

{% load wagtailcore_tags %}

{% for block in page.body %}
{% if block.block_type == 'heading' %}

{% include_block block %} {# This block will output its own <h1>...</h1> tags. #}
{% endif %}

{% endfor %}

This kind of arrangement - a value that supposedly represents a plain text string, but has its own custom HTML
representation when output on a template - would normally be a very messy thing to achieve in Python, but it works
here because the items you get when iterating over a StreamField are not actually the ‘native’ values of the blocks.
Instead, each item is returned as an instance of BoundBlock - an object that represents the pairing of a value and its
block definition. By keeping track of the block definition, a BoundBlock always knows which template to render. To

56 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

get to the underlying value - in this case, the text content of the heading - you would need to access block.value.
Indeed, if you were to output {% include_block block.value %} on the page, you would find that it renders
as plain text, without the <h1> tags.

(More precisely, the items returned when iterating over a StreamField are instances of a class StreamChild, which
provides the block_type property as well as value.)

Experienced Django developers may find it helpful to compare this to the BoundField class in Django’s forms
framework, which represents the pairing of a form field value with its corresponding form field definition, and therefore
knows how to render the value as an HTML form field.

Most of the time, you won’t need to worry about these internal details; Wagtail will use the template rendering
wherever you would expect it to. However, there are certain cases where the illusion isn’t quite complete - namely,
when accessing children of a ListBlock or StructBlock. In these cases, there is no BoundBlock wrapper,
and so the item cannot be relied upon to know its own template rendering. For example, consider the following setup,
where our HeadingBlock is a child of a StructBlock:

class EventBlock(blocks.StructBlock):
heading = HeadingBlock()
description = blocks.TextBlock()
# ...

class Meta:
template = 'blocks/event.html'

In blocks/event.html:

{% load wagtailcore_tags %}

<div class="event {% if value.heading == 'Party!' %}lots-of-balloons{% endif %}">
{% include_block value.heading %}
- {% include_block value.description %}

</div>

In this case, value.heading returns the plain string value rather than a BoundBlock; this is necessary
because otherwise the comparison in {% if value.heading == ’Party!’ %} would never succeed.
This in turn means that {% include_block value.heading %} renders as the plain string, without the
<h1> tags. To get the HTML rendering, you need to explicitly access the BoundBlock instance through
value.bound_blocks.heading:

{% load wagtailcore_tags %}

<div class="event {% if value.heading == 'Party!' %}lots-of-balloons{% endif %}">
{% include_block value.bound_blocks.heading %}
- {% include_block value.description %}

</div>

In practice, it would probably be more natural and readable to make the <h1> tag explicit in the EventBlock’s template:

{% load wagtailcore_tags %}

<div class="event {% if value.heading == 'Party!' %}lots-of-balloons{% endif %}">
<h1>{{ value.heading }}</h1>
- {% include_block value.description %}

</div>

This limitation does not apply to StructBlock and StreamBlock values as children of a StructBlock, because Wag-
tail implements these as complex objects that know their own template rendering, even when not wrapped in a
BoundBlock. For example, if a StructBlock is nested in another StructBlock, as in:

1.2. Usage guide 57



Wagtail Documentation, Release 1.6.3

class EventBlock(blocks.StructBlock):
heading = HeadingBlock()
description = blocks.TextBlock()
guest_speaker = blocks.StructBlock([

('first_name', blocks.CharBlock()),
('surname', blocks.CharBlock()),
('photo', ImageChooserBlock()),

], template='blocks/speaker.html')

then {% include_block value.guest_speaker %}within the EventBlock’s template will pick up the tem-
plate rendering from blocks/speaker.html as intended.

In summary, interactions between BoundBlocks and plain values work according to the following rules:

1. When iterating over the value of a StreamField or StreamBlock (as in {% for block in page.body
%}), you will get back a sequence of BoundBlocks.

2. If you have a BoundBlock instance, you can access the plain value as block.value.

3. Accessing a child of a StructBlock (as in value.heading) will return a plain value; to retrieve the Bound-
Block instead, use value.bound_blocks.heading.

4. The value of a ListBlock is a plain Python list; iterating over it returns plain child values.

5. StructBlock and StreamBlock values always know how to render their own templates, even if you only have the
plain value rather than the BoundBlock.

Custom editing interfaces for StructBlock

To customise the styling of a StructBlock as it appears in the page editor, you can specify a form_classname
attribute (either as a keyword argument to the StructBlock constructor, or in a subclass’s Meta) to override the
default value of struct-block:

class PersonBlock(blocks.StructBlock):
first_name = blocks.CharBlock(required=True)
surname = blocks.CharBlock(required=True)
photo = ImageChooserBlock()
biography = blocks.RichTextBlock()

class Meta:
icon = 'user'
form_classname = 'person-block struct-block'

You can then provide custom CSS for this block, targeted at the specified classname, by using the insert_editor_css
hook.

For more extensive customisations that require changes to the HTML markup as well, you can override the
form_template attribute in Meta to specify your own template path. The following variables are available on
this template:

children An OrderedDict of BoundBlocks for all of the child blocks making up this StructBlock; typi-
cally your template will call render_form on each of these.

help_text The help text for this block, if specified.

classname The class name passed as form_classname (defaults to struct-block).

block_definition The StructBlock instance that defines this block.

prefix The prefix used on form fields for this block instance, guaranteed to be unique across the form.

58 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

To add additional variables, you can override the block’s get_form_context method:

class PersonBlock(blocks.StructBlock):
first_name = blocks.CharBlock(required=True)
surname = blocks.CharBlock(required=True)
photo = ImageChooserBlock()
biography = blocks.RichTextBlock()

def get_form_context(self, value, prefix='', errors=None):
context = super(PersonBlock, self).get_form_context(value, prefix=prefix, errors=errors)
context['suggested_first_names'] = ['John', 'Paul', 'George', 'Ringo']
return context

class Meta:
icon = 'user'
form_template = 'myapp/block_forms/person.html'

Custom block types

If you need to implement a custom UI, or handle a datatype that is not provided by Wagtail’s built-in block types
(and cannot built up as a structure of existing fields), it is possible to define your own custom block types. For further
guidance, refer to the source code of Wagtail’s built-in block classes.

For block types that simply wrap an existing Django form field, Wagtail provides an abstract class
wagtail.wagtailcore.blocks.FieldBlock as a helper. Subclasses just need to set a field property
that returns the form field object:

class IPAddressBlock(FieldBlock):
def __init__(self, required=True, help_text=None, **kwargs):

self.field = forms.GenericIPAddressField(required=required, help_text=help_text)
super(IPAddressBlock, self).__init__(**kwargs)

Migrations

StreamField definitions within migrations

As with any model field in Django, any changes to a model definition that affect a StreamField will result in a migration
file that contains a ‘frozen’ copy of that field definition. Since a StreamField definition is more complex than a typical
model field, there is an increased likelihood of definitions from your project being imported into the migration – which
would cause problems later on if those definitions are moved or deleted.

To mitigate this, StructBlock, StreamBlock and ChoiceBlock implement additional logic to ensure that any subclasses
of these blocks are deconstructed to plain instances of StructBlock, StreamBlock and ChoiceBlock – in this way, the
migrations avoid having any references to your custom class definitions. This is possible because these block types
provide a standard pattern for inheritance, and know how to reconstruct the block definition for any subclass that
follows that pattern.

If you subclass any other block class, such as FieldBlock, you will need to either keep that class definition in
place for the lifetime of your project, or implement a custom deconstruct method that expresses your block entirely
in terms of classes that are guaranteed to remain in place. Similarly, if you customise a StructBlock, StreamBlock or
ChoiceBlock subclass to the point where it can no longer be expressed as an instance of the basic block type – for
example, if you add extra arguments to the constructor – you will need to provide your own deconstruct method.

1.2. Usage guide 59

https://docs.djangoproject.com/en/1.9/topics/migrations/#custom-deconstruct-method


Wagtail Documentation, Release 1.6.3

Migrating RichTextFields to StreamField

If you change an existing RichTextField to a StreamField, and create and run migrations as normal, the migration will
complete with no errors, since both fields use a text column within the database. However, StreamField uses a JSON
representation for its data, so the existing text needs to be converted with a data migration in order to become accessible
again. For this to work, the StreamField needs to include a RichTextBlock as one of the available block types. The
field can then be converted by creating a new migration (./manage.py makemigrations --empty myapp)
and editing it as follows (in this example, the ‘body’ field of the demo.BlogPage model is being converted to a
StreamField with a RichTextBlock named rich_text):

# -*- coding: utf-8 -*-
from __future__ import unicode_literals

from django.db import models, migrations
from wagtail.wagtailcore.rich_text import RichText

def convert_to_streamfield(apps, schema_editor):
BlogPage = apps.get_model("demo", "BlogPage")
for page in BlogPage.objects.all():

if page.body.raw_text and not page.body:
page.body = [('rich_text', RichText(page.body.raw_text))]
page.save()

def convert_to_richtext(apps, schema_editor):
BlogPage = apps.get_model("demo", "BlogPage")
for page in BlogPage.objects.all():

if page.body.raw_text is None:
raw_text = ''.join([

child.value.source for child in page.body
if child.block_type == 'rich_text'

])
page.body = raw_text
page.save()

class Migration(migrations.Migration):

dependencies = [
# leave the dependency line from the generated migration intact!
('demo', '0001_initial'),

]

operations = [
migrations.RunPython(

convert_to_streamfield,
convert_to_richtext,

),
]

Advanced topics

Images

60 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Animated GIF support

Pillow, Wagtail’s default image library, doesn’t support animated GIFs.

To get animated GIF support, you will have to install Wand. Wand is a binding to ImageMagick so make sure that has
been installed as well.

When installed, Wagtail will automatically use Wand for resizing GIF files but continue to resize other images with
Pillow.

Custom image models

The Image model can be customised, allowing additional fields to be added to images.

To do this, you need to add two models to your project:

• The image model itself that inherits from wagtail.wagtailimages.models.AbstractImage. This
is where you would add your additional fields

• The renditions model that inherits from wagtail.wagtailimages.models.AbstractRendition.
This is used to store renditions for the new model.

Here’s an example:

# models.py
from django.db import models
from django.db.models.signals import pre_delete
from django.dispatch import receiver

from wagtail.wagtailimages.models import Image, AbstractImage, AbstractRendition

class CustomImage(AbstractImage):
# Add any extra fields to image here

# eg. To add a caption field:
# caption = models.CharField(max_length=255, blank=True)

admin_form_fields = Image.admin_form_fields + (
# Then add the field names here to make them appear in the form:
# 'caption',

)

class CustomRendition(AbstractRendition):
image = models.ForeignKey(CustomImage, related_name='renditions')

class Meta:
unique_together = (

('image', 'filter', 'focal_point_key'),
)

# Delete the source image file when an image is deleted
@receiver(pre_delete, sender=CustomImage)
def image_delete(sender, instance, **kwargs):

instance.file.delete(False)

1.3. Advanced topics 61

http://docs.wand-py.org/en/0.4.2/guide/install.html


Wagtail Documentation, Release 1.6.3

# Delete the rendition image file when a rendition is deleted
@receiver(pre_delete, sender=CustomRendition)
def rendition_delete(sender, instance, **kwargs):

instance.file.delete(False)

Note: Fields defined on a custom image model must either be set as non-required (blank=True), or specify a
default value - this is because uploading the image and entering custom data happen as two separate actions, and
Wagtail needs to be able to create an image record immediately on upload.

Note: If you are using image feature detection, follow these instructions to enable it on your custom image model:
Feature detection and custom image models

Then set the WAGTAILIMAGES_IMAGE_MODEL setting to point to it:

WAGTAILIMAGES_IMAGE_MODEL = 'images.CustomImage'

Migrating from the builtin image model

When changing an existing site to use a custom image model. No images will be copied to the new model
automatically. Copying old images to the new model would need to be done manually with a data migration.
Any templates that reference the builtin image model will still continue to work as before but would need to be
updated in order to see any new images.

Feature Detection

Wagtail has the ability to automatically detect faces and features inside your images and crop the images to those
features.

Feature detection uses OpenCV to detect faces/features in an image when the image is uploaded. The detected features
stored internally as a focal point in the focal_point_{x, y, width, height} fields on the Image model.
These fields are used by the fill image filter when an image is rendered in a template to crop the image.

Setup

Feature detection requires OpenCV which can be a bit tricky to install as it’s not currently pip-installable.

Installing OpenCV on Debian/Ubuntu Debian and ubuntu provide an apt-get package called python-opencv:

sudo apt-get install python-opencv python-numpy

This will install PyOpenCV into your site packages. If you are using a virtual environment, you need to make sure site
packages are enabled or Wagtail will not be able to import PyOpenCV.

Enabling site packages in the virtual environment If you are not using a virtual envionment, you can skip this
step.

Enabling site packages is different depending on whether you are using pyvenv (Python 3.3+ only) or virtualenv to
manage your virtual environment.

62 Chapter 1. Index

https://docs.djangoproject.com/en/1.8/topics/migrations/#data-migrations


Wagtail Documentation, Release 1.6.3

pyvenv Go into your pyvenv directory and open the pyvenv.cfg file then set
include-system-site-packages to true.

virtualenv Go into your virtualenv directory and delete a file called lib/python-x.x/no-global-site-packages.txt.

Testing the OpenCV installation You can test that OpenCV can be seen by Wagtail by opening up a python shell
(with your virtual environment active) and typing:

import cv

If you don’t see an ImportError, it worked. (If you see the error libdc1394 error: Failed to
initialize libdc1394, this is harmless and can be ignored.)

Switching on feature detection in Wagtail Once OpenCV is installed, you need to set the
WAGTAILIMAGES_FEATURE_DETECTION_ENABLED setting to True:

# settings.py

WAGTAILIMAGES_FEATURE_DETECTION_ENABLED = True

Manually running feature detection Feature detection runs when new images are uploaded in to Wagtail. If you
already have images in your Wagtail site and would like to run feature detection on them, you will have to run it
manually.

You can manually run feature detection on all images by running the following code in the python shell:

from wagtail.wagtailimages.models import Image

for image in Image.objects.all():
if not image.has_focal_point():

image.set_focal_point(image.get_suggested_focal_point())
image.save()

Feature detection and custom image models When using a Custom image models, you need to add a signal handler
to the model to trigger feature detection whenever a new image is uploaded:

# Do feature detection when a user saves an image without a focal point
@receiver(pre_save, sender=CustomImage)
def image_feature_detection(sender, instance, **kwargs):

# Make sure the image doesn't already have a focal point
if not instance.has_focal_point():

# Set the focal point
instance.set_focal_point(instance.get_suggested_focal_point())

Note: This example will always run feature detection regardless of whether the
WAGTAILIMAGES_FEATURE_DETECTION_ENABLED setting is set.

Add a check for this setting if you still want it to have effect.

1.3. Advanced topics 63



Wagtail Documentation, Release 1.6.3

Dynamic image serve view

Wagtail provides a view for dynamically generating renditions of images. It can be called by an external system (eg a
blog or mobile app) or used internally as an alternative to Wagtail’s {% image %} tag.

The view takes an image id, filter spec and security signature in the URL. If these parameters are valid, it serves an
image file matching that criteria.

Like the {% image %} tag, the rendition is generated on the first call and subsequent calls are served from a cache.

Setup

Add an entry for the view into your URLs configuration:

from wagtail.wagtailimages.views.serve import ServeView

urlpatterns = [
...

url(r'^images/([^/]*)/(\d*)/([^/]*)/[^/]*$', ServeView.as_view(), name='wagtailimages_serve'),
]

Usage

Image URL generator UI When the dynamic serve view is enabled, an image URL generator in the admin interface
becomes available automatically. This can be accessed through the edit page of any image by clicking the “URL
generator” button on the right hand side.

This interface allows editors to generate URLs to cropped versions of the image.

Generating dynamic image URLs in Python Dynamic image URLs can also be generated using Python code and
served to a client over an API or used directly in the template.

One advantage of using dynamic image URLs in the template is that they do not block the initial response while
rendering like the {% image %} tag does.

from django.core.urlresolvers import reverse
from wagtail.wagtailimages.utils import generate_signature

def generate_image_url(image, filter_spec):
signature = generate_signature(image.id, filter_spec)
url = reverse('wagtailimages_serve', args=(signature, image.id, filter_spec))

# Append image's original filename to the URL (optional)
url += image.file.name[len('original_images/'):]

return url

And here’s an example of this being used in a view:

def display_image(request, image_id):
image = get_object_or_404(Image, id=image_id)

return render(request, 'display_image.html', {
'image_url': generate_image_url(image, 'fill-100x100')

})

64 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Advanced configuration

Making the view redirect instead of serve By default, the view will serve the image file directly. This behaviour
can be changed to a 301 redirect instead which may be useful if you host your images externally.

To enable this, pass action=’redirect’ into the ServeView.as_view() method in your urls configuration:

from wagtail.wagtailimages.views.serve import ServeView

urlpatterns = [
...

url(r'^images/([^/]*)/(\d*)/([^/]*)/[^/]*$', ServeView.as_view(action='redirect'), name='wagtailimages_serve'),
]

Integration with django-sendfile django-sendfile offloads the job of transferring the image data to the web server
instead of serving it directly from the Django application. This could greatly reduce server load in situations where
your site has many images being downloaded but you’re unable to use a Caching proxy or a CDN.

You firstly need to install and configure django-sendfile and configure your web server to use it. If you haven’t done
this already, please refer to the installation docs.

To serve images with django-sendfile, you can use the SendFileView class. This view can be used out of the box:

from wagtail.wagtailimages.views.serve import SendFileView

urlpatterns = [
...

url(r'^images/([^/]*)/(\d*)/([^/]*)/[^/]*$', SendFileView.as_view(), name='wagtailimages_serve'),
]

You can customise it to override the backend defined in the SENDFILE_BACKEND setting:

from wagtail.wagtailimages.views.serve import SendFileView
from project.sendfile_backends import MyCustomBackend

class MySendFileView(SendFileView):
backend = MyCustomBackend

You can also customise it to serve private files. For example, if the only need is to be authenticated (e.g. for Django
>= 1.9):

from django.contrib.auth.mixins import LoginRequiredMixin
from wagtail.wagtailimages.views.serve import SendFileView

class PrivateSendFileView(LoginRequiredMixin, SendFileView):
raise_exception = True

Configuring Django for Wagtail

To install Wagtail completely from scratch, create a new Django project and an app within that project. For instructions
on these tasks, see Writing your first Django app. Your project directory will look like the following:

myproject/
myproject/

__init__.py

1.3. Advanced topics 65

https://github.com/johnsensible/django-sendfile
https://github.com/johnsensible/django-sendfile#django-sendfile
https://docs.djangoproject.com/en/dev/intro/tutorial01/


Wagtail Documentation, Release 1.6.3

settings.py
urls.py
wsgi.py

myapp/
__init__.py
models.py
tests.py
admin.py
views.py

manage.py

From your app directory, you can safely remove admin.py and views.py, since Wagtail will provide this function-
ality for your models. Configuring Django to load Wagtail involves adding modules and variables to settings.py
and URL configuration to urls.py. For a more complete view of what’s defined in these files, see Django Settings
and Django URL Dispatcher.

What follows is a settings reference which skips many boilerplate Django settings. If you just want to get your Wagtail
install up quickly without fussing with settings at the moment, see Ready to Use Example Configuration Files.

Middleware (settings.py)

MIDDLEWARE_CLASSES = [
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.auth.middleware.SessionAuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
'django.middleware.security.SecurityMiddleware',

'wagtail.wagtailcore.middleware.SiteMiddleware',

'wagtail.wagtailredirects.middleware.RedirectMiddleware',
]

Wagtail requires several common Django middleware modules to work and cover basic security. Wagtail provides its
own middleware to cover these tasks:

SiteMiddleware Wagtail routes pre-defined hosts to pages within the Wagtail tree using this middleware.

RedirectMiddleware Wagtail provides a simple interface for adding arbitrary redirects to your site and this
module makes it happen.

Apps (settings.py)

INSTALLED_APPS = [

'myapp', # your own app

'wagtail.wagtailforms',
'wagtail.wagtailredirects',
'wagtail.wagtailembeds',
'wagtail.wagtailsites',
'wagtail.wagtailusers',
'wagtail.wagtailsnippets',

66 Chapter 1. Index

https://docs.djangoproject.com/en/dev/topics/settings/
https://docs.djangoproject.com/en/dev/topics/http/urls/


Wagtail Documentation, Release 1.6.3

'wagtail.wagtaildocs',
'wagtail.wagtailimages',
'wagtail.wagtailsearch',
'wagtail.wagtailadmin',
'wagtail.wagtailcore',

'taggit',
'modelcluster',

'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',

]

Wagtail requires several Django app modules, third-party apps, and defines several apps of its own. Wagtail was built
to be modular, so many Wagtail apps can be omitted to suit your needs. Your own app (here myapp) is where you
define your models, templates, static assets, template tags, and other custom functionality for your site.

Wagtail Apps

wagtailcore The core functionality of Wagtail, such as the Page class, the Wagtail tree, and model fields.

wagtailadmin The administration interface for Wagtail, including page edit handlers.

wagtaildocs The Wagtail document content type.

wagtailsnippets Editing interface for non-Page models and objects. See Snippets.

wagtailusers User editing interface.

wagtailimages The Wagtail image content type.

wagtailembeds Module governing oEmbed and Embedly content in Wagtail rich text fields. See Inserting videos
into body content.

wagtailsearch Search framework for Page content. See search.

wagtailredirects Admin interface for creating arbitrary redirects on your site.

wagtailforms Models for creating forms on your pages and viewing submissions. See Form builder.

Third-Party Apps

taggit Tagging framework for Django. This is used internally within Wagtail for image and document tagging and
is available for your own models as well. See Tagging for a Wagtail model recipe or the Taggit Documentation.

modelcluster Extension of Django ForeignKey relation functionality, which is used in Wagtail pages for on-
the-fly related object creation. For more information, see Inline Panels and Model Clusters or the django-
modelcluster github project page.

Settings Variables (settings.py)

Wagtail makes use of the following settings, in addition to Django’s core settings:

1.3. Advanced topics 67

http://django-taggit.readthedocs.org/en/latest/index.html
https://github.com/torchbox/django-modelcluster
https://github.com/torchbox/django-modelcluster
https://docs.djangoproject.com/en/dev/ref/settings/


Wagtail Documentation, Release 1.6.3

Site Name

WAGTAIL_SITE_NAME = 'Stark Industries Skunkworks'

This is the human-readable name of your Wagtail install which welcomes users upon login to the Wagtail admin.

Append Slash

# Don't add a trailing slash to Wagtail-served URLs
WAGTAIL_APPEND_SLASH = False

Similar to Django’s APPEND_SLASH, this setting controls how Wagtail will handle requests that don’t end in a trailing
slash.

When WAGTAIL_APPEND_SLASH is True (default), requests to Wagtail pages which omit a trailing slash will be
redirected by Django’s CommonMiddleware to a URL with a trailing slash.

When WAGTAIL_APPEND_SLASH is False, requests to Wagtail pages will be served both with and without trailing
slashes. Page links generated by Wagtail, however, will not include trailing slashes.

Note: If you use the False setting, keep in mind that serving your pages both with and without slashes may affect
search engines’ ability to index your site. See this Google Webmaster Blog post for more details.

Search

# Override the search results template for wagtailsearch
WAGTAILSEARCH_RESULTS_TEMPLATE = 'myapp/search_results.html'
WAGTAILSEARCH_RESULTS_TEMPLATE_AJAX = 'myapp/includes/search_listing.html'

# Replace the search backend
WAGTAILSEARCH_BACKENDS = {

'default': {
'BACKEND': 'wagtail.wagtailsearch.backends.elasticsearch',
'INDEX': 'myapp'

}
}

The search settings customise the search results templates as well as choosing a custom backend for search. For a full
explanation, see search.

Embeds

Wagtail uses the oEmbed standard with a large but not comprehensive number of “providers” (Youtube, Vimeo, etc.).
You can also use a different embed backend by providing an Embedly key or replacing the embed backend by writing
your own embed finder function.

WAGTAILEMBEDS_EMBED_FINDER = 'myapp.embeds.my_embed_finder_function'

Use a custom embed finder function, which takes a URL and returns a dict with metadata and embeddable HTML.
Refer to the wagtail.wagtailemebds.embeds module source for more information and examples.

68 Chapter 1. Index

https://docs.djangoproject.com/en/dev/ref/middleware/#module-django.middleware.common
https://webmasters.googleblog.com/2010/04/to-slash-or-not-to-slash.html


Wagtail Documentation, Release 1.6.3

# not a working key, get your own!
WAGTAILEMBEDS_EMBEDLY_KEY = '253e433d59dc4d2xa266e9e0de0cb830'

Providing an API key for the Embedly service will use that as a embed backend, with a more extensive list of providers,
as well as analytics and other features. For more information, see Embedly.

To use Embedly, you must also install their Python module:

pip install embedly

Images

WAGTAILIMAGES_IMAGE_MODEL = 'myapp.MyImage'

This setting lets you provide your own image model for use in Wagtail, which might extend the built-in
AbstractImage class or replace it entirely.

Maximum Upload size for Images

WAGTAILIMAGES_MAX_UPLOAD_SIZE = 20 * 1024 * 1024 # i.e. 20MB

This setting lets you override the maximum upload size for images (in bytes). If omitted, Wagtail will fall back to
using its 10MB default value.

Password Management

WAGTAIL_PASSWORD_MANAGEMENT_ENABLED = True

This specifies whether users are allowed to change their passwords (enabled by default).

WAGTAIL_PASSWORD_RESET_ENABLED = True

This specifies whether users are allowed to reset their passwords. Defaults to the same as
WAGTAIL_PASSWORD_MANAGEMENT_ENABLED.

Email Notifications

WAGTAILADMIN_NOTIFICATION_FROM_EMAIL = 'wagtail@myhost.io'

Wagtail sends email notifications when content is submitted for moderation, and when the content is accepted or
rejected. This setting lets you pick which email address these automatic notifications will come from. If omitted,
Django will fall back to using the DEFAULT_FROM_EMAIL variable if set, and webmaster@localhost if not.

Email Notifications format

WAGTAILADMIN_NOTIFICATION_USE_HTML = True

Notification emails are sent in text/plain by default, change this to use HTML formatting.

1.3. Advanced topics 69

http://embed.ly/


Wagtail Documentation, Release 1.6.3

Wagtail update notifications

WAGTAIL_ENABLE_UPDATE_CHECK = True

For admins only, Wagtail performs a check on the dashboard to see if newer releases are available. This also provides
the Wagtail team with the hostname of your Wagtail site. If you’d rather not receive update notifications, or if you’d
like your site to remain unknown, you can disable it with this setting.

Private Pages

PASSWORD_REQUIRED_TEMPLATE = 'myapp/password_required.html'

This is the path to the Django template which will be used to display the “password required” form when a user
accesses a private page. For more details, see the Private pages documentation.

Case-Insensitive Tags

TAGGIT_CASE_INSENSITIVE = True

Tags are case-sensitive by default (‘music’ and ‘Music’ are treated as distinct tags). In many cases the reverse be-
haviour is preferable.

Unicode Page Slugs

WAGTAIL_ALLOW_UNICODE_SLUGS = True

By default, page slugs can contain any alphanumeric characters, including non-Latin alphabets (except on Django 1.8,
where only ASCII characters are supported). Set this to False to limit slugs to ASCII characters.

Custom User Edit Forms

See Custom user models.

WAGTAIL_USER_EDIT_FORM = 'users.forms.CustomUserEditForm'

Allows the default UserEditForm class to be overridden with a custom form when a custom user model is being
used and extra fields are required in the user edit form.

WAGTAIL_USER_CREATION_FORM = 'users.forms.CustomUserCreationForm'

Allows the default UserCreationForm class to be overridden with a custom form when a custom user model is
being used and extra fields are required in the user creation form.

WAGTAIL_USER_CUSTOM_FIELDS = ['country']

A list of the extra custom fields to be appended to the default list.

Usage for images, documents and snippets

WAGTAIL_USAGE_COUNT_ENABLED = True

70 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

When enabled Wagtail shows where a particular image, document or snippet is being used on your site (disabled by
default). A link will appear on the edit page showing you which pages they have been used on.

Note: The usage count only applies to direct (database) references. Using documents, images and snippets within
StreamFields or rich text fields will not be taken into account.

URL Patterns

from django.contrib import admin

from wagtail.wagtailcore import urls as wagtail_urls
from wagtail.wagtailadmin import urls as wagtailadmin_urls
from wagtail.wagtaildocs import urls as wagtaildocs_urls
from wagtail.wagtailsearch import urls as wagtailsearch_urls

urlpatterns = [
url(r'^django-admin/', include(admin.site.urls)),

url(r'^admin/', include(wagtailadmin_urls)),
url(r'^search/', include(wagtailsearch_urls)),
url(r'^documents/', include(wagtaildocs_urls)),

# Optional URL for including your own vanilla Django urls/views
url(r'', include('myapp.urls')),

# For anything not caught by a more specific rule above, hand over to
# Wagtail's serving mechanism
url(r'', include(wagtail_urls)),

]

This block of code for your project’s urls.py does a few things:

• Load the vanilla Django admin interface to /django-admin/

• Load the Wagtail admin and its various apps

• Dispatch any vanilla Django apps you’re using other than Wagtail which require their own URL configuration
(this is optional, since Wagtail might be all you need)

• Lets Wagtail handle any further URL dispatching.

That’s not everything you might want to include in your project’s URL configuration, but it’s what’s necessary for
Wagtail to flourish.

Ready to Use Example Configuration Files

These two files should reside in your project directory (myproject/myproject/).

settings.py

import os

PROJECT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
BASE_DIR = os.path.dirname(PROJECT_DIR)

1.3. Advanced topics 71



Wagtail Documentation, Release 1.6.3

DEBUG = True

# Application definition

INSTALLED_APPS = [
'myapp',

'wagtail.wagtailforms',
'wagtail.wagtailredirects',
'wagtail.wagtailembeds',
'wagtail.wagtailsites',
'wagtail.wagtailusers',
'wagtail.wagtailsnippets',
'wagtail.wagtaildocs',
'wagtail.wagtailimages',
'wagtail.wagtailsearch',
'wagtail.wagtailadmin',
'wagtail.wagtailcore',

'taggit',
'modelcluster',

'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',

]

MIDDLEWARE_CLASSES = [
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.auth.middleware.SessionAuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
'django.middleware.security.SecurityMiddleware',

'wagtail.wagtailcore.middleware.SiteMiddleware',
'wagtail.wagtailredirects.middleware.RedirectMiddleware',

]

ROOT_URLCONF = 'myproject.urls'

TEMPLATES = [
{

'BACKEND': 'django.template.backends.django.DjangoTemplates',
'DIRS': [

os.path.join(PROJECT_DIR, 'templates'),
],
'APP_DIRS': True,
'OPTIONS': {

'context_processors': [
'django.template.context_processors.debug',
'django.template.context_processors.request',
'django.contrib.auth.context_processors.auth',

72 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

'django.contrib.messages.context_processors.messages',
],

},
},

]

WSGI_APPLICATION = 'wagtaildemo.wsgi.application'

# Database

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql_psycopg2',
'NAME': 'myprojectdb',
'USER': 'postgres',
'PASSWORD': '',
'HOST': '', # Set to empty string for localhost.
'PORT': '', # Set to empty string for default.
'CONN_MAX_AGE': 600, # number of seconds database connections should persist for

}
}

# Internationalization

LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'UTC'
USE_I18N = True
USE_L10N = True
USE_TZ = True

# Static files (CSS, JavaScript, Images)

STATICFILES_FINDERS = [
'django.contrib.staticfiles.finders.FileSystemFinder',
'django.contrib.staticfiles.finders.AppDirectoriesFinder',

]

STATICFILES_DIRS = [
os.path.join(PROJECT_DIR, 'static'),

]

STATIC_ROOT = os.path.join(BASE_DIR, 'static')
STATIC_URL = '/static/'

MEDIA_ROOT = os.path.join(BASE_DIR, 'media')
MEDIA_URL = '/media/'

ADMINS = [
# ('Your Name', 'your_email@example.com'),

]
MANAGERS = ADMINS

# Default to dummy email backend. Configure dev/production/local backend
# as per https://docs.djangoproject.com/en/dev/topics/email/#email-backends
EMAIL_BACKEND = 'django.core.mail.backends.dummy.EmailBackend'

1.3. Advanced topics 73



Wagtail Documentation, Release 1.6.3

# Hosts/domain names that are valid for this site; required if DEBUG is False
ALLOWED_HOSTS = []

# Make this unique, and don't share it with anybody.
SECRET_KEY = 'change-me'

EMAIL_SUBJECT_PREFIX = '[Wagtail] '

INTERNAL_IPS = ('127.0.0.1', '10.0.2.2')

# A sample logging configuration. The only tangible logging
# performed by this configuration is to send an email to
# the site admins on every HTTP 500 error when DEBUG=False.
# See http://docs.djangoproject.com/en/dev/topics/logging for
# more details on how to customize your logging configuration.
LOGGING = {

'version': 1,
'disable_existing_loggers': False,
'filters': {

'require_debug_false': {
'()': 'django.utils.log.RequireDebugFalse'

}
},
'handlers': {

'mail_admins': {
'level': 'ERROR',
'filters': ['require_debug_false'],
'class': 'django.utils.log.AdminEmailHandler'

}
},
'loggers': {

'django.request': {
'handlers': ['mail_admins'],
'level': 'ERROR',
'propagate': True,

},
}

}

# WAGTAIL SETTINGS

# This is the human-readable name of your Wagtail install
# which welcomes users upon login to the Wagtail admin.
WAGTAIL_SITE_NAME = 'My Project'

# Override the search results template for wagtailsearch
# WAGTAILSEARCH_RESULTS_TEMPLATE = 'myapp/search_results.html'
# WAGTAILSEARCH_RESULTS_TEMPLATE_AJAX = 'myapp/includes/search_listing.html'

# Replace the search backend
#WAGTAILSEARCH_BACKENDS = {
# 'default': {
# 'BACKEND': 'wagtail.wagtailsearch.backends.elasticsearch',
# 'INDEX': 'myapp'
# }
#}

74 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

# Wagtail email notifications from address
# WAGTAILADMIN_NOTIFICATION_FROM_EMAIL = 'wagtail@myhost.io'

# Wagtail email notification format
# WAGTAILADMIN_NOTIFICATION_USE_HTML = True

# If you want to use Embedly for embeds, supply a key
# (this key doesn't work, get your own!)
# WAGTAILEMBEDS_EMBEDLY_KEY = '253e433d59dc4d2xa266e9e0de0cb830'

# Reverse the default case-sensitive handling of tags
TAGGIT_CASE_INSENSITIVE = True

urls.py

from django.conf.urls import patterns, include, url
from django.conf.urls.static import static
from django.views.generic.base import RedirectView
from django.contrib import admin
from django.conf import settings
import os.path

from wagtail.wagtailcore import urls as wagtail_urls
from wagtail.wagtailadmin import urls as wagtailadmin_urls
from wagtail.wagtaildocs import urls as wagtaildocs_urls
from wagtail.wagtailsearch import urls as wagtailsearch__urls

urlpatterns = patterns('',
url(r'^django-admin/', include(admin.site.urls)),

url(r'^admin/', include(wagtailadmin_urls)),
url(r'^search/', include(wagtailsearch_urls)),
url(r'^documents/', include(wagtaildocs_urls)),

# For anything not caught by a more specific rule above, hand over to
# Wagtail's serving mechanism
url(r'', include(wagtail_urls)),

)

if settings.DEBUG:
from django.contrib.staticfiles.urls import staticfiles_urlpatterns

urlpatterns += staticfiles_urlpatterns() # tell gunicorn where static files are in dev mode
urlpatterns += static(settings.MEDIA_URL + 'images/', document_root=os.path.join(settings.MEDIA_ROOT, 'images'))
urlpatterns += patterns('',

(r'^favicon\.ico$', RedirectView.as_view(url=settings.STATIC_URL + 'myapp/images/favicon.ico'))
)

Deploying Wagtail

1.3. Advanced topics 75



Wagtail Documentation, Release 1.6.3

On your server

Wagtail is straightforward to deploy on modern Linux-based distributions, but see the section on performance for the
non-Python services we recommend.

Our current preferences are for Nginx, Gunicorn and supervisor on Debian, but Wagtail should run with any of the
combinations detailed in Django’s deployment documentation.

On Gondor

Gondor specialise in Python hosting. They provide Redis and Elasticsearch, which are two of the services we recom-
mend for high-performance production sites. Gondor have written a comprehensive tutorial on running your Wagtail
site on their platform, at gondor.io/blog/2014/02/14/how-run-wagtail-cms-gondor/.

On Openshift

OpenShift is Red Hat’s Platform-as-a-Service (PaaS) that allows developers to quickly develop, host, and scale appli-
cations in a cloud environment. With their Python, PostgreSQL and Elasticsearch cartridges there’s all you need to
host a Wagtail site. To get quickly up and running you may use the wagtail-openshift-quickstart.

On other PAASs and IAASs

We know of Wagtail sites running on Heroku, Digital Ocean and elsewhere. If you have successfully installed Wagtail
on your platform or infrastructure, please contribute your notes to this documentation!

Performance

Wagtail is designed for speed, both in the editor interface and on the front-end, but if you want even better performance
or you need to handle very high volumes of traffic, here are some tips on eking out the most from your installation.

Editor interface

We have tried to minimise external dependencies for a working installation of Wagtail, in order to make it as simple
as possible to get going. However, a number of default settings can be configured for better performance:

Cache

We recommend Redis as a fast, persistent cache. Install Redis through your package manager (on Debian or Ubuntu:
sudo apt-get install redis-server), add django-redis to your requirements.txt, and enable
it as a cache backend:

CACHES = {
'default': {

'BACKEND': 'django_redis.cache.RedisCache',
'LOCATION': '127.0.0.1:6379',
'OPTIONS': {

'CLIENT_CLASS': 'django_redis.client.DefaultClient',
}

}
}

76 Chapter 1. Index

https://docs.djangoproject.com/en/dev/howto/deployment/
https://gondor.io/
https://gondor.io/blog/2014/02/14/how-run-wagtail-cms-gondor/
https://www.openshift.com/
https://github.com/texperience/wagtail-openshift-quickstart
http://spapas.github.io/2014/02/13/wagtail-tutorial/
http://redis.io/


Wagtail Documentation, Release 1.6.3

Search

Wagtail has strong support for Elasticsearch - both in the editor interface and for users of your site - but can fall back
to a database search if Elasticsearch isn’t present. Elasticsearch is faster and more powerful than the Django ORM for
text search, so we recommend installing it or using a hosted service like Searchly.

Once the Elasticsearch server is installed and running. Install the elasticsearch Python module with:

pip install elasticsearch

then add the following to your settings:

WAGTAILSEARCH_BACKENDS = {
'default': {

'BACKEND': 'wagtail.wagtailsearch.backends.elasticsearch.ElasticSearch',
'INDEX': '{{ project_name }}',

},
}

Once Elasticsearch is configured, you can index any existing content you may have:

./manage.py update_index

Database

Wagtail is tested on SQLite, and should work on other Django-supported database backends, but we recommend
PostgreSQL for production use.

Public users

Caching proxy

To support high volumes of traffic with excellent response times, we recommend a caching proxy. Both Varnish and
Squid have been tested in production. Hosted proxies like Cloudflare should also work well.

Wagtail supports automatic cache invalidation for Varnish/Squid. See Frontend cache invalidator for
more information.

Internationalisation

This document describes the internationalisation features of Wagtail and how to create multi-lingual sites.

Wagtail uses Django’s Internationalisation framework so most of the steps are the same as other Django projects.

1.3. Advanced topics 77

http://www.elasticsearch.org/
http://www.searchly.com/
http://www.varnish-cache.org/
http://www.squid-cache.org/
https://www.cloudflare.com/
https://docs.djangoproject.com/en/1.8/topics/i18n/


Wagtail Documentation, Release 1.6.3

Contents

• Internationalisation
– Wagtail admin translations
– Changing the primary language of your Wagtail installation
– Creating sites with multiple languages

* Enabling multiple language support
* Serving different languages from different URLs
* Translating templates
* Translating content
* Other approaches

Wagtail admin translations

The Wagtail admin backend has been translated into many different languages. You can find a list of currently available
translations on Wagtail’s Transifex page. (Note: if you’re using an old version of Wagtail, this page may not accurately
reflect what languages you have available).

If your language isn’t listed on that page, you can easily contribute new languages or correct mistakes. Sign up and
submit changes to Transifex. Translation updates are typically merged into an official release within one month of
being submitted.

Changing the primary language of your Wagtail installation

The default language of Wagtail is en-us (American English). You can change this by tweaking a couple of Django
settings:

• Make sure USE_I18N is set to True

• Set LANGUAGE_CODE to your websites’ primary language

If there is a translation available for your language, the Wagtail admin backend should now be in the language you’ve
chosen.

Creating sites with multiple languages

You can create sites with multiple language support by leveraging Django’s translation features.

This section of the documentation will show you how to use Django’s translation features with Wagtail and also
describe a couple of methods for storing/retrieving translated content using Wagtail pages.

Enabling multiple language support

Firstly, make sure the USE_I18N Django setting is set to True.

To enable multi-language support, add django.middleware.locale.LocaleMiddleware to your
MIDDLEWARE_CLASSES:

MIDDLEWARE_CLASSES = (
...

'django.middleware.locale.LocaleMiddleware',
)

This middleware class looks at the user’s browser language and sets the language of the site accordingly.

78 Chapter 1. Index

https://www.transifex.com/torchbox/wagtail/
https://www.transifex.com/torchbox/wagtail/
https://docs.djangoproject.com/en/1.8/ref/settings/#use-i18n
https://docs.djangoproject.com/en/1.8/ref/settings/#std:setting-LANGUAGE_CODE
https://docs.djangoproject.com/en/1.8/topics/i18n/translation/
https://docs.djangoproject.com/en/1.8/ref/settings/#use-i18n
https://docs.djangoproject.com/en/1.8/topics/i18n/translation/#how-django-discovers-language-preference


Wagtail Documentation, Release 1.6.3

Serving different languages from different URLs

Just enabling the multi-language support in Django sometimes may not be enough. By default, Django will serve
different languages of the same page with the same URL. This has a couple of drawbacks:

• Users cannot change language without changing their browser settings

• It may not work well with various caching setups (as content varies based on browser settings)

Django’s i18n_patterns feature, when enabled, prefixes the URLs with the language code (eg /en/about-us).
Users are forwarded to their preferred version, based on browser language, when they first visit the site.

This feature is enabled through the project’s root URL configuration. Just put the views you would like to have this
enabled for in an i18n_patterns list and append that to the other URL patterns:

# mysite/urls.py

from django.conf.urls import include, url
from django.conf.urls.i18n import i18n_patterns
from django.conf import settings
from django.contrib import admin

from wagtail.wagtailadmin import urls as wagtailadmin_urls
from wagtail.wagtaildocs import urls as wagtaildocs_urls
from wagtail.wagtailcore import urls as wagtail_urls

urlpatterns = [
url(r'^django-admin/', include(admin.site.urls)),

url(r'^admin/', include(wagtailadmin_urls)),
url(r'^documents/', include(wagtaildocs_urls)),

]

urlpatterns += i18n_patterns('',
# These URLs will have /<language_code>/ appended to the beginning

url(r'^search/$', 'search.views.search', name='search'),

url(r'', include(wagtail_urls)),
)

You can implement switching between languages by changing the part at the beginning of the URL. As each language
has its own URL, it also works well with just about any caching setup.

Translating templates

Static text in templates needs to be marked up in a way that allows Django’s makemessages command to find and
export the strings for translators and also allow them to switch to translated versions on the when the template is being
served.

As Wagtail uses Django’s templates, inserting this markup and the workflow for exporting and translating the strings
is the same as any other Django project.

See: https://docs.djangoproject.com/en/1.8/topics/i18n/translation/#internationalization-in-template-code

1.3. Advanced topics 79

https://docs.djangoproject.com/en/1.8/topics/i18n/translation/#internationalization-in-template-code


Wagtail Documentation, Release 1.6.3

Translating content

The most common approach for translating content in Wagtail is to duplicate each translatable text field, providing a
separate field for each language.

This section will describe how to implement this method manually but there is a third party module you can use,
wagtail modeltranslation, which may be quicker if it meets your needs.

Duplicating the fields in your model

For each field you would like to be translatable, duplicate it for every language you support and suffix it with the
language code:

class BlogPage(Page):

title_fr = models.CharField(max_length=255)

body_en = StreamField(...)
body_fr = StreamField(...)

# Language-independent fields don't need to be duplicated
thumbnail_image = models.ForeignKey('wagtailimages.image', ...)

Note: We only define the French version of the title field as Wagtail already provides the English version for us.

Organising the fields in the admin interface

You can either put all the fields with their translations next to each other on the “content” tab or put the translations
for other languages on different tabs.

See Customising the tabbed interface for information on how to add more tabs to the admin interface.

Accessing the fields from the template

In order for the translations to be shown on the site frontend, the correct field needs to be used in the template based
on what language the client has selected.

Having to add language checks every time you display a field in a template, could make your templates very messy.
Here’s a little trick that will allow you to implement this while keeping your templates and model code clean.

You can use a snippet like the following to add accessor fields on to your page model. These accessor fields will point
at the field that contains the language the user has selected.

Copy this into your project and make sure it’s imported in any models.py files that contain a Page with translated
fields. It will require some modification to support different languages.

from django.utils import translation

class TranslatedField(object):
def __init__(self, en_field, fr_field):

self.en_field = en_field
self.fr_field = fr_field

def __get__(self, instance, owner):
en = getattr(instance, self.en_field)
fr = getattr(instance, self.fr_field)

if translation.get_language() == 'fr':
return fr

80 Chapter 1. Index

https://github.com/infoportugal/wagtail-modeltranslation


Wagtail Documentation, Release 1.6.3

else:
return en

Then, for each translated field, create an instance of TranslatedField with a nice name (as this is the name your
templates will reference).

For example, here’s how we would apply this to the above BlogPage model:

class BlogPage(Page):
...

translated_title = TranslatedField(
'title',
'title_fr',

)
body = TranslatedField(

'body_en',
'body_fr',

)

Finally, in the template, reference the accessors instead of the underlying database fields:

{{ page.translated_title }}

{{ page.body }}

Other approaches

Creating a multilingual site (by duplicating the page tree) This tutorial will show you a method of creating
multilingual sites in Wagtail by duplicating the page tree.

For example:

/
en/

about/
contact/

fr/
about/
contact/

The root page The root page (/) should detect the browsers language and forward them to the correct language
homepage (/en/, /fr/). This page should sit at the site root (where the homepage would normally be).

We must set Django’s LANGUAGES setting so we don’t redirect non English/French users to pages that don’t exist.

# settings.py
LANGUAGES = (

('en', _("English")),
('fr', _("French")),

)

# models.py
from django.utils import translation
from django.http import HttpResponseRedirect

from wagtail.wagtailcore.models import Page

1.3. Advanced topics 81



Wagtail Documentation, Release 1.6.3

class LanguageRedirectionPage(Page):

def serve(self, request):
# This will only return a language that is in the LANGUAGES Django setting
language = translation.get_language_from_request(request)

return HttpResponseRedirect(self.url + language + '/')

Linking pages together It may be useful to link different versions of the same page together to allow the user to
easily switch between languages. But we don’t want to increase the burden on the editor too much so ideally, editors
should only need to link one of the pages to the other versions and the links between the other versions should be
created implicitly.

As this behaviour needs to be added to all page types that would be translated, its best to put this behaviour in a mixin.

Here’s an example of how this could be implemented (with English as the main language and French/Spanish as
alternative languages):

class TranslatablePageMixin(models.Model):
# One link for each alternative language
# These should only be used on the main language page (english)
french_link = models.ForeignKey(Page, null=True, on_delete=models.SET_NULL, blank=True, related_name='+')
spanish_link = models.ForeignKey(Page, null=True, on_delete=models.SET_NULL, blank=True, related_name='+')

def get_language(self):
"""
This returns the language code for this page.
"""
# Look through ancestors of this page for its language homepage
# The language homepage is located at depth 3
language_homepage = self.get_ancestors(inclusive=True).get(depth=3)

# The slug of language homepages should always be set to the language code
return language_homepage.slug

# Method to find the main language version of this page
# This works by reversing the above links

def english_page(self):
"""
This finds the english version of this page
"""
language = self.get_language()

if language == 'en':
return self

elif language == 'fr':
return type(self).objects.filter(french_link=self).first().specific

elif language == 'es':
return type(self).objects.filter(spanish_link=self).first().specific

# We need a method to find a version of this page for each alternative language.
# These all work the same way. They firstly find the main version of the page
# (english), then from there they can just follow the link to the correct page.

82 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

def french_page(self):
"""
This finds the french version of this page
"""
english_page = self.english_page()

if english_page and english_page.french_link:
return english_page.french_link.specific

def spanish_page(self):
"""
This finds the spanish version of this page
"""
english_page = self.english_page()

if english_page and english_page.spanish_link:
return english_page.spanish_link.specific

class Meta:
abstract = True

class AboutPage(Page, TranslatablePageMixin):
...

class ContactPage(Page, TranslatablePageMixin):
...

You can make use of these methods in your template by doing:

{% if page.english_page and page.get_language != 'en' %}
<a href="{{ page.english_page.url }}">{% trans "View in English" %}</a>

{% endif %}

{% if page.french_page and page.get_language != 'fr' %}
<a href="{{ page.french_page.url }}">{% trans "View in French" %}</a>

{% endif %}

{% if page.spanish_page and page.get_language != 'es' %}
<a href="{{ page.spanish_page.url }}">{% trans "View in Spanish" %}</a>

{% endif %}

Private pages

Users with publish permission on a page can set it to be private by clicking the ‘Privacy’ control in the top right corner
of the page explorer or editing interface, and setting a password. Users visiting this page, or any of its subpages, will
be prompted to enter a password before they can view the page.

Private pages work on Wagtail out of the box - the site implementer does not need to do anything to set them up.
However, the default “password required” form is only a bare-bones HTML page, and site implementers may wish to
replace this with a page customised to their site design.

1.3. Advanced topics 83



Wagtail Documentation, Release 1.6.3

Setting up a global “password required” page

By setting PASSWORD_REQUIRED_TEMPLATE in your Django settings file, you can specify the path of a template
which will be used for all “password required” forms on the site (except for page types that specifically override it -
see below):

PASSWORD_REQUIRED_TEMPLATE = 'myapp/password_required.html'

This template will receive the same set of context variables that the blocked page would pass to its own template via
get_context() - including page to refer to the page object itself - plus the following additional variables (which
override any of the page’s own context variables of the same name):

• form - A Django form object for the password prompt; this will contain a field named password as its only vis-
ible field. A number of hidden fields may also be present, so the page must loop over form.hidden_fields
if not using one of Django’s rendering helpers such as form.as_p.

• action_url - The URL that the password form should be submitted to, as a POST request.

A basic template suitable for use as PASSWORD_REQUIRED_TEMPLATE might look like this:

<!DOCTYPE HTML>
<html>

<head>
<title>Password required</title>

</head>
<body>

<h1>Password required</h1>
<p>You need a password to access this page.</p>
<form action="{{ action_url }}" method="POST">

{% csrf_token %}

{{ form.non_field_errors }}

<div>
{{ form.password.errors }}
{{ form.password.label_tag }}
{{ form.password }}

</div>

{% for field in form.hidden_fields %}
{{ field }}

{% endfor %}
<input type="submit" value="Continue" />

</form>
</body>

</html>

Setting a “password required” page for a specific page type

The attribute password_required_template can be defined on a page model to use a custom template for the
“password required” view, for that page type only. For example, if a site had a page type for displaying embedded
videos along with a description, it might choose to use a custom “password required” template that displays the video
description as usual, but shows the password form in place of the video embed.

class VideoPage(Page):
...

password_required_template = 'video/password_required.html'

84 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Customising Wagtail

Customising the editing interface

Customising the tabbed interface

New in version 1.0.

As standard, Wagtail organises panels for pages into three tabs: ‘Content’, ‘Promote’ and ‘Settings’. For snippets
Wagtail puts all panels into one page. Depending on the requirements of your site, you may wish to customise this
for specific page types or snippets - for example, adding an additional tab for sidebar content. This can be done by
specifying an edit_handler attribute on the page or snippet model. For example:

from wagtail.wagtailadmin.edit_handlers import TabbedInterface, ObjectList

class BlogPage(Page):
# field definitions omitted

content_panels = [
FieldPanel('title', classname="full title"),
FieldPanel('date'),
FieldPanel('body', classname="full"),

]
sidebar_content_panels = [

SnippetChooserPanel('advert'),
InlinePanel('related_links', label="Related links"),

]

edit_handler = TabbedInterface([
ObjectList(content_panels, heading='Content'),
ObjectList(sidebar_content_panels, heading='Sidebar content'),
ObjectList(Page.promote_panels, heading='Promote'),
ObjectList(Page.settings_panels, heading='Settings', classname="settings"),

])

Rich Text (HTML)

Wagtail provides a general-purpose WYSIWYG editor for creating rich text content (HTML) and embedding media
such as images, video, and documents. To include this in your models, use the RichTextField function when
defining a model field:

from wagtail.wagtailcore.fields import RichTextField
from wagtail.wagtailadmin.edit_handlers import FieldPanel

class BookPage(Page):
book_text = RichTextField()

content_panels = Page.content_panels + [
FieldPanel('body', classname="full"),

]

RichTextField inherits from Django’s basic TextField field, so you can pass any field parameters into
RichTextField as if using a normal Django field. This field does not need a special panel and can be defined
with FieldPanel.

1.3. Advanced topics 85



Wagtail Documentation, Release 1.6.3

However, template output from RichTextField is special and need to be filtered to preserve embedded content.
See Rich text (filter).

If you’re interested in extending the capabilities of the Wagtail WYSIWYG editor (hallo.js), See Extending the
WYSIWYG Editor (hallo.js).

Extending the WYSIWYG Editor (hallo.js) To inject JavaScript into the Wagtail page editor, see the in-
sert_editor_js hook. Once you have the hook in place and your hallo.js plugin loads into the Wagtail page editor,
use the following JavaScript to register the plugin with hallo.js.

registerHalloPlugin(name, opts);

hallo.js plugin names are prefixed with the "IKS." namespace, but the name you pass into
registerHalloPlugin() should be without the prefix. opts is an object passed into the plugin.

For information on developing custom hallo.js plugins, see the project’s page: https://github.com/bergie/hallo

Image Formats in the Rich Text Editor On loading, Wagtail will search for any app with the file
image_formats.py and execute the contents. This provides a way to customise the formatting options shown
to the editor when inserting images in the RichTextField editor.

As an example, add a “thumbnail” format:

# image_formats.py
from wagtail.wagtailimages.formats import Format, register_image_format

register_image_format(Format('thumbnail', 'Thumbnail', 'richtext-image thumbnail', 'max-120x120'))

To begin, import the Format class, register_image_format function, and optionally
unregister_image_format function. To register a new Format, call the register_image_format with
the Format object as the argument. The Format class takes the following constructor arguments:

name The unique key used to identify the format. To unregister this format, call unregister_image_format
with this string as the only argument.

label The label used in the chooser form when inserting the image into the RichTextField.

classnames The string to assign to the class attribute of the generated <img> tag.

Note: Any class names you provide must have CSS rules matching them written separately, as part of the front
end CSS code. Specifying a classnames value of left will only ensure that class is output in the generated
markup, it won’t cause the image to align itself left.

filter_spec The string specification to create the image rendition. For more, see the Using images in templates.

To unregister, call unregister_image_formatwith the string of the name of the Format as the only argument.

Customising generated forms

class wagtail.wagtailadmin.forms.WagtailAdminModelForm

class wagtail.wagtailadmin.forms.WagtailAdminPageForm

Wagtail automatically generates forms using the panels configured on the model. By default, this form subclasses
WagtailAdminModelForm, or WagtailAdminPageForm for pages. A custom base form class can be con-
figured by setting the base_form_class attribute on any model. Custom forms for snippets must subclass
WagtailAdminModelForm, and custom forms for pages must subclass WagtailAdminPageForm.

86 Chapter 1. Index

https://github.com/bergie/hallo


Wagtail Documentation, Release 1.6.3

This can be used to add non-model fields to the form, to automatically generate field content, or to add custom
validation logic for your models:

from django import forms
from wagtail.wagtailadmin.edit_handlers import FieldPanel
from wagtail.wagtailadmin.forms import WagtailAdminPageForm
from wagtail.wagtailcore.models import Page

class EventPageForm(WagtailAdminPageForm):
address = forms.CharField()

def clean(self):
cleaned_data = super(EventPageForm, self).clean()

# Make sure that the event starts before it ends
start_date = cleaned_data['start_date']
end_date = cleaned_data['end_date']
if start_date and end_date and start_date > end_date:

self.add_error('end_date', 'The end date must be after the start date')

return cleaned_data

def save(self, commit=True):
page = super(EventPageForm, self).save(commit=False)

# Update the duration field from the submitted dates
page.duration = (page.end_date - page.start_date).days

# Fetch the location by geocoding the address
page.location = geocoder.get_coordinates(self.cleaned_data['address'])

if commit:
page.save()

return page

class EventPage(Page):
start_date = models.DateField()
end_date = models.DateField()
duration = models.IntegerField()
location = models.CharField()

content_panels = [
FieldPanel('given_name'),
FieldPanel('family_name'),
FieldPanel('bio'),

]
base_form_class = EventPageForm

Wagtail will generate a new subclass of this form for the model, adding any fields defined in panels or
content_panels. Any fields already defined on the model will not be overridden by these automatically added
fields, so the form field for a model field can be overridden by adding it to the custom form.

Custom branding

In your projects with Wagtail, you may wish to replace elements such as the Wagtail logo within the admin interface
with your own branding. This can be done through Django’s template inheritance mechanism.

1.3. Advanced topics 87



Wagtail Documentation, Release 1.6.3

Note: Using {% extends %} in this way on a template you’re currently overriding is only supported in Django
1.9 and above. On Django 1.8, you will need to use django-overextends instead.

You need to create a templates/wagtailadmin/ folder within one of your apps - this may be an existing one,
or a new one created for this purpose, for example, dashboard. This app must be registered in INSTALLED_APPS
before wagtail.wagtailadmin:

INSTALLED_APPS = (
# ...

'dashboard',

'wagtail.wagtailcore',
'wagtail.wagtailadmin',

# ...
)

The template blocks that are available to be overridden are as follows:

branding_logo

To replace the default logo, create a template file dashboard/templates/wagtailadmin/base.html that
overrides the block branding_logo:

{% extends "wagtailadmin/base.html" %}
{% load staticfiles %}

{% block branding_logo %}
<img src="{% static 'images/custom-logo.svg' %}" alt="Custom Project" width="80" />

{% endblock %}

branding_favicon

To replace the favicon displayed when viewing admin pages, create a template file
dashboard/templates/wagtailadmin/admin_base.html that overrides the block
branding_favicon:

{% extends "wagtailadmin/admin_base.html" %}
{% load staticfiles %}

{% block branding_favicon %}
<link rel="shortcut icon" href="{% static 'images/favicon.ico' %}" />

{% endblock %}

branding_login

To replace the login message, create a template file dashboard/templates/wagtailadmin/login.html
that overrides the block branding_login:

{% extends "wagtailadmin/login.html" %}

{% block branding_login %}Sign in to Frank's Site{% endblock %}

88 Chapter 1. Index

https://github.com/stephenmcd/django-overextends


Wagtail Documentation, Release 1.6.3

branding_welcome

To replace the welcome message on the dashboard, create a template file
dashboard/templates/wagtailadmin/home.html that overrides the block branding_welcome:

{% extends "wagtailadmin/home.html" %}

{% block branding_welcome %}Welcome to Frank's Site{% endblock %}

Custom user models

Custom user forms example

This example shows how to add a text field and foreign key field to a custom user model and configure Wagtail user
forms to allow the fields values to be updated.

Create a custom user model. In this case we extend the AbstractUser class and add two fields. The foreign key
references another model (not shown).

class User(AbstractUser):
country = models.CharField(verbose_name='country', max_length=255)
status = models.ForeignKey(MembershipStatus, on_delete=models.SET_NULL, null=True, default=1)

Add the app containing your user model to INSTALLED_APPS and set AUTH_USER_MODEL to reference your
model. In this example the app is called users and the model is User

AUTH_USER_MODEL = 'users.User'

Create your custom user create and edit forms in your app:

from django import forms
from django.utils.translation import ugettext_lazy as _

from wagtail.wagtailusers.forms import UserEditForm, UserCreationForm

from users.models import MembershipStatus

class CustomUserEditForm(UserEditForm):
country = forms.CharField(required=True, label=_("Country"))
status = forms.ModelChoiceField(queryset=MembershipStatus.objects, required=True, label=_("Status"))

class CustomUserCreationForm(UserCreationForm):
country = forms.CharField(required=True, label=_("Country"))
status = forms.ModelChoiceField(queryset=MembershipStatus.objects, required=True, label=_("Status"))

Extend the Wagtail user create and edit templates. These extended template should be placed in a template directory
wagtailusers/users.

Template create.html:

{% extends "wagtailusers/users/create.html" %}

{% block extra_fields %}
{% include "wagtailadmin/shared/field_as_li.html" with field=form.country %}
{% include "wagtailadmin/shared/field_as_li.html" with field=form.status %}

{% endblock extra_fields %}

1.3. Advanced topics 89

https://docs.djangoproject.com/en/dev/topics/auth/customizing/#substituting-a-custom-user-model


Wagtail Documentation, Release 1.6.3

Note: Using {% extends %} in this way on a template you’re currently overriding is only supported in Django
1.9 and above. On Django 1.8, you will need to use django-overextends instead.

Template edit.html:

{% extends "wagtailusers/users/edit.html" %}

{% block extra_fields %}
{% include "wagtailadmin/shared/field_as_li.html" with field=form.country %}
{% include "wagtailadmin/shared/field_as_li.html" with field=form.status %}

{% endblock extra_fields %}

The extra_fields block allows fields to be inserted below the last name field in the default templates. Other block
overriding options exist to allow appending fields to the end or beginning of the existing fields, or to allow all the fields
to be redefined.

Add the wagtail settings to your project to reference the user form additions:

WAGTAIL_USER_EDIT_FORM = 'users.forms.CustomUserEditForm'
WAGTAIL_USER_CREATION_FORM = 'users.forms.CustomUserCreationForm'
WAGTAIL_USER_CUSTOM_FIELDS = ['country', 'status']

Third-party tutorials

Warning: The following list is a collection of tutorials and development notes from third-party developers. Some
of the older links may not apply to the latest Wagtail versions.

• Wagtail: 2 Steps for Adding Pages Outside of the CMS (15 February 2016)

• Adding a Twitter Widget for Wagtail’s new StreamField (2 April 2015)

• Working With Wagtail: Menus (22 January 2015)

• Upgrading Wagtail to use Django 1.7 locally using vagrant (10 December 2014)

• Wagtail redirect page. Can link to page, URL and document (24 September 2014)

• Outputing JSON for a model with properties and db fields in Wagtail/Django (24 September 2014)

• Bi-lingual website using Wagtail CMS (17 September 2014)

• Wagtail CMS – Lesser known features (12 September 2014)

• Wagtail notes: stateful on/off hallo.js plugins (9 August 2014)

• Add some blockquote buttons to Wagtail CMS’ WYSIWYG Editor (24 July 2014)

• Adding Bread Crumbs to the front end in Wagtail CMS (1 July 2014)

• Extending hallo.js using Wagtail hooks (9 July 2014)

• Wagtail notes: custom tabs per page type (10 May 2014)

• Wagtail notes: managing redirects as pages (10 May 2014)

• Wagtail notes: dynamic templates per page (10 May 2014)

• Wagtail notes: type-constrained PageChooserPanel (9 May 2014)

• How to Run the Wagtail CMS on Gondor (14 February 2014)

90 Chapter 1. Index

https://github.com/stephenmcd/django-overextends
https://www.caktusgroup.com/blog/2016/02/15/wagtail-2-steps-adding-pages-outside-cms/
https://jossingram.wordpress.com/2015/04/02/adding-a-twitter-widget-for-wagtails-new-streamfield/
http://www.tivix.com/blog/working-with-wagtail-menus/
https://jossingram.wordpress.com/2014/12/10/upgrading-wagtail-to-use-django-1-7-locally-using-vagrant/
https://gist.github.com/alej0varas/e7e334643ceab6e65744
https://jossingram.wordpress.com/2014/09/24/outputing-json-for-a-model-with-properties-and-db-fields-in-wagtaildjango/
https://jossingram.wordpress.com/2014/09/17/bi-lingual-website-using-wagtail-cms/
https://jossingram.wordpress.com/2014/09/12/wagtail-cms-lesser-known-features/
http://www.coactivate.org/projects/ejucovy/blog/2014/08/09/wagtail-notes-stateful-onoff-hallojs-plugins/
https://jossingram.wordpress.com/2014/07/24/add-some-blockquote-buttons-to-wagtail-cms-wysiwyg-editor/
https://jossingram.wordpress.com/2014/07/01/adding-bread-crumbs-to-the-front-end-in-wagtail-cms/
https://gist.github.com/jeffrey-hearn/502d0914fa4a930f08ac
http://www.coactivate.org/projects/ejucovy/blog/2014/05/10/wagtail-notes-custom-tabs-per-page-type/
http://www.coactivate.org/projects/ejucovy/blog/2014/05/10/wagtail-notes-managing-redirects-as-pages/
http://www.coactivate.org/projects/ejucovy/blog/2014/05/10/wagtail-notes-dynamic-templates-per-page/
http://www.coactivate.org/projects/ejucovy/blog/2014/05/09/wagtail-notes-type-constrained-pagechooserpanel/
https://gondor.io/blog/2014/02/14/how-run-wagtail-cms-gondor/


Wagtail Documentation, Release 1.6.3

Tip: We are working on a collection of Wagtail tutorials and best practices. Please tweet @WagtailCMS or contact
us directly to share your Wagtail HOWTOs, development notes or site launches.

Jinja2 template support

Wagtail supports Jinja2 templating for all front end features. More information on each of the template tags below can
be found in the Writing templates documentation.

Configuring Django

Changed in version 1.3: Jinja2 tags were moved from “templatetags” into “jinja2tags” to separate them from Django
template tags.

Django needs to be configured to support Jinja2 templates. As the Wagtail admin is written using regular Django
templates, Django has to be configured to use both templating engines. Wagtail supports the Jinja2 backend that ships
with Django 1.8 and above. Add the following configuration to the TEMPLATES setting for your app:

TEMPLATES = [
# ...
{

'BACKEND': 'django.template.backends.jinja2.Jinja2',
'APP_DIRS': True,
'OPTIONS': {

'extensions': [
'wagtail.wagtailcore.jinja2tags.core',
'wagtail.wagtailadmin.jinja2tags.userbar',
'wagtail.wagtailimages.jinja2tags.images',

],
},

}
]

Jinja templates must be placed in a jinja2/ directory in your app. The template for an EventPage model in an
events app should be created at events/jinja2/events/event_page.html.

By default, the Jinja environment does not have any Django functions or filters. The Django documentation has more
information on configuring Jinja for Django.

self in templates

In Django templates, self can be used to refer to the current page, stream block, or field panel. In Jinja, self is
reserved for internal use. When writing Jinja templates, use page to refer to pages, value for stream blocks, and
field_panel for field panels.

Template tags, functions & filters

pageurl()

Generate a URL for a Page instance:

1.3. Advanced topics 91

https://twitter.com/WagtailCMS
mailto:hello@wagtail.io
mailto:hello@wagtail.io
https://docs.djangoproject.com/en/1.8/topics/templates/#django.template.backends.jinja2.Jinja2


Wagtail Documentation, Release 1.6.3

<a href="{{ pageurl(page.more_information) }}">More information</a>

See pageurl for more information

slugurl()

Generate a URL for a Page with a slug:

<a href="{{ slugurl("about") }}">About us</a>

See slugurl for more information

image()

Resize an image, and print an <img> tag:

{# Print an image tag #}
{{ image(page.header_image, "fill-1024x200", class="header-image") }}

{# Resize an image #}
{% set background=image(page.background_image, "max-1024x1024") %}
<div class="wrapper" style="background-image: url({{ background.url }});">

See Using images in templates for more information

|richtext

Transform Wagtail’s internal HTML representation, expanding internal references to pages and images.

{{ page.body|richtext }}

See Rich text (filter) for more information

wagtailuserbar()

Output the Wagtail contextual flyout menu for editing pages from the front end

{{ wagtailuserbar() }}

See Wagtail User Bar for more information

{% include_block %}

Output the HTML representation for the stream content as a whole, as well as for each individual block.

Allows to pass template context (by default) to the StreamField template.

{% include_block page.body %}
{% include_block page.body with context %} {# The same as the previous #}
{% include_block page.body without context %}

92 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

See StreamField template rendering for more information.

Note: The {% include_block %} tag is designed to closely follow the syntax and behaviour of Jinja’s {%
include %}, so it does not implement the Django version’s feature of only passing specified variables into the
context.

Testing your Wagtail site

Wagtail comes with some utilities that simplify writing tests for your site.

WagtailPageTests

class wagtail.tests.utils.WagtailPageTests
WagtailPageTests extends django.test.TestCase, adding a few new assert methods. You
should extend this class to make use of its methods:

from wagtail.tests.utils import WagtailPageTests
from myapp.models import MyPage

class MyPageTests(WagtailPageTests):
def test_can_create_a_page(self):

...

assertCanCreateAt(parent_model, child_model, msg=None)
Assert a particular child Page type can be created under a parent Page type. parent_model and
child_model should be the Page classes being tested.

def test_can_create_under_home_page(self):
# You can create a ContentPage under a HomePage
self.assertCanCreateAt(HomePage, ContentPage)

assertCanNotCreateAt(parent_model, child_model, msg=None)
Assert a particular child Page type can not be created under a parent Page type. parent_model and
child_model should be the Page classes being tested.

def test_cant_create_under_event_page(self):
# You can not create a ContentPage under an EventPage
self.assertCanNotCreateAt(EventPage, ContentPage)

assertCanCreate(parent, child_model, data, msg=None)
Assert that a child of the given Page type can be created under the parent, using the supplied POST data.

parent should be a Page instance, and child_model should be a Page subclass. data should be a
dict that will be POSTed at the Wagtail admin Page creation method.

def test_can_create_content_page(self):
# Get the HomePage
root_page = HomePage.objects.get(pk=2)

# Assert that a ContentPage can be made here, with this POST data
self.assertCanCreate(root_page, ContentPage, {

'title': 'About us',
'body': 'Lorem ipsum dolor sit amet')

1.3. Advanced topics 93



Wagtail Documentation, Release 1.6.3

assertAllowedParentPageTypes(child_model, parent_models, msg=None)
Test that the only page types that child_model can be created under are parent_models.

The list of allowed parent models may differ from those set in Page.parent_page_types, if the
parent models have set Page.subpage_types.

def test_content_page_parent_pages(self):
# A ContentPage can only be created under a HomePage
# or another ContentPage
self.assertAllowedParentPageTypes(

ContentPage, {HomePage, ContentPage})

# An EventPage can only be created under an EventIndex
self.assertAllowedParentPageTypes(

EventPage, {EventIndex})

assertAllowedSubpageTypes(parent_model, child_models, msg=None)
Test that the only page types that can be created under parent_model are child_models.

The list of allowed child models may differ from those set in Page.subpage_types, if the child
models have set Page.parent_page_types.

def test_content_page_subpages(self):
# A ContentPage can only have other ContentPage children
self.assertAllowedSubpageTypes(

ContentPage, {ContentPage})

# A HomePage can have ContentPage and EventIndex children
self.assertAllowedParentPageTypes(

HomePage, {ContentPage, EventIndex})

Reference

Pages

Wagtail requires a little careful setup to define the types of content that you want to present through your website.
The basic unit of content in Wagtail is the Page, and all of your page-level content will inherit basic webpage-related
properties from it. But for the most part, you will be defining content yourself, through the construction of Django
models using Wagtail’s Page as a base.

Wagtail organizes content created from your models in a tree, which can have any structure and combination of model
objects in it. Wagtail doesn’t prescribe ways to organize and interrelate your content, but here we’ve sketched out
some strategies for organizing your models.

The presentation of your content, the actual webpages, includes the normal use of the Django template system. We’ll
cover additional functionality that Wagtail provides at the template level later on.

Theory

Introduction to Trees

If you’re unfamiliar with trees as an abstract data type, you might want to review the concepts involved.

As a web developer, though, you probably already have a good understanding of trees as filesystem directories or
paths. Wagtail pages can create the same structure, as each page in the tree has its own URL path, like so:

94 Chapter 1. Index

http://en.wikipedia.org/wiki/Tree_(data_structure)


Wagtail Documentation, Release 1.6.3

/
people/

nien-nunb/
laura-roslin/

events/
captain-picard-day/
winter-wrap-up/

The Wagtail admin interface uses the tree to organize content for editing, letting you navigate up and down levels in
the tree through its Explorer menu. This method of organization is a good place to start in thinking about your own
Wagtail models.

Nodes and Leaves It might be handy to think of the Page-derived models you want to create as being one of two
node types: parents and leaves. Wagtail isn’t prescriptive in this approach, but it’s a good place to start if you’re not
experienced in structuring your own content types.

Nodes Parent nodes on the Wagtail tree probably want to organize and display a browse-able index of their descen-
dants. A blog, for instance, needs a way to show a list of individual posts.

A Parent node could provide its own function returning its descendant objects.

class EventPageIndex(Page):
# ...
def events(self):

# Get list of live event pages that are descendants of this page
events = EventPage.objects.live().descendant_of(self)

# Filter events list to get ones that are either
# running now or start in the future
events = events.filter(date_from__gte=date.today())

# Order by date
events = events.order_by('date_from')

return events

This example makes sure to limit the returned objects to pieces of content which make sense, specifically
ones which have been published through Wagtail’s admin interface (live()) and are children of this node
(descendant_of(self)). By setting a subpage_types class property in your model, you can specify which
models are allowed to be set as children, and by setting a parent_page_types class property, you can specify
which models are allowed to be parents of this page model. Wagtail will allow any Page-derived model by default.
Regardless, it’s smart for a parent model to provide an index filtered to make sense.

Leaves Leaves are the pieces of content itself, a page which is consumable, and might just consist of a bunch of
properties. A blog page leaf might have some body text and an image. A person page leaf might have a photo, a name,
and an address.

It might be helpful for a leaf to provide a way to back up along the tree to a parent, such as in the case of breadcrumbs
navigation. The tree might also be deep enough that a leaf’s parent won’t be included in general site navigation.

The model for the leaf could provide a function that traverses the tree in the opposite direction and returns an appro-
priate ancestor:

class EventPage(Page):
# ...
def event_index(self):

1.4. Reference 95



Wagtail Documentation, Release 1.6.3

# Find closest ancestor which is an event index
return self.get_ancestors().type(EventIndexPage).last()

If defined, subpage_types and parent_page_types will also limit the parent models allowed to contain a
leaf. If not, Wagtail will allow any combination of parents and leafs to be associated in the Wagtail tree. Like with
index pages, it’s a good idea to make sure that the index is actually of the expected model to contain the leaf.

Other Relationships Your Page-derived models might have other interrelationships which extend the basic Wagtail
tree or depart from it entirely. You could provide functions to navigate between siblings, such as a “Next Post” link on
a blog page (post->post->post). It might make sense for subtrees to interrelate, such as in a discussion forum
(forum->post->replies) Skipping across the hierarchy might make sense, too, as all objects of a certain model
class might interrelate regardless of their ancestors (events = EventPage.objects.all). It’s largely up to
the models to define their interrelations, the possibilities are really endless.

Anatomy of a Wagtail Request

For going beyond the basics of model definition and interrelation, it might help to know how Wagtail handles requests
and constructs responses. In short, it goes something like:

1. Django gets a request and routes through Wagtail’s URL dispatcher definitions

2. Wagtail checks the hostname of the request to determine which Site record will handle this request.

3. Starting from the root page of that site, Wagtail traverses the page tree, calling the route() method and letting
each page model decide whether it will handle the request itself or pass it on to a child page.

4. The page responsible for handling the request returns a RouteResult object from route(), which identifies
the page along with any additional args/kwargs to be passed to serve().

5. Wagtail calls serve(), which constructs a context using get_context()

6. serve() finds a template to pass it to using get_template()

7. A response object is returned by serve() and Django responds to the requester.

You can apply custom behavior to this process by overriding Page class methods such as route() and serve()
in your own models. For examples, see Recipes.

Recipes

Overriding the serve() Method

Wagtail defaults to serving Page-derived models by passing a reference to the page object to a Django HTML template
matching the model’s name, but suppose you wanted to serve something other than HTML? You can override the
serve() method provided by the Page class and handle the Django request and response more directly.

Consider this example from the Wagtail demo site’s models.py, which serves an EventPage object as an iCal file
if the format variable is set in the request:

class EventPage(Page):
...

def serve(self, request):
if "format" in request.GET:

if request.GET['format'] == 'ical':
# Export to ical format

96 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

response = HttpResponse(
export_event(self, 'ical'),
content_type='text/calendar',

)
response['Content-Disposition'] = 'attachment; filename=' + self.slug + '.ics'
return response

else:
# Unrecognised format error
message = 'Could not export event\n\nUnrecognised format: ' + request.GET['format']
return HttpResponse(message, content_type='text/plain')

else:
# Display event page as usual
return super(EventPage, self).serve(request)

serve() takes a Django request object and returns a Django response object. Wagtail returns a
TemplateResponse object with the template and context which it generates, which allows middleware to function
as intended, so keep in mind that a simpler response object like a HttpResponse will not receive these benefits.

With this strategy, you could use Django or Python utilities to render your model in JSON or XML or any other format
you’d like.

Adding Endpoints with Custom route() Methods

Note: A much simpler way of adding more endpoints to pages is provided by the wagtailroutablepage
module.

Wagtail routes requests by iterating over the path components (separated with a forward slash /), finding matching
objects based on their slug, and delegating further routing to that object’s model class. The Wagtail source is very
instructive in figuring out what’s happening. This is the default route() method of the Page class:

class Page(...):
...

def route(self, request, path_components):
if path_components:

# request is for a child of this page
child_slug = path_components[0]
remaining_components = path_components[1:]

# find a matching child or 404
try:

subpage = self.get_children().get(slug=child_slug)
except Page.DoesNotExist:

raise Http404

# delegate further routing
return subpage.specific.route(request, remaining_components)

else:
# request is for this very page
if self.live:

# Return a RouteResult that will tell Wagtail to call
# this page's serve() method
return RouteResult(self)

else:

1.4. Reference 97



Wagtail Documentation, Release 1.6.3

# the page matches the request, but isn't published, so 404
raise Http404

route() takes the current object (self), the request object, and a list of the remaining path_components
from the request URL. It either continues delegating routing by calling route() again on one of its children in the
Wagtail tree, or ends the routing process by returning a RouteResult object or raising a 404 error.

The RouteResult object (defined in wagtail.wagtailcore.url_routing) encapsulates all the information Wagtail
needs to call a page’s serve() method and return a final response: this information consists of the page object,
and any additional args/kwargs to be passed to serve().

By overriding the route() method, we could create custom endpoints for each object in the Wagtail tree. One use
case might be using an alternate template when encountering the print/ endpoint in the path. Another might be a
REST API which interacts with the current object. Just to see what’s involved, lets make a simple model which prints
out all of its child path components.

First, models.py:

from django.shortcuts import render
from wagtail.wagtailcore.url_routing import RouteResult
from django.http.response import Http404
from wagtail.wagtailcore.models import Page

...

class Echoer(Page):

def route(self, request, path_components):
if path_components:

# tell Wagtail to call self.serve() with an additional 'path_components' kwarg
return RouteResult(self, kwargs={'path_components': path_components})

else:
if self.live:

# tell Wagtail to call self.serve() with no further args
return RouteResult(self)

else:
raise Http404

def serve(self, path_components=[]):
return render(request, self.template, {

'page': self,
'echo': ' '.join(path_components),

})

This model, Echoer, doesn’t define any properties, but does subclass Page so objects will be able to have a custom
title and slug. The template just has to display our {{ echo }} property.

Now, once creating a new Echoer page in the Wagtail admin titled “Echo Base,” requests such as:

http://127.0.0.1:8000/echo-base/tauntaun/kennel/bed/and/breakfast/

Will return:

tauntaun kennel bed and breakfast

Be careful if you’re introducing new required arguments to the serve() method - Wagtail still needs to be able to
display a default view of the page for previewing and moderation, and by default will attempt to do this by calling
serve() with a request object and no further arguments. If your serve() method does not accept that as a
method signature, you will need to override the page’s serve_preview() method to call serve() with suitable
arguments:

98 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

def serve_preview(self, request, mode_name):
return self.serve(request, color='purple')

Tagging

Wagtail provides tagging capability through the combination of two django modules, taggit and modelcluster.
taggit provides a model for tags which is extended by modelcluster, which in turn provides some magical
database abstraction which makes drafts and revisions possible in Wagtail. It’s a tricky recipe, but the net effect is a
many-to-many relationship between your model and a tag class reserved for your model.

Using an example from the Wagtail demo site, here’s what the tag model and the relationship field looks like in
models.py:

from modelcluster.fields import ParentalKey
from modelcluster.contrib.taggit import ClusterTaggableManager
from taggit.models import TaggedItemBase

class BlogPageTag(TaggedItemBase):
content_object = ParentalKey('demo.BlogPage', related_name='tagged_items')

class BlogPage(Page):
...
tags = ClusterTaggableManager(through=BlogPageTag, blank=True)

promote_panels = Page.promote_panels + [
...
FieldPanel('tags'),

]

Wagtail’s admin provides a nice interface for inputting tags into your content, with typeahead tag completion and
friendly tag icons.

Now that we have the many-to-many tag relationship in place, we can fit in a way to render both sides of the relation.
Here’s more of the Wagtail demo site models.py, where the index model for BlogPage is extended with logic for
filtering the index by tag:

class BlogIndexPage(Page):
...
def serve(self, request):

# Get blogs
blogs = self.blogs

# Filter by tag
tag = request.GET.get('tag')
if tag:

blogs = blogs.filter(tags__name=tag)

return render(request, self.template, {
'page': self,
'blogs': blogs,

})

Here, blogs.filter(tags__name=tag) invokes a reverse Django queryset filter on the BlogPageTagmodel
to optionally limit the BlogPage objects sent to the template for rendering. Now, lets render both sides of the relation
by showing the tags associated with an object and a way of showing all of the objects associated with each tag. This
could be added to the blog_page.html template:

1.4. Reference 99



Wagtail Documentation, Release 1.6.3

{% for tag in page.tags.all %}
<a href="{% pageurl page.blog_index %}?tag={{ tag }}">{{ tag }}</a>

{% endfor %}

Iterating through page.tags.all will display each tag associated with page, while the link(s) back to the in-
dex make use of the filter option added to the BlogIndexPage model. A Django query could also use the
tagged_items related name field to get BlogPage objects associated with a tag.

This is just one possible way of creating a taxonomy for Wagtail objects. With all of the components for a taxonomy
available through Wagtail, you should be able to fulfill even the most exotic taxonomic schemes.

Available panel types

FieldPanel

class wagtail.wagtailadmin.edit_handlers.FieldPanel(field_name, classname=None, wid-
get=None)

This is the panel used for basic Django field types.

field_name
This is the name of the class property used in your model definition.

classname
This is a string of optional CSS classes given to the panel which are used in formatting and scripted
interactivity. By default, panels are formatted as inset fields.

The CSS class full can be used to format the panel so it covers the full width of the Wagtail page editor.

The CSS class title can be used to mark a field as the source for auto-generated slug strings.

widget(optional)
This parameter allows you to specify a Django form widget to use instead of the default widget for this
field type.

MultiFieldPanel

class wagtail.wagtailadmin.edit_handlers.MultiFieldPanel(children, heading=”“, class-
name=None)

This panel condenses several FieldPanel s or choosers, from a list or tuple, under a single heading
string.

children
A list or tuple of child panels

heading
A heading for the fields

100 Chapter 1. Index

https://docs.djangoproject.com/en/dev/ref/forms/widgets/


Wagtail Documentation, Release 1.6.3

Collapsing MultiFieldPanels to save space

By default, MultiFieldPanel s are expanded and not collapsible. Adding collapsible to classname
will enable the collapse control. Adding both collapsible and collapsed to the classname parameter
will load the editor page with the MultiFieldPanel collapsed under its heading.

content_panels = [
MultiFieldPanel(

[
ImageChooserPanel('cover'),
DocumentChooserPanel('book_file'),
PageChooserPanel('publisher'),

],
heading="Collection of Book Fields",
classname="collapsible collapsed"

),
]

InlinePanel

class wagtail.wagtailadmin.edit_handlers.InlinePanel(relation_name, panels=None,
classname=None, label=’‘,
help_text=’‘, min_num=None,
max_num=None)

This panel allows for the creation of a “cluster” of related objects over a join to a separate model, such as a list
of related links or slides to an image carousel.

This is a poweful but complex feature which will take some space to cover, so we’ll skip over it for now. For a
full explanation on the usage of InlinePanel, see Inline Panels and Model Clusters.

FieldRowPanel

class wagtail.wagtailadmin.edit_handlers.FieldRowPanel(children, classname=None)
This panel creates a columnar layout in the editing interface, where each of the child Panels appears alongside
each other rather than below.

Use of FieldRowPanel particularly helps reduce the “snow-blindness” effect of seeing so many fields on the
page, for complex models. It also improves the perceived association between fields of a similar nature. For
example if you created a model representing an “Event” which had a starting date and ending date, it may be
intuitive to find the start and end date on the same “row”.

By default, the panel is divided into equal-width columns, but this can be overridden by adding col* class
names to each of the child Panels of the FieldRowPanel. The Wagtail editing interface is laid out using a grid
system, in which the maximum width of the editor is 12 columns. Classes col1-col12 can be applied to each
child of a FieldRowPanel. The class col3 will ensure that field appears 3 columns wide or a quarter the width.
col4 would cause the field to be 4 columns wide, or a third the width.

children
A list or tuple of child panels to display on the row

classname
A class to apply to the FieldRowPanel as a whole

1.4. Reference 101



Wagtail Documentation, Release 1.6.3

PageChooserPanel

class wagtail.wagtailadmin.edit_handlers.PageChooserPanel(field_name,
page_type=None,
can_choose_root=False)

You can explicitly link Page-derived models together using the Page model and PageChooserPanel.

from wagtail.wagtailcore.models import Page
from wagtail.wagtailadmin.edit_handlers import PageChooserPanel

class BookPage(Page):
related_page = models.ForeignKey(

'wagtailcore.Page',
null=True,
blank=True,
on_delete=models.SET_NULL,
related_name='+',

)

content_panels = Page.content_panels + [
PageChooserPanel('related_page', 'demo.PublisherPage'),

]

PageChooserPanel takes one required argument, the field name. Optionally, specifying a page type (in the
form of an "appname.modelname" string) will filter the chooser to display only pages of that type. A list
or tuple of page types can also be passed in, to allow choosing a page that matches any of those page types:

PageChooserPanel('related_page', ['demo.PublisherPage', 'demo.AuthorPage'])

Passing can_choose_root=True will allow the editor to choose the tree root as a page. Normally this
would be undesirable, since the tree root is never a usable page, but in some specialised cases it may be ap-
propriate; for example, a page with an automatic “related articles” feed could use a PageChooserPanel to select
which subsection articles will be taken from, with the root corresponding to ‘everywhere’.

ImageChooserPanel

class wagtail.wagtailimages.edit_handlers.ImageChooserPanel(field_name)
Wagtail includes a unified image library, which you can access in your models through the Image model and
the ImageChooserPanel chooser. Here’s how:

from wagtail.wagtailimages.models import Image
from wagtail.wagtailimages.edit_handlers import ImageChooserPanel

class BookPage(Page):
cover = models.ForeignKey(

'wagtailimages.Image',
null=True,
blank=True,
on_delete=models.SET_NULL,
related_name='+'

)

content_panels = Page.content_panels + [
ImageChooserPanel('cover'),

]

102 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Django’s default behaviour is to “cascade” deletions through a ForeignKey relationship, which may not be what
you want. This is why the null, blank, and on_delete parameters should be set to allow for an empty
field. (See Django model field reference (on_delete) ). ImageChooserPanel takes only one argument: the
name of the field.

Displaying Image objects in a template requires the use of a template tag. See Using images in templates.

DocumentChooserPanel

class wagtail.wagtaildocs.edit_handlers.DocumentChooserPanel(field_name)
For files in other formats, Wagtail provides a generic file store through the Document model:

from wagtail.wagtaildocs.models import Document
from wagtail.wagtaildocs.edit_handlers import DocumentChooserPanel

class BookPage(Page):
book_file = models.ForeignKey(

'wagtaildocs.Document',
null=True,
blank=True,
on_delete=models.SET_NULL,
related_name='+'

)

content_panels = Page.content_panels + [
DocumentChooserPanel('book_file'),

]

As with images, Wagtail documents should also have the appropriate extra parameters to prevent cascade dele-
tions across a ForeignKey relationship. DocumentChooserPanel takes only one argument: the name of the
field.

SnippetChooserPanel

Changed in version 1.1: Before Wagtail 1.1, it was necessary to pass the snippet model class as a second parameter to
SnippetChooserPanel. This is now automatically picked up from the field.

class wagtail.wagtailsnippets.edit_handlers.SnippetChooserPanel(field_name, snip-
pet_type=None)

Snippets are vanilla Django models you create yourself without a Wagtail-provided base class. A chooser,
SnippetChooserPanel, is provided which takes the field name as an argument.

from wagtail.wagtailsnippets.edit_handlers import SnippetChooserPanel

class BookPage(Page):
advert = models.ForeignKey(

'demo.Advert',
null=True,
blank=True,
on_delete=models.SET_NULL,
related_name='+'

)

content_panels = Page.content_panels + [
SnippetChooserPanel('advert'),

]

1.4. Reference 103

https://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey.on_delete


Wagtail Documentation, Release 1.6.3

See Snippets for more information.

Built-in Fields and Choosers Django’s field types are automatically recognised and provided with an appropriate
widget for input. Just define that field the normal Django way and pass the field name into FieldPanel when
defining your panels. Wagtail will take care of the rest.

Here are some Wagtail-specific types that you might include as fields in your models.

Field Customisation By adding CSS classes to your panel definitions or adding extra parameters to your field
definitions, you can control much of how your fields will display in the Wagtail page editing interface. Wagtail’s page
editing interface takes much of its behaviour from Django’s admin, so you may find many options for customisation
covered there. (See Django model field reference ).

Full-Width Input

Use classname="full" to make a field (input element) stretch the full width of the Wagtail page editor. This will
not work if the field is encapsulated in a MultiFieldPanel, which places its child fields into a formset.

Titles

Use classname="title" to make Page’s built-in title field stand out with more vertical padding.

Required Fields

To make input or chooser selection mandatory for a field, add blank=False to its model definition. (See Django
model field reference (blank) ).

Hiding Fields

Without a panel definition, a default form field (without label) will be used to represent your fields. If you intend to
hide a field on the Wagtail page editor, define the field with editable=False (See Django model field reference
(editable) ).

Inline Panels and Model Clusters The django-modelcluster module allows for streamlined relation of extra
models to a Wagtail page. For instance, you can create objects related through a ForeignKey relationship on the fly
and save them to a draft revision of a Page object. Normally, your related objects “cluster” would need to be created
beforehand (or asynchronously) before linking them to a Page.

Let’s look at the example of adding related links to a Page-derived model. We want to be able to add as many as we
like, assign an order, and do all of this without leaving the page editing screen.

from wagtail.wagtailcore.models import Orderable, Page
from modelcluster.fields import ParentalKey

# The abstract model for related links, complete with panels
class RelatedLink(models.Model):

title = models.CharField(max_length=255)
link_external = models.URLField("External link", blank=True)

panels = [

104 Chapter 1. Index

https://docs.djangoproject.com/en/dev/ref/models/fields/
https://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.Field.blank
https://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.Field.blank
https://docs.djangoproject.com/en/dev/ref/models/fields/#editable
https://docs.djangoproject.com/en/dev/ref/models/fields/#editable


Wagtail Documentation, Release 1.6.3

FieldPanel('title'),
FieldPanel('link_external'),

]

class Meta:
abstract = True

# The real model which combines the abstract model, an
# Orderable helper class, and what amounts to a ForeignKey link
# to the model we want to add related links to (BookPage)
class BookPageRelatedLinks(Orderable, RelatedLink):

page = ParentalKey('demo.BookPage', related_name='related_links')

class BookPage(Page):
# ...

content_panels = Page.content_panels + [
InlinePanel('related_links', label="Related Links"),

]

The RelatedLink class is a vanilla Django abstract model. The BookPageRelatedLinks model extends it
with capability for being ordered in the Wagtail interface via the Orderable class as well as adding a page prop-
erty which links the model to the BookPage model we’re adding the related links objects to. Finally, in the panel
definitions for BookPage, we’ll add an InlinePanel to provide an interface for it all. Let’s look again at the
parameters that InlinePanel accepts:

InlinePanel( relation_name, panels=None, label='', help_text='', min_num=None, max_num=None )

The relation_name is the related_name label given to the cluster’s ParentalKey relation. You can add the
panels manually or make them part of the cluster model. label and help_text provide a heading and caption,
respectively, for the Wagtail editor. Finally, min_num and max_num allow you to set the minimum/maximum number
of forms that the user must submit.

Changed in version 1.0: In previous versions, it was necessary to pass the base model as the first parameter to
InlinePanel; this is no longer required.

For another example of using model clusters, see Tagging

For more on django-modelcluster, visit the django-modelcluster github project page.

Model Reference

This document contains reference information for the model classes inside the wagtailcore module.

Page

Database fields
class wagtail.wagtailcore.models.Page

title
(text)

Human-readable title of the page.

slug
(text)

1.4. Reference 105

https://github.com/torchbox/django-modelcluster


Wagtail Documentation, Release 1.6.3

This is used for constructing the page’s URL.

For example: http://domain.com/blog/[my-slug]/

content_type
(foreign key to django.contrib.contenttypes.models.ContentType)

A foreign key to the ContentType object that represents the specific model of this page.

live
(boolean)

A boolean that is set to True if the page is published.

Note: this field defaults to True meaning that any pages that are created programmatically will be pub-
lished by default.

has_unpublished_changes
(boolean)

A boolean that is set to True when the page is either in draft or published with draft changes.

owner
(foreign key to user model)

A foreign key to the user that created the page.

first_published_at
(date/time)

The date/time when the page was first published.

seo_title
(text)

Alternate SEO-crafted title, for use in the page’s <title> HTML tag.

search_description
(text)

SEO-crafted description of the content, used for search indexing. This is also suitable for the page’s
<meta name="description"> HTML tag.

show_in_menus
(boolean)

Toggles whether the page should be included in site-wide menus.

This is used by the in_menu() QuerySet filter.

Methods and properties In addition to the model fields provided, Page has many properties and methods that you
may wish to reference, use, or override in creating your own models. Those listed here are relatively straightforward
to use, but consult the Wagtail source code for a full view of what’s possible.

class wagtail.wagtailcore.models.Page

specific
Return this page in its most specific subclassed form.

specific_class
Return the class that this page would be if instantiated in its most specific form

106 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

url
Return the ‘most appropriate’ URL for referring to this page from the pages we serve, within the Wagtail
backend and actual website templates; this is the local URL (starting with ‘/’) if we’re only running a
single site (i.e. we know that whatever the current page is being served from, this link will be on the same
domain), and the full URL (with domain) if not. Return None if the page is not routable.

full_url
Return the full URL (including protocol / domain) to this page, or None if it is not routable

relative_url(current_site)
Return the ‘most appropriate’ URL for this page taking into account the site we’re currently on; a local
URL if the site matches, or a fully qualified one otherwise. Return None if the page is not routable.

get_site()
Return the Site object that this page belongs to.

get_url_parts()
Determine the URL for this page and return it as a tuple of (site_id, site_root_url,
page_url_relative_to_site_root). Return None if the page is not routable.

This is used internally by the full_url, url, relative_url and get_site properties and meth-
ods; pages with custom URL routing should override this method in order to have those operations return
the custom URLs.

route(request, path_components)

serve(request, *args, **kwargs)

get_context(request, *args, **kwargs)

get_template(request, *args, **kwargs)

preview_modes
A list of (internal_name, display_name) tuples for the modes in which this page can be displayed for
preview/moderation purposes. Ordinarily a page will only have one display mode, but subclasses of Page
can override this - for example, a page containing a form might have a default view of the form, and a
post-submission ‘thankyou’ page

serve_preview(request, mode_name)
Return an HTTP response for use in page previews. Normally this would be equivalent to
self.serve(request), since we obviously want the preview to be indicative of how it looks on the live site.
However, there are a couple of cases where this is not appropriate, and custom behaviour is required:

1) The page has custom routing logic that derives some additional required args/kwargs to be passed to
serve(). The routing mechanism is bypassed when previewing, so there’s no way to know what args we
should pass. In such a case, the page model needs to implement its own version of serve_preview.

2) The page has several different renderings that we would like to be able to see when previewing - for
example, a form page might have one rendering that displays the form, and another rendering to display
a landing page when the form is posted. This can be done by setting a custom preview_modes list on the
page model - Wagtail will allow the user to specify one of those modes when previewing, and pass the
chosen mode_name to serve_preview so that the page model can decide how to render it appropriately.
(Page models that do not specify their own preview_modes list will always receive an empty string as
mode_name.)

Any templates rendered during this process should use the ‘request’ object passed here - this ensures that
request.user and other properties are set appropriately for the wagtail user bar to be displayed. This request
will always be a GET.

get_ancestors(inclusive=False)

get_descendants(inclusive=False)

1.4. Reference 107



Wagtail Documentation, Release 1.6.3

get_siblings(inclusive=True)

search_fields
A list of fields to be indexed by the search engine. See Search docs Indexing extra fields

subpage_types
A whitelist of page models which can be created as children of this page type. For example, a BlogIndex
page might allow a BlogPage as a child, but not a JobPage:

class BlogIndex(Page):
subpage_types = ['mysite.BlogPage', 'mysite.BlogArchivePage']

The creation of child pages can be blocked altogether for a given page by setting it’s subpage_types at-
tribute to an empty array:

class BlogPage(Page):
subpage_types = []

parent_page_types
A whitelist of page models which are allowed as parent page types. For example, a BlogPage may only
allow itself to be created below the BlogIndex page:

class BlogPage(Page):
parent_page_types = ['mysite.BlogIndexPage']

Pages can block themselves from being created at all by setting parent_page_types to an empty array (this
is useful for creating unique pages that should only be created once):

class HiddenPage(Page):
parent_page_types = []

classmethod can_exist_under(parent)
Checks if this page type can exist as a subpage under a parent page instance.

See also: Page.can_create_at() and Page.can_move_to()

classmethod can_create_at(parent)
Checks if this page type can be created as a subpage under a parent page instance.

can_move_to(parent)
Checks if this page instance can be moved to be a subpage of a parent page instance.

password_required_template
Defines which template file should be used to render the login form for Protected pages using this model.
This overrides the default, defined using PASSWORD_REQUIRED_TEMPLATE in your settings. See Pri-
vate pages

is_creatable
Controls if this page can be created through the Wagtail administration. Defaults to True, and is not
inherited by subclasses. This is useful when using multi-table inheritance, to stop the base model from
being created as an actual page.

base_form_class
The form class used as a base for editing Pages of this type in the Wagtail page editor. This at-
tribute can be set on a model to customise the Page editor form. Forms must be a subclass of
WagtailAdminPageForm. See Customising generated forms for more information.

108 Chapter 1. Index

https://docs.djangoproject.com/en/1.8/topics/db/models/#multi-table-inheritance


Wagtail Documentation, Release 1.6.3

Site

The Site model is useful for multi-site installations as it allows an administrator to configure which part of the tree
to use for each hostname that the server responds on.

This configuration is used by the SiteMiddleware middleware class which checks each request against this con-
figuration and appends the Site object to the Django request object.

Database fields
class wagtail.wagtailcore.models.Site

hostname
(text)

This is the hostname of the site, excluding the scheme, port and path.

For example: www.mysite.com

Note: If you’re looking for how to get the root url of a site, use the root_url attribute.

port
(number)

This is the port number that the site responds on.

site_name
(text - optional)

A human-readable name for the site. This is not used by Wagtail itself, but is suitable for use on the site
front-end, such as in <title> elements.

For example: Rod’s World of Birds

root_page
(foreign key to Page)

This is a link to the root page of the site. This page will be what appears at the / URL on the site and
would usually be a homepage.

is_default_site
(boolean)

This is set to True if the site is the default. Only one site can be the default.

The default site is used as a fallback in situations where a site with the required hostname/port couldn’t be
found.

Methods and properties
class wagtail.wagtailcore.models.Site

static find_for_request(request)
Find the site object responsible for responding to this HTTP request object. Try:

•unique hostname first

•then hostname and port

1.4. Reference 109



Wagtail Documentation, Release 1.6.3

•if there is no matching hostname at all, or no matching hostname:port combination, fall back to the
unique default site, or raise an exception

NB this means that high-numbered ports on an extant hostname may still be routed to a different hostname
which is set as the default

root_url
This returns the URL of the site. It is calculated from the hostname and the port fields.

The scheme part of the URL is calculated based on value of the port field:

•80 = http://

•443 = https://

•Everything else will use the http:// scheme and the port will be appended to the end of the host-
name (eg. http://mysite.com:8000/)

static get_site_root_paths()
Return a list of (root_path, root_url) tuples, most specific path first - used to translate url_paths into actual
URLs with hostnames

PageRevision

Every time a page is edited a new PageRevision is created and saved to the database. It can be used to find the
full history of all changes that have been made to a page and it also provides a place for new changes to be kept before
going live.

• Revisions can be created from any Page object by calling its save_revision() method

• The content of the page is JSON-serialised and stored in the content_json field

• You can retrieve a PageRevision as a Page object by calling the as_page_object() method

Database fields
class wagtail.wagtailcore.models.PageRevision

page
(foreign key to Page)

submitted_for_moderation
(boolean)

True if this revision is in moderation

created_at
(date/time)

This is the time the revision was created

user
(foreign key to user model)

This links to the user that created the revision

content_json
(text)

This field contains the JSON content for the page at the time the revision was created

110 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Managers
class wagtail.wagtailcore.models.PageRevision

objects
This manager is used to retrieve all of the PageRevision objects in the database

Example:

PageRevision.objects.all()

submitted_revisions
This manager is used to retrieve all of the PageRevision objects that are awaiting moderator approval

Example:

PageRevision.submitted_revisions.all()

Methods and properties
class wagtail.wagtailcore.models.PageRevision

as_page_object()
This method retrieves this revision as an instance of its Page subclass.

approve_moderation()
Calling this on a revision that’s in moderation will mark it as approved and publish it

reject_moderation()
Calling this on a revision that’s in moderation will mark it as rejected

is_latest_revision()
Returns True if this revision is its page’s latest revision

publish()
Calling this will copy the content of this revision into the live page object. If the page is in draft, it will be
published.

GroupPagePermission

Database fields
class wagtail.wagtailcore.models.GroupPagePermission

group
(foreign key to django.contrib.auth.models.Group)

page
(foreign key to Page)

permission_type
(choice list)

PageViewRestriction

Database fields
class wagtail.wagtailcore.models.PageViewRestriction

1.4. Reference 111



Wagtail Documentation, Release 1.6.3

page
(foreign key to Page)

password
(text)

Orderable (abstract)

Database fields
class wagtail.wagtailcore.models.Orderable

sort_order
(number)

Page QuerySet reference

All models that inherit from Page are given some extra QuerySet methods accessible from their .objects attribute.

Examples

• Selecting only live pages

live_pages = Page.objects.live()

• Selecting published EventPages that are descendants of events_index

events = EventPage.objects.live().descendant_of(events_index)

• Getting a list of menu items

# This gets a QuerySet of live children of the homepage with ``show_in_menus`` set
menu_items = homepage.get_children().live().in_menu()

Reference

class wagtail.wagtailcore.query.PageQuerySet(model=None, query=None, using=None,
hints=None)

live()
This filters the QuerySet to only contain published pages.

Example:

published_pages = Page.objects.live()

not_live()
This filters the QuerySet to only contain unpublished pages.

Example:

unpublished_pages = Page.objects.not_live()

112 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

in_menu()
This filters the QuerySet to only contain pages that are in the menus.

Example:

# Build a menu from live pages that are children of the homepage
menu_items = homepage.get_children().live().in_menu()

Note: To put your page in menus, set the show_in_menus flag to true:

# Add 'my_page' to the menu
my_page.show_in_menus = True

not_in_menu()
This filters the QuerySet to only contain pages that are not in the menus.

page(other)
This filters the QuerySet so it only contains the specified page.

Example:

# Append an extra page to a QuerySet
new_queryset = old_queryset | Page.objects.page(page_to_add)

not_page(other)
This filters the QuerySet so it doesn’t contain the specified page.

Example:

# Remove a page from a QuerySet
new_queryset = old_queryset & Page.objects.not_page(page_to_remove)

descendant_of(other, inclusive=False)
This filters the QuerySet to only contain pages that descend from the specified page.

If inclusive is set to True, it will also contain the page itself (instead of just its descendants).

Example:

# Get EventPages that are under the special_events Page
special_events = EventPage.objects.descendant_of(special_events_index)

# Alternative way
special_events = special_events_index.get_descendants()

not_descendant_of(other, inclusive=False)
This filters the QuerySet to not contain any pages that descend from the specified page.

If inclusive is set to True, it will also exclude the specified page.

Example:

# Get EventPages that are not under the archived_events Page
non_archived_events = EventPage.objects.not_descendant_of(archived_events_index)

child_of(other)
This filters the QuerySet to only contain pages that are direct children of the specified page.

Example:

1.4. Reference 113



Wagtail Documentation, Release 1.6.3

# Get a list of sections
sections = Page.objects.child_of(homepage)

# Alternative way
sections = homepage.get_children()

not_child_of(other)
This filters the QuerySet to not contain any pages that are direct children of the specified page.

ancestor_of(other, inclusive=False)
This filters the QuerySet to only contain pages that are ancestors of the specified page.

If inclusive is set to True, it will also include the specified page.

Example:

# Get the current section
current_section = Page.objects.ancestor_of(current_page).child_of(homepage).first()

# Alternative way
current_section = current_page.get_ancestors().child_of(homepage).first()

not_ancestor_of(other, inclusive=False)
This filters the QuerySet to not contain any pages that are ancestors of the specified page.

If inclusive is set to True, it will also exclude the specified page.

Example:

# Get the other sections
other_sections = Page.objects.not_ancestor_of(current_page).child_of(homepage)

parent_of(other)
This filters the QuerySet to only contain the parent of the specified page.

not_parent_of(other)
This filters the QuerySet to exclude the parent of the specified page.

sibling_of(other, inclusive=True)
This filters the QuerySet to only contain pages that are siblings of the specified page.

By default, inclusive is set to True so it will include the specified page in the results.

If inclusive is set to False, the page will be excluded from the results.

Example:

# Get list of siblings
siblings = Page.objects.sibling_of(current_page)

# Alternative way
siblings = current_page.get_siblings()

not_sibling_of(other, inclusive=True)
This filters the QuerySet to not contain any pages that are siblings of the specified page.

By default, inclusive is set to True so it will exclude the specified page from the results.

If inclusive is set to False, the page will be included in the results.

public()
This filters the QuerySet to only contain pages that are not in a private section

See: Private pages

114 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Note: This doesn’t filter out unpublished pages. If you want to only have published public pages, use
.live().public()

Example:

# Find all the pages that are viewable by the public
all_pages = Page.objects.live().public()

not_public()
This filters the QuerySet to only contain pages that are in a private section

search(query_string, fields=None, operator=None, order_by_relevance=True, backend=u’default’)
This runs a search query on all the items in the QuerySet

See: Searching QuerySets

Example:

# Search future events
results = EventPage.objects.live().filter(date__gt=timezone.now()).search("Hello")

type(model)
This filters the QuerySet to only contain pages that are an instance of the specified model (including
subclasses).

Example:

# Find all pages that are of type AbstractEmailForm, or a descendant of it
form_pages = Page.objects.type(AbstractEmailForm)

not_type(model)
This filters the QuerySet to not contain any pages which are an instance of the specified model.

exact_type(model)
This filters the QuerySet to only contain pages that are an instance of the specified model (matching the
model exactly, not subclasses).

Example:

# Find all pages that are of the exact type EventPage
event_pages = Page.objects.exact_type(EventPage)

not_exact_type(model)
This filters the QuerySet to not contain any pages which are an instance of the specified model (matching
the model exactly, not subclasses).

Example:

# Find all pages that are not of the exact type EventPage (but may be a subclass)
non_event_pages = Page.objects.not_exact_type(EventPage)

unpublish()
This unpublishes all live pages in the QuerySet.

Example:

# Unpublish current_page and all of its children
Page.objects.descendant_of(current_page, inclusive=True).unpublish()

specific()
This efficiently gets all the specific pages for the queryset, using the minimum number of queries.

1.4. Reference 115



Wagtail Documentation, Release 1.6.3

Example:

# Get the specific instance of all children of the hompage,
# in a minimum number of database queries.
homepage.get_children().specific()

See also: Page.specific

Contrib modules

Wagtail ships with a variety of extra optional modules.

Site settings

You can define settings for your site that are editable by administrators in the Wagtail admin. These settings can be
accessed in code, as well as in templates.

To use these settings, you must add wagtail.contrib.settings to your INSTALLED_APPS:

INSTALLED_APPS += [
'wagtail.contrib.settings',

]

Defining settings

Create a model that inherits from BaseSetting, and register it using the register_setting decorator:

from wagtail.contrib.settings.models import BaseSetting, register_setting

@register_setting
class SocialMediaSettings(BaseSetting):

facebook = models.URLField(
help_text='Your Facebook page URL')

instagram = models.CharField(
max_length=255, help_text='Your Instagram username, without the @')

trip_advisor = models.URLField(
help_text='Your Trip Advisor page URL')

youtube = models.URLField(
help_text='Your YouTube channel or user account URL')

A ‘Social media settings’ link will appear in the Wagtail admin ‘Settings’ menu.

Edit handlers Settings use edit handlers much like the rest of Wagtail. Add a panels setting to your model
defining all the edit handlers required:

@register_setting
class ImportantPages(BaseSetting):

donate_page = models.ForeignKey(
'wagtailcore.Page', null=True, on_delete=models.SET_NULL)

sign_up_page = models.ForeignKey(
'wagtailcore.Page', null=True, on_delete=models.SET_NULL)

panels = [
PageChooserPanel('donate_page'),

116 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

PageChooserPanel('sign_up_page'),
]

Appearance You can change the label used in the menu by changing the verbose_name of your model.

You can add an icon to the menu by passing an ‘icon’ argument to the register_setting decorator:

@register_setting(icon='placeholder')
class SocialMediaSettings(BaseSetting):

class Meta:
verbose_name = 'social media accounts'

...

For a list of all available icons, please see the UI Styleguide.

Using the settings

Settings are designed to be used both in Python code, and in templates.

Using in Python If access to a setting is required in the code, the for_site() method will retrieve the setting for
the supplied site:

def view(request):
social_media_settings = SocialMediaSettings.for_site(request.site)
...

Using in Django templates Add the settings context processor to your settings:

TEMPLATES = [
{

...

'OPTIONS': {
'context_processors': [

...

'wagtail.contrib.settings.context_processors.settings',
]

}
}

]

Then access the settings through {{ settings }}:

{{ settings.app_label.SocialMediaSettings.instagram }}

Note: Replace app_label with the label of the app containing your settings model.

If you are not in a RequestContext, then context processors will not have run, and the settings variable will
not be availble. To get the settings, use the provided {% get_settings %} template tag. If a request is in
the template context, but for some reason it is not a RequestContext, just use {% get_settings %}:

1.4. Reference 117

https://docs.djangoproject.com/en/dev/ref/models/options/#verbose-name


Wagtail Documentation, Release 1.6.3

{% load wagtailsettings_tags %}
{% get_settings %}
{{ settings.app_label.SocialMediaSettings.instagram }}

If there is no request available in the template at all, you can use the settings for the default Wagtail site instead:

{% load wagtailsettings_tags %}
{% get_settings use_default_site=True %}
{{ settings.app_label.SocialMediaSettings.instagram }}

Note: You can not reliably get the correct settings instance for the current site from this template tag if the request
object is not available. This is only relevant for multisite instances of Wagtail.

Using in Jinja2 templates Add wagtail.contrib.settings.jinja2tags.settings extension to your
Jinja2 settings:

TEMPLATES = [
# ...
{

'BACKEND': 'django.template.backends.jinja2.Jinja2',
'APP_DIRS': True,
'OPTIONS': {

'extensions': [
# ...
'wagtail.contrib.settings.jinja2tags.settings',

],
},

}
]

Then access the settings through the settings() template function:

{{ settings("app_label.SocialMediaSettings").twitter }}

Note: Replace app_label with the label of the app containing your settings model.

This will look for a request variable in the template context, and find the correct site to use from that. If for some
reason you do not have a request available, you can instead use the settings defined for the default site:

{{ settings("app_label.SocialMediaSettings", use_default_site=True).instagram }}

You can store the settings instance in a variable to save some typing, if you have to use multiple values from one
model:

{% with social_settings=settings("app_label.SocialMediaSettings") %}
Follow us on Twitter at @{{ social_settings.twitter }},
or Instagram at @{{ social_settings.Instagram }}.

{% endwith %}

Or, alternately, using the set tag:

{% set social_settings=settings("app_label.SocialMediaSettings") %}

118 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Form builder

The wagtailforms module allows you to set up single-page forms, such as a ‘Contact us’ form, as pages of a
Wagtail site. It provides a set of base models that site implementers can extend to create their own FormPage type
with their own site-specific templates. Once a page type has been set up in this way, editors can build forms within
the usual page editor, consisting of any number of fields. Form submissions are stored for later retrieval through a
new ‘Forms’ section within the Wagtail admin interface; in addition, they can be optionally e-mailed to an address
specified by the editor.

Usage

Add wagtail.wagtailforms to your INSTALLED_APPS:

INSTALLED_APPS = [
...
'wagtail.wagtailforms',

]

Within the models.py of one of your apps, create a model that extends
wagtailforms.models.AbstractEmailForm:

from modelcluster.fields import ParentalKey
from wagtail.wagtailadmin.edit_handlers import (FieldPanel, FieldRowPanel,

InlinePanel, MultiFieldPanel)
from wagtail.wagtailcore.fields import RichTextField
from wagtail.wagtailforms.models import AbstractEmailForm, AbstractFormField

class FormField(AbstractFormField):
page = ParentalKey('FormPage', related_name='form_fields')

class FormPage(AbstractEmailForm):
intro = RichTextField(blank=True)
thank_you_text = RichTextField(blank=True)

content_panels = AbstractEmailForm.content_panels + [
FieldPanel('intro', classname="full"),
InlinePanel('form_fields', label="Form fields"),
FieldPanel('thank_you_text', classname="full"),
MultiFieldPanel([

FieldRowPanel([
FieldPanel('from_address', classname="col6"),
FieldPanel('to_address', classname="col6"),

]),
FieldPanel('subject'),

], "Email"),
]

AbstractEmailForm defines the fields to_address, from_address and subject, and expects
form_fields to be defined. Any additional fields are treated as ordinary page content - note that FormPage
is responsible for serving both the form page itself and the landing page after submission, so the model definition
should include all necessary content fields for both of those views.

If you do not want your form page type to offer form-to-email functionality, you can inherit from AbstractForm
instead of AbstractEmailForm, and omit the to_address, from_address and subject fields from the
content_panels definition.

You now need to create two templates named form_page.html and form_page_landing.html (where
form_page is the underscore-formatted version of the class name). form_page.html differs from a standard

1.4. Reference 119



Wagtail Documentation, Release 1.6.3

Wagtail template in that it is passed a variable form, containing a Django Form object, in addition to the usual page
variable. A very basic template for the form would thus be:

{% load wagtailcore_tags %}
<html>

<head>
<title>{{ page.title }}</title>

</head>
<body>

<h1>{{ page.title }}</h1>
{{ page.intro|richtext }}
<form action="{% pageurl page %}" method="POST">

{% csrf_token %}
{{ form.as_p }}
<input type="submit">

</form>
</body>

</html>

form_page_landing.html is a regular Wagtail template, displayed after the user makes a successful form sub-
mission.

Static site generator

Warning: django-medusa is no longer maintained, and is incompatible with Django 1.8 and above; the informa-
tion below is retained for historical reference only. An alternative module based on the django-bakery package is
available as a third-party contribution: https://github.com/mhnbcu/wagtailbakery

This document describes how to render your Wagtail site into static HTML files on your local file system, Amazon S3
or Google App Engine, using django medusa and the wagtail.contrib.wagtailmedusa module.

Installing django-medusa

First, install django-medusa and django-sendfile from pip:

pip install django-medusa django-sendfile

Then add django_medusa and wagtail.contrib.wagtailmedusa to INSTALLED_APPS:

INSTALLED_APPS = [
...
'django_medusa',
'wagtail.contrib.wagtailmedusa',

]

Define MEDUSA_RENDERER_CLASS, MEDUSA_DEPLOY_DIR and SENDFILE_BACKEND in settings:

MEDUSA_RENDERER_CLASS = 'django_medusa.renderers.DiskStaticSiteRenderer'
MEDUSA_DEPLOY_DIR = os.path.join(BASE_DIR, 'build')
SENDFILE_BACKEND = 'sendfile.backends.simple'

Rendering

To render a site, run ./manage.py staticsitegen. This will render the entire website and place the HTML
in a folder called medusa_output. The static and media folders need to be copied into this folder manually after

120 Chapter 1. Index

https://github.com/datadesk/django-bakery
https://github.com/mhnbcu/wagtailbakery
https://github.com/mtigas/django-medusa


Wagtail Documentation, Release 1.6.3

the rendering is complete. This feature inherits django-medusa‘s ability to render your static site to Amazon S3
or Google App Engine; see the medusa docs for configuration details.

To test, open the medusa_output folder in a terminal and run python -m SimpleHTTPServer or python3
-m http.server respectively.

Advanced topics

GET parameters Pages which require GET parameters (e.g. for pagination) don’t generate a suitable file name for
the generated HTML files.

Wagtail provides a mixin (wagtail.contrib.wagtailroutablepage.models.RoutablePageMixin)
which allows you to embed a Django URL configuration into a page. This allows you to give the subpages a URL like
/page/1/ which work well with static site generation.

Example:

from wagtail.contrib.wagtailroutablepage.models import RoutablePageMixin, route

class BlogIndex(Page, RoutablePageMixin):
...

@route(r'^$', name='main')
@route(r'^page/(?P<page>\d+)/$', name='page')
def serve_page(self, request, page=1):

...

Then in the template, you can use the {% routablepageurl %} tag to link between the pages:

{% load wagtailroutablepage_tags %}

{% if results.has_previous %}
<a href="{% routablepageurl page 'page' results.previous_page_number %}">Previous page</a>

{% else %}

{% if results.has_next %}
<a href="{% routablepageurl page 'page' results.next_page_number %}">Next page</a>

{% else %}

Next, you have to tell the wagtailmedusa module about your custom routing...

Rendering pages which use custom routing For page types that override the route method, we need to let
django-medusa know which URLs it responds on. This is done by overriding the get_static_site_paths
method to make it yield one string per URL path.

For example, the BlogIndex above would need to yield one URL for each page of results:

def get_static_site_paths(self):
# Get page count
page_count = ...

# Yield a path for each page
for page in range(page_count):

yield '/%d/' % (page + 1)

# Yield from superclass

1.4. Reference 121

https://github.com/mtigas/django-medusa/blob/master/README.markdown


Wagtail Documentation, Release 1.6.3

for path in super(BlogIndex, self).get_static_site_paths():
yield path

Sitemap generator

This document describes how to create XML sitemaps for your Wagtail website using the
wagtail.contrib.wagtailsitemaps module.

Basic configuration

You firstly need to add "wagtail.contrib.wagtailsitemaps" to INSTALLED_APPS in your Django set-
tings file:

INSTALLED_APPS = [
...

"wagtail.contrib.wagtailsitemaps",
]

Then, in urls.py, you need to add a link to the wagtail.contrib.wagtailsitemaps.views.sitemap
view which generates the sitemap:

from wagtail.contrib.wagtailsitemaps.views import sitemap

urlpatterns = [
...

url('^sitemap\.xml$', sitemap),
]

You should now be able to browse to /sitemap.xml and see the sitemap working. By default, all published pages
in your website will be added to the site map.

Setting the hostname

By default, the sitemap uses the hostname defined in the Wagtail Admin’s Sites area. If your default site is called
localhost, then URLs in the sitemap will look like:

<url>
<loc>http://localhost/about/</loc>
<lastmod>2015-09-26</lastmod>

</url>

For tools like Google Search Tools to properly index your site, you need to set a valid, crawlable hostname. If you
change the site’s hostname from localhost to mysite.com, sitemap.xml will contain the correct URLs:

<url>
<loc>http://mysite.com/about/</loc>
<lastmod>2015-09-26</lastmod>

</url>

Find out more about working with Sites </reference/pages/model_reference.html?highlight=site#site>.

122 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Customising

URLs The Page class defines a get_sitemap_urls method which you can override to customise sitemaps per
Page instance. This method must return a list of dictionaries, one dictionary per URL entry in the sitemap. You can
exclude pages from the sitemap by returning an empty list.

Each dictionary can contain the following:

• location (required) - This is the full URL path to add into the sitemap.

• lastmod - A python date or datetime set to when the page was last modified.

• changefreq

• priority

You can add more but you will need to override the wagtailsitemaps/sitemap.xml template in order for
them to be displayed in the sitemap.

Cache By default, sitemaps are cached for 100 minutes. You can change this by setting
WAGTAILSITEMAPS_CACHE_TIMEOUT in your Django settings to the number of seconds you would like
the cache to last for.

Frontend cache invalidator

Changed in version 0.7: Multiple backend support added Cloudflare support added

Many websites use a frontend cache such as Varnish, Squid or Cloudflare to gain extra performance. The downside of
using a frontend cache though is that they don’t respond well to updating content and will often keep an old version of
a page cached after it has been updated.

This document describes how to configure Wagtail to purge old versions of pages from a frontend cache whenever a
page gets updated.

Setting it up

Firstly, add "wagtail.contrib.wagtailfrontendcache" to your INSTALLED_APPS:

•• INSTALLED_APPS = [
...

"wagtail.contrib.wagtailfrontendcache"
]

Changed in version 0.8: Signal handlers are now automatically registered

The wagtailfrontendcache module provides a set of signal handlers which will automatically purge the
cache whenever a page is published or deleted. These signal handlers are automatically registered when the
wagtail.contrib.wagtailfrontendcache app is loaded.

Varnish/Squid Add a new item into the WAGTAILFRONTENDCACHE setting and set the BACKEND parameter to
wagtail.contrib.wagtailfrontendcache.backends.HTTPBackend. This backend requires an extra
parameter LOCATION which points to where the cache is running (this must be a direct connection to the server and
cannot go through another proxy).

1.4. Reference 123



Wagtail Documentation, Release 1.6.3

# settings.py

WAGTAILFRONTENDCACHE = {
'varnish': {

'BACKEND': 'wagtail.contrib.wagtailfrontendcache.backends.HTTPBackend',
'LOCATION': 'http://localhost:8000',

},
}

Finally, make sure you have configured your frontend cache to accept PURGE requests:

• Varnish

• Squid

Cloudflare Firstly, you need to register an account with Cloudflare if you haven’t already got one. You can do this
here: Cloudflare Sign up

Add an item into the WAGTAILFRONTENDCACHE and set the BACKEND parameter to
wagtail.contrib.wagtailfrontendcache.backends.CloudflareBackend. This backend
requires two extra parameters, EMAIL (your Cloudflare account email) and TOKEN (your API token from Cloudflare).

# settings.py

WAGTAILFRONTENDCACHE = {
'cloudflare': {

'BACKEND': 'wagtail.contrib.wagtailfrontendcache.backends.CloudflareBackend',
'EMAIL': 'your-cloudflare-email-address@example.com',
'TOKEN': 'your cloudflare api token',

},
}

Advanced usage

Invalidating more than one URL per page By default, Wagtail will only purge one URL per page. If your page
has more than one URL to be purged, you will need to override the get_cached_paths method on your page type.

class BlogIndexPage(Page):
def get_blog_items(self):

# This returns a Django paginator of blog items in this section
return Paginator(self.get_children().live().type(BlogPage), 10)

def get_cached_paths(self):
# Yield the main URL
yield '/'

# Yield one URL per page in the paginator to make sure all pages are purged
for page_number in range(1, self.get_blog_items().num_pages + 1):

yield '/?page=' + str(page_number)

Invalidating index pages Another problem is pages that list other pages (such as a blog index) will not be purged
when a blog entry gets added, changed or deleted. You may want to purge the blog index page so the updates are
added into the listing quickly.

This can be solved by using the purge_page_from_cache utility function which can be found in the
wagtail.contrib.wagtailfrontendcache.utils module.

124 Chapter 1. Index

https://www.varnish-cache.org/docs/3.0/tutorial/purging.html
http://wiki.squid-cache.org/SquidFaq/OperatingSquid#How_can_I_purge_an_object_from_my_cache.3F
https://www.cloudflare.com/sign-up


Wagtail Documentation, Release 1.6.3

Let’s take the the above BlogIndexPage as an example. We need to register a signal handler to run when one of the
BlogPages get updated/deleted. This signal handler should call the purge_page_from_cache function on all
BlogIndexPages that contain the BlogPage being updated/deleted.

# models.py
from django.dispatch import receiver
from django.db.models.signals import pre_delete

from wagtail.wagtailcore.signals import page_published
from wagtail.contrib.wagtailfrontendcache.utils import purge_page_from_cache

...

def blog_page_changed(blog_page):
# Find all the live BlogIndexPages that contain this blog_page
for blog_index in BlogIndexPage.objects.live():

if blog_page in blog_index.get_blog_items().object_list:
# Purge this blog index
purge_page_from_cache(blog_index)

@receiver(page_published, sender=BlogPage):
def blog_published_handler(instance):

blog_page_changed(instance)

@receiver(pre_delete, sender=BlogPage)
def blog_deleted_handler(instance):

blog_page_changed(instance)

Invalidating individual URLs wagtail.contrib.wagtailfrontendcache.utils provides another
function called purge_url_from_cache. As the name suggests, this purges an individual URL from the cache.

For example, this could be useful for purging a single page of blogs:

from wagtail.contrib.wagtailfrontendcache.utils import purge_url_from_cache

# Purge the first page of the blog index
purge_url_from_cache(blog_index.url + '?page=1')

RoutablePageMixin

The RoutablePageMixin mixin provides a convenient way for a page to respond on multiple sub-URLs with
different views. For example, a blog section on a site might provide several different types of index page at URLs
like /blog/2013/06/, /blog/authors/bob/, /blog/tagged/python/, all served by the same page in-
stance.

A Page using RoutablePageMixin exists within the page tree like any other page, but URL paths underneath it
are checked against a list of patterns. If none of the patterns match, control is passed to subpages as usual (or failing
that, a 404 error is thrown).

1.4. Reference 125



Wagtail Documentation, Release 1.6.3

The basics

To use RoutablePageMixin, you need to make your class inherit from both
wagtail.contrib.wagtailroutablepage.models.RoutablePageMixin and
wagtail.wagtailcore.models.Page, then define some view methods and decorate them with
wagtail.contrib.wagtailroutablepage.models.route.

Here’s an example of an EventPage with three views:

from wagtail.wagtailcore.models import Page
from wagtail.contrib.wagtailroutablepage.models import RoutablePageMixin, route

class EventPage(RoutablePageMixin, Page):
...

@route(r'^$')
def current_events(self, request):

"""
View function for the current events page
"""
...

@route(r'^past/$')
def past_events(self, request):

"""
View function for the past events page
"""
...

# Multiple routes!
@route(r'^year/(\d+)/$')
@route(r'^year/current/$')
def events_for_year(self, request, year=None):

"""
View function for the events for year page
"""
...

Reversing URLs

RoutablePageMixin adds a reverse_subpage()method to your page model which you can use for reversing
URLs. For example:

# The URL name defaults to the view method name.
>>> event_page.reverse_subpage('events_for_year', args=(2015, ))
'year/2015/'

This method only returns the part of the URL within the page. To get the full URL, you must append it to the values
of either the url or the full_url attribute on your page:

>>> event_page.url + event_page.reverse_subpage('events_for_year', args=(2015, ))
'/events/year/2015/'

>>> event_page.full_url + event_page.reverse_subpage('events_for_year', args=(2015, ))
'http://example.com/events/year/2015/'

126 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Changing route names The route name defaults to the name of the view. You can override this name with the name
keyword argument on @route:

from wagtail.wagtailcore.models import Page
from wagtail.contrib.wagtailroutablepage.models import RoutablePageMixin, route

class EventPage(RoutablePageMixin, Page):
...

@route(r'^year/(\d+)/$', name='year')
def events_for_year(self, request, year):

"""
View function for the events for year page
"""
...

>>> event_page.reverse_subpage('year', args=(2015, ))
'/events/year/2015/'

The RoutablePageMixin class

class wagtail.contrib.wagtailroutablepage.models.RoutablePageMixin
This class can be mixed in to a Page model, allowing extra routes to be added to it.

classmethod get_subpage_urls()

resolve_subpage(path)
This method takes a URL path and finds the view to call.

Example:

view, args, kwargs = page.resolve_subpage('/past/')
response = view(request, *args, **kwargs)

reverse_subpage(name, args=None, kwargs=None)
This method takes a route name/arguments and returns a URL path.

Example:

url = page.url + page.reverse_subpage('events_for_year', kwargs={'year': '2014'})

The routablepageurl template tag

wagtail.contrib.wagtailroutablepage.templatetags.wagtailroutablepage_tags.routablepageurl(context,
page,
url_name,
*args,
**kwargs)

routablepageurl is similar to pageurl, but works with RoutablePages. It behaves like a hybrid
between the built-in reverse, and pageurl from Wagtail.

page is the RoutablePage that URLs will be generated from.

url_name is a URL name defined in page.subpage_urls.

1.4. Reference 127



Wagtail Documentation, Release 1.6.3

Positional arguments and keyword arguments should be passed as normal positional arguments and keyword
arguments.

Example:

{% load wagtailroutablepage_tags %}

{% routablepageurl page "feed" %}
{% routablepageurl page "archive" 2014 08 14 %}
{% routablepageurl page "food" foo="bar" baz="quux" %}

Wagtail API

The wagtailapi module can be used to create a read-only, JSON-based API for public Wagtail content.

There are three endpoints to the API:

• Pages: /api/v1/pages/

• Images: /api/v1/images/

• Documents: /api/v1/documents/

See Wagtail API Installation and Wagtail API Configuration if you’re looking to add this module to your Wagtail site.

See Wagtail API Usage Guide for documentation on the API.

Index

Wagtail API Installation To install, add wagtail.contrib.wagtailapi and rest_framework to
INSTALLED_APPS in your Django settings and configure a URL for it in urls.py:

# settings.py

INSTALLED_APPS = [
...
'wagtail.contrib.wagtailapi',
'rest_framework',

]

# urls.py

from wagtail.contrib.wagtailapi import urls as wagtailapi_urls

urlpatterns = [
...
url(r'^api/', include(wagtailapi_urls)),

]

Wagtail API Configuration

Settings WAGTAILAPI_BASE_URL (required when using frontend cache invalidation)

This is used in two places, when generating absolute URLs to document files and invalidating the cache.

Generating URLs to documents will fall back the the current request’s hostname if this is not set. Cache invalidation
cannot do this, however, so this setting must be set when using this module alongside the wagtailfrontendcache
module.

128 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

WAGTAILAPI_SEARCH_ENABLED (default: True)

Setting this to false will disable full text search. This applies to all endpoints.

WAGTAILAPI_LIMIT_MAX (default: 20)

This allows you to change the maximum number of results a user can request at a time. This applies to all endpoints.

Adding more fields to the pages endpoint By default, the pages endpoint only includes the id, title and type
fields in both the listing and detail views.

You can add more fields to the pages endpoint by setting an attribute called api_fields to a list of field names:

class BlogPage(Page):
posted_by = models.CharField()
posted_at = models.DateTimeField()
content = RichTextField()

api_fields = ['posted_by', 'posted_at', 'content']

This list also supports child relations (which will be nested inside the returned JSON document):

class BlogPageRelatedLink(Orderable):
page = ParentalKey('BlogPage', related_name='related_links')
link = models.URLField()

api_fields = ['link']

class BlogPage(Page):
posted_by = models.CharField()
posted_at = models.DateTimeField()
content = RichTextField()

api_fields = ['posted_by', 'posted_at', 'content', 'related_links']

Frontend cache invalidation If you have a Varnish, Squid or Cloudflare instance in front of your API, the
wagtailapi module can automatically invalidate cached responses for you whenever they are updated in the
database.

To enable it, firstly configure the wagtail.contrib.wagtailfrontendcache module within your project
(see [Wagtail frontend cache docs](http://docs.wagtail.io/en/latest/contrib_components/frontendcache.html) for more
information).

Then make sure that the WAGTAILAPI_BASE_URL setting is set correctly (Example: WAGTAILAPI_BASE_URL
= ’http://api.mysite.com’).

Then finally, switch it on by setting WAGTAILAPI_USE_FRONTENDCACHE to True.

Wagtail API Usage Guide

Listing views Performing a GET request against one of the endpoints will get you a listing of objects in that endpoint.
The response will look something like this:

GET /api/v1/endpoint_name/

HTTP 200 OK
Content-Type: application/json

1.4. Reference 129

http://docs.wagtail.io/en/latest/contrib_components/frontendcache.html


Wagtail Documentation, Release 1.6.3

{
"meta": {

"total_count": "total number of results"
},
"endpoint_name": [

{
"id": 1,
"meta": {

"type": "app_name.ModelName",
"detail_url": "http://api.example.com/api/v1/endpoint_name/1/"

},
"field": "value"

},
{

"id": 2,
"meta": {

"type": "app_name.ModelName",
"detail_url": "http://api.example.com/api/v1/endpoint_name/2/"

},
"field": "different value"

}
]

}

This is the basic structure of all of the listing views. They all have a meta section with a total_count variable
and a listing of things.

Detail views All of the endpoints also contain a “detail” view which returns information on an individual object.
This view is always accessed by appending the id of the object to the URL.

The pages endpoint This endpoint includes all live pages in your site that have not been put in a private section.

The listing view (/api/v1/pages/) This is what a typical response from a GET request to this listing would
look like:

GET /api/v1/pages/

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 2
},
"pages": [

{
"id": 2,
"meta": {

"type": "demo.HomePage",
"detail_url": "http://api.example.com/api/v1/pages/2/"

},
"title": "Homepage"

},
{

"id": 3,

130 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

"meta": {
"type": "demo.BlogIndexPage",
"detail_url": "http://api.example.com/api/v1/pages/3/"

},
"title": "Blog"

}
]

}

Each page object contains the id, a meta section and the fields with their values.

meta This section is used to hold “metadata” fields which aren’t fields in the database. Wagtail API adds two by
default:

• type - The app label/model name of the object

• detail_url - A URL linking to the detail view for this object

Selecting a page type Most Wagtail sites are made up of multiple different types of page that each have their own
specific fields. In order to view/filter/order on fields specific to one page type, you must select that page type using the
type query parameter.

The type query parameter must be set to the Pages model name in the format: app_label.ModelName.

GET /api/v1/pages/?type=demo.BlogPage

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 3
},
"pages": [

{
"id": 4,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/4/"

},
"title": "My blog 1"

},
{

"id": 5,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/5/"

},
"title": "My blog 2"

},
{

"id": 6,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/6/"

},
"title": "My blog 3"

}

1.4. Reference 131



Wagtail Documentation, Release 1.6.3

]
}

Specifying a list of fields to return As you can see, we still only get the title field, even though we have selected
a type. That’s because listing pages require you to explicitly tell it what extra fields you would like to see. You can do
this with the fields query parameter.

Just set fields to a command-separated list of field names that you would like to use.

GET /api/v1/pages/?type=demo.BlogPage&fields=title,date_posted,feed_image

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 3
},
"pages": [

{
"id": 4,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/4/"

},
"title": "My blog 1",
"date_posted": "2015-01-23",
"feed_image": {

"id": 1,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/1/"

}
}

},
{

"id": 5,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/5/"

},
"title": "My blog 2",
"date_posted": "2015-01-24",
"feed_image": {

"id": 2,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/2/"

}
}

},
{

"id": 6,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/6/"

},

132 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

"title": "My blog 3",
"date_posted": "2015-01-25",
"feed_image": {

"id": 3,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/3/"

}
}

}
]

}

We now have enough information to make a basic blog listing with a feed image and date that the blog was posted.

Filtering on fields Exact matches on field values can be done by using a query parameter with the same name as the
field. Any pages with the field that exactly matches the value of this parameter will be returned.

GET /api/v1/pages/?type=demo.BlogPage&fields=title,date_posted&date_posted=2015-01-24

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 1
},
"pages": [

{
"id": 5,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/5/"

},
"title": "My blog 2",
"date_posted": "2015-01-24",

}
]

}

Filtering by section of the tree It is also possible to filter the listing to only include pages with a particular parent
or ancestor. This is useful if you have multiple blogs on your site and only want to view the contents of one of them.

child_of

Filters the listing to only include direct children of the specified page.

For example, to get all the pages that are direct children of page 7.

GET /api/v1/pages/?child_of=7

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 1

1.4. Reference 133



Wagtail Documentation, Release 1.6.3

},
"pages": [

{
"id": 4,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/4/"

},
"title": "Other blog 1"

}
]

}

descendant_of

New in version 1.1.

Filters the listing to only include descendants of the specified page.

For example, to get all pages underneath the homepage:

GET /api/v1/pages/?descendant_of=2

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 1
},
"pages": [

{
"id": 3,
"meta": {

"type": "demo.BlogIndexPage",
"detail_url": "http://api.example.com/api/v1/pages/3/"

},
"title": "Blog"

},
{

"id": 4,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/4/"

},
"title": "My blog 1",

},
{

"id": 5,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/5/"

},
"title": "My blog 2",

},
{

"id": 6,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/6/"

134 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

},
"title": "My blog 3",

}
]

}

Ordering Like filtering, it is also possible to order on database fields. The endpoint accepts a query parameter called
order which should be set to the field name to order by. Field names can be prefixed with a - to reverse the ordering.
It is also possible to order randomly by setting this parameter to random.

GET /api/v1/pages/?type=demo.BlogPage&fields=title,date_posted,feed_image&order=-date_posted

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 3
},
"pages": [

{
"id": 6,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/6/"

},
"title": "My blog 3",
"date_posted": "2015-01-25",
"feed_image": {

"id": 3,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/3/"

}
}

},
{

"id": 5,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/5/"

},
"title": "My blog 2",
"date_posted": "2015-01-24",
"feed_image": {

"id": 2,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/2/"

}
}

},
{

"id": 4,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/4/"

1.4. Reference 135



Wagtail Documentation, Release 1.6.3

},
"title": "My blog 1",
"date_posted": "2015-01-23",
"feed_image": {

"id": 1,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/1/"

}
}

}
]

}

Pagination Pagination is done using two query parameters called limit and offset. limit sets the number of
results to return and offset is the index of the first result to return. The default and maximum value for limit is
20. The maximum value can be changed using the WAGTAILAPI_LIMIT_MAX setting.

GET /api/v1/pages/?limit=1&offset=1

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 2
},
"pages": [

{
"id": 3,
"meta": {

"type": "demo.BlogIndexPage",
"detail_url": "http://api.example.com/api/v1/pages/3/"

},
"title": "Blog"

}
]

}

Pagination will not change the total_count value in the meta.

Searching To perform a full-text search, set the search parameter to the query string you would like to search on.

GET /api/v1/pages/?search=Blog

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 3
},
"pages": [

{
"id": 3,
"meta": {

"type": "demo.BlogIndexPage",

136 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

"detail_url": "http://api.example.com/api/v1/pages/3/"
},
"title": "Blog"

},
{

"id": 4,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/4/"

},
"title": "My blog 1",

},
{

"id": 5,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/5/"

},
"title": "My blog 2",

},
{

"id": 6,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/6/"

},
"title": "My blog 3",

}
]

}

The results are ordered by relevance. It is not possible to use the order parameter with a search query.

If your Wagtail site is using Elasticsearch, you do not need to select a type to access specific fields. This will search
anything that’s defined in the models’ search_fields.

The detail view (/api/v1/pages/{id}/) This view gives you access to all of the details for a particular page.

GET /api/v1/pages/6/

HTTP 200 OK
Content-Type: application/json

{
"id": 6,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/6/"

},
"parent": {

"id": 3,
"meta": {

"type": "demo.BlogIndexPage",
"detail_url": "http://api.example.com/api/v1/pages/3/"

}
},
"title": "My blog 3",
"date_posted": "2015-01-25",

1.4. Reference 137



Wagtail Documentation, Release 1.6.3

"feed_image": {
"id": 3,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/3/"

}
},
"related_links": [

{
"title": "Other blog page",
"page": {

"id": 5,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/5/"

}
}

}
]

}

The format is the same as that which is returned inside the listing view, with two additions:

• All of the available fields are added to the detail page by default

• A parent field has been included that contains information about the parent page

The images endpoint This endpoint gives access to all uploaded images. This will use the custom image model if
one was specified. Otherwise, it falls back to wagtailimages.Image.

The listing view (/api/v1/images/) This is what a typical response from a GET request to this listing would
look like:

GET /api/v1/images/

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 3
},
"images": [

{
"id": 4,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/4/"

},
"title": "Wagtail by Mark Harkin"

},
{

"id": 5,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/5/"

},

138 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

"title": "James Joyce"
},
{

"id": 6,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/6/"

},
"title": "David Mitchell"

}
]

}

Each image object contains the id and title of the image.

Getting width, height and other fields Like the pages endpoint, the images endpoint supports the fields
query parameter.

By default, this will allow you to add the width and height fields to your results. If your Wagtail site uses a custom
image model, it is possible to have more.

GET /api/v1/images/?fields=title,width,height

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 3
},
"images": [

{
"id": 4,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/4/"

},
"title": "Wagtail by Mark Harkin",
"width": 640,
"height": 427

},
{

"id": 5,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/5/"

},
"title": "James Joyce",
"width": 500,
"height": 392

},
{

"id": 6,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/6/"

},
"title": "David Mitchell",

1.4. Reference 139



Wagtail Documentation, Release 1.6.3

"width": 360,
"height": 282

}
]

}

Filtering on fields Exact matches on field values can be done by using a query parameter with the same name as the
field. Any images with the field that exactly matches the value of this parameter will be returned.

GET /api/v1/pages/?title=James Joyce

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 3
},
"images": [

{
"id": 5,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/5/"

},
"title": "James Joyce"

}
]

}

Ordering The images endpoint also accepts the order parameter which should be set to a field name to order by.
Field names can be prefixed with a - to reverse the ordering. It is also possible to order randomly by setting this
parameter to random.

GET /api/v1/images/?fields=title,width&order=width

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 3
},
"images": [

{
"id": 6,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/6/"

},
"title": "David Mitchell",
"width": 360

},
{

"id": 5,
"meta": {

140 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/5/"

},
"title": "James Joyce",
"width": 500

},
{

"id": 4,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/4/"

},
"title": "Wagtail by Mark Harkin",
"width": 640

}
]

}

Pagination Pagination is done using two query parameters called limit and offset. limit sets the number of
results to return and offset is the index of the first result to return. The default and maximum value for limit is
20. The maximum value can be changed using the WAGTAILAPI_LIMIT_MAX setting.

GET /api/v1/images/?limit=1&offset=1

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 3
},
"images": [

{
"id": 5,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/5/"

},
"title": "James Joyce",
"width": 500,
"height": 392

}
]

}

Pagination will not change the total_count value in the meta.

Searching To perform a full-text search, set the search parameter to the query string you would like to search on.

GET /api/v1/images/?search=James

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 1

1.4. Reference 141



Wagtail Documentation, Release 1.6.3

},
"pages": [

{
"id": 5,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/5/"

},
"title": "James Joyce",
"width": 500,
"height": 392

}
]

}

Like the pages endpoint, the results are ordered by relevance and it is not possible to use the order parameter with a
search query.

The detail view (/api/v1/images/{id}/) This view gives you access to all of the details for a particular
image.

GET /api/v1/images/5/

HTTP 200 OK
Content-Type: application/json

{
"id": 5,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/5/"

},
"title": "James Joyce",
"width": 500,
"height": 392

}

The documents endpoint This endpoint gives access to all uploaded documents.

The listing view (/api/v1/documents/) The documents listing supports the same features as the images listing
(documented above) but works with Documents instead.

The detail view (/api/v1/documents/{id}/) This view gives you access to all of the details for a particular
document.

GET /api/v1/documents/1/

HTTP 200 OK
Content-Type: application/json

{
"id": 1,
"meta": {

"type": "wagtaildocs.Document",
"detail_url": "http://api.example.com/api/v1/documents/1/",

142 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

"download_url": "http://api.example.com/documents/1/usage.md"
},
"title": "Wagtail API usage"

}

ModelAdmin

The modeladmin module allows you to create customisable listing pages for any model in your Wagtail project,
and add navigation elements to the Wagtail admin area so that you can reach them. Simply extend the ModelAdmin
class, override a few attributes to suit your needs, register it with Wagtail using an easy one-line method (you can copy
and paste from the examples below), and you’re good to go.

You can use it with any Django model (it doesn’t need to extend Page or be registered as a Snippet), and it won’t
interfere with any of the existing admin functionality that Wagtail provides.

A full list of features

• A customisable list view, allowing you to control what values are displayed for each row, available options for
result filtering, default ordering, and more.

• Access your list views from the Wagtail admin menu easily with automatically generated menu items, with
automatic ‘active item’ highlighting. Control the label text and icons used with easy-to-change attributes on
your class.

• An additional ModelAdminGroup class, that allows you to group your related models, and list them together
in their own submenu, for a more logical user experience.

• Simple, robust add and edit views for your non-Page models that use the panel configurations defined on your
model using Wagtail’s edit panels.

• For Page models, the system directs to Wagtail’s existing add and edit views, and returns you back to the correct
list page, for a seamless experience.

• Full respect for permissions assigned to your Wagtail users and groups. Users will only be able to do what you
want them to!

• All you need to easily hook your ModelAdmin classes into Wagtail, taking care of URL registration, menu
changes, and registering any missing model permissions, so that you can assign them to Groups.

• Built to be customisable - While modeladmin provides a solid experience out of the box, you can easily
use your own templates, and the ModelAdmin class has a large number of methods that you can override or
extend, allowing you to customise the behaviour to a greater degree.

Installation

Add wagtail.contrib.modeladmin to your INSTALLED_APPS:

INSTALLED_APPS = [
...
'wagtail.contrib.modeladmin',

]

1.4. Reference 143



Wagtail Documentation, Release 1.6.3

How to use

A simple example You have a model in your app, and you want a listing page specifically for that model, with a
menu item added to the menu in the Wagtail admin area so that you can get to it.

wagtail_hooks.py in your app directory would look something like this:

from wagtail.contrib.modeladmin.options import (
ModelAdmin, modeladmin_register)

from .models import MyPageModel

class MyPageModelAdmin(ModelAdmin):
model = MyPageModel
menu_label = 'Page Model' # ditch this to use verbose_name_plural from model
menu_icon = 'date' # change as required
menu_order = 200 # will put in 3rd place (000 being 1st, 100 2nd)
add_to_settings_menu = False # or True to add your model to the Settings sub-menu
list_display = ('title', 'example_field2', 'example_field3', 'live')
list_filter = ('live', 'example_field2', 'example_field3')
search_fields = ('title',)

# Now you just need to register your customised ModelAdmin class with Wagtail
modeladmin_register(MyPageModelAdmin)

A more complicated example You have an app with several models that you want to show grouped together in
Wagtail’s admin menu. Some of the models might extend Page, and others might be simpler models, perhaps registered
as Snippets, perhaps not. No problem! ModelAdminGroup allows you to group them all together nicely.

wagtail_hooks.py in your app directory would look something like this:

from wagtail.contrib.modeladmin.options import (
ModelAdmin, ModelAdminGroup, modeladmin_register)

from .models import (
MyPageModel, MyOtherPageModel, MySnippetModel, SomeOtherModel)

class MyPageModelAdmin(ModelAdmin):
model = MyPageModel
menu_label = 'Page Model' # ditch this to use verbose_name_plural from model
menu_icon = 'doc-full-inverse' # change as required
list_display = ('title', 'example_field2', 'example_field3', 'live')
list_filter = ('live', 'example_field2', 'example_field3')
search_fields = ('title',)

class MyOtherPageModelAdmin(ModelAdmin):
model = MyOtherPageModel
menu_label = 'Other Page Model' # ditch this to use verbose_name_plural from model
menu_icon = 'doc-full-inverse' # change as required
list_display = ('title', 'example_field2', 'example_field3', 'live')
list_filter = ('live', 'example_field2', 'example_field3')
search_fields = ('title',)

class MySnippetModelAdmin(ModelAdmin):
model = MySnippetModel
menu_label = 'Snippet Model' # ditch this to use verbose_name_plural from model

144 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

menu_icon = 'snippet' # change as required
list_display = ('title', 'example_field2', 'example_field3')
list_filter = (example_field2', 'example_field3')
search_fields = ('title',)

class SomeOtherModelAdmin(ModelAdmin):
model = SomeOtherModel
menu_label = 'Some other model' # ditch this to use verbose_name_plural from model
menu_icon = 'snippet' # change as required
list_display = ('title', 'example_field2', 'example_field3')
list_filter = (example_field2', 'example_field3')
search_fields = ('title',)

class MyModelAdminGroup(ModelAdminGroup):
menu_label = 'My App'
menu_icon = 'folder-open-inverse' # change as required
menu_order = 200 # will put in 3rd place (000 being 1st, 100 2nd)
items = (MyPageModelAdmin, MyOtherPageModelAdmin, MySnippetModelAdmin, SomeOtherModelAdmin)

# When using a ModelAdminGroup class to group several ModelAdmin classes together,
# you only need to register the ModelAdminGroup class with Wagtail:
modeladmin_register(MyModelAdminGroup)

Registering multiple classes in one wagtail_hooks.py file If you have an app with more than one model
that you wish to manage, or even multiple models you wish to group together with ModelAdminGroup classes,
that’s possible. Just register each of your ModelAdmin classes using modeladmin_register, and they’ll work as
expected.

class MyPageModelAdmin(ModelAdmin):
model = MyPageModel
...

class MyOtherPageModelAdmin(ModelAdmin):
model = MyOtherPageModel
...

class MyModelAdminGroup(ModelAdminGroup):
label = _("Group 1")
items = (ModelAdmin1, ModelAdmin2)
...

class MyOtherModelAdminGroup(ModelAdminGroup):
label = _("Group 2")
items = (ModelAdmin3, ModelAdmin4)
...

modeladmin_register(MyPageModelAdmin)
modeladmin_register(MyOtherPageModelAdmin)
modeladmin_register(MyModelAdminGroup)
modeladmin_register(MyOtherModelAdminGroup)

1.4. Reference 145



Wagtail Documentation, Release 1.6.3

Supported list options

With the exception of bulk actions and date hierarchy, the ModelAdmin class offers similar list functionality to
Django’s ModelAdmin class, providing:

• control over what values are displayed (via the list_display attribute)

• control over default ordering (via the ordering attribute)

• customisable model-specific text search (via the search_fields attribute)

• customisable filters (via the list_filter attribue)

list_display supports the same fields and methods as Django’s ModelAdmin class (including
short_description and admin_order_field on custom methods), giving you lots of flexibility when it
comes to output. Read more about list_display in the Django docs.

list_filter supports the same field types as Django’s ModelAdmin class, giving your users an easy way to find
what they’re looking for. Read more about list_filter in the Django docs.

Customizing the layout

edit_handler can be used on any Django models.Model classes just like it can be used on Page classes.

To change the way your MyPageModel is displayed in the CreateView and the EditView, simply define an
edit_handler or panels in your model.

class MyPageModel(models.Model):
first_name = models.CharField(max_length=100)
last_name = models.CharField(max_length=100)
address = models.TextField()

panels = [
MultiFieldPanel([

FieldRowPanel([
FieldPanel('first_name', classname='fn'),
FieldPanel('last_name', classname='ln'),

]),
FieldPanel('address', classname='custom1',))

]

Or alternatively:

class MyPageModel(models.Model):
first_name = models.CharField(max_length=100)
last_name = models.CharField(max_length=100)
address = models.TextField()

custom_panels = [
MultiFieldPanel([

FieldRowPanel([
FieldPanel('first_name', classname='fn'),
FieldPanel('last_name', classname='ln'),

]),
FieldPanel('address', classname='custom1',))

]
edit_handler = ObjectList(custom_panels)
# or
edit_handler = TabbedInterface([ObjectList(custom_panels), ObjectList(...)])

146 Chapter 1. Index

https://docs.djangoproject.com/en/1.8/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_display
https://docs.djangoproject.com/en/1.8/ref/contrib/admin/#django.contrib.admin.ModelAdmin.list_filter


Wagtail Documentation, Release 1.6.3

Promoted search results

Changed in version 1.1: Before Wagtail 1.1, promoted search results were implemented in the
wagtail.wagtailsearch core module and called “editors picks”.

The searchpromotions module provides the models and user interface for managing “Promoted search results”
and displaying them in a search results page.

“Promoted search results” allow editors to explicitly link relevant content to search terms, so results pages can contain
curated content in addition to results from the search engine.

Installation

The searchpromotions module is not enabled by default. To install it, add
wagtail.contrib.wagtailsearchpromotions to INSTALLED_APPS in your project’s Django set-
tings file.

INSTALLED_APPS = [
...

'wagtail.contrib.wagtailsearchpromotions',
]

This app contains migrations so make sure you run the migrate django-admin command after installing.

Usage

Once installed, a new menu item called “Promoted search results” should appear in the “Settings” menu. This is where
you can assign pages to popular search terms.

Displaying on a search results page To retrieve a list of promoted search results for a particular search query, you
can use the {% get_search_promotions %} template tag from the wagtailsearchpromotions_tags
templatetag library:

{% load wagtailcore_tags wagtailsearchpromotions_tags %}

...

{% get_search_promotions search_query as search_promotions %}

<ul>
{% for search_promotion in search_promotions %}

<li>
<a href="{% pageurl search_promotion.page %}">

<h2>{{ search_promotion.page.title }}</h2>
<p>{{ search_promotion.description }}</p>

</a>
</li>

{% endfor %}
</ul>

1.4. Reference 147



Wagtail Documentation, Release 1.6.3

TableBlock

The TableBlock module provides an HTML table block type for StreamField. This module uses handsontable to
provide users with the ability to create and edit HTML tables in Wagtail.

Installation

Add "wagtail.contrib.table_block" to your INSTALLED_APPS:

INSTALLED_APPS = [
...

"wagtail.contrib.table_block",
]

Basic Usage

After installation the TableBlock module can be used in a similar fashion to other StreamField blocks in the Wagtail
core.

Just import the TableBlock from wagtail.contrib.table_block.blocks import TableBlock and
add it to your StreamField declaration.

class DemoStreamBlock(StreamBlock):
...
table = TableBlock()

Advanced Usage

Default Configuration When defining a TableBlock, Wagtail provides the ability to pass an optional
table_options dictionary. The default TableBlock dictionary looks like this:

148 Chapter 1. Index

https://handsontable.com/


Wagtail Documentation, Release 1.6.3

default_table_options = {
'minSpareRows': 0,
'startRows': 3,
'startCols': 3,
'colHeaders': False,
'rowHeaders': False,
'contextMenu': True,
'editor': 'text',
'stretchH': 'all',
'height': 108,
'language': language,
'renderer': 'text',
'autoColumnSize': False,

}

Configuration Options Every key in the table_options dictionary maps to a handsontable option. These
settings can be changed to alter the behaviour of tables in Wagtail. The following options are available:

• minSpareRows - The number of rows to append to the end of an empty grid. The default setting is 0.

• startRows - The default number of rows for a new table.

• startCols - The default number of columns for new tables.

• colHeaders - Can be set to True or False. This setting designates if new tables should be created with column
rows. Note: this only sets the behaviour for newly created tables. Page editors can override this by checking the
the “Column header” checkbox in the table editor in the Wagtail admin.

• rowHeaders - Operates the same as colHeaders to designate if new tables should be created with the first row as
a header. Just like colHeaders this option can be overridden by the page editor in the Wagtail admin.

• contextMenu - Enables or disables the handsontable right-click menu. By default this is set to True.

• editor - Defines the editor used for table cells. The default setting is text.

• stretchH - Sets the default horizontal resizing of tables. Options include, ‘none’, ‘last’, and ‘all’. By default
TableBlock uses ‘all’ for the even resizing of columns.

• height - The default height of the grid. By default TableBlock sets the height to 108 for the optimal appearance
of new tables in the editor. This is optimized for tables with startRows set to 3. If you change the number of
startRows in the configuration you might need to change the height setting to improve the default appearence
in the editor.

• language - The default language setting. By default TableBlock tries to get the language from
django.utils.translation.get_language. If needed, this setting can be overridden here.

• renderer - The default setting handsontable uses to render the content of table cells.

• autoColumnSize - Enables or disables the autoColumnSize plugin. The TableBlock default setting is False.

A complete list of handsontable options can be found on the handsontable website.

Changing the default table_options To change the default table options just pass a new table_options dictionary
when a new TableBlock is declared.

new_table_options = {
'minSpareRows': 0,
'startRows': 6,
'startCols': 4,
'colHeaders': False,

1.4. Reference 149

https://handsontable.com/
https://docs.handsontable.com/0.24.3/Options.html#minSpareRows
https://docs.handsontable.com/0.24.3/Options.html#startRows
https://docs.handsontable.com/0.24.3/Options.html#startCols
https://docs.handsontable.com/0.24.3/Options.html#colHeaders
https://docs.handsontable.com/0.24.3/Options.html#rowHeaders
https://docs.handsontable.com/0.24.3/Options.html#contextMenu
https://docs.handsontable.com/0.24.3/Options.html#editor
https://docs.handsontable.com/0.24.3/Options.html#stretchH
https://docs.handsontable.com/0.24.3/Options.html#height
https://docs.handsontable.com/0.24.3/Options.html#language
https://docs.handsontable.com/0.24.3/Options.html#renderer
https://docs.handsontable.com/0.24.3/Options.html#autoColumnSize
https://docs.handsontable.com/0.24.3/Options.html


Wagtail Documentation, Release 1.6.3

'rowHeaders': False,
'contextMenu': True,
'editor': 'text',
'stretchH': 'all',
'height': 216,
'language': 'en',
'renderer': 'text',
'autoColumnSize': False,

}

class DemoStreamBlock(StreamBlock):
...
table = TableBlock(table_options=new_table_options)

Site settings

Site-wide settings that are editable by administrators in the Wagtail admin.

Form builder

Allows forms to be created by admins and provides an interface for browsing form submissions.

Static site generator

Provides a management command that turns a Wagtail site into a set of static HTML files.

Sitemap generator

Provides a view that generates a Google XML sitemap of your public Wagtail content.

Frontend cache invalidator

A module for automatically purging pages from a cache (Varnish, Squid or Cloudflare) when their content is changed.

RoutablePageMixin

Provides a way of embedding Django URLconfs into pages.

Wagtail API

A module for adding a read only, JSON based web API to your Wagtail site

ModelAdmin

A module allowing for more customisable representation and management of custom models in Wagtail’s admin area.

150 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Promoted search results

A module for managing “Promoted Search Results”

TableBlock

Provides a TableBlock for adding HTML tables to pages.

Management commands

publish_scheduled_pages

./manage.py publish_scheduled_pages

This command publishes or unpublishes pages that have had these actions scheduled by an editor. It is recommended
to run this command once an hour.

fixtree

./manage.py fixtree

This command scans for errors in your database and attempts to fix any issues it finds.

move_pages

manage.py move_pages from to

This command moves a selection of pages from one section of the tree to another.

Options:

• from This is the id of the page to move pages from. All descendants of this page will be moved to the destination.
After the operation is complete, this page will have no children.

• to This is the id of the page to move pages to.

update_index

./manage.py update_index [--backend <backend name>]

This command rebuilds the search index from scratch. It is only required when using Elasticsearch.

It is recommended to run this command once a week and at the following times:

• whenever any pages have been created through a script (after an import, for example)

• whenever any changes have been made to models or search configuration

The search may not return any results while this command is running, so avoid running it at peak times.

1.4. Reference 151



Wagtail Documentation, Release 1.6.3

Specifying which backend to update

New in version 0.7.

By default, update_index will rebuild all the search indexes listed in WAGTAILSEARCH_BACKENDS.

If you have multiple backends and would only like to update one of them, you can use the --backend option.

For example, to update just the default backend:

python manage.py update_index --backend default

Indexing the schema only

New in version 1.5.

You can prevent the update_index command from indexing any data by using the --schema-only option:

python manage.py update_index --schema-only

search_garbage_collect

./manage.py search_garbage_collect

Wagtail keeps a log of search queries that are popular on your website. On high traffic websites, this log may get big
and you may want to clean out old search queries. This command cleans out all search query logs that are more than
one week old.

Hooks

On loading, Wagtail will search for any app with the file wagtail_hooks.py and execute the contents. This
provides a way to register your own functions to execute at certain points in Wagtail’s execution, such as when a Page
object is saved or when the main menu is constructed.

Registering functions with a Wagtail hook is done through the @hooks.register decorator:

from wagtail.wagtailcore import hooks

@hooks.register('name_of_hook')
def my_hook_function(arg1, arg2...)

# your code here

Alternatively, hooks.register can be called as an ordinary function, passing in the name of the hook and a handler
function defined elsewhere:

hooks.register('name_of_hook', my_hook_function)

The available hooks are listed below.

• Admin modules
• Editor interface
• Editor workflow
• Page explorer
• Page serving

152 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Admin modules

Hooks for building new areas of the admin interface (alongside pages, images, documents and so on).

construct_homepage_panels

Add or remove panels from the Wagtail admin homepage. The callable passed into this hook should take
a request object and a list of panels, objects which have a render() method returning a string.
The objects also have an order property, an integer used for ordering the panels. The default panels use
integers between 100 and 300.

from django.utils.safestring import mark_safe

from wagtail.wagtailcore import hooks

class WelcomePanel(object):
order = 50

def render(self):
return mark_safe("""
<section class="panel summary nice-padding">
<h3>No, but seriously -- welcome to the admin homepage.</h3>

</section>
""")

@hooks.register('construct_homepage_panels')
def add_another_welcome_panel(request, panels):
return panels.append( WelcomePanel() )

construct_homepage_summary_items

New in version 1.0.

Add or remove items from the ‘site summary’ bar on the admin homepage (which shows the number of
pages and other object that exist on the site). The callable passed into this hook should take a request
object and a list of SummaryItem objects to be modified as required. These objects have a render()
method, which returns an HTML string, and an order property, which is an integer that specifies the
order in which the items will appear.

construct_main_menu

Called just before the Wagtail admin menu is output, to allow the list of menu items to be modified.
The callable passed to this hook will receive a request object and a list of menu_items, and should
modify menu_items in-place as required. Adding menu items should generally be done through the
register_admin_menu_item hook instead - items added through construct_main_menu will
be missing any associated JavaScript includes, and their is_shown check will not be applied.

from wagtail.wagtailcore import hooks

@hooks.register('construct_main_menu')
def hide_explorer_menu_item_from_frank(request, menu_items):
if request.user.username == 'frank':

menu_items[:] = [item for item in menu_items if item.name != 'explorer']

1.4. Reference 153



Wagtail Documentation, Release 1.6.3

describe_collection_contents

Called when Wagtail needs to find out what objects exist in a collection, if any. Currently this happens
on the confirmation before deleting a collection, to ensure that non-empty collections cannot be deleted.
The callable passed to this hook will receive a collection object, and should return either None (to
indicate no objects in this collection), or a dict containing the following keys:

count A numeric count of items in this collection

count_text A human-readable string describing the number of items in this collection, such as “3 docu-
ments”. (Sites with multi-language support should return a translatable string here, most likely using the
django.utils.translation.ungettext function.)

url (optional) A URL to an index page that lists the objects being described.

register_admin_menu_item

Add an item to the Wagtail admin menu. The callable passed to this hook must return an instance of
wagtail.wagtailadmin.menu.MenuItem. New items can be constructed from the MenuItem
class by passing in a label which will be the text in the menu item, and the URL of the admin page
you want the menu item to link to (usually by calling reverse() on the admin view you’ve set up).
Additionally, the following keyword arguments are accepted:

name an internal name used to identify the menu item; defaults to the slugified form of the
label.

classnames additional classnames applied to the link, used to give it an icon

attrs additional HTML attributes to apply to the link

order an integer which determines the item’s position in the menu

MenuItem can be subclassed to customise the HTML output, specify JavaScript files required by the
menu item, or conditionally show or hide the item for specific requests (for example, to apply permission
checks); see the source code (wagtail/wagtailadmin/menu.py) for details.

from django.core.urlresolvers import reverse

from wagtail.wagtailcore import hooks
from wagtail.wagtailadmin.menu import MenuItem

@hooks.register('register_admin_menu_item')
def register_frank_menu_item():
return MenuItem('Frank', reverse('frank'), classnames='icon icon-folder-inverse', order=10000)

register_admin_urls

Register additional admin page URLs. The callable fed into this hook should return a list of Django URL
patterns which define the structure of the pages and endpoints of your extension to the Wagtail admin. For
more about vanilla Django URLconfs and views, see url dispatcher.

from django.http import HttpResponse
from django.conf.urls import url

from wagtail.wagtailcore import hooks

def admin_view( request ):

154 Chapter 1. Index

https://docs.djangoproject.com/en/dev/topics/http/urls/


Wagtail Documentation, Release 1.6.3

return HttpResponse( \
"I have approximate knowledge of many things!", \
content_type="text/plain")

@hooks.register('register_admin_urls')
def urlconf_time():
return [
url(r'^how_did_you_almost_know_my_name/$', admin_view, name='frank' ),

]

register_group_permission_panel

Add a new panel to the Groups form in the ‘settings’ area. The callable passed to this hook must return a
ModelForm / ModelFormSet-like class, with a constructor that accepts a group object as its instance
keyword argument, and which implements the methods save, is_valid, and as_admin_panel
(which returns the HTML to be included on the group edit page).

register_settings_menu_item

As register_admin_menu_item, but registers menu items into the ‘Settings’ sub-menu rather than
the top-level menu.

register_admin_search_area

Add an item to the Wagtail admin search “Other Searches”. Behaviour of this hook is similar
to register_admin_menu_item. The callable passed to this hook must return an instance
of wagtail.wagtailadmin.search.SearchArea. New items can be constructed from the
SearchArea class by passing the following parameters:

label text displayed in the “Other Searches” option box.

name an internal name used to identify the search option; defaults to the slugified form of the
label.

url the URL of the target search page.

classnames additional CSS classnames applied to the link, used to give it an icon.

attrs additional HTML attributes to apply to the link.

order an integer which determines the item’s position in the list of options.

Setting the URL can be achieved using reverse() on the target search page. The GET parameter ‘q’ will
be appended to the given URL.

A template tag, search_other is provided by the wagtailadmin_tags template module. This tag
takes a single, optional parameter, current, which allows you to specify the name of the search option
currently active. If the parameter is not given, the hook defaults to a reverse lookup of the page’s URL for
comparison against the url parameter.

SearchArea can be subclassed to customise the HTML output, specify JavaScript files required by the
option, or conditionally show or hide the item for specific requests (for example, to apply permission
checks); see the source code (wagtail/wagtailadmin/search.py) for details.

1.4. Reference 155



Wagtail Documentation, Release 1.6.3

from django.core.urlresolvers import reverse
from wagtail.wagtailcore import hooks
from wagtail.wagtailadmin.search import SearchArea

@hooks.register('register_admin_search_area')
def register_frank_search_area():

return SearchArea('Frank', reverse('frank'), classnames='icon icon-folder-inverse', order=10000)

register_permissions

Return a queryset of Permission objects to be shown in the Groups administration area.

Editor interface

Hooks for customising the editing interface for pages and snippets.

construct_whitelister_element_rules

Customise the rules that define which HTML elements are allowed in rich text areas. By default only a
limited set of HTML elements and attributes are whitelisted - all others are stripped out. The callables
passed into this hook must return a dict, which maps element names to handler functions that will perform
some kind of manipulation of the element. These handler functions receive the element as a BeautifulSoup
Tag object.

The wagtail.wagtailcore.whitelist module provides a few helper functions to assist in defin-
ing these handlers: allow_without_attributes, a handler which preserves the element but strips
out all of its attributes, and attribute_rule which accepts a dict specifying how to handle each at-
tribute, and returns a handler function. This dict will map attribute names to either True (indicating that
the attribute should be kept), False (indicating that it should be dropped), or a callable (which takes the
initial attribute value and returns either a final value for the attribute, or None to drop the attribute).

For example, the following hook function will add the <blockquote> element to the whitelist, and
allow the target attribute on <a> elements:

from wagtail.wagtailcore import hooks
from wagtail.wagtailcore.whitelist import attribute_rule, check_url, allow_without_attributes

@hooks.register('construct_whitelister_element_rules')
def whitelister_element_rules():

return {
'blockquote': allow_without_attributes,
'a': attribute_rule({'href': check_url, 'target': True}),

}

insert_editor_css

Add additional CSS files or snippets to the page editor.

from django.contrib.staticfiles.templatetags.staticfiles import static
from django.utils.html import format_html

from wagtail.wagtailcore import hooks

156 Chapter 1. Index

http://www.crummy.com/software/BeautifulSoup/bs4/doc/


Wagtail Documentation, Release 1.6.3

@hooks.register('insert_editor_css')
def editor_css():

return format_html(
'<link rel="stylesheet" href="{}">',
static('demo/css/vendor/font-awesome/css/font-awesome.min.css')

)

insert_global_admin_css

Add additional CSS files or snippets to all admin pages.

from django.utils.html import format_html
from django.contrib.staticfiles.templatetags.staticfiles import static

from wagtail.wagtailcore import hooks

@hooks.register('insert_global_admin_css')
def global_admin_css():

return format_html('<link rel="stylesheet" href="{}">', static('my/wagtail/theme.css'))

insert_editor_js

Add additional JavaScript files or code snippets to the page editor.

from django.utils.html import format_html, format_html_join
from django.conf import settings

from wagtail.wagtailcore import hooks

@hooks.register('insert_editor_js')
def editor_js():

js_files = [
'demo/js/hallo-plugins/hallo-demo-plugin.js',

]
js_includes = format_html_join('\n', '<script src="{0}{1}"></script>',

((settings.STATIC_URL, filename) for filename in js_files)
)
return js_includes + format_html(

"""
<script>

registerHalloPlugin('demoeditor');
</script>
"""

)

insert_global_admin_js

Add additional JavaScript files or code snippets to all admin pages.

from django.utils.html import format_html

from wagtail.wagtailcore import hooks

@hooks.register('insert_global_admin_js')

1.4. Reference 157



Wagtail Documentation, Release 1.6.3

def global_admin_js():
return format_html(

'<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/r74/three.js"></script>',
)

Editor workflow

Hooks for customising the way users are directed through the process of creating page content.

after_create_page

Do something with a Page object after it has been saved to the database (as a published page or a
revision). The callable passed to this hook should take a request object and a page object. The
function does not have to return anything, but if an object with a status_code property is returned,
Wagtail will use it as a response object. By default, Wagtail will instead redirect to the Explorer page for
the new page’s parent.

from django.http import HttpResponse

from wagtail.wagtailcore import hooks

@hooks.register('after_create_page')
def do_after_page_create(request, page):

return HttpResponse("Congrats on making content!", content_type="text/plain")

after_delete_page

Do something after a Page object is deleted. Uses the same behavior as after_create_page.

after_edit_page

Do something with a Page object after it has been updated. Uses the same behavior as
after_create_page.

construct_wagtail_userbar

Changed in version 1.0: The hook was renamed from construct_wagtail_edit_bird

Add or remove items from the wagtail userbar. Add, edit, and moderation tools are provided by default.
The callable passed into the hook must take the request object and a list of menu objects, items. The
menu item objects must have a render method which can take a request object and return the HTML
string representing the menu item. See the userbar templates and menu item classes for more information.

from wagtail.wagtailcore import hooks

class UserbarPuppyLinkItem(object):
def render(self, request):

return '<li><a href="http://cuteoverload.com/tag/puppehs/" ' \
+ 'target="_parent" class="action icon icon-wagtail">Puppies!</a></li>'

@hooks.register('construct_wagtail_userbar')

158 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

def add_puppy_link_item(request, items):
return items.append( UserbarPuppyLinkItem() )

Page explorer

construct_explorer_page_queryset

Called when rendering the page explorer view, to allow the page listing queryset to be customised. The
callable passed into the hook will receive the parent page object, the current page queryset, and the request
object, and must return a Page queryset (either the original one, or a new one).

from wagtail.wagtailcore import hooks

@hooks.register('construct_explorer_page_queryset')
def show_my_profile_only(parent_page, pages, request):

# If we're in the 'user-profiles' section, only show the user's own profile
if parent_page.slug == 'user-profiles':

pages = pages.filter(owner=request.user)

return pages

register_page_listing_buttons

Add buttons to the actions list for a page in the page explorer. This is useful when adding custom actions
to the listing, such as translations or a complex workflow.

This example will add a simple button to the listing:

from wagtail.wagtailadmin import widgets as wagtailadmin_widgets

@hooks.register('register_page_listing_buttons')
def page_listing_buttons(page, page_perms, is_parent=False):

yield wagtailadmin_widgets.PageListingButton(
'A page listing button',
'/goes/to/a/url/',
priority=10

)

The priority argument controls the order the buttons are displayed in. Buttons are ordered from low
to high priority, so a button with priority=10 will be displayed before a button with priority=20.

Buttons with dropdown lists

The admin widgets also provide ButtonWithDropdownFromHook, which allows you to define a
custom hook for generating a dropdown menu that gets attached to your button.

Creating a button with a dropdown menu involves two steps. Firstly, you add your button to the
register_page_listing_buttons hook, just like the example above. Secondly, you register
a new hook that yields the contents of the dropdown menu.

This example shows how Wagtail’s default admin dropdown is implemented. You can also see how to
register buttons conditionally, in this case by evaluating the page_perms:

1.4. Reference 159



Wagtail Documentation, Release 1.6.3

@hooks.register('register_page_listing_buttons')
def page_custom_listing_buttons(page, page_perms, is_parent=False):

yield wagtailadmin_widgets.ButtonWithDropdownFromHook(
'More actions',
hook_name='my_button_dropdown_hook',
page=page,
page_perms=page_perms,
is_parent=is_parent,
priority=50

)

@hooks.register('my_button_dropdown_hook')
def page_custom_listing_more_buttons(page, page_perms, is_parent=False):

if page_perms.can_move():
yield Button('Move', reverse('wagtailadmin_pages:move', args=[page.id]), priority=10)

if page_perms.can_delete():
yield Button('Delete', reverse('wagtailadmin_pages:delete', args=[page.id]), priority=30)

if page_perms.can_unpublish():
yield Button('Unpublish', reverse('wagtailadmin_pages:unpublish', args=[page.id]), priority=40)

The template for the dropdown button can be customised by overriding
wagtailadmin/pages/listing/_button_with_dropdown.html. The JavaScript that
runs the dropdowns makes use of custom data attributes, so you should leave data-dropdown and
data-dropdown-toggle in the markup if you customise it.

Page serving

before_serve_page

Called when Wagtail is about to serve a page. The callable passed into the hook will receive the page
object, the request object, and the args and kwargs that will be passed to the page’s serve() method.
If the callable returns an HttpResponse, that response will be returned immediately to the user, and
Wagtail will not proceed to call serve() on the page.

from wagtail.wagtailcore import hooks

@hooks.register('before_serve_page')
def block_googlebot(page, request, serve_args, serve_kwargs):

if request.META.get('HTTP_USER_AGENT') == 'GoogleBot':
return HttpResponse("<h1>bad googlebot no cookie</h1>")

Signals

Wagtail’s PageRevision and Page implement Signals from django.dispatch. Signals are useful for creating side-
effects from page publish/unpublish events.

Primarily, these are used by the Frontend Cache contrib module and the Wagtail API. You could also use signals to
send publish notifications to a messaging service, or POST messages to another app that’s consuming the API, such as
a static site generator.

page_published

This signal is emitted from a PageRevision when a revision is set to published.

160 Chapter 1. Index

https://docs.djangoproject.com/en/1.8/topics/signals/


Wagtail Documentation, Release 1.6.3

sender The page class

instance The specific Page instance.

revision The PageRevision that was published

kwargs Any other arguments passed to page_published.send().

To listen to a signal, implement page_published.connect(receiver, sender, **kwargs). Here’s a
simple example showing how you might notify your team when something is published:

from wagtail.wagtailcore.signals import page_published
import urllib
import urllib2

# Let everyone know when a new page is published
def send_to_slack(sender, **kwargs):

instance = kwargs['instance']
url = 'https://hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXXXXXXXXXXXXXX'
values = {

"text" : "%s was published by %s " % (instance.title, instance.owner.username),
"channel": "#publish-notifications",
"username": "the squid of content",
"icon_emoji": ":octopus:"

}

data = urllib.urlencode(values)
req = urllib2.Request(url, data)
response = urllib2.urlopen(req)

# Register a receiver
page_published.connect(send_to_slack)

Receiving specific model events

Sometimes you’re not interested in receiving signals for every model, or you want to handle signals for specific models
in different ways. For instance, you may wish to do something when a new blog post is published:

from wagtail.wagtailcore.signals import page_published
from mysite.models import BlogPostPage

# Do something clever for each model type
def receiver(sender, **kwargs):

# Do something with blog posts
pass

# Register listeners for each page model class
page_published.connect(receiver, sender=BlogPostPage)

Wagtail provides access to a list of registered page types through the get_page_models() function in
wagtail.wagtailcore.models.

Read the Django documentation for more information about specifying senders.

page_unpublished

This signal is emitted from a Page when the page is unpublished.

1.4. Reference 161

https://docs.djangoproject.com/en/1.8/topics/signals/#connecting-to-specific-signals


Wagtail Documentation, Release 1.6.3

sender The page class

instance The specific Page instance.

kwargs Any other arguments passed to page_unpublished.send()

The project template

mysite/
home/

migrations/
__init__.py
0001_initial.py
0002_create_homepage.py

templates/
home/

home_page.html
__init__.py
models.py

search/
templates/

search/
search.html

__init__.py
views.py

mysite/
settings/

__init__.py
base.py
dev.py
production.py

static/
css/

mysite.css
js/

mysite.js
templates/

404.html
500.html
base.html

__init__.py
urls.py
wsgi.py

manage.py
requirements.txt

The “home” app

Location: /mysite/home/

This app is here to help get you started quicker by providing a HomePage model with migrations to create one when
you first setup your app.

Default templates and static files

Location: /mysite/mysite/templates/ and /mysite/mysite/static/

162 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

The templates directory contains base.html, 404.html and 500.html. These files are very commonly needed
on Wagtail sites to they have been added into the template.

The static directory contains an empty JavaScript and CSS file.

Django settings

Location: /mysite/mysite/settings/

The Django settings files are split up into base.py, dev.py, production.py and local.py.

base.py This file is for global settings that will be used in both development and production. Aim to keep most of
your configuration in this file.

dev.py This file is for settings that will only be used by developers. For example: DEBUG = True

production.py This file is for settings that will only run on a production server. For example: DEBUG = False

local.py This file is used for settings local to a particular machine. This file should never be tracked by a version
control system.

Tip: On production servers, we recommend that you only store secrets in local.py (such as API keys and
passwords). This can save you headaches in the future if you are ever trying to debug why a server is behaving
badly. If you are using multiple servers which need different settings then we recommend that you create a
different production.py file for each one.

Support

Mailing list

If you have general questions about Wagtail, or you’re looking for help on how to do something that these documents
don’t cover, join the mailing list at groups.google.com/d/forum/wagtail.

Issues

If you think you’ve found a bug in Wagtail, or you’d like to suggest a new feature, please check the current list
at github.com/torchbox/wagtail/issues. If your bug or suggestion isn’t there, raise a new issue, providing as much
relevant context as possible.

Torchbox

Finally, if you have a query which isn’t relevant for either of the above forums, feel free to contact the Wagtail team at
Torchbox directly, on hello@wagtail.io or @wagtailcms.

Using Wagtail: an Editor’s guide

This section of the documentation is written for the users of a Wagtail-powered site. That is, the content editors,
moderators and administrators who will be running things on a day-to-day basis.

1.5. Support 163

https://groups.google.com/d/forum/wagtail
https://github.com/torchbox/wagtail/issues
mailto:hello@wagtail.io
http://twitter.com/wagtailcms


Wagtail Documentation, Release 1.6.3

Introduction

Wagtail is a new open source content management system (CMS) developed by Torchbox. It is built on the Django
framework and designed to be super easy to use for both developers and editors.

This documentation will explain how to:

• navigate the main user interface of Wagtail

• create pages of all different types

• modify, save, publish and unpublish pages

• how to set up users, and provide them with specific roles to create a publishing workflow

• upload, edit and include images and documents

• ... and more!

Getting started

The Wagtail demo site

This examples in this document are based on Torchbox.com. However, the instructions are general enough as to be
applicable to any Wagtail site.

For the purposes of this documentation we will be using the URL, www.example.com, to represent the root (home-
page) of your website.

Logging in

• The first port of call for an editor is the login page for the administrator interface.

• Access this by adding /admin onto the end of your root URL (e.g. www.example.com/admin).

• Enter your username and password and click Sign in.

Finding your way around

This section describes the different pages that you will see as you navigate around the CMS, and how you can find the
content that you are looking for.

164 Chapter 1. Index

http://www.wagtail.io
http://www.torchbox.com
https://torchbox.com


Wagtail Documentation, Release 1.6.3

The Dashboard

The Dashboard provides information on:

• The number of pages, images, and documents currently held in the Wagtail CMS

• Any pages currently awaiting moderation (if you have these privileges)

• Your most recently edited pages

You can return to the Dashboard at any time by clicking the Wagtail logo in the top-left of the screen.

• Clicking the logo returns you to your Dashboard.

• The stats at the top of the page describe the total amount of content on the CMS (just for fun!).

• The Pages awaiting moderation table will only be displayed if you have moderator or administrator privileges

– Clicking the name of a page will take you to the ‘Edit page’ interface for this page.

– Clicking approve or reject will either change the page status to live or return the page to draft status. An
email will be sent to the creator of the page giving the result of moderation either way.

– The Parent column tells you what the parent page of the page awaiting moderation is called. Clicking the
parent page name will take you to its Edit page.

• The Your most recent edits table displays the five pages that you most recently edited.

• The date column displays the date that you edited the page. Hover your mouse over the date for a more exact
time/date.

• The status column displays the current status of the page. A page will have one of three statuses:

– Live: Published and accessible to website visitors

– Draft: Not live on the website.

– Live + Draft: A version of the page is live, but a newer version is in draft mode.

1.6. Using Wagtail: an Editor’s guide 165



Wagtail Documentation, Release 1.6.3

The Explorer menu

• Click the Explorer button in the sidebar to open the site explorer. This allows you to navigate through the
tree-structure of the site.

• Clicking the name of a page will take you to the Explorer page for that section (see below). NOTE: The site
explorer only displays pages which themselves have child pages. To see and edit the child pages you should
click the name of the parent page in the site explorer.

• Clicking the green arrow displays the sub-sections (see below).

• Clicking the back button takes you back to the parent section.

• Again, clicking the section title takes you to the Explorer page.

• Clicking further arrows takes you deeper into the tree.

166 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Using search

• A very easy way to find the page that you want is to use the main search feature, accessible from the left-hand
menu.

• Simply type in part or all of the name of the page you are looking for, and the results below will automatically
update as you type.

• Clicking the page title in the results will take you to the Edit page for that result. You can differentiate between
similar named pages using the Parent column, which tells you what the parent page of that page is.

The Explorer page

The Explorer page allows you to view the a page’s children and perform actions on them. From here you can pub-
lish/unpublish pages, move pages to other sections, drill down further into the content tree, or reorder pages under the
parent for the purposes of display in menus.

1.6. Using Wagtail: an Editor’s guide 167



Wagtail Documentation, Release 1.6.3

• The name of the section you are looking at is displayed below the breadcrumb (the row of page names beginning
with the home icon). Each section is also itself a page (in this case the homepage). Clicking the title of the
section takes you to the Edit screen for the section page.

• As the heading suggests, below are the child pages of the section. Clicking the titles of each child page will take
you to its Edit screen.

• Clicking the arrows will display a further level of child pages.

• As you drill down through the site the breadcrumb (the row of pages beginning with the home icon) will display
the path you have taken. Clicking on the page titles in the breadcrumb will take you to the Explorer screen for
that page.

168 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

• To add further child pages press the Add child page button below the parent page title. You can view the parent
page on the live site by pressing the View live button. The Move button will take you to the Move page screen
where you can reposition the page and all its child pages in the site structure.

• Similar buttons are available for each child page. These are made visible on hover.

Reordering pages

• Clicking the icon to the far left of the child pages table will enable the reordering handles. This allows you to
reorder the way that content displays in the main menu of your website.

• Reorder by dragging the pages by the handles on the far left (the icon made up of 6 dots).

• Your new order will be automatically saved each time you drag and drop an item.

Creating new pages

Create new pages by clicking the Add child page button. This creates a child page of the section you are currently in.
In this case a child page of the ‘School of Fine Art’ page.

1.6. Using Wagtail: an Editor’s guide 169



Wagtail Documentation, Release 1.6.3

Selecting a page type

• On the left of the page chooser screen are listed all the types of pages that you can create. Clicking the page
type name will take you to the Create new page screen for that page type (see below).

• Clicking the Pages using . . . Page links on the right will display all the pages that exist on the website of this
type. This is to help you judge what type of page you will need to complete your task.

• Once you’ve selected a page type you will be presented with a blank New page screen.

• Click into the areas below each field’s heading to start entering content.

Creating page body content

Wagtail supports a number of basic fields for creating content, as well as our unique StreamField feature which allows
you to construct complex layouts by combining these basic fields in any order.

StreamField

StreamField allows you to create complex layouts of content on a page by combining a number of different arrange-
ments of content, ‘blocks’, in any order.

170 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

When you first edit a page, you will be presented with the empty StreamField area, with the option to choose one of
several block types. The block types on your website may be different from the screenshot here, but the principles are
the same.

Click the block type, and the options will disappear, revealing the entry field for that block.

Depending on the block you chose, the field will display differently, and there might even be more than one field!
There are a few common field types though that we will talk about here.

• Basic text field

• Rich text field

• Image field

Basic text field Basic text fields have no formatting options. How these display will be determined by the style of
the page in which they are being inserted. Just click into the field and type!

Rich text fields Most of the time though, you need formatting options to create beautiful looking pages. So some
fields, like the fields in the ‘Paragraph block’ shown in the screenshot, have many of the options you would expect
from a word processor. These are referred to as rich text fields.

So, when you click into one of these fields, you will be presented with a set of tools which allow you to format and
style your text. These tools also allow you to insert links, images, videos clips and links to documents.

Below is a summary of what the different buttons represent:

Bold / Italic: Either click then type for bold or italic, or highlight and select to convert existing text to bold or italic.

1.6. Using Wagtail: an Editor’s guide 171



Wagtail Documentation, Release 1.6.3

Paragraph / heading levels: Clicking into a paragraph and selecting one of these options will change the level of the
text. H1 is not included as this is reserved for the page title.

Bulleted and numbered lists

Horizontal rule: Creates a horizontal line at the position of the cursor. If inserted inside a paragraph it will split the
paragraph into two separate paragraphs.

Undo / redo: As expected will undo or redo the latest actions. Never use the your browser’s back button when
attempting to undo changes as this could lead to errors. Either use this undo button, or the usual keyboard shortcut,
CTRL+Z.

Insert image / video: Allows you to insert an image or video into the rich text field. See Inserting images and videos
section for more details. See Inserting images <inserting_images.html> and Inserting videos <inserting_videos.html>
sections.

Insert link / document: Allows you to insert a link or a document into the rich text field. See Inserting links and
Inserting documents for more details. See Inserting links section <inserting_links.html>.

172 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Adding further blocks in StreamField

• To add new blocks, click the ‘+’ icons above or below the existing blocks.

• You’ll then be presented once again with the different blocks from which you may choose.

• You can cancel the addition of a new block by clicking the cross at the top of the block selection interface.

Reordering and deleting content in StreamField

• Click the arrows on the right-hand side of each block to move blocks up and down in the StreamField order of
content.

• The blocks will be displayed in the front-end in the order that they are placed in this interface.

• Click the rubbish bin on the far right to delete a field

Warning: Once a StreamField field is deleted it cannot be retrieved if the page has not been saved. Save your
pages regularly so that if you acidentally delete a field you can reload the page to undo your latest edit.

Inserting images and videos in a page

There will obviously be many instances in which you will want to add images to a page. There are two main ways to
add images to pages, either via a specific image chooser field, or via the rich text field image button. Which of these
you use will be dependent on the individual setup of your site.

1.6. Using Wagtail: an Editor’s guide 173



Wagtail Documentation, Release 1.6.3

Inserting images using the image chooser field

Often a specific image field will be used for a main image on a page, or for an image to be used when sharing the page
on social media. For the standard page on Torchbox.com, the former is used.

• You insert an image by clicking the Choose an image button.

Choosing an image to insert

You have two options when selecting an image to insert:

1. Selecting an image from the existing image library, or. . .

2. Uploading a new image to the CMS

When you click the Choose an image button you will be presented with a pop-up with two tabs at the top. The first,
Search, allows you to search and select from the library. The second, Upload, allows you to upload a new image.

Choosing an image from the image library

The image below demonstrates finding and inserting an image that is already present in the CMS image library.

174 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

1. Typing into the search box will automatically display the results below.

2. Clicking one of the Popular tags will filter the search results by that tag.

3. Clicking an image will take you to the Choose a format window (see image below).

Uploading a new image to the CMS

1.6. Using Wagtail: an Editor’s guide 175



Wagtail Documentation, Release 1.6.3

1. You must include an image title for your uploaded image

2. Click the Choose file button to choose an image from your computer.

3. Tags allows you to associate tags with the image you are uploading. This allows them to be more easily found
when searching. Each tag should be separated by a space. Good practice for creating multiple word tags is to
use an underscore between each word (e.g. western_yellow_wagtail).

4. Click Upload to insert the uploaded image into the carousel. The image will also be added to the main CMS
image library for reuse in other content.

Inserting images using the rich text field

Images can also be inserted into the body text of a page via the rich text editor. When working in a rich text field, click
the image illustrated above. You will then be presented with the same options as for inserting images into the main
carousel.

In addition, Wagtail allows you to choose an alignment for you image.

176 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

1. You can select how the image is displayed by selecting one of the format options.

2. You must provide specific alt text for your image.

The alignments available are described below:

• Full width: Image will be inserted using the full width of the text area.

• Half-width left/right aligned: Inserts the image at half the width of the text area. If inserted in a block of text
the text will wrap around the image. If two half-width images are inserted together they will display next to
each other.

Note: The display of images aligned in this way is dependent on your implementation of Wagtail, so you may get
slightly different results.

Inserting links in a page

Similar to images, there are a variety of points at which you will want to add links. The most common place to insert
a link will be in the body text of a page. You can insert a link into the body text by clicking the Insert link button in
the rich text toolbar.

Whichever way you insert a link, you will be presented with the form displayed below.

1.6. Using Wagtail: an Editor’s guide 177



Wagtail Documentation, Release 1.6.3

• Search for an existing page to link to using the search bar at the top of the pop-up.

• Below the search bar you can select the type of link you want to insert. The following types are available:

– Internal link: A link to an existing page within your website.

– External link: A link to a page on another website.

– Email link: A link that will open the user’s default email client with the email address prepopulated.

• You can also navigate through the website to find an internal link via the explorer.

Inserting videos into body content

As well as inserting videos into a carousel, Wagtail’s rich text fields allow you to add videos into the body of a page
by clicking the Add video button in the toolbar.

• Copy and paste the web address for the video (either YouTube or Vimeo) into the URL field and click Insert.

178 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

• A placeholder with the name of the video and a screenshot will be inserted into the text area. Clicking the X in
the top corner will remove the video.

Inserting links to documents into body text

It is possible to insert links to documents held in the CMS into the body text of a web page by clicking the button
above in the rich text field.

The process for doing this is the same as when inserting an image. You are given the choice of either choosing a
document from the CMS, or uploading a new document.

1.6. Using Wagtail: an Editor’s guide 179



Wagtail Documentation, Release 1.6.3

Adding multiple items

A common feature of Wagtail is the ability to add more than one of a particular type of field or item. For example, you
can add as many carousel items or related links as you wish.

• Whenever you see the white cross in the green circle illustrated here it means you can add multiple objects or
items to a page. Clicking the icon will display the fields required for that piece of content. The image below
demonstrates this with a Related link item.

180 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

• You can delete an individual item by pressing the trash can in the top-right.

• You can add more items by clicking the link with the white cross again.

• You can reorder your multiple items using the up and down arrows. Doing this will affect the order in which
they are display on the live page.

Required fields

• Fields marked with an asterisk are required. You will not be able to save a draft or submit the page for moderation
without these fields being completed.

• If you try to save/submit the page with some required fields not filled out, you will see the error displayed here.

• The number of validation errors for each of the Promote and Content tabs will appear in a red circle, and the
text, ‘This field is required’, will appear below each field that must be completed.

1.6. Using Wagtail: an Editor’s guide 181



Wagtail Documentation, Release 1.6.3

The Promote tab

A common feature of the Edit pages for all page types is the two tabs at the top of the screen. The first, Content, is
where you build the content of the page itself.

The second, Promote, is where you can set all the ‘metadata’ (data about data!) for the page. Below is a description of
all default fields in the promote tab and what they do.

• Slug: The last part of the web address for the page. E.g. the slug for a
blog page called ‘The best things on the web’ would be the-best-things-on-the-web
(www.example.com/blog/the-best-things-on-the-web). This is automatically generated
from the main page title set in the Content tab. This can be overridden by adding a new slug into the field. Slugs
should be entirely lowercase, with words separated by hyphens (-).

• Page title: An optional, search-engine friendly page title. This is the title that appears in the tab of your browser
window. It is also the title that would appear in a search engine if the page was returned as part of a set of search
results.

• Show in menus: Ticking this box will ensure that the page is included in automatically generated menus on
your site. Note: Pages will only display in menus if all of its parent pages also have Show in menus ticked.

• Search description: This field allows you to add text that will be displayed if the page appears in search results.
This is especially useful to distinguish between similarly named pages.

182 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Note: You may see more fields than this in your promote tab. These are just the default fields, but you are free to add
other fields to this section as necessary.

Previewing and submitting pages for moderation

The Save/Preview/Submit for moderation menu is always present at the bottom of the page edit/creation screen. The
menu allows you to perform the following actions, dependent on whether you are an editor, moderator or administrator:

• Save draft: Saves your current changes but doesn’t submit the page for moderation and so won’t be published.
(all roles)

• Submit for moderation: Saves your current changes and submits the page for moderation. A moderator will
be notified and they will then either publish or reject the page. (all roles)

• Preview: Opens a new window displaying the page as it would look if published, but does not save your changes
or submit the page for moderation. (all roles)

• Publish/Unpublish: Clicking either the Publish or Unpublish buttons will take you to a confirmation screen
asking you to confirm that you wish to publish or unpublish this page. If a page is published it will be accessible
from its specific URL and will also be displayed in site search results. (moderators and administrators only)

• Delete: Clicking this button will take you to a confirmation screen asking you to confirm that you wish to delete
the current page. Be sure that this is actually what you want to do, as deleted pages are not recoverable. In many
situations simply unpublishing the page will be enough. (moderators and administrators only)

1.6. Using Wagtail: an Editor’s guide 183



Wagtail Documentation, Release 1.6.3

Editing existing pages

There are two ways that you can access the edit screen of an existing page:

• Clicking the title of the page in an Explorer page or in search results.

• Clicking the Edit link below the title in either of the situations above.

• When editing an existing page the title of the page being edited is displayed at the top of the page.

184 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

• The current status of the page is displayed in the top-right.

• You can change the title of the page by clicking into the title field.

• When you are typing into a field, help text is often displayed on the right-hand side of the screen.

Managing documents and images

Wagtail allows you to manage all of your documents and images through their own dedicated interfaces. See below
for information on each of these elements.

Documents

Documents such as PDFs can be managed from the Documents interface, available in the left-hand menu. This
interface allows you to add documents to and remove documents from the CMS.

• Add documents by clicking the Add document button in the top-right.

• Search for documents in the CMS by entering your search term in the search bar. The results will be automati-
cally updated as you type.

• You can also filter the results by Popular tags. Click on a tag to update the search results listing.

• Edit the details of a document by clicking the document title.

• When editing a document you can replace the file associated with that document record. This means you can
update documents without having to update the pages on which they are placed. Changing the file will change
it on all pages that use the document.

1.6. Using Wagtail: an Editor’s guide 185



Wagtail Documentation, Release 1.6.3

• Add or remove tags using the Tags field.

• Save or delete documents using the buttons at the bottom of the interface.

Warning: Deleted documents cannot be recovered.

Images

If you want to edit, add or remove images from the CMS outside of the individual pages you can do so from the Images
interface. This is accessed from the left-hand menu.

• Clicking an image will allow you to edit the data associated with it. This includes the Alt text, the photographers
credit, the medium of the subject matter and much more.

Warning: Changing the alt text here will alter it for all occurrences of the image in carousels, but not in inline
images, where the alt text can be set separately.

186 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Changing the image

• When editing an image you can replace the file associated with that image record. This means you can update
images without having to update the pages on which they are placed.

Warning: Changing the file will change it on all pages that use the image.

Focal point

• This interface allows you to select a focal point which can effect how your image displays to visitors on the
front-end.

• If your images are cropped in some way to make them fit to a specific shape, then the focal point will define the
centre point from which the image is cropped.

• To set the focal point, simply drag a marquee around the most important element of the image.

• If the feature is set up in your website, then on the front-end you will see the crop of this image focusing on
your selection.

Snippets

Snippets allow you to create elements on a website once and reuse them in multiple places. Then, if you want to
change something on the snippet, you only need to change it once, and it will change across all the occurances of the
snippet.

How snippets are used can vary widely between websites. Here are a few examples of things Torchbox have used
snippets for on our clients’ websites:

• For staff contact details, so that they can be added to many pages but managed in one place

• For Adverts, either to be applied sitewide or on individual pages

• To manage links in a global area of the site, for example in the footer

1.6. Using Wagtail: an Editor’s guide 187



Wagtail Documentation, Release 1.6.3

• For Calls to Action, such as Newsletter signup blocks, that may be consistent across many different pages

The Snippets menu

• You can access the Snippets menu by clicking on the ‘Snippets’ link in the left-hand menu bar.

• To add or edit a snippet, click on the snippet type you are interested in (often help text will be included to help
you in selecting the right type)

• Click on an individual snippet to edit, or click ‘Add ...’ in the top right to add a new snippet

Warning: Editing a snippet will change it on all of the pages on which it has been used. In the top-right of the
Snippet edit screen you will see a label saying how many times the snippet has been used. Clicking this label will
display a listing of all of these pages.

Adding snippets whilst editing a page

If you are editing a page, and you find yourself in need of a new snippet, do not fear! You can create a new one without
leaving the page you are editing:

• Whilst editing the page, open the snippets interface in a new tab, either by Ctrl+click (cmd+click on Mac) or by
right clicking it and selecting ‘Open in new tab’ from the resulting menu.

• Add the snippet in this new tab as you normally would.

• Return to your existing tab and reopen the Snippet chooser window.

• You should now see your new snippet, even though you didn’t leave the edit page.

Note: Even though this is possible, it is worth saving your page as a draft as often as possible, to avoid your changes
being lost by navigating away from the edit page accidentally.

188 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Administrator tasks

This section of the guide documents how to perform common tasks as an administrator of a Wagtail site.

Managing users and roles

As an administrator, a common task will be adding, modifying or removing user profiles.

This is done via the ‘Users’ interface, which can be found in the Settings menu, accessible via the left-hand menu bar.

In this interface you can see all of your users, their usernames, their ‘level’ of access (otherwise known as their ‘role’),
and their status, either active or inactive.

You can sort this listing either via Name or Username.

1.6. Using Wagtail: an Editor’s guide 189



Wagtail Documentation, Release 1.6.3

Clicking on a user’s name will open their profile details. From here you can then edit that users details.

Note: It is possible to change user’s passwords in this interface, but it is worth encouraging your users to use the
‘Forgotten password’ link on the login screen instead. This should save you some time!

Click the ‘Roles’ tab to edit the level of access your users have. By default there are three roles:

Role Create drafts Publish content Access Settings
Editor Yes No No
Moderator Yes Yes No
Administrator Yes Yes Yes

Promoted search results

Wagtail allows you to promote certain search results dependant on the keyword or phrase entered by the user when
searching. This can be particularly useful when users commonly refer to parts of your organisation via an acronym
that isn’t in official use, or if you want to direct users to a page that when they enter a certain term related to the page
but not included in the text of the page itself.

As a concrete example, one of our clients wanted to direct people who searched for ‘finances’ to their ‘Annual budget
review’ page. The word ‘finances’ is not mentioned in either the title or the body of the target page. So they created a
promoted search result for the word ‘finances’ that pushed the budget page to the very top of the results.

Note: The promoted result will only work if the user types exactly the phrase that you have set it up for. If you have
variations of phrase that you want to take into account, then you must create additional promoted results.

To set up the promoted search results, click on the ‘Promoted search results’ menu item in the ‘Settings’ menu.

190 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Add a new promoted result from the button in the top right of the resulting screen, or edit an existing promoted result
by clicking on it.

1.6. Using Wagtail: an Editor’s guide 191



Wagtail Documentation, Release 1.6.3

When adding a new promoted result, Wagtail provides you with a ‘Choose from popular search terms’ option. This
will show you the most popular terms entered by users into your internal search. You can match this against your
existing promoted results to ensure that users are able to find what they are looking for.

You then add a the result itself by clicking ‘Add recommended page’. You can add multiple results, but be careful
about adding too many, as you may end up hiding all of your organic results with promoted results, which may not be
helpful for users who aren’t really sure what they are looking for.

192 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Contributing to Wagtail

Issues

The easiest way to contribute to Wagtail is to tell us how to improve it! First, check to see if your bug or feature request
has already been submitted at github.com/torchbox/wagtail/issues. If it has, and you have some supporting information
which may help us deal with it, comment on the existing issue. If not, please create a new one, providing as much
relevant context as possible. For example, if you’re experiencing problems with installation, detail your environment
and the steps you’ve already taken. If something isn’t displaying correctly, tell us what browser you’re using, and
include a screenshot if possible.

Pull requests

If you’re a Python or Django developer, fork and get stuck in! Send us a useful pull request and we’ll post you a t-shirt.
We welcome all contributions, whether they solve problems which are specific to you or they address existing issues.
If you’re stuck for ideas, pick something from the issue list, or email us directly on hello@wagtail.io if you’d like us
to suggest something!

Translations

Wagtail has internationalisation support so if you are fluent in a non-English language you can contribute by localising
the interface.

Translation work should be submitted through Transifex.

Other contributions

We welcome contributions to all aspects of Wagtail. If you would like to improve the design of the user interface, or
extend the documentation, please submit a pull request as above. If you’re not familiar with Github or pull requests,
contact us directly and we’ll work something out.

Development

Setting up a local copy of the Wagtail git repository is slightly more involved than running a release package of
Wagtail, as it requires Node.js and NPM for building Javascript and CSS assets. (This is not required when running a
release version, as the compiled assets are included in the release package.)

If you’re happy to develop on a virtual machine, the vagrant-wagtail-develop setup script is the fastest way to get up
and running. This will provide you with a running instance of the Wagtail demo site, with the Wagtail and wagtaildemo
codebases available as shared folders for editing on your host machine.

(Build scripts for other platforms would be very much welcomed - if you create one, please let us know via the Wagtail
Developers group!)

If you’d prefer to set up all the components manually, read on. These instructions assume that you’re familiar with
using pip and virtualenv to manage Python packages.

1.7. Contributing to Wagtail 193

https://github.com/torchbox/wagtail/issues
https://github.com/torchbox/wagtail/issues/new
https://github.com/torchbox/wagtail/
https://twitter.com/WagtailCMS/status/432166799464210432/photo/1
https://github.com/torchbox/wagtail/issues?state=open
mailto:hello@wagtail.io
https://www.transifex.com/projects/p/wagtail/
mailto:hello@wagtail.io
https://github.com/torchbox/wagtail
https://nodejs.org/
https://github.com/torchbox/vagrant-wagtail-develop
https://github.com/torchbox/wagtaildemo/
https://groups.google.com/forum/#!forum/wagtail-developers
https://groups.google.com/forum/#!forum/wagtail-developers


Wagtail Documentation, Release 1.6.3

Setting up the Wagtail codebase

Install Node.js, v5.3.0 or higher. Instructions for installing Node.js can be found on the Node.js download page. You
will also need to install the libjpeg and zlib libraries, if you haven’t done so already - see Pillow’s platform-specific
installation instructions.

Clone a copy of the Wagtail codebase:

git clone https://github.com/torchbox/wagtail.git
cd wagtail

With your preferred virtualenv activated, install the Wagtail package in development mode with the included testing
and documentation dependencies:

pip install -e .[testing,docs] -U

Install the tool chain for building static assets:

npm install

Compile the assets:

npm run build

Any Wagtail sites you start up in this virtualenv will now run against this development instance of Wagtail. We
recommend using the Wagtail demo site as a basis for developing Wagtail.

Testing

From the root of the Wagtail codebase, run the following command to run all the tests:

python runtests.py

Running only some of the tests

At the time of writing, Wagtail has well over 1000 tests, which takes a while to run. You can run tests for only one
part of Wagtail by passing in the path as an argument to runtests.py:

python runtests.py wagtail.wagtailcore

Testing against PostgreSQL

By default, Wagtail tests against SQLite. You can switch to using PostgreSQL by using the --postgres argument:

python runtests.py --postgres

If you need to use a different user, password or host. Use the PGUSER, PGPASSWORD and PGHOST environment
variables.

Testing against a different database

If you need to test against a different database, set the DATABASE_ENGINE environment variable to the name of the
Django database backend to test against:

DATABASE_ENGINE=django.db.backends.mysql python runtests.py

This will create a new database called test_wagtail in MySQL and run the tests against it.

Testing Elasticsearch

You can test Wagtail against Elasticsearch by passing the --elasticsearch argument to runtests.py:

194 Chapter 1. Index

https://nodejs.org/download/
http://pillow.readthedocs.org/en/latest/installation.html#external-libraries
http://pillow.readthedocs.org/en/latest/installation.html#external-libraries
https://github.com/torchbox/wagtail
https://github.com/torchbox/wagtaildemo/


Wagtail Documentation, Release 1.6.3

python runtests.py --elasticsearch

Wagtail will attempt to connect to a local instance of Elasticsearch (http://localhost:9200) and use the index
test_wagtail.

If your Elasticsearch instance is located somewhere else, you can set the ELASTICSEARCH_URL environment vari-
able to point to its location:

ELASTICSEARCH_URL=http://my-elasticsearch-instance:9200 python runtests.py --elasticsearch

Compiling static assets

All static assets such as JavaScript, CSS, images, and fonts for the Wagtail admin are compiled from their respective
sources by gulp. The compiled assets are not committed to the repository, and are compiled before packaging each
new release. Compiled assets should not be submitted as part of a pull request.

To compile the assets, run:

npm run build

This must be done after every change to the source files. To watch the source files for changes and then automatically
recompile the assets, run:

npm start

Compiling the documentation

The Wagtail documentation is built by Sphinx. To install Sphinx and compile the documentation, run:

cd /path/to/wagtail
# Install the documentation dependencies
pip install -e .[docs]
# Compile the docs
cd docs/
make html

The compiled documentation will now be in docs/_build/html. Open this directory in a web browser to see
it. Python comes with a module that makes it very easy to preview static files in a web browser. To start this simple
server, run the following commands:

$ cd docs/_build/html/
# Python 2
$ python2 -mSimpleHTTPServer 8080
# Python 3
$ python3 -mhttp.server 8080

Now you can open <http://localhost:8080/> in your web browser to see the compiled documentation.

Sphinx caches the built documentation to speed up subsequent compilations. Unfortunately, this cache also hides any
warnings thrown by unmodified documentation source files. To clear the built HTML and start fresh, so you can see
all warnings thrown when building the documentation, run:

$ cd docs/
$ make clean
$ make html

1.7. Contributing to Wagtail 195

http://localhost:8080/


Wagtail Documentation, Release 1.6.3

UI Styleguide

Developers working on the Wagtail UI or creating new UI components may wish to test their work against our
Styleguide, which is provided as the contrib module “wagtailstyleguide”.

To install the styleguide module on your site, add it to the list of INSTALLED_APPS in your settings:

INSTALLED_APPS = (
...
'wagtail.contrib.wagtailstyleguide',
...

)

At present the styleguide is static: new UI components must be added to it manually, and there are no hooks into it for
other modules to use. We hope to support hooks in the future.

The styleguide doesn’t currently provide examples of all the core interface components; notably the Page, Document,
Image and Snippet chooser interfaces are not currently represented.

Python coding guidelines

PEP8

We ask that all Python contributions adhere to the PEP8 style guide, apart from the restriction on line length (E501).
In addition, import lines should be sorted according to isort rules. If you have installed Wagtail’s testing dependencies
(pip install -e .[testing]), you can check your code by running make lint.

Python 2 and 3 compatibility

All contributions should support Python 2 and 3 and we recommend using the six compatibility library (use the pip
version installed as a dependency, not the version bundled with Django).

Django compatibility

Wagtail is written to be compatible with multiple versions of Django. Sometimes, this requires running one piece of
code for recent version of Django, and another piece of code for older versions of Django. In these cases, always
check which version of Django is being used by inspecting django.VERSION:

import django

if django.VERSION >= (1, 9):
# Use new attribute
related_field = field.rel

else:
# Use old, deprecated attribute
related_field = field.related

Always compare against the version using greater-or-equals (>=), so that code for newer versions of Django is first.

Do not use a try ... except when seeing if an object has an attribute or method introduced in a newer versions
of Django, as it does not clearly express why the try ... except is used. An explicit check against the Django
version makes the intention of the code very clear.

196 Chapter 1. Index

http://www.python.org/dev/peps/pep-0008/
http://timothycrosley.github.io/isort/
https://pythonhosted.org/six/


Wagtail Documentation, Release 1.6.3

# Do not do this
try:

related_field = field.rel
except AttributeError:

related_field = field.related

If the code needs to use something that changed in a version of Django many times, consider making a function that
encapsulates the check:

import django

def related_field(field):
if django.VERSION >= (1, 9):

return field.rel
else:

return field.related

If a new function has been introduced by Django that you think would be very useful for Wagtail, but is not available
in older versions of Django that Wagtail supports, that function can be copied over in to Wagtail. If the user is running
a new version of Django that has the function, the function should be imported from Django. Otherwise, the version
bundled with Wagtail should be used. A link to the Django source code where this function was taken from should be
included:

import django

if django.VERSION >= (1, 9):
from django.core.validators import validate_unicode_slug

else:
# Taken from https://github.com/django/django/blob/1.9/django/core/validators.py#L230
def validate_unicode_slug(value):

# Code left as an exercise to the reader
pass

Tests

Wagtail has a suite of tests, which we are committed to improving and expanding. See Testing.

We run continuous integration at travis-ci.org/torchbox/wagtail to ensure that no commits or pull requests introduce
test failures. If your contributions add functionality to Wagtail, please include the additional tests to cover it; if your
contributions alter existing functionality, please update the relevant tests accordingly.

CSS coding guidelines

Our CSS is written in Sass, using the SCSS syntax.

Compiling

The SCSS source files are compiled to CSS using the gulp build system. This requires node.js to run. To install the
libraries required for compiling the SCSS, run the following from the Wagtail repository root:

$ npm install

To compile the assets, run:

1.7. Contributing to Wagtail 197

https://travis-ci.org/torchbox/wagtail
http://gulpjs.com/
http://nodejs.org


Wagtail Documentation, Release 1.6.3

$ npm run build

Alternatively, the SCSS files can be monitored, automatically recompiling when any changes are observed, by running:

$ npm start

Linting SCSS

Wagtail uses the “scss-lint” Ruby Gem for linting.

Install it thus:

$ gem install scss-lint

Then run the linter from the wagtail project root:

$ scss-lint

The linter is configured to check your code for adherance to the guidelines below, plus a little more.

Spacing

• Use soft-tabs with a four space indent. Spaces are the only way to guarantee code renders the same in any
person’s environment.

• Put spaces after : in property declarations.

• Put spaces before { in rule declarations.

• Put line breaks between rulesets.

• When grouping selectors, put each selector on its own line.

• Place closing braces of declaration blocks on a new line.

• Each declaration should appear on its own line for more accurate error reporting.

• Add a newline at the end of your .scss files.

• Strip trailing whitespace from your rules.

• Add a space after the comma, in comma-delimited property values e.g rgba()

Formatting

• Use hex color codes #000 unless using rgba() in raw CSS (SCSS’ rgba() function is overloaded to accept
hex colors as a param, e.g., rgba(#000, .5)).

• Use // for comment blocks (instead of /* */).

• Use single quotes for string values background: url(’my/image.png’) or content: ’moose’

• Avoid specifying units for zero values, e.g., margin: 0; instead of margin: 0px;.

• Strive to limit use of shorthand declarations to instances where you must explicitly set all the available values.

Sass imports Leave off underscores and file extensions in includes:

198 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

// Bad
@import 'components/_widget.scss'

// Better
@import 'components/widget'

Pixels vs. ems Use rems for font-size, because they offer absolute control over text. Additionally, unit-less
line-height is preferred because it does not inherit a percentage value of its parent element, but instead is based
on a multiplier of the font-size.

Specificity (classes vs. ids) Always use classes instead of IDs in CSS code. IDs are overly specific and lead to
duplication of CSS.

When styling a component, start with an element + class namespace, prefer direct descendant selectors by default, and
use as little specificity as possible. Here is a good example:

<ul class="category-list">
<li class="item">Category 1</li>
<li class="item">Category 2</li>
<li class="item">Category 3</li>

</ul>

.category-list { // element + class namespace

// Direct descendant selector > for list items
> li {

list-style-type: disc;
}

// Minimal specificity for all links
a {

color: #f00;
}

}

Class naming conventions Never reference js- prefixed class names from CSS files. js- are used exclusively
from JS files.

Use the SMACSS is- prefix for state rules that are shared between CSS and JS.

Misc As a rule of thumb, avoid unnecessary nesting in SCSS. At most, aim for three levels. If you cannot help it,
step back and rethink your overall strategy (either the specificity needed, or the layout of the nesting).

Examples Here are some good examples that apply the above guidelines:

// Example of good basic formatting practices
.styleguide-format {

color: #000;
background-color: rgba(0, 0, 0, .5);
border: 1px solid #0f0;

}

// Example of individual selectors getting their own lines (for error reporting)
.multiple,

1.7. Contributing to Wagtail 199

https://smacss.com/book/type-state


Wagtail Documentation, Release 1.6.3

.classes,

.get-new-lines {
display: block;

}

// Avoid unnecessary shorthand declarations
.not-so-good {

margin: 0 0 20px;
}
.good {

margin-bottom: 20px;
}

JavaScript coding guidelines

Write JavaScript according to the Airbnb Styleguide, with some exceptions:

• Use soft-tabs with a four space indent. Spaces are the only way to guarantee code renders the same in any
person’s environment.

• We accept snake_case in object properties, such as ajaxResponse.page_title, however camelCase
or UPPER_CASE should be used everywhere else.

Linting and formatting code

Wagtail provides some tooling configuration to help check your code meets the styleguide. You’ll need node.js and
npm on your development machine. Ensure project dependencies are installed by running npm install

Linting code

npm run lint:js

This will lint all the JS in the wagtail project, excluding vendor files and compiled libraries.

Some of the modals are generated via server-side scripts. These include template tags that upset the linter, so modal
workflow JavaScript is excluded from the linter.

Formatting code

npm run format:js

This will perform safe edits to conform your JS code to the styleguide. It won’t touch the line-length, or convert
quotemarks from double to single.

Run the linter after you’ve formatted the code to see what manual fixes you need to make to the codebase.

Changing the linter configuration

Under the hood, the tasks use the JavaScript Code Style library.

To edit the settings for ignored files, or to change the linting rules, edit the .jscsrc file in the wagtail project root.

A complete list of the possible linting rules can be found here: JSCS Rules

Issue tracking

We welcome bug reports, feature requests and pull requests through Wagtail’s Github issue tracker.

200 Chapter 1. Index

http://github.com/airbnb/javascript
http://jscs.info/
http://jscs.info/rules.html
https://github.com/torchbox/wagtail/issues


Wagtail Documentation, Release 1.6.3

Issues

An issue must always correspond to a specific action with a well-defined completion state: fixing a bug, adding a new
feature, updating documentation, cleaning up code. Open-ended issues where the end result is not immediately clear
(“come up with a way of doing translations”) are fine, as long as there’s a clear way to progress the issue and identify
when it has been completed (not e.g. “make rich text fields suck less”).

Do not use issues for support queries or other questions (“How do I do X?” - although “Implement a way of doing X”
or “Document how to do X” could well be valid issues). These should go on the Wagtail Support Google group.

As soon as a ticket is opened - ideally within one day - a member of the core team will give it an initial classification,
by either closing it as invalid or assigning it to a milestone. Don’t be discouraged if you feel that your ticket has been
given a lower priority than it deserves - this decision isn’t permanent. We will consider all feedback, and reassign or
reopen tickets where appropriate.

(From the other side, this means that the core team member doing the classification should feel free to make bold
unilateral decisions - there’s no need to seek consensus first. If they make the wrong judgment call, that can always be
reversed later.)

The possible milestones that it might be assigned to are as follows:

• invalid (closed): this issue doesn’t identify a specific action to be taken, or the action is not one that we want to
take. For example - a bug report for something that’s working as designed, or a feature request for something
that’s actively harmful.

• some-day: the issue is accepted as valid (i.e. it’s a bug report for a legitimate bug, or a useful feature request)
but not deemed a priority to work on (in the opinion of the core team). For example - a bug that’s only cosmetic,
or a feature that would be kind of neat but not really essential. Feel free to take it on!

• real-soon-now: the issue is considered important by the core team (roughly speaking: it’s a bug or missing
feature that’s causing headaches for people) but isn’t necessarily going to be completed on any set timescale.
Feel free to take it on!

• A specific version number: the issue is important enough that it needs to be fixed in this version.

On some occasions it may take longer for the core team to classify an issue into a milestone. For example:

• It may require a non-trivial amount of work to confirm the presence of a bug. In this case, feedback and further
details from other contributors, whether or not they can replicate the bug, would be particularly welcomed.

• It may require further discussion to decide whether the proposal is a good idea or not - if so, it will be tagged
“design decision needed”.

We will endeavour to make sure that issues don’t remain in this state for prolonged periods. Issues and PRs tagged
“design decision needed” will be revisited regularly and discussed with at least two core contributors - we aim to
review each ticket at least once per release cycle (= 6 weeks).

Pull requests

As with issues, the core team will classify pull requests as soon as they are opened, usually within one day. Unless the
change is invalid or particularly contentious (in which case it will be closed or marked as “design decision needed”),
it will generally be classified under the next applicable version - the next minor release for new features, or the next
patch release for bugfixes - and marked as ‘Needs review’. All contributors, core and non-core, are invited to offer
feedback on the pull request.

Subsequently (ideally within a week or two, but possibly longer for larger submissions) a core team member will
merge it if it is ready to be merged, or tag it as requiring further work (‘needs work’ / ‘needs tests’ / ‘needs docs’).
In the latter case, they may also reassign it to a later milestone (‘real-soon-now’ or ‘some-day’). Pull requests that

1.7. Contributing to Wagtail 201

https://groups.google.com/forum/#!forum/wagtail


Wagtail Documentation, Release 1.6.3

require further work are handled and prioritised in the same way as issues - anyone is welcome to pick one up from
the backlog, whether or not they were the original committer.

Release schedule

We aim to release a new version every 2 months. To keep to this schedule, we will tend to ‘bump’ issues and PRs to a
future release where necessary, rather than let them delay the present one. For this reason, an issue being tagged under
a particular release milestone should not be taken as any kind of guarantee that the feature will actually be shipped in
that release.

Committing code

This section is for the committers of Wagtail, or for anyone interested in the process of getting code committed to
Wagtail.

Code should only be committed after it has been reviewed by at least one other reviewer or committer, unless the
change is a small documentation change or fixing a typo.

Most code contributions will be in the form of pull requests from Github. Pull requests should not be merged from
Github though. Instead, the code should be checked out by a committer locally, the changes examined and rebased,
the CHANGELOG.txt and release notes updated, and finally the code should be pushed to the master branch. This
process is covered in more detail below.

Check out the code locally

If the code has been submitted as a pull request, you should fetch the changes and check them out in your Wag-
tail repository. A simple way to do this is by adding the following git alias to your ~/.gitconfig (assuming
upstream is torchbox/wagtail):

[alias]
pr = !sh -c \"git fetch upstream pull/${1}/head:pr/${1} && git checkout pr/${1}\"

Now you can check out pull request number xxxx by running git pr xxxx.

Rebase on to master

Now that you have the code, you should rebase the commits on to the master branch. Rebasing is preferred over
merging, as merge commits make the commit history harder to read for small changes.

You can fix up any small mistakes in the commits, such as typos and formatting, as part of the rebase. git rebase
--interactive is an excellent tool for this job.

# Get the latest commits from Wagtail
$ git fetch upstream
$ git checkout master
$ git merge --ff-only upstream/master
# Rebase this pull request on to master
$ git checkout pr/xxxx
$ git rebase master
# Update master to this commit
$ git checkout master
$ git merge --ff-only pr/xxxx

202 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Update CHANGELOG.txt and release notes

Every significant change to Wagtail should get an entry in the CHANGELOG.txt, and the release notes for the current
version.

The CHANGELOG.txt contains a short summary of each new feature, refactoring, or bug fix in each release. Each
summary should be a single line. Bug fixes should be grouped together at the end of the list for each release, and be
prefixed with “Fix:”. The name of the contributor should be added at the end of the summary, in brackets, if they are
not a core committer. For example:

* Fix: Tags added on the multiple image uploader are now saved correctly (Alex Smith)

The release notes for each version contain a more detailed description of each change. Backwards compatibility notes
should also be included. Large new features or changes should get their own section, while smaller changes and bug
fixes should be grouped together in their own section. See previous release notes for examples. The release notes for
each version are found in docs/releases/x.x.x.rst.

If the contributor is a new person, and this is their first contribution to Wagtail, they should be added to the
CONTRIBUTORS.rst list. Contributors are added in chronological order, with new contributors added to the bottom
of the list. Use their preferred name. You can usually find the name of a contributor on their Github profile. If in
doubt, or if their name is not on their profile, ask them how they want to be named.

If the changes to be merged are small enough to be a single commit, amend this single commit with the additions to
the CHANGELOG.txt, release notes, and contributors:

$ git add CHANGELOG.txt docs/releases/x.x.x.rst CONTRIBUTORS.rst
$ git commit --amend --no-edit

If the changes do not fit in a single commit, make a new commit with the updates to the CHANGELOG.txt, release
notes, and contributors. The commit message should say Release notes for #xxxx:

$ git add CHANGELOG.txt docs/releases/x.x.x.rst CONTRIBUTORS.rst
$ git commit -m 'Release notes for #xxxx'

Push to master

The changes are ready to be pushed to master now.

# Check that everything looks OK
$ git log upstream/master..master --oneline
$ git push --dry-run upstream master
# Push the commits!
$ git push upstream master
$ git branch -d pr/xxxx

Release notes

Wagtail 1.6.3 release notes

• What’s changed

1.8. Release notes 203



Wagtail Documentation, Release 1.6.3

What’s changed

Bug fixes

• Restore compatibility with django-debug-toolbar 1.5 (Matt Westcott)

• Edits to StreamFields are no longer ignored in page edits on Django >=1.10.1 when a default value exists (Matt
Westcott)

Wagtail 1.6.2 release notes

• What’s changed

What’s changed

Bug fixes

• Initial values of checkboxes on group permission edit form now are visible on Django 1.10 (Matt Westcott)

Wagtail 1.6.1 release notes

• What’s new
• Upgrade considerations

What’s new

Minor features

• Added WAGTAIL_ALLOW_UNICODE_SLUGS setting to make Unicode support optional in page slugs (Matt
Westcott)

Bug fixes

• Wagtail’s middleware classes are now compatible with Django 1.10’s new-style middleware (Karl Hobley)

• The can_create_at() method is now checked in the create page view (Mikalai Radchuk)

• Fixed regression on Django 1.10.1 causing Page subclasses to fail to use PageManager (Matt Westcott)

• ChoiceBlocks with lazy translations as option labels no longer break Elasticsearch indexing (Matt Westcott)

• The page editor no longer fails to load JavaScript files with ManifestStaticFilesStorage (Matt West-
cott)

• Django 1.10 enables client-side validation for all forms by default, but it fails to handle all the nuances of how
forms are used in Wagtail. The client-side validation has been disabled for the Wagtail UI (Matt Westcott)

204 Chapter 1. Index

https://docs.djangoproject.com/en/1.10/releases/1.10/#new-style-middleware


Wagtail Documentation, Release 1.6.3

Upgrade considerations

Multi-level inheritance and custom managers

The inheritance rules for Custom Page managers have been updated to match Django’s standard behaviour. In the
vast majority of scenarios there will be no change. However, in the specific case where a page model with a custom
objectsmanager is subclassed further, the subclass will be assigned a plain Manager instead of a PageManager,
and will now need to explicitly override this with a PageManager to function correctly:

class EventPage(Page):
objects = EventManager()

class SpecialEventPage(EventPage):
# Previously SpecialEventPage.objects would be set to a PageManager automatically;
# this now needs to be set explicitly
objects = PageManager()

Wagtail 1.6 release notes

• What’s new
• Upgrade considerations

What’s new

Django 1.10 support

Wagtail is now compatible with Django 1.10. Thanks to Mikalai Radchuk and Paul J Stevens for developing this, and
to Tim Graham for reviewing and additional Django core assistance.

{% include_block %} tag for improved StreamField template inclusion

In previous releases, the standard way of rendering the HTML content of a StreamField was through a simple variable
template tag, such as {{ page.body }}. This had the drawback that any templates used in the StreamField
rendering would not inherit variables from the parent template’s context, such as page and request. To address
this, a new template tag {% include_block page.body %} has been introduced as the new recommended
way of outputting Streamfield content - this replicates the behaviour of Django’s {% include %} tag, passing on
the full template context by default. For full documentation, see Template rendering. This feature was developed by
Matt Westcott, and additionally ported to Jinja2 (see: Jinja2 template support) by Mikalai Radchuk.

Unicode page slugs

Page URL slugs can now contain Unicode characters, when using Django 1.9 or above. This feature was developed
by Behzad Nategh.

1.8. Release notes 205



Wagtail Documentation, Release 1.6.3

Permission-limited explorer menu

The explorer sidebar menu now limits the displayed pages to the ones the logged-in user has permission for. For
example, if a user has permission over the pages MegaCorp / Departments / Finance and MegaCorp / Departments
/ HR, then their menu will begin at “Departments”. This reduces the amount of “drilling-down” the user has to do,
and is an initial step towards supporting fully independent sites on the same Wagtail installation. This feature was
developed by Matt Westcott and Robert Rollins, California Institute of Technology.

Minor features

• Image upload form in image chooser now performs client side validation so that the selected file is not lost in
the submission (Jack Paine)

• oEmbed URL for audioBoom was updated (Janneke Janssen)

• Remember tree location in page chooser when switching between Internal / External / Email link (Matt Westcott)

• FieldRowPanel now creates equal-width columns automatically if col* classnames are not specified (Chris
Rogers)

• Form builder now validates against multiple fields with the same name (Richard McMillan)

• The ‘choices’ field on the form builder no longer has a maximum length (Johannes Spielmann)

• Multiple ChooserBlocks inside a StreamField are now prefetched in bulk, for improved performance (Michael
van Tellingen, Roel Bruggink, Matt Westcott)

• Added new EmailBlock and IntegerBlock (Oktay Altay)

• Added a new FloatBlock, DecimalBlock and a RegexBlock (Oktay Altay, Andy Babic)

• Wagtail version number is now shown on the settings menu (Chris Rogers)

• Added a system check to validate that fields listed in search_fields are defined on the model (Josh
Schneier)

• Added formal APIs for customising the display of StructBlock forms within the page editor - see Custom editing
interfaces for StructBlock (Matt Westcott)

• wagtailforms.models.AbstractEmailForm now supports multiple email recipients (Serafeim Pa-
pastefanos)

• Added ability to delete users through Settings -> Users (Vincent Audebert; thanks also to Ludolf Takens and
Tobias Schmidt for alternative implementations)

• Page previews now pass additional HTTP headers, to simulate the page being viewed by the logged-in user and
avoid clashes with middleware (Robert Rollins)

• Added back buttons to page delete and unpublish confirmation screens (Matt Westcott)

• Recognise Flickr embed URLs using HTTPS (Danielle Madeley)

• Success message when publishing a page now correctly respects custom URLs defined on the specific page class
(Chris Darko)

• Required blocks inside StreamField are now indicated with asterisks (Stephen Rice)

Bug fixes

• Email templates and document uploader now support custom STATICFILES_STORAGE (Jonny Scholes)

206 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

• Removed alignment options (deprecated in HTML and not rendered by Wagtail) from TableBlock context
menu (Moritz Pfeiffer)

• Fixed incorrect CSS path on ModelAdmin’s “choose a parent page” view

• Prevent empty redirect by overnormalisation

• “Remove link” button in rich text editor didn’t trigger “edit” event, leading to the change to sometimes not be
persisted (Matt Westcott)

• RichText values can now be correctly evaluated as booleans (Mike Dingjan, Bertrand Bordage)

• wagtailforms no longer assumes an .html extension when determining the landing page template filename (kaku-
lukia)

• Fixed styling glitch on bi-colour icon + text buttons in Chrome (Janneke Janssen)

• StreamField can now be used in an InlinePanel (Gagaro)

• StreamField block renderings using templates no longer undergo double escaping when using Jinja2 (Aymeric
Augustin)

• RichText objects no longer undergo double escaping when using Jinja2 (Aymeric Augustin, Matt Westcott)

• Saving a page by pressing enter key no longer triggers a “Changes may not be saved message” (Sean Muck,
Matt Westcott)

• RoutablePageMixin no longer breaks in the presence of instance-only attributes such as those generated by
FileFields (Fábio Macêdo Mendes)

• The --schema-only flag on update_index no longer expects an argument (Karl Hobley)

• Added file handling to support custom user add/edit forms with images/files (Eraldo Energy)

• Placeholder text in modeladmin search now uses the correct template variable (Adriaan Tijsseling)

• Fixed bad SQL syntax for updating URL paths on Microsoft SQL Server (Jesse Legg)

• Added workaround for Django 1.10 bug https://code.djangoproject.com/ticket/27037 causing forms with file
upload fields to fail validation (Matt Westcott)

Upgrade considerations

Form builder FormField models require a migration

There are some changes in the wagtailforms.models.AbstractFormField model:

• The choices field has been changed from a CharField to a TextField, to allow it to be of unlimited
length;

• The help text for the to_address field has been changed: it now gives more information on how to specify
multiple addresses.

These changes require migration. If you are using the wagtailforms module in your project, you will need to
run python manage.py makemigrations and python manage.py migrate after upgrading, in order
to apply changes to your form page models.

TagSearchable needs removing from custom image / document model migrations

The mixin class wagtail.wagtailadmin.taggable.TagSearchable, used internally by image and docu-
ment models, has been deprecated. If you are using custom image or document models in your project, the migration(s)

1.8. Release notes 207

https://code.djangoproject.com/ticket/27037


Wagtail Documentation, Release 1.6.3

which created them will contain frozen references to wagtail.wagtailadmin.taggable.TagSearchable,
which must now be removed. The line:

import wagtail.wagtailadmin.taggable

should be replaced by:

import wagtail.wagtailsearch.index

and the line:

bases=(models.Model, wagtail.wagtailadmin.taggable.TagSearchable),

should be updated to:

bases=(models.Model, wagtail.wagtailsearch.index.Indexed),

render and render_basic methods on StreamField blocks now accept a context keyword argument

The render and render_basic methods on wagtail.wagtailcore.blocks.Block have been updated
to accept an optional context keyword argument, a template context to use when rendering the block. If you have
defined any custom StreamField blocks that override either of these methods, the method signature now needs to be
updated to include this keyword argument:

class MyBlock(Block):

def render(self, value):
...

def render_basic(self, value):
...

should now become:

class MyBlock(Block):

def render(self, value, context=None):
...

def render_basic(self, value, context=None):
...

Wagtail 1.5.3 release notes

• What’s changed

What’s changed

Bug fixes

• Pin html5lib to version 0.999999 to prevent breakage caused by internal API changes (Liam Brenner)

208 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Wagtail 1.5.2 release notes

• What’s new

What’s new

Bug fixes

• Fixed regression in 1.5.1 on editing external links (Stephen Rice)

Wagtail 1.5.1 release notes

• What’s new

What’s new

Bug fixes

• When editing a document link in rich text, the document ID is no longer erroneously interpreted as a page ID
(Stephen Rice)

• Removing embedded media from rich text by mouse click action now gets correctly registered as a change to
the field (Loic Teixeira)

• Rich text editor is no longer broken in InlinePanels (Matt Westcott, Gagaro)

• Rich text editor is no longer broken in settings (Matt Westcott)

• Link tooltip now shows correct urls for newly inserted document links (Matt Westcott)

• Now page chooser (in a rich text editor) opens up at the link’s parent page, rather than at the page itself (Matt
Westcott)

• Reverted fix for explorer menu scrolling with page content, as it blocked access to menus that exceed screen
height

• Image listing in the image chooser no longer becomes unpaginated after an invalid upload form submission
(Stephen Rice)

• Confirmation message on the ModelAdmin delete view no longer errors if the model’s string representation
depends on the primary key (Yannick Chabbert)

• Applied correct translation tags for ‘permanent’ / ‘temporary’ labels on redirects (Matt Westcott)

Wagtail 1.5 release notes

• What’s new
• Upgrade considerations

1.8. Release notes 209



Wagtail Documentation, Release 1.6.3

What’s new

Reorganised page explorer actions

The action buttons on the page explorer have been reorganised to reduce clutter, and lesser-used actions have been
moved to a “More” dropdown. A new hook register_page_listing_buttons has been added for adding custom action
buttons to the page explorer.

ModelAdmin

Wagtail now includes an app wagtail.contrib.modeladmin (previously available separately as the wag-
tailmodeladmin package) which allows you to configure arbitrary Django models to be listed, added and edited through
the Wagtail admin.

210 Chapter 1. Index

https://github.com/rkhleics/wagtailmodeladmin
https://github.com/rkhleics/wagtailmodeladmin


Wagtail Documentation, Release 1.6.3

See ModelAdmin for full documentation. This feature was developed by Andy Babic.

TableBlock

TableBlock, a new StreamField block type for editing table-based content, is now available through the
wagtail.contrib.table_block module.

1.8. Release notes 211



Wagtail Documentation, Release 1.6.3

See TableBlock for documentation. This feature was developed by Moritz Pfeiffer, David Seddon and Brad Busenius.

Improved link handling in rich text

The user experience around inserting, editing and removing links inside rich text areas has been greatly improved: link
destinations are shown as tooltips, and existing links can be edited as well as unlinked. This feature was developed by
Loic Teixeira.

Improvements to the “Image serve view”

Dynamic image serve view

This view, which is used for requesting image thumbnails from an external app, has had some improvements made to
it in this release.

• A “redirect” action has been added which will redirect the user to where the resized image is hosted rather than
serving it from the app. This may be beneficial for performance if the images are hosted externally (eg, S3)

• It now takes an optional extra path component which can be used for appending a filename to the end of the
URL

• The key is now configurable on the view so you don’t have to use your project’s SECRET_KEY

• It’s been refactored into a class based view and you can now create multiple serve views with different image
models and/or keys

• It now supports serving image files using django-sendfile (Thanks to Yannick Chabbert for implementing this)

Minor features

• Password reset email now reminds the user of their username (Matt Westcott)

• Added jinja2 support for the settings template tag (Tim Heap)

• Added ‘revisions’ action to pages list (Roel Bruggink)

• Added a hook insert_global_admin_js for inserting custom JavaScript throughout the admin backend (Tom
Dyson)

• Recognise instagram embed URLs with www prefix (Matt Westcott)

• The type of the search_fields attribute on Page models (and other searchable models) has changed from
a tuple to a list (see upgrade consideration below) (Tim Heap)

• Use PasswordChangeForm when user changes their password, requiring the user to enter their current password
(Matthijs Melissen)

• Highlight current day in date picker (Jonas Lergell)

• Eliminated the deprecated register.assignment_tag on Django 1.9 (Josh Schneier)

• Increased size of Save button on site settings (Liam Brenner)

• Optimised Site.find_for_request to only perform one database query (Matthew Downey)

• Notification messages on creating / editing sites now include the site name if specified (Chris Rogers)

• Added --schema-only option to update_index management command

• Added meaningful default icons to StreamField blocks (Benjamin Bach)

212 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

• Added title text to action buttons in the page explorer (Liam Brenner)

• Changed project template to explicitly import development settings via settings.dev (Tomas Olander)

• Improved L10N and I18N for revisions list (Roel Bruggink)

• The multiple image uploader now displays details of server errors (Nigel Fletton)

• Added WAGTAIL_APPEND_SLASH setting to determine whether page URLs end in a trailing slash - see Ap-
pend Slash (Andrew Tork Baker)

• Added auto resizing text field, richtext field, and snippet chooser to styleguide (Liam Brenner)

• Support field widget media inside StreamBlock blocks (Karl Hobley)

• Spinner was added to Save button on site settings (Liam Brenner)

• Added success message after logout from Admin (Liam Brenner)

• Added get_upload_to method to AbstractRendition which, when overridden, allows control over
where image renditions are stored (Rob Moggach and Matt Westcott)

• Added a mechanism to customise the add / edit user forms for custom user models - see Custom user models
(Nigel Fletton)

• Added internal provision for swapping in alternative rich text editors (Karl Hobley)

Bug fixes

• The currently selected day is now highlighted only in the correct month in date pickers (Jonas Lergell)

• Fixed crash when an image without a source file was resized with the “dynamic serve view”

• Registered settings admin menu items now show active correctly (Matthew Downey)

• Direct usage of Document model replaced with get_document_model function in
wagtail.contrib.wagtailmedusa and in wagtail.contrib.wagtailapi

• Failures on sending moderation notification emails now produce a warning, rather than crashing the admin page
outright (Matt Fozard)

• All admin forms that could potentially include file upload fields now specify multipart/form-data where
appropriate (Tim Heap)

• REM units in Wagtailuserbar caused incorrect spacing (Vincent Audebert)

• Explorer menu no longer scrolls with page content (Vincent Audebert)

• decorate_urlpatterns now uses functools.update_wrapper to keep view names and docstrings
(Mario César)

• StreamField block controls are no longer hidden by the StreamField menu when prepending a new block (Vin-
cent Audebert)

• Removed invalid use of __ alias that prevented strings getting picked up for translation (Juha Yrjölä)

• Routable pages without a main view no longer raise a TypeError (Bojan Mihelac)

• Fixed UnicodeEncodeError in wagtailforms when downloading a CSV for a form containing non-ASCII field
labels on Python 2 (Mikalai Radchuk)

• Server errors during search indexing on creating / updating / deleting a model are now logged, rather than
causing the overall operation to fail (Karl Hobley)

• Objects are now correctly removed from search indexes on deletion (Karl Hobley)

1.8. Release notes 213



Wagtail Documentation, Release 1.6.3

Upgrade considerations

Buttons in admin now require class="button"

The Wagtail admin CSS has been refactored for maintainability, and buttons now require an explicit button class.
(Previously, the styles were applied on all inputs of type "submit", "reset" or "button".) If you have created
any apps that extend the Wagtail admin with new views / templates, you will need to add this class to all buttons.

The search_fields attribute on models should now be set to a list

On searchable models (eg, Page or custom Image models) the search_fields attribute should now be a list
instead of a tuple.

For example, the following Page model:

class MyPage(Page):
...

search_fields = Page.search_fields + (
indexed.SearchField('body'),

)

Should be changed to:

class MyPage(Page):
...

search_fields = Page.search_fields + [
indexed.SearchField('body'),

]

To ease the burden on third-party modules, adding tuples to Page.search_fields will still work. But this
backwards-compatibility fix will be removed in Wagtail 1.7.

Elasticsearch backend now defaults to verifying SSL certs

Previously, if you used the Elasticsearch backend, configured with the URLS property like:

WAGTAILSEARCH_BACKENDS = {
'default': {

'BACKEND': 'wagtail.wagtailsearch.backends.elasticsearch',
'URLS': ['https://example.com/'],

}
}

Elasticsearch would not be configured to verify SSL certificates for HTTPS URLs. This has been changed so that SSL
certificates are verified for HTTPS connections by default.

If you need the old behaviour back, where SSL certificates are not verified for your HTTPS connection, you can
configure the Elasticsearch backend with the HOSTS option, like so:

WAGTAILSEARCH_BACKENDS = {
'default': {

'BACKEND': 'wagtail.wagtailsearch.backends.elasticsearch',
'HOSTS': [{

'host': 'example.com'

214 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

'use_ssl': True,
'verify_certs': False,

}],
}

}

See the Elasticsearch-py documentation for more configuration options.

Project template now imports settings.dev explicitly

In previous releases, the project template’s settings/__init__.py file was set up to import the development
settings (settings/dev.py), so that these would be picked up as the default (i.e. whenever a settings module was
not specified explicitly). However, in some setups this meant that the development settings were being inadvertently
imported in production mode.

For this reason, the import in settings/__init__.py has now been removed, and commands must now spec-
ify myproject.settings.dev or myproject.settings.production as appropriate; the supporting
scripts (such as manage.py) have been updated accordingly. As this is a change to the project template, exist-
ing projects are not affected; however, if you have any common scripts or configuration files that rely on importing
myproject.settings as the settings module, these will need to be updated in order to work on projects created
under Wagtail 1.5.

Wagtail 1.4.6 release notes

• What’s changed

What’s changed

Bug fixes

• Pin html5lib to version 0.999999 to prevent breakage caused by internal API changes (Liam Brenner)

Wagtail 1.4.5 release notes

• What’s changed

What’s changed

Bug fixes

• Paste / drag operations done entirely with the mouse are now correctly picked up as edits within the rich text
editor (Matt Fozard)

• Logic for cancelling the “unsaved changes” check on form submission has been fixed to work cross-browser
(Stephen Rice)

1.8. Release notes 215

http://elasticsearch-py.readthedocs.org/en/stable/#ssl-and-authentication


Wagtail Documentation, Release 1.6.3

• The “unsaved changes” confirmation was erroneously shown on IE / Firefox when previewing a page with
validation errors (Matt Westcott)

• The up / down / delete controls on the “Promoted search results” form no longer trigger a form submission (Matt
Westcott)

• Opening preview window no longer performs user-agent sniffing, and now works correctly on IE11 (Matt West-
cott)

• Tree paths are now correctly assigned when previewing a newly-created page underneath a parent with deleted
children (Matt Westcott)

• Added BASE_URL setting back to project template

• Clearing the search box in the page chooser now returns the user to the browse view (Matt Westcott)

• The above fix also fixed an issue where Internet Explorer got stuck in the search view upon opening the page
chooser (Matt Westcott)

Wagtail 1.4.4 release notes

• What’s changed

What’s changed

Translations

• New translation for Slovenian (Mitja Pagon)

Bug fixes

• The wagtailuserbar template tag now gracefully handles situations where the request object is not in
the template context (Matt Westcott)

• Meta classes on StreamField blocks now handle multiple inheritance correctly (Tim Heap)

• Now user can upload images / documents only into permitted collection from choosers

• Keyboard shortcuts for save / preview on the page editor no longer incorrectly trigger the “unsaved changes”
message (Jack Paine / Matt Westcott)

• Redirects no longer fail when both a site-specific and generic redirect exist for the same URL path (Nick Smith,
João Luiz Lorencetti)

• Wagtail now checks that Group is registered with the Django admin before unregistering it (Jason Morrison)

• Previewing inaccessible pages no longer fails with ALLOWED_HOSTS = [’*’] (Robert Rollins)

• The submit button ‘spinner’ no longer activates if the form has client-side validation errors (Jack Paine, Matt
Westcott)

• Overriding MESSAGE_TAGS in project settings no longer causes messages in the Wagtail admin to lose their
styling (Tim Heap)

• Border added around explorer menu to stop it blending in with StreamField block listing; also fixes invisible
explorer menu in Firefox 46 (Alex Gleason)

216 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Wagtail 1.4.3 release notes

• What’s changed

What’s changed

Bug fixes

• Fixed regression introduced in 1.4.2 which caused Wagtail to query the database during a system check (Tim
Heap)

Wagtail 1.4.2 release notes

• What’s changed

What’s changed

Bug fixes

• Streamfields no longer break on validation error

• Number of validation errors in each tab in the editor is now correctly reported again

• Userbar now opens on devices with both touch and mouse (Josh Barr)

• wagtail.wagtailadmin.wagtail_hooks no longer calls static during app load, so you can use
ManifestStaticFilesStorage without calling the collectstatic command

• Fixed crash on page save when a custom Page edit handler has been specified using the edit_handler
attribute (Tim Heap)

Wagtail 1.4.1 release notes

• What’s changed

What’s changed

Bug fixes

• Fixed erroneous rendering of up arrow icons (Rob Moorman)

1.8. Release notes 217



Wagtail Documentation, Release 1.6.3

Wagtail 1.4 release notes

• What’s new
• Upgrade considerations

What’s new

Page revision management

From the page editing interface, editors can now access a list of previous revisions of the page, and preview or roll
back to any earlier revision.

Collections for image / document organisation

Images and documents can now be organised into collections, set up by administrators through the Settings -> Collec-
tions menu item. User permissions can be set either globally (on the ‘Root’ collection) or on individual collections,
allowing different user groups to keep their media items separated. Thank you to the University of South Wales for
sponsoring this feature.

Redesigned userbar

The Wagtail userbar (which gives editors quick access to the admin from the site frontend) has been redesigned, and
no longer depends on an iframe. The new design allows more flexibility in label text, more configurable positioning
to avoid overlapping with site navigation, and adds a new “Show in Explorer” option. This feature was developed by
Thomas Winter and Gareth Price.

Protection against unsaved changes

The page editor interface now produces a warning if the user attempts to navigate away while there are unsaved
changes.

218 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Multiple document uploader

The “Add a document” interface now supports uploading multiple documents at once, in the same way as uploading
images.

Custom document models

The Document model can now be overridden using the new WAGTAILDOCS_DOCUMENT_MODEL setting. This
works in the same way that WAGTAILIMAGES_IMAGE_MODEL works for Image.

Removed django-compressor dependency

Wagtail no longer depends on the django-compressor library. While we highly recommend compressing and bundling
the CSS and Javascript on your sites, using django-compressor places additional installation and configuration de-
mands on the developer, so this has now been made optional.

Minor features

• The page search interface now searches all fields instead of just the title (Kait Crawford)

• Snippets now support a custom edit_handler property; this can be used to implement a tabbed interface,
for example. See Customising the tabbed interface (Mikalai Radchuk)

• Date/time pickers now respect the locale’s ‘first day of week’ setting (Peter Quade)

• Refactored the way forms are constructed for the page editor, to allow custom forms to be used

• Notification message on publish now indicates whether the page is being published now or scheduled for publi-
cation in future (Chris Rogers)

1.8. Release notes 219

http://django-compressor.readthedocs.org/


Wagtail Documentation, Release 1.6.3

• Server errors when uploading images / documents through the chooser modal are now reported back to the user
(Nigel Fletton)

• Added a hook insert_global_admin_css for inserting custom CSS throughout the admin backend (Tom Dyson)

• Added a hook construct_explorer_page_queryset for customising the set of pages displayed in the page explorer

• Page models now perform field validation, including testing slugs for uniqueness within a parent page, at the
model level on saving

• Page slugs are now auto-generated at the model level on page creation if one has not been specified explicitly

• The Page model now has two new methods get_site() and get_url_parts() to aid with customising
the page URL generation logic

• Upgraded jQuery to 2.2.1 (Charlie Choiniere)

• Multiple homepage summary items (construct_homepage_summary_items hook) now better verti-
cally spaced (Nicolas Kuttler)

• Email notifications can now be sent in HTML format. See Email Notifications format (Mike Dingjan)

• StreamBlock now has provision for throwing non-field-specific validation errors

• Wagtail now works with Willow 0.3, which supports auto-correcting the orientation of images based on EXIF
data

• New translations for Hungarian, Swedish (Sweden) and Turkish

Bug fixes

• Custom page managers no longer raise an error when used on an abstract model

• Wagtail’s migrations are now all reversible (Benjamin Bach)

• Deleting a page content type now preserves existing pages as basic Page instances, to prevent tree corruption

• The Page.path field is now explicitly given the “C” collation on PostgreSQL to prevent tree ordering issues
when using a database created with the Slovak locale

• Wagtail’s compiled static assets are now put into the correct directory on Windows (Aarni Koskela)

• ChooserBlock now correctly handles models with primary keys other than id (alexpilot11)

• Fixed typo in Wistia oEmbed pattern (Josh Hurd)

• Added more accurate help text for the Administrator flag on user accounts (Matt Fozard)

• Tags added on the multiple image uploader are now saved correctly

• Documents created by a user are no longer deleted when the user is deleted

• Fixed a crash in RedirectMiddleware when a middleware class before SiteMiddleware returns a
response (Josh Schneier)

• Fixed error retrieving the moderator list on pages that are covered by multiple moderator permission records
(Matt Fozard)

• Ordering pages in the explorer by reverse ‘last updated’ time now puts pages with no revisions at the top

• WagtailTestUtils now works correctly on custom user models without a username field (Adam Bolfik)

• Logging in to the admin as a user with valid credentials but no admin access permission now displays an error
message, rather than rejecting the user silently

• StreamBlock HTML rendering now handles non-ASCII characters correctly on Python 2 (Mikalai Radchuk)

220 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

• Fixed a bug preventing pages with a OneToOneField from being copied (Liam Brenner)

• SASS compilation errors during Wagtail development no longer cause exit of Gulp process, instead throws error
to console and continues (Thomas Winter)

• Explorer page listing now uses specific page models, so that custom URL schemes defined on Page subclasses
are respected

• Made settings menu clickable again in Firefox 46.0a2 (Juha Kujala)

• User management index view no longer assumes the presence of username, first_name, last_name and
email fields on the user model (Eirik Krogstad)

Upgrade considerations

Removal of django-compressor

As Wagtail no longer installs django-compressor automatically as a dependency, you may need to make changes to
your site’s configuration when upgrading. If your project is actively using django-compressor (that is, your site tem-
plates contain {% compress %} tags), you should ensure that your project’s requirements explicitly include django-
compressor, rather than indirectly relying on Wagtail to install it. If you are not actively using django-compressor on
your site, you should update your settings file to remove the line ’compressor’ from INSTALLED_APPS, and
remove ’compressor.finders.CompressorFinder’ from STATICFILES_FINDERS.

Page models now enforce field validation

In previous releases, field validation on Page models was only applied at the form level, meaning that creating pages
directly at the model level would bypass validation. For example, if NewsPage is a Page model with a required body
field, then code such as:

news_page = NewsPage(title="Hello", slug='hello')
parent_page = NewsIndex.objects.get()
parent_page.add_child(instance=news_page)

would create a page that does not comply with the validation rules. This is no longer possible, as validation is now en-
forced at the model level on save() and save_revision(); as a result, code that creates pages programmatically
(such as unit tests, and import scripts) may need to be updated to ensure that it creates valid pages.

Wagtail 1.3.1 release notes

• What’s changed

What’s changed

Bug fixes

• Applied workaround for failing wagtailimages migration on Django 1.8.8 / 1.9.1 with Postgres (see Django
issue #26034)

1.8. Release notes 221

https://code.djangoproject.com/ticket/26034
https://code.djangoproject.com/ticket/26034


Wagtail Documentation, Release 1.6.3

Wagtail 1.3 release notes

• What’s new
• Upgrade considerations

What’s new

Django 1.9 support

Wagtail is now compatible with Django 1.9.

Indexing fields across relations in Elasticsearch

Fields on related objects can now be indexed in Elasticsearch using the new indexed.RelatedFields declaration
type:

class Book(models.Model, index.Indexed):
...

search_fields = [
index.SearchField('title'),
index.FilterField('published_date'),

index.RelatedFields('author', [
index.SearchField('name'),
index.FilterField('date_of_birth'),

]),
]

# Search books where their author was born after 1950
# Both the book title and the authors name will be searched
>>> Book.objects.filter(author__date_of_birth__gt=date(1950, 1, 1)).search("Hello")

See: index.RelatedFields

Cross-linked admin search UI

The search interface in the Wagtail admin now includes a toolbar to quickly switch between different search types
- pages, images, documents and users. A new register_admin_search_area hook is provided for adding new search
types to this toolbar.

Minor features

• Added WagtailPageTests, a helper module to simplify writing tests for Wagtail sites. See Testing your
Wagtail site

• Added system checks to check the subpage_types and parent_page_types attributes of page models

• Added WAGTAIL_PASSWORD_RESET_ENABLED setting to allow password resets to be disabled indepen-
dently of the password management interface (John Draper)

222 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

• Submit for moderation notification emails now include the editor name (Denis Voskvitsov)

• Updated fonts for more comprehensive Unicode support

• Added .alt attribute to image renditions

• The default src, width, height and alt attributes can now be overridden by attributes passed to the {%
image %} tag

• Added keyboard shortcuts for preview and save in the page editor

• Added Page methods can_exist_under, can_create_at, can_move_to for customising page type
business rules

• wagtailadmin.utils.send_mail now passes extra keyword arguments to Django’s send_mail func-
tion (Matthew Downey)

• page_unpublish signal is now fired for each page that was unpublished by a call to
PageQuerySet.unpublish()

• Add get_upload_to method to AbstractImage, to allow overriding the default image upload path (Ben
Emery)

• Notification emails are now sent per user (Matthew Downey)

• Added the ability to override the default manager on Page models

• Added an optional human-friendly site_name field to sites (Timo Rieber)

• Added a system check to warn developers who use a custom Wagtail build but forgot to build the admin css

• Added success message after updating image from the image upload view (Christian Peters)

• Added a request.is_preview variable for templates to distinguish between previewing and live (Denis
Voskvitsov)

• ‘Pages’ link on site stats dashboard now links to the site homepage when only one site exists, rather than the
root level

• Added support for chaining multiple image operations on the {% image %} tag (Christian Peters)

• New translations for Arabic, Latvian and Slovak

Bug fixes

• Images and page revisions created by a user are no longer deleted when the user is deleted (Rich Atkinson)

• HTTP cache purge now works again on Python 2 (Mitchel Cabuloy)

• Locked pages can no longer be unpublished (Alex Bridge)

• Site records now implement get_by_natural_key

• Creating pages at the root level (and any other instances of the base Page model) now properly respects the
parent_page_types setting

• Settings menu now opens correctly from the page editor and styleguide views

• subpage_types / parent_page_types business rules are now enforced when moving pages

• Multi-word tags on images and documents are now correctly preserved as a single tag (LKozlowski)

• Changed verbose names to start with lower case where necessary (Maris Serzans)

• Invalid images no longer crash the image listing (Maris Serzans)

1.8. Release notes 223



Wagtail Documentation, Release 1.6.3

• MenuItem url parameter can now take a lazy URL (Adon Metcalfe, rayrayndwiga)

• Added missing translation tag to InlinePanel ‘Add’ button (jnns)

• Added missing translation tag to ‘Signing in...’ button text (Eugene MechanisM)

• Restored correct highlighting behaviour of rich text toolbar buttons

• Rendering a missing image through ImageChooserBlock no longer breaks the whole page (Christian Peters)

• Filtering by popular tag in the image chooser now works when using the database search backend

Upgrade considerations

Jinja2 template tag modules have changed location

Due to a change in the way template tags are imported in Django 1.9, it has been necessary to move the Jinja2 template
tag modules from “templatetags” to a new location, “jinja2tags”. The correct configuration settings to enable Jinja2
templates are now as follows:

TEMPLATES = [
# ...
{

'BACKEND': 'django.template.backends.jinja2.Jinja2',
'APP_DIRS': True,
'OPTIONS': {

'extensions': [
'wagtail.wagtailcore.jinja2tags.core',
'wagtail.wagtailadmin.jinja2tags.userbar',
'wagtail.wagtailimages.jinja2tags.images',

],
},

}
]

See: Jinja2 template support

ContentType-returning methods in wagtailcore are deprecated

The following internal functions and methods in wagtail.wagtailcore.models, which return a list of
ContentType objects, have been deprecated. Any uses of these in your code should be replaced by the corre-
sponding new function which returns a list of model classes instead:

• get_page_types() - replaced by get_page_models()

• Page.clean_subpage_types() - replaced by Page.clean_subpage_models()

• Page.clean_parent_page_types() - replaced by Page.clean_parent_page_models()

• Page.allowed_parent_page_types() - replaced by Page.allowed_parent_page_models()

• Page.allowed_subpage_types() - replaced by Page.allowed_subpage_models()

In addition, note that these methods now return page types that are marked as is_creatable = False, including
the base Page class. (Abstract models are not included, as before.)

224 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Wagtail 1.2 release notes

• What’s new
• Upgrade considerations

What’s new

Site settings module

Wagtail now includes a contrib module (previously available as the wagtailsettings package) to allow administrators
to edit site-specific settings.

See: Site settings

Jinja2 support

The core templatetags (pageurl, slugurl, image, richtext and wagtailuserbar) are now compatible
with Jinja2 so it’s now possible to use Jinja2 as the template engine for your Wagtail site.

Note that the variable name self is reserved in Jinja2, and so Wagtail now provides alternative variable names where
self was previously used: page to refer to page objects, and value to refer to StreamField blocks. All code
examples in this documentation have now been updated to use the new variable names, for compatibility with Jinja2;
however, users of the default Django template engine can continue to use self.

See: Jinja2 template support

Site-specific redirects

You can now create redirects for a particular site using the admin interface.

Search API improvements

Wagtail’s image and document models now provide a search method on their QuerySets, making it easy to perform
searches on filtered data sets. In addition, search methods now accept two new keyword arguments:

• operator, to determine whether multiple search terms will be treated as ‘or’ (any term may match) or ‘and’
(all terms must match);

• order_by_relevance, set to True (the default) to order by relevance or False to preserve the QuerySet’s
original ordering.

See: Searching

max_num and min_num parameters on inline panels

Inline panels now accept the optional parameters max_num and min_num, to specify the maximum / minimum
number of child items that must exist in order for the page to be valid.

See: Inline Panels and Model Clusters

1.8. Release notes 225

https://pypi.python.org/pypi/wagtailsettings/


Wagtail Documentation, Release 1.6.3

get_context on StreamField blocks

StreamField blocks now provide a get_context method that can be overridden to pass additional variables to the block’s
template.

Browsable API

The Wagtail API now incorporates the browsable front-end provided by Django REST Framework. Note that this
must be enabled by adding ’rest_framework’ to your project’s INSTALLED_APPS setting.

Python 3.5 support

Wagtail now supports Python 3.5 when run in conjunction with Django 1.8.6 or later.

Minor features

• WagtailRedirectMiddleware can now ignore the query string if there is no redirect that exactly matches it

• Order of URL parameters now ignored by redirect middleware

• Added SQL Server compatibility to image migration

• Added classnames to Wagtail rich text editor buttons to aid custom styling

• Simplified body_class in default homepage template

• page_published signal now called with the revision object that was published

• Added a favicon to the admin interface, customisable by overriding the branding_favicon block (see
Custom branding).

• Added spinner animations to long-running form submissions

• The EMBEDLY_KEY setting has been renamed to WAGTAILEMBEDS_EMBEDLY_KEY

• StreamField blocks are now added automatically, without showing the block types menu, if only one block type
exists (Alex Gleason)

• The first_published_at and latest_revision_created_at fields on page models are now avail-
able as filter fields on search queries

• Wagtail admin now standardises on a single thumbnail image size, to reduce the overhead of creating multiple
renditions

• Rich text fields now strip out HTML comments

• Page editor form now sets enctype="multipart/form-data" as appropriate, allowing FileField to be
used on page models (Petr Vacha)

• Explorer navigation menu on a completely empty page tree now takes you to the root level, rather than doing
nothing

• Added animation and fixed display issues when focusing a rich text field (Alex Gleason)

• Added a system check to warn if Pillow is compiled without JPEG / PNG support

• Page chooser now prevents users from selecting the root node where this would be invalid

• New translations for Dutch (Netherlands), Georgian, Swedish and Turkish (Turkey)

226 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Bug fixes

• Page slugs are no longer auto-updated from the page title if the page is already published

• Deleting a page permission from the groups admin UI does not immediately submit the form

• Wagtail userbar is shown on pages that do not pass a page variable to the template (e.g. because they override
the serve method)

• request.site now set correctly on page preview when the page is not in the default site

• Project template no longer raises a deprecation warning (Maximilian Stauss)

• PageManager.sibling_of(page) and PageManager.not_sibling_of(page) now default to
inclusive (i.e. page is considered a sibling of itself), for consistency with other sibling methods

• The “view live” button displayed after publishing a page now correctly reflects any changes made to the page
slug (Ryan Pineo)

• API endpoints now accept and ignore the _ query parameter used by jQuery for cache-busting

• Page slugs are no longer cut off when Unicode characters are expanded into multiple characters (Sævar Öfjörð
Magnússon)

• Searching a specific page model while filtering it by either ID or tree position no longer raises an error (Ashia
Zawaduk)

• Scrolling an over-long explorer menu no longer causes white background to show through (Alex Gleason)

• Removed jitter when hovering over StreamField blocks (Alex Gleason)

• Non-ASCII email addresses no longer throw errors when generating Gravatar URLs (Denis Voskvitsov, Kyle
Stratis)

• Dropdown for ForeignKey s are now styled consistently (Ashia Zawaduk)

• Date choosers now appear on top of StreamField menus (Sergey Nikitin)

• Fixed a migration error that was raised when block-updating from 0.8 to 1.1+

• Page.copy() no longer breaks on models with a ClusterTaggableManager or ManyToManyField

• Validation errors when inserting an embed into a rich text area are now reported back to the editor

Upgrade considerations

PageManager.sibling_of(page) and PageManager.not_sibling_of(page) have changed behaviour

In previous versions of Wagtail, the sibling_of and not_sibling_of meth-
ods behaved inconsistently depending on whether they were called on a manager (e.g.
Page.objects.sibling_of(some_page) or EventPage.objects.sibling_of(some_page))
or a QuerySet (e.g. Page.objects.all().sibling_of(some_page) or
EventPage.objects.live().sibling_of(some_page)).

Previously, the manager methods behaved as exclusive by default; that is, they did not count the passed-in page object
as a sibling of itself:

>>> event_1 = EventPage.objects.get(title='Event 1')
>>> EventPage.objects.sibling_of(event_1)
[<EventPage: Event 2>] # OLD behaviour: Event 1 is not considered a sibling of itself

This has now been changed to be inclusive by default; that is, the page is counted as a sibling of itself:

1.8. Release notes 227



Wagtail Documentation, Release 1.6.3

>>> event_1 = EventPage.objects.get(title='Event 1')
>>> EventPage.objects.sibling_of(event_1)
[<EventPage: Event 1>, <EventPage: Event 2>] # NEW behaviour: Event 1 is considered a sibling of itself

If the call to sibling_of or not_sibling_of is chained after another QuerySet method - such as all(),
filter() or live() - behaviour is unchanged; this behaves as inclusive, as it did in previous versions:

>>> event_1 = EventPage.objects.get(title='Event 1')
>>> EventPage.objects.all().sibling_of(event_1)
[<EventPage: Event 1>, <EventPage: Event 2>] # OLD and NEW behaviour

If your project includes queries that rely on the old (exclusive) behaviour, this behaviour can be restored by adding the
keyword argument inclusive=False:

>>> event_1 = EventPage.objects.get(title='Event 1')
>>> EventPage.objects.sibling_of(event_1, inclusive=False)
[<EventPage: Event 2>] # passing inclusive=False restores the OLD behaviour

Image.search and Document.search methods are deprecated

The Image.search and Document.search methods have been deprecated in favour of the new QuerySet-based
search mechanism - see Searching Images, Documents and custom models. Code using the old search methods
should be updated to search on QuerySets instead; for example:

Image.search("Hello", filters={'uploaded_by_user': user})

can be rewritten as:

Image.objects.filter(uploaded_by_user=user).search("Hello")

Wagtail API requires adding rest_framework to INSTALLED_APPS

If you have the Wagtail API (wagtail.contrib.wagtailapi) enabled, you must now add
’rest_framework’ to your project’s INSTALLED_APPS setting. In the current version the API will con-
tinue to function without this app, but the browsable front-end will not be available; this ability will be dropped in a
future release.

Page.get_latest_revision_as_page() now returns live page object when there are no draft changes

If you have any application code that makes direct updates to page data, at the model or database level, be aware that
the way these edits are reflected in the page editor has changed.

Previously, the get_latest_revision_as_page method - used by the page editor to return the current page
revision for editing - always retrieved data from the page’s revision history. Now, it will only do so if the page has
unpublished changes (i.e. the page is in live + draft state) - pages which have received no draft edits since being
published will return the page’s live data instead.

As a result, any changes made directly to a live page object will be immediately reflected in the editor without needing
to update the latest revision record (but note, the old behaviour is still used for pages in live + draft state).

Wagtail 1.1 release notes

228 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

• What’s new
• Upgrade considerations

What’s new

specific() method on PageQuerySet

Usually, an operation that retrieves a queryset of pages (such as homepage.get_children()) will return them
as basic Page instances, which only include the core page data such as title. The specific() method (e.g.
homepage.get_children().specific()) now allows them to be retrieved as their most specific type, using
the minimum number of queries.

“Promoted search results” has moved into its own module

Previously, this was implemented in wagtailsearch but now has been moved into a separate module:
wagtail.contrib.wagtailsearchpromotions

Atomic rebuilding of Elasticsearch indexes

The Elasticsearch search backend now accepts an experimental ATOMIC_REBUILD flag which ensures that the ex-
isting search index continues to be available while the update_index task is running. See ATOMIC_REBUILD.

The wagtailapi module now uses Django REST Framework

The wagtailapi module is now built on Django REST Framework and it now also has a library of serialisers that
you can use in your own REST Framework based APIs. No user-facing changes have been made.

We hope to support more REST framework features, such as a browsable API, in future releases.

Permissions fixes in the admin interface

A number of inconsistencies around permissions in the admin interface were fixed in this release:

• Removed all permissions for “User profile” (not used)

• Removed “delete” permission for Images and documents (not used)

• Users can now access images and documents when they only have the “change” permission (previously required
“add” permission as well)

• Permissions for Users now taken from custom user model, if set (previously always used permissions on Djangos
builtin User model)

• Groups and Users now respond consistently to their respective “add”, “change” and “delete” permissions

Searchable snippets

Snippets that inherit from wagtail.wagtailsearch.index.Indexed are now given a search box on the
snippet chooser and listing pages. See Making Snippets Searchable.

1.8. Release notes 229

https://github.com/torchbox/wagtail/blob/stable/1.1.x/wagtail/contrib/wagtailapi/serializers.py


Wagtail Documentation, Release 1.6.3

Minor features

• Implemented deletion of form submissions

• Implemented pagination in the page chooser modal

• Changed INSTALLED_APPS in project template to list apps in precedence order

• The {% image %} tag now supports filters on the image variable, e.g. {% image
primary_img|default:secondary_img width-500 %}

• Moved the style guide menu item into the Settings sub-menu

• Search backends can now be specified by module (e.g. wagtail.wagtailsearch.backends.elasticsearch),
rather than a specific class (wagtail.wagtailsearch.backends.elasticsearch.ElasticSearch)

• Added descendant_of filter to the API

• Added optional directory argument to “wagtail start” command

• Non-superusers can now view/edit/delete sites if they have the correct permissions

• Image file size is now stored in the database, to avoid unnecessary filesystem lookups

• Page URL lookups hit the cache/database less often

• Updated URLs within the admin backend to use namespaces

• The update_index task now indexes objects in batches of 1000, to indicate progress and avoid excessive
memory use

• Added database indexes on PageRevision and Image to improve performance on large sites

• Search in page chooser now uses Wagtail’s search framework, to order results by relevance

• PageChooserPanel now supports passing a list (or tuple) of accepted page types

• The snippet type parameter of SnippetChooserPanel can now be omitted, or passed as a model name
string rather than a model class

• Added aliases for the self template variable to accommodate Jinja as a templating engine: page for pages,
field_panel for field panels / edit handlers, and value for blocks

• Added signposting text to the explorer to steer editors away from creating pages at the root level unless they are
setting up new sites

• “Clear choice” and “Edit this page” buttons are no longer shown on the page field of the group page permissions
form

• Altered styling of stream controls to be more like all other buttons

• Added ability to mark page models as not available for creation using the flag is_creatable; pages that are
abstract Django models are automatically made non-creatable

• New translations for Norwegian Bokmål and Icelandic

Bug fixes

• Text areas in the non-default tab of the page editor now resize to the correct height

• Tabs in “insert link” modal in the rich text editor no longer disappear (Tim Heap)

• H2 elements in rich text fields were accidentally given a click() binding when put insite a collapsible multi field
panel

230 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

• The wagtailimages module is now compatible with remote storage backends that do not allow reopening
closed files

• Search no longer crashes when auto-indexing a model that doesn’t have an id field

• The wagtailfrontendcache module’s HTTP backend has been rewritten to reliably direct requests to the
configured cache hostname

• Resizing single pixel images with the “fill” filter no longer raises “ZeroDivisionError” or “tile cannot extend
outside image”

• The queryset returned from search operations when using the database search backend now correctly pre-
serves additional properties of the original query, such as prefetch_related / select_related

• Responses from the external image URL generator are correctly marked as streaming and will no longer fail
when used with Django’s cache middleware

• Page copy now works with pages that use multiple inheritance

• Form builder pages now pick up template variables defined in the get_context method

• When copying a page, IDs of child objects within page revision records were not remapped to the new objects;
this would cause those objects to be lost from the original page when editing the new one

• Newly added redirects now take effect on all sites, rather than just the site that the Wagtail admin backend was
accessed through

• Add user form no longer throws a hard error on validation failure

Upgrade considerations

“Promoted search results” no longer in wagtailsearch

This feature has moved into a contrib module so is no longer enabled by default.

To re-enable it, add wagtail.contrib.wagtailsearchpromotions to your INSTALLED_APPS:

INSTALLED_APPS = [
...

'wagtail.contrib.wagtailsearchpromotions',

...

If you have references to the wagtail.wagtailsearch.models.EditorsPick
model in your project, you will need to update these to point to the
wagtail.contrib.wagtailsearchpromotions.models.SearchPromotion model instead.

If you created your project using the wagtail start command with Wagtail 1.0, you will probably have references
to this model in the search/views.py file.

is_abstract flag on page models has been replaced by is_creatable

Previous versions of Wagtail provided an undocumented is_abstract flag on page models - not to be confused
with Django’s abstract Meta flag - to indicate that it should not be included in the list of available page types for
creation. (Typically this would be used on model classes that were designed to be subclassed to create new page types,
rather than used directly.) To avoid confusion with Django’s distinct concept of abstract models, this has now been
replaced by a new flag, is_creatable.

1.8. Release notes 231



Wagtail Documentation, Release 1.6.3

If you have used is_abstract = True on any of your models, you should now change this to is_creatable
= False.

It is not necessary to include this flag if the model is abstract in the Django sense (i.e. it has abstract = True in
the model’s Meta class), since it would never be valid to create pages of that type.

Wagtail 1.0 release notes

• What’s changed
• Upgrade considerations

What’s changed

StreamField - a field type for freeform content

StreamField provides an editing model for freeform content such as blog posts and news stories, allowing diverse
content types such as text, images, headings, video and more specialised types such as maps and charts to be mixed in
any order. See Freeform page content using StreamField.

Wagtail API - A RESTful API for your Wagtail site

When installed, the new Wagtail API module provides a RESTful web API to your Wagtail site. You can use this for
accessing your raw field content for your sites pages, images and documents in JSON format. See Wagtail API

MySQL support

Wagtail now officially supports MySQL as a database backend.

Django 1.8 support

Wagtail now officially supports running under Django 1.8.

Vanilla project template

The built-in project template is more like the Django built-in one with several Wagtail-specific additions. It includes
bare minimum settings and two apps (home and search).

Minor changes

• Dropped Django 1.6 support

• Dropped Python 2.6 and 3.2 support

• Dropped Elasticsearch 0.90.x support

• Removed dependency on libsass

• Users without usernames can now be created and edited in the admin interface

232 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

• Added new translations for Croatian and Finnish

Core

• The Page model now records the date/time that a page was first published, as the field first_published_at

• Increased the maximum length of a page slug from 50 to 255 characters

• Added hooks register_rich_text_embed_handler and register_rich_text_link_handler
for customising link / embed handling within rich text fields

• Page URL paths can now be longer than 255 characters

Admin UI

• Improvements to the layout of the left-hand menu footer

• Menu items of custom apps are now highlighted when being used

• Added thousands separator for counters on dashboard

• Added contextual links to admin notification messages

• When copying pages, it is now possible to specify a place to copy to

• Added pagination to the snippets listing and chooser

• Page / document / image / snippet choosers now include a link to edit the chosen item

• Plain text fields in the page editor now use auto-expanding text areas

• Added “Add child page” button to admin userbar

• Added update notifications (See: Wagtail update notifications)

Page editor

• JavaScript includes in the admin backend have been moved to the HTML header, to accommodate form widgets
that render inline scripts that depend on libraries such as jQuery

• The external link chooser in rich text areas now accepts URLs of the form ‘/some/local/path’, to allow linking
to non-Wagtail-controlled URLs within the local site

• Bare text entered in rich text areas is now automatically wrapped in a paragraph element

Edit handlers API

• FieldPanel now accepts an optional widget parameter to override the field’s default form widget

• Page model fields without a FieldPanel are no longer displayed in the form

• No longer need to specify the base model on InlinePanel definitions

• Page classes can specify an edit_handler property to override the default Content / Promote / Settings tabbed
interface. See Customising the tabbed interface.

Other admin changes

• SCSS files in wagtailadmin now use absolute imports, to permit overriding by user stylesheets

• Removed the dependency on LOGIN_URL and LOGIN_REDIRECT_URL settings

• Password reset view names namespaced to wagtailadmin

• Removed the need to add permission check on admin views (now automated)

1.8. Release notes 233



Wagtail Documentation, Release 1.6.3

• Reversing django.contrib.auth.admin.login will no longer lead to Wagtails login view (making it
easier to have frontend login views)

• Added cache-control headers to all admin views. This allows Varnish/Squid/CDN to run on vanilla settings in
front of a Wagtail site

• Date / time pickers now consistently use times without seconds, to prevent JavasSript behaviour glitches when
focusing / unfocusing fields

• Added hook construct_homepage_summary_items for customising the site summary panel on the
admin homepage

• Renamed the construct_wagtail_edit_bird hook to construct_wagtail_userbar

• ‘static’ template tags are now used throughout the admin templates, in place of STATIC_URL

Docs

• Support for django-sendfile added

• Documents now served with correct mime-type

• Support for If-Modified-Since HTTP header

Search

• Search view accepts “page” GET parameter in line with pagination

• Added AUTO_UPDATE flag to search backend settings to enable/disable automatically updating the search
index on model changes

Routable pages

• Added a new decorator-based syntax for RoutablePage, compatible with Django 1.8

Bug fixes

• The document_served signal now correctly passes the Document class as sender and the document as
instance

• Image edit page no longer throws OSError when the original image is missing

• Collapsible blocks stay open on any form error

• Document upload modal no longer switches tabs on form errors

• with_metaclass is now imported from Django’s bundled copy of the six library, to avoid errors on Mac
OS X from an outdated system copy of the library being imported

Upgrade considerations

Support for older Django/Python/Elasticsearch versions dropped

This release drops support for Django 1.6, Python 2.6/3.2 and Elasticsearch 0.90.x. Please make sure these are updated
before upgrading.

If you are upgrading from Elasticsearch 0.90.x, you may also need to update the elasticsearch pip package to a
version greater than 1.0 as well.

234 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Wagtail version upgrade notifications are enabled by default

Starting from Wagtail 1.0, the admin dashboard will (for admin users only) perform a check to see if newer releases
are available. This also provides the Wagtail team with the hostname of your Wagtail site. If you’d rather not receive
update notifications, or if you’d like your site to remain unknown, you can disable it by adding this line to your settings
file:

WAGTAIL_ENABLE_UPDATE_CHECK = False

InlinePanel definitions no longer need to specify the base model

In previous versions of Wagtail, inline child blocks on a page or snippet were defined using a declaration like:

InlinePanel(HomePage, 'carousel_items', label="Carousel items")

It is no longer necessary to pass the base model as a parameter, so this declaration should be changed to:

InlinePanel('carousel_items', label="Carousel items")

The old format is now deprecated; all existing InlinePanel declarations should be updated to the new format.

Custom image models should now set the admin_form_fields attribute Django 1.8 now requires that all the
fields in a ModelForm must be defined in its Meta.fields attribute.

As Wagtail uses Django’s ModelForm for creating image model forms, we’ve added a new attribute called
admin_form_fields that should be set to a tuple of field names on the image model.

See Custom image models for an example.

You no longer need LOGIN_URL and LOGIN_REDIRECT_URL to point to Wagtail admin.

If you are upgrading from an older version of Wagtail, you probably want to remove these from your project settings.

Prevously, these two settings needed to be set to wagtailadmin_login and wagtailadmin_dashboard
respectively or Wagtail would become very tricky to log in to. This is no longer the case and Wagtail should work fine
without them.

RoutablePage now uses decorator syntax for defining views

In previous versions of Wagtail, page types that used the RoutablePageMixin had endpoints configured by setting
their subpage_urls attribute to a list of urls with view names. This will not work on Django 1.8 as view names can
no longer be passed into a url (see: https://docs.djangoproject.com/en/1.8/releases/1.8/#django-conf-urls-patterns).

Wagtail 1.0 introduces a new syntax where each view function is annotated with a @route decorator - see
RoutablePageMixin.

The old subpage_urls convention will continue to work on Django versions prior to 1.8, but this is now deprecated;
all existing RoutablePage definitions should be updated to the decorator-based convention.

Upgrading from the external wagtailapi module.

If you were previously using the external wagtailapi module (which has now become
wagtail.contrib.wagtailapi). Please be aware of the following backwards-incompatible changes:

1.8. Release notes 235

https://docs.djangoproject.com/en/1.8/releases/1.8/#django-conf-urls-patterns


Wagtail Documentation, Release 1.6.3

1. Representation of foreign keys has changed

Foreign keys were previously represented by just the value of their primary key. For example:

"feed_image": 1

This has now been changed to add some meta information:

"feed_image": {
"id": 1,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/1/"

}
}

2. On the page detail view, the “parent” field has been moved out of meta

Previously, there was a “parent” field in the “meta” section on the page detail view:

{
"id": 10,
"meta": {

"type": "demo.BlogPage",
"parent": 2

},

...
}

This has now been moved to the top level. Also, the above change to how foreign keys are represented applies to this
field too:

{
"id": 10,
"meta": {

"type": "demo.BlogPage"
},
"parent": {

"id": 2,
"meta": {

"type": "demo.BlogIndexPage"
}

}

...
}

Celery no longer automatically used for sending notification emails

Previously, Wagtail would try to use Celery whenever the djcelery module was installed, even if Celery wasn’t
actually set up. This could cause a very hard to track down problem where notification emails would not be sent so
this functionality has now been removed.

If you would like to keep using Celery for sending notification emails, have a look at: django-celery-email

236 Chapter 1. Index

https://pypi.python.org/pypi/django-celery-email


Wagtail Documentation, Release 1.6.3

Login/Password reset views renamed

It was previously possible to reverse the Wagtail login view using django.contrib.auth.views.login. This
is no longer possible. Update any references to wagtailadmin_login.

Password reset view name has changed from password_reset to wagtailadmin_password_reset.

JavaScript includes in admin backend have been moved

To improve compatibility with third-party form widgets, pages within the Wagtail admin backend now output their
JavaScript includes in the HTML header, rather than at the end of the page. If your project extends the admin back-
end (through the register_admin_menu_item hook, for example) you will need to ensure that all associated
JavaScript code runs correctly from the new location. In particular, any code that accesses HTML elements will need
to be contained in an ‘onload’ handler (e.g. jQuery’s $(document).ready()).

EditHandler internal API has changed

While it is not an official Wagtail API, it has been possible for Wagtail site implementers to define their own
EditHandler subclasses for use in panel definitions, to customise the behaviour of the page / snippet editing
forms. If you have made use of this facility, you will need to update your custom EditHandlers, as this mechanism
has been refactored (to allow EditHandler classes to keep a persistent reference to their corresponding model). If you
have only used Wagtail’s built-in panel types (FieldPanel, InlinePanel, PageChooserPanel and so on),
you are unaffected by this change.

Previously, functions like FieldPanel acted as ‘factory’ functions, where a call such as FieldPanel(’title’)
constructed and returned an EditHandler subclass tailored to work on a ‘title’ field. These functions now return
an object with a bind_to_model method instead; the EditHandler subclass can be obtained by calling this with
the model class as a parameter. As a guide to updating your custom EditHandler code, you may wish to refer to the
relevant change to the Wagtail codebase.

chooser_panel templates are obsolete

If you have added your own custom admin views to the Wagtail admin (e.g. through the register_admin_urls
hook), you may have used one of the following template includes to incorporate a chooser element for pages, docu-
ments, images or snippets into your forms:

• wagtailadmin/edit_handlers/chooser_panel.html

• wagtailadmin/edit_handlers/page_chooser_panel.html

• wagtaildocs/edit_handlers/document_chooser_panel.html

• wagtailimages/edit_handlers/image_chooser_panel.html

• wagtailsnippets/edit_handlers/snippet_chooser_panel.html

All of these templates are now deprecated. Wagtail now provides a set of Django form widgets for this purpose
- AdminPageChooser, AdminDocumentChooser, AdminImageChooser and AdminSnippetChooser
- which can be used in place of the HiddenInput widget that these form fields were previously us-
ing. The field can then be rendered using the regular wagtailadmin/shared/field.html or
wagtailadmin/shared/field_as_li.html template.

1.8. Release notes 237

https://github.com/torchbox/wagtail/commit/121c01c7f7db6087a985fa8dc9957bc78b9f6a6a
https://github.com/torchbox/wagtail/commit/121c01c7f7db6087a985fa8dc9957bc78b9f6a6a


Wagtail Documentation, Release 1.6.3

document_served signal arguments have changed

Previously, the document_served signal (which is fired whenever a user downloads a document) passed the doc-
ument instance as the sender. This has now been changed to correspond the behaviour of Django’s built-in signals;
sender is now the Document class, and the document instance is passed as the argument instance. Any existing
signal listeners that expect to receive the document instance in sender must now be updated to check the instance
argument instead.

Custom image models must specify an admin_form_fields list

Previously, the forms for creating and editing images followed Django’s default behaviour of showing all fields de-
fined on the model; this would include any custom fields specific to your project that you defined by subclassing
AbstractImage and setting WAGTAILIMAGES_IMAGE_MODEL. This behaviour is risky as it may lead to fields
being unintentionally exposed to the user, and so Django has deprecated this, for removal in Django 1.8. Accordingly,
if you create your own custom subclass of AbstractImage, you must now provide an admin_form_fields
property, listing the fields that should appear on the image creation / editing form - for example:

from wagtail.wagtailimages.models import AbstractImage, Image

class MyImage(AbstractImage):
photographer = models.CharField(max_length=255)
has_legal_approval = models.BooleanField()

admin_form_fields = Image.admin_form_fields + ['photographer']

construct_wagtail_edit_bird hook has been renamed

Previously you could customize the Wagtail userbar using the construct_wagtail_edit_bird hook. The
hook has been renamed to construct_wagtail_userbar.

The old hook is now deprecated; all existing construct_wagtail_edit_bird declarations should be updated
to the new hook.

IMAGE_COMPRESSION_QUALITY setting has been renamed

The IMAGE_COMPRESSION_QUALITY setting, which determines the quality of saved JPEG images as a value from
1 to 100, has been renamed to WAGTAILIMAGES_JPEG_QUALITY. If you have used this setting, please update your
settings file accordingly.

Wagtail 0.8.10 release notes

• What’s changed

What’s changed

238 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Bug fixes

• When copying a page, IDs of child objects within page revision records were not remapped to the new objects;
this would cause those objects to be lost from the original page when editing the new one

• Search no longer crashes when auto-indexing a model that doesn’t have an id field (Scot Hacker)

• Resizing single pixel images with the “fill” filter no longer raises “ZeroDivisionError” or “tile cannot extend
outside image”

Wagtail 0.8.8 release notes

• What’s changed

What’s changed

Bug fixes

• Form builder no longer raises a TypeError when submitting unchecked boolean field

• Image upload form no longer breaks when using i10n thousand separators

• Multiple image uploader now escapes HTML in filenames

• Retrieving an individual item from a sliced BaseSearchResults object now properly takes the slice offset
into account

• Removed dependency on unicodecsv which fixes a crash on Python 3

• Submitting unicode text in form builder form no longer crashes with UnicodeEncodeError on Python 2

• Creating a proxy model from a Page class no longer crashes in the system check

• Unrecognised embed URLs passed to the |embed filter no longer cause the whole page to crash with an
EmbedNotFoundException

• Underscores no longer get stripped from page slugs

Wagtail 0.8.7 release notes

• What’s changed

What’s changed

Bug fixes

• wagtailfrontendcache no longer tries to purge pages that are not in a site

• The contents of <div> elements in the rich text editor were not being whitelisted

• Due to the above issue, embeds/images in a rich text field would sometimes be saved into the database in their
editor representation

1.8. Release notes 239



Wagtail Documentation, Release 1.6.3

• RoutablePage now prevents subpage_urls from being defined as a property, which would cause a memory
leak

• Added validation to prevent pages being created with only whitespace characters in their title fields

• Users are no longer logged out on changing password when SessionAuthenticationMiddleware (added in Django
1.7) is in use

• Added a workaround for a Python / Django issue that prevented documents with certain non-ASCII filenames
from being served

Wagtail 0.8.6 release notes

• What’s new
• Upgrade considerations

What’s new

Minor features

• Translations updated, including new translations for Czech, Italian and Japanese

• The “fixtree” command can now delete orphaned pages

Bug fixes

• django-taggit library updated to 0.12.3, to fix a bug with migrations on SQLite on Django 1.7.2 and above
(https://github.com/alex/django-taggit/issues/285)

• Fixed a bug that caused children of a deleted page to not be deleted if they had a different type

Upgrade considerations

Orphaned pages may need deleting

This release fixes a bug with page deletion introduced in 0.8, where deleting a page with child pages will result in
those child pages being left behind in the database (unless the child pages are of the same type as the parent). This
may cause errors later on when creating new pages in the same position. To identify and delete these orphaned pages,
it is recommended that you run the following command (from the project root) after upgrading to 0.8.6:

./manage.py fixtree

This will output a list of any orphaned pages found, and request confirmation before deleting them.

Since this now makes fixtree an interactive command, a ./manage.py fixtree --noinput option has
been added to restore the previous non-interactive behaviour. With this option enabled, deleting orphaned pages is
always skipped.

240 Chapter 1. Index

https://github.com/alex/django-taggit/issues/285


Wagtail Documentation, Release 1.6.3

Wagtail 0.8.5 release notes

• What’s new

What’s new

Bug fixes

• On adding a new page, the available page types are ordered by the displayed verbose name

• Active admin submenus were not properly closed when activating another

• get_sitemap_urls is now called on the specific page class so it can now be overridden

• (Firefox and IE) Fixed preview window hanging and not refocusing when “Preview” button is clicked again

• Storage backends that return raw ContentFile objects are now handled correctly when resizing images

• Punctuation characters are no longer stripped when performing search queries

• When adding tags where there were none before, it is now possible to save a single tag with multiple words in it

• richtext template tag no longer raises TypeError if None is passed into it

• Serving documents now uses a streaming HTTP response and will no longer break Django’s cache middleware

• User admin area no longer fails in the presence of negative user IDs (as used by django-guardian‘s default
settings)

• Password reset emails now use the BASE_URL setting for the reset URL

• BASE_URL is now included in the project template’s default settings file

Wagtail 0.8.4 release notes

• What’s new

What’s new

Bug fixes

• It is no longer possible to have the explorer and settings menu open at the same time

• Page IDs in page revisions were not updated on page copy, causing subsequent edits to be committed to the
original page instead

• Copying a page now creates a new page revision, ensuring that changes to the title/slug are correctly reflected
in the editor (and also ensuring that the user performing the copy is logged)

• Prevent a race condition when creating Filter objects

• On adding a new page, the available page types are ordered by the displayed verbose name

1.8. Release notes 241



Wagtail Documentation, Release 1.6.3

Wagtail 0.8.3 release notes

• What’s new
• Upgrade considerations

What’s new

Bug fixes

• Added missing jQuery UI sprite files, causing collectstatic to throw errors (most reported on Heroku)

• Page system check for on_delete actions of ForeignKeys was throwing false positives when page class decends
from an abstract class (Alejandro Giacometti)

• Page system check for on_delete actions of ForeignKeys now only raises warnings, not errors

• Fixed a regression where form builder submissions containing a number field would fail with a JSON serialisa-
tion error

• Resizing an image with a focal point equal to the image size would result in a divide-by-zero error

• Focal point indicator would sometimes be positioned incorrectly for small or thin images

• Fix: Focal point chooser background colour changed to grey to make working with transparent images easier

• Elasticsearch configuration now supports specifying HTTP authentication parameters as part of the URL, and
defaults to ports 80 (HTTP) and 443 (HTTPS) if port number not specified

• Fixed a TypeError when previewing pages that use RoutablePageMixin

• Rendering image with missing file in rich text no longer crashes the entire page

• IOErrors thrown by underlying image libraries that are not reporting a missing image file are no longer caught

• Fix: Minimum Pillow version bumped to 2.6.1 to work around a crash when using images with transparency

• Fix: Images with transparency are now handled better when being used in feature detection

Upgrade considerations

Port number must be specified when running Elasticsearch on port 9200

In previous versions, an Elasticsearch connection URL in WAGTAILSEARCH_BACKENDS without an explicit port
number (e.g. http://localhost/) would be treated as port 9200 (the Elasticsearch default) whereas the correct
behaviour would be to use the default http/https port of 80/443. This behaviour has now been fixed, so sites running
Elasticsearch on port 9200 must now specify this explicitly - e.g. http://localhost:9200. (Projects using the
default settings, or the settings given in the Wagtail documentation, are unaffected.)

Wagtail 0.8.1 release notes

• What’s new

242 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

What’s new

Bug fixes

• Fixed a regression where images would fail to save when feature detection is active

Wagtail 0.8 release notes

• What’s new
• Upgrade considerations

What’s new

Minor features

• Page operations (creation, publishing, copying etc) are now logged via Python’s logging framework; to con-
figure this, add a logger entry for ’wagtail’ or ’wagtail.core’ to the LOGGING setup in your settings
file.

• The save button on the page edit page now redirects the user back to the edit page instead of the explorer

• Signal handlers for wagtail.wagtailsearch and wagtail.contrib.wagtailfrontendcache
are now automatically registered when using Django 1.7 or above.

• Added a Django 1.7 system check to ensure that foreign keys from Page models are set to
on_delete=SET_NULL, to prevent inadvertent (and tree-breaking) page deletions

• Improved error reporting on image upload, including ability to set a maximum file size via a new setting
WAGTAILIMAGES_MAX_UPLOAD_SIZE

• The external image URL generator now keeps persistent image renditions, rather than regenerating them on
each request, so it no longer requires a front-end cache.

• Added Dutch translation

Bug fixes

• Replaced references of .username with .get_username() on users for better custom user model support

• Unpinned dependency versions for six and requests to help prevent dependency conflicts

• Fixed TypeError when getting embed HTML with oembed on Python 3

• Made HTML whitelisting in rich text fields more robust at catching disallowed URL schemes such as
jav\tascript:

• created_at timestamps on page revisions were not being preserved on page copy, causing revisions to get
out of sequence

• When copying pages recursively, revisions of sub-pages were being copied regardless of the
copy_revisions flag

• Updated the migration dependencies within the project template to ensure that Wagtail’s own migrations con-
sistently apply first

1.8. Release notes 243



Wagtail Documentation, Release 1.6.3

• The cache of site root paths is now cleared when a site is deleted

• Search indexing now prevents pages from being indexed multiple times, as both the base Page model and the
specific subclass

• Search indexing now avoids trying to index abstract models

• Fixed references to “username” in login form help text for better custom user model support

• Later items in a model’s search_field list now consistently override earlier items, allowing subclasses to redefine
rules from the parent

• Image uploader now accepts JPEG images that PIL reports as being in MPO format

• Multiple checkbox fields on form-builder forms did not correctly save multiple values

• Editing a page’s slug and saving it without publishing could sometimes cause the URL paths of child pages to
be corrupted

• latest_revision_created_at was being cleared on page publish, causing the page to drop to the bot-
tom of explorer listings

• Searches on partial_match fields were wrongly applying prefix analysis to the search query as well as the docu-
ment (causing e.g. a query for “water” to match against “wagtail”)

Upgrade considerations

Corrupted URL paths may need fixing

This release fixes a bug in Wagtail 0.7 where editing a parent page’s slug could cause the URL paths of child pages
to become corrupted. To ensure that your database does not contain any corrupted URL paths, it is recommended that
you run ./manage.py set_url_paths after upgrading.

Automatic registration of signal handlers (Django 1.7+)

Signal handlers for the wagtailsearch core app and wagtailfrontendcache contrib app are automatically
registered when using Django 1.7. Calls to register_signal_handlers from your urls.py can be removed.

Change to search API when using database backend

When using the database backend, calling search (either through Page.objects.search() or on the backend
directly) will now return a SearchResults object rather than a Django QuerySet to make the database backend
work more like the Elasticsearch backend.

This change shouldn’t affect most people as SearchResults behaves very similarly to QuerySet. But
it may cause issues if you are calling QuerySet specific methods after calling .search(). Eg:
Page.objects.search("Hello").filter(foo="Bar") (in this case, .filter() should be moved be-
fore .search() and it would work as before).

Removal of validate_image_format from custom image model migrations (Django 1.7+)

If your project is running on Django 1.7, and you have defined a custom image model (by extending the
wagtailimages.AbstractImage class), the migration that creates this model will probably have a reference
to wagtail.wagtailimages.utils.validators.validate_image_format. This module has now

244 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

been removed, which will cause manage.py migrate to fail with an ImportError (even if the migration has
already been applied). You will need to edit the migration file to remove the line:

import wagtail.wagtailimages.utils.validators

and the validators attribute of the ‘file’ field - that is, the line:

('file', models.ImageField(upload_to=wagtail.wagtailimages.models.get_upload_to,
width_field='width', height_field='height',
validators=[wagtail.wagtailimages.utils.validators.validate_image_format],
verbose_name='File')),

should become:

('file', models.ImageField(upload_to=wagtail.wagtailimages.models.get_upload_to,
width_field='width', height_field='height', verbose_name='File')),

Wagtail 0.7 release notes

• What’s new
• Upgrade considerations

What’s new

New interface for choosing image focal point

When editing images, users can now specify a ‘focal point’ region that cropped versions of the image will be centred
on. Previously the focal point could only be set automatically, through image feature detection.

Groups and Sites administration interfaces

The main navigation menu has been reorganised, placing site configuration options in a ‘Settings’ submenu. This
includes two new items, which were previously only available through the Django admin backend: ‘Groups’, for
setting up user groups with a specific set of permissions, and ‘Sites’, for managing the list of sites served by this
Wagtail instance.

1.8. Release notes 245



Wagtail Documentation, Release 1.6.3

246 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Page locking

Moderators and administrators now have the ability to lock a page, preventing further edits from being made to that
page until it is unlocked again.

Minor features

• The content_type template filter has been removed from the project template, as the same thing can be
accomplished with self.get_verbose_name|slugify.

• Page copy operations now also copy the page revision history.

• Page models now support a parent_page_types property in addition to subpage types, to restrict the
types of page they can be created under.

• register_snippet can now be invoked as a decorator.

• The project template (used when running wagtail start) has been updated to Django 1.7.

• The ‘boost’ applied to the title field on searches has been reduced from 100 to 2.

• The type method of PageQuerySet (used to filter the queryset to a specific page type) now includes sub-
classes of the given page type.

• The update_index management command now updates all backends listed in
WAGTAILSEARCH_BACKENDS, or a specific one passed on the command line, rather than just the de-
fault backend.

• The ‘fill’ image resize method now supports an additional parameter defining the closeness of the crop. See
Using images in templates

• Added support for invalidating Cloudflare caches. See Frontend cache invalidator

• Pages in the explorer can now be ordered by last updated time.

Bug fixes

• The ‘wagtail start’ command now works on Windows and other environments where the django-admin.py
executable is not readily accessible.

• The external image URL generator no longer stores generated images in Django’s cache; this was an uninten-
tional side-effect of setting cache control headers.

• The Elasticsearch backend can now search querysets that have been filtered with an ‘in’ clause of a non-list type
(such as a ValuesListQuerySet).

• Logic around the has_unpublished_changes flag has been fixed, to prevent issues with the ‘View draft’
button failing to show in some cases.

1.8. Release notes 247



Wagtail Documentation, Release 1.6.3

• It is now easier to move pages to the beginning and end of their section

• Image rendering no longer creates erroneous duplicate Rendition records when the focal point is blank.

Upgrade considerations

Addition of wagtailsites app

The Sites administration interface is contained within a new app, wagtailsites. To enable this on an existing
Wagtail project, add the line:

'wagtail.wagtailsites',

to the INSTALLED_APPS list in your project’s settings file.

Title boost on search reduced to 2

Wagtail’s search interface applies a ‘boost’ value to give extra weighting to matches on the title field. The original boost
value of 100 was found to be excessive, and in Wagtail 0.7 this has been reduced to 2. If you have used comparable
boost values on other fields, to give them similar weighting to title, you may now wish to reduce these accordingly.
See Indexing.

Addition of locked field to Page model

The page locking mechanism adds a locked field to wagtailcore.Page, defaulting to False. Any application code
working with Page objects should be unaffected, but any code that creates page records using direct SQL, or within
existing South migrations using South’s frozen ORM, will fail as this code will be unaware of the new database
column. To fix a South migration that fails in this way, add the following line to the ’wagtailcore.page’ entry
at the bottom of the migration file:

'locked': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),

Update to focal_point_key field on custom Rendition models

The focal_point_key field on wagtailimages.Rendition has been changed to null=False, to fix an issue with
duplicate renditions being created. If you have defined a custom Rendition model in your project (by extending the
wagtailimages.AbstractRendition class), you will need to apply a migration to make the corresponding
change on your custom model. Unfortunately neither South nor Django 1.7’s migration system are able to generate
this automatically - you will need to customise the migration produced by ./manage.py schemamigration /
./manage.py makemigrations, using the wagtailimages migration as a guide:

• https://github.com/torchbox/wagtail/blob/master/wagtail/wagtailimages/south_migrations/0004_auto__chg_field_rendition_focal_point_key.py
(for South / Django 1.6)

• https://github.com/torchbox/wagtail/blob/master/wagtail/wagtailimages/migrations/0004_make_focal_point_key_not_nullable.py
(for Django 1.7)

Wagtail 0.6 release notes

248 Chapter 1. Index

https://github.com/torchbox/wagtail/blob/master/wagtail/wagtailimages/south_migrations/0004_auto__chg_field_rendition_focal_point_key.py
https://github.com/torchbox/wagtail/blob/master/wagtail/wagtailimages/migrations/0004_make_focal_point_key_not_nullable.py


Wagtail Documentation, Release 1.6.3

• What’s new
• Upgrade considerations
• Deprecated features

What’s new

Project template and start project command

Wagtail now has a basic project template built in to make starting new projects much easier.

To use it, install wagtail onto your machine and run wagtail start project_name.

Django 1.7 support

Wagtail can now be used with Django 1.7.

Minor features

• A new template tag has been added for reversing URLs inside routable pages. See The routablepageurl template
tag.

• RoutablePage can now be used as a mixin. See wagtail.contrib.wagtailroutablepage.models.RoutablePageMixin.

• MenuItems can now have bundled JavaScript

• Added the register_admin_menu_item hook for registering menu items at startup. See Hooks

• Added a version indicator into the admin interface (hover over the wagtail to see it)

• Added Russian translation

Bug fixes

• Page URL generation now returns correct URLs for sites that have the main ‘serve’ view rooted somewhere
other than ‘/’.

• Search results in the page chooser now respect the page_type parameter on PageChooserPanel.

• Rendition filenames are now prevented from going over 60 chars, even with a large focal_point_key.

• Child relations that are defined on a model’s superclass (such as the base Page model) are now picked up
correctly by the page editing form, page copy operations and the replace_text management command.

• Tags on images and documents are now committed to the search index immediately on saving.

Upgrade considerations

All features deprecated in 0.4 have been removed

See: Deprecated features

1.8. Release notes 249



Wagtail Documentation, Release 1.6.3

Search signal handlers have been moved

If you have an import in your urls.py file like from wagtail.wagtailsearch
import register_signal_handlers, this must now be changed to from
wagtail.wagtailsearch.signal_handlers import register_signal_handlers

Deprecated features

• The wagtail.wagtailsearch.indexed module has been renamed to
wagtail.wagtailsearch.index

Wagtail 0.5 release notes

• What’s new
• Upgrade considerations

What’s new

Multiple image uploader

The image uploader UI has been improved to allow multiple images to be uploaded at once.

Image feature detection

Wagtail can now apply face and feature detection on images using OpenCV, and use this to intelligently crop images.

Feature Detection

Using images outside Wagtail

In normal use, Wagtail will generate resized versions of images at the point that they are referenced on a template,
which means that those images are not easily accessible for use outside of Wagtail, such as displaying them on external
sites. Wagtail now provides a way to obtain URLs to your images, at any size.

Dynamic image serve view

RoutablePage

A RoutablePage model has been added to allow embedding Django-style URL routing within a page.

RoutablePageMixin

Usage stats for images, documents and snippets

It’s now easier to find where a particular image, document or snippet is being used on your site.

Set the WAGTAIL_USAGE_COUNT_ENABLED setting to True and an icon will appear on the edit page showing you
which pages they have been used on.

250 Chapter 1. Index

http://opencv.org/


Wagtail Documentation, Release 1.6.3

Copy Page action

The explorer interface now offers the ability to copy pages, with or without subpages.

Minor features

Core

• Hooks can now be defined using decorator syntax:

@hooks.register('construct_main_menu')
def construct_main_menu(request, menu_items):

menu_items.append(
MenuItem('Kittens!', '/kittens/', classnames='icon icon-folder-inverse', order=1000)

)

• The lxml library (used for whitelisting and rewriting of rich text fields) has been replaced with the
pure-python html5lib library, to simplify installation.

• A page_unpublished signal has been added.

Admin

• Explorer nav now rendered separately and fetched with AJAX when needed.

This improves the general performance of the admin interface for large sites.

Bug fixes

• Updates to tag fields are now properly committed to the database when publishing directly from the page edit
interface.

Upgrade considerations

Urlconf entries for /admin/images/, /admin/embeds/ etc need to be removed

If you created a Wagtail project prior to the release of Wagtail 0.3, it is likely to contain the following entries in its
urls.py:

# TODO: some way of getting wagtailimages to register itself within wagtailadmin so that we
# don't have to define it separately here
url(r'^admin/images/', include(wagtailimages_urls)),
url(r'^admin/embeds/', include(wagtailembeds_urls)),
url(r'^admin/documents/', include(wagtaildocs_admin_urls)),
url(r'^admin/snippets/', include(wagtailsnippets_urls)),
url(r'^admin/search/', include(wagtailsearch_admin_urls)),
url(r'^admin/users/', include(wagtailusers_urls)),
url(r'^admin/redirects/', include(wagtailredirects_urls)),

These entries (and the corresponding from wagtail.wagtail* import ... lines) need to be removed from
urls.py. (The entry for /admin/ should be left in, however.)

Since Wagtail 0.3, the wagtailadmin module automatically takes care of registering these URL subpaths, so these
entries are redundant, and these urlconf modules are not guaranteed to remain stable and backwards-compatible in
future. Leaving these entries in place will now cause an ImproperlyConfigured exception to be thrown.

1.8. Release notes 251



Wagtail Documentation, Release 1.6.3

New fields on Image and Rendition models

Several new fields have been added to the Image and Rendition models to support Feature Detection. These will be
added to the database when you run ./manage.py migrate. If you have defined a custom image model (by
extending the wagtailimages.AbstractImage and wagtailimages.AbstractRendition classes and
specifying WAGTAILIMAGES_IMAGE_MODEL in settings), the change needs to be applied to that model’s database
table too. Running the command:

./manage.py schemamigration myapp --auto add_image_focal_point_fields

(with ‘myapp’ replaced with your app name) will generate the necessary migration file.

South upgraded to 1.0

In preparation for Django 1.7 support in a future release, Wagtail now depends on South 1.0, and its migration files have
been moved from migrations to south_migrations. Older versions of South will fail to find the migrations
in the new location.

If your project’s requirements file (most commonly requirements.txt or requirements/base.txt) references a specific
older version of South, this must be updated to South 1.0.

Wagtail 0.4.1 release notes

Bug fixes

• ElasticSearch backend now respects the backward-compatible URLS configuration setting, in addition to
HOSTS

• Documentation fixes

Wagtail 0.4 release notes

• What’s new
• Backwards-incompatible changes
• Deprecated features

What’s new

Private Pages

Wagtail now supports password protecting pages on the frontend, allowing sections of your website to be made private.

Private pages

Python 3 support

Wagtail now supports Python 3.2, 3.3 and 3.4.

252 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Scheduled publishing

Editors can now schedule pages to be published or unpublished at specified times.

A new management command has been added (publish_scheduled_pages) to publish pages that have been scheduled
by an editor.

Search on QuerySet with Elasticsearch

It’s now possible to perform searches with Elasticsearch on PageQuerySet objects:

>>> from wagtail.wagtailcore.models import Page
>>> Page.objects.live().descendant_of(events_index).search("Hello")
[<Page: Event 1>, <Page: Event 2>]

Sitemap generation

A new module has been added (wagtail.contrib.wagtailsitemaps) which produces XML sitemaps for
Wagtail sites.

Sitemap generator

Front-end cache invalidation

A new module has been added (wagtail.contrib.wagtailfrontendcache) which invalidates pages in a
frontend cache when they are updated or deleted in Wagtail.

Frontend cache invalidator

Notification preferences

Users can now decide which notifications they receive from Wagtail using a new “Notification preferences” section
located in the account settings.

Minor features

Core

• Any extra arguments given to Page.serve are now passed through to get_context and get_template

• Added in_menu and not_in_menu methods to PageQuerySet

• Added search method to PageQuerySet

• Added get_next_siblings and get_prev_siblings to Page

• Added page_published signal

• Added copy method to Page to allow copying of pages

• Added construct_whitelister_element_rules hook for customising the HTML whitelist used
when saving RichText fields

• Support for setting a subpage_types property on Page models, to define which page types are allowed as
subpages

1.8. Release notes 253



Wagtail Documentation, Release 1.6.3

Admin

• Removed the “More” section from the menu

• Added pagination to page listings

• Added a new datetime picker widget

• Updated hallo.js to version 1.0.4

• Aesthetic improvements to preview experience

• Login screen redirects to dashboard if user is already logged in

• Snippets are now ordered alphabetically

• Added init_new_page signal

Search

• Added a new way to configure searchable/filterable fields on models

• Added get_indexed_objects allowing developers to customise which objects get added to the search
index

• Major refactor of Elasticsearch backend

• Use match instead of query_string queries

• Fields are now indexed in Elasticsearch with their correct type

• Filter fields are no longer included in _all

• Fields with partial matching are now indexed together into _partials

Images

• Added original as a resizing rule supported by the {% image %} tag

• image tag now accepts extra keyword arguments to be output as attributes on the img tag

• Added an attrs property to image rendition objects to output src, width, height and alt attributes all
in one go

Other

• Added styleguide, for Wagtail developers

Bug fixes

• Animated GIFs are now coalesced before resizing

• The Wand backend clones images before modifying them

• The admin breadcrumb is now positioned correctly on mobile

• The page chooser breadcrumb now updates the chooser modal instead of linking to Explorer

• Embeds - fixed crash when no HTML field is sent back from the embed provider

• Multiple sites with same hostname but different ports are now allowed

• It is no longer possible to create multiple sites with is_default_site = True

254 Chapter 1. Index



Wagtail Documentation, Release 1.6.3

Backwards-incompatible changes

ElasticUtils replaced with elasticsearch-py

If you are using the elasticsearch backend, you must install the elasticsearch module into your environment.

Note: If you are using an older version of Elasticsearch (< 1.0) you must install elasticsearch version 0.4.x.

Addition of expired column may break old data migrations involving pages

The scheduled publishing mechanism adds an expired field to wagtailcore.Page, defaulting to False. Any ap-
plication code working with Page objects should be unaffected, but any code that creates page records using di-
rect SQL, or within existing South migrations using South’s frozen ORM, will fail as this code will be unaware
of the expired database column. To fix a South migration that fails in this way, add the following line to the
’wagtailcore.page’ entry at the bottom of the migration file:

'expired': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),

Deprecated features

Template tag libraries renamed

The following template tag libraries have been renamed:

• pageurl => wagtailcore_tags

• rich_text => wagtailcore_tags

• embed_filters => wagtailembeds_tags

• image_tags => wagtailimages_tags

The old names will continue to work, but output a DeprecationWarning - you are advised to update any {%
load %} tags in your templates to refer to the new names.

New search field configuration format

indexed_fields is now deprecated and has been replaced by a new search field configuration format called
search_fields. See Indexing for how to define a search_fields property on your models.

Page.route method should now return a RouteResult

Previously, the route method called serve and returned an HttpResponse object. This has now been split up so
serve is called separately and route must now return a RouteResult object.

If you are overriding Page.route on any of your page models, you will need to update the method to return a
RouteResult object. The old method of returning an HttpResponse will continue to work, but this will throw
a DeprecationWarning and bypass the before_serve_page hook, which means in particular that Private
pages will not work on those page types. See Adding Endpoints with Custom route() Methods.

1.8. Release notes 255



Wagtail Documentation, Release 1.6.3

Wagtailadmins hooks module has moved to wagtailcore

If you use any wagtail_hooks.py files in your project, you may have an import like: from
wagtail.wagtailadmin import hooks

Change this to: from wagtail.wagtailcore import hooks

Miscellaneous

• Page.show_as_mode replaced with Page.serve_preview

• Page.get_page_modes method replaced with Page.preview_modes property

• Page.get_other_siblings replaced with Page.get_siblings(inclusive=False)

256 Chapter 1. Index



Python Module Index

w
wagtail.contrib.wagtailroutablepage, 125
wagtail.contrib.wagtailroutablepage.models,

127
wagtail.contrib.wagtailsearchpromotions,

147
wagtail.tests.utils, 93
wagtail.wagtailadmin.edit_handlers, 100
wagtail.wagtailcore.models, 105
wagtail.wagtailcore.query, 112
wagtail.wagtaildocs.edit_handlers, 103
wagtail.wagtailimages.edit_handlers, 102
wagtail.wagtailsnippets.edit_handlers,

103

257



Wagtail Documentation, Release 1.6.3

258 Python Module Index



Index

A
ancestor_of() (wagtail.wagtailcore.query.PageQuerySet

method), 114
approve_moderation() (wag-

tail.wagtailcore.models.PageRevision method),
111

as_page_object() (wag-
tail.wagtailcore.models.PageRevision method),
111

assertAllowedParentPageTypes() (wag-
tail.tests.utils.WagtailPageTests method),
93

assertAllowedSubpageTypes() (wag-
tail.tests.utils.WagtailPageTests method),
94

assertCanCreate() (wagtail.tests.utils.WagtailPageTests
method), 93

assertCanCreateAt() (wagtail.tests.utils.WagtailPageTests
method), 93

assertCanNotCreateAt() (wag-
tail.tests.utils.WagtailPageTests method),
93

B
base.py, 163
base_form_class (wagtail.wagtailcore.models.Page at-

tribute), 108

C
can_create_at() (wagtail.wagtailcore.models.Page class

method), 108
can_exist_under() (wagtail.wagtailcore.models.Page

class method), 108
can_move_to() (wagtail.wagtailcore.models.Page

method), 108
child_of() (wagtail.wagtailcore.query.PageQuerySet

method), 113
children (wagtail.wagtailadmin.edit_handlers.FieldRowPanel

attribute), 101
children (wagtail.wagtailadmin.edit_handlers.MultiFieldPanel

attribute), 100

classname (wagtail.wagtailadmin.edit_handlers.FieldPanel
attribute), 100

classname (wagtail.wagtailadmin.edit_handlers.FieldRowPanel
attribute), 101

content_json (wagtail.wagtailcore.models.PageRevision
attribute), 110

content_type (wagtail.wagtailcore.models.Page attribute),
106

created_at (wagtail.wagtailcore.models.PageRevision at-
tribute), 110

D
descendant_of() (wagtail.wagtailcore.query.PageQuerySet

method), 113
dev.py, 163
DocumentChooserPanel (class in wag-

tail.wagtaildocs.edit_handlers), 103

E
exact_type() (wagtail.wagtailcore.query.PageQuerySet

method), 115

F
field_name (wagtail.wagtailadmin.edit_handlers.FieldPanel

attribute), 100
FieldPanel (class in wagtail.wagtailadmin.edit_handlers),

100
FieldRowPanel (class in wag-

tail.wagtailadmin.edit_handlers), 101
fill, 30
find_for_request() (wagtail.wagtailcore.models.Site static

method), 109
first_published_at (wagtail.wagtailcore.models.Page at-

tribute), 106
Full width, 32
full_url (wagtail.wagtailcore.models.Page attribute), 107

G
get_ancestors() (wagtail.wagtailcore.models.Page

method), 107

259



Wagtail Documentation, Release 1.6.3

get_context() (wagtail.wagtailcore.models.Page method),
107

get_descendants() (wagtail.wagtailcore.models.Page
method), 107

get_siblings() (wagtail.wagtailcore.models.Page method),
107

get_site() (wagtail.wagtailcore.models.Page method), 107
get_site_root_paths() (wagtail.wagtailcore.models.Site

static method), 110
get_subpage_urls() (wag-

tail.contrib.wagtailroutablepage.models.RoutablePageMixin
class method), 127

get_template() (wagtail.wagtailcore.models.Page
method), 107

get_url_parts() (wagtail.wagtailcore.models.Page
method), 107

group (wagtail.wagtailcore.models.GroupPagePermission
attribute), 111

GroupPagePermission (class in wag-
tail.wagtailcore.models), 111

H
has_unpublished_changes (wag-

tail.wagtailcore.models.Page attribute), 106
heading (wagtail.wagtailadmin.edit_handlers.MultiFieldPanel

attribute), 100
height, 30
hostname (wagtail.wagtailcore.models.Site attribute), 109

I
ImageChooserPanel (class in wag-

tail.wagtailimages.edit_handlers), 102
in_menu() (wagtail.wagtailcore.query.PageQuerySet

method), 112
InlinePanel (class in wag-

tail.wagtailadmin.edit_handlers), 101
is_creatable (wagtail.wagtailcore.models.Page attribute),

108
is_default_site (wagtail.wagtailcore.models.Site at-

tribute), 109
is_latest_revision() (wag-

tail.wagtailcore.models.PageRevision method),
111

L
Left-aligned, 32
live (wagtail.wagtailcore.models.Page attribute), 106
live() (wagtail.wagtailcore.query.PageQuerySet method),

112
local.py, 163

M
max, 30
min, 30

MultiFieldPanel (class in wag-
tail.wagtailadmin.edit_handlers), 100

N
not_ancestor_of() (wag-

tail.wagtailcore.query.PageQuerySet method),
114

not_child_of() (wagtail.wagtailcore.query.PageQuerySet
method), 114

not_descendant_of() (wag-
tail.wagtailcore.query.PageQuerySet method),
113

not_exact_type() (wag-
tail.wagtailcore.query.PageQuerySet method),
115

not_in_menu() (wagtail.wagtailcore.query.PageQuerySet
method), 113

not_live() (wagtail.wagtailcore.query.PageQuerySet
method), 112

not_page() (wagtail.wagtailcore.query.PageQuerySet
method), 113

not_parent_of() (wagtail.wagtailcore.query.PageQuerySet
method), 114

not_public() (wagtail.wagtailcore.query.PageQuerySet
method), 115

not_sibling_of() (wagtail.wagtailcore.query.PageQuerySet
method), 114

not_type() (wagtail.wagtailcore.query.PageQuerySet
method), 115

O
objects (wagtail.wagtailcore.models.PageRevision

attribute), 111
Orderable (class in wagtail.wagtailcore.models), 112
original, 31
owner (wagtail.wagtailcore.models.Page attribute), 106

P
Page (class in wagtail.wagtailcore.models), 105, 106
page (wagtail.wagtailcore.models.GroupPagePermission

attribute), 111
page (wagtail.wagtailcore.models.PageRevision at-

tribute), 110
page (wagtail.wagtailcore.models.PageViewRestriction

attribute), 111
page() (wagtail.wagtailcore.query.PageQuerySet

method), 113
PageChooserPanel (class in wag-

tail.wagtailadmin.edit_handlers), 102
PageQuerySet (class in wagtail.wagtailcore.query), 112
PageRevision (class in wagtail.wagtailcore.models), 110,

111
PageViewRestriction (class in wag-

tail.wagtailcore.models), 111

260 Index



Wagtail Documentation, Release 1.6.3

parent_of() (wagtail.wagtailcore.query.PageQuerySet
method), 114

parent_page_types (wagtail.wagtailcore.models.Page at-
tribute), 108

password (wagtail.wagtailcore.models.PageViewRestriction
attribute), 112

password_required_template (wag-
tail.wagtailcore.models.Page attribute), 108

permission_type (wagtail.wagtailcore.models.GroupPagePermission
attribute), 111

port (wagtail.wagtailcore.models.Site attribute), 109
preview_modes (wagtail.wagtailcore.models.Page at-

tribute), 107
production.py, 163
public() (wagtail.wagtailcore.query.PageQuerySet

method), 114
publish() (wagtail.wagtailcore.models.PageRevision

method), 111

R
reject_moderation() (wag-

tail.wagtailcore.models.PageRevision method),
111

relative_url() (wagtail.wagtailcore.models.Page method),
107

resolve_subpage() (wag-
tail.contrib.wagtailroutablepage.models.RoutablePageMixin
method), 127

reverse_subpage() (wag-
tail.contrib.wagtailroutablepage.models.RoutablePageMixin
method), 127

Right-aligned, 32
root_page (wagtail.wagtailcore.models.Site attribute),

109
root_url (wagtail.wagtailcore.models.Site attribute), 110
RoutablePageMixin (class in wag-

tail.contrib.wagtailroutablepage.models),
127

routablepageurl() (in module wag-
tail.contrib.wagtailroutablepage.templatetags.wagtailroutablepage_tags),
127

route() (wagtail.wagtailcore.models.Page method), 107

S
search() (wagtail.wagtailcore.query.PageQuerySet

method), 115
search_description (wagtail.wagtailcore.models.Page at-

tribute), 106
search_fields (wagtail.wagtailcore.models.Page attribute),

108
seo_title (wagtail.wagtailcore.models.Page attribute), 106
serve() (wagtail.wagtailcore.models.Page method), 107
serve_preview() (wagtail.wagtailcore.models.Page

method), 107

show_in_menus (wagtail.wagtailcore.models.Page
attribute), 106

sibling_of() (wagtail.wagtailcore.query.PageQuerySet
method), 114

Site (class in wagtail.wagtailcore.models), 109
site_name (wagtail.wagtailcore.models.Site attribute),

109
slug (wagtail.wagtailcore.models.Page attribute), 105
SnippetChooserPanel (class in wag-

tail.wagtailsnippets.edit_handlers), 103
sort_order (wagtail.wagtailcore.models.Orderable at-

tribute), 112
specific (wagtail.wagtailcore.models.Page attribute), 106
specific() (wagtail.wagtailcore.query.PageQuerySet

method), 115
specific_class (wagtail.wagtailcore.models.Page at-

tribute), 106
submitted_for_moderation (wag-

tail.wagtailcore.models.PageRevision at-
tribute), 110

submitted_revisions (wag-
tail.wagtailcore.models.PageRevision at-
tribute), 111

subpage_types (wagtail.wagtailcore.models.Page at-
tribute), 108

T
title (wagtail.wagtailcore.models.Page attribute), 105
type() (wagtail.wagtailcore.query.PageQuerySet method),

115

U
unpublish() (wagtail.wagtailcore.query.PageQuerySet

method), 115
url (wagtail.wagtailcore.models.Page attribute), 106
user (wagtail.wagtailcore.models.PageRevision attribute),

110

W
wagtail.contrib.wagtailroutablepage (module), 125
wagtail.contrib.wagtailroutablepage.models (module),

127
wagtail.contrib.wagtailsearchpromotions (module), 147
wagtail.tests.utils (module), 93
wagtail.wagtailadmin.edit_handlers (module), 100
wagtail.wagtailadmin.forms.WagtailAdminModelForm

(built-in class), 86
wagtail.wagtailadmin.forms.WagtailAdminPageForm

(built-in class), 86
wagtail.wagtailcore.models (module), 105
wagtail.wagtailcore.query (module), 112
wagtail.wagtaildocs.edit_handlers (module), 103
wagtail.wagtailimages.edit_handlers (module), 102
wagtail.wagtailsnippets.edit_handlers (module), 103

Index 261



Wagtail Documentation, Release 1.6.3

WagtailPageTests (class in wagtail.tests.utils), 93
widget (wagtail.wagtailadmin.edit_handlers.FieldPanel

attribute), 100
width, 30

262 Index


	Index
	Getting started
	Usage guide
	Advanced topics
	Reference
	Support
	Using Wagtail: an Editor's guide
	Contributing to Wagtail
	Release notes

	Python Module Index

