
Wagtail Documentation
Release 1.1

Torchbox

Apr 21, 2017

Contents

1 Index 3
1.1 Getting started . 3
1.2 Topics . 15
1.3 Advanced topics . 49
1.4 Reference . 71
1.5 Support . 128
1.6 Using Wagtail: an Editor’s guide . 128
1.7 Contributing to Wagtail . 158
1.8 Release notes . 165

Python Module Index 195

i

ii

Wagtail Documentation, Release 1.1

Wagtail is an open source CMS written in Python and built on the Django web framework.

Below are some useful links to help you get started with Wagtail.

• First steps

– Getting started

– Your first Wagtail site

– Demo site

• Creating your Wagtail site

– Creating page models

– Writing templates

– Images

– Search

– Third-party tutorials

• Using Wagtail

– Editors guide

Contents 1

https://www.python.org/
https://www.djangoproject.com/

Wagtail Documentation, Release 1.1

2 Contents

CHAPTER 1

Index

Getting started

Wagtail is built on the Django web framework, so this document assumes you’ve already got the essentials installed.
But if not, those essentials are:

• Python

• pip (Note that pip is included by default with Python 2.7.9 and later and Python 3.4 and later)

We’d also recommend Virtualenv, which provides isolated Python environments:

• Virtualenv

Before we install Wagtail we should install Pillow for image manipulation. Before you run pip install Pillow
note that most platforms require you install additional libraries first: Platform-specific installation instructions

With the above installed, the quickest way to install Wagtail is:

pip install wagtail

(sudo may be required if installing system-wide or without virtualenv)

Once installed, Wagtail provides a command similar to Django’s django-admin startproject which stubs
out a new site/project:

wagtail start mysite

This will create a new folder mysite, based on a template containing all you need to get started. More information
on that template is available here.

Inside your mysite folder, we now just run the setup steps necessary for any Django project:

pip install -r requirements.txt
./manage.py migrate
./manage.py createsuperuser
./manage.py runserver

3

https://www.djangoproject.com/
https://www.python.org/downloads/
https://pip.pypa.io/en/latest/installing.html
https://virtualenv.pypa.io/en/latest/installation.html
http://pillow.readthedocs.org/en/latest/installation.html#os-x-installation

Wagtail Documentation, Release 1.1

Your site is now accessible at http://localhost:8000, with the admin backend available at http://
localhost:8000/admin/.

There are a few optional packages which are not installed by default but are recommended to improve performance or
add features to Wagtail, including:

• Elasticsearch.

• Feature Detection.

Your first Wagtail site

1. Install Wagtail and its dependencies:

pip install wagtail

2. Start your site:

wagtail start mysite
cd mysite

Wagtail provides a start command similar to django-admin.py startproject. Running wagtail
start mysite in your project will generate a new mysite folder with a few Wagtail-specific extras, in-
cluding the required project settings, a “home” app with a blank HomePage model and basic templates and a
sample “search” app.

3. Install project dependencies:

pip install -r requirements.txt

This ensures that you have the relevant version of Django for the project you’ve just created.

4. Create the database:

python manage.py migrate

If you haven’t updated the project settings, this will be a SQLite database file in the project directory.

5. Create an admin user:

python manage.py createsuperuser

6. python manage.py runserver If everything worked, http://127.0.0.1:8000 will show you a welcome
page

You can now access the administrative area at /admin

Extend the HomePage model

Out of the box, the “home” app defines a blank HomePage model in models.py, along with a migration that creates
a homepage and configures Wagtail to use it.

Edit home/models.py as follows, to add a body field to the model:

from __future__ import unicode_literals

from django.db import models

4 Chapter 1. Index

http://127.0.0.1:8000

Wagtail Documentation, Release 1.1

1.1. Getting started 5

Wagtail Documentation, Release 1.1

6 Chapter 1. Index

Wagtail Documentation, Release 1.1

from wagtail.wagtailcore.models import Page
from wagtail.wagtailcore.fields import RichTextField
from wagtail.wagtailadmin.edit_handlers import FieldPanel

class HomePage(Page):
body = RichTextField(blank=True)

content_panels = Page.content_panels + [
FieldPanel('body', classname="full")

]

body is defined as RichTextField, a special Wagtail field. You can use any of the Django core fields.
content_panels define the capabilities and the layout of the editing interface. More on creating Page models.

Run python manage.py makemigrations, then python manage.py migrate to update the database
with your model changes. You must run the above commands each time you make changes to the model definition.

You can now edit the homepage within the Wagtail admin area (go to Explorer, Homepage, then Edit) to see the new
body field. Enter some text into the body field, and publish the page.

The page template now needs to be updated to reflect the changes made to the model. Wagtail uses normal Django
templates to render each page type. It automatically generates a template filename from the model name by separat-
ing capital letters with underscores (e.g. HomePage becomes home_page.html). Edit home/templates/home/
home_page.html to contain the following:

{% extends "base.html" %}

{% load wagtailcore_tags %}

{% block body_class %}template-homepage{% endblock %}

{% block content %}
{{ self.body|richtext }}

{% endblock %}

A basic blog

We are now ready to create a blog. To do so, run python manage.py startapp blog to create a new app in
your Wagtail site.

Add the new blog app to INSTALLED_APPS in mysite/settings/base.py.

The following example defines a basic blog post model in blog/models.py:

from django.db import models

from wagtail.wagtailcore.models import Page
from wagtail.wagtailcore.fields import RichTextField
from wagtail.wagtailadmin.edit_handlers import FieldPanel
from wagtail.wagtailsearch import index

class BlogPage(Page):
date = models.DateField("Post date")
intro = models.CharField(max_length=250)
body = RichTextField(blank=True)

1.1. Getting started 7

https://docs.djangoproject.com/en/1.8/ref/models/fields/

Wagtail Documentation, Release 1.1

8 Chapter 1. Index

Wagtail Documentation, Release 1.1

search_fields = Page.search_fields + (
index.SearchField('intro'),
index.SearchField('body'),

)

content_panels = Page.content_panels + [
FieldPanel('date'),
FieldPanel('intro'),
FieldPanel('body', classname="full")

]

Create a template at blog/templates/blog/blog_page.html:

{% extends "base.html" %}

{% load wagtailcore_tags %}

{% block body_class %}template-blogpage{% endblock %}

{% block content %}
<h1>{{ self.title }}</h1>
<p class="meta">{{ self.date }}</p>

<div class="intro">{{ self.intro }}</div>

{{ self.body|richtext }}
{% endblock %}

Run python manage.py makemigrations and python manage.py migrate.

Image support

Wagtail provides support for images out of the box. To add them to your model:

from django.db import models

from wagtail.wagtailcore.models import Page
from wagtail.wagtailcore.fields import RichTextField
from wagtail.wagtailadmin.edit_handlers import FieldPanel
from wagtail.wagtailimages.edit_handlers import ImageChooserPanel
from wagtail.wagtailsearch import index

class BlogPage(Page):
main_image = models.ForeignKey(

'wagtailimages.Image',
null=True,
blank=True,
on_delete=models.SET_NULL,
related_name='+'

)
date = models.DateField("Post date")
intro = models.CharField(max_length=250)
body = RichTextField(blank=True)

search_fields = Page.search_fields + (

1.1. Getting started 9

Wagtail Documentation, Release 1.1

10 Chapter 1. Index

Wagtail Documentation, Release 1.1

index.SearchField('intro'),
index.SearchField('body'),

)

content_panels = Page.content_panels + [
FieldPanel('date'),
ImageChooserPanel('main_image'),
FieldPanel('intro'),
FieldPanel('body'),

]

Run python manage.py makemigrations and python manage.py migrate.

Adjust your blog page template to include the image:

{% extends "base.html" %}

{% load wagtailcore_tags wagtailimages_tags %}

{% block body_class %}template-blogpage{% endblock %}

{% block content %}
<h1>{{ self.title }}</h1>
<p class="meta">{{ self.date }}</p>

{% if self.main_image %}
{% image self.main_image width-400 %}

{% endif %}

1.1. Getting started 11

Wagtail Documentation, Release 1.1

<div class="intro">{{ self.intro }}</div>

{{ self.body|richtext }}
{% endblock %}

You can read more about using images in templates in the docs.

Blog Index

Let us extend the Blog app to provide an index.

class BlogIndexPage(Page):
intro = RichTextField(blank=True)

content_panels = Page.content_panels + [

12 Chapter 1. Index

Wagtail Documentation, Release 1.1

FieldPanel('intro', classname="full")
]

The above creates an index type to collect all our blog posts.

blog/templates/blog/blog_index_page.html

{% extends "base.html" %}

{% load wagtailcore_tags %}

{% block body_class %}template-blogindexpage{% endblock %}

{% block content %}
<h1>{{ self.title }}</h1>

<div class="intro">{{ self.intro|richtext }}</div>
{% endblock %}

Related items

Let’s extend the BlogIndexPage to add related links. The related links can be BlogPages or external links. Change
blog/models.py to

from django.db import models

from modelcluster.fields import ParentalKey

from wagtail.wagtailcore.models import Page, Orderable
from wagtail.wagtailcore.fields import RichTextField
from wagtail.wagtailadmin.edit_handlers import (FieldPanel,

InlinePanel,
MultiFieldPanel,
PageChooserPanel)

from wagtail.wagtailimages.edit_handlers import ImageChooserPanel
from wagtail.wagtailsearch import index

...

class LinkFields(models.Model):
link_external = models.URLField("External link", blank=True)
link_page = models.ForeignKey(

'wagtailcore.Page',
null=True,
blank=True,
related_name='+'

)

@property
def link(self):

if self.link_page:
return self.link_page.url

else:
return self.link_external

1.1. Getting started 13

Wagtail Documentation, Release 1.1

panels = [
FieldPanel('link_external'),
PageChooserPanel('link_page'),

]

class Meta:
abstract = True

Related links
class RelatedLink(LinkFields):

title = models.CharField(max_length=255, help_text="Link title")

panels = [
FieldPanel('title'),
MultiFieldPanel(LinkFields.panels, "Link"),

]

class Meta:
abstract = True

class BlogIndexRelatedLink(Orderable, RelatedLink):
page = ParentalKey('BlogIndexPage', related_name='related_links')

class BlogIndexPage(Page):
intro = RichTextField(blank=True)

content_panels = Page.content_panels + [
FieldPanel('intro', classname="full"),
InlinePanel('related_links', label="Related links"),

]

Extend blog_index_page.html to show related items

{% extends "base.html" %}

{% load wagtailcore_tags %}

{% block body_class %}template-blogindexpage{% endblock %}

{% block content %}
<h1>{{ self.title }}</h1>

<div class="intro">{{ self.intro|richtext }}</div>

{% if self.related_links.all %}

{% for item in self.related_links.all %}
{{ item.title }}

{% endfor %}

{% endif %}
{% endblock %}

You now have a fully working blog with featured blog posts.

14 Chapter 1. Index

Wagtail Documentation, Release 1.1

Where next

• Read the Wagtail topics and reference documentation

• Learn how to implement StreamField for freeform page content

• Browse through the advanced topics section and read third-party tutorials

Demo site

To create a new site on Wagtail we recommend the wagtail start command in Getting started, however a demo
site exists containing example page types and models. We also recommend you use the demo site for testing during
development of Wagtail itself.

The repo and installation instructions can be found here: https://github.com/torchbox/wagtaildemo

Topics

Creating page models

Each page type (a.k.a Content type) in Wagtail is represented by a Django model. All page models must inherit from
the wagtail.wagtailcore.models.Page class.

As all page types are Django models, you can use any field type that Django provides. See Model field reference for
a complete list of field types you can use. Wagtail also provides RichTextField which provides a WYSIWYG
editor for editing rich-text content.

1.2. Topics 15

https://github.com/torchbox/wagtaildemo
https://docs.djangoproject.com/en/1.7/ref/models/fields/

Wagtail Documentation, Release 1.1

16 Chapter 1. Index

Wagtail Documentation, Release 1.1

Django models

If you’re not yet familiar with Django models, have a quick look at the following links to get you started: Creating
models Model syntax

An example Wagtail Page Model

This example represents a typical blog post:

from django.db import models

from wagtail.wagtailcore.models import Page
from wagtail.wagtailcore.fields import RichTextField
from wagtail.wagtailadmin.edit_handlers import FieldPanel, MultiFieldPanel
from wagtail.wagtailimages.edit_handlers import ImageChooserPanel

class BlogPage(Page):
body = RichTextField()
date = models.DateField("Post date")
feed_image = models.ForeignKey(

'wagtailimages.Image',
null=True,
blank=True,
on_delete=models.SET_NULL,
related_name='+'

)

content_panels = Page.content_panels + [
FieldPanel('date'),
FieldPanel('body', classname="full"),

]

promote_panels = [
MultiFieldPanel(Page.promote_panels, "Common page configuration"),
ImageChooserPanel('feed_image'),

]

Tip: To keep track of Page models and avoid class name clashes, it can be helpful to suffix model class names with
“Page” e.g BlogPage, ListingIndexPage.

In the example above the BlogPage class defines three properties: body, date, and feed_image. These are a
mix of basic Django models (DateField), Wagtail fields (RichTextField), and a pointer to a Wagtail model
(Image).

Below that the content_panels and promote_panels lists define the capabilities and layout of the page editing
interface in the Wagtail admin. The lists are filled with “panels” and “choosers”, which will provide a fine-grain
interface for inputting the model’s content. The ImageChooserPanel, for instance, lets one browse the image
library, upload new images and input image metadata. The RichTextField is the basic field for creating web-
ready website rich text, including text formatting and embedded media like images and video. The Wagtail admin
offers other choices for fields, Panels, and Choosers, with the option of creating your own to precisely fit your content
without workarounds or other compromises.

1.2. Topics 17

https://docs.djangoproject.com/en/1.7/intro/tutorial01/#creating-models
https://docs.djangoproject.com/en/1.7/intro/tutorial01/#creating-models
https://docs.djangoproject.com/en/1.7/topics/db/models/

Wagtail Documentation, Release 1.1

Your models may be even more complex, with methods overriding the built-in functionality of the Page to achieve
webdev magic. Or, you can keep your models simple and let Wagtail’s built-in functionality do the work.

Tips

Friendly model names

Make your model names more friendly to users of Wagtail using Django’s internal Meta class with a verbose_name
e.g

class HomePage(Page):
...

class Meta:
verbose_name = "Homepage"

When users are given a choice of pages to create, the list of page types is generated by splitting your model names
on each of their capital letters. Thus a HomePage model would be named “Home Page” which is a little clumsy.
verbose_name as in the example above, would change this to read “Homepage” which is slightly more conven-
tional.

Writing templates

Wagtail uses Django’s templating language. For developers new to Django, start with Django’s own template docu-
mentation: https://docs.djangoproject.com/en/dev/topics/templates/

Python programmers new to Django/Wagtail may prefer more technical documentation: https://docs.djangoproject.
com/en/dev/ref/templates/api/

You should be familiar with Django templating basics before continuing with this documentation.

Templates

Every type of page or “content type” in Wagtail is defined as a “model” in a file called models.py. If your site has
a blog, you might have a BlogPage model and another called BlogPageListing. The names of the models are
up to the Django developer.

For each page model in models.py, Wagtail assumes an HTML template file exists of (almost) the same name.
The Front End developer may need to create these templates themselves by refering to models.py to infer template
names from the models defined therein.

To find a suitable template, Wagtail converts CamelCase names to underscore_case. So for a BlogPage, a template
blog_page.html will be expected. The name of the template file can be overridden per model if necessary.

Template files are assumed to exist here:

name_of_project/
name_of_app/

templates/
name_of_app/

blog_page.html
models.py

For more information, see the Django documentation for the application directories template loader.

18 Chapter 1. Index

https://docs.djangoproject.com/en/dev/topics/templates/
https://docs.djangoproject.com/en/dev/ref/templates/api/
https://docs.djangoproject.com/en/dev/ref/templates/api/
https://docs.djangoproject.com/en/dev/ref/templates/api/

Wagtail Documentation, Release 1.1

Page content

The data/content entered into each page is accessed/output through Django’s {{ double-brace }} notation.
Each field from the model must be accessed by prefixing self.. e.g the page title {{ self.title }} or another
field {{ self.author }}.

Additionally request. is available and contains Django’s request object.

Static assets

Static files e.g CSS, JS and images are typically stored here:

name_of_project/
name_of_app/

static/
name_of_app/

css/
js/
images/

models.py

(The names “css”, “js” etc aren’t important, only their position within the tree.)

Any file within the static folder should be inserted into your HTML using the {% static %} tag. More about it:
Static files (tag).

User images

Images uploaded to Wagtail by its users (as opposed to a developer’s static files, above) go into the image library and
from there are added to pages via the page editor interface.

Unlike other CMS, adding images to a page does not involve choosing a “version” of the image to use. Wagtail has no
predefined image “formats” or “sizes”. Instead the template developer defines image manipulation to occur on the fly
when the image is requested, via a special syntax within the template.

Images from the library must be requested using this syntax, but a developer’s static images can be added via conven-
tional means e.g img tags. Only images from the library can be manipulated on the fly.

Read more about the image manipulation syntax here Using images in templates.

Template tags & filters

In addition to Django’s standard tags and filters, Wagtail provides some of its own, which can be load-ed as you
would any other

Images (tag)

The image tag inserts an XHTML-compatible img element into the page, setting its src, width, height and
alt. See also More control over the img tag.

The syntax for the tag is thus:

{% image [image] [resize-rule] %}

1.2. Topics 19

https://docs.djangoproject.com/en/dev/topics/templates/#custom-tag-and-filter-libraries
https://docs.djangoproject.com/en/dev/topics/templates/#custom-tag-and-filter-libraries

Wagtail Documentation, Release 1.1

For example:

{% load wagtailimages_tags %}
...

{% image self.photo width-400 %}

<!-- or a square thumbnail: -->
{% image self.photo fill-80x80 %}

See Using images in templates for full documentation.

Rich text (filter)

This filter takes a chunk of HTML content and renders it as safe HTML in the page. Importantly it also expands
internal shorthand references to embedded images and links made in the Wagtail editor into fully-baked HTML ready
for display.

Only fields using RichTextField need this applied in the template.

{% load wagtailcore_tags %}
...
{{ self.body|richtext }}

Responsive Embeds

Wagtail embeds and images are included at their full width, which may overflow the bounds of the content container
you’ve defined in your templates. To make images and embeds responsive – meaning they’ll resize to fit their container
– include the following CSS.

.rich-text img {
max-width: 100%;
height: auto;

}

.responsive-object {
position: relative;

}
.responsive-object iframe,
.responsive-object object,
.responsive-object embed {

position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;

}

Internal links (tag)

20 Chapter 1. Index

Wagtail Documentation, Release 1.1

pageurl

Takes a Page object and returns a relative URL (/foo/bar/) if within the same site as the current page, or absolute
(http://example.com/foo/bar/) if not.

{% load wagtailcore_tags %}
...

slugurl

Takes any slug as defined in a page’s “Promote” tab and returns the URL for the matching Page. Like pageurl,
will try to provide a relative link if possible, but will default to an absolute link if on a different site. This is most
useful when creating shared page furniture e.g top level navigation or site-wide links.

{% load wagtailcore_tags %}
...

Static files (tag)

Used to load anything from your static files directory. Use of this tag avoids rewriting all static paths if hosting
arrangements change, as they might between local and a live environments.

{% load static %}
...

Notice that the full path name is not required and the path snippet you enter only need begin with the parent app’s
directory name.

Wagtail User Bar

This tag provides a contextual flyout menu on the top-right of a page for logged-in users. The menu gives editors the
ability to edit the current page or add another at the same level. Moderators are also given the ability to accept or reject
a page previewed as part of content moderation.

{% load wagtailuserbar %}
...
{% wagtailuserbar %}

By default the User Bar appears in the top right of the browser window, flush with the edge. If this conflicts with your
design it can be moved with a css rule in your own CSS files e.g to move it down from the top:

#wagtail-userbar{
top:200px

}

Images

1.2. Topics 21

Wagtail Documentation, Release 1.1

Using images in templates

The image tag inserts an XHTML-compatible img element into the page, setting its src, width, height and
alt. See also More control over the img tag.

The syntax for the tag is thus:

{% image [image] [resize-rule] %}

For example:

{% load wagtailimages_tags %}
...

{% image self.photo width-400 %}

<!-- or a square thumbnail: -->
{% image self.photo fill-80x80 %}

In the above syntax example [image] is the Django object refering to the image. If your page model defined a field
called “photo” then [image] would probably be self.photo. The [resize-rule] defines how the image is
to be resized when inserted into the page; various resizing methods are supported, to cater for different usage cases
(e.g. lead images that span the whole width of the page, or thumbnails to be cropped to a fixed size).

Note that a space separates [image] and [resize-rule], but the resize rule must not contain spaces.

The available resizing methods are:

max (takes two dimensions)

{% image self.photo max-1000x500 %}

Fit within the given dimensions.

The longest edge will be reduced to the equivalent dimension size defined. For example, a portrait image of
width 1000, height 2000, treated with the max dimensions 1000x500 (landscape) would result in the image
shrunk so the height was 500 pixels and the width 250.

min (takes two dimensions)

{% image self.photo min-500x200 %}

Cover the given dimensions.

This may result in an image slightly larger than the dimensions you specify. e.g A square image of width 2000,
height 2000, treated with the min dimensions 500x200 (landscape) would have its height and width changed
to 500, i.e matching the width required, but greater than the height.

width (takes one dimension)

{% image self.photo width-640 %}

Reduces the width of the image to the dimension specified.

height (takes one dimension)

{% image self.photo height-480 %}

Resize the height of the image to the dimension specified..

fill (takes two dimensions and an optional -c parameter)

22 Chapter 1. Index

Wagtail Documentation, Release 1.1

{% image self.photo fill-200x200 %}

Resize and crop to fill the exact dimensions.

This can be particularly useful for websites requiring square thumbnails of arbitrary images. For example, a
landscape image of width 2000, height 1000, treated with fill dimensions 200x200 would have its height
reduced to 200, then its width (ordinarily 400) cropped to 200.

This filter will crop to the image’s focal point if it has been set. If not, it will crop to the centre of the image.

On images that won’t upscale

It’s possible to request an image with fill dimensions that the image can’t support without upscaling. e.g an
image 400x200 requested with fill-400x400. In this situation the ratio of the requested fill will be matched,
but the dimension will not. So with that example 400x200 image, the resulting image will be 200x200.

Cropping closer to the focal point

By default, Wagtail will only crop to change the aspect ratio of the image.

In some cases (thumbnails, for example) it may be nice to crop closer to the focal point so the subject of the
image is easier to see.

You can do this by appending -c<percentage> at the end of the method. For example, if you would like the
image to be cropped as closely as possible to its focal point, add -c100 to the end of the method.

{% image self.photo fill-200x200-c100 %}

This will crop the image as much as it can, but will never crop into the focal point.

If you find that -c100 is too close, you can try -c75 or -c50 (any whole number from 0 to 100 is accepted).

original (takes no dimensions)

{% image self.photo original %}

Leaves the image at its original size - no resizing is performed.

Note: Wagtail does not allow deforming or stretching images. Image dimension ratios will always be kept. Wag-
tail also does not support upscaling. Small images forced to appear at larger sizes will “max out” at their native
dimensions.

More control over the img tag

Wagtail provides two shortcuts to give greater control over the img element:

1. Adding attributes to the {% image %} tag

Extra attributes can be specified with the syntax attribute="value":

{% image self.photo width-400 class="foo" id="bar" %}

No validation is performed on attributes added in this way so it’s possible to add src, width, height and alt of your own
that might conflict with those generated by the tag itself.

2. Generating the image “as foo” to access individual properties

Wagtail can assign the image data to another variable using Django’s as syntax:

1.2. Topics 23

Wagtail Documentation, Release 1.1

{% image self.photo width-400 as tmp_photo %}

<img src="{{ tmp_photo.url }}" width="{{ tmp_photo.width }}"
height="{{ tmp_photo.height }}" alt="{{ self.photo.title }}" class="my-custom-

→˓class" />

This syntax exposes the underlying image “Rendition” (tmp_photo) to the developer. A “Rendition” contains just
the information specific to the way you’ve requested to format the image i.e dimensions and source URL.

If your site defines a custom image model using AbstractImage, then any additional fields you add to an image
e.g a copyright holder, are not part of the image rendition, they’re part of the image model.

Therefore in the above example, if you’d added the field foo to your AbstractImage you’d access it using {{ self.
photo.foo }} not {{ tmp_photo.foo }}.

(Due to the links in the database between renditions and their parent image, you could also access it as {{
tmp_photo.image.foo }} but this is clearly confusing.)

Note: The image property used for the src attribute is actually image.url, not image.src.

The attrs shortcut

You can also use the attrs property as a shorthand to output the attributes src, width, height and alt in one
go:

Using images outside Wagtail

Wagtail provides a way for you to generate external URLs for images in your image library which you can use to
display your images on external sites.

Setup

Add an entry in your URLs configuration for wagtail.wagtailimages.urls:

from wagtail.wagtailimages import urls as wagtailimages_urls

urlpatterns = [
...

url(r'^images/', include(wagtailimages_urls)),
]

Generating URLs for images

Once the above setup is done, a button should appear under the image preview on the image edit page. Clicking this
button will take you to an interface where you can specify the size you want the image to be, and it will generate a
URL and a preview of what the image is going to look like.

24 Chapter 1. Index

Wagtail Documentation, Release 1.1

The filter box lets you choose how you would like the image to be resized:

Original Leaves the image at its original size - no resizing is performed.

Resize to max Fit within the given dimensions.

The longest edge will be reduced to the equivalent dimension size defined. e.g A portrait image of width 1000,
height 2000, treated with the max dimensions 1000x500 (landscape) would result in the image shrunk so the
height was 500 pixels and the width 250.

Resize to min Cover the given dimensions.

This may result in an image slightly larger than the dimensions you specify. e.g A square image of width 2000,
height 2000, treated with the min dimensions 500x200 (landscape) would have it’s height and width changed
to 500, i.e matching the width required, but greater than the height.

Resize to width Reduces the width of the image to the dimension specified.

Resize to height Resize the height of the image to the dimension specified..

Resize to fill Resize and crop to fill the exact dimensions.

This can be particularly useful for websites requiring square thumbnails of arbitrary images. For example, a
landscape image of width 2000, height 1000, treated with fill dimensions 200x200 would have its height
reduced to 200, then its width (ordinarily 400) cropped to 200.

Using the URLs on your website or blog

Once you have generated a URL, you can put it straight into the src attribute of an tag:

Advanced topics

Custom image model

The Image model can be customised, allowing additional fields to be added to images.

To do this, you need to add two models to your project:

• The image model itself that inherits from wagtail.wagtailimages.models.AbstractImage. This
is where you would add your additional fields

• The renditions model that inherits from wagtail.wagtailimages.models.AbstractRendition.
This is used to store renditions for the new model.

Here’s an example:

models.py
from django.db import models
from django.db.models.signals import pre_delete
from django.dispatch import receiver

from wagtail.wagtailimages.models import Image, AbstractImage, AbstractRendition

class CustomImage(AbstractImage):
Add any extra fields to image here

1.2. Topics 25

Wagtail Documentation, Release 1.1

eg. To add a caption field:
caption = models.CharField(max_length=255)

admin_form_fields = Image.admin_form_fields + (
Then add the field names here to make them appear in the form:
'caption',

)

class CustomRendition(AbstractRendition):
image = models.ForeignKey(CustomImage, related_name='renditions')

class Meta:
unique_together = (

('image', 'filter', 'focal_point_key'),
)

Delete the source image file when an image is deleted
@receiver(pre_delete, sender=CustomImage)
def image_delete(sender, instance, **kwargs):

instance.file.delete(False)

Delete the rendition image file when a rendition is deleted
@receiver(pre_delete, sender=CustomRendition)
def rendition_delete(sender, instance, **kwargs):

instance.file.delete(False)

Note: If you are using image feature detection, follow these instructions to enable it on your custom image model:
Feature detection and custom image models

Then set the WAGTAILIMAGES_IMAGE_MODEL setting to point to it:

WAGTAILIMAGES_IMAGE_MODEL = 'images.CustomImage'

Migrating from the builtin image model

When changing an existing site to use a custom image model. No images will be copied to the new model automat-
ically. Copying old images to the new model would need to be done manually with a data migration.

Any templates that reference the builtin image model will still continue to work as before but would need to be
updated in order to see any new images.

Animated GIF support

Pillow (Wagtail’s default image library) doesn’t support resizing animated GIFs. If you need animated GIFs in your
site, install Wand.

When Wand is installed, Wagtail will automatically start using it for resizing GIF files, and will continue to resize
other images with Pillow.

26 Chapter 1. Index

https://docs.djangoproject.com/en/1.8/topics/migrations/#data-migrations
https://pypi.python.org/pypi/Wand

Wagtail Documentation, Release 1.1

Feature Detection

Wagtail has the ability to automatically detect faces and features inside your images and crop the images to those
features.

Feature detection uses OpenCV to detect faces/features in an image when the image is uploaded. The detected features
stored internally as a focal point in the focal_point_{x, y, width, height} fields on the Image model.
These fields are used by the fill image filter when an image is rendered in a template to crop the image.

Setup

Feature detection requires OpenCV which can be a bit tricky to install as it’s not currently pip-installable.

Installing OpenCV on Debian/Ubuntu

Debian and ubuntu provide an apt-get package called python-opencv:

sudo apt-get install python-opencv python-numpy

This will install PyOpenCV into your site packages. If you are using a virtual environment, you need to make sure site
packages are enabled or Wagtail will not be able to import PyOpenCV.

Enabling site packages in the virtual environment

If you are not using a virtual envionment, you can skip this step.

Enabling site packages is different depending on whether you are using pyvenv (Python 3.3+ only) or virtualenv to
manage your virtual environment.

pyvenv

Go into your pyvenv directory and open the pyvenv.cfg file then set include-system-site-packages to
true.

virtualenv

Go into your virtualenv directory and delete a file called lib/python-x.x/no-global-site-packages.
txt.

Testing the OpenCV installation

You can test that OpenCV can be seen by Wagtail by opening up a python shell (with your virtual environment active)
and typing:

import cv

If you don’t see an ImportError, it worked. (If you see the error libdc1394 error: Failed to
initialize libdc1394, this is harmless and can be ignored.)

1.2. Topics 27

Wagtail Documentation, Release 1.1

Switching on feature detection in Wagtail

Once OpenCV is installed, you need to set the WAGTAILIMAGES_FEATURE_DETECTION_ENABLED setting to
True:

settings.py

WAGTAILIMAGES_FEATURE_DETECTION_ENABLED = True

Manually running feature detection

Feature detection runs when new images are uploaded in to Wagtail. If you already have images in your Wagtail site
and would like to run feature detection on them, you will have to run it manually.

You can manually run feature detection on all images by running the following code in the python shell:

from wagtail.wagtailimages.models import Image

for image in Image.objects.all():
if not image.has_focal_point():

image.set_focal_point(image.get_suggested_focal_point())
image.save()

Feature detection and custom image models

When using a Custom image model, you need to add a signal handler to the model to trigger feature detection whenever
a new image is uploaded:

Do feature detection when a user saves an image without a focal point
@receiver(pre_save, sender=CustomImage)
def image_feature_detection(sender, instance, **kwargs):

Make sure the image doesn't already have a focal point
if not instance.has_focal_point():

Set the focal point
instance.set_focal_point(instance.get_suggested_focal_point())

Note: This example will always run feature detection regardless of whether the
WAGTAILIMAGES_FEATURE_DETECTION_ENABLED setting is set.

Add a check for this setting if you still want it to have effect.

Search

Wagtail provides a comprehensive and extensible search interface. In addition, it provides ways to promote search
results through “Editor’s Picks”. Wagtail also collects simple statistics on queries made through the search interface.

Indexing

To make a model searchable, you’ll firstly need to add it into the search index. All pages, images and documents are
indexed for you and you can start searching them right away.

28 Chapter 1. Index

Wagtail Documentation, Release 1.1

If you have created some extra fields in a subclass of Page or Image, you may want to add these new fields to the
search index too so that a user’s search query will match on their content. See Indexing extra fields for info on how to
do this.

If you have a custom model that you would like to make searchable, see Indexing custom models.

Updating the index

If the search index is kept separate from the database (when using Elasticsearch for example), you need to keep
them both in sync. There are two ways to do this: using the search signal handlers, or calling the update_index
command periodically. For best speed and reliability, it’s best to use both if possible.

Signal handlers

Changed in version 0.8: Signal handlers are now automatically registered in Django 1.7 and upwards

wagtailsearch provides some signal handlers which bind to the save/delete signals of all indexed models. This
would automatically add and delete them from all backends you have registered in WAGTAILSEARCH_BACKENDS.

If you are using Django version 1.7 or newer, these signal handlers are automatically registered when the wagtail.
wagtailsearch app is loaded. Otherwise, they must be registered as your application starts up. This can be done
by placing the following code in your urls.py:

urls.py
from wagtail.wagtailsearch.signal_handlers import register_signal_handlers
register_signal_handlers()

The update_index command

Wagtail also provides a command for rebuilding the index from scratch.

./manage.py update_index

It is recommended to run this command once a week and at the following times:

• whenever any pages have been created through a script (after an import, for example)

• whenever any changes have been made to models or search configuration

The search may not return any results while this command is running, so avoid running it at peak times.

Indexing extra fields

Warning: Indexing extra fields is only supported with ElasticSearch as your backend. If you’re using the database
backend, any other fields you define via search_fields will be ignored.

Fields must be explicitly added to the search_fields property of your Page-derived model, in order for
you to be able to search/filter on them. This is done by overriding search_fields to append a list of extra
SearchField/FilterField objects to it.

1.2. Topics 29

Wagtail Documentation, Release 1.1

Example

This creates an EventPage model with two fields description and date. description is indexed as a
SearchField and date is indexed as a FilterField

from wagtail.wagtailsearch import index

class EventPage(Page):
description = models.TextField()
date = models.DateField()

search_fields = Page.search_fields + (# Inherit search_fields from Page
index.SearchField('description'),
index.FilterField('date'),

)

Get future events which contain the string "Christmas" in the title or description
>>> EventPage.objects.filter(date__gt=timezone.now()).search("Christmas")

index.SearchField

These are added to the search index and are used for performing full-text searches on your models. These would
usually be text fields.

Options

• partial_match (boolean) - Setting this to true allows results to be matched on parts of words. For example,
this is set on the title field by default so a page titled Hello World! will be found if the user only types Hel
into the search box.

• boost (int/float) - This allows you to set fields as being more important than others. Setting this to a high
number on a field will make pages with matches in that field to be ranked higher. By default, this is set to 2 on
the Page title field and 1 on all other fields.

• es_extra (dict) - This field is to allow the developer to set or override any setting on the field in the Elastic-
Search mapping. Use this if you want to make use of any ElasticSearch features that are not yet supported in
Wagtail.

index.FilterField

These are added to the search index but are not used for full-text searches. Instead, they allow you to run filters on
your search results.

Indexing callables and other attributes

Note: This is not supported in the Database Backend (default)

Search/filter fields do not need to be Django fields, they could be any method or attribute on your class.

One use for this is indexing get_*_display methods Django creates automatically for fields with choices.

30 Chapter 1. Index

Wagtail Documentation, Release 1.1

from wagtail.wagtailsearch import index

class EventPage(Page):
IS_PRIVATE_CHOICES = (

(False, "Public"),
(True, "Private"),

)

is_private = models.BooleanField(choices=IS_PRIVATE_CHOICES)

search_fields = Page.search_fields + (
Index the human-readable string for searching
index.SearchField('get_is_private_display'),

Index the boolean value for filtering
index.FilterField('is_private'),

)

Callables also provide a way to index fields from related models. In the example from Inline Panels and Model
Clusters, to index each BookPage by the titles of its related_links:

class BookPage(Page):
...
def get_related_link_titles(self):

Get list of titles and concatenate them
return '\n'.join(self.related_links.all().values_list('title', flat=True))

search_fields = Page.search_fields + [
...
index.SearchField('get_related_link_titles'),

]

Indexing custom models

Any Django model can be indexed and searched.

To do this, inherit from index.Indexed and add some search_fields to the model.

from wagtail.wagtailsearch import index

class Book(models.Model, index.Indexed):
title = models.CharField(max_length=255)
genre = models.CharField(max_length=255, choices=GENRE_CHOICES)
author = models.ForeignKey(Author)
published_date = models.DateTimeField()

search_fields = (
index.SearchField('title', partial_match=True, boost=10),
index.SearchField('get_genre_display'),

index.FilterField('genre'),
index.FilterField('author'),
index.FilterField('published_date'),

)

As this model doesn't have a search method in its QuerySet, we have to call search
→˓directly on the backend

1.2. Topics 31

Wagtail Documentation, Release 1.1

>>> from wagtail.wagtailsearch.backends import get_search_backend
>>> s = get_search_backend()

Run a search for a book by Roald Dahl
>>> roald_dahl = Author.objects.get(name="Roald Dahl")
>>> s.search("chocolate factory", Book.objects.filter(author=roald_dahl))
[<Book: Charlie and the chocolate factory>]

Searching

Searching Pages

Wagtail provides a search method on the QuerySet for all page models:

Search future EventPages
>>> from wagtail.wagtailcore.models import EventPage
>>> EventPage.objects.filter(date__gt=timezone.now()).search("Hello world!")

All methods of PageQuerySet are supported by wagtailsearch:

Search all live EventPages that are under the events index
>>> EventPage.objects.live().descendant_of(events_index).search("Event")
[<EventPage: Event 1>, <EventPage: Event 2>]

An example page search view

Here’s an example Django view that could be used to add a “search” page to your site:

views.py

from django.shortcuts import render

from wagtail.wagtailcore.models import Page
from wagtail.wagtailsearch.models import Query

def search(request):
Search
search_query = request.GET.get('query', None)
if search_query:

search_results = Page.objects.live().search(search_query)

Log the query so Wagtail can suggest promoted results
Query.get(search_query).add_hit()

else:
search_results = Page.objects.none()

Render template
return render(request, 'search_results.html', {

'search_query': search_query,
'search_results': search_results,

})

And here’s a template to go with it:

32 Chapter 1. Index

Wagtail Documentation, Release 1.1

{% extends "base.html" %}
{% load wagtailcore_tags %}

{% block title %}Search{% endblock %}

{% block content %}
<form action="{% url 'search' %}" method="get">

<input type="text" name="query" value="{{ search_query }}">
<input type="submit" value="Search">

</form>

{% if search_results %}

{% for result in search_results %}

<h4>{{ result }}</h4>
{% if result.search_description %}

{{ result.search_description|safe }}
{% endif %}

{% endfor %}

{% elif search_query %}

No results found
{% else %}

Please type something into the search box
{% endif %}

{% endblock %}

Promoted search results

“Promoted search results” allow editors to explicitly link relevant content to search terms, so results pages can contain
curated content in addition to results from the search engine.

This functionality is provided by the wagtailsearchpromotions contrib module.

Searching Images, Documents and custom models

You can search these by using the search method on the search backend:

>>> from wagtail.wagtailimages.models import Image
>>> from wagtail.wagtailsearch.backends import get_search_backend

Search images
>>> s = get_search_backend()
>>> s.search("Hello", Image)
[<Image: Hello>, <Image: Hello world!>]

You can also pass a QuerySet into the search method which allows you to add filters to your search results:

>>> from wagtail.wagtailimages.models import Image
>>> from wagtail.wagtailsearch.backends import get_search_backend

Search images
>>> s = get_search_backend()

1.2. Topics 33

Wagtail Documentation, Release 1.1

>>> s.search("Hello", Image.objects.filter(uploaded_by_user=user))
[<Image: Hello>]

This should work the same way for Documents and custom models as well.

Backends

Wagtailsearch has support for multiple backends giving you the choice between using the database for search or an
external service such as Elasticsearch.

You can configure which backend to use with the WAGTAILSEARCH_BACKENDS setting:

WAGTAILSEARCH_BACKENDS = {
'default': {

'BACKEND': 'wagtail.wagtailsearch.backends.db',
}

}

AUTO_UPDATE

New in version 1.0.

By default, Wagtail will automatically keep all indexes up to date. This could impact performance when editing
content, especially if your index is hosted on an external service.

The AUTO_UPDATE setting allows you to disable this on a per-index basis:

WAGTAILSEARCH_BACKENDS = {
'default': {

'BACKEND': ...,
'AUTO_UPDATE': False,

}
}

If you have disabled auto update, you must run the update_index command on a regular basis to keep the index in sync
with the database.

ATOMIC_REBUILD

New in version 1.1.

By default (when using the Elasticsearch backend), when the update_index command is run, Wagtail deletes the
index and rebuilds it from scratch. This causes the search engine to not return results until the rebuild is complete and
is also risky as you can’t rollback if an error occurs.

Setting the ATOMIC_REBUILD setting to True makes Wagtail rebuild into a separate index while keep the old index
active until the new one is fully built. When the rebuild is finished, the indexes are swapped atomically and the old
index is deleted.

Warning: Experimental feature

This feature is currently experimental. Please use it with caution.

34 Chapter 1. Index

Wagtail Documentation, Release 1.1

BACKEND

Here’s a list of backends that Wagtail supports out of the box.

Database Backend (default)

wagtail.wagtailsearch.backends.db

Changed in version 1.1: Before 1.1, the full path to the backend class had to be specified: wagtail.
wagtailsearch.backends.db.DBSearch

The database backend is very basic and is intended only to be used in development and on small sites. It cannot order
results by relevance making it not very useful when searching a large amount of pages.

It also doesn’t support:

• Searching on fields in subclasses of Page (unless the class is being searched directly)

• Indexing callables and other attributes

• Converting accented characters to ASCII

If any of these features are important to you, we recommend using Elasticsearch instead.

Elasticsearch Backend

wagtail.wagtailsearch.backends.elasticsearch

Changed in version 1.1: Before 1.1, the full path to the backend class had to be specified: wagtail.
wagtailsearch.backends.elasticsearch.ElasticSearch

Prerequisites are the Elasticsearch service itself and, via pip, the elasticsearch-py package:

pip install elasticsearch

The backend is configured in settings:

WAGTAILSEARCH_BACKENDS = {
'default': {

'BACKEND': 'wagtail.wagtailsearch.backends.elasticsearch',
'URLS': ['http://localhost:9200'],
'INDEX': 'wagtail',
'TIMEOUT': 5,

}
}

Other than BACKEND the keys are optional and default to the values shown. In addition, any other keys are passed
directly to the Elasticsearch constructor as case-sensitive keyword arguments (e.g. 'max_retries': 1).

If you prefer not to run an Elasticsearch server in development or production, there are many hosted services available,
including Searchly, who offer a free account suitable for testing and development. To use Searchly:

• Sign up for an account at dashboard.searchly.com/users/sign_up

• Use your Searchly dashboard to create a new index, e.g. ‘wagtaildemo’

• Note the connection URL from your Searchly dashboard

• Configure URLS and INDEX in the Elasticsearch entry in WAGTAILSEARCH_BACKENDS

1.2. Topics 35

https://www.elastic.co/products/elasticsearch
http://elasticsearch-py.readthedocs.org
http://www.searchly.com/
https://dashboard.searchly.com/users/sign_up

Wagtail Documentation, Release 1.1

• Run ./manage.py update_index

Rolling Your Own

Wagtail search backends implement the interface defined in wagtail/wagtail/wagtailsearch/
backends/base.py. At a minimum, the backend’s search() method must return a collection of objects
or model.objects.none(). For a fully-featured search backend, examine the Elasticsearch backend code in
elasticsearch.py.

Indexing

To make objects searchable, they firstly need to be added to the search index. This involves configuring the mod-
els/fields that you would like to index (this is done for you for Pages, Images and Documents) and then actually
inserting them into the index.

See Updating the index for information on how to keep the objects in your search index in sync with the objects in
your database.

If you have created some extra fields in a subclass of Page or Image, you may want to add these new fields to the
search index too so a users search query will match on their content. See Indexing extra fields.

If you have a custom model which doesn’t derive from Page or Image that you would like to make searchable, see
Indexing custom models.

Searching

Wagtail provides an API for performing search queries on your models. You can also perform search queries on
Django QuerySets.

See Searching.

Backends

Wagtail provides two backends for storing the search index and performing search queries: Elasticsearch and the
database. It’s also possible to roll your own search backend.

See Backends

Snippets

Snippets are pieces of content which do not necessitate a full webpage to render. They could be used for making
secondary content, such as headers, footers, and sidebars, editable in the Wagtail admin. Snippets are models which
do not inherit the Page class and are thus not organized into the Wagtail tree, but can still be made editable by
assigning panels and identifying the model as a snippet with the register_snippet class decorator.

Snippets lack many of the features of pages, such as being orderable in the Wagtail admin or having a defined URL,
so decide carefully if the content type you would want to build into a snippet might be more suited to a page.

36 Chapter 1. Index

Wagtail Documentation, Release 1.1

Snippet Models

Here’s an example snippet from the Wagtail demo website:

from django.db import models

from wagtail.wagtailadmin.edit_handlers import FieldPanel
from wagtail.wagtailsnippets.models import register_snippet

...

@register_snippet
class Advert(models.Model):

url = models.URLField(null=True, blank=True)
text = models.CharField(max_length=255)

panels = [
FieldPanel('url'),
FieldPanel('text'),

]

def __str__(self): # __unicode__ on Python 2
return self.text

The Advertmodel uses the basic Django model class and defines two properties: text and URL. The editing interface
is very close to that provided for Page-derived models, with fields assigned in the panels property. Snippets do not
use multiple tabs of fields, nor do they provide the “save as draft” or “submit for moderation” features.

@register_snippet tells Wagtail to treat the model as a snippet. The panels list defines the fields to
show on the snippet editing page. It’s also important to provide a string representation of the class through def
__str__(self): so that the snippet objects make sense when listed in the Wagtail admin.

Including Snippets in Template Tags

The simplest way to make your snippets available to templates is with a template tag. This is mostly done with vanilla
Django, so perhaps reviewing Django’s documentation for django custom template tags will be more helpful. We’ll
go over the basics, though, and make note of any considerations to make for Wagtail.

First, add a new python file to a templatetags folder within your app. The demo website, for instance uses the
path wagtaildemo/demo/templatetags/demo_tags.py. We’ll need to load some Django modules and
our app’s models and ready the register decorator:

from django import template
from demo.models import *

register = template.Library()

...

Advert snippets
@register.inclusion_tag('demo/tags/adverts.html', takes_context=True)
def adverts(context):

return {
'adverts': Advert.objects.all(),
'request': context['request'],

}

1.2. Topics 37

https://docs.djangoproject.com/en/dev/howto/custom-template-tags/

Wagtail Documentation, Release 1.1

@register.inclusion_tag() takes two variables: a template and a boolean on whether that template should
be passed a request context. It’s a good idea to include request contexts in your custom template tags, since some
Wagtail-specific template tags like pageurl need the context to work properly. The template tag function could take
arguments and filter the adverts to return a specific model, but for brevity we’ll just use Advert.objects.all().

Here’s what’s in the template used by the template tag:

{% for advert in adverts %}
<p>

{{ advert.text }}

</p>
{% endfor %}

Then in your own page templates, you can include your snippet template tag with:

{% block content %}

...

{% adverts %}

{% endblock %}

Binding Pages to Snippets

In the above example, the list of adverts is a fixed list, displayed as part of the template independently of the page
content. This might be what you want for a common panel in a sidebar, say - but in other scenarios you may wish to
refer to a snippet within page content. This can be done by defining a foreign key to the snippet model within your
page model, and adding a SnippetChooserPanel to the page’s content_panels definitions. For example, if
you wanted to be able to specify an advert to appear on BookPage:

from wagtail.wagtailsnippets.edit_handlers import SnippetChooserPanel
...
class BookPage(Page):

advert = models.ForeignKey(
'demo.Advert',
null=True,
blank=True,
on_delete=models.SET_NULL,
related_name='+'

)

BookPage.content_panels = [
SnippetChooserPanel('advert'),
...

]

The snippet could then be accessed within your template as self.advert.

To attach multiple adverts to a page, the SnippetChooserPanel can be placed on an inline child object of
BookPage, rather than on BookPage itself. Here this child model is named BookPageAdvertPlacement
(so called because there is one such object for each time that an advert is placed on a BookPage):

38 Chapter 1. Index

Wagtail Documentation, Release 1.1

from django.db import models

from wagtail.wagtailcore.models import Page
from wagtail.wagtailsnippets.edit_handlers import SnippetChooserPanel

from modelcluster.fields import ParentalKey

...

class BookPageAdvertPlacement(Orderable, models.Model):
page = ParentalKey('demo.BookPage', related_name='advert_placements')
advert = models.ForeignKey('demo.Advert', related_name='+')

class Meta:
verbose_name = "Advert Placement"
verbose_name_plural = "Advert Placements"

panels = [
SnippetChooserPanel('advert'),

]

def __str__(self): # __unicode__ on Python 2
return self.page.title + " -> " + self.advert.text

class BookPage(Page):
...

BookPage.content_panels = [
InlinePanel('advert_placements', label="Adverts"),
...

]

These child objects are now accessible through the page’s advert_placements property, and from there we can
access the linked Advert snippet as advert. In the template for BookPage, we could include the following:

{% for advert_placement in self.advert_placements.all %}
<p>{{ advert_placement.advert.text }}</

→˓a></p>
{% endfor %}

Making Snippets Searchable

If a snippet model inherits from wagtail.wagtailsearch.index.Indexed, as described in Indexing custom
models, Wagtail will automatically add a search box to the chooser interface for that snippet type. For example, the
Advert snippet could be made searchable as follows:

...

from wagtail.wagtailsearch import index

...

@register_snippet
class Advert(models.Model, index.Indexed):

1.2. Topics 39

Wagtail Documentation, Release 1.1

url = models.URLField(null=True, blank=True)
text = models.CharField(max_length=255)

panels = [
FieldPanel('url'),
FieldPanel('text'),

]

search_fields = [
index.SearchField('text', partial_match=True),

]

Tagging snippets

Adding tags to snippets is very similar to adding tags to pages. The only difference is that taggit.manager.
TaggableManager should be used in the place of ClusterTaggableManager.

from modelcluster.fields import ParentalKey
from taggit.models import TaggedItemBase
from taggit.managers import TaggableManager

class AdvertTag(TaggedItemBase):
content_object = ParentalKey('demo.Advert', related_name='tagged_items')

@register_snippet
class Advert(models.Model):

...
tags = TaggableManager(through=BlogPageTag, blank=True)

panels = [
...
FieldPanel('tags'),

]

The documentation on tagging pages has more information on how to use tags in views.

Freeform page content using StreamField

StreamField provides a content editing model suitable for pages that do not follow a fixed structure - such as blog posts
or news stories, where the text may be interspersed with subheadings, images, pull quotes and video, and perhaps more
specialised content types such as maps and charts (or, for a programming blog, code snippets). In this model, these
different content types are represented as a sequence of ‘blocks’, which can be repeated and arranged in any order.

For further background on StreamField, and why you would use it instead of a rich text field for the article body, see
the blog post Rich text fields and faster horses.

StreamField also offers a rich API to define your own block types, ranging from simple collections of sub-blocks
(such as a ‘person’ block consisting of first name, surname and photograph) to completely custom components with
their own editing interface. Within the database, the StreamField content is stored as JSON, ensuring that the full
informational content of the field is preserved, rather than just an HTML representation of it.

Using StreamField

StreamField is a model field that can be defined within your page model like any other field:

40 Chapter 1. Index

https://torchbox.com/blog/rich-text-fields-and-faster-horses/

Wagtail Documentation, Release 1.1

from django.db import models

from wagtail.wagtailcore.models import Page
from wagtail.wagtailcore.fields import StreamField
from wagtail.wagtailcore import blocks
from wagtail.wagtailadmin.edit_handlers import FieldPanel, StreamFieldPanel
from wagtail.wagtailimages.blocks import ImageChooserBlock

class BlogPage(Page):
author = models.CharField(max_length=255)
date = models.DateField("Post date")
body = StreamField([

('heading', blocks.CharBlock(classname="full title")),
('paragraph', blocks.RichTextBlock()),
('image', ImageChooserBlock()),

])

BlogPage.content_panels = [
FieldPanel('author'),
FieldPanel('date'),
StreamFieldPanel('body'),

]

Note: StreamField is not backwards compatible with other field types such as RichTextField; if you migrate an existing
field to StreamField, the existing data will be lost.

The parameter to StreamField is a list of (name, block_type) tuples; ‘name’ is used to identify the block type
within templates and the internal JSON representation (and should follow standard Python conventions for variable
names: lower-case and underscores, no spaces) and ‘block_type’ should be a block definition object as described
below. (Alternatively, StreamField can be passed a single StreamBlock instance - see Structural block types.)

This defines the set of available block types that can be used within this field. The author of the page is free to use
these blocks as many times as desired, in any order.

Basic block types

All block types accept the following optional keyword arguments:

default The default value that a new ‘empty’ block should receive.

label The label to display in the editor interface when referring to this block - defaults to a prettified version of the
block name (or, in a context where no name is assigned - such as within a ListBlock - the empty string).

icon The name of the icon to display for this block type in the menu of available block types. For a list of icon names,
see the Wagtail style guide, which can be enabled by adding wagtail.contrib.wagtailstyleguide
to your project’s INSTALLED_APPS.

template The path to a Django template that will be used to render this block on the front end. See Template
rendering.

The basic block types provided by Wagtail are as follows:

CharBlock

wagtail.wagtailcore.blocks.CharBlock

A single-line text input. The following keyword arguments are accepted:

1.2. Topics 41

Wagtail Documentation, Release 1.1

required (default: True) If true, the field cannot be left blank.

max_length, min_length Ensures that the string is at most or at least the given length.

help_text Help text to display alongside the field.

TextBlock

wagtail.wagtailcore.blocks.TextBlock

A multi-line text input. As with CharBlock, the keyword arguments required, max_length, min_length
and help_text are accepted.

URLBlock

wagtail.wagtailcore.blocks.URLBlock

A single-line text input that validates that the string is a valid URL. The keyword arguments required,
max_length, min_length and help_text are accepted.

BooleanBlock

wagtail.wagtailcore.blocks.BooleanBlock

A checkbox. The keyword arguments required and help_text are accepted. As with Django’s
BooleanField, a value of required=True (the default) indicates that the checkbox must be ticked in order
to proceed; for a checkbox that can be ticked or unticked, you must explicitly pass in required=False.

DateBlock

wagtail.wagtailcore.blocks.DateBlock

A date picker. The keyword arguments required and help_text are accepted.

TimeBlock

wagtail.wagtailcore.blocks.TimeBlock

A time picker. The keyword arguments required and help_text are accepted.

DateTimeBlock

wagtail.wagtailcore.blocks.DateTimeBlock

A combined date / time picker. The keyword arguments required and help_text are accepted.

RichTextBlock

wagtail.wagtailcore.blocks.RichTextBlock

A WYSIWYG editor for creating formatted text including links, bold / italics etc.

42 Chapter 1. Index

Wagtail Documentation, Release 1.1

RawHTMLBlock

wagtail.wagtailcore.blocks.RawHTMLBlock

A text area for entering raw HTML which will be rendered unescaped in the page output. The keyword arguments
required, max_length, min_length and help_text are accepted.

Warning: When this block is in use, there is nothing to prevent editors from inserting malicious scripts into the
page, including scripts that would allow the editor to acquire administrator privileges when another administrator
views the page. Do not use this block unless your editors are fully trusted.

ChoiceBlock

wagtail.wagtailcore.blocks.ChoiceBlock

A dropdown select box for choosing from a list of choices. The following keyword arguments are accepted:

choices A list of choices, in any format accepted by Django’s choices parameter for model fields: https://docs.
djangoproject.com/en/stable/ref/models/fields/#field-choices

required (default: True) If true, the field cannot be left blank.

help_text Help text to display alongside the field.

ChoiceBlock can also be subclassed to produce a reusable block with the same list of choices everywhere it is used.
For example, a block definition such as:

blocks.ChoiceBlock(choices=[
('tea', 'Tea'),
('coffee', 'Coffee'),

], icon='cup')

could be rewritten as a subclass of ChoiceBlock:

class DrinksChoiceBlock(blocks.ChoiceBlock):
choices = [

('tea', 'Tea'),
('coffee', 'Coffee'),

]

class Meta:
icon = 'cup'

StreamField definitions can then refer to DrinksChoiceBlock() in place of the full ChoiceBlock defini-
tion.

PageChooserBlock

wagtail.wagtailcore.blocks.PageChooserBlock

A control for selecting a page object, using Wagtail’s page browser. The keyword argument required is accepted.

1.2. Topics 43

https://docs.djangoproject.com/en/stable/ref/models/fields/#field-choices
https://docs.djangoproject.com/en/stable/ref/models/fields/#field-choices

Wagtail Documentation, Release 1.1

DocumentChooserBlock

wagtail.wagtaildocs.blocks.DocumentChooserBlock

A control to allow the editor to select an existing document object, or upload a new one. The keyword argument
required is accepted.

ImageChooserBlock

wagtail.wagtailimages.blocks.ImageChooserBlock

A control to allow the editor to select an existing image, or upload a new one. The keyword argument required is
accepted.

SnippetChooserBlock

wagtail.wagtailsnippets.blocks.SnippetChooserBlock

A control to allow the editor to select a snippet object. Requires one positional argument: the snippet class to choose
from. The keyword argument required is accepted.

EmbedBlock

wagtail.wagtailembeds.blocks.EmbedBlock

A field for the editor to enter a URL to a media item (such as a YouTube video) to appear as embedded media on the
page. The keyword arguments required, max_length, min_length and help_text are accepted.

Structural block types

In addition to the basic block types above, it is possible to define new block types made up of sub-blocks: for example,
a ‘person’ block consisting of sub-blocks for first name, surname and image, or a ‘carousel’ block consisting of an
unlimited number of image blocks. These structures can be nested to any depth, making it possible to have a structure
containing a list, or a list of structures.

StructBlock

wagtail.wagtailcore.blocks.StructBlock

A block consisting of a fixed group of sub-blocks to be displayed together. Takes a list of (name, block_definition)
tuples as its first argument:

('person', blocks.StructBlock([
('first_name', blocks.CharBlock(required=True)),
('surname', blocks.CharBlock(required=True)),
('photo', ImageChooserBlock()),
('biography', blocks.RichTextBlock()),

], icon='user'))

Alternatively, the list of sub-blocks can be provided in a subclass of StructBlock:

44 Chapter 1. Index

Wagtail Documentation, Release 1.1

class PersonBlock(blocks.StructBlock):
first_name = blocks.CharBlock(required=True)
surname = blocks.CharBlock(required=True)
photo = ImageChooserBlock()
biography = blocks.RichTextBlock()

class Meta:
icon = 'user'

The Meta class supports the properties default, label, icon and template; these have the same meanings as
when they are passed to the block’s constructor.

This defines PersonBlock() as a block type that can be re-used as many times as you like within your model
definitions:

body = StreamField([
('heading', blocks.CharBlock(classname="full title")),
('paragraph', blocks.RichTextBlock()),
('image', ImageChooserBlock()),
('person', PersonBlock()),

])

To customise the styling of the block as it appears in the page editor, your subclass can specify a form_classname
attribute in Meta to override the default value of struct-block:

class PersonBlock(blocks.StructBlock):
first_name = blocks.CharBlock(required=True)
surname = blocks.CharBlock(required=True)
photo = ImageChooserBlock()
biography = blocks.RichTextBlock()

class Meta:
icon = 'user'
form_classname = 'person-block struct-block'

You can then provide custom CSS for this block, targeted at the specified classname, by using the
insert_editor_css hook (see Hooks). For more extensive customisations that require changes to the HTML
markup as well, you can override the form_template attribute in Meta.

ListBlock

wagtail.wagtailcore.blocks.ListBlock

A block consisting of many sub-blocks, all of the same type. The editor can add an unlimited number of sub-blocks,
and re-order and delete them. Takes the definition of the sub-block as its first argument:

('ingredients_list', blocks.ListBlock(blocks.CharBlock(label="Ingredient")))

Any block type is valid as the sub-block type, including structural types:

('ingredients_list', blocks.ListBlock(blocks.StructBlock([
('ingredient', blocks.CharBlock(required=True)),
('amount', blocks.CharBlock()),

])))

1.2. Topics 45

Wagtail Documentation, Release 1.1

StreamBlock

wagtail.wagtailcore.blocks.StreamBlock

A block consisting of a sequence of sub-blocks of different types, which can be mixed and reordered in any order.
Used as the overall mechanism of the StreamField itself, but can also be nested or used within other structural block
types. Takes a list of (name, block_definition) tuples as its first argument:

('carousel', blocks.StreamBlock(
[

('image', ImageChooserBlock()),
('quotation', blocks.StructBlock([

('text', blocks.TextBlock()),
('author', blocks.CharBlock()),

])),
('video', EmbedBlock()),

],
icon='cogs'

))

As with StructBlock, the list of sub-blocks can also be provided as a subclass of StreamBlock:

class CarouselBlock(blocks.StreamBlock):
image = ImageChooserBlock()
quotation = blocks.StructBlock([

('text', blocks.TextBlock()),
('author', blocks.CharBlock()),

])
video = EmbedBlock()

class Meta:
icon='cogs'

Since StreamField accepts an instance of StreamBlock as a parameter, in place of a list of block types, this
makes it possible to re-use a common set block types without repeating definitions:

class HomePage(Page):
carousel = StreamField(CarouselBlock())

Template rendering

The simplest way to render the contents of a StreamField into your template is to output it as a variable, like any other
field:

{{ self.body }}

This will render each block of the stream in turn, wrapped in a <div class="block-my_block_name">
element (where my_block_name is the block name given in the StreamField definition). If you wish to provide
your own HTML markup, you can instead iterate over the field’s value to access each block in turn:

<article>
{% for block in self.body %}

<section>{{ block }}</section>
{% endfor %}

</article>

46 Chapter 1. Index

Wagtail Documentation, Release 1.1

For more control over the rendering of specific block types, each block object provides block_type and value
properties:

<article>
{% for block in self.body %}

{% if block.block_type == 'heading' %}
<h1>{{ block.value }}</h1>

{% else %}
<section class="block-{{ block.block_type }}">

{{ block }}
</section>

{% endif %}
{% endfor %}

</article>

Each block type provides its own front-end HTML rendering mechanism, and this is used for the output of {{ block
}}. For most simple block types, such as CharBlock, this will simply output the field’s value, but others will provide
their own HTML markup; for example, a ListBlock will output the list of child blocks as a element (with each
child wrapped in an element and rendered using the child block’s own HTML rendering).

To override this with your own custom HTML rendering, you can pass a template argument to the block, giving the
filename of a template file to be rendered. This is particularly useful for custom block types derived from StructBlock,
as the default StructBlock rendering is simple and somewhat generic:

('person', blocks.StructBlock(
[

('first_name', blocks.CharBlock(required=True)),
('surname', blocks.CharBlock(required=True)),
('photo', ImageChooserBlock()),
('biography', blocks.RichTextBlock()),

],
template='myapp/blocks/person.html',
icon='user'

))

Or, when defined as a subclass of StructBlock:

class PersonBlock(blocks.StructBlock):
first_name = blocks.CharBlock(required=True)
surname = blocks.CharBlock(required=True)
photo = ImageChooserBlock()
biography = blocks.RichTextBlock()

class Meta:
template = 'myapp/blocks/person.html'
icon = 'user'

Within the template, the block value is accessible as the variable self:

{% load wagtailimages_tags %}

<div class="person">
{% image self.photo width-400 %}
<h2>{{ self.first_name }} {{ self.surname }}</h2>
{{ self.bound_blocks.biography.render }}

</div>

The line self.bound_blocks.biography.render warrants further explanation. While blocks such as Rich-
TextBlock are aware of their own rendering, the actual block values (as returned when accessing properties of a

1.2. Topics 47

Wagtail Documentation, Release 1.1

StructBlock, such as self.biography), are just plain Python values such as strings. To access the block’s proper
HTML rendering, you must retrieve the ‘bound block’ - an object which has access to both the rendering method and
the value - via the bound_blocks property.

Custom block types

If you need to implement a custom UI, or handle a datatype that is not provided by Wagtail’s built-in block types
(and cannot built up as a structure of existing fields), it is possible to define your own custom block types. For further
guidance, refer to the source code of Wagtail’s built-in block classes.

For block types that simply wrap an existing Django form field, Wagtail provides an abstract class wagtail.
wagtailcore.blocks.FieldBlock as a helper. Subclasses just need to set a field property that returns
the form field object:

class IPAddressBlock(FieldBlock):
def __init__(self, required=True, help_text=None, **kwargs):

self.field = forms.GenericIPAddressField(required=required, help_text=help_
→˓text)

super(IPAddressBlock, self).__init__(**kwargs)

Migrations

StreamField definitions within migrations

As with any model field in Django, any changes to a model definition that affect a StreamField will result in a migration
file that contains a ‘frozen’ copy of that field definition. Since a StreamField definition is more complex than a typical
model field, there is an increased likelihood of definitions from your project being imported into the migration - which
would cause problems later on if those definitions are moved or deleted.

To mitigate this, StructBlock, StreamBlock and ChoiceBlock implement additional logic to ensure that any subclasses
of these blocks are deconstructed to plain instances of StructBlock, StreamBlock and ChoiceBlock - in this way, the
migrations avoid having any references to your custom class definitions. This is possible because these block types
provide a standard pattern for inheritance, and know how to reconstruct the block definition for any subclass that
follows that pattern.

If you subclass any other block class, such as FieldBlock, you will need to either keep that class definition in
place for the lifetime of your project, or implement a custom deconstruct method that expresses your block entirely
in terms of classes that are guaranteed to remain in place. Similarly, if you customise a StructBlock, StreamBlock
or ChoiceBlock subclass to the point where it can no longer be expressed as an instance of the basic block type - for
example, if you add extra arguments to the constructor - you will need to provide your own deconstruct method.

Migrating RichTextFields to StreamField

If you change an existing RichTextField to a StreamField, and create and run migrations as normal, the migration
will complete with no errors, since both fields use a text column within the database. However, StreamField uses
a JSON representation for its data, and so the existing text needs to be converted with a data migration in order to
become accessible again. For this to work, the StreamField needs to include a RichTextBlock as one of the available
block types. The field can then be converted by creating a new migration (./manage.py makemigrations
--empty myapp) and editing it as follows (in this example, the ‘body’ field of the demo.BlogPage model is
being converted to a StreamField with a RichTextBlock named rich_text):

48 Chapter 1. Index

https://docs.djangoproject.com/en/1.7/topics/migrations/#custom-deconstruct-method

Wagtail Documentation, Release 1.1

-*- coding: utf-8 -*-
from __future__ import unicode_literals

from django.db import models, migrations
from wagtail.wagtailcore.rich_text import RichText

def convert_to_streamfield(apps, schema_editor):
BlogPage = apps.get_model("demo", "BlogPage")
for page in BlogPage.objects.all():

if page.body.raw_text and not page.body:
page.body = [('rich_text', RichText(page.body.raw_text))]
page.save()

def convert_to_richtext(apps, schema_editor):
BlogPage = apps.get_model("demo", "BlogPage")
for page in BlogPage.objects.all():

if page.body.raw_text is None:
raw_text = ''.join([

child.value.source for child in page.body
if child.block_type == 'rich_text'

])
page.body = raw_text
page.save()

class Migration(migrations.Migration):

dependencies = [
leave the dependency line from the generated migration intact!
('demo', '0001_initial'),

]

operations = [
migrations.RunPython(

convert_to_streamfield,
convert_to_richtext,

),
]

Advanced topics

Configuring Django for Wagtail

To install Wagtail completely from scratch, create a new Django project and an app within that project. For instructions
on these tasks, see Writing your first Django app. Your project directory will look like the following:

myproject/
myproject/

__init__.py
settings.py
urls.py
wsgi.py

myapp/

1.3. Advanced topics 49

https://docs.djangoproject.com/en/dev/intro/tutorial01/

Wagtail Documentation, Release 1.1

__init__.py
models.py
tests.py
admin.py
views.py

manage.py

From your app directory, you can safely remove admin.py and views.py, since Wagtail will provide this function-
ality for your models. Configuring Django to load Wagtail involves adding modules and variables to settings.py
and URL configuration to urls.py. For a more complete view of what’s defined in these files, see Django Settings
and Django URL Dispatcher.

What follows is a settings reference which skips many boilerplate Django settings. If you just want to get your Wagtail
install up quickly without fussing with settings at the moment, see Ready to Use Example Configuration Files.

Middleware (settings.py)

MIDDLEWARE_CLASSES = (
'django.middleware.common.CommonMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',

'wagtail.wagtailcore.middleware.SiteMiddleware',

'wagtail.wagtailredirects.middleware.RedirectMiddleware',
)

Wagtail requires several common Django middleware modules to work and cover basic security. Wagtail provides its
own middleware to cover these tasks:

SiteMiddleware Wagtail routes pre-defined hosts to pages within the Wagtail tree using this middleware.

RedirectMiddleware Wagtail provides a simple interface for adding arbitrary redirects to your site and this
module makes it happen.

Apps (settings.py)

INSTALLED_APPS = (
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',

'compressor',
'taggit',
'modelcluster',

'wagtail.wagtailcore',
'wagtail.wagtailadmin',
'wagtail.wagtaildocs',
'wagtail.wagtailsnippets',

50 Chapter 1. Index

https://docs.djangoproject.com/en/dev/topics/settings/
https://docs.djangoproject.com/en/dev/topics/http/urls/

Wagtail Documentation, Release 1.1

'wagtail.wagtailusers',
'wagtail.wagtailimages',
'wagtail.wagtailembeds',
'wagtail.wagtailsearch',
'wagtail.wagtailsites',
'wagtail.wagtailredirects',
'wagtail.wagtailforms',

'myapp', # your own app
)

Wagtail requires several Django app modules, third-party apps, and defines several apps of its own. Wagtail was built
to be modular, so many Wagtail apps can be omitted to suit your needs. Your own app (here myapp) is where you
define your models, templates, static assets, template tags, and other custom functionality for your site.

Third-Party Apps

compressor Static asset combiner and minifier for Django. Compressor also enables for the use of preprocessors.
See Compressor Documentation.

taggit Tagging framework for Django. This is used internally within Wagtail for image and document tagging and
is available for your own models as well. See Tagging for a Wagtail model recipe or the Taggit Documentation.

modelcluster Extension of Django ForeignKey relation functionality, which is used in Wagtail pages for on-
the-fly related object creation. For more information, see Inline Panels and Model Clusters or the django-
modelcluster github project page.

Wagtail Apps

wagtailcore The core functionality of Wagtail, such as the Page class, the Wagtail tree, and model fields.

wagtailadmin The administration interface for Wagtail, including page edit handlers.

wagtaildocs The Wagtail document content type.

wagtailsnippets Editing interface for non-Page models and objects. See Snippets.

wagtailusers User editing interface.

wagtailimages The Wagtail image content type.

wagtailembeds Module governing oEmbed and Embedly content in Wagtail rich text fields. See Inserting videos
into body content.

wagtailsearch Search framework for Page content. See search.

wagtailredirects Admin interface for creating arbitrary redirects on your site.

wagtailforms Models for creating forms on your pages and viewing submissions. See Form builder.

Settings Variables (settings.py)

Site Name

WAGTAIL_SITE_NAME = 'Stark Industries Skunkworks'

This is the human-readable name of your Wagtail install which welcomes users upon login to the Wagtail admin.

1.3. Advanced topics 51

http://django-compressor.readthedocs.org/en/latest/
http://django-taggit.readthedocs.org/en/latest/index.html
https://github.com/torchbox/django-modelcluster
https://github.com/torchbox/django-modelcluster

Wagtail Documentation, Release 1.1

Search

Override the search results template for wagtailsearch
WAGTAILSEARCH_RESULTS_TEMPLATE = 'myapp/search_results.html'
WAGTAILSEARCH_RESULTS_TEMPLATE_AJAX = 'myapp/includes/search_listing.html'

Replace the search backend
WAGTAILSEARCH_BACKENDS = {

'default': {
'BACKEND': 'wagtail.wagtailsearch.backends.elasticsearch',
'INDEX': 'myapp'

}
}

The search settings customise the search results templates as well as choosing a custom backend for search. For a full
explanation, see search.

Embeds

Wagtail uses the oEmbed standard with a large but not comprehensive number of “providers” (Youtube, Vimeo, etc.).
You can also use a different embed backend by providing an Embedly key or replacing the embed backend by writing
your own embed finder function.

WAGTAILEMBEDS_EMBED_FINDER = 'myapp.embeds.my_embed_finder_function'

Use a custom embed finder function, which takes a URL and returns a dict with metadata and embeddable HTML.
Refer to the wagtail.wagtailemebds.embeds module source for more information and examples.

not a working key, get your own!
EMBEDLY_KEY = '253e433d59dc4d2xa266e9e0de0cb830'

Providing an API key for the Embedly service will use that as a embed backend, with a more extensive list of providers,
as well as analytics and other features. For more information, see Embedly.

To use Embedly, you must also install their Python module:

$ pip install embedly

Images

WAGTAILIMAGES_IMAGE_MODEL = 'myapp.MyImage'

This setting lets you provide your own image model for use in Wagtail, which might extend the built-in
AbstractImage class or replace it entirely.

Email Notifications

WAGTAILADMIN_NOTIFICATION_FROM_EMAIL = 'wagtail@myhost.io'

Wagtail sends email notifications when content is submitted for moderation, and when the content is accepted or
rejected. This setting lets you pick which email address these automatic notifications will come from. If omitted,
Django will fall back to using the DEFAULT_FROM_EMAIL variable if set, and webmaster@localhost if not.

52 Chapter 1. Index

http://embed.ly/

Wagtail Documentation, Release 1.1

Wagtail update notifications

WAGTAIL_ENABLE_UPDATE_CHECK = True

For admins only, Wagtail performs a check on the dashboard to see if newer releases are available. This also provides
the Wagtail team with the hostname of your Wagtail site. If you’d rather not receive update notifications, or if you’d
like your site to remain unknown, you can disable it with this setting.

Private Pages

PASSWORD_REQUIRED_TEMPLATE = 'myapp/password_required.html'

This is the path to the Django template which will be used to display the “password required” form when a user
accesses a private page. For more details, see the Private pages documentation.

Other Django Settings Used by Wagtail

ALLOWED_HOSTS
APPEND_SLASH
AUTH_USER_MODEL
BASE_URL
CACHES
DEFAULT_FROM_EMAIL
INSTALLED_APPS
MEDIA_ROOT
SESSION_COOKIE_DOMAIN
SESSION_COOKIE_NAME
SESSION_COOKIE_PATH
STATIC_URL
TEMPLATE_CONTEXT_PROCESSORS
USE_I18N

For information on what these settings do, see Django Settings.

URL Patterns

from django.contrib import admin

from wagtail.wagtailcore import urls as wagtail_urls
from wagtail.wagtailadmin import urls as wagtailadmin_urls
from wagtail.wagtaildocs import urls as wagtaildocs_urls
from wagtail.wagtailsearch import urls as wagtailsearch_urls

urlpatterns = [
url(r'^django-admin/', include(admin.site.urls)),

url(r'^admin/', include(wagtailadmin_urls)),
url(r'^search/', include(wagtailsearch_urls)),
url(r'^documents/', include(wagtaildocs_urls)),

Optional URL for including your own vanilla Django urls/views
url(r'', include('myapp.urls')),

1.3. Advanced topics 53

https://docs.djangoproject.com/en/dev/ref/settings/

Wagtail Documentation, Release 1.1

For anything not caught by a more specific rule above, hand over to
Wagtail's serving mechanism
url(r'', include(wagtail_urls)),

]

This block of code for your project’s urls.py does a few things:

• Load the vanilla Django admin interface to /django-admin/

• Load the Wagtail admin and its various apps

• Dispatch any vanilla Django apps you’re using other than Wagtail which require their own URL configuration
(this is optional, since Wagtail might be all you need)

• Lets Wagtail handle any further URL dispatching.

That’s not everything you might want to include in your project’s URL configuration, but it’s what’s necessary for
Wagtail to flourish.

Ready to Use Example Configuration Files

These two files should reside in your project directory (myproject/myproject/).

settings.py

import os

PROJECT_ROOT = os.path.join(os.path.dirname(__file__), '..', '..')

DEBUG = True
TEMPLATE_DEBUG = DEBUG

ADMINS = (
('Your Name', 'your_email@example.com'),

)

MANAGERS = ADMINS

Default to dummy email backend. Configure dev/production/local backend
as per https://docs.djangoproject.com/en/dev/topics/email/#email-backends
EMAIL_BACKEND = 'django.core.mail.backends.dummy.EmailBackend'

DATABASES = {
'default': {

'ENGINE': 'django.db.backends.postgresql_psycopg2',
'NAME': 'myprojectdb',
'USER': 'postgres',
'PASSWORD': '',
'HOST': '', # Set to empty string for localhost.
'PORT': '', # Set to empty string for default.
'CONN_MAX_AGE': 600, # number of seconds database connections should persist

→˓for
}

}

Hosts/domain names that are valid for this site; required if DEBUG is False

54 Chapter 1. Index

Wagtail Documentation, Release 1.1

See https://docs.djangoproject.com/en/1.5/ref/settings/#allowed-hosts
ALLOWED_HOSTS = []

Local time zone for this installation. Choices can be found here:
http://en.wikipedia.org/wiki/List_of_tz_zones_by_name
although not all choices may be available on all operating systems.
On Unix systems, a value of None will cause Django to use the same
timezone as the operating system.
If running in a Windows environment this must be set to the same as your
system time zone.
TIME_ZONE = 'Europe/London'

Language code for this installation. All choices can be found here:
http://www.i18nguy.com/unicode/language-identifiers.html
LANGUAGE_CODE = 'en-gb'

SITE_ID = 1

If you set this to False, Django will make some optimizations so as not
to load the internationalization machinery.
USE_I18N = True

If you set this to False, Django will not format dates, numbers and
calendars according to the current locale.
Note that with this set to True, Wagtail will fall back on using numeric dates
in date fields, as opposed to 'friendly' dates like "24 Sep 2013", because
Python's strptime doesn't support localised month names: https://code.djangoproject.
→˓com/ticket/13339
USE_L10N = False

If you set this to False, Django will not use timezone-aware datetimes.
USE_TZ = True

Absolute filesystem path to the directory that will hold user-uploaded files.
Example: "/home/media/media.lawrence.com/media/"
MEDIA_ROOT = os.path.join(PROJECT_ROOT, 'media')

URL that handles the media served from MEDIA_ROOT. Make sure to use a
trailing slash.
Examples: "http://media.lawrence.com/media/", "http://example.com/media/"
MEDIA_URL = '/media/'

Absolute path to the directory static files should be collected to.
Don't put anything in this directory yourself; store your static files
in apps' "static/" subdirectories and in STATICFILES_DIRS.
Example: "/home/media/media.lawrence.com/static/"
STATIC_ROOT = os.path.join(PROJECT_ROOT, 'static')

URL prefix for static files.
Example: "http://media.lawrence.com/static/"
STATIC_URL = '/static/'

List of finder classes that know how to find static files in
various locations.
STATICFILES_FINDERS = (

'django.contrib.staticfiles.finders.FileSystemFinder',
'django.contrib.staticfiles.finders.AppDirectoriesFinder',
'compressor.finders.CompressorFinder',

1.3. Advanced topics 55

Wagtail Documentation, Release 1.1

)

Make this unique, and don't share it with anybody.
SECRET_KEY = 'change-me'

List of callables that know how to import templates from various sources.
TEMPLATE_LOADERS = (

'django.template.loaders.filesystem.Loader',
'django.template.loaders.app_directories.Loader',

)

MIDDLEWARE_CLASSES = (
'django.middleware.common.CommonMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.csrf.CsrfViewMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',

'wagtail.wagtailcore.middleware.SiteMiddleware',

'wagtail.wagtailredirects.middleware.RedirectMiddleware',
)

from django.conf import global_settings
TEMPLATE_CONTEXT_PROCESSORS = global_settings.TEMPLATE_CONTEXT_PROCESSORS + (

'django.core.context_processors.request',
)

ROOT_URLCONF = 'myproject.urls'

Python dotted path to the WSGI application used by Django's runserver.
WSGI_APPLICATION = 'wagtaildemo.wsgi.application'

INSTALLED_APPS = (
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'django.contrib.messages',
'django.contrib.staticfiles',

'compressor',
'taggit',
'modelcluster',

'wagtail.wagtailcore',
'wagtail.wagtailadmin',
'wagtail.wagtaildocs',
'wagtail.wagtailsnippets',
'wagtail.wagtailusers',
'wagtail.wagtailimages',
'wagtail.wagtailembeds',
'wagtail.wagtailsearch',
'wagtail.wagtailredirects',
'wagtail.wagtailforms',

'myapp',
)

56 Chapter 1. Index

Wagtail Documentation, Release 1.1

EMAIL_SUBJECT_PREFIX = '[Wagtail] '

INTERNAL_IPS = ('127.0.0.1', '10.0.2.2')

A sample logging configuration. The only tangible logging
performed by this configuration is to send an email to
the site admins on every HTTP 500 error when DEBUG=False.
See http://docs.djangoproject.com/en/dev/topics/logging for
more details on how to customize your logging configuration.
LOGGING = {

'version': 1,
'disable_existing_loggers': False,
'filters': {

'require_debug_false': {
'()': 'django.utils.log.RequireDebugFalse'

}
},
'handlers': {

'mail_admins': {
'level': 'ERROR',
'filters': ['require_debug_false'],
'class': 'django.utils.log.AdminEmailHandler'

}
},
'loggers': {

'django.request': {
'handlers': ['mail_admins'],
'level': 'ERROR',
'propagate': True,

},
}

}

WAGTAIL SETTINGS

This is the human-readable name of your Wagtail install
which welcomes users upon login to the Wagtail admin.
WAGTAIL_SITE_NAME = 'My Project'

Override the search results template for wagtailsearch
WAGTAILSEARCH_RESULTS_TEMPLATE = 'myapp/search_results.html'
WAGTAILSEARCH_RESULTS_TEMPLATE_AJAX = 'myapp/includes/search_listing.html'

Replace the search backend
#WAGTAILSEARCH_BACKENDS = {
'default': {
'BACKEND': 'wagtail.wagtailsearch.backends.elasticsearch',
'INDEX': 'myapp'
}
#}

Wagtail email notifications from address
WAGTAILADMIN_NOTIFICATION_FROM_EMAIL = 'wagtail@myhost.io'

If you want to use Embedly for embeds, supply a key
(this key doesn't work, get your own!)

1.3. Advanced topics 57

Wagtail Documentation, Release 1.1

EMBEDLY_KEY = '253e433d59dc4d2xa266e9e0de0cb830'

urls.py

from django.conf.urls import patterns, include, url
from django.conf.urls.static import static
from django.views.generic.base import RedirectView
from django.contrib import admin
from django.conf import settings
import os.path

from wagtail.wagtailcore import urls as wagtail_urls
from wagtail.wagtailadmin import urls as wagtailadmin_urls
from wagtail.wagtaildocs import urls as wagtaildocs_urls
from wagtail.wagtailsearch import urls as wagtailsearch__urls

urlpatterns = patterns('',
url(r'^django-admin/', include(admin.site.urls)),

url(r'^admin/', include(wagtailadmin_urls)),
url(r'^search/', include(wagtailsearch_urls)),
url(r'^documents/', include(wagtaildocs_urls)),

For anything not caught by a more specific rule above, hand over to
Wagtail's serving mechanism
url(r'', include(wagtail_urls)),

)

if settings.DEBUG:
from django.contrib.staticfiles.urls import staticfiles_urlpatterns

urlpatterns += staticfiles_urlpatterns() # tell gunicorn where static files are
→˓in dev mode

urlpatterns += static(settings.MEDIA_URL + 'images/', document_root=os.path.
→˓join(settings.MEDIA_ROOT, 'images'))

urlpatterns += patterns('',
(r'^favicon\.ico$', RedirectView.as_view(url=settings.STATIC_URL + 'myapp/

→˓images/favicon.ico'))
)

Deploying Wagtail

On your server

Wagtail is straightforward to deploy on modern Linux-based distributions, but see the section on performance for the
non-Python services we recommend. If you are running Debian or Ubuntu, this installation script for our Vagrant box
may be useful:

github.com/torchbox/wagtaildemo/blob/master/etc/install/install.sh

Our current preferences are for Nginx, Gunicorn and supervisor on Debian, but Wagtail should run with any of the
combinations detailed in Django’s deployment documentation.

58 Chapter 1. Index

https://github.com/torchbox/wagtaildemo/blob/master/etc/install/install.sh
https://docs.djangoproject.com/en/dev/howto/deployment/

Wagtail Documentation, Release 1.1

On Gondor

Gondor specialise in Python hosting. They provide Redis and Elasticsearch, which are two of the services we recom-
mend for high-performance production sites. Gondor have written a comprehensive tutorial on running your Wagtail
site on their platform, at gondor.io/blog/2014/02/14/how-run-wagtail-cms-gondor/.

On other PAASs and IAASs

We know of Wagtail sites running on Heroku, Digital Ocean and elsewhere. If you have successfully installed Wagtail
on your platform or infrastructure, please contribute your notes to this documentation!

Performance

Wagtail is designed for speed, both in the editor interface and on the front-end, but if you want even better performance
or you need to handle very high volumes of traffic, here are some tips on eking out the most from your installation.

Editor interface

We have tried to minimise external dependencies for a working installation of Wagtail, in order to make it as simple
as possible to get going. However, a number of default settings can be configured for better performance:

Cache

We recommend Redis as a fast, persistent cache. Install Redis through your package manager (on Debian or Ubuntu:
sudo apt-get install redis-server), add django-redis to your requirements.txt, and enable
it as a cache backend:

CACHES = {
'default': {

'BACKEND': 'django_redis.cache.RedisCache',
'LOCATION': '127.0.0.1:6379',
'OPTIONS': {

'CLIENT_CLASS': 'django_redis.client.DefaultClient',
}

}
}

Without a persistent cache, Wagtail will recreate all compressible assets at each server start, e.g. when any files change
under ./manage.py runserver.

Search

Wagtail has strong support for Elasticsearch - both in the editor interface and for users of your site - but can fall back
to a database search if Elasticsearch isn’t present. Elasticsearch is faster and more powerful than the Django ORM for
text search, so we recommend installing it or using a hosted service like Searchly.

Once the Elasticsearch server is installed and running. Install the elasticsearch Python module with:

pip install elasticsearch

then add the following to your settings:

1.3. Advanced topics 59

https://gondor.io/
https://gondor.io/blog/2014/02/14/how-run-wagtail-cms-gondor/
http://spapas.github.io/2014/02/13/wagtail-tutorial/
http://redis.io/
http://www.elasticsearch.org/
http://www.searchly.com/

Wagtail Documentation, Release 1.1

WAGTAILSEARCH_BACKENDS = {
'default': {

'BACKEND': 'wagtail.wagtailsearch.backends.elasticsearch.ElasticSearch',
'INDEX': '{{ project_name }}',

},
}

Once Elasticsearch is configured, you can index any existing content you may have:

./manage.py update_index

Database

Wagtail is tested on SQLite, and should work on other Django-supported database backends, but we recommend
PostgreSQL for production use.

Public users

Caching proxy

To support high volumes of traffic with excellent response times, we recommend a caching proxy. Both Varnish and
Squid have been tested in production. Hosted proxies like Cloudflare should also work well.

Wagtail supports automatic cache invalidation for Varnish/Squid. See Frontend cache invalidator for
more information.

Internationalisation

This document describes the internationalisation features of Wagtail and how to create multi-lingual sites.

Wagtail uses Django’s Internationalisation framework so most of the steps are the same as other Django projects.

Contents

• Internationalisation

– Wagtail admin translations

– Changing the primary language of your Wagtail installation

– Creating sites with multiple languages

* Enabling multiple language support

* Serving different languages from different URLs

* Translating templates

* Translating content

* Other approaches

60 Chapter 1. Index

http://www.varnish-cache.org/
http://www.squid-cache.org/
https://www.cloudflare.com/
https://docs.djangoproject.com/en/1.8/topics/i18n/

Wagtail Documentation, Release 1.1

Wagtail admin translations

The Wagtail admin backend has been translated into many different languages. You can find a list of currently available
translations on Wagtail’s Transifex page. (Note: if you’re using an old version of Wagtail, this page may not accurately
reflect what languages you have available).

If your language isn’t listed on that page, you can easily contribute new languages or correct mistakes. Sign up and
submit changes to Transifex. Translation updates are typically merged into an official release within one month of
being submitted.

Changing the primary language of your Wagtail installation

The default language of Wagtail is en-us (American English). You can change this by tweaking a couple of Django
settings:

• Make sure USE_I18N is set to True

• Set LANGUAGE_CODE to your websites’ primary language

If there is a translation available for your language, the Wagtail admin backend should now be in the language you’ve
chosen.

Creating sites with multiple languages

You can create sites with multiple language support by leveraging Django’s translation features.

This section of the documentation will show you how to use Django’s translation features with Wagtail and also
describe a couple of methods for storing/retrieving translated content using Wagtail pages.

Enabling multiple language support

Firstly, make sure the USE_I18N Django setting is set to True.

To enable multi-language support, add django.middleware.locale.LocaleMiddleware to your
MIDDLEWARE_CLASSES:

MIDDLEWARE_CLASSES = (
...

'django.middleware.locale.LocaleMiddleware',
)

This middleware class looks at the user’s browser language and sets the language of the site accordingly.

Serving different languages from different URLs

Just enabling the multi-language support in Django sometimes may not be enough. By default, Django will serve
different languages of the same page with the same URL. This has a couple of drawbacks:

• Users cannot change language without changing their browser settings

• It may not work well with various caching setups (as content varies based on browser settings)

1.3. Advanced topics 61

https://www.transifex.com/torchbox/wagtail/
https://www.transifex.com/torchbox/wagtail/
https://docs.djangoproject.com/en/1.8/ref/settings/#use-i18n
https://docs.djangoproject.com/en/1.8/ref/settings/#std:setting-LANGUAGE_CODE
https://docs.djangoproject.com/en/1.8/topics/i18n/translation/
https://docs.djangoproject.com/en/1.8/ref/settings/#use-i18n
https://docs.djangoproject.com/en/1.8/topics/i18n/translation/#how-django-discovers-language-preference

Wagtail Documentation, Release 1.1

Django’s i18n_patterns feature, when enabled, prefixes the URLs with the language code (eg /en/about-us).
Users are forwarded to their preferred version, based on browser language, when they first visit the site.

This feature is enabled through the project’s root URL configuration. Just put the views you would like to have this
enabled for in an i18n_patterns list and append that to the other URL patterns:

mysite/urls.py

from django.conf.urls import include, url
from django.conf.urls.i18n import i18n_patterns
from django.conf import settings
from django.contrib import admin

from wagtail.wagtailadmin import urls as wagtailadmin_urls
from wagtail.wagtaildocs import urls as wagtaildocs_urls
from wagtail.wagtailcore import urls as wagtail_urls

urlpatterns = [
url(r'^django-admin/', include(admin.site.urls)),

url(r'^admin/', include(wagtailadmin_urls)),
url(r'^documents/', include(wagtaildocs_urls)),

]

urlpatterns += i18n_patterns('',
These URLs will have /<language_code>/ appended to the beginning

url(r'^search/$', 'search.views.search', name='search'),

url(r'', include(wagtail_urls)),
)

You can implement switching between languages by changing the part at the beginning of the URL. As each language
has its own URL, it also works well with just about any caching setup.

Translating templates

Static text in templates needs to be marked up in a way that allows Django’s makemessages command to find and
export the strings for translators and also allow them to switch to translated versions on the when the template is being
served.

As Wagtail uses Django’s templates, inserting this markup and the workflow for exporting and translating the strings
is the same as any other Django project.

See: https://docs.djangoproject.com/en/1.8/topics/i18n/translation/#internationalization-in-template-code

Translating content

The most common approach for translating content in Wagtail is to duplicate each translatable text field, providing a
separate field for each language.

This section will describe how to implement this method manually but there is a third party module you can use,
wagtail modeltranslation, which may be quicker if it meets your needs.

Duplicating the fields in your model

62 Chapter 1. Index

https://docs.djangoproject.com/en/1.8/topics/i18n/translation/#internationalization-in-template-code
https://github.com/infoportugal/wagtail-modeltranslation

Wagtail Documentation, Release 1.1

For each field you would like to be translatable, duplicate it for every language you support and suffix it with the
language code:

class BlogPage(Page):

title_fr = models.CharField(max_length=255)

body_en = StreamField(...)
body_fr = StreamField(...)

Language-independent fields don't need to be duplicated
thumbnail_image = models.ForeignKey('wagtailimages.image', ...)

Note: We only define the French version of the title field as Wagtail already provides the English version for us.

Organising the fields in the admin interface

You can either put all the fields with their translations next to each other on the “content” tab or put the translations
for other languages on different tabs.

See Customising the tabbed interface for information on how to add more tabs to the admin interface.

Accessing the fields from the template

In order for the translations to be shown on the site frontend, the correct field needs to be used in the template based
on what language the client has selected.

Having to add language checks every time you display a field in a template, could make your templates very messy.
Here’s a little trick that will allow you to implement this while keeping your templates and model code clean.

You can use a snippet like the following to add accessor fields on to your page model. These accessor fields will point
at the field that contains the language the user has selected.

Copy this into your project and make sure it’s imported in any models.py files that contain a Page with translated
fields. It will require some modification to support different languages.

from django.utils import translation

class TranslatedField(object):
def __init__(self, en_field, fr_field):

self.en_field = en_field
self.fr_field = fr_field

def __get__(self, instance, owner):
en = getattr(instance, self.en_field)
fr = getattr(instance, self.fr_field)

if translation.get_language() == 'fr':
return fr

else:
return en

Then, for each translated field, create an instance of TranslatedField with a nice name (as this is the name your
templates will reference).

For example, here’s how we would apply this to the above BlogPage model:

class BlogPage(Page):
...

1.3. Advanced topics 63

Wagtail Documentation, Release 1.1

translated_title = TranslatedField(
'title',
'title_fr',

)
body = TranslatedField(

'body_en',
'body_fr',

)

Finally, in the template, reference the accessors instead of the underlying database fields:

{{ self.translated_title }}

{{ self.body }}

Other approaches

Creating a multilingual site (by duplicating the page tree)

This tutorial will show you a method of creating multilingual sites in Wagtail by duplicating the page tree.

For example:

/
en/

about/
contact/

fr/
about/
contact/

The root page

The root page (/) should detect the browsers language and forward them to the correct language homepage (/en/,
/fr/). This page should sit at the site root (where the homepage would normally be).

We must set Django’s LANGUAGES setting so we don’t redirect non English/French users to pages that don’t exist.

settings.py
LANGUAGES = (

('en', _("English")),
('fr', _("French")),

)

models.py
from django.utils import translation
from django.http import HttpResponseRedirect

from wagtail.wagtailcore.models import Page

class LanguageRedirectionPage(Page):

64 Chapter 1. Index

Wagtail Documentation, Release 1.1

def serve(self, request):
This will only return a language that is in the LANGUAGES Django setting
language = translation.get_language_from_request(request)

return HttpResponseRedirect(self.url + language + '/')

Linking pages together

It may be useful to link different versions of the same page together to allow the user to easily switch between
languages. But we don’t want to increase the burden on the editor too much so ideally, editors should only need to
link one of the pages to the other versions and the links between the other versions should be created implicitly.

As this behaviour needs to be added to all page types that would be translated, its best to put this behaviour in a mixin.

Here’s an example of how this could be implemented (with English as the main language and French/Spanish as
alternative languages):

class TranslatablePageMixin(models.Model):
One link for each alternative language
These should only be used on the main language page (english)
french_link = models.ForeignKey(Page, null=True, on_delete=models.SET_NULL,

→˓blank=True, related_name='+')
spanish_link = models.ForeignKey(Page, null=True, on_delete=models.SET_NULL,

→˓blank=True, related_name='+')

def get_language(self):
"""
This returns the language code for this page.
"""
Look through ancestors of this page for its language homepage
The language homepage is located at depth 3
language_homepage = self.get_ancestors(inclusive=True).get(depth=3)

The slug of language homepages should always be set to the language code
return language_homepage.slug

Method to find the main language version of this page
This works by reversing the above links

def english_page(self):
"""
This finds the english version of this page
"""
language = self.get_language()

if language == 'en':
return self

elif language == 'fr':
return type(self).objects.filter(french_link=self).first().specific

elif language == 'es':
return type(self).objects.filter(spanish_link=self).first().specific

We need a method to find a version of this page for each alternative language.
These all work the same way. They firstly find the main version of the page
(english), then from there they can just follow the link to the correct page.

1.3. Advanced topics 65

Wagtail Documentation, Release 1.1

def french_page(self):
"""
This finds the french version of this page
"""
english_page = self.english_page()

if english_page and english_page.french_link:
return english_page.french_link.specific

def spanish_page(self):
"""
This finds the spanish version of this page
"""
english_page = self.english_page()

if english_page and english_page.spanish_link:
return english_page.spanish_link.specific

class Meta:
abstract = True

class AboutPage(Page, TranslatablePageMixin):
...

class ContactPage(Page, TranslatablePageMixin):
...

You can make use of these methods in your template by doing:

{% if self.english_page and self.get_language != 'en' %}
{% trans "View in English" %}

{% endif %}

{% if self.french_page and self.get_language != 'fr' %}
{% trans "View in French" %}

{% endif %}

{% if self.spanish_page and self.get_language != 'es' %}
{% trans "View in Spanish" %}

{% endif %}

Private pages

Users with publish permission on a page can set it to be private by clicking the ‘Privacy’ control in the top right corner
of the page explorer or editing interface, and setting a password. Users visiting this page, or any of its subpages, will
be prompted to enter a password before they can view the page.

Private pages work on Wagtail out of the box - the site implementer does not need to do anything to set them up.
However, the default “password required” form is only a bare-bones HTML page, and site implementers may wish to
replace this with a page customised to their site design.

66 Chapter 1. Index

Wagtail Documentation, Release 1.1

Setting up a global “password required” page

By setting PASSWORD_REQUIRED_TEMPLATE in your Django settings file, you can specify the path of a template
which will be used for all “password required” forms on the site (except for page types that specifically override it -
see below):

PASSWORD_REQUIRED_TEMPLATE = 'myapp/password_required.html'

This template will receive the same set of context variables that the blocked page would pass to its own template via
get_context() - including self to refer to the page object itself - plus the following additional variables (which
override any of the page’s own context variables of the same name):

• form - A Django form object for the password prompt; this will contain a field named password as its only vis-
ible field. A number of hidden fields may also be present, so the page must loop over form.hidden_fields
if not using one of Django’s rendering helpers such as form.as_p.

• action_url - The URL that the password form should be submitted to, as a POST request.

A basic template suitable for use as PASSWORD_REQUIRED_TEMPLATE might look like this:

<!DOCTYPE HTML>
<html>

<head>
<title>Password required</title>

</head>
<body>

<h1>Password required</h1>
<p>You need a password to access this page.</p>
<form action="{{ action_url }}" method="POST">

{% csrf_token %}

{{ form.non_field_errors }}

<div>
{{ form.password.errors }}
{{ form.password.label_tag }}
{{ form.password }}

</div>

{% for field in form.hidden_fields %}
{{ field }}

{% endfor %}
<input type="submit" value="Continue" />

</form>
</body>

</html>

Setting a “password required” page for a specific page type

The attribute password_required_template can be defined on a page model to use a custom template for the
“password required” view, for that page type only. For example, if a site had a page type for displaying embedded
videos along with a description, it might choose to use a custom “password required” template that displays the video
description as usual, but shows the password form in place of the video embed.

class VideoPage(Page):
...
password_required_template = 'video/password_required.html'

1.3. Advanced topics 67

Wagtail Documentation, Release 1.1

Customising Wagtail

Customising the page editing interface

Customising the tabbed interface

New in version 1.0.

As standard, Wagtail organises panels into three tabs: ‘Content’, ‘Promote’ and ‘Settings’. Depending on the require-
ments of your site, you may wish to customise this for specific page types - for example, adding an additional tab for
sidebar content. This can be done by specifying an edit_handler property on the page model. For example:

from wagtail.wagtailadmin.edit_handlers import TabbedInterface, ObjectList

class BlogPage(Page):
field definitions omitted

content_panels = [
FieldPanel('title', classname="full title"),
FieldPanel('date'),
FieldPanel('body', classname="full"),

]
sidebar_content_panels = [

SnippetChooserPanel('advert'),
InlinePanel('related_links', label="Related links"),

]

edit_handler = TabbedInterface([
ObjectList(content_panels, heading='Content'),
ObjectList(sidebar_content_panels, heading='Sidebar content'),
ObjectList(Page.promote_panels, heading='Promote'),
ObjectList(Page.settings_panels, heading='Settings', classname="settings"),

])

Rich Text (HTML)

Wagtail provides a general-purpose WYSIWYG editor for creating rich text content (HTML) and embedding media
such as images, video, and documents. To include this in your models, use the RichTextField function when
defining a model field:

from wagtail.wagtailcore.fields import RichTextField
from wagtail.wagtailadmin.edit_handlers import FieldPanel

class BookPage(Page):
book_text = RichTextField()

content_panels = Page.content_panels + [
FieldPanel('body', classname="full"),

]

RichTextField inherits from Django’s basic TextField field, so you can pass any field parameters into
RichTextField as if using a normal Django field. This field does not need a special panel and can be defined
with FieldPanel.

68 Chapter 1. Index

Wagtail Documentation, Release 1.1

However, template output from RichTextField is special and need to be filtered to preserve embedded content.
See Rich text (filter).

If you’re interested in extending the capabilities of the Wagtail WYSIWYG editor (hallo.js), See Extending the
WYSIWYG Editor (hallo.js).

Extending the WYSIWYG Editor (hallo.js)

To inject JavaScript into the Wagtail page editor, see the insert_editor_js hook. Once you have the hook in place and
your hallo.js plugin loads into the Wagtail page editor, use the following JavaScript to register the plugin with
hallo.js.

registerHalloPlugin(name, opts);

hallo.js plugin names are prefixed with the "IKS." namespace, but the name you pass into
registerHalloPlugin() should be without the prefix. opts is an object passed into the plugin.

For information on developing custom hallo.js plugins, see the project’s page: https://github.com/bergie/hallo

Image Formats in the Rich Text Editor

On loading, Wagtail will search for any app with the file image_formats.py and execute the contents. This pro-
vides a way to customise the formatting options shown to the editor when inserting images in the RichTextField
editor.

As an example, add a “thumbnail” format:

image_formats.py
from wagtail.wagtailimages.formats import Format, register_image_format

register_image_format(Format('thumbnail', 'Thumbnail', 'richtext-image thumbnail',
→˓'max-120x120'))

To begin, import the the Format class, register_image_format function, and optionally
unregister_image_format function. To register a new Format, call the register_image_format with
the Format object as the argument. The Format class takes the following constructor arguments:

name The unique key used to identify the format. To unregister this format, call unregister_image_format
with this string as the only argument.

label The label used in the chooser form when inserting the image into the RichTextField.

classnames The string to assign to the class attribute of the generated tag.

filter_spec The string specification to create the image rendition. For more, see the Using images in templates.

To unregister, call unregister_image_formatwith the string of the name of the Format as the only argument.

Custom branding

In your projects with Wagtail, you may wish to replace elements such as the Wagtail logo within the admin interface
with your own branding. This can be done through Django’s template inheritance mechanism, along with the django-
overextends package.

Install django-overextends with pip install django-overextends (or add
django-overextends to your project’s requirements file), and add 'overextends' to your project’s
INSTALLED_APPS. You now need to create a templates/wagtailadmin/ folder within one of your apps

1.3. Advanced topics 69

https://github.com/bergie/hallo
https://github.com/stephenmcd/django-overextends
https://github.com/stephenmcd/django-overextends

Wagtail Documentation, Release 1.1

- this may be an existing one, or a new one created for this purpose, for example, dashboard. This app must be
registered in INSTALLED_APPS before wagtail.wagtailadmin:

INSTALLED_APPS = (
...

'overextends',
'dashboard',

'wagtail.wagtailcore',
'wagtail.wagtailadmin',

...
)

The template blocks that are available to be overridden are as follows:

branding_logo

To replace the default logo, create a template file dashboard/templates/wagtailadmin/base.html that
overrides the block branding_logo:

{% overextends "wagtailadmin/base.html" %}

{% block branding_logo %}
<img src="{{ STATIC_URL }}images/custom-logo.svg" alt="Custom Project" width="80"

→˓/>
{% endblock %}

branding_login

To replace the login message, create a template file dashboard/templates/wagtailadmin/login.html
that overrides the block branding_login:

{% overextends "wagtailadmin/login.html" %}

{% block branding_login %}Sign in to Frank's Site{% endblock %}

branding_welcome

To replace the welcome message on the dashboard, create a template file dashboard/templates/
wagtailadmin/home.html that overrides the block branding_welcome:

{% overextends "wagtailadmin/home.html" %}

{% block branding_welcome %}Welcome to Frank's Site{% endblock %}

70 Chapter 1. Index

Wagtail Documentation, Release 1.1

Third-party tutorials

Warning: The following list is a collection of tutorials and development notes from third-party developers. Some
of the older links may not apply to the latest Wagtail versions.

• Adding a Twitter Widget for Wagtail’s new StreamField (2 April 2015)

• Working With Wagtail: Menus (22 January 2015)

• Upgrading Wagtail to use Django 1.7 locally using vagrant (10 December 2014)

• Wagtail redirect page. Can link to page, URL and document (24 September 2014)

• Outputing JSON for a model with properties and db fields in Wagtail/Django (24 September 2014)

• Bi-lingual website using Wagtail CMS (17 September 2014)

• Wagtail CMS – Lesser known features (12 September 2014)

• Wagtail notes: stateful on/off hallo.js plugins (9 August 2014)

• Add some blockquote buttons to Wagtail CMS’ WYSIWYG Editor (24 July 2014)

• Adding Bread Crumbs to the front end in Wagtail CMS (1 July 2014)

• Extending hallo.js using Wagtail hooks (9 July 2014)

• Wagtail notes: custom tabs per page type (10 May 2014)

• Wagtail notes: managing redirects as pages (10 May 2014)

• Wagtail notes: dynamic templates per page (10 May 2014)

• Wagtail notes: type-constrained PageChooserPanel (9 May 2014)

• How to Run the Wagtail CMS on Gondor (14 February 2014)

• The first Wagtail tutorial (13 February 2014)

Tip: We are working on a collection of Wagtail tutorials and best practices. Please tweet @WagtailCMS or contact
us directly to share your Wagtail HOWTOs, development notes or site launches.

Reference

Pages

Wagtail requires a little careful setup to define the types of content that you want to present through your website.
The basic unit of content in Wagtail is the Page, and all of your page-level content will inherit basic webpage-related
properties from it. But for the most part, you will be defining content yourself, through the construction of Django
models using Wagtail’s Page as a base.

Wagtail organizes content created from your models in a tree, which can have any structure and combination of model
objects in it. Wagtail doesn’t prescribe ways to organize and interrelate your content, but here we’ve sketched out
some strategies for organizing your models.

The presentation of your content, the actual webpages, includes the normal use of the Django template system. We’ll
cover additional functionality that Wagtail provides at the template level later on.

1.4. Reference 71

https://jossingram.wordpress.com/2015/04/02/adding-a-twitter-widget-for-wagtails-new-streamfield/
http://www.tivix.com/blog/working-with-wagtail-menus/
https://jossingram.wordpress.com/2014/12/10/upgrading-wagtail-to-use-django-1-7-locally-using-vagrant/
https://gist.github.com/alej0varas/e7e334643ceab6e65744
https://jossingram.wordpress.com/2014/09/24/outputing-json-for-a-model-with-properties-and-db-fields-in-wagtaildjango/
https://jossingram.wordpress.com/2014/09/17/bi-lingual-website-using-wagtail-cms/
https://jossingram.wordpress.com/2014/09/12/wagtail-cms-lesser-known-features/
http://www.coactivate.org/projects/ejucovy/blog/2014/08/09/wagtail-notes-stateful-onoff-hallojs-plugins/
https://jossingram.wordpress.com/2014/07/24/add-some-blockquote-buttons-to-wagtail-cms-wysiwyg-editor/
https://jossingram.wordpress.com/2014/07/01/adding-bread-crumbs-to-the-front-end-in-wagtail-cms/
https://gist.github.com/jeffrey-hearn/502d0914fa4a930f08ac
http://www.coactivate.org/projects/ejucovy/blog/2014/05/10/wagtail-notes-custom-tabs-per-page-type/
http://www.coactivate.org/projects/ejucovy/blog/2014/05/10/wagtail-notes-managing-redirects-as-pages/
http://www.coactivate.org/projects/ejucovy/blog/2014/05/10/wagtail-notes-dynamic-templates-per-page/
http://www.coactivate.org/projects/ejucovy/blog/2014/05/09/wagtail-notes-type-constrained-pagechooserpanel/
https://gondor.io/blog/2014/02/14/how-run-wagtail-cms-gondor/
http://spapas.github.io/2014/02/13/wagtail-tutorial/
https://twitter.com/WagtailCMS
mailto:hello@wagtail.io
mailto:hello@wagtail.io

Wagtail Documentation, Release 1.1

Theory

Introduction to Trees

If you’re unfamiliar with trees as an abstract data type, you might want to review the concepts involved.

As a web developer, though, you probably already have a good understanding of trees as filesystem directories or
paths. Wagtail pages can create the same structure, as each page in the tree has its own URL path, like so:

/
people/

nien-nunb/
laura-roslin/

events/
captain-picard-day/
winter-wrap-up/

The Wagtail admin interface uses the tree to organize content for editing, letting you navigate up and down levels in
the tree through its Explorer menu. This method of organization is a good place to start in thinking about your own
Wagtail models.

Nodes and Leaves

It might be handy to think of the Page-derived models you want to create as being one of two node types: parents and
leaves. Wagtail isn’t prescriptive in this approach, but it’s a good place to start if you’re not experienced in structuring
your own content types.

Nodes

Parent nodes on the Wagtail tree probably want to organize and display a browse-able index of their descendants. A
blog, for instance, needs a way to show a list of individual posts.

A Parent node could provide its own function returning its descendant objects.

class EventPageIndex(Page):
...
def events(self):

Get list of live event pages that are descendants of this page
events = EventPage.objects.live().descendant_of(self)

Filter events list to get ones that are either
running now or start in the future
events = events.filter(date_from__gte=date.today())

Order by date
events = events.order_by('date_from')

return events

This example makes sure to limit the returned objects to pieces of content which make sense, specifically
ones which have been published through Wagtail’s admin interface (live()) and are children of this node
(descendant_of(self)). By setting a subpage_types class property in your model, you can specify which
models are allowed to be set as children, and by setting a parent_page_types class property, you can specify
which models are allowed to be parents of this page model. Wagtail will allow any Page-derived model by default.
Regardless, it’s smart for a parent model to provide an index filtered to make sense.

72 Chapter 1. Index

http://en.wikipedia.org/wiki/Tree_(data_structure)

Wagtail Documentation, Release 1.1

Leaves

Leaves are the pieces of content itself, a page which is consumable, and might just consist of a bunch of properties.
A blog page leaf might have some body text and an image. A person page leaf might have a photo, a name, and an
address.

It might be helpful for a leaf to provide a way to back up along the tree to a parent, such as in the case of breadcrumbs
navigation. The tree might also be deep enough that a leaf’s parent won’t be included in general site navigation.

The model for the leaf could provide a function that traverses the tree in the opposite direction and returns an appro-
priate ancestor:

class EventPage(Page):
...
def event_index(self):

Find closest ancestor which is an event index
return self.get_ancestors().type(EventIndexPage).last()

If defined, subpage_types and parent_page_types will also limit the parent models allowed to contain a
leaf. If not, Wagtail will allow any combination of parents and leafs to be associated in the Wagtail tree. Like with
index pages, it’s a good idea to make sure that the index is actually of the expected model to contain the leaf.

Other Relationships

Your Page-derived models might have other interrelationships which extend the basic Wagtail tree or depart from
it entirely. You could provide functions to navigate between siblings, such as a “Next Post” link on a blog
page (post->post->post). It might make sense for subtrees to interrelate, such as in a discussion forum
(forum->post->replies) Skipping across the hierarchy might make sense, too, as all objects of a certain model
class might interrelate regardless of their ancestors (events = EventPage.objects.all). It’s largely up to
the models to define their interrelations, the possibilities are really endless.

Anatomy of a Wagtail Request

For going beyond the basics of model definition and interrelation, it might help to know how Wagtail handles requests
and constructs responses. In short, it goes something like:

1. Django gets a request and routes through Wagtail’s URL dispatcher definitions

2. Wagtail checks the hostname of the request to determine which Site record will handle this request.

3. Starting from the root page of that site, Wagtail traverses the page tree, calling the route() method and letting
each page model decide whether it will handle the request itself or pass it on to a child page.

4. The page responsible for handling the request returns a RouteResult object from route(), which identifies
the page along with any additional args/kwargs to be passed to serve().

5. Wagtail calls serve(), which constructs a context using get_context()

6. serve() finds a template to pass it to using get_template()

7. A response object is returned by serve() and Django responds to the requester.

You can apply custom behavior to this process by overriding Page class methods such as route() and serve()
in your own models. For examples, see Recipes.

1.4. Reference 73

Wagtail Documentation, Release 1.1

Recipes

Overriding the serve() Method

Wagtail defaults to serving Page-derived models by passing self to a Django HTML template matching the model’s
name, but suppose you wanted to serve something other than HTML? You can override the serve()method provided
by the Page class and handle the Django request and response more directly.

Consider this example from the Wagtail demo site’s models.py, which serves an EventPage object as an iCal file
if the format variable is set in the request:

class EventPage(Page):
...
def serve(self, request):

if "format" in request.GET:
if request.GET['format'] == 'ical':

Export to ical format
response = HttpResponse(

export_event(self, 'ical'),
content_type='text/calendar',

)
response['Content-Disposition'] = 'attachment; filename=' + self.slug

→˓+ '.ics'
return response

else:
Unrecognised format error
message = 'Could not export event\n\nUnrecognised format: ' + request.

→˓GET['format']
return HttpResponse(message, content_type='text/plain')

else:
Display event page as usual
return super(EventPage, self).serve(request)

serve() takes a Django request object and returns a Django response object. Wagtail returns a
TemplateResponse object with the template and context which it generates, which allows middleware to function
as intended, so keep in mind that a simpler response object like a HttpResponse will not receive these benefits.

With this strategy, you could use Django or Python utilities to render your model in JSON or XML or any other format
you’d like.

Adding Endpoints with Custom route() Methods

Note: A much simpler way of adding more endpoints to pages is provided by the wagtailroutablepage
module.

Wagtail routes requests by iterating over the path components (separated with a forward slash /), finding matching
objects based on their slug, and delegating further routing to that object’s model class. The Wagtail source is very
instructive in figuring out what’s happening. This is the default route() method of the Page class:

class Page(...):

...

def route(self, request, path_components):

74 Chapter 1. Index

Wagtail Documentation, Release 1.1

if path_components:
request is for a child of this page
child_slug = path_components[0]
remaining_components = path_components[1:]

find a matching child or 404
try:

subpage = self.get_children().get(slug=child_slug)
except Page.DoesNotExist:

raise Http404

delegate further routing
return subpage.specific.route(request, remaining_components)

else:
request is for this very page
if self.live:

Return a RouteResult that will tell Wagtail to call
this page's serve() method
return RouteResult(self)

else:
the page matches the request, but isn't published, so 404
raise Http404

route() takes the current object (self), the request object, and a list of the remaining path_components
from the request URL. It either continues delegating routing by calling route() again on one of its children in the
Wagtail tree, or ends the routing process by returning a RouteResult object or raising a 404 error.

The RouteResult object (defined in wagtail.wagtailcore.url_routing) encapsulates all the information Wagtail
needs to call a page’s serve() method and return a final response: this information consists of the page object,
and any additional args/kwargs to be passed to serve().

By overriding the route() method, we could create custom endpoints for each object in the Wagtail tree. One use
case might be using an alternate template when encountering the print/ endpoint in the path. Another might be a
REST API which interacts with the current object. Just to see what’s involved, lets make a simple model which prints
out all of its child path components.

First, models.py:

from django.shortcuts import render
from wagtail.wagtailcore.url_routing import RouteResult
from django.http.response import Http404
from wagtail.wagtailadmin.edit_handlers import FieldPanel, MultiFieldPanel
from wagtail.wagtailcore.models import Page

...

class Echoer(Page):

def route(self, request, path_components):
if path_components:

tell Wagtail to call self.serve() with an additional 'path_components'
→˓kwarg

return RouteResult(self, kwargs={'path_components': path_components})
else:

if self.live:
tell Wagtail to call self.serve() with no further args
return RouteResult(self)

1.4. Reference 75

Wagtail Documentation, Release 1.1

else:
raise Http404

def serve(self, path_components=[]):
return render(request, self.template, {

'self': self,
'echo': ' '.join(path_components),

})

Echoer.content_panels = [
FieldPanel('title', classname="full title"),

]

Echoer.promote_panels = [
MultiFieldPanel(Page.promote_panels, "Common page configuration"),

]

This model, Echoer, doesn’t define any properties, but does subclass Page so objects will be able to have a custom
title and slug. The template just has to display our {{ echo }} property.

Now, once creating a new Echoer page in the Wagtail admin titled “Echo Base,” requests such as:

http://127.0.0.1:8000/echo-base/tauntaun/kennel/bed/and/breakfast/

Will return:

tauntaun kennel bed and breakfast

Be careful if you’re introducing new required arguments to the serve() method - Wagtail still needs to be able to
display a default view of the page for previewing and moderation, and by default will attempt to do this by calling
serve() with a request object and no further arguments. If your serve() method does not accept that as a
method signature, you will need to override the page’s serve_preview() method to call serve() with suitable
arguments:

def serve_preview(self, request, mode_name):
return self.serve(request, color='purple')

Tagging

Wagtail provides tagging capability through the combination of two django modules, taggit and modelcluster.
taggit provides a model for tags which is extended by modelcluster, which in turn provides some magical
database abstraction which makes drafts and revisions possible in Wagtail. It’s a tricky recipe, but the net effect is a
many-to-many relationship between your model and a tag class reserved for your model.

Using an example from the Wagtail demo site, here’s what the tag model and the relationship field looks like in
models.py:

from modelcluster.fields import ParentalKey
from modelcluster.contrib.taggit import ClusterTaggableManager
from taggit.models import TaggedItemBase

class BlogPageTag(TaggedItemBase):
content_object = ParentalKey('demo.BlogPage', related_name='tagged_items')

class BlogPage(Page):
...

76 Chapter 1. Index

Wagtail Documentation, Release 1.1

tags = ClusterTaggableManager(through=BlogPageTag, blank=True)

BlogPage.promote_panels = [
...
FieldPanel('tags'),

]

Wagtail’s admin provides a nice interface for inputting tags into your content, with typeahead tag completion and
friendly tag icons.

Now that we have the many-to-many tag relationship in place, we can fit in a way to render both sides of the relation.
Here’s more of the Wagtail demo site models.py, where the index model for BlogPage is extended with logic for
filtering the index by tag:

class BlogIndexPage(Page):
...
def serve(self, request):

Get blogs
blogs = self.blogs

Filter by tag
tag = request.GET.get('tag')
if tag:

blogs = blogs.filter(tags__name=tag)

return render(request, self.template, {
'self': self,
'blogs': blogs,

})

Here, blogs.filter(tags__name=tag) invokes a reverse Django queryset filter on the BlogPageTagmodel
to optionally limit the BlogPage objects sent to the template for rendering. Now, lets render both sides of the relation
by showing the tags associated with an object and a way of showing all of the objects associated with each tag. This
could be added to the blog_page.html template:

{% for tag in self.tags.all %}
{{ tag }}

{% endfor %}

Iterating through self.tags.all will display each tag associated with self, while the link(s) back to the in-
dex make use of the filter option added to the BlogIndexPage model. A Django query could also use the
tagged_items related name field to get BlogPage objects associated with a tag.

This is just one possible way of creating a taxonomy for Wagtail objects. With all of the components for a taxonomy
available through Wagtail, you should be able to fulfill even the most exotic taxonomic schemes.

Setting up the page editor interface

Wagtail provides a highly-customisable editing interface consisting of several components:

• Fields — built-in content types to augment the basic types provided by Django

• Panels — the basic editing blocks for fields, groups of fields, and related object clusters

• Choosers — interfaces for finding related objects in a ForeignKey relationship

Configuring your models to use these components will shape the Wagtail editor to your needs. Wagtail also provides
an API for injecting custom CSS and JavaScript for further customisation, including extending the hallo.js rich

1.4. Reference 77

Wagtail Documentation, Release 1.1

text editor.

There is also an Edit Handler API for creating your own Wagtail editor components.

Defining Panels

A “panel” is the basic editing block in Wagtail. Wagtail will automatically pick the appropriate editing widget for
most Django field types; implementers just need to add a panel for each field they want to show in the Wagtail page
editor, in the order they want them to appear.

Wagtail provides a tabbed interface to help organise panels. Three such tabs are provided:

• content_panels is the main tab, used for the bulk of your model’s fields.

• promote_panels is suggested for organising fields regarding the promotion of the page around the site and
the Internet. For example, a field to dictate whether the page should show in site-wide menus, descriptive text
that should appear in site search results, SEO-friendly titles, OpenGraph meta tag content and other machine-
readable information.

• settings_panels is essentially for non-copy fields. By default it contains the page’s scheduled publishing
fields. Other suggested fields could include a field to switch between one layout/style and another.

Let’s look at an example of a panel definition:

class ExamplePage(Page):
field definitions omitted
...

content_panels = Page.content_panels + [
FieldPanel('body', classname="full"),
FieldRowPanel([

FieldPanel('start_date', classname="col3"),
FieldPanel('end_date', classname="col3"),

]),
ImageChooserPanel('splash_image'),
DocumentChooserPanel('free_download'),
PageChooserPanel('related_page'),

]

promote_panels = [
MultiFieldPanel(Page.promote_panels, "Common page configuration"),

]

After the Page-derived class definition, just add lists of panel definitions to order and organise the Wagtail page
editing interface for your model.

Available panel types

FieldPanel

class wagtail.wagtailadmin.edit_handers.FieldPanel(field_name, classname=None, wid-
get=None)

This is the panel used for basic Django field types.

field_name
This is the name of the class property used in your model definition.

78 Chapter 1. Index

Wagtail Documentation, Release 1.1

classname
This is a string of optional CSS classes given to the panel which are used in formatting and scripted
interactivity. By default, panels are formatted as inset fields.

The CSS class full can be used to format the panel so it covers the full width of the Wagtail page editor.

The CSS class title can be used to mark a field as the source for auto-generated slug strings.

widget(optional)
This parameter allows you to specify a django form widget to use instead of the default widget for this
field type.

MultiFieldPanel

class wagtail.wagtailadmin.edit_handers.MultiFieldPanel(children, heading=”“, class-
name=None)

This panel condenses several FieldPanel` s or choosers, from a list or tuple, under a single heading
string.

children
A list or tuple of child panels

heading
A heading for the fields

Collapsing MultiFieldPanels to save space

By default, MultiFieldPanel s are expanded and not collapsible. Adding collapsible to classname
will enable the collapse control. Adding both collapsible and collapsed to the classname parameter
will load the editor page with the MultiFieldPanel collapsed under its heading.

content_panels = [
MultiFieldPanel(

[
ImageChooserPanel('cover'),
DocumentChooserPanel('book_file'),
PageChooserPanel('publisher'),

],
heading="Collection of Book Fields",
classname="collapsible collapsed"

),
]

InlinePanel

class wagtail.wagtailadmin.edit_handers.InlinePanel(relation_name, panels=None,
classname=None, label=’‘,
help_text=’‘)

This panel allows for the creation of a “cluster” of related objects over a join to a separate model, such as a list
of related links or slides to an image carousel.

This is a poweful but complex feature which will take some space to cover, so we’ll skip over it for now. For a
full explanation on the usage of InlinePanel, see Inline Panels and Model Clusters.

1.4. Reference 79

https://docs.djangoproject.com/en/dev/ref/forms/widgets/

Wagtail Documentation, Release 1.1

FieldRowPanel

class wagtail.wagtailadmin.edit_handers.FieldRowPanel(children, classname=None)
This panel creates a columnar layout in the editing interface, where each of the child Panels appears alongside
each other rather than below.

Use of FieldRowPanel particularly helps reduce the “snow-blindness” effect of seeing so many fields on the
page, for complex models. It also improves the perceived association between fields of a similar nature. For
example if you created a model representing an “Event” which had a starting date and ending date, it may be
intuitive to find the start and end date on the same “row”.

FieldRowPanel should be used in combination with col* class names added to each of the child Panels of the
FieldRowPanel. The Wagtail editing interface is laid out using a grid system, in which the maximum width of
the editor is 12 columns. Classes col1-col12 can be applied to each child of a FieldRowPanel. The class
col3 will ensure that field appears 3 columns wide or a quarter the width. col4 would cause the field to be 4
columns wide, or a third the width.

children
A list or tuple of child panels to display on the row

classname
A class to apply to the FieldRowPanel as a whole

PageChooserPanel

class wagtail.wagtailadmin.edit_handers.PageChooserPanel(field_name,
page_type=None)

You can explicitly link Page-derived models together using the Page model and PageChooserPanel.

from wagtail.wagtailcore.models import Page
from wagtail.wagtailadmin.edit_handlers import PageChooserPanel

class BookPage(Page):
publisher = models.ForeignKey(

'wagtailcore.Page',
null=True,
blank=True,
on_delete=models.SET_NULL,
related_name='+',

)

content_panels = Page.content_panels + [
PageChooserPanel('related_page', 'demo.PublisherPage'),

]

PageChooserPanel takes two arguments: a field name and an optional page type. Specifying a page type
(in the form of an "appname.modelname" string) will filter the chooser to display only pages of that type.
A list or tuple of page types can also be passed in, to allow choosing a page that matches any of those page
types:

PageChooserPanel('related_page', ['demo.PublisherPage', 'demo.AuthorPage'])

80 Chapter 1. Index

Wagtail Documentation, Release 1.1

ImageChooserPanel

class wagtail.wagtailimages.edit_handlers.ImageChooserPanel(field_name)
Wagtail includes a unified image library, which you can access in your models through the Image model and
the ImageChooserPanel chooser. Here’s how:

from wagtail.wagtailimages.models import Image
from wagtail.wagtailimages.edit_handlers import ImageChooserPanel

class BookPage(Page):
cover = models.ForeignKey(

'wagtailimages.Image',
null=True,
blank=True,
on_delete=models.SET_NULL,
related_name='+'

)

content_panels = Page.content_panels + [
ImageChooserPanel('cover'),

]

Django’s default behaviour is to “cascade” deletions through a ForeignKey relationship, which may not be what
you want. This is why the null, blank, and on_delete parameters should be set to allow for an empty
field. (See Django model field reference (on_delete)). ImageChooserPanel takes only one argument: the
name of the field.

Displaying Image objects in a template requires the use of a template tag. See Using images in templates.

DocumentChooserPanel

class wagtail.wagtaildocs.edit_handlers.DocumentChooserPanel(field_name)
For files in other formats, Wagtail provides a generic file store through the Document model:

from wagtail.wagtaildocs.models import Document
from wagtail.wagtaildocs.edit_handlers import DocumentChooserPanel

class BookPage(Page):
book_file = models.ForeignKey(

'wagtaildocs.Document',
null=True,
blank=True,
on_delete=models.SET_NULL,
related_name='+'

)

content_panels = Page.content_panels + [
DocumentChooserPanel('book_file'),

]

As with images, Wagtail documents should also have the appropriate extra parameters to prevent cascade dele-
tions across a ForeignKey relationship. DocumentChooserPanel takes only one argument: the name of the
field.

1.4. Reference 81

https://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.ForeignKey.on_delete

Wagtail Documentation, Release 1.1

SnippetChooserPanel

Changed in version 1.1: Before Wagtail 1.1, it was necessary to pass the snippet model class as a second parameter to
SnippetChooserPanel. This is now automatically picked up from the field.

class wagtail.wagtailsnippets.edit_handlers.SnippetChooserPanel(field_name, snip-
pet_type=None)

Snippets are vanilla Django models you create yourself without a Wagtail-provided base class. A chooser,
SnippetChooserPanel, is provided which takes the field name as an argument.

from wagtail.wagtailsnippets.edit_handlers import SnippetChooserPanel

class BookPage(Page):
advert = models.ForeignKey(

'demo.Advert',
null=True,
blank=True,
on_delete=models.SET_NULL,
related_name='+'

)

content_panels = Page.content_panels + [
SnippetChooserPanel('advert'),

]

See Snippets for more information.

Built-in Fields and Choosers

Django’s field types are automatically recognised and provided with an appropriate widget for input. Just define that
field the normal Django way and pass the field name into FieldPanel when defining your panels. Wagtail will take
care of the rest.

Here are some Wagtail-specific types that you might include as fields in your models.

Field Customisation

By adding CSS classes to your panel definitions or adding extra parameters to your field definitions, you can control
much of how your fields will display in the Wagtail page editing interface. Wagtail’s page editing interface takes much
of its behaviour from Django’s admin, so you may find many options for customisation covered there. (See Django
model field reference).

Full-Width Input

Use classname="full" to make a field (input element) stretch the full width of the Wagtail page editor. This will
not work if the field is encapsulated in a MultiFieldPanel, which places its child fields into a formset.

Titles

Use classname="title" to make Page’s built-in title field stand out with more vertical padding.

82 Chapter 1. Index

https://docs.djangoproject.com/en/dev/ref/models/fields/
https://docs.djangoproject.com/en/dev/ref/models/fields/

Wagtail Documentation, Release 1.1

Required Fields

To make input or chooser selection mandatory for a field, add blank=False to its model definition. (See Django
model field reference (blank)).

Hiding Fields

Without a panel definition, a default form field (without label) will be used to represent your fields. If you intend to
hide a field on the Wagtail page editor, define the field with editable=False (See Django model field reference
(editable)).

Inline Panels and Model Clusters

The django-modelcluster module allows for streamlined relation of extra models to a Wagtail page. For in-
stance, you can create objects related through a ForeignKey relationship on the fly and save them to a draft revision
of a Page object. Normally, your related objects “cluster” would need to be created beforehand (or asynchronously)
before linking them to a Page.

Let’s look at the example of adding related links to a Page-derived model. We want to be able to add as many as we
like, assign an order, and do all of this without leaving the page editing screen.

from wagtail.wagtailcore.models import Orderable, Page
from modelcluster.fields import ParentalKey

The abstract model for related links, complete with panels
class RelatedLink(models.Model):

title = models.CharField(max_length=255)
link_external = models.URLField("External link", blank=True)

panels = [
FieldPanel('title'),
FieldPanel('link_external'),

]

class Meta:
abstract = True

The real model which combines the abstract model, an
Orderable helper class, and what amounts to a ForeignKey link
to the model we want to add related links to (BookPage)
class BookPageRelatedLinks(Orderable, RelatedLink):

page = ParentalKey('demo.BookPage', related_name='related_links')

class BookPage(Page):
...

content_panels = Page.content_panels + [
InlinePanel('related_links', label="Related Links"),

]

The RelatedLink class is a vanilla Django abstract model. The BookPageRelatedLinks model extends it
with capability for being ordered in the Wagtail interface via the Orderable class as well as adding a page prop-
erty which links the model to the BookPage model we’re adding the related links objects to. Finally, in the panel
definitions for BookPage, we’ll add an InlinePanel to provide an interface for it all. Let’s look again at the
parameters that InlinePanel accepts:

1.4. Reference 83

https://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.Field.blank
https://docs.djangoproject.com/en/dev/ref/models/fields/#django.db.models.Field.blank
https://docs.djangoproject.com/en/dev/ref/models/fields/#editable
https://docs.djangoproject.com/en/dev/ref/models/fields/#editable

Wagtail Documentation, Release 1.1

InlinePanel(relation_name, panels=None, label='', help_text='')

The relation_name is the related_name label given to the cluster’s ParentalKey relation. You can add the
panels manually or make them part of the cluster model. Finally, label and help_text provide a heading and
caption, respectively, for the Wagtail editor.

Changed in version 1.0: In previous versions, it was necessary to pass the base model as the first parameter to
InlinePanel; this is no longer required.

For another example of using model clusters, see Tagging

For more on django-modelcluster, visit the django-modelcluster github project page.

Model Reference

This document contains reference information for the model classes inside the wagtailcore module.

Page

Database fields

class wagtail.wagtailcore.models.Page

title
(text)

Human-readable title of the page.

slug
(text)

This is used for constructing the page’s URL.

For example: http://domain.com/blog/[my-slug]/

content_type
(foreign key to django.contrib.contenttypes.models.ContentType)

A foreign key to the ContentType object that represents the specific model of this page.

live
(boolean)

A boolean that is set to True if the page is published.

Note: this field defaults to True meaning that any pages that are created programmatically will be pub-
lished by default.

has_unpublished_changes
(boolean)

A boolean that is set to True when the page is either in draft or published with draft changes.

owner
(foreign key to user model)

A foreign key to the user that created the page.

84 Chapter 1. Index

https://github.com/torchbox/django-modelcluster

Wagtail Documentation, Release 1.1

first_published_at
(date/time)

The date/time when the page was first published.

seo_title
(text)

Alternate SEO-crafted title, for use in the page’s <title> HTML tag.

search_description
(text)

SEO-crafted description of the content, used for search indexing. This is also suitable for the page’s
<meta name="description"> HTML tag.

show_in_menus
(boolean)

Toggles whether the page should be included in site-wide menus.

This is used by the in_menu() QuerySet filter.

Methods and properies

In addition to the model fields provided, Page has many properties and methods that you may wish to reference, use,
or override in creating your own models. Those listed here are relatively straightforward to use, but consult the Wagtail
source code for a full view of what’s possible.

class wagtail.wagtailcore.models.Page

specific
Return this page in its most specific subclassed form.

specific_class
Return the class that this page would be if instantiated in its most specific form

url
Return the ‘most appropriate’ URL for referring to this page from the pages we serve, within the Wagtail
backend and actual website templates; this is the local URL (starting with ‘/’) if we’re only running a
single site (i.e. we know that whatever the current page is being served from, this link will be on the same
domain), and the full URL (with domain) if not. Return None if the page is not routable.

full_url
Return the full URL (including protocol / domain) to this page, or None if it is not routable

route(request, path_components)

serve(request, *args, **kwargs)

get_context(request, *args, **kwargs)

get_template(request, *args, **kwargs)

preview_modes
A list of (internal_name, display_name) tuples for the modes in which this page can be displayed for
preview/moderation purposes. Ordinarily a page will only have one display mode, but subclasses of Page
can override this - for example, a page containing a form might have a default view of the form, and a
post-submission ‘thankyou’ page

1.4. Reference 85

Wagtail Documentation, Release 1.1

serve_preview(request, mode_name)
Return an HTTP response for use in page previews. Normally this would be equivalent to
self.serve(request), since we obviously want the preview to be indicative of how it looks on the live site.
However, there are a couple of cases where this is not appropriate, and custom behaviour is required:

1) The page has custom routing logic that derives some additional required args/kwargs to be passed to
serve(). The routing mechanism is bypassed when previewing, so there’s no way to know what args we
should pass. In such a case, the page model needs to implement its own version of serve_preview.

2) The page has several different renderings that we would like to be able to see when previewing - for
example, a form page might have one rendering that displays the form, and another rendering to display
a landing page when the form is posted. This can be done by setting a custom preview_modes list on the
page model - Wagtail will allow the user to specify one of those modes when previewing, and pass the
chosen mode_name to serve_preview so that the page model can decide how to render it appropriately.
(Page models that do not specify their own preview_modes list will always receive an empty string as
mode_name.)

Any templates rendered during this process should use the ‘request’ object passed here - this ensures that
request.user and other properties are set appropriately for the wagtail user bar to be displayed. This request
will always be a GET.

get_ancestors(inclusive=False)

get_descendants(inclusive=False)

get_siblings(inclusive=True)

search_fields
A list of fields to be indexed by the search engine. See Search docs Indexing extra fields

subpage_types
A whitelist of page models which can be created as children of this page type e.g a BlogIndex page
might allow BlogPage, but not JobPage e.g

class BlogIndex(Page):
subpage_types = ['mysite.BlogPage', 'mysite.BlogArchivePage']

The creation of child pages can be blocked altogether for a given page by setting it’s subpage_types at-
tribute to an empty array e.g

class BlogPage(Page):
subpage_types = []

parent_page_types
A whitelist of page models which are allowed as parent page types e.g a BlogPage may only allow itself
to be created below the BlogIndex page e.g

class BlogPage(Page):
parent_page_types = ['mysite.BlogIndexPage']

Pages can block themselves from being created at all by setting parent_page_types to an empty array (this
is useful for creating unique pages that should only be created once) e.g

class HiddenPage(Page):
parent_page_types = []

password_required_template
Defines which template file should be used to render the login form for Protected pages using this model.
This overrides the default, defined using PASSWORD_REQUIRED_TEMPLATE in your settings. See Pri-
vate pages

86 Chapter 1. Index

Wagtail Documentation, Release 1.1

is_creatable
Controls if this page can be created through the Wagtail administration. Defaults to True, and is not
inherited by subclasses. This is useful when using multi-table inheritance, to stop the base model from
being created as an actual page.

Site

The Site model is useful for multi-site installations as it allows an administrator to configure which part of the tree
to use for each hostname that the server responds on.

This configuration is used by the SiteMiddleware middleware class which checks each request against this con-
figuration and appends the Site object to the Django request object.

Database fields

class wagtail.wagtailcore.models.Site

hostname
(text)

This is the hostname of the site, excluding the scheme, port and path.

For example: www.mysite.com

Note: If you’re looking for how to get the root url of a site, use the root_url attribute.

port
(number)

This is the port number that the site responds on.

root_page
(foreign key to Page)

This is a link to the root page of the site. This page will be what appears at the / URL on the site and
would usually be a homepage.

is_default_site
(boolean)

This is set to True if the site is the default. Only one site can be the default.

The default site is used as a fallback in situations where a site with the required hostname/port couldn’t be
found.

Methods and properties

class wagtail.wagtailcore.models.Site

static find_for_request(request)
Find the site object responsible for responding to this HTTP request object. Try:

•unique hostname first

1.4. Reference 87

https://docs.djangoproject.com/en/1.8/topics/db/models/#multi-table-inheritance

Wagtail Documentation, Release 1.1

•then hostname and port

•if there is no matching hostname at all, or no matching hostname:port combination, fall back to the
unique default site, or raise an exception

NB this means that high-numbered ports on an extant hostname may still be routed to a different hostname
which is set as the default

root_url
This returns the URL of the site. It is calculated from the hostname and the port fields.

The scheme part of the URL is calculated based on value of the port field:

•80 = http://

•443 = https://

•Everything else will use the http:// scheme and the port will be appended to the end of the
hostname (eg. http://mysite.com:8000/)

static get_site_root_paths()
Return a list of (root_path, root_url) tuples, most specific path first - used to translate url_paths into actual
URLs with hostnames

PageRevision

Every time a page is edited a new PageRevision is created and saved to the database. It can be used to find the
full history of all changes that have been made to a page and it also provides a place for new changes to be kept before
going live.

• Revisions can be created from any Page object by calling its save_revision() method

• The content of the page is JSON-serialised and stored in the content_json field

• You can retrieve a PageRevision as a Page object by calling the as_page_object() method

Database fields

class wagtail.wagtailcore.models.PageRevision

page
(foreign key to Page)

submitted_for_moderation
(boolean)

True if this revision is in moderation

created_at
(date/time)

This is the time the revision was created

user
(foreign key to user model)

This links to the user that created the revision

88 Chapter 1. Index

Wagtail Documentation, Release 1.1

content_json
(text)

This field contains the JSON content for the page at the time the revision was created

Managers

class wagtail.wagtailcore.models.PageRevision

objects
This manager is used to retrieve all of the PageRevision objects in the database

Example:

PageRevision.objects.all()

submitted_revisions
This manager is used to retrieve all of the PageRevision objects that are awaiting moderator approval

Example:

PageRevision.submitted_revisions.all()

Methods and properties

class wagtail.wagtailcore.models.PageRevision

as_page_object()
This method retrieves this revision as an instance of its Page subclass.

approve_moderation()
Calling this on a revision that’s in moderation will mark it as approved and publish it

reject_moderation()
Calling this on a revision that’s in moderation will mark it as rejected

is_latest_revision()
Returns True if this revision is its page’s latest revision

publish()
Calling this will copy the content of this revision into the live page object. If the page is in draft, it will be
published.

GroupPagePermission

Database fields

class wagtail.wagtailcore.models.GroupPagePermission

group
(foreign key to django.contrib.auth.models.Group)

1.4. Reference 89

Wagtail Documentation, Release 1.1

page
(foreign key to Page)

permission_type
(choice list)

PageViewRestriction

Database fields

class wagtail.wagtailcore.models.PageViewRestriction

page
(foreign key to Page)

password
(text)

Orderable (abstract)

Database fields

class wagtail.wagtailcore.models.Orderable

sort_order
(number)

Page QuerySet reference

All models that inherit from Page are given some extra QuerySet methods accessible from their .objects attribute.

Examples

• Selecting only live pages

live_pages = Page.objects.live()

• Selecting published EventPages that are descendants of events_index

events = EventPage.objects.live().descendant_of(events_index)

• Getting a list of menu items

This gets a QuerySet of live children of the homepage with ``show_in_
→˓menus`` set
menu_items = homepage.get_children().live().in_menu()

90 Chapter 1. Index

Wagtail Documentation, Release 1.1

Reference

class wagtail.wagtailcore.query.PageQuerySet(model=None, query=None, using=None,
hints=None)

live()
This filters the QuerySet to only contain published pages.

Example:

published_pages = Page.objects.live()

not_live()
This filters the QuerySet to only contain unpublished pages.

Example:

unpublished_pages = Page.objects.not_live()

in_menu()
This filters the QuerySet to only contain pages that are in the menus.

Example:

Build a menu from live pages that are children of the homepage
menu_items = homepage.get_children().live().in_menu()

Note: To put your page in menus, set the show_in_menus flag to true:

Add 'my_page' to the menu
my_page.show_in_menus = True

page(other)
This filters the QuerySet so it only contains the specified page.

Example:

Append an extra page to a QuerySet
new_queryset = old_queryset | Page.objects.page(page_to_add)

not_page(other)
This filters the QuerySet so it doesn’t contain the specified page.

Example:

Remove a page from a QuerySet
new_queryset = old_queryset & Page.objects.not_page(page_to_remove)

descendant_of(other, inclusive=False)
This filters the QuerySet to only contain pages that descend from the specified page.

If inclusive is set to True, it will also contain the page itself (instead of just its descendants).

Example:

Get EventPages that are under the special_events Page
special_events = EventPage.objects.descendant_of(special_events_index)

1.4. Reference 91

Wagtail Documentation, Release 1.1

Alternative way
special_events = special_events_index.get_descendants()

not_descendant_of(other, inclusive=False)
This filters the QuerySet to not contain any pages that descend from the specified page.

If inclusive is set to True, it will also exclude the specified page.

Example:

Get EventPages that are not under the archived_events Page
non_archived_events = EventPage.objects.not_descendant_of(archived_events_
→˓index)

child_of(other)
This filters the QuerySet to only contain pages that are direct children of the specified page.

Example:

Get a list of sections
sections = Page.objects.child_of(homepage)

Alternative way
sections = homepage.get_children()

ancestor_of(other, inclusive=False)
This filters the QuerySet to only contain pages that are ancestors of the specified page.

If inclusive is set to True, it will also include the specified page.

Example:

Get the current section
current_section = Page.objects.ancestor_of(current_page).child_of(homepage).
→˓first()

Alternative way
current_section = current_page.get_ancestors().child_of(homepage).first()

not_ancestor_of(other, inclusive=False)
This filters the QuerySet to not contain any pages that are ancestors of the specified page.

If inclusive is set to True, it will also exclude the specified page.

Example:

Get the other sections
other_sections = Page.objects.not_ancestor_of(current_page).child_of(homepage)

sibling_of(other, inclusive=True)
This filters the QuerySet to only contain pages that are siblings of the specified page.

By default, inclusive is set to True so it will include the specified page in the results.

If inclusive is set to False, the page will be excluded from the results.

Example:

Get list of siblings
siblings = Page.objects.sibling_of(current_page)

92 Chapter 1. Index

Wagtail Documentation, Release 1.1

Alternative way
siblings = current_page.get_siblings()

public()
This filters the QuerySet to only contain pages that are not in a private section

See: Private pages

Note: This doesn’t filter out unpublished pages. If you want to only have published public pages, use
.live().public()

Example:

Find all the pages that are viewable by the public
all_pages = Page.objects.live().public()

search(query_string, fields=None, backend=’default’)
This runs a search query on all the pages in the QuerySet

See: Searching Pages

Example:

Search future events
results = EventPage.objects.live().filter(date__gt=timezone.now()).search(
→˓"Hello")

type(model)
This filters the QuerySet to only contain pages that are an instance of the specified model (including
subclasses).

Example:

Find all pages that are of type AbstractEmailForm, or a descendant of it
form_pages = Page.objects.type(AbstractEmailForm)

unpublish()
This unpublishes all pages in the QuerySet

Example:

Unpublish current_page and all of its children
Page.objects.descendant_of(current_page, inclusive=True).unpublish()

specific()
This efficiently gets all the specific pages for the queryset, using the minimum number of queries.

Example:

Get the specific instance of all children of the hompage,
in a minimum number of database queries.
homepage.get_children().specific()

See also: Page.specific

1.4. Reference 93

Wagtail Documentation, Release 1.1

Contrib modules

Wagtail ships with a variety of extra optional modules.

Form builder

The wagtailforms module allows you to set up single-page forms, such as a ‘Contact us’ form, as pages of a
Wagtail site. It provides a set of base models that site implementers can extend to create their own FormPage type
with their own site-specific templates. Once a page type has been set up in this way, editors can build forms within
the usual page editor, consisting of any number of fields. Form submissions are stored for later retrieval through a
new ‘Forms’ section within the Wagtail admin interface; in addition, they can be optionally e-mailed to an address
specified by the editor.

Usage

Add wagtail.wagtailforms to your INSTALLED_APPS:

INSTALLED_APPS = [
...
'wagtail.wagtailforms',

]

Within the models.py of one of your apps, create a model that extends wagtailforms.models.
AbstractEmailForm:

from modelcluster.fields import ParentalKey
from wagtail.wagtailadmin.edit_handlers import (FieldPanel, InlinePanel,

MultiFieldPanel)
from wagtail.wagtailcore.fields import RichTextField
from wagtail.wagtailforms.models import AbstractEmailForm, AbstractFormField

class FormField(AbstractFormField):
page = ParentalKey('FormPage', related_name='form_fields')

class FormPage(AbstractEmailForm):
intro = RichTextField(blank=True)
thank_you_text = RichTextField(blank=True)

FormPage.content_panels = [
FieldPanel('title', classname="full title"),
FieldPanel('intro', classname="full"),
InlinePanel('form_fields', label="Form fields"),
FieldPanel('thank_you_text', classname="full"),
MultiFieldPanel([

FieldPanel('to_address', classname="full"),
FieldPanel('from_address', classname="full"),
FieldPanel('subject', classname="full"),

], "Email")
]

AbstractEmailForm defines the fields to_address, from_address and subject, and expects
form_fields to be defined. Any additional fields are treated as ordinary page content - note that FormPage
is responsible for serving both the form page itself and the landing page after submission, so the model definition
should include all necessary content fields for both of those views.

94 Chapter 1. Index

Wagtail Documentation, Release 1.1

If you do not want your form page type to offer form-to-email functionality, you can inherit from AbstractForm
instead of AbstractEmailForm, and omit the to_address, from_address and subject fields from the
content_panels definition.

You now need to create two templates named form_page.html and form_page_landing.html (where
form_page is the underscore-formatted version of the class name). form_page.html differs from a standard
Wagtail template in that it is passed a variable form, containing a Django Form object, in addition to the usual self
variable. A very basic template for the form would thus be:

{% load wagtailcore_tags %}
<html>

<head>
<title>{{ self.title }}</title>

</head>
<body>

<h1>{{ self.title }}</h1>
{{ self.intro|richtext }}
<form action="{% pageurl self %}" method="POST">

{% csrf_token %}
{{ form.as_p }}
<input type="submit">

</form>
</body>

</html>

form_page_landing.html is a regular Wagtail template, displayed after the user makes a successful form sub-
mission.

Static site generator

This document describes how to render your Wagtail site into static HTML files on your local file system, Amazon S3
or Google App Engine, using django medusa and the wagtail.contrib.wagtailmedusa module.

Note: An alternative module based on the django-bakery package is available as a third-party contribution: https:
//github.com/mhnbcu/wagtailbakery

Installing django-medusa

First, install django-medusa and django-sendfile from pip:

pip install django-medusa django-sendfile

Then add django_medusa and wagtail.contrib.wagtailmedusa to INSTALLED_APPS:

INSTALLED_APPS = [
...
'django_medusa',
'wagtail.contrib.wagtailmedusa',

]

Define MEDUSA_RENDERER_CLASS, MEDUSA_DEPLOY_DIR and SENDFILE_BACKEND in settings:

1.4. Reference 95

https://github.com/mtigas/django-medusa
https://github.com/datadesk/django-bakery
https://github.com/mhnbcu/wagtailbakery
https://github.com/mhnbcu/wagtailbakery

Wagtail Documentation, Release 1.1

MEDUSA_RENDERER_CLASS = 'django_medusa.renderers.DiskStaticSiteRenderer'
MEDUSA_DEPLOY_DIR = os.path.join(BASE_DIR, 'build')
SENDFILE_BACKEND = 'sendfile.backends.simple'

Rendering

To render a site, run ./manage.py staticsitegen. This will render the entire website and place the HTML
in a folder called medusa_output. The static and media folders need to be copied into this folder manually after
the rendering is complete. This feature inherits django-medusa‘s ability to render your static site to Amazon S3
or Google App Engine; see the medusa docs for configuration details.

To test, open the medusa_output folder in a terminal and run python -m SimpleHTTPServer.

Advanced topics

GET parameters

Pages which require GET parameters (e.g. for pagination) don’t generate a suitable file name for the generated HTML
files.

Wagtail provides a mixin (wagtail.contrib.wagtailroutablepage.models.RoutablePageMixin)
which allows you to embed a Django URL configuration into a page. This allows you to give the subpages a URL like
/page/1/ which work well with static site generation.

Example:

from wagtail.contrib.wagtailroutablepage.models import RoutablePageMixin, route

class BlogIndex(Page, RoutablePageMixin):
...

@route(r'^$', name='main')
@route(r'^page/(?P<page>\d+)/$', name='page')
def serve_page(self, request, page=1):

...

Then in the template, you can use the {% routablepageurl %} tag to link between the pages:

{% load wagtailroutablepage_tags %}

{% if results.has_previous %}
Next page

→˓
{% else %}

{% if results.has_next %}
Next page

{% else %}

Next, you have to tell the wagtailmedusa module about your custom routing...

96 Chapter 1. Index

https://github.com/mtigas/django-medusa/blob/master/README.markdown

Wagtail Documentation, Release 1.1

Rendering pages which use custom routing

For page types that override the route method, we need to let django-medusa know which URLs it responds on.
This is done by overriding the get_static_site_paths method to make it yield one string per URL path.

For example, the BlogIndex above would need to yield one URL for each page of results:

def get_static_site_paths(self):
Get page count
page_count = ...

Yield a path for each page
for page in range(page_count):

yield '/%d/' % (page + 1)

Yield from superclass
for path in super(BlogIndex, self).get_static_site_paths():

yield path

Sitemap generator

This document describes how to create XML sitemaps for your Wagtail website using the wagtail.contrib.
wagtailsitemaps module.

Basic configuration

You firstly need to add "wagtail.contrib.wagtailsitemaps" to INSTALLED_APPS in your Django set-
tings file:

INSTALLED_APPS = [
...

"wagtail.contrib.wagtailsitemaps",
]

Then, in urls.py, you need to add a link to the wagtail.contrib.wagtailsitemaps.views.sitemap
view which generates the sitemap:

from wagtail.contrib.wagtailsitemaps.views import sitemap

urlpatterns = [
...

url('^sitemap\.xml$', sitemap),
]

You should now be able to browse to /sitemap.xml and see the sitemap working. By default, all published pages
in your website will be added to the site map.

Customising

1.4. Reference 97

Wagtail Documentation, Release 1.1

URLs

The Page class defines a get_sitemap_urls method which you can override to customise sitemaps per Page
instance. This method must return a list of dictionaries, one dictionary per URL entry in the sitemap. You can exclude
pages from the sitemap by returning an empty list.

Each dictionary can contain the following:

• location (required) - This is the full URL path to add into the sitemap.

• lastmod - A python date or datetime set to when the page was last modified.

• changefreq

• priority

You can add more but you will need to override the wagtailsitemaps/sitemap.xml template in order for
them to be displayed in the sitemap.

Cache

By default, sitemaps are cached for 100 minutes. You can change this by setting
WAGTAILSITEMAPS_CACHE_TIMEOUT in your Django settings to the number of seconds you would like
the cache to last for.

Frontend cache invalidator

Changed in version 0.7: Multiple backend support added Cloudflare support added

Many websites use a frontend cache such as Varnish, Squid or Cloudflare to gain extra performance. The downside of
using a frontend cache though is that they don’t respond well to updating content and will often keep an old version of
a page cached after it has been updated.

This document describes how to configure Wagtail to purge old versions of pages from a frontend cache whenever a
page gets updated.

Setting it up

Firstly, add "wagtail.contrib.wagtailfrontendcache" to your INSTALLED_APPS:

•• INSTALLED_APPS = [
...

"wagtail.contrib.wagtailfrontendcache"
]

Changed in version 0.8: Signal handlers are now automatically registered in Django 1.7 and upwards

The wagtailfrontendcache module provides a set of signal handlers which will automatically purge the cache
whenever a page is published or deleted.

If you are using Django version 1.7 or newer, these signal handlers are automatically registered when the wagtail.
contrib.wagtailfrontendcache app is loaded. Otherwise, they must be registered as your application starts
up. This can be done by placing the following code in your urls.py:

98 Chapter 1. Index

Wagtail Documentation, Release 1.1

urls.py
from wagtail.contrib.wagtailfrontendcache.signal_handlers import register_signal_
→˓handlers
register_signal_handlers()

Varnish/Squid

Add a new item into the WAGTAILFRONTENDCACHE setting and set the BACKEND parameter to wagtail.
contrib.wagtailfrontendcache.backends.HTTPBackend. This backend requires an extra parameter
LOCATION which points to where the cache is running (this must be a direct connection to the server and cannot go
through another proxy).

settings.py

WAGTAILFRONTENDCACHE = {
'varnish': {

'BACKEND': 'wagtail.contrib.wagtailfrontendcache.backends.HTTPBackend',
'LOCATION': 'http://localhost:8000',

},
}

Finally, make sure you have configured your frontend cache to accept PURGE requests:

• Varnish

• Squid

Cloudflare

Firstly, you need to register an account with Cloudflare if you haven’t already got one. You can do this here: Cloudflare
Sign up

Add an item into the WAGTAILFRONTENDCACHE and set the BACKEND parameter to wagtail.contrib.
wagtailfrontendcache.backends.CloudflareBackend. This backend requires two extra parameters,
EMAIL (your Cloudflare account email) and TOKEN (your API token from Cloudflare).

settings.py

WAGTAILFRONTENDCACHE = {
'cloudflare': {

'BACKEND': 'wagtail.contrib.wagtailfrontendcache.backends.CloudflareBackend',
'EMAIL': 'your-cloudflare-email-address@example.com',
'TOKEN': 'your cloudflare api token',

},
}

Advanced usage

Invalidating more than one URL per page

By default, Wagtail will only purge one URL per page. If your page has more than one URL to be purged, you will
need to override the get_cached_paths method on your page type.

1.4. Reference 99

https://www.varnish-cache.org/docs/3.0/tutorial/purging.html
http://wiki.squid-cache.org/SquidFaq/OperatingSquid#How_can_I_purge_an_object_from_my_cache.3F
https://www.cloudflare.com/sign-up
https://www.cloudflare.com/sign-up

Wagtail Documentation, Release 1.1

class BlogIndexPage(Page):
def get_blog_items(self):

This returns a Django paginator of blog items in this section
return Paginator(self.get_children().live().type(BlogPage), 10)

def get_cached_paths(self):
Yield the main URL
yield '/'

Yield one URL per page in the paginator to make sure all pages are purged
for page_number in range(1, self.get_blog_items().num_pages):

yield '/?page=' + str(page_number)

Invalidating index pages

Another problem is pages that list other pages (such as a blog index) will not be purged when a blog entry gets added,
changed or deleted. You may want to purge the blog index page so the updates are added into the listing quickly.

This can be solved by using the purge_page_from_cache utility function which can be found in the wagtail.
contrib.wagtailfrontendcache.utils module.

Let’s take the the above BlogIndexPage as an example. We need to register a signal handler to run when one of the
BlogPages get updated/deleted. This signal handler should call the purge_page_from_cache function on all
BlogIndexPages that contain the BlogPage being updated/deleted.

models.py
from django.dispatch import receiver
from django.db.models.signals import pre_delete

from wagtail.wagtailcore.signals import page_published
from wagtail.contrib.wagtailfrontendcache.utils import purge_page_from_cache

...

def blog_page_changed(blog_page):
Find all the live BlogIndexPages that contain this blog_page
for blog_index in BlogIndexPage.objects.live():

if blog_page in blog_index.get_blog_items().object_list:
Purge this blog index
purge_page_from_cache(blog_index)

@receiver(page_published, sender=BlogPage):
def blog_published_handler(instance):

blog_page_changed(instance)

@receiver(pre_delete, sender=BlogPage)
def blog_deleted_handler(instance):

blog_page_changed(instance)

100 Chapter 1. Index

Wagtail Documentation, Release 1.1

Invalidating individual URLs

wagtail.contrib.wagtailfrontendcache.utils provides another function called
purge_url_from_cache. As the name suggests, this purges an individual URL from the cache.

For example, this could be useful for purging a single page of blogs:

from wagtail.contrib.wagtailfrontendcache.utils import purge_url_from_cache

Purge the first page of the blog index
purge_url_from_cache(blog_index.url + '?page=1')

RoutablePageMixin

The RoutablePageMixin mixin provides a convenient way for a page to respond on multiple sub-URLs with
different views. For example, a blog section on a site might provide several different types of index page at URLs like /
blog/2013/06/, /blog/authors/bob/, /blog/tagged/python/, all served by the same page instance.

A Page using RoutablePageMixin exists within the page tree like any other page, but URL paths underneath it
are checked against a list of patterns. If none of the patterns match, control is passed to subpages as usual (or failing
that, a 404 error is thrown).

The basics

To use RoutablePageMixin, you need to make your class inherit from both wagtail.contrib.
wagtailroutablepage.models.RoutablePageMixin and wagtail.wagtailcore.models.
Page, then define some view methods and decorate them with wagtail.contrib.wagtailroutablepage.
models.route.

Here’s an example of an EventPage with three views:

from wagtail.wagtailcore.models import Page
from wagtail.contrib.wagtailroutablepage.models import RoutablePageMixin, route

class EventPage(RoutablePageMixin, Page):
...

@route(r'^$')
def current_events(self, request):

"""
View function for the current events page
"""
...

@route(r'^past/$')
def past_events(self, request):

"""
View function for the past events page
"""
...

Multiple routes!
@route(r'^year/(\d+)/$')
@route(r'^year/current/$')

1.4. Reference 101

Wagtail Documentation, Release 1.1

def events_for_year(self, request, year=None):
"""
View function for the events for year page
"""
...

Reversing URLs

RoutablePageMixin adds a reverse_subpage()method to your page model which you can use for reversing
URLs. For example:

The URL name defaults to the view method name.
>>> event_page.reverse_subpage('events_for_year', args=(2015,))
'year/2015/'

This method only returns the part of the URL within the page. To get the full URL, you must append it to the values
of either the url or the full_url attribute on your page:

>>> event_page.url + event_page.reverse_subpage('events_for_year', args=(2015,))
'/events/year/2015/'

>>> event_page.full_url + event_page.reverse_subpage('events_for_year', args=(2015,))
'http://example.com/events/year/2015/'

Changing route names

The route name defaults to the name of the view. You can override this name with the name keyword argument on
@route:

from wagtail.wagtailcore.models import Page
from wagtail.contrib.wagtailroutablepage.models import RoutablePageMixin, route

class EventPage(RoutablePageMixin, Page):
...

@route(r'^year/(\d+)/$', name='year')
def events_for_year(self, request, year):

"""
View function for the events for year page
"""
...

>>> event_page.reverse_subpage('year', args=(2015,))
'/events/year/2015/'

The RoutablePageMixin class

class wagtail.contrib.wagtailroutablepage.models.RoutablePageMixin
This class can be mixed in to a Page model, allowing extra routes to be added to it.

classmethod get_subpage_urls()

102 Chapter 1. Index

Wagtail Documentation, Release 1.1

resolve_subpage(path)
This method takes a URL path and finds the view to call.

Example:

view, args, kwargs = page.resolve_subpage('/past/')
response = view(request, *args, **kwargs)

reverse_subpage(name, args=None, kwargs=None)
This method takes a route name/arguments and returns a URL path.

Example:

url = page.url + page.reverse_subpage('events_for_year', kwargs={'year
→˓': '2014'})

The routablepageurl template tag

wagtail.contrib.wagtailroutablepage.templatetags.wagtailroutablepage_tags.routablepageurl(context,
page,
url_name,
*args,
**kwargs)

routablepageurl is similar to pageurl, but works with RoutablePages. It behaves like a hybrid
between the built-in reverse, and pageurl from Wagtail.

page is the RoutablePage that URLs will be generated from.

url_name is a URL name defined in page.subpage_urls.

Positional arguments and keyword arguments should be passed as normal positional arguments and keyword
arguments.

Example:

{% load wagtailroutablepage_tags %}

{% routablepageurl self "feed" %}
{% routablepageurl self "archive" 2014 08 14 %}
{% routablepageurl self "food" foo="bar" baz="quux" %}

Wagtail API

The wagtailapi module can be used to create a read-only, JSON-based API for public Wagtail content.

There are three endpoints to the API:

• Pages: /api/v1/pages/

• Images: /api/v1/images/

• Documents: /api/v1/documents/

See Wagtail API Installation and Wagtail API Configuration if you’re looking to add this module to your Wagtail site.

See Wagtail API Usage Guide for documentation on the API.

1.4. Reference 103

Wagtail Documentation, Release 1.1

Index

Wagtail API Installation

To install, add wagtail.contrib.wagtailapi to INSTALLED_APPS in your Django settings and configure
a URL for it in urls.py

settings.py

INSTALLED_APPS = [
...
'wagtail.contrib.wagtailapi',

]

urls.py

from wagtail.contrib.wagtailapi import urls as wagtailapi_urls

urlpatterns = [
...
url(r'^api/', include(wagtailapi_urls)),

]

Wagtail API Configuration

Settings

WAGTAILAPI_BASE_URL (required when using frontend cache invalidation)

This is used in two places, when generating absolute URLs to document files and invalidating the cache.

Generating URLs to documents will fall back the the current request’s hostname if this is not set. Cache invalidation
cannot do this, however, so this setting must be set when using this module alongside the wagtailfrontendcache
module.

WAGTAILAPI_SEARCH_ENABLED (default: True)

Setting this to false will disable full text search. This applies to all endpoints.

WAGTAILAPI_MAX_RESULTS (default: 20)

This allows you to change the maximum number of results a user can get at any time. This applies to all endpoints.

Adding more fields to the pages endpoint

By default, the pages endpoint only includes the id, title and type fields in both the listing and detail views.

You can add more fields to the pages endpoint by setting an attribute called api_fields to a list or tuple of
field names:

class BlogPage(Page):
posted_by = models.CharField()
posted_at = models.DateTimeField()
content = RichTextField()

api_fields = ('posted_by', 'posted_at', 'content')

104 Chapter 1. Index

Wagtail Documentation, Release 1.1

This list also supports child relations (which will be nested inside the returned JSON document):

class BlogPageRelatedLink(Orderable):
page = ParentalKey('BlogPage', related_name='related_links')
link = models.URLField()

api_fields = ('link',)

class BlogPage(Page):
posted_by = models.CharField()
posted_at = models.DateTimeField()
content = RichTextField()

api_fields = ('posted_by', 'posted_at', 'content', 'related_links')

Frontend cache invalidation

If you have a Varnish, Squid or Cloudflare instance in front of your API, the wagtailapi module can automatically
invalidate cached responses for you whenever they are updated in the database.

To enable it, firstly configure the wagtail.contrib.wagtailfrontendcache module within your project
(see [Wagtail frontend cache docs](http://docs.wagtail.io/en/latest/contrib_components/frontendcache.html) for more
information).

Then make sure that the WAGTAILAPI_BASE_URL setting is set correctly (Example: WAGTAILAPI_BASE_URL
= 'http://api.mysite.com').

Then finally, switch it on by setting WAGTAILAPI_USE_FRONTENDCACHE to True.

Wagtail API Usage Guide

Listing views

Performing a GET request against one of the endpoints will get you a listing of objects in that endpoint. The response
will look something like this:

GET /api/v1/endpoint_name/

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": "total number of results"
},
"endpoint_name": [

{
"id": 1,
"meta": {

"type": "app_name.ModelName",
"detail_url": "http://api.example.com/api/v1/endpoint_name/1/"

},
"field": "value"

},
{

1.4. Reference 105

http://docs.wagtail.io/en/latest/contrib_components/frontendcache.html

Wagtail Documentation, Release 1.1

"id": 2,
"meta": {

"type": "app_name.ModelName",
"detail_url": "http://api.example.com/api/v1/endpoint_name/2/"

},
"field": "different value"

}
]

}

This is the basic structure of all of the listing views. They all have a meta section with a total_count variable
and a listing of things.

Detail views

All of the endpoints also contain a “detail” view which returns information on an individual object. This view is
always accessed by appending the id of the object to the URL.

The pages endpoint

This endpoint includes all live pages in your site that have not been put in a private section.

The listing view (/api/v1/pages/)

This is what a typical response from a GET request to this listing would look like:

GET /api/v1/pages/

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 2
},
"pages": [

{
"id": 2,
"meta": {

"type": "demo.HomePage",
"detail_url": "http://api.example.com/api/v1/pages/2/"

},
"title": "Homepage"

},
{

"id": 3,
"meta": {

"type": "demo.BlogIndexPage",
"detail_url": "http://api.example.com/api/v1/pages/3/"

},
"title": "Blog"

}
]

}

106 Chapter 1. Index

Wagtail Documentation, Release 1.1

Each page object contains the id, a meta section and the fields with their values.

meta

This section is used to hold “metadata” fields which aren’t fields in the database. Wagtail API adds two by default:

• type - The app label/model name of the object

• detail_url - A URL linking to the detail view for this object

Selecting a page type

Most Wagtail sites are made up of multiple different types of page that each have their own specific fields. In order to
view/filter/order on fields specific to one page type, you must select that page type using the type query parameter.

The type query parameter must be set to the Pages model name in the format: app_label.ModelName.

GET /api/v1/pages/?type=demo.BlogPage

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 3
},
"pages": [

{
"id": 4,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/4/"

},
"title": "My blog 1"

},
{

"id": 5,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/5/"

},
"title": "My blog 2"

},
{

"id": 6,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/6/"

},
"title": "My blog 3"

}
]

}

1.4. Reference 107

Wagtail Documentation, Release 1.1

Specifying a list of fields to return

As you can see, we still only get the title field, even though we have selected a type. That’s because listing pages
require you to explicitly tell it what extra fields you would like to see. You can do this with the fields query
parameter.

Just set fields to a command-separated list of field names that you would like to use.

GET /api/v1/pages/?type=demo.BlogPage&fields=title,date_posted,feed_image

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 3
},
"pages": [

{
"id": 4,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/4/"

},
"title": "My blog 1",
"date_posted": "2015-01-23",
"feed_image": {

"id": 1,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/1/"

}
}

},
{

"id": 5,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/5/"

},
"title": "My blog 2",
"date_posted": "2015-01-24",
"feed_image": {

"id": 2,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/2/"

}
}

},
{

"id": 6,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/6/"

},
"title": "My blog 3",
"date_posted": "2015-01-25",

108 Chapter 1. Index

Wagtail Documentation, Release 1.1

"feed_image": {
"id": 3,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/3/"

}
}

}
]

}

We now have enough information to make a basic blog listing with a feed image and date that the blog was posted.

Filtering on fields

Exact matches on field values can be done by using a query parameter with the same name as the field. Any pages
with the field that exactly matches the value of this parameter will be returned.

GET /api/v1/pages/?type=demo.BlogPage&fields=title,date_posted&date_posted=2015-01-24

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 1
},
"pages": [

{
"id": 5,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/5/"

},
"title": "My blog 2",
"date_posted": "2015-01-24",

}
]

}

Filtering by section of the tree

It is also possible to filter the listing to only include pages with a particular parent or ancestor. This is useful if you
have multiple blogs on your site and only want to view the contents of one of them.

child_of

Filters the listing to only include direct children of the specified page.

For example, to get all the pages that are direct children of page 7.

GET /api/v1/pages/?child_of=7

HTTP 200 OK
Content-Type: application/json

1.4. Reference 109

Wagtail Documentation, Release 1.1

{
"meta": {

"total_count": 1
},
"pages": [

{
"id": 4,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/4/"

},
"title": "Other blog 1"

}
]

}

descendant_of

New in version 1.1.

Filters the listing to only include descendants of the specified page.

For example, to get all pages underneath the homepage:

GET /api/v1/pages/?descendant_of=2

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 1
},
"pages": [

{
"id": 3,
"meta": {

"type": "demo.BlogIndexPage",
"detail_url": "http://api.example.com/api/v1/pages/3/"

},
"title": "Blog"

},
{

"id": 4,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/4/"

},
"title": "My blog 1",

},
{

"id": 5,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/5/"

},
"title": "My blog 2",

},

110 Chapter 1. Index

Wagtail Documentation, Release 1.1

{
"id": 6,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/6/"

},
"title": "My blog 3",

}
]

}

Ordering

Like filtering, it is also possible to order on database fields. The endpoint accepts a query parameter called order
which should be set to the field name to order by. Field names can be prefixed with a - to reverse the ordering. It is
also possible to order randomly by setting this parameter to random.

GET /api/v1/pages/?type=demo.BlogPage&fields=title,date_posted,feed_image&order=-date_
→˓posted

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 3
},
"pages": [

{
"id": 6,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/6/"

},
"title": "My blog 3",
"date_posted": "2015-01-25",
"feed_image": {

"id": 3,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/3/"

}
}

},
{

"id": 5,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/5/"

},
"title": "My blog 2",
"date_posted": "2015-01-24",
"feed_image": {

"id": 2,
"meta": {

"type": "wagtailimages.Image",

1.4. Reference 111

Wagtail Documentation, Release 1.1

"detail_url": "http://api.example.com/api/v1/images/2/"
}

}
},
{

"id": 4,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/4/"

},
"title": "My blog 1",
"date_posted": "2015-01-23",
"feed_image": {

"id": 1,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/1/"

}
}

}
]

}

Pagination

Pagination is done using two query parameters called limit and offset. limit sets the number of results to
return and offset is the index of the first result to return. The default value for limit is 20 and its maximum value
is 100 (which can be changed using the WAGTAILAPI_MAX_RESULTS setting).

GET /api/v1/pages/?limit=1&offset=1

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 2
},
"pages": [

{
"id": 3,
"meta": {

"type": "demo.BlogIndexPage",
"detail_url": "http://api.example.com/api/v1/pages/3/"

},
"title": "Blog"

}
]

}

Pagination will not change the total_count value in the meta.

Searching

To perform a full-text search, set the search parameter to the query string you would like to search on.

112 Chapter 1. Index

Wagtail Documentation, Release 1.1

GET /api/v1/pages/?search=Blog

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 3
},
"pages": [

{
"id": 3,
"meta": {

"type": "demo.BlogIndexPage",
"detail_url": "http://api.example.com/api/v1/pages/3/"

},
"title": "Blog"

},
{

"id": 4,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/4/"

},
"title": "My blog 1",

},
{

"id": 5,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/5/"

},
"title": "My blog 2",

},
{

"id": 6,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/6/"

},
"title": "My blog 3",

}
]

}

The results are ordered by relevance. It is not possible to use the order parameter with a search query.

If your Wagtail site is using Elasticsearch, you do not need to select a type to access specific fields. This will search
anything that’s defined in the models’ search_fields.

The detail view (/api/v1/pages/{id}/)

This view gives you access to all of the details for a particular page.

GET /api/v1/pages/6/

HTTP 200 OK

1.4. Reference 113

Wagtail Documentation, Release 1.1

Content-Type: application/json

{
"id": 6,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/6/"

},
"parent": {

"id": 3,
"meta": {

"type": "demo.BlogIndexPage",
"detail_url": "http://api.example.com/api/v1/pages/3/"

}
},
"title": "My blog 3",
"date_posted": "2015-01-25",
"feed_image": {

"id": 3,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/3/"

}
},
"related_links": [

{
"title": "Other blog page",
"page": {

"id": 5,
"meta": {

"type": "demo.BlogPage",
"detail_url": "http://api.example.com/api/v1/pages/5/"

}
}

}
]

}

The format is the same as that which is returned inside the listing view, with two additions:

• All of the available fields are added to the detail page by default

• A parent field has been included that contains information about the parent page

The images endpoint

This endpoint gives access to all uploaded images. This will use the custom image model if one was specified.
Otherwise, it falls back to wagtailimages.Image.

The listing view (/api/v1/images/)

This is what a typical response from a GET request to this listing would look like:

GET /api/v1/images/

HTTP 200 OK

114 Chapter 1. Index

Wagtail Documentation, Release 1.1

Content-Type: application/json

{
"meta": {

"total_count": 3
},
"images": [

{
"id": 4,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/4/"

},
"title": "Wagtail by Mark Harkin"

},
{

"id": 5,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/5/"

},
"title": "James Joyce"

},
{

"id": 6,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/6/"

},
"title": "David Mitchell"

}
]

}

Each image object contains the id and title of the image.

Getting width, height and other fields

Like the pages endpoint, the images endpoint supports the fields query parameter.

By default, this will allow you to add the width and height fields to your results. If your Wagtail site uses a custom
image model, it is possible to have more.

GET /api/v1/images/?fields=title,width,height

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 3
},
"images": [

{
"id": 4,
"meta": {

"type": "wagtailimages.Image",

1.4. Reference 115

Wagtail Documentation, Release 1.1

"detail_url": "http://api.example.com/api/v1/images/4/"
},
"title": "Wagtail by Mark Harkin",
"width": 640,
"height": 427

},
{

"id": 5,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/5/"

},
"title": "James Joyce",
"width": 500,
"height": 392

},
{

"id": 6,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/6/"

},
"title": "David Mitchell",
"width": 360,
"height": 282

}
]

}

Filtering on fields

Exact matches on field values can be done by using a query parameter with the same name as the field. Any images
with the field that exactly matches the value of this parameter will be returned.

GET /api/v1/pages/?title=James Joyce

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 3
},
"images": [

{
"id": 5,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/5/"

},
"title": "James Joyce"

}
]

}

116 Chapter 1. Index

Wagtail Documentation, Release 1.1

Ordering

The images endpoint also accepts the order parameter which should be set to a field name to order by. Field names
can be prefixed with a - to reverse the ordering. It is also possible to order randomly by setting this parameter to
random.

GET /api/v1/images/?fields=title,width&order=width

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 3
},
"images": [

{
"id": 6,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/6/"

},
"title": "David Mitchell",
"width": 360

},
{

"id": 5,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/5/"

},
"title": "James Joyce",
"width": 500

},
{

"id": 4,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/4/"

},
"title": "Wagtail by Mark Harkin",
"width": 640

}
]

}

Pagination

Pagination is done using two query parameters called limit and offset. limit sets the number of results to
return and offset is the index of the first result to return. The default value for limit is 20 and its maximum value
is 100 (which can be changed using the WAGTAILAPI_MAX_RESULTS setting).

GET /api/v1/images/?limit=1&offset=1

HTTP 200 OK
Content-Type: application/json

1.4. Reference 117

Wagtail Documentation, Release 1.1

{
"meta": {

"total_count": 3
},
"images": [

{
"id": 5,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/5/"

},
"title": "James Joyce",
"width": 500,
"height": 392

}
]

}

Pagination will not change the total_count value in the meta.

Searching

To perform a full-text search, set the search parameter to the query string you would like to search on.

GET /api/v1/images/?search=James

HTTP 200 OK
Content-Type: application/json

{
"meta": {

"total_count": 1
},
"pages": [

{
"id": 5,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/5/"

},
"title": "James Joyce",
"width": 500,
"height": 392

}
]

}

Like the pages endpoint, the results are ordered by relevance and it is not possible to use the order parameter with a
search query.

The detail view (/api/v1/images/{id}/)

This view gives you access to all of the details for a particular image.

118 Chapter 1. Index

Wagtail Documentation, Release 1.1

GET /api/v1/images/5/

HTTP 200 OK
Content-Type: application/json

{
"id": 5,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/5/"

},
"title": "James Joyce",
"width": 500,
"height": 392

}

The documents endpoint

This endpoint gives access to all uploaded documents.

The listing view (/api/v1/documents/)

The documents listing supports the same features as the images listing (documented above) but works with Documents
instead.

The detail view (/api/v1/documents/{id}/)

This view gives you access to all of the details for a particular document.

GET /api/v1/documents/1/

HTTP 200 OK
Content-Type: application/json

{
"id": 1,
"meta": {

"type": "wagtaildocs.Document",
"detail_url": "http://api.example.com/api/v1/documents/1/",
"download_url": "http://api.example.com/documents/1/usage.md"

},
"title": "Wagtail API usage"

}

Promoted search results

Changed in version 1.1: Before Wagtail 1.1, promoted search results were implemented in the wagtail.
wagtailsearch core module and called “editors picks”.

The searchpromotions module provides the models and user interface for managing “Promoted search results”
and displaying them in a search results page.

1.4. Reference 119

Wagtail Documentation, Release 1.1

“Promoted search results” allow editors to explicitly link relevant content to search terms, so results pages can contain
curated content in addition to results from the search engine.

Installation

The searchpromotions module is not enabled by default. To install it, add wagtail.contrib.
wagtailsearchpromotions to INSTALLED_APPS in your project’s Django settings file.

INSTALLED_APPS = [
...

'wagtail.contrib.wagtailsearchpromotions',
]

This app contains migrations so make sure you run the migrate django-admin command after installing.

Usage

Once installed, a new menu item called “Promoted search results” should appear in the “Settings” menu. This is where
you can assign pages to popular search terms.

Displaying on a search results page

To retrieve a list of promoted search results for a particular search query, you can use the {%
get_search_promotions %} template tag from the wagtailsearchpromotions_tags templatetag li-
brary:

{% load wagtailcore_tags wagtailsearchpromotions_tags %}

...

{% get_search_promotions search_query as search_promotions %}

{% for search_promotion in search_promotions %}

<h2>{{ search_promotion.page.title }}</h2>
<p>{{ search_promotion.description }}</p>

{% endfor %}

Form builder

Allows forms to be created by admins and provides an interface for browsing form submissions.

Static site generator

Provides a management command that turns a Wagtail site into a set of static HTML files.

120 Chapter 1. Index

Wagtail Documentation, Release 1.1

Sitemap generator

Provides a view that generates a Google XML sitemap of your public wagtail content.

Frontend cache invalidator

A module for automatically purging pages from a cache (Varnish, Squid or Cloudflare) when their content is changed.

RoutablePageMixin

Provides a way of embedding Django URLconfs into pages.

Wagtail API

A module for adding a read only, JSON based web API to your Wagtail site

Promoted search results

A module for managing “Promoted Search Results”

Management commands

publish_scheduled_pages

./manage.py publish_scheduled_pages

This command publishes or unpublishes pages that have had these actions scheduled by an editor. It is recommended
to run this command once an hour.

fixtree

./manage.py fixtree

This command scans for errors in your database and attempts to fix any issues it finds.

move_pages

manage.py move_pages from to

This command moves a selection of pages from one section of the tree to another.

Options:

• from This is the id of the page to move pages from. All descendants of this page will be moved to the destination.
After the operation is complete, this page will have no children.

• to This is the id of the page to move pages to.

1.4. Reference 121

Wagtail Documentation, Release 1.1

update_index

./manage.py update_index [--backend <backend name>]

This command rebuilds the search index from scratch. It is only required when using Elasticsearch.

It is recommended to run this command once a week and at the following times:

• whenever any pages have been created through a script (after an import, for example)

• whenever any changes have been made to models or search configuration

The search may not return any results while this command is running, so avoid running it at peak times.

Specifying which backend to update

New in version 0.7.

By default, update_index will rebuild all the search indexes listed in WAGTAILSEARCH_BACKENDS.

If you have multiple backends and would only like to update one of them, you can use the --backend option.

For example, to update just the default backend:

python manage.py update_index --backend default

search_garbage_collect

./manage.py search_garbage_collect

Wagtail keeps a log of search queries that are popular on your website. On high traffic websites, this log may get big
and you may want to clean out old search queries. This command cleans out all search query logs that are more than
one week old.

Hooks

On loading, Wagtail will search for any app with the file wagtail_hooks.py and execute the contents. This
provides a way to register your own functions to execute at certain points in Wagtail’s execution, such as when a Page
object is saved or when the main menu is constructed.

Registering functions with a Wagtail hook is done through the @hooks.register decorator:

from wagtail.wagtailcore import hooks

@hooks.register('name_of_hook')
def my_hook_function(arg1, arg2...)

your code here

Alternatively, hooks.register can be called as an ordinary function, passing in the name of the hook and a handler
function defined elsewhere:

hooks.register('name_of_hook', my_hook_function)

The available hooks are: before_serve_page

122 Chapter 1. Index

Wagtail Documentation, Release 1.1

Called when Wagtail is about to serve a page. The callable passed into the hook will receive the page
object, the request object, and the args and kwargs that will be passed to the page’s serve() method.
If the callable returns an HttpResponse, that response will be returned immediately to the user, and
Wagtail will not proceed to call serve() on the page.

from wagtail.wagtailcore import hooks

@hooks.register('before_serve_page')
def block_googlebot(page, request, serve_args, serve_kwargs):

if request.META.get('HTTP_USER_AGENT') == 'GoogleBot':
return HttpResponse("<h1>bad googlebot no cookie</h1>")

Changed in version 1.0: The hook was renamed from construct_wagtail_edit_bird

construct_wagtail_userbar Add or remove items from the wagtail userbar. Add, edit, and moderation tools
are provided by default. The callable passed into the hook must take the request object and a list of menu
objects, items. The menu item objects must have a render method which can take a request object and
return the HTML string representing the menu item. See the userbar templates and menu item classes for more
information.

from wagtail.wagtailcore import hooks

class UserbarPuppyLinkItem(object):
def render(self, request):

return '<a href="http://cuteoverload.com/tag/puppehs/" ' \
+ 'target="_parent" class="action icon icon-wagtail">Puppies!'

@hooks.register('construct_wagtail_userbar')
def add_puppy_link_item(request, items):
return items.append(UserbarPuppyLinkItem())

construct_homepage_panels Add or remove panels from the Wagtail admin homepage. The callable passed
into this hook should take a request object and a list of panels, objects which have a render() method
returning a string. The objects also have an order property, an integer used for ordering the panels. The default
panels use integers between 100 and 300.

from django.utils.safestring import mark_safe

from wagtail.wagtailcore import hooks

class WelcomePanel(object):
order = 50

def render(self):
return mark_safe("""
<section class="panel summary nice-padding">
<h3>No, but seriously -- welcome to the admin homepage.</h3>

</section>
""")

@hooks.register('construct_homepage_panels')
def add_another_welcome_panel(request, panels):
return panels.append(WelcomePanel())

construct_homepage_summary_items New in version 1.0.

Add or remove items from the ‘site summary’ bar on the admin homepage (which shows the number of pages
and other object that exist on the site). The callable passed into this hook should take a request object and

1.4. Reference 123

Wagtail Documentation, Release 1.1

a list of SummaryItem objects to be modified as required. These objects have a render() method, which
returns an HTML string, and an order property, which is an integer that specifies the order in which the items
will appear.

after_create_page Do something with a Page object after it has been saved to the database (as a published
page or a revision). The callable passed to this hook should take a request object and a page object. The
function does not have to return anything, but if an object with a status_code property is returned, Wagtail
will use it as a response object. By default, Wagtail will instead redirect to the Explorer page for the new page’s
parent.

from django.http import HttpResponse

from wagtail.wagtailcore import hooks

@hooks.register('after_create_page')
def do_after_page_create(request, page):
return HttpResponse("Congrats on making content!", content_type="text/plain")

after_edit_page Do something with a Page object after it has been updated. Uses the same behavior as
after_create_page.

after_delete_page Do something after a Page object is deleted. Uses the same behavior as
after_create_page.

register_admin_urls Register additional admin page URLs. The callable fed into this hook should return a list
of Django URL patterns which define the structure of the pages and endpoints of your extension to the Wagtail
admin. For more about vanilla Django URLconfs and views, see url dispatcher.

from django.http import HttpResponse
from django.conf.urls import url

from wagtail.wagtailcore import hooks

def admin_view(request):
return HttpResponse(\

"I have approximate knowledge of many things!", \
content_type="text/plain")

@hooks.register('register_admin_urls')
def urlconf_time():
return [
url(r'^how_did_you_almost_know_my_name/$', admin_view, name='frank'),

]

register_admin_menu_item

Add an item to the Wagtail admin menu. The callable passed to this hook must return an instance of
wagtail.wagtailadmin.menu.MenuItem. New items can be constructed from the MenuItem
class by passing in a label which will be the text in the menu item, and the URL of the admin page
you want the menu item to link to (usually by calling reverse() on the admin view you’ve set up).
Additionally, the following keyword arguments are accepted:

name an internal name used to identify the menu item; defaults to the slugified form of the
label.

classnames additional classnames applied to the link, used to give it an icon

attrs additional HTML attributes to apply to the link

order an integer which determines the item’s position in the menu

124 Chapter 1. Index

https://docs.djangoproject.com/en/dev/topics/http/urls/

Wagtail Documentation, Release 1.1

MenuItem can be subclassed to customise the HTML output, specify Javascript files required by the
menu item, or conditionally show or hide the item for specific requests (for example, to apply permission
checks); see the source code (wagtail/wagtailadmin/menu.py) for details.

from django.core.urlresolvers import reverse

from wagtail.wagtailcore import hooks
from wagtail.wagtailadmin.menu import MenuItem

@hooks.register('register_admin_menu_item')
def register_frank_menu_item():
return MenuItem('Frank', reverse('frank'), classnames='icon icon-folder-

→˓inverse', order=10000)

register_settings_menu_item New in version 0.7.

As register_admin_menu_item, but registers menu items into the ‘Settings’ sub-menu rather than the
top-level menu.

construct_main_menu Called just before the Wagtail admin menu is output, to allow the list of menu items
to be modified. The callable passed to this hook will receive a request object and a list of menu_items,
and should modify menu_items in-place as required. Adding menu items should generally be done through
the register_admin_menu_item hook instead - items added through construct_main_menu will
be missing any associated Javascript includes, and their is_shown check will not be applied.

from wagtail.wagtailcore import hooks

@hooks.register('construct_main_menu')
def hide_explorer_menu_item_from_frank(request, menu_items):
if request.user.username == 'frank':

menu_items[:] = [item for item in menu_items if item.name != 'explorer']

insert_editor_js Add additional Javascript files or code snippets to the page editor. Output must be compatible
with compress, as local static includes or string.

from django.utils.html import format_html, format_html_join
from django.conf import settings

from wagtail.wagtailcore import hooks

@hooks.register('insert_editor_js')
def editor_js():
js_files = [

'demo/js/hallo-plugins/hallo-demo-plugin.js',
]
js_includes = format_html_join('\n', '<script src="{0}{1}"></script>',
((settings.STATIC_URL, filename) for filename in js_files)

)
return js_includes + format_html(
"""
<script>
registerHalloPlugin('demoeditor');

</script>
"""

)

insert_editor_css Add additional CSS or SCSS files or snippets to the page editor. Output must be compatible
with compress, as local static includes or string.

1.4. Reference 125

Wagtail Documentation, Release 1.1

from django.utils.html import format_html
from django.conf import settings

from wagtail.wagtailcore import hooks

@hooks.register('insert_editor_css')
def editor_css():
return format_html('<link rel="stylesheet" href="' \
+ settings.STATIC_URL \
+ 'demo/css/vendor/font-awesome/css/font-awesome.min.css">')

construct_whitelister_element_rules

Customise the rules that define which HTML elements are allowed in rich text areas. By default only a
limited set of HTML elements and attributes are whitelisted - all others are stripped out. The callables
passed into this hook must return a dict, which maps element names to handler functions that will perform
some kind of manipulation of the element. These handler functions receive the element as a BeautifulSoup
Tag object.

The wagtail.wagtailcore.whitelist module provides a few helper functions to assist in defin-
ing these handlers: allow_without_attributes, a handler which preserves the element but strips
out all of its attributes, and attribute_rule which accepts a dict specifying how to handle each at-
tribute, and returns a handler function. This dict will map attribute names to either True (indicating that
the attribute should be kept), False (indicating that it should be dropped), or a callable (which takes the
initial attribute value and returns either a final value for the attribute, or None to drop the attribute).

For example, the following hook function will add the <blockquote> element to the whitelist, and
allow the target attribute on <a> elements:

from wagtail.wagtailcore import hooks
from wagtail.wagtailcore.whitelist import attribute_rule, check_url, allow_
→˓without_attributes

@hooks.register('construct_whitelister_element_rules')
def whitelister_element_rules():

return {
'blockquote': allow_without_attributes,
'a': attribute_rule({'href': check_url, 'target': True}),

}

register_permissions New in version 0.7.

Return a queryset of Permission objects to be shown in the Groups administration area.

The project template

mysite/
core/

static/
templates/

base.html
404.html
500.html

mysite/
settings/

base.py
dev.py

126 Chapter 1. Index

http://www.crummy.com/software/BeautifulSoup/bs4/doc/

Wagtail Documentation, Release 1.1

production.py
manage.py
vagrant/

provision.sh
Vagrantfile
readme.rst
requirements.txt

The “core” app

Location: /mysite/core/

This app is here to help get you started quicker by providing a HomePage model with migrations to create one when
you first setup your app.

Default templates and static files

Location: /mysite/core/templates/ and /mysite/core/static/

The templates directory contains base.html, 404.html and 500.html. These files are very commonly needed
on Wagtail sites to they have been added into the template.

The static directory contains an empty JavaScript and SASS file. Wagtail uses django-compressor for compiling
and compressing static files. For more information, see: Django Compressor Documentation

Vagrant configuration

Location: /Vagrantfile and /vagrant/

If you have Vagrant installed, these files let you easily setup a development environment with PostgreSQL and Elas-
ticsearch inside a virtual machine.

If you do not want to use Vagrant, you can just delete these files.

Django settings

Location: /mysite/mysite/settings/

The Django settings files are split up into base.py, dev.py, production.py and local.py.

base.py This file is for global settings that will be used in both development and production. Aim to keep most of
your configuration in this file.

dev.py This file is for settings that will only be used by developers. For example: DEBUG = True

production.py This file is for settings that will only run on a production server. For example: DEBUG = False

local.py This file is used for settings local to a particular machine. This file should never be tracked by a version
control system.

Tip: On production servers, we recommend that you only store secrets in local.py (such as API keys and
passwords). This can save you headaches in the future if you are ever trying to debug why a server is behaving
badly. If you are using multiple servers which need different settings then we recommend that you create a
different production.py file for each one.

1.4. Reference 127

http://django-compressor.readthedocs.org/en/latest/

Wagtail Documentation, Release 1.1

Support

Mailing list

If you have general questions about Wagtail, or you’re looking for help on how to do something that these documents
don’t cover, join the mailing list at groups.google.com/d/forum/wagtail.

Issues

If you think you’ve found a bug in Wagtail, or you’d like to suggest a new feature, please check the current list
at github.com/torchbox/wagtail/issues. If your bug or suggestion isn’t there, raise a new issue, providing as much
relevant context as possible.

Torchbox

Finally, if you have a query which isn’t relevant for either of the above forums, feel free to contact the Wagtail team at
Torchbox directly, on hello@wagtail.io or @wagtailcms.

Using Wagtail: an Editor’s guide

This section of the documentation is written for the users of a Wagtail-powered site. That is, the content editors,
moderators and administrators who will be running things on a day-to-day basis.

Introduction

Wagtail is a new open source content management system (CMS) developed by Torchbox. It is built on the Django
framework and designed to be super easy to use for both developers and editors.

This documentation will explain how to:

• navigate the main user interface of Wagtail

• create pages of all different types

• modify, save, publish and unpublish pages

• how to set up users, and provide them with specific roles to create a publishing workflow

• upload, edit and include images and documents

• ... and more!

Getting started

The Wagtail demo site

This examples in this document are based on Torchbox.com. However, the instructions are general enough as to be
applicable to any Wagtail site.

For the purposes of this documentation we will be using the URL, www.example.com, to represent the root (home-
page) of your website.

128 Chapter 1. Index

https://groups.google.com/d/forum/wagtail
https://github.com/torchbox/wagtail/issues
mailto:hello@wagtail.io
http://twitter.com/wagtailcms
http://www.wagtail.io
http://www.torchbox.com
https://torchbox.com

Wagtail Documentation, Release 1.1

Logging in

• The first port of call for an editor is the login page for the administrator interface.

• Access this by adding /admin onto the end of your root URL (e.g. www.example.com/admin).

• Enter your username and password and click Sign in.

Finding your way around

This section describes the different pages that you will see as you navigate around the CMS, and how you can find the
content that you are looking for.

The Dashboard

The Dashboard provides information on:

• The number of pages, images, and documents currently held in the Wagtail CMS

• Any pages currently awaiting moderation (if you have these privileges)

• Your most recently edited pages

You can return to the Dashboard at any time by clicking the Wagtail log in the top-left of the screen.

1.6. Using Wagtail: an Editor’s guide 129

Wagtail Documentation, Release 1.1

• Clicking the logo returns you to your Dashboard.

• The stats at the top of the page describe the total amount of content on the CMS (just for fun!).

• The Pages awaiting moderation table will only be displayed if you have moderator or administrator privileges

– Clicking the name of a page will take you to the ‘Edit page’ interface for this page.

– Clicking approve or reject will either change the page status to live or return the page to draft status. An
email will be sent to the creator of the page giving the result of moderation either way.

– The Parent column tells you what the parent page of the page awaiting moderation is called. Clicking the
parent page name will take you to its Edit page.

• The Your most recent edits table displays the five pages that you most recently edited.

• The date column displays the date that you edited the page. Hover your mouse over the date for a more exact
time/date.

• The status column displays the current status of the page. A page will have one of three statuses:

– Live: Published and accessible to website visitors

– Draft: Not live on the website.

– Live + Draft: A version of the page is live, but a newer version is in draft mode.

130 Chapter 1. Index

Wagtail Documentation, Release 1.1

The Explorer menu

• Click the Explorer button in the sidebar to open the site explorer. This allows you to navigate through the
tree-structure of the site.

• Clicking the name of a page will take you to the Explorer page for that section (see below). NOTE: The site
explorer only displays pages which themselves have child pages. To see and edit the child pages you should
click the name of the parent page in the site explorer.

• Clicking the green arrow displays the sub-sections (see below).

• Clicking the back button takes you back to the parent section.

• Again, clicking the section title takes you to the Explorer page.

• Clicking further arrows takes you deeper into the tree.

1.6. Using Wagtail: an Editor’s guide 131

Wagtail Documentation, Release 1.1

Using search

• A very easy way to find the page that you want is to use the main search feature, accessible from the left-hand
menu.

• Simply type in part or all of the name of the page you are looking for, and the results below will automatically
update as you type.

• Clicking the page title in the results will take you to the Edit page for that result. You can differentiate between
similar named pages using the Parent column, which tells you what the parent page of that page is.

The Explorer page

The Explorer page allows you to view the a page’s children and perform actions on them. From here you can pub-
lish/unpublish pages, move pages to other sections, drill down further into the content tree, or reorder pages under the
parent for the purposes of display in menus.

132 Chapter 1. Index

Wagtail Documentation, Release 1.1

• The name of the section you are looking at is displayed below the breadcrumb (the row of page names beginning
with the home icon). Each section is also itself a page (in this case the homepage). Clicking the title of the
section takes you to the Edit screen for the section page.

• As the heading suggests, below are the child pages of the section. Clicking the titles of each child page will take
you to its Edit screen.

• Clicking the arrows will display a further level of child pages.

• As you drill down through the site the breadcrumb (the row of pages beginning with the home icon) will display
the path you have taken. Clicking on the page titles in the breadcrumb will take you to the Explorer screen for
that page.

1.6. Using Wagtail: an Editor’s guide 133

Wagtail Documentation, Release 1.1

• To add further child pages press the Add child page button below the parent page title. You can view the parent
page on the live site by pressing the View live button. The Move button will take you to the Move page screen
where you can reposition the page and all its child pages in the site structure.

• Similar buttons are available for each child page. These are made visible on hover.

Reordering pages

• Clicking the icon to the far left of the child pages table will enable the reordering handles. This allows you to
reorder the way that content displays in the main menu of your website.

• Reorder by dragging the pages by the handles on the far left (the icon made up of 6 dots).

• Your new order will be automatically saved each time you drag and drop an item.

Creating new pages

Create new pages by clicking the Add child page button. This creates a child page of the section you are currently in.
In this case a child page of the ‘School of Fine Art’ page.

134 Chapter 1. Index

Wagtail Documentation, Release 1.1

Selecting a page type

• On the left of the page chooser screen are listed all the types of pages that you can create. Clicking the page
type name will take you to the Create new page screen for that page type (see below).

• Clicking the Pages using . . . Page links on the right will display all the pages that exist on the website of this
type. This is to help you judge what type of page you will need to complete your task.

• Once you’ve selected a page type you will be presented with a blank New page screen.

• Click into the areas below each field’s heading to start entering content.

Creating page body content

Wagtail supports a number of basic fields for creating content, as well as our unique StreamField feature which allows
you to construct complex layouts by combining these basic fields in any order.

StreamField

StreamField allows you to create complex layouts of content on a page by combining a number of different arrange-
ments of content, ‘blocks’, in any order.

1.6. Using Wagtail: an Editor’s guide 135

Wagtail Documentation, Release 1.1

When you first edit a page, you will be presented with the empty StreamField area, with the option to choose one of
several block types. The block types on your website may be different from the screenshot here, but the principles are
the same.

Click the block type, and the options will disappear, revealing the entry field for that block.

Depending on the block you chose, the field will display differently, and there might even be more than one field!
There are a few common field types though that we will talk about here.

• Basic text field

• Rich text field

• Image field

Basic text field

Basic text fields have no formatting options. How these display will be determined by the style of the page in which
they are being inserted. Just click into the field and type!

Rich text fields

Most of the time though, you need formatting options to create beautiful looking pages. So some fields, like the fields
in the ‘Paragraph block’ shown in the screenshot, have many of the options you would expect from a word processor.
These are referred to as rich text fields.

So, when you click into one of these fields, you will be presented with a set of tools which allow you to format and
style your text. These tools also allow you to insert links, images, videos clips and links to documents.

Below is a summary of what the different buttons represent:

136 Chapter 1. Index

Wagtail Documentation, Release 1.1

Bold / Italic: Either click then type for bold or italic, or highlight and select to convert existing text to bold or italic.

Paragraph / heading levels: Clicking into a paragraph and selecting one of these options will change the level of the
text. H1 is not included as this is reserved for the page title.

Bulleted and numbered lists

Horizontal rule: Creates a horizontal line at the position of the cursor. If inserted inside a paragraph it will split the
paragraph into two separate paragraphs.

Undo / redo: As expected will undo or redo the latest actions. Never use the your browser’s back button when
attempting to undo changes as this could lead to errors. Either use this undo button, or the usual keyboard shortcut,
CTRL+Z.

Insert image / video: Allows you to insert an image or video into the rich text field. See Inserting images and videos
section for more details. See Inserting images <inserting_images.html> and Inserting videos <inserting_videos.html>
sections.

Insert link / document: Allows you to insert a link or a document into the rich text field. See Inserting links and
Inserting documents for more details. See Inserting links section <inserting_links.html>.

1.6. Using Wagtail: an Editor’s guide 137

Wagtail Documentation, Release 1.1

Adding further blocks in StreamField

• To add new blocks, click the ‘+’ icons above or below the existing blocks.

• You’ll then be presented once again with the different blocks from which you may choose.

• You can cancel the addition of a new block by clicking the cross at the top of the block selection interface.

Reordering and deleting content in StreamField

• Click the arrows on the right-hand side of each block to move blocks up and down in the StreamField order of
content.

• The blocks will be displayed in the front-end in the order that they are placed in this interface.

• Click the rubbish bin on the far right to delete a field

Warning: Once a StreamField field is deleted it cannot be retrieved if the page has not been saved. Save your
pages regularly so that if you acidentally delete a field you can reload the page to undo your latest edit.

138 Chapter 1. Index

Wagtail Documentation, Release 1.1

Inserting images and videos in a page

There will obviously be many instances in which you will want to add images to a page. There are two main ways to
add images to pages, either via a specific image chooser field, or via the rich text field image button. Which of these
you use will be dependent on the individual setup of your site.

Inserting images using the image chooser field

Often a specific image field will be used for a main image on a page, or for an image to be used when sharing the page
on social media. For the standard page on Torchbox.com, the former is used.

• You insert an image by clicking the Choose an image button.

Choosing an image to insert

You have two options when selecting an image to insert:

1. Selecting an image from the existing image library, or. . .

2. Uploading a new image to the CMS

When you click the Choose an image button you will be presented with a pop-up with two tabs at the top. The first,
Search, allows you to search and select from the library. The second, Upload, allows you to upload a new image.

Choosing an image from the image library

The image below demonstrates finding and inserting an image that is already present in the CMS image library.

1.6. Using Wagtail: an Editor’s guide 139

Wagtail Documentation, Release 1.1

1. Typing into the search box will automatically display the results below.

2. Clicking one of the Popular tags will filter the search results by that tag.

3. Clicking an image will take you to the Choose a format window (see image below).

Uploading a new image to the CMS

140 Chapter 1. Index

Wagtail Documentation, Release 1.1

1. You must include an image title for your uploaded image

2. Click the Choose file button to choose an image from your computer.

3. Tags allows you to associate tags with the image you are uploading. This allows them to be more easily found
when searching. Each tag should be separated by a space. Good practice for creating multiple word tags is to
use an underscore between each word (e.g. western_yellow_wagtail).

4. Click Upload to insert the uploaded image into the carousel. The image will also be added to the main CMS
image library for reuse in other content.

Inserting images using the rich text field

Images can also be inserted into the body text of a page via the rich text editor. When working in a rich text field, click
the image illustrated above. You will then be presented with the same options as for inserting images into the main
carousel.

In addition, Wagtail allows you to choose an alignment for you image.

1.6. Using Wagtail: an Editor’s guide 141

Wagtail Documentation, Release 1.1

1. You can select how the image is displayed by selecting one of the format options.

2. You must provide specific alt text for your image.

The alignments available are described below:

• Full width: Image will be inserted using the full width of the text area.

• Half-width left/right aligned: Inserts the image at half the width of the text area. If inserted in a block of text
the text will wrap around the image. If two half-width images are inserted together they will display next to
each other.

Note: The display of images aligned in this way is dependent on your implementation of Wagtail, so you may get
slightly different results.

Inserting links in a page

Similar to images, there are a variety of points at which you will want to add links. The most common place to insert
a link will be in the body text of a page. You can insert a link into the body text by clicking the Insert link button in
the rich text toolbar.

Whichever way you insert a link, you will be presented with the form displayed below.

142 Chapter 1. Index

Wagtail Documentation, Release 1.1

• Search for an existing page to link to using the search bar at the top of the pop-up.

• Below the search bar you can select the type of link you want to insert. The following types are available:

– Internal link: A link to an existing page within your website.

– External link: A link to a page on another website.

– Email link: A link that will open the user’s default email client with the email address prepopulated.

• You can also navigate through the website to find an internal link via the explorer.

Inserting videos into body content

As well as inserting videos into a carousel, Wagtail’s rich text fields allow you to add videos into the body of a page
by clicking the Add video button in the toolbar.

• Copy and paste the web address for the video (either YouTube or Vimeo) into the URL field and click Insert.

1.6. Using Wagtail: an Editor’s guide 143

Wagtail Documentation, Release 1.1

• A placeholder with the name of the video and a screenshot will be inserted into the text area. Clicking the X in
the top corner will remove the video.

Inserting links to documents into body text

It is possible to insert links to documents held in the CMS into the body text of a web page by clicking the button
above in the rich text field.

The process for doing this is the same as when inserting an image. You are given the choice of either choosing a
document from the CMS, or uploading a new document.

144 Chapter 1. Index

Wagtail Documentation, Release 1.1

Adding multiple items

A common feature of Wagtail is the ability to add more than one of a particular type of field or item. For example, you
can add as many carousel items or related links as you wish.

• Whenever you see the white cross in the green circle illustrated here it means you can add multiple objects or
items to a page. Clicking the icon will display the fields required for that piece of content. The image below
demonstrates this with a Related link item.

1.6. Using Wagtail: an Editor’s guide 145

Wagtail Documentation, Release 1.1

• You can delete an individual item by pressing the trash can in the top-right.

• You can add more items by clicking the link with the white cross again.

• You can reorder your multiple items using the up and down arrows. Doing this will affect the order in which
they are display on the live page.

Required fields

• Fields marked with an asterisk are required. You will not be able to save a draft or submit the page for moderation
without these fields being completed.

• If you try to save/submit the page with some required fields not filled out, you will see the error displayed here.

• The number of validation errors for each of the Promote and Content tabs will appear in a red circle, and the
text, ‘This field is required’, will appear below each field that must be completed.

146 Chapter 1. Index

Wagtail Documentation, Release 1.1

The Promote tab

A common feature of the Edit pages for all page types is the two tabs at the top of the screen. The first, Content, is
where you build the content of the page itself.

The second, Promote, is where you can set all the ‘metadata’ (data about data!) for the page. Below is a description of
all default fields in the promote tab and what they do.

• Slug: The last part of the web address for the page. E.g. the slug for a blog page called
‘The best things on the web’ would be the-best-things-on-the-web (www.example.com/blog/
the-best-things-on-the-web). This is automatically generated from the main page title set in the
Content tab. This can be overridden by adding a new slug into the field. Slugs should be entirely lowercase,
with words separated by hyphens (-).

• Page title: An optional, search-engine friendly page title. This is the title that appears in the tab of your browser
window. It is also the title that would appear in a search engine if the page was returned as part of a set of search
results.

• Show in menus: Ticking this box will ensure that the page is included in automatically generated menus on
your site. Note: Pages will only display in menus if all of its parent pages also have Show in menus ticked.

• Search description: This field allows you to add text that will be displayed if the page appears in search results.
This is especially useful to distinguish between similarly named pages.

1.6. Using Wagtail: an Editor’s guide 147

Wagtail Documentation, Release 1.1

Note: You may see more fields than this in your promote tab. These are just the default fields, but you are free to add
other fields to this section as necessary.

Previewing and submitting pages for moderation

The Save/Preview/Submit for moderation menu is always present at the bottom of the page edit/creation screen. The
menu allows you to perform the following actions, dependent on whether you are an editor, moderator or administrator:

• Save draft: Saves your current changes but doesn’t submit the page for moderation and so won’t be published.
(all roles)

• Submit for moderation: Saves your current changes and submits the page for moderation. A moderator will
be notified and they will then either publish or reject the page. (all roles)

• Preview: Opens a new window displaying the page as it would look if published, but does not save your changes
or submit the page for moderation. (all roles)

• Publish/Unpublish: Clicking either the Publish or Unpublish buttons will take you to a confirmation screen
asking you to confirm that you wish to publish or unpublish this page. If a page is published it will be accessible
from its specific URL and will also be displayed in site search results. (moderators and administrators only)

• Delete: Clicking this button will take you to a confirmation screen asking you to confirm that you wish to delete
the current page. Be sure that this is actually what you want to do, as deleted pages are not recoverable. In many
situations simply unpublishing the page will be enough. (moderators and administrators only)

148 Chapter 1. Index

Wagtail Documentation, Release 1.1

Editing existing pages

There are two ways that you can access the edit screen of an existing page:

• Clicking the title of the page in an Explorer page or in search results.

• Clicking the Edit link below the title in either of the situations above.

1.6. Using Wagtail: an Editor’s guide 149

Wagtail Documentation, Release 1.1

• When editing an existing page the title of the page being edited is displayed at the top of the page.

• The current status of the page is displayed in the top-right.

• You can change the title of the page by clicking into the title field.

• When you are typing into a field, help text is often displayed on the right-hand side of the screen.

Managing documents and images

Wagtail allows you to manage all of your documents and images through their own dedicated interfaces. See below
for information on each of these elements.

Documents

Documents such as PDFs can be managed from the Documents interface, available in the left-hand menu. This
interface allows you to add documents to and remove documents from the CMS.

• Add documents by clicking the Add document button in the top-right.

• Search for documents in the CMS by entering your search term in the search bar. The results will be automati-
cally updated as you type.

• You can also filter the results by Popular tags. Click on a tag to update the search results listing.

• Edit the details of a document by clicking the document title.

150 Chapter 1. Index

Wagtail Documentation, Release 1.1

• When editing a document you can replace the file associated with that document record. This means you can
update documents without having to update the pages on which they are placed. Changing the file will change
it on all pages that use the document.

• Add or remove tags using the Tags field.

• Save or delete documents using the buttons at the bottom of the interface.

Warning: Deleted documents cannot be recovered.

Images

If you want to edit, add or remove images from the CMS outside of the individual pages you can do so from the Images
interface. This is accessed from the left-hand menu.

• Clicking an image will allow you to edit the data associated with it. This includes the Alt text, the photographers
credit, the medium of the subject matter and much more.

Warning: Changing the alt text here will alter it for all occurrences of the image in carousels, but not in inline
images, where the alt text can be set separately.

1.6. Using Wagtail: an Editor’s guide 151

Wagtail Documentation, Release 1.1

Changing the image

• When editing an image you can replace the file associated with that image record. This means you can update
images without having to update the pages on which they are placed.

Warning: Changing the file will change it on all pages that use the image.

Focal point

• This interface allows you to select a focal point which can effect how your image displays to visitors on the
front-end.

• If your images are cropped in some way to make them fit to a specific shape, then the focal point will define the
centre point from which the image is cropped.

• To set the focal point, simply drag a marquee around the most important element of the image.

• If the feature is set up in your website, then on the front-end you will see the crop of this image focusing on
your selection.

Snippets

Snippets allow you to create elements on a website once and reuse them in multiple places. Then, if you want to
change something on the snippet, you only need to change it once, and it will change across all the occurances of the
snippet.

How snippets are used can vary widely between websites. Here are a few examples of things Torchbox have used
snippets for on our clients’ websites:

• For staff contact details, so that they can be added to many pages but managed in one place

• For Adverts, either to be applied sitewide or on individual pages

152 Chapter 1. Index

Wagtail Documentation, Release 1.1

• To manage links in a global area of the site, for example in the footer

• For Calls to Action, such as Newsletter signup blocks, that may be consistent across many different pages

The Snippets menu

• You can access the Snippets menu by clicking on the ‘Snippets’ link in the left-hand menu bar.

• To add or edit a snippet, click on the snippet type you are interested in (often help text will be included to help
you in selecting the right type)

• Click on an individual snippet to edit, or click ‘Add ...’ in the top right to add a new snippet

Warning: Editing a snippet will change it on all of the pages on which it has been used. In the top-right of the
Snippet edit screen you will see a label saying how many times the snippet has been used. Clicking this label will
display a listing of all of these pages.

Adding snippets whilst editing a page

If you are editing a page, and you find yourself in need of a new snippet, do not fear! You can create a new one without
leaving the page you are editing:

• Whilst editing the page, open the snippets interface in a new tab, either by Ctrl+click (cmd+click on Mac) or by
right clicking it and selecting ‘Open in new tab’ from the resulting menu.

• Add the snippet in this new tab as you normally would.

• Return to your existing tab and reopen the Snippet chooser window.

• You should now see your new snippet, even though you didn’t leave the edit page.

1.6. Using Wagtail: an Editor’s guide 153

Wagtail Documentation, Release 1.1

Note: Even though this is possible, it is worth saving your page as a draft as often as possible, to avoid your changes
being lost by navigating away from the edit page accidentally.

Administrator tasks

This section of the guide documents how to perform common tasks as an administrator of a Wagtail site.

Managing users and roles

As an administrator, a common task will be adding, modifying or removing user profiles.

This is done via the ‘Users’ interface, which can be found in the Settings menu, accessible via the left-hand menu bar.

In this interface you can see all of your users, their usernames, their ‘level’ of access (otherwise known as their ‘role’),
and their status, either active or inactive.

You can sort this listing either via Name or Username.

154 Chapter 1. Index

Wagtail Documentation, Release 1.1

Clicking on a user’s name will open their profile details. From here you can then edit that users details.

Note: It is possible to change user’s passwords in this interface, but it is worth encouraging your users to use the
‘Forgotten password’ link on the login screen instead. This should save you some time!

Click the ‘Roles’ tab to edit the level of access your users have. By default there are three roles:

Role Create drafts Publish content Access Settings
Editor Yes No No
Moderator Yes Yes No
Administrator Yes Yes Yes

Promoted search results

Wagtail allows you to promote certain search results dependant on the keyword or phrase entered by the user when
searching. This can be particularly useful when users commonly refer to parts of your organisation via an acronym
that isn’t in official use, or if you want to direct users to a page that when they enter a certain term related to the page
but not included in the text of the page itself.

As a concrete example, one of our clients wanted to direct people who searched for ‘finances’ to their ‘Annual budget
review’ page. The word ‘finances’ is not mentioned in either the title or the body of the target page. So they created a
promoted search result for the word ‘finances’ that pushed the budget page to the very top of the results.

Note: The promoted result will only work if the user types exactly the phrase that you have set it up for. If you have
variations of phrase that you want to take into account, then you must create additional promoted results.

To set up the promoted search results, click on the ‘Promoted search results’ menu item in the ‘Settings’ menu.

1.6. Using Wagtail: an Editor’s guide 155

Wagtail Documentation, Release 1.1

Add a new promoted result from the button in the top right of the resulting screen, or edit an existing promoted result
by clicking on it.

156 Chapter 1. Index

Wagtail Documentation, Release 1.1

When adding a new promoted result, Wagtail provides you with a ‘Choose from popular search terms’ option. This
will show you the most popular terms entered by users into your internal search. You can match this against your
existing promoted results to ensure that users are able to find what they are looking for.

You then add a the result itself by clicking ‘Add recommended page’. You can add multiple results, but be careful
about adding too many, as you may end up hiding all of your organic results with promoted results, which may not be
helpful for users who aren’t really sure what they are looking for.

1.6. Using Wagtail: an Editor’s guide 157

Wagtail Documentation, Release 1.1

Contributing to Wagtail

Issues

The easiest way to contribute to Wagtail is to tell us how to improve it! First, check to see if your bug or feature request
has already been submitted at github.com/torchbox/wagtail/issues. If it has, and you have some supporting information
which may help us deal with it, comment on the existing issue. If not, please create a new one, providing as much
relevant context as possible. For example, if you’re experiencing problems with installation, detail your environment
and the steps you’ve already taken. If something isn’t displaying correctly, tell us what browser you’re using, and
include a screenshot if possible.

Pull requests

If you’re a Python or Django developer, fork and get stuck in! Send us a useful pull request and we’ll post you a t-shirt.
We welcome all contributions, whether they solve problems which are specific to you or they address existing issues.
If you’re stuck for ideas, pick something from the issue list, or email us directly on hello@wagtail.io if you’d like us
to suggest something!

Translations

Wagtail has internationalisation support so if you are fluent in a non-English language you can contribute by localising
the interface.

Translation work should be submitted through Transifex.

158 Chapter 1. Index

https://github.com/torchbox/wagtail/issues
https://github.com/torchbox/wagtail/issues/new
https://github.com/torchbox/wagtail/
https://twitter.com/WagtailCMS/status/432166799464210432/photo/1
https://github.com/torchbox/wagtail/issues?state=open
mailto:hello@wagtail.io
https://www.transifex.com/projects/p/wagtail/

Wagtail Documentation, Release 1.1

Other contributions

We welcome contributions to all aspects of Wagtail. If you would like to improve the design of the user interface, or
extend the documentation, please submit a pull request as above. If you’re not familiar with Github or pull requests,
contact us directly and we’ll work something out.

Development

Using the demo site & Vagrant

We recommend using the Wagtail demo site which uses Vagrant, as a basis for developing Wagtail itself.

Install the wagtaildemo following the instructions in the wagtaildemo README, then continue with the instructions
below.

Clone a copy of the Wagtail codebase alongside your demo site at the same level. So in the directory containing the
wagtaildemo repo, run:

git clone https://github.com/torchbox/wagtail.git

Enable the Vagrantfile included with the demo - this ensures you can edit the Wagtail codebase from outside Vagrant:

cd wagtaildemo
cp Vagrantfile.local.example Vagrantfile.local

If you clone Wagtail’s codebase to somewhere other than one level above, edit Vagrantfile.local to specify the
alternate path.

Lastly, we tell Django to use your freshly cloned Wagtail codebase as the source of Wagtail CMS, not the pip-installed
version that came with wagtaildemo:

cp wagtaildemo/settings/local.py.example wagtaildemo/settings/local.py

Uncomment the lines from import sys onward, and edit the rest of local.py as appropriate.

If your VM is currently running, you’ll then need to run vagrant halt followed by vagrant up for the changes
to take effect.

Development dependencies

Developing Wagtail requires additional Python modules for testing and documentation.

The list of dependencies is in the Wagtail root directory in requirements-dev.txt and if you’ve used the Vagrant
environment above, can be installed thus, from the Wagtail codebase root directory:

pip install -r requirements-dev.txt

Testing

Wagtail has unit tests which should be run before submitting pull requests.

Testing virtual environment (skip this if working in Vagrant box)

If you are using Python 3.3 or above, run the following commands in your shell at the root of the Wagtail repo:

1.7. Contributing to Wagtail 159

mailto:hello@wagtail.io
https://github.com/torchbox/wagtaildemo/
https://github.com/torchbox/wagtaildemo/blob/master/README.md
https://github.com/torchbox/wagtail

Wagtail Documentation, Release 1.1

pyvenv venv
source venv/bin/activate
python setup.py develop
pip install -r requirements-dev.txt

For Python 2, you will need to install the virtualenv package and replace the first line above with:

virtualenv venv

Running the tests

From the root of the Wagtail codebase, run the following command to run all the tests:

python runtests.py

Running only some of the tests

At the time of writing, Wagtail has nearly 1000 tests which takes a while to run. You can run tests for only one part of
Wagtail by passing in the path as an argument to runtests.py:

python runtests.py wagtail.wagtailcore

Testing against PostgreSQL

By default, Wagtail tests against SQLite. If you need to test against a different database, set the DATABASE_ENGINE
environment variable to the name of the Django database backend to test against:

DATABASE_ENGINE=django.db.backends.postgresql_psycopg2 python runtests.py

This will create a new database called test_wagtail in PostgreSQL and run the tests against it.

If you need to use a different user, password or host. Use the PGUSER, PGPASSWORD and PGHOST environment
variables.

Testing Elasticsearch

To test Elasticsearch, you need to have the elasticsearch package installed.

Once installed, Wagtail will attempt to connect to a local instance of Elasticsearch (http://localhost:9200)
and use the index test_wagtail.

If your Elasticsearch instance is located somewhere else, you can set the ELASTICSEARCH_URL environment vari-
able to point to its location:

ELASTICSEARCH_URL=http://my-elasticsearch-instance:9200 python runtests.py

If you no longer want Wagtail to test against Elasticsearch, uninstall the elasticsearch package.

Compiling static assets

All static assets such as JavaScript, CSS, images, and fonts for the Wagtail admin are compiled from their respective
sources by gulp. The compiled assets are not committed to the repository, and are compiled before packaging each
new release. Compiled assets should not be submitted as part of a pull request.

To compile the assets, Node.js and the compilation tool chain need to be installed. Instructions for installing Node.js
can be found on the Node.js download page. Once Node.js is installed, installing the tool chain is done via npm:

$ cd /path/to/wagtail
$ npm install

160 Chapter 1. Index

https://nodejs.org/download/

Wagtail Documentation, Release 1.1

To compile the assets, run:

$ npm run build

This must be done after every change to the source files. To watch the source files for changes and then automatically
recompile the assets, run:

$ npm start

UI Styleguide

Developers working on the Wagtail UI or creating new UI components may wish to test their work against our
Styleguide, which is provided as the contrib module “wagtailstyleguide”.

To install the styleguide module on your site, add it to the list of INSTALLED_APPS in your settings:

INSTALLED_APPS = (
...
'wagtail.contrib.wagtailstyleguide',
...

)

At present the styleguide is static: new UI components must be added to it manually, and there are no hooks into it for
other modules to use. We hope to support hooks in the future.

The styleguide doesn’t currently provide examples of all the core interface components; notably the Page, Document,
Image and Snippet chooser interfaces are not currently represented.

Python coding guidelines

PEP8

We ask that all Python contributions adhere to the PEP8 style guide, apart from the restriction on line length (E501).
The pep8 tool makes it easy to check your code, e.g. pep8 --ignore=E501 your_file.py.

Python 2 and 3 compatibility

All contributions should support Python 2 and 3 and we recommend using the six compatibility library (use the pip
version installed as a dependency, not the version bundled with Django).

Tests

Wagtail has a suite of tests, which we are committed to improving and expanding. See Testing.

We run continuous integration at travis-ci.org/torchbox/wagtail to ensure that no commits or pull requests introduce
test failures. If your contributions add functionality to Wagtail, please include the additional tests to cover it; if your
contributions alter existing functionality, please update the relevant tests accordingly.

CSS coding guidelines

Our CSS is written in Sass, using the SCSS syntax.

1.7. Contributing to Wagtail 161

http://www.python.org/dev/peps/pep-0008/
http://pep8.readthedocs.org/en/latest/
https://pythonhosted.org/six/
https://travis-ci.org/torchbox/wagtail

Wagtail Documentation, Release 1.1

Compiling

The SCSS source files are compiled to CSS using the [gulp](http://gulpjs.com/) build system. This requires
[node.js](http://nodejs.org) to run. To install the libraries required for compiling the SCSS, run the following from
the Wagtail repository root:

$ npm install

To compile the assets, run:

$ npm run build

Alternatively, the SCSS files can be monitored, automatically recompiling when any changes are observed, by running:

$ npm start

Spacing

• Use soft-tabs with a four space indent. Spaces are the only way to guarantee code renders the same in any
person’s environment.

• Put spaces after : in property declarations.

• Put spaces before { in rule declarations.

• Put line breaks between rulesets.

• When grouping selectors, keep individual selectors to a single line.

• Place closing braces of declaration blocks on a new line.

• Each declaration should appear on its own line for more accurate error reporting.

• Add a newline at the end of your .scss files.

• Strip trailing whitespace from your rules.

Formatting

• Use hex color codes #000 unless using rgba() in raw CSS (SCSS’ rgba() function is overloaded to accept
hex colors as a param, e.g., rgba(#000, .5)).

• Use // for comment blocks (instead of /* */).

• Use single quotes for string values background: url('my/image.png') or content: 'moose'

• Avoid specifying units for zero values, e.g., margin: 0; instead of margin: 0px;.

• Strive to limit use of shorthand declarations to instances where you must explicitly set all the available values.

Sass imports

Leave off underscores and file extensions in includes:

// Bad
@import 'components/_widget.scss'

// Better
@import 'components/widget'

162 Chapter 1. Index

http://gulpjs.com/
http://nodejs.org

Wagtail Documentation, Release 1.1

Pixels vs. ems

Use rems for font-size, because they offer absolute control over text. Additionally, unit-less line-height is
preferred because it does not inherit a percentage value of its parent element, but instead is based on a multiplier of
the font-size.

Specificity (classes vs. ids)

Always use classes instead of IDs in CSS code. IDs are overly specific and lead to duplication of CSS.

When styling a component, start with an element + class namespace, prefer direct descendant selectors by default, and
use as little specificity as possible. Here is a good example:

<ul class="category-list">
<li class="item">Category 1
<li class="item">Category 2
<li class="item">Category 3

.category-list { // element + class namespace

// Direct descendant selector > for list items
> li {

list-style-type: disc;
}

// Minimal specificity for all links
a {

color: #f00;
}

}

Class naming conventions

Never reference js- prefixed class names from CSS files. js- are used exclusively from JS files.

Use the SMACSS is- prefix for state rules that are shared between CSS and JS.

Misc

As a rule of thumb, avoid unnecessary nesting in SCSS. At most, aim for three levels. If you cannot help it, step back
and rethink your overall strategy (either the specificity needed, or the layout of the nesting).

Examples

Here are some good examples that apply the above guidelines:

// Example of good basic formatting practices
.styleguide-format {

color: #000;
background-color: rgba(0, 0, 0, .5);
border: 1px solid #0f0;

1.7. Contributing to Wagtail 163

https://smacss.com/book/type-state

Wagtail Documentation, Release 1.1

}

// Example of individual selectors getting their own lines (for error reporting)
.multiple,
.classes,
.get-new-lines {

display: block;
}

// Avoid unnecessary shorthand declarations
.not-so-good {

margin: 0 0 20px;
}
.good {

margin-bottom: 20px;
}

Vendor prefixes

Line up your vendor prefixes.

// Example of good prefix formatting practices
.styleguide-format {

-webkit-transition: opacity 0.2s ease-out;
-moz-transition: opacity 0.2s ease-out;
-ms-transition: opacity 0.2s ease-out;
-o-transition: opacity 0.2s ease-out;

transition: opacity 0.2s ease-out;
}

Don’t write vendor prefixes for border-radius, it’s pretty well supported.

If you’re unsure, you can always check support at caniuse

Linting SCSS

The guidelines are included in a .scss-lint.yml file so that you can check that your code conforms to the style
guide.

Run the linter with scss-lint . from the wagtail project root. You’ll need to have the linter installed to do this.
You can get it by running:

gem install scss-lint

JavaScript coding guidelines

Write JavaScript according to the Airbnb Styleguide, with some exceptions:

• Use soft-tabs with a four space indent. Spaces are the only way to guarantee code renders the same in any
person’s environment.

• We accept snake_case in object properties, such as ajaxResponse.page_title, however camelCase
or UPPER_CASE should be used everywhere else.

164 Chapter 1. Index

http://caniuse.com/
http://github.com/airbnb/javascript

Wagtail Documentation, Release 1.1

Linting and formatting code

Wagtail provides some tooling configuration to help check your code meets the styleguide. You’ll need node.js and
npm on your development machine. Ensure project dependencies are installed by running npm install

Linting code

npm run lint:js

This will lint all the JS in the wagtail project, excluding vendor files and compiled libraries.

Some of the modals are generated via server-side scripts. These include template tags that upset the linter, so modal
workflow JavaScript is excluded from the linter.

Formatting code

npm run format:js

This will perform safe edits to conform your JS code to the styleguide. It won’t touch the line-length, or convert
quotemarks from double to single.

Run the linter after you’ve formatted the code to see what manual fixes you need to make to the codebase.

Changing the linter configuration

Under the hood, the tasks use the JavaScript Code Style library.

To edit the settings for ignored files, or to change the linting rules, edit the .jscsrc file in the wagtail project root.

A complete list of the possible linting rules can be found here: JSCS Rules

Release notes

Wagtail 1.1 release notes

• What’s new

• Upgrade considerations

What’s new

specific() method on PageQuerySet

Usually, an operation that retrieves a queryset of pages (such as homepage.get_children()) will return them
as basic Page instances, which only include the core page data such as title. The specific() method (e.g.
homepage.get_children().specific()) now allows them to be retrieved as their most specific type, using
the minimum number of queries.

“Promoted search results” has moved into its own module

Previously, this was implemented in wagtailsearch but now has been moved into a separate module: wagtail.
contrib.wagtailsearchpromotions

1.8. Release notes 165

http://jscs.info/
http://jscs.info/rules.html

Wagtail Documentation, Release 1.1

Atomic rebuilding of Elasticsearch indexes

The Elasticsearch search backend now accepts an experimental ATOMIC_REBUILD flag which ensures that the ex-
isting search index continues to be available while the update_index task is running. See ATOMIC_REBUILD.

The wagtailapi module now uses Django REST Framework

The wagtailapi module is now built on Django REST Framework and it now also has a library of serialisers that
you can use in your own REST Framework based APIs. No user-facing changes have been made.

We hope to support more REST framework features, such as a browsable API, in future releases.

Permissions fixes in the admin interface

A number of inconsistencies around permissions in the admin interface were fixed in this release:

• Removed all permissions for “User profile” (not used)

• Removed “delete” permission for Images and documents (not used)

• Users can now access images and documents when they only have the “change” permission (previously required
“add” permission as well)

• Permissions for Users now taken from custom user model, if set (previously always used permissions on Djangos
builtin User model)

• Groups and Users now respond consistently to their respective “add”, “change” and “delete” permissions

Searchable snippets

Snippets that inherit from wagtail.wagtailsearch.index.Indexed are now given a search box on the
snippet chooser and listing pages. See Making Snippets Searchable.

Minor features

• Implemented deletion of form submissions

• Implemented pagination in the page chooser modal

• Changed INSTALLED_APPS in project template to list apps in precedence order

• The {% image %} tag now supports filters on the image variable, e.g. {% image
primary_img|default:secondary_img width-500 %}

• Moved the style guide menu item into the Settings sub-menu

• Search backends can now be specified by module (e.g. wagtail.wagtailsearch.backends.
elasticsearch), rather than a specific class (wagtail.wagtailsearch.backends.
elasticsearch.ElasticSearch)

• Added descendant_of filter to the API

• Added optional directory argument to “wagtail start” command

• Non-superusers can now view/edit/delete sites if they have the correct permissions

• Image file size is now stored in the database, to avoid unnecessary filesystem lookups

166 Chapter 1. Index

https://github.com/torchbox/wagtail/blob/stable/1.1.x/wagtail/contrib/wagtailapi/serializers.py

Wagtail Documentation, Release 1.1

• Page URL lookups hit the cache/database less often

• Updated URLs within the admin backend to use namespaces

• The update_index task now indexes objects in batches of 1000, to indicate progress and avoid excessive
memory use

• Added database indexes on PageRevision and Image to improve performance on large sites

• Search in page chooser now uses Wagtail’s search framework, to order results by relevance

• PageChooserPanel now supports passing a list (or tuple) of accepted page types

• The snippet type parameter of SnippetChooserPanel can now be omitted, or passed as a model name
string rather than a model class

• Added aliases for the self template variable to accommodate Jinja as a templating engine: page for pages,
field_panel for field panels / edit handlers, and value for blocks

• Added signposting text to the explorer to steer editors away from creating pages at the root level unless they are
setting up new sites

• “Clear choice” and “Edit this page” buttons are no longer shown on the page field of the group page permissions
form

• Altered styling of stream controls to be more like all other buttons

• Added ability to mark page models as not available for creation using the flag is_creatable; pages that are
abstract Django models are automatically made non-creatable

• New translations for Norwegian Bokmål and Icelandic

Bug fixes

• Text areas in the non-default tab of the page editor now resize to the correct height

• Tabs in “insert link” modal in the rich text editor no longer disappear (Tim Heap)

• H2 elements in rich text fields were accidentally given a click() binding when put insite a collapsible multi field
panel

• The wagtailimages module is now compatible with remote storage backends that do not allow reopening
closed files

• Search no longer crashes when auto-indexing a model that doesn’t have an id field

• The wagtailfrontendcache module’s HTTP backend has been rewritten to reliably direct requests to the
configured cache hostname

• Resizing single pixel images with the “fill” filter no longer raises “ZeroDivisionError” or “tile cannot extend
outside image”

• The queryset returned from search operations when using the database search backend now correctly pre-
serves additional properties of the original query, such as prefetch_related / select_related

• Responses from the external image URL generator are correctly marked as streaming and will no longer fail
when used with Django’s cache middleware

• Page copy now works with pages that use multiple inheritance

• Form builder pages now pick up template variables defined in the get_context method

• When copying a page, IDs of child objects within page revision records were not remapped to the new objects;
this would cause those objects to be lost from the original page when editing the new one

1.8. Release notes 167

Wagtail Documentation, Release 1.1

• Newly added redirects now take effect on all sites, rather than just the site that the Wagtail admin backend was
accessed through

• Add user form no longer throws a hard error on validation failure

Upgrade considerations

“Promoted search results” no longer in wagtailsearch

This feature has moved into a contrib module so is no longer enabled by default.

To re-enable it, add wagtail.contrib.wagtailsearchpromotions to your INSTALLED_APPS:

INSTALLED_APPS = [
...

'wagtail.contrib.wagtailsearchpromotions',

...

If you have references to the wagtail.wagtailsearch.models.EditorsPick model in your project,
you will need to update these to point to the wagtail.contrib.wagtailsearchpromotions.models.
SearchPromotion model instead.

If you created your project using the wagtail start command with Wagtail 1.0, you will probably have references
to this model in the search/views.py file.

is_abstract flag on page models has been replaced by is_creatable

Previous versions of Wagtail provided an undocumented is_abstract flag on page models - not to be confused
with Django’s abstract Meta flag - to indicate that it should not be included in the list of available page types for
creation. (Typically this would be used on model classes that were designed to be subclassed to create new page types,
rather than used directly.) To avoid confusion with Django’s distinct concept of abstract models, this has now been
replaced by a new flag, is_creatable.

If you have used is_abstract = True on any of your models, you should now change this to is_creatable
= False.

It is not necessary to include this flag if the model is abstract in the Django sense (i.e. it has abstract = True in
the model’s Meta class), since it would never be valid to create pages of that type.

Wagtail 1.0 release notes

• What’s changed

• Upgrade considerations

What’s changed

168 Chapter 1. Index

Wagtail Documentation, Release 1.1

StreamField - a field type for freeform content

StreamField provides an editing model for freeform content such as blog posts and news stories, allowing diverse
content types such as text, images, headings, video and more specialised types such as maps and charts to be mixed in
any order. See Freeform page content using StreamField.

Wagtail API - A RESTful API for your Wagtail site

When installed, the new Wagtail API module provides a RESTful web API to your Wagtail site. You can use this for
accessing your raw field content for your sites pages, images and documents in JSON format. See Wagtail API

MySQL support

Wagtail now officially supports MySQL as a database backend.

Django 1.8 support

Wagtail now officially supports running under Django 1.8.

Vanilla project template

The built-in project template is more like the Django built-in one with several Wagtail-specific additions. It includes
bare minimum settings and two apps (home and search).

Minor changes

• Dropped Django 1.6 support

• Dropped Python 2.6 and 3.2 support

• Dropped Elasticsearch 0.90.x support

• Removed dependency on libsass

• Users without usernames can now be created and edited in the admin interface

• Added new translations for Croatian and Finnish

Core

• The Page model now records the date/time that a page was first published, as the field first_published_at

• Increased the maximum length of a page slug from 50 to 255 characters

• Added hooks register_rich_text_embed_handler and register_rich_text_link_handler
for customising link / embed handling within rich text fields

• Page URL paths can now be longer than 255 characters

1.8. Release notes 169

Wagtail Documentation, Release 1.1

Admin

UI

• Improvements to the layout of the left-hand menu footer

• Menu items of custom apps are now highlighted when being used

• Added thousands separator for counters on dashboard

• Added contextual links to admin notification messages

• When copying pages, it is now possible to specify a place to copy to

• Added pagination to the snippets listing and chooser

• Page / document / image / snippet choosers now include a link to edit the chosen item

• Plain text fields in the page editor now use auto-expanding text areas

• Added “Add child page” button to admin userbar

• Added update notifications (See: Wagtail update notifications)

Page editor

• JavaScript includes in the admin backend have been moved to the HTML header, to accommodate form widgets
that render inline scripts that depend on libraries such as jQuery

• The external link chooser in rich text areas now accepts URLs of the form ‘/some/local/path’, to allow linking
to non-Wagtail-controlled URLs within the local site

• Bare text entered in rich text areas is now automatically wrapped in a paragraph element

Edit handlers API

• FieldPanel now accepts an optional widget parameter to override the field’s default form widget

• Page model fields without a FieldPanel are no longer displayed in the form

• No longer need to specify the base model on InlinePanel definitions

• Page classes can specify an edit_handler property to override the default Content / Promote / Settings tabbed
interface. See Customising the tabbed interface.

Other admin changes

• SCSS files in wagtailadmin now use absolute imports, to permit overriding by user stylesheets

• Removed the dependency on LOGIN_URL and LOGIN_REDIRECT_URL settings

• Password reset view names namespaced to wagtailadmin

• Removed the need to add permission check on admin views (now automated)

• Reversing django.contrib.auth.admin.login will no longer lead to Wagtails login view (making it
easier to have frontend login views)

• Added cache-control headers to all admin views. This allows Varnish/Squid/CDN to run on vanilla settings in
front of a Wagtail site

• Date / time pickers now consistently use times without seconds, to prevent JavasSript behaviour glitches when
focusing / unfocusing fields

• Added hook construct_homepage_summary_items for customising the site summary panel on the
admin homepage

• Renamed the construct_wagtail_edit_bird hook to construct_wagtail_userbar

170 Chapter 1. Index

Wagtail Documentation, Release 1.1

• ‘static’ template tags are now used throughout the admin templates, in place of STATIC_URL

Docs

• Support for django-sendfile added

• Documents now served with correct mime-type

• Support for If-Modified-Since HTTP header

Search

• Search view accepts “page” GET parameter in line with pagination

• Added AUTO_UPDATE flag to search backend settings to enable/disable automatically updating the search
index on model changes

Routable pages

• Added a new decorator-based syntax for RoutablePage, compatible with Django 1.8

Bug fixes

• The document_served signal now correctly passes the Document class as sender and the document as
instance

• Image edit page no longer throws OSError when the original image is missing

• Collapsible blocks stay open on any form error

• Document upload modal no longer switches tabs on form errors

• with_metaclass is now imported from Django’s bundled copy of the six library, to avoid errors on Mac
OS X from an outdated system copy of the library being imported

Upgrade considerations

Support for older Django/Python/Elasticsearch versions dropped

This release drops support for Django 1.6, Python 2.6/3.2 and Elasticsearch 0.90.x. Please make sure these are updated
before upgrading.

If you are upgrading from Elasticsearch 0.90.x, you may also need to update the elasticsearch pip package to a
version greater than 1.0 as well.

Wagtail version upgrade notifications are enabled by default

Starting from Wagtail 1.0, the admin dashboard will (for admin users only) perform a check to see if newer releases
are available. This also provides the Wagtail team with the hostname of your Wagtail site. If you’d rather not receive
update notifications, or if you’d like your site to remain unknown, you can disable it by adding this line to your settings
file:

1.8. Release notes 171

Wagtail Documentation, Release 1.1

WAGTAIL_ENABLE_UPDATE_CHECK = False

InlinePanel definitions no longer need to specify the base model

In previous versions of Wagtail, inline child blocks on a page or snippet were defined using a declaration like:

InlinePanel(HomePage, 'carousel_items', label="Carousel items")

It is no longer necessary to pass the base model as a parameter, so this declaration should be changed to:

InlinePanel('carousel_items', label="Carousel items")

The old format is now deprecated; all existing InlinePanel declarations should be updated to the new format.

Custom image models should now set the admin_form_fields attribute

Django 1.8 now requires that all the fields in a ModelForm must be defined in its Meta.fields attribute.

As Wagtail uses Django’s ModelForm for creating image model forms, we’ve added a new attribute called
admin_form_fields that should be set to a tuple of field names on the image model.

See Custom image model for an example.

You no longer need LOGIN_URL and LOGIN_REDIRECT_URL to point to Wagtail admin.

If you are upgrading from an older version of Wagtail, you probably want to remove these from your project settings.

Prevously, these two settings needed to be set to wagtailadmin_login and wagtailadmin_dashboard
respectively or Wagtail would become very tricky to log in to. This is no longer the case and Wagtail should work fine
without them.

RoutablePage now uses decorator syntax for defining views

In previous versions of Wagtail, page types that used the RoutablePageMixin had endpoints configured by setting
their subpage_urls attribute to a list of urls with view names. This will not work on Django 1.8 as view names can
no longer be passed into a url (see: https://docs.djangoproject.com/en/1.8/releases/1.8/#django-conf-urls-patterns).

Wagtail 1.0 introduces a new syntax where each view function is annotated with a @route decorator - see
RoutablePageMixin.

The old subpage_urls convention will continue to work on Django versions prior to 1.8, but this is now deprecated;
all existing RoutablePage definitions should be updated to the decorator-based convention.

Upgrading from the external wagtailapi module.

If you were previously using the external wagtailapi module (which has now become wagtail.contrib.
wagtailapi). Please be aware of the following backwards-incompatible changes:

1. Representation of foreign keys has changed

Foreign keys were previously represented by just the value of their primary key. For example:

172 Chapter 1. Index

https://docs.djangoproject.com/en/1.8/releases/1.8/#django-conf-urls-patterns

Wagtail Documentation, Release 1.1

"feed_image": 1

This has now been changed to add some meta information:

"feed_image": {
"id": 1,
"meta": {

"type": "wagtailimages.Image",
"detail_url": "http://api.example.com/api/v1/images/1/"

}
}

2. On the page detail view, the “parent” field has been moved out of meta

Previously, there was a “parent” field in the “meta” section on the page detail view:

{
"id": 10,
"meta": {

"type": "demo.BlogPage",
"parent": 2

},

...
}

This has now been moved to the top level. Also, the above change to how foreign keys are represented applies to this
field too:

{
"id": 10,
"meta": {

"type": "demo.BlogPage"
},
"parent": {

"id": 2,
"meta": {

"type": "demo.BlogIndexPage"
}

}

...
}

Celery no longer automatically used for sending notification emails

Previously, Wagtail would try to use Celery whenever the djcelery module was installed, even if Celery wasn’t
actually set up. This could cause a very hard to track down problem where notification emails would not be sent so
this functionality has now been removed.

If you would like to keep using Celery for sending notification emails, have a look at: django-celery-email

1.8. Release notes 173

https://pypi.python.org/pypi/django-celery-email

Wagtail Documentation, Release 1.1

Login/Password reset views renamed

It was previously possible to reverse the Wagtail login view using django.contrib.auth.views.login. This
is no longer possible. Update any references to wagtailadmin_login.

Password reset view name has changed from password_reset to wagtailadmin_password_reset.

JavaScript includes in admin backend have been moved

To improve compatibility with third-party form widgets, pages within the Wagtail admin backend now output their
JavaScript includes in the HTML header, rather than at the end of the page. If your project extends the admin back-
end (through the register_admin_menu_item hook, for example) you will need to ensure that all associated
JavaScript code runs correctly from the new location. In particular, any code that accesses HTML elements will need
to be contained in an ‘onload’ handler (e.g. jQuery’s $(document).ready()).

EditHandler internal API has changed

While it is not an official Wagtail API, it has been possible for Wagtail site implementers to define their own
EditHandler subclasses for use in panel definitions, to customise the behaviour of the page / snippet editing
forms. If you have made use of this facility, you will need to update your custom EditHandlers, as this mechanism
has been refactored (to allow EditHandler classes to keep a persistent reference to their corresponding model). If you
have only used Wagtail’s built-in panel types (FieldPanel, InlinePanel, PageChooserPanel and so on),
you are unaffected by this change.

Previously, functions like FieldPanel acted as ‘factory’ functions, where a call such as FieldPanel('title')
constructed and returned an EditHandler subclass tailored to work on a ‘title’ field. These functions now return
an object with a bind_to_model method instead; the EditHandler subclass can be obtained by calling this with
the model class as a parameter. As a guide to updating your custom EditHandler code, you may wish to refer to the
relevant change to the Wagtail codebase.

chooser_panel templates are obsolete

If you have added your own custom admin views to the Wagtail admin (e.g. through the register_admin_urls
hook), you may have used one of the following template includes to incorporate a chooser element for pages, docu-
ments, images or snippets into your forms:

• wagtailadmin/edit_handlers/chooser_panel.html

• wagtailadmin/edit_handlers/page_chooser_panel.html

• wagtaildocs/edit_handlers/document_chooser_panel.html

• wagtailimages/edit_handlers/image_chooser_panel.html

• wagtailsnippets/edit_handlers/snippet_chooser_panel.html

All of these templates are now deprecated. Wagtail now provides a set of Django form widgets for this purpose -
AdminPageChooser, AdminDocumentChooser, AdminImageChooser and AdminSnippetChooser -
which can be used in place of the HiddenInput widget that these form fields were previously using. The field
can then be rendered using the regular wagtailadmin/shared/field.html or wagtailadmin/shared/
field_as_li.html template.

174 Chapter 1. Index

https://github.com/torchbox/wagtail/commit/121c01c7f7db6087a985fa8dc9957bc78b9f6a6a
https://github.com/torchbox/wagtail/commit/121c01c7f7db6087a985fa8dc9957bc78b9f6a6a

Wagtail Documentation, Release 1.1

document_served signal arguments have changed

Previously, the document_served signal (which is fired whenever a user downloads a document) passed the doc-
ument instance as the sender. This has now been changed to correspond the behaviour of Django’s built-in signals;
sender is now the Document class, and the document instance is passed as the argument instance. Any existing
signal listeners that expect to receive the document instance in sender must now be updated to check the instance
argument instead.

Custom image models must specify an admin_form_fields list

Previously, the forms for creating and editing images followed Django’s default behaviour of showing all fields de-
fined on the model; this would include any custom fields specific to your project that you defined by subclassing
AbstractImage and setting WAGTAILIMAGES_IMAGE_MODEL. This behaviour is risky as it may lead to fields
being unintentionally exposed to the user, and so Django has deprecated this, for removal in Django 1.8. Accordingly,
if you create your own custom subclass of AbstractImage, you must now provide an admin_form_fields
property, listing the fields that should appear on the image creation / editing form - for example:

from wagtail.wagtailimages.models import AbstractImage, Image

class MyImage(AbstractImage):
photographer = models.CharField(max_length=255)
has_legal_approval = models.BooleanField()

admin_form_fields = Image.admin_form_fields + ['photographer']

construct_wagtail_edit_bird hook has been renamed

Previously you could customize the Wagtail userbar using the construct_wagtail_edit_bird hook. The
hook has been renamed to construct_wagtail_userbar.

The old hook is now deprecated; all existing construct_wagtail_edit_bird declarations should be updated
to the new hook.

IMAGE_COMPRESSION_QUALITY setting has been renamed

The IMAGE_COMPRESSION_QUALITY setting, which determines the quality of saved JPEG images as a value from
1 to 100, has been renamed to WAGTAILIMAGES_JPEG_QUALITY. If you have used this setting, please update your
settings file accordingly.

Wagtail 0.8.8 release notes

• What’s changed

What’s changed

1.8. Release notes 175

Wagtail Documentation, Release 1.1

Bug fixes

• Form builder no longer raises a TypeError when submitting unchecked boolean field

• Image upload form no longer breaks when using i10n thousand separators

• Multiple image uploader now escapes HTML in filenames

• Retrieving an individual item from a sliced BaseSearchResults object now properly takes the slice offset
into account

• Removed dependency on unicodecsv which fixes a crash on Python 3

• Submitting unicode text in form builder form no longer crashes with UnicodeEncodeError on Python 2

• Creating a proxy model from a Page class no longer crashes in the system check

• Unrecognised embed URLs passed to the |embed filter no longer cause the whole page to crash with an
EmbedNotFoundException

• Underscores no longer get stripped from page slugs

Wagtail 0.8.7 release notes

• What’s changed

What’s changed

Bug fixes

• wagtailfrontendcache no longer tries to purge pages that are not in a site

• The contents of <div> elements in the rich text editor were not being whitelisted

• Due to the above issue, embeds/images in a rich text field would sometimes be saved into the database in their
editor representation

• RoutablePage now prevents subpage_urls from being defined as a property, which would cause a memory
leak

• Added validation to prevent pages being created with only whitespace characters in their title fields

• Users are no longer logged out on changing password when SessionAuthenticationMiddleware (added in Django
1.7) is in use

• Added a workaround for a Python / Django issue that prevented documents with certain non-ASCII filenames
from being served

Wagtail 0.8.6 release notes

• What’s new

• Upgrade considerations

176 Chapter 1. Index

Wagtail Documentation, Release 1.1

What’s new

Minor features

• Translations updated, including new translations for Czech, Italian and Japanese

• The “fixtree” command can now delete orphaned pages

Bug fixes

• django-taggit library updated to 0.12.3, to fix a bug with migrations on SQLite on Django 1.7.2 and above
(https://github.com/alex/django-taggit/issues/285)

• Fixed a bug that caused children of a deleted page to not be deleted if they had a different type

Upgrade considerations

Orphaned pages may need deleting

This release fixes a bug with page deletion introduced in 0.8, where deleting a page with child pages will result in
those child pages being left behind in the database (unless the child pages are of the same type as the parent). This
may cause errors later on when creating new pages in the same position. To identify and delete these orphaned pages,
it is recommended that you run the following command (from the project root) after upgrading to 0.8.6:

./manage.py fixtree

This will output a list of any orphaned pages found, and request confirmation before deleting them.

Since this now makes fixtree an interactive command, a ./manage.py fixtree --noinput option has
been added to restore the previous non-interactive behaviour. With this option enabled, deleting orphaned pages is
always skipped.

Wagtail 0.8.5 release notes

• What’s new

What’s new

Bug fixes

• On adding a new page, the available page types are ordered by the displayed verbose name

• Active admin submenus were not properly closed when activating another

• get_sitemap_urls is now called on the specific page class so it can now be overridden

• (Firefox and IE) Fixed preview window hanging and not refocusing when “Preview” button is clicked again

• Storage backends that return raw ContentFile objects are now handled correctly when resizing images

• Punctuation characters are no longer stripped when performing search queries

1.8. Release notes 177

https://github.com/alex/django-taggit/issues/285

Wagtail Documentation, Release 1.1

• When adding tags where there were none before, it is now possible to save a single tag with multiple words in it

• richtext template tag no longer raises TypeError if None is passed into it

• Serving documents now uses a streaming HTTP response and will no longer break Django’s cache middleware

• User admin area no longer fails in the presence of negative user IDs (as used by django-guardian‘s default
settings)

• Password reset emails now use the BASE_URL setting for the reset URL

• BASE_URL is now included in the project template’s default settings file

Wagtail 0.8.4 release notes

• What’s new

What’s new

Bug fixes

• It is no longer possible to have the explorer and settings menu open at the same time

• Page IDs in page revisions were not updated on page copy, causing subsequent edits to be committed to the
original page instead

• Copying a page now creates a new page revision, ensuring that changes to the title/slug are correctly reflected
in the editor (and also ensuring that the user performing the copy is logged)

• Prevent a race condition when creating Filter objects

• On adding a new page, the available page types are ordered by the displayed verbose name

Wagtail 0.8.3 release notes

• What’s new

• Upgrade considerations

What’s new

Bug fixes

• Added missing jQuery UI sprite files, causing collectstatic to throw errors (most reported on Heroku)

• Page system check for on_delete actions of ForeignKeys was throwing false positives when page class decends
from an abstract class (Alejandro Giacometti)

• Page system check for on_delete actions of ForeignKeys now only raises warnings, not errors

• Fixed a regression where form builder submissions containing a number field would fail with a JSON serialisa-
tion error

178 Chapter 1. Index

Wagtail Documentation, Release 1.1

• Resizing an image with a focal point equal to the image size would result in a divide-by-zero error

• Focal point indicator would sometimes be positioned incorrectly for small or thin images

• Fix: Focal point chooser background colour changed to grey to make working with transparent images easier

• Elasticsearch configuration now supports specifying HTTP authentication parameters as part of the URL, and
defaults to ports 80 (HTTP) and 443 (HTTPS) if port number not specified

• Fixed a TypeError when previewing pages that use RoutablePageMixin

• Rendering image with missing file in rich text no longer crashes the entire page

• IOErrors thrown by underlying image libraries that are not reporting a missing image file are no longer caught

• Fix: Minimum Pillow version bumped to 2.6.1 to work around a crash when using images with transparency

• Fix: Images with transparency are now handled better when being used in feature detection

Upgrade considerations

Port number must be specified when running Elasticsearch on port 9200

In previous versions, an Elasticsearch connection URL in WAGTAILSEARCH_BACKENDS without an explicit port
number (e.g. http://localhost/) would be treated as port 9200 (the Elasticsearch default) whereas the correct
behaviour would be to use the default http/https port of 80/443. This behaviour has now been fixed, so sites running
Elasticsearch on port 9200 must now specify this explicitly - e.g. http://localhost:9200. (Projects using the
default settings, or the settings given in the Wagtail documentation, are unaffected.)

Wagtail 0.8.1 release notes

• What’s new

What’s new

Bug fixes

• Fixed a regression where images would fail to save when feature detection is active

Wagtail 0.8 release notes

• What’s new

• Upgrade considerations

1.8. Release notes 179

Wagtail Documentation, Release 1.1

What’s new

Minor features

• Page operations (creation, publishing, copying etc) are now logged via Python’s logging framework; to con-
figure this, add a logger entry for 'wagtail' or 'wagtail.core' to the LOGGING setup in your settings
file.

• The save button on the page edit page now redirects the user back to the edit page instead of the explorer

• Signal handlers for wagtail.wagtailsearch and wagtail.contrib.wagtailfrontendcache
are now automatically registered when using Django 1.7 or above.

• Added a Django 1.7 system check to ensure that foreign keys from Page models are set to
on_delete=SET_NULL, to prevent inadvertent (and tree-breaking) page deletions

• Improved error reporting on image upload, including ability to set a maximum file size via a new setting
WAGTAILIMAGES_MAX_UPLOAD_SIZE

• The external image URL generator now keeps persistent image renditions, rather than regenerating them on
each request, so it no longer requires a front-end cache.

• Added Dutch translation

Bug fixes

• Replaced references of .username with .get_username() on users for better custom user model support

• Unpinned dependency versions for six and requests to help prevent dependency conflicts

• Fixed TypeError when getting embed HTML with oembed on Python 3

• Made HTML whitelisting in rich text fields more robust at catching disallowed URL schemes such as
jav\tascript:

• created_at timestamps on page revisions were not being preserved on page copy, causing revisions to get
out of sequence

• When copying pages recursively, revisions of sub-pages were being copied regardless of the
copy_revisions flag

• Updated the migration dependencies within the project template to ensure that Wagtail’s own migrations con-
sistently apply first

• The cache of site root paths is now cleared when a site is deleted

• Search indexing now prevents pages from being indexed multiple times, as both the base Page model and the
specific subclass

• Search indexing now avoids trying to index abstract models

• Fixed references to “username” in login form help text for better custom user model support

• Later items in a model’s search_field list now consistently override earlier items, allowing subclasses to redefine
rules from the parent

• Image uploader now accepts JPEG images that PIL reports as being in MPO format

• Multiple checkbox fields on form-builder forms did not correctly save multiple values

• Editing a page’s slug and saving it without publishing could sometimes cause the URL paths of child pages to
be corrupted

180 Chapter 1. Index

Wagtail Documentation, Release 1.1

• latest_revision_created_at was being cleared on page publish, causing the page to drop to the bot-
tom of explorer listings

• Searches on partial_match fields were wrongly applying prefix analysis to the search query as well as the docu-
ment (causing e.g. a query for “water” to match against “wagtail”)

Upgrade considerations

Corrupted URL paths may need fixing

This release fixes a bug in Wagtail 0.7 where editing a parent page’s slug could cause the URL paths of child pages
to become corrupted. To ensure that your database does not contain any corrupted URL paths, it is recommended that
you run ./manage.py set_url_paths after upgrading.

Automatic registration of signal handlers (Django 1.7+)

Signal handlers for the wagtailsearch core app and wagtailfrontendcache contrib app are automatically
registered when using Django 1.7. Calls to register_signal_handlers from your urls.py can be removed.

Change to search API when using database backend

When using the database backend, calling search (either through Page.objects.search() or on the backend
directly) will now return a SearchResults object rather than a Django QuerySet to make the database backend
work more like the Elasticsearch backend.

This change shouldn’t affect most people as SearchResults behaves very similarly to QuerySet. But it may
cause issues if you are calling QuerySet specific methods after calling .search(). Eg: Page.objects.
search("Hello").filter(foo="Bar") (in this case, .filter() should be moved before .search()
and it would work as before).

Removal of validate_image_format from custom image model migrations (Django 1.7+)

If your project is running on Django 1.7, and you have defined a custom image model (by extending the
wagtailimages.AbstractImage class), the migration that creates this model will probably have a reference
to wagtail.wagtailimages.utils.validators.validate_image_format. This module has now
been removed, which will cause manage.py migrate to fail with an ImportError (even if the migration has
already been applied). You will need to edit the migration file to remove the line:

import wagtail.wagtailimages.utils.validators

and the validators attribute of the ‘file’ field - that is, the line:

('file', models.ImageField(upload_to=wagtail.wagtailimages.models.get_upload_to,
width_field='width', height_field='height',
validators=[wagtail.wagtailimages.utils.validators.validate_image_format],
verbose_name='File')),

should become:

('file', models.ImageField(upload_to=wagtail.wagtailimages.models.get_upload_to,
width_field='width', height_field='height', verbose_name='File')),

1.8. Release notes 181

Wagtail Documentation, Release 1.1

Wagtail 0.7 release notes

• What’s new

• Upgrade considerations

What’s new

New interface for choosing image focal point

When editing images, users can now specify a ‘focal point’ region that cropped versions of the image will be centred
on. Previously the focal point could only be set automatically, through image feature detection.

Groups and Sites administration interfaces

The main navigation menu has been reorganised, placing site configuration options in a ‘Settings’ submenu. This
includes two new items, which were previously only available through the Django admin backend: ‘Groups’, for
setting up user groups with a specific set of permissions, and ‘Sites’, for managing the list of sites served by this
Wagtail instance.

Page locking

Moderators and administrators now have the ability to lock a page, preventing further edits from being made to that
page until it is unlocked again.

182 Chapter 1. Index

Wagtail Documentation, Release 1.1

1.8. Release notes 183

Wagtail Documentation, Release 1.1

Minor features

• The content_type template filter has been removed from the project template, as the same thing can be
accomplished with self.get_verbose_name|slugify.

• Page copy operations now also copy the page revision history.

• Page models now support a parent_page_types property in addition to subpage types, to restrict the
types of page they can be created under.

• register_snippet can now be invoked as a decorator.

• The project template (used when running wagtail start) has been updated to Django 1.7.

• The ‘boost’ applied to the title field on searches has been reduced from 100 to 2.

• The type method of PageQuerySet (used to filter the queryset to a specific page type) now includes sub-
classes of the given page type.

• The update_index management command now updates all backends listed in
WAGTAILSEARCH_BACKENDS, or a specific one passed on the command line, rather than just the de-
fault backend.

• The ‘fill’ image resize method now supports an additional parameter defining the closeness of the crop. See
Using images in templates

• Added support for invalidating Cloudflare caches. See Frontend cache invalidator

• Pages in the explorer can now be ordered by last updated time.

Bug fixes

• The ‘wagtail start’ command now works on Windows and other environments where the django-admin.py
executable is not readily accessible.

• The external image URL generator no longer stores generated images in Django’s cache; this was an uninten-
tional side-effect of setting cache control headers.

• The Elasticsearch backend can now search querysets that have been filtered with an ‘in’ clause of a non-list type
(such as a ValuesListQuerySet).

• Logic around the has_unpublished_changes flag has been fixed, to prevent issues with the ‘View draft’
button failing to show in some cases.

• It is now easier to move pages to the beginning and end of their section

• Image rendering no longer creates erroneous duplicate Rendition records when the focal point is blank.

Upgrade considerations

Addition of wagtailsites app

The Sites administration interface is contained within a new app, wagtailsites. To enable this on an existing
Wagtail project, add the line:

'wagtail.wagtailsites',

to the INSTALLED_APPS list in your project’s settings file.

184 Chapter 1. Index

Wagtail Documentation, Release 1.1

Title boost on search reduced to 2

Wagtail’s search interface applies a ‘boost’ value to give extra weighting to matches on the title field. The original boost
value of 100 was found to be excessive, and in Wagtail 0.7 this has been reduced to 2. If you have used comparable
boost values on other fields, to give them similar weighting to title, you may now wish to reduce these accordingly.
See Indexing.

Addition of locked field to Page model

The page locking mechanism adds a locked field to wagtailcore.Page, defaulting to False. Any application code
working with Page objects should be unaffected, but any code that creates page records using direct SQL, or within
existing South migrations using South’s frozen ORM, will fail as this code will be unaware of the new database
column. To fix a South migration that fails in this way, add the following line to the 'wagtailcore.page' entry
at the bottom of the migration file:

'locked': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),

Update to focal_point_key field on custom Rendition models

The focal_point_key field on wagtailimages.Rendition has been changed to null=False, to fix an issue with
duplicate renditions being created. If you have defined a custom Rendition model in your project (by extending the
wagtailimages.AbstractRendition class), you will need to apply a migration to make the corresponding
change on your custom model. Unfortunately neither South nor Django 1.7’s migration system are able to generate
this automatically - you will need to customise the migration produced by ./manage.py schemamigration /
./manage.py makemigrations, using the wagtailimages migration as a guide:

• https://github.com/torchbox/wagtail/blob/master/wagtail/wagtailimages/south_migrations/0004_auto__chg_
field_rendition_focal_point_key.py (for South / Django 1.6)

• https://github.com/torchbox/wagtail/blob/master/wagtail/wagtailimages/migrations/0004_make_focal_point_
key_not_nullable.py (for Django 1.7)

Wagtail 0.6 release notes

• What’s new

• Upgrade considerations

• Deprecated features

What’s new

Project template and start project command

Wagtail now has a basic project template built in to make starting new projects much easier.

To use it, install wagtail onto your machine and run wagtail start project_name.

1.8. Release notes 185

https://github.com/torchbox/wagtail/blob/master/wagtail/wagtailimages/south_migrations/0004_auto__chg_field_rendition_focal_point_key.py
https://github.com/torchbox/wagtail/blob/master/wagtail/wagtailimages/south_migrations/0004_auto__chg_field_rendition_focal_point_key.py
https://github.com/torchbox/wagtail/blob/master/wagtail/wagtailimages/migrations/0004_make_focal_point_key_not_nullable.py
https://github.com/torchbox/wagtail/blob/master/wagtail/wagtailimages/migrations/0004_make_focal_point_key_not_nullable.py

Wagtail Documentation, Release 1.1

Django 1.7 support

Wagtail can now be used with Django 1.7.

Minor features

• A new template tag has been added for reversing URLs inside routable pages. See The routablepageurl template
tag.

• RoutablePage can now be used as a mixin. See wagtail.contrib.wagtailroutablepage.models.
RoutablePageMixin.

• MenuItems can now have bundled JavaScript

• Added the register_admin_menu_item hook for registering menu items at startup. See Hooks

• Added a version indicator into the admin interface (hover over the wagtail to see it)

• Added Russian translation

Bug fixes

• Page URL generation now returns correct URLs for sites that have the main ‘serve’ view rooted somewhere
other than ‘/’.

• Search results in the page chooser now respect the page_type parameter on PageChooserPanel.

• Rendition filenames are now prevented from going over 60 chars, even with a large focal_point_key.

• Child relations that are defined on a model’s superclass (such as the base Page model) are now picked up
correctly by the page editing form, page copy operations and the replace_text management command.

• Tags on images and documents are now committed to the search index immediately on saving.

Upgrade considerations

All features deprecated in 0.4 have been removed

See: Deprecated features

Search signal handlers have been moved

If you have an import in your urls.py file like from wagtail.wagtailsearch import
register_signal_handlers, this must now be changed to from wagtail.wagtailsearch.
signal_handlers import register_signal_handlers

Deprecated features

• The wagtail.wagtailsearch.indexed module has been renamed to wagtail.wagtailsearch.
index

186 Chapter 1. Index

Wagtail Documentation, Release 1.1

Wagtail 0.5 release notes

• What’s new

• Upgrade considerations

What’s new

Multiple image uploader

The image uploader UI has been improved to allow multiple images to be uploaded at once.

Image feature detection

Wagtail can now apply face and feature detection on images using OpenCV, and use this to intelligently crop images.

Feature Detection

Using images outside Wagtail

In normal use, Wagtail will generate resized versions of images at the point that they are referenced on a template,
which means that those images are not easily accessible for use outside of Wagtail, such as displaying them on external
sites. Wagtail now provides a way to obtain URLs to your images, at any size.

Using images outside Wagtail

RoutablePage

A RoutablePage model has been added to allow embedding Django-style URL routing within a page.

RoutablePageMixin

Usage stats for images, documents and snippets

It’s now easier to find where a particular image, document or snippet is being used on your site.

Set the WAGTAIL_USAGE_COUNT_ENABLED setting to True and an icon will appear on the edit page showing you
which pages they have been used on.

Copy Page action

The explorer interface now offers the ability to copy pages, with or without subpages.

1.8. Release notes 187

http://opencv.org/

Wagtail Documentation, Release 1.1

Minor features

Core

• Hooks can now be defined using decorator syntax:

@hooks.register('construct_main_menu')
def construct_main_menu(request, menu_items):

menu_items.append(
MenuItem('Kittens!', '/kittens/', classnames='icon icon-

→˓folder-inverse', order=1000)
)

• The lxml library (used for whitelisting and rewriting of rich text fields) has been replaced with the
pure-python html5lib library, to simplify installation.

• A page_unpublished signal has been added.

Admin

• Explorer nav now rendered separately and fetched with AJAX when needed.

This improves the general performance of the admin interface for large sites.

Bug fixes

• Updates to tag fields are now properly committed to the database when publishing directly from the page edit
interface.

Upgrade considerations

Urlconf entries for /admin/images/, /admin/embeds/ etc need to be removed

If you created a Wagtail project prior to the release of Wagtail 0.3, it is likely to contain the following entries in its
urls.py:

TODO: some way of getting wagtailimages to register itself within
→˓wagtailadmin so that we
don't have to define it separately here
url(r'^admin/images/', include(wagtailimages_urls)),
url(r'^admin/embeds/', include(wagtailembeds_urls)),
url(r'^admin/documents/', include(wagtaildocs_admin_urls)),
url(r'^admin/snippets/', include(wagtailsnippets_urls)),
url(r'^admin/search/', include(wagtailsearch_admin_urls)),
url(r'^admin/users/', include(wagtailusers_urls)),
url(r'^admin/redirects/', include(wagtailredirects_urls)),

These entries (and the corresponding from wagtail.wagtail* import ... lines) need to be removed from
urls.py. (The entry for /admin/ should be left in, however.)

Since Wagtail 0.3, the wagtailadmin module automatically takes care of registering these URL subpaths, so these
entries are redundant, and these urlconf modules are not guaranteed to remain stable and backwards-compatible in
future. Leaving these entries in place will now cause an ImproperlyConfigured exception to be thrown.

188 Chapter 1. Index

Wagtail Documentation, Release 1.1

New fields on Image and Rendition models

Several new fields have been added to the Image and Rendition models to support Feature Detection. These will be
added to the database when you run ./manage.py migrate. If you have defined a custom image model (by
extending the wagtailimages.AbstractImage and wagtailimages.AbstractRendition classes and
specifying WAGTAILIMAGES_IMAGE_MODEL in settings), the change needs to be applied to that model’s database
table too. Running the command:

./manage.py schemamigration myapp --auto add_image_focal_point_fields

(with ‘myapp’ replaced with your app name) will generate the necessary migration file.

South upgraded to 1.0

In preparation for Django 1.7 support in a future release, Wagtail now depends on South 1.0, and its migration files have
been moved from migrations to south_migrations. Older versions of South will fail to find the migrations
in the new location.

If your project’s requirements file (most commonly requirements.txt or requirements/base.txt) references a specific
older version of South, this must be updated to South 1.0.

Wagtail 0.4.1 release notes

Bug fixes

• ElasticSearch backend now respects the backward-compatible URLS configuration setting, in addition to
HOSTS

• Documentation fixes

Wagtail 0.4 release notes

• What’s new

• Backwards-incompatible changes

• Deprecated features

What’s new

Private Pages

Wagtail now supports password protecting pages on the frontend, allowing sections of your website to be made private.

Private pages

Python 3 support

Wagtail now supports Python 3.2, 3.3 and 3.4.

1.8. Release notes 189

Wagtail Documentation, Release 1.1

Scheduled publishing

Editors can now schedule pages to be published or unpublished at specified times.

A new management command has been added (publish_scheduled_pages) to publish pages that have been scheduled
by an editor.

Search on QuerySet with Elasticsearch

It’s now possible to perform searches with Elasticsearch on PageQuerySet objects:

>>> from wagtail.wagtailcore.models import Page
>>> Page.objects.live().descendant_of(events_index).search("Hello")
[<Page: Event 1>, <Page: Event 2>]

Sitemap generation

A new module has been added (wagtail.contrib.wagtailsitemaps) which produces XML sitemaps for
Wagtail sites.

Sitemap generator

Front-end cache invalidation

A new module has been added (wagtail.contrib.wagtailfrontendcache) which invalidates pages in a
frontend cache when they are updated or deleted in Wagtail.

Frontend cache invalidator

Notification preferences

Users can now decide which notifications they receive from Wagtail using a new “Notification preferences” section
located in the account settings.

Minor features

Core

• Any extra arguments given to Page.serve are now passed through to get_context and get_template

• Added in_menu and not_in_menu methods to PageQuerySet

• Added search method to PageQuerySet

• Added get_next_siblings and get_prev_siblings to Page

• Added page_published signal

• Added copy method to Page to allow copying of pages

• Added construct_whitelister_element_rules hook for customising the HTML whitelist used
when saving RichText fields

190 Chapter 1. Index

Wagtail Documentation, Release 1.1

• Support for setting a subpage_types property on Page models, to define which page types are allowed as
subpages

Admin

• Removed the “More” section from the menu

• Added pagination to page listings

• Added a new datetime picker widget

• Updated hallo.js to version 1.0.4

• Aesthetic improvements to preview experience

• Login screen redirects to dashboard if user is already logged in

• Snippets are now ordered alphabetically

• Added init_new_page signal

Search

• Added a new way to configure searchable/filterable fields on models

• Added get_indexed_objects allowing developers to customise which objects get added to the search
index

• Major refactor of Elasticsearch backend

• Use match instead of query_string queries

• Fields are now indexed in Elasticsearch with their correct type

• Filter fields are no longer included in _all

• Fields with partial matching are now indexed together into _partials

Images

• Added original as a resizing rule supported by the {% image %} tag

• image tag now accepts extra keyword arguments to be output as attributes on the img tag

• Added an attrs property to image rendition objects to output src, width, height and alt attributes all
in one go

Other

• Added styleguide, for Wagtail developers

Bug fixes

• Animated GIFs are now coalesced before resizing

• The Wand backend clones images before modifying them

1.8. Release notes 191

Wagtail Documentation, Release 1.1

• The admin breadcrumb is now positioned correctly on mobile

• The page chooser breadcrumb now updates the chooser modal instead of linking to Explorer

• Embeds - fixed crash when no HTML field is sent back from the embed provider

• Multiple sites with same hostname but different ports are now allowed

• It is no longer possible to create multiple sites with is_default_site = True

Backwards-incompatible changes

ElasticUtils replaced with elasticsearch-py

If you are using the elasticsearch backend, you must install the elasticsearch module into your environment.

Note: If you are using an older version of Elasticsearch (< 1.0) you must install elasticsearch version 0.4.x.

Addition of expired column may break old data migrations involving pages

The scheduled publishing mechanism adds an expired field to wagtailcore.Page, defaulting to False. Any applica-
tion code working with Page objects should be unaffected, but any code that creates page records using direct SQL, or
within existing South migrations using South’s frozen ORM, will fail as this code will be unaware of the expired
database column. To fix a South migration that fails in this way, add the following line to the 'wagtailcore.
page' entry at the bottom of the migration file:

'expired': ('django.db.models.fields.BooleanField', [], {'default': 'False'}),

Deprecated features

Template tag libraries renamed

The following template tag libraries have been renamed:

• pageurl => wagtailcore_tags

• rich_text => wagtailcore_tags

• embed_filters => wagtailembeds_tags

• image_tags => wagtailimages_tags

The old names will continue to work, but output a DeprecationWarning - you are advised to update any {%
load %} tags in your templates to refer to the new names.

New search field configuration format

indexed_fields is now deprecated and has been replaced by a new search field configuration format called
search_fields. See Indexing for how to define a search_fields property on your models.

192 Chapter 1. Index

Wagtail Documentation, Release 1.1

Page.route method should now return a RouteResult

Previously, the route method called serve and returned an HttpResponse object. This has now been split up so
serve is called separately and route must now return a RouteResult object.

If you are overriding Page.route on any of your page models, you will need to update the method to return a
RouteResult object. The old method of returning an HttpResponse will continue to work, but this will throw
a DeprecationWarning and bypass the before_serve_page hook, which means in particular that Private
pages will not work on those page types. See Adding Endpoints with Custom route() Methods.

Wagtailadmins hooks module has moved to wagtailcore

If you use any wagtail_hooks.py files in your project, you may have an import like: from wagtail.
wagtailadmin import hooks

Change this to: from wagtail.wagtailcore import hooks

Miscellaneous

• Page.show_as_mode replaced with Page.serve_preview

• Page.get_page_modes method replaced with Page.preview_modes property

• Page.get_other_siblings replaced with Page.get_siblings(inclusive=False)

1.8. Release notes 193

Wagtail Documentation, Release 1.1

194 Chapter 1. Index

Python Module Index

w
wagtail.contrib.wagtailroutablepage, 101
wagtail.contrib.wagtailroutablepage.models,

102
wagtail.contrib.wagtailsearchpromotions,

119
wagtail.wagtailadmin.edit_handers, 78
wagtail.wagtailcore.models, 84
wagtail.wagtailcore.query, 91

195

Wagtail Documentation, Release 1.1

196 Python Module Index

Index

A
ancestor_of() (wagtail.wagtailcore.query.PageQuerySet

method), 92
approve_moderation() (wag-

tail.wagtailcore.models.PageRevision method),
89

as_page_object() (wag-
tail.wagtailcore.models.PageRevision method),
89

B
base.py, 127

C
child_of() (wagtail.wagtailcore.query.PageQuerySet

method), 92
children (wagtail.wagtailadmin.edit_handers.FieldRowPanel

attribute), 80
children (wagtail.wagtailadmin.edit_handers.MultiFieldPanel

attribute), 79
classname (wagtail.wagtailadmin.edit_handers.FieldPanel

attribute), 78
classname (wagtail.wagtailadmin.edit_handers.FieldRowPanel

attribute), 80
content_json (wagtail.wagtailcore.models.PageRevision

attribute), 88
content_type (wagtail.wagtailcore.models.Page attribute),

84
created_at (wagtail.wagtailcore.models.PageRevision at-

tribute), 88

D
descendant_of() (wagtail.wagtailcore.query.PageQuerySet

method), 91
dev.py, 127

F
field_name (wagtail.wagtailadmin.edit_handers.FieldPanel

attribute), 78

FieldPanel (class in wagtail.wagtailadmin.edit_handers),
78

FieldRowPanel (class in wag-
tail.wagtailadmin.edit_handers), 80

fill, 22
find_for_request() (wagtail.wagtailcore.models.Site static

method), 87
first_published_at (wagtail.wagtailcore.models.Page at-

tribute), 84
full_url (wagtail.wagtailcore.models.Page attribute), 85

G
get_ancestors() (wagtail.wagtailcore.models.Page

method), 86
get_context() (wagtail.wagtailcore.models.Page method),

85
get_descendants() (wagtail.wagtailcore.models.Page

method), 86
get_siblings() (wagtail.wagtailcore.models.Page method),

86
get_site_root_paths() (wagtail.wagtailcore.models.Site

static method), 88
get_subpage_urls() (wag-

tail.contrib.wagtailroutablepage.models.RoutablePageMixin
class method), 102

get_template() (wagtail.wagtailcore.models.Page
method), 85

group (wagtail.wagtailcore.models.GroupPagePermission
attribute), 89

GroupPagePermission (class in wag-
tail.wagtailcore.models), 89

H
has_unpublished_changes (wag-

tail.wagtailcore.models.Page attribute), 84
heading (wagtail.wagtailadmin.edit_handers.MultiFieldPanel

attribute), 79
height, 22
hostname (wagtail.wagtailcore.models.Site attribute), 87

197

Wagtail Documentation, Release 1.1

I
in_menu() (wagtail.wagtailcore.query.PageQuerySet

method), 91
InlinePanel (class in wagtail.wagtailadmin.edit_handers),

79
is_creatable (wagtail.wagtailcore.models.Page attribute),

87
is_default_site (wagtail.wagtailcore.models.Site at-

tribute), 87
is_latest_revision() (wag-

tail.wagtailcore.models.PageRevision method),
89

L
live (wagtail.wagtailcore.models.Page attribute), 84
live() (wagtail.wagtailcore.query.PageQuerySet method),

91
local.py, 127

M
max, 22
min, 22
MultiFieldPanel (class in wag-

tail.wagtailadmin.edit_handers), 79

N
not_ancestor_of() (wag-

tail.wagtailcore.query.PageQuerySet method),
92

not_descendant_of() (wag-
tail.wagtailcore.query.PageQuerySet method),
92

not_live() (wagtail.wagtailcore.query.PageQuerySet
method), 91

not_page() (wagtail.wagtailcore.query.PageQuerySet
method), 91

O
objects (wagtail.wagtailcore.models.PageRevision

attribute), 89
Orderable (class in wagtail.wagtailcore.models), 90
Original, 25
original, 23
owner (wagtail.wagtailcore.models.Page attribute), 84

P
Page (class in wagtail.wagtailcore.models), 84, 85
page (wagtail.wagtailcore.models.GroupPagePermission

attribute), 89
page (wagtail.wagtailcore.models.PageRevision at-

tribute), 88
page (wagtail.wagtailcore.models.PageViewRestriction

attribute), 90

page() (wagtail.wagtailcore.query.PageQuerySet
method), 91

PageChooserPanel (class in wag-
tail.wagtailadmin.edit_handers), 80

PageQuerySet (class in wagtail.wagtailcore.query), 91
PageRevision (class in wagtail.wagtailcore.models), 88,

89
PageViewRestriction (class in wag-

tail.wagtailcore.models), 90
parent_page_types (wagtail.wagtailcore.models.Page at-

tribute), 86
password (wagtail.wagtailcore.models.PageViewRestriction

attribute), 90
password_required_template (wag-

tail.wagtailcore.models.Page attribute), 86
permission_type (wagtail.wagtailcore.models.GroupPagePermission

attribute), 90
port (wagtail.wagtailcore.models.Site attribute), 87
preview_modes (wagtail.wagtailcore.models.Page at-

tribute), 85
production.py, 127
public() (wagtail.wagtailcore.query.PageQuerySet

method), 93
publish() (wagtail.wagtailcore.models.PageRevision

method), 89

R
reject_moderation() (wag-

tail.wagtailcore.models.PageRevision method),
89

Resize to fill, 25
Resize to height, 25
Resize to max, 25
Resize to min, 25
Resize to width, 25
resolve_subpage() (wag-

tail.contrib.wagtailroutablepage.models.RoutablePageMixin
method), 102

reverse_subpage() (wag-
tail.contrib.wagtailroutablepage.models.RoutablePageMixin
method), 103

root_page (wagtail.wagtailcore.models.Site attribute), 87
root_url (wagtail.wagtailcore.models.Site attribute), 88
RoutablePageMixin (class in wag-

tail.contrib.wagtailroutablepage.models),
102

routablepageurl() (in module wag-
tail.contrib.wagtailroutablepage.templatetags.wagtailroutablepage_tags),
103

route() (wagtail.wagtailcore.models.Page method), 85

S
search() (wagtail.wagtailcore.query.PageQuerySet

method), 93

198 Index

Wagtail Documentation, Release 1.1

search_description (wagtail.wagtailcore.models.Page at-
tribute), 85

search_fields (wagtail.wagtailcore.models.Page attribute),
86

seo_title (wagtail.wagtailcore.models.Page attribute), 85
serve() (wagtail.wagtailcore.models.Page method), 85
serve_preview() (wagtail.wagtailcore.models.Page

method), 85
show_in_menus (wagtail.wagtailcore.models.Page

attribute), 85
sibling_of() (wagtail.wagtailcore.query.PageQuerySet

method), 92
Site (class in wagtail.wagtailcore.models), 87
slug (wagtail.wagtailcore.models.Page attribute), 84
sort_order (wagtail.wagtailcore.models.Orderable at-

tribute), 90
specific (wagtail.wagtailcore.models.Page attribute), 85
specific() (wagtail.wagtailcore.query.PageQuerySet

method), 93
specific_class (wagtail.wagtailcore.models.Page at-

tribute), 85
submitted_for_moderation (wag-

tail.wagtailcore.models.PageRevision at-
tribute), 88

submitted_revisions (wag-
tail.wagtailcore.models.PageRevision at-
tribute), 89

subpage_types (wagtail.wagtailcore.models.Page at-
tribute), 86

T
title (wagtail.wagtailcore.models.Page attribute), 84
type() (wagtail.wagtailcore.query.PageQuerySet method),

93

U
unpublish() (wagtail.wagtailcore.query.PageQuerySet

method), 93
url (wagtail.wagtailcore.models.Page attribute), 85
user (wagtail.wagtailcore.models.PageRevision attribute),

88

W
wagtail.contrib.wagtailroutablepage (module), 101
wagtail.contrib.wagtailroutablepage.models (module),

102
wagtail.contrib.wagtailsearchpromotions (module), 119
wagtail.wagtailadmin.edit_handers (module), 78
wagtail.wagtailcore.models (module), 84
wagtail.wagtailcore.query (module), 91
wagtail.wagtaildocs.edit_handlers.DocumentChooserPanel

(class in wagtail.wagtailadmin.edit_handers),
81

wagtail.wagtailimages.edit_handlers.ImageChooserPanel
(class in wagtail.wagtailadmin.edit_handers),
81

wagtail.wagtailsnippets.edit_handlers.SnippetChooserPanel
(class in wagtail.wagtailadmin.edit_handers),
82

widget (wagtail.wagtailadmin.edit_handers.FieldPanel at-
tribute), 79

width, 22

Index 199

	Index
	Getting started
	Topics
	Advanced topics
	Reference
	Support
	Using Wagtail: an Editor's guide
	Contributing to Wagtail
	Release notes

	Python Module Index

