

    
      
          
            
  
Vyper

[image: Vyper logo]

Vyper는 Ethereum Virtual Machine (EVM) [http://ethdocs.org/en/latest/introduction/what-is-ethereum.html#ethereum-virtual-machine] 을 타겟으로 한 컨트랙트 기반의 파이써닉한 언어입니다.


원칙과 목표


	보안: Vyper를 통해 안전한 스마트컨트랙트를 자연스럽게 만들 수 있어야 한다.


	언어와 컴파일러에 대한 단순함: 언어와 컴파일러 임플리멘테이션은 간단해야만 한다.


	감사가능성: Vyper 코드는 최대한 인간친화적이어야한다. 또한, 최대한 오해 할만한 코드를 쓰는 것을 최대한 막을 수 있어야한다. 코드 해석의 간결성은 코드 작성의 간셜성보다 중요하다.
또한 Vyper 저숙련자(그리고 일반적인 프로그래밍에 대한 저숙련자)에 대한 코드 해석의 간결성은 어느정도 중요하다.




왜냐하면 Vyper는 다음과 같은 기능을 제공하는 것이 목적이기 때문이다.


	경계 및 오버플로우 검사: 대수 계산 뿐만 아니라 배열 접근에도 검사를 함


	부호를 지닌 정수와 고정 소수점에 대한 지원


	결정 가능성: 어떠한 함수에 대해서도 가스 소비량의 적절한 상한치를 계산 가능해야만한다.


	강 타입: 단위계의 도입 (e.g. 타임스탬프, 타임델타, 초, wei, 초당 wei, 평방미터)


	작고 이해가 가능한 컴파일러 코드


	순수 함수의 제한된 지원: 상수라고 적힌 어떠한 것들도 상태의 변경을 일으킬 수 없다.




원칙와 목표에 따라, Vyper는 다음과 같은 기능을 제공하지 않을 것입니다.


	수식어(Modifiers): 예를 들어 솔리디티에서는 실행 전이나 후에 검사를 포함시키는 코드를 추가하거나, 상태를 변경하거나 등의 일을 할 수 있는 mod1 같은 것을 포함하는 function foo() mod1 { ... } 를 정의할 수 있습니다.
Vyper는 코드를 잘못 쓸 가능성이 너무 크기에 수식어를 지원하지 않습니다. mod1 은 상태 변화나, 임의의 이전 상태나, 이후 상태들을 추가할 수 있는 것에 비해 너무 무해하게 보입니다. 또한, 수식어는 파일 이리저리를 뛰어다니면서 실행되는 부분을 찾아야하기 떄문에,
감사가능성을 떨어뜨립니다. 수식어의 용례는 대부분 실행 전에 단순 검증에 국한되기에, 그냥 asserts를 추가하여 인라인에서 검사하도록 코드를 짜는 것을 권장합니다.


	클래스 상속: 클래스 상속은 사람들에게 여러 파일들을 확인하면서 이 프로그램이 무엇을 하는지를 이해하도록 요구를 하며, (어떤 클래스의 'X'함수가 실제로 사용되는거지? 등의) 충돌하는 함수의 우선 순위 규칙을 파악하는데 시간을 쓰게 합니다.
그러므로, 코드는 너무 복잡해서 이해하기 어려워지고, 이는 감사가능성을 떨어뜨립니다.


	인라인 어셈블리: 인라인 어셈블리는 추가하는 것은 변수명을 추적하지 못하게 하여, 어떤 부분이 읽히고 쓰이는지를 알 수 없게 합니다.


	함수 오버로딩 - 이것은 주어진 시간에 어떤 함수가 호출되는지에 대한 엄청난 혼란을 가져옵니다. 그러므로 좀 더 코드를 잘못 쓰게 됩니다. ( foo("hello") 가 "hello"를 로깅하고, foo("hello","world") 가 당신의 자금을 훔치는 코드 라던지)
또 다른 문제는 오버로딩이 있는 함수들은 어떤 함수를 호출하는지에 대해서 추적을 해야할 때 이를 찾아내는 것을 더 어렵게 만듭니다.


	연산자 오버로딩: 연산자 오버로딩은 잘못된 코드를 도출합니다. 예를 들어 "+"가 원치 않는 사용자에게 자금을 보내기 등의 한 눈에 봐서는 알 수 없는 명령을 실행 시키도록 오버로딩 될 수 있다는 것입니다.


	재귀 호출: 재귀호출은 가스 제한의 상한치를 알 수 없게 만드므로, 가스 제한 공격의 원인을 제공합니다.


	무한한 길이의 루프: 재귀 호출과 비슷하게, 무한한 길이의 루프는 상한치를 측정 불가능하게 하므로, 가스 제한 공격의 원인을 제공합니다.


	이진 고정 소수점: 십진 고정 소수점이 더 낫습니다. 그 이유는 코드에 쓰인 그대로의 값을 지니기 때문입니다. 이진 고정 소수점의 경우 버림이 종종 필요한데 (e.g. (0.2) 10 = (0.001100110011...)2, 언젠가는 짤림)
이는 파이썬에서 0.3 + 0.3 + 0.3 + 0.1 != 1과 같은 형태의 영양가 없는 결과를 내 놓습니다.




일부 변경점들은 메트로폴리스 (패치) 이후 STATICCALL [https://github.com/ethereum/EIPs/pull/214/files] 이 사용가능할 때 고려될 것입니다.


	특히 "trusted"라고 표시되지 않은 비-스태틱 호출되어지는 어드레스를 제외한 비-스태틱 콜들에 의한 상태 변화 방지. 재진입(re-entrancy) 공격에 대한 위험을 줄여줍니다.


	"인라인" 비-스태틱 콜들의 방지. e.g. send(some_address, contract.do_something_and_return_a_weivalue()), "호출이 무엇을 할 수 있다"와 "호출로 응답을 얻는다"를 분명하게 나누도록 합니다.




Vpyer는 솔리디티의 100% 대체제가 되려고 하지 않습니다. 이러한 행동은 보안성을 강화한다는 목표를 달성하기 힘들게 만들거나, 불가능하게 만들 수 있기 떄문입니다.




용어 사전



	Vyper 설치하기
	선행 요구 조건

	설치

	PIP

	Docker

	Snap





	Vyper by Example
	Simple Open Auction

	Blind Auction

	Safe Remote Purchases

	Crowdfund

	Voting

	Company Stock





	Structure of a Contract
	Versions

	State Variables

	Functions

	Events

	NatSpec Metadata

	Contract Interfaces





	Built in Functions

	Low Level Built in Functions

	Types
	Value Types

	Reference Types

	Initial Values

	Type Conversions





	상수와 환경변수들
	내장된 상수들

	커스텀한 상수

	환경 변수





	Event Logging
	Example of Logging

	Declaring Events

	Logging Events

	Listening for Events





	Compiling a Contract
	Command-Line Tools

	Online Compilers





	컨트랙트 배포

	Testing a Contract
	Vyper Contract and Basic Fixtures

	Load Contract and Basic Tests

	Events and Failed Transactions





	자주 묻는 질문들
	일반적인 질문





	기여하기
	기여의 종류

	어떻게 개선을 제안할 수 있는가?

	이슈를 어떻게 보고하는가?

	버그 픽스

	스타일 가이드

	풀 리퀘스트를 위한 워크플로우





	Release Notes
	v0.1.0-beta.14

	v0.1.0-beta.13

	v0.1.0-beta.12

	v0.1.0-beta.11

	v0.1.0-beta.10

	v0.1.0-beta.9

	Prior to v0.1.0-beta.9















          

      

      

    

  

    
      
          
            
  
Vyper 설치하기

설치가 실패한다고 해도 놀라지 마세요. Vyper는 아직 개발 중이고 지속적인 변화를 겪고 있습니다.
설치는 스테이블 버전 이후부터는 최적화 되고 단순화 될 것입니다.

깊은 숨을 한 번 들이쉬고, 다음의 설명을 따르십시오, 그리고 에러를 마딱드리게 된다면 이슈를 생성해 주세요. [https://github.com/vyperlang/vyper/issues]


주석

언어를 사용해보는 제일 쉬운 방법은, 예제를 통해 배우는 것이고, https://vyper.online/ 에서 온라인 컴파일러로 LLL 이나 bytecode 로 코드를 컴파일 해 보는 것입니다.




선행 요구 조건


Python 3.6 설치하기

Vyper can only be built using Python 3.6 and higher. If you are already running
Python 3.6, skip to the next section, else follow the instructions here to make
sure you have the correct Python version installed, and are using that version.
Vyper는 Python 3.6 혹은 그 이후 버전을 통해서만 빌드 될 수 있습니다. Python 3.6을 사용가능하다면, 다음 세션을 건너 뛰십시오.
그렇지 않다면, 다음의 설명을 따라 어떤 버전의 Python이 설치 되어있고, 사용하고 있는지 확실히 하십시오.


Ubuntu


16.04 혹은 예전 버전

당신의 팩키지들이 최신 버전이도록 하는 것부터 시작합니다.

sudo apt-get update
sudo apt-get -y upgrade





Python 3.6과 필요한 팩키지들을 설치합니다.

sudo apt-get install build-essential libssl-dev libffi-dev
wget https://www.python.org/ftp/python/3.6.2/Python-3.6.2.tgz
tar xfz Python-3.6.2.tgz
cd Python-3.6.2/
./configure --prefix /usr/local/lib/python3.6
sudo make
sudo make install








16.10 혹은 최신 버전

Python 3.6은 universe 레포지토리에 포함되어있습니다.

다음의 명령어를 넣어 설치를 하십시오.

sudo apt-get update
sudo apt-get install python3.6






주석

만약 Python.h: No such file or directory 과 같은 에러를 얻는다면, 다음의 명령어로 Python C API를 위한 파이썬 헤더 파일을 설치해야합니다.

sudo apt-get install python3-dev










Bash 스크립트의 사용

Vyper는 Bash 스크립트를 통해 설치가 될 수 있습니다.

https://github.com/balajipachai/Scripts/blob/master/install_vyper/install_vyper_ubuntu.sh





Reminder: bash 스크립트를 사용하여 무언가를 할 때에는 정확히 그 스크립트가 무엇을 하는지 알아야합니다. 특히, sudo 를 사용할 때에는요






아치

(이 예제의 yay 처럼) 선택한 헬퍼를 사용합니다.

yay -S vyper








MacOS

Homebrew가 설치 되어있는지 확실히 하십시오. brew 명령어가 터미널에서 실해오디지 않는다면, 이 설명 [https://docs.brew.sh/Installation.html] 을 통해 Homebrew를 설치하십시오.

Python 3.6을 설치하기 위해서는 다음의 설명을 따르십시오.
Installing Python 3 on Mac OS X [https://python-guide.readthedocs.io/en/latest/starting/install3/osx/]

그리고, brew 명령어를 통해 다음의 라이브러리가 설치 되도록 하십시오:

brew install gmp leveldb








Windows

윈도우 유저는 처음에 install Windows Subsystem for Linux [https://docs.microsoft.com/en-us/windows/wsl/install-win10] 를 진행하시고 Ubuntu에 나온 설명을 그대로 따라하시던지, install Docker for Windows [https://docs.docker.com/docker-for-windows/install/] 를 따라하신 후 Docker 설치하기를 따라하십시오.


주석


	Windows Subsystem for Linux (WSL)은 윈도우 10에서만 지원합니다.


	10 미만의 버전을 사용하는 윈도우에서는 약간 오래되었지만, Docker Toolbox [https://docs.docker.com/toolbox/toolbox_install_windows/] 를 따라서 Docker를 설치하시고 Docker로 설치하기를 따라하십시오.











가상환경 구축하기

Vyper를 가상 Python 환경 안에 설치하는 것을 강력하게 권장합니다. 이를 통하여, 새롭게 설치된 팩키지들이나 빌드 의존성이 Vyper 프로젝트에 포함되게 하고, 다른 개발 환경 설정에 영향을 미치지 못하게 할 수 있습니다.

새로운 가상 환경을 구축하기 위해서는 다음과 같은 명령어를 씁니다.

sudo apt install virtualenv
virtualenv -p python3.6 --no-site-packages ~/vyper-venv
source ~/vyper-venv/bin/activate





가상 환경에 대해서 좀 더 많은 정보를 얻고 싶다면 다음의 글을 보십시오
virtualenv guide [https://virtualenv.pypa.io/en/stable/].

virtualenv 없이 가상환경을 구축 할 수도 있습니다.

python3.6 -m venv ~/vyper-env
source ~/vyper-env/bin/activate










설치

다시 강조하지만, Vyper를 가상 Python 환경 안에 설치하는 것을 강력하게 권장합니다.
이 가이드는 Python 3.6이 설치된 가상환경에서 작업한다고 가정합니다.

깃헙 레포지토리에서 최신의 Vyper를 받으시고, 명령어와 테스트를 실행시킵니다.

git clone https://github.com/vyperlang/vyper.git
cd vyper
make
make dev-deps
make test





추가적으로 다음의 명령어로 테스트 컨트랙트를 컴파일 해 볼 수 있습니다.

vyper examples/crowdfund.vy





모든게 정상적으로 작동된다면, Vyper로 쓰여진 스마트컨트랙트를 컴파일 할 수 있게 되었습니다.
만약 예상치 못한 에러나 예외가 발생하였다면, 이슈를 열어주세요 [https://github.com/vyperlang/vyper/issues/new].


주석

만약 make 를 사용했을 떄 fatal error: openssl/aes.h: No such file or directory 와 같은 에러가 나왔다면, sudo apt-get install libssl-dev1 를 실행 시킨 뒤 다시 make 를 실행키십시오.

MacOS 유저:

Apple has deprecated use of OpenSSL in favor of its own TLS and crypto
libraries. This means that you will need to export some OpenSSL settings
yourself, before you can install Vyper.
애플은 디프리케이트 된 TLS 및 암호화 라이브러리에 대한 OpenSSL을 사용하고 있습니다. 이것은 Vyper를 설치하기 전에 일부 OpenSSL 설정을 익스포트 해야할 필요가 있다는 것입니다.

다음의 명령어를 사용하십시오.

export CFLAGS="-I$(brew --prefix openssl)/include"
export LDFLAGS="-L$(brew --prefix openssl)/lib"
pip install scrypt





다시 다음의 명령어와 테스트 명령어를 실행하십시오.

make
make dev-deps
make test





만약 make 를 사용했을 때 ld: library not found for -lyaml 와 같은 에러가 나왔다면, brew info libyaml 을 통해 libyaml 을 설치했는지 확인해보십시오. 만약 설치되었다면 다음의 로케이션 플래그를 설정하여 시도를 하십시오.

   export CFLAGS="-I$(brew --prefix openssl)/include -I$(brew --prefix libyaml)/include"
   export LDFLAGS="-L$(brew --prefix openssl)/lib -L$(brew --prefix libyaml)/lib"

``make`` 와 ``make test`` 다시 할 수 있을 것입니다.










PIP

모든 태그가 붙은 Vyper 버전들은 pypi [https://pypi.org/project/vyper/] 을 통해 얻을 수 있으며, pip 을 통해 설치 될 수 있습니다.

pip install vyper





특정 버전을 설치하기 위해서는 다음과 같이 합니다.

pip install vyper==0.1.0b2








Docker


Dockerhub

Vyper는 dockerhub에서 도커 이미지 형태로 다운로드 가능합니다.

docker pull vyperlang/vyper





docker run 커맨드를 이용하여 컴파일러를 실행 시킬 수 있습니다.

docker run -v $(pwd):/code vyperlang/vyper /code/<contract_file.vy>





또한, 도커 이미지에 로그인한 뒤, 프롬프트에서 Vyper를 실행 시킬 수 있습니다.

docker run -v $(pwd):/code/ -it --entrypoint /bin/bash vyperlang/vyper
root@d35252d1fb1b:/code# vyper <contract_file.vy>





일반적인 파라미터도 지원됩니다. 다음과 같습니다.

docker run -v $(pwd):/code vyperlang/vyper -f abi /code/<contract_file.vy>
[{'name': 'test1', 'outputs': [], 'inputs': [{'type': 'uint256', 'name': 'a'}, {'type': 'bytes', 'name': 'b'}], 'constant': False, 'payable': False, 'type': 'function', 'gas': 441}, {'name': 'test2', 'outputs': [], 'inputs': [{'type': 'uint256', 'name': 'a'}], 'constant': False, 'payable': False, 'type': 'function', 'gas': 316}]








Dockerfile

레포지토리의 마스터 브랜치에서 Dockerfile도 제공됩니다. 도커 이미지를 빌드하기 위해서는 다음의 명령어를 실행하십시오.

docker build https://github.com/vyperlang/vyper.git -t vyper:1
docker run -it --entrypoint /bin/bash vyper:1





설치 이후에 모든 것들이 정상적으로 작동되는 것을 담보하기 위해서는 테스트 명령어를 실행하십시오.
그리고 컨트랙트를 컴파일 해 보십시오

python setup.py test
vyper examples/crowdfund.vy










Snap

Snap 스토어에 퍼블리싱 되어있습니다. supported Linux distros [https://snapcraft.io/docs/installing-snapd], 에 적힌 모든 배포판이 지원됩니다. (snap을 통해 설치하면 최신 master에서 가져옵니다.):

sudo snap install vyper --edge --devmode





베타 버전을 다운받고 싶다면 다음 명령어를 쓰십시오

sudo snap install vyper --beta --devmode











          

      

      

    

  

    
      
          
            
  
Vyper by Example


Simple Open Auction

As an introductory example of a smart contract written in Vyper, we will begin
with a simple open auction contract. As we dive into the code,
it is important to remember that all Vyper syntax is valid Python3 syntax,
however not all Python3 functionality is available in Vyper.

In this contract, we will be looking at a simple open auction contract where
participants can submit bids during a limited time period. When the auction
period ends, a predetermined beneficiary will receive the amount of the highest
bid.

As you can see, this example only has a constructor, two methods to call, and
a few variables to manage the contract state. Believe it or not, this is all we
need for a basic implementation of an auction smart contract.

Let's get started!

We begin by declaring a few variables to keep track of our contract state.
We initialize a global variable beneficiary by calling public on the
datatype address. The beneficiary will be the receiver of money from
the highest bidder.  We also initialize the variables auctionStart and
auctionEnd with the datatype timestamp to manage the open auction
period and highestBid with datatype wei_value, the smallest
denomination of ether, to manage auction state. The variable ended is a
boolean to determine whether the auction is officially over. The variable pendingReturns is a map which
enables the use of key-value pairs to keep proper track of the auctions withdrawal pattern.

You may notice all of the variables being passed into the public
function. By declaring the variable public, the variable is
callable by external contracts. Initializing the variables without the  public
function defaults to a private declaration and thus only accessible to methods
within the same contract. The public function additionally creates a
‘getter’ function for the variable, accessible through an external call such as
contract.beneficiary().

Now, the constructor.

The contract is initialized with two arguments: _beneficiary of type
address and _bidding_time with type timedelta, the time difference
between the start and end of the auction. We then store these two pieces of
information into the contract variables self.beneficiary and
self.auctionEnd. Notice that we have access to the current time by
calling block.timestamp. block is an object available within any Vyper
contract and provides information about the block at the time of calling.
Similar to block, another important object available to us within the
contract is msg, which provides information on the method caller as we will
soon see.

With initial setup out of the way, lets look at how our users can make bids.

The @payable decorator will allow a user to send some ether to the
contract in order to call the decorated method. In this case, a user wanting
to make a bid would call the bid() method while sending an amount equal
to their desired bid (not including gas fees). When calling any method within a
contract, we are provided with a built-in variable msg and we can access
the public address of any method caller with msg.sender. Similarly, the
amount of ether a user sends can be accessed by calling msg.value.


주석

msg.sender and msg.value can only be accessed from public
functions. If you require these values within a private function they must be passed as parameters.



Here, we first check whether the current time is before the auction's end time
using the assert function which takes any boolean statement. We also check
to see if the new bid is greater than the highest bid. If the two assert
statements pass, we can safely continue to the next lines; otherwise, the
bid() method will throw an error and revert the transaction. If the two
assert statements and the check that the previous bid is not equal to zero pass,
we can safely conclude that we have a valid new highest bid. We will send back
the previous highestBid to the previous highestBidder and set our new
highestBid and highestBidder.

With the endAuction() method, we check whether our current time is past
the auctionEnd time we set upon initialization of the contract. We also
check that self.ended had not previously been set to True. We do this
to prevent any calls to the method if the auction had already ended,
which could potentially be malicious if the check had not been made.
We then officially end the auction by setting self.ended to True
and sending the highest bid amount to the beneficiary.

And there you have it - an open auction contract. Of course, this is a
simplified example with barebones functionality and can be improved.
Hopefully, this has provided some insight into the possibilities of Vyper.
As we move on to exploring more complex examples, we will encounter more
design patterns and features of the Vyper language.

And of course, no smart contract tutorial is complete without a note on
security.


주석

It's always important to keep security in mind when designing a smart
contract. As any application becomes more complex, the greater the potential for
introducing new risks. Thus, it's always good practice to keep contracts as
readable and simple as possible.



Whenever you're ready, let's turn it up a notch in the next example.




Blind Auction

Before we dive into our other examples, let's briefly explore another type of
auction that you can build with Vyper. Similar to its counterpart [https://solidity.readthedocs.io/en/v0.5.0/solidity-by-example.html#id2] written in
Solidity, this blind auction allows for an auction where there is no time pressure towards the end of the bidding period.

While this blind auction is almost functionally identical to the blind auction implemented in Solidity, the differences in their implementations help illustrate the differences between Solidity and Vyper.

One key difference is that, because Vyper does not allow for dynamic arrays, we
have limited the number of bids that can be placed by one address to 128 in this
example. Bidders who want to make more than this maximum number of bids would
need to do so from multiple addresses.




Safe Remote Purchases

In this example, we have an escrow contract implementing a system for a trustless
transaction between a buyer and a seller. In this system, a seller posts an item
for sale and makes a deposit to the contract of twice the item's value. At
this moment, the contract has a balance of 2 * value. The seller can reclaim
the deposit and close the sale as long as a buyer has not yet made a purchase.
If a buyer is interested in making a purchase, they would make a payment and
submit an equal amount for deposit (totaling 2 * value) into the contract
and locking the contract from further modification. At this moment, the contract
has a balance of 4 * value and the seller would send the item to buyer. Upon
the buyer's receipt of the item, the buyer will mark the item as received in the
contract, thereby returning the buyer's deposit (not payment), releasing the
remaining funds to the seller, and completing the transaction.

There are certainly others ways of designing a secure escrow system with less
overhead for both the buyer and seller, but for the purpose of this example,
we want to explore one way how an escrow system can be implemented trustlessly.

Let's go!

This is also a moderately short contract, however a little more complex in
logic. Let's break down this contract bit by bit.

Like the other contracts, we begin by declaring our global variables public with
their respective data types. Remember that the public function allows the
variables to be readable by an external caller, but not writeable.

With a @payable decorator on the constructor, the contract creator will be
required to make an initial deposit equal to twice the item's value to
initialize the contract, which will be later returned. This is in addition to
the gas fees needed to deploy the contract on the blockchain, which is not
returned. We assert that the deposit is divisible by 2 to ensure that the
seller deposited a valid amount. The constructor stores the item's value
in the contract variable self.value and saves the contract creator into
self.seller. The contract variable self.unlocked is initialized to
True.

The abort() method is a method only callable by the seller and while the
contract is still unlocked—meaning it is callable only prior to any buyer
making a purchase. As we will see in the purchase() method that when
a buyer calls the purchase() method and sends a valid amount to the contract,
the contract will be locked and the seller will no longer be able to call
abort().

When the seller calls abort() and if the assert statements pass, the
contract will call the selfdestruct() function and refunds the seller and
subsequently destroys the contract.

Like the constructor, the purchase() method has a @payable decorator,
meaning it can be called with a payment. For the buyer to make a valid
purchase, we must first assert that the contract's unlocked property is
True and that the amount sent is equal to twice the item's value. We then
set the buyer to the msg.sender and lock the contract. At this point, the
contract has a balance equal to 4 times the item value and the seller must
send the item to the buyer.

Finally, upon the buyer's receipt of the item, the buyer can confirm their
receipt by calling the received() method to distribute the funds as
intended—where the seller receives 3/4 of the contract balance and the buyer
receives 1/4.

By calling received(), we begin by checking that the contract is indeed
locked, ensuring that a buyer had previously paid. We also ensure that this
method is only callable by the buyer. If these two assert statements pass,
we refund the buyer their initial deposit and send the seller the remaining
funds. The contract is finally destroyed and the transaction is complete.

Whenever we’re ready, let’s move on to the next example.




Crowdfund

Now, let's explore a straightforward example for a crowdfunding contract where
prospective participants can contribute funds to a campaign. If the total
contribution to the campaign reaches or surpasses a predetermined funding goal,
the funds will be sent to the  beneficiary at the end of the campaign deadline.
Participants will be refunded their respective contributions if the total
funding does not reach its target goal.

Most of this code should be relatively straightforward after going through our
previous examples. Let's dive right in.

Like other examples, we begin by initiating our variables - except this time,
we're not calling them with the public function. Variables initiated this
way are, by default, private.


주석

Unlike the existence of the function public(), there is no equivalent
private() function. Variables simply default to private if initiated
without the public() function.



The funders variable is initiated as a mapping where the key is a number,
and the value is a struct representing the contribution of each participant.
This struct contains each participant's public address and their respective
value contributed to the fund. The key corresponding to each struct in the
mapping will be represented by the variable nextFunderIndex which is
incremented with each additional contributing participant. Variables initialized
with the int128 type without an explicit value, such as nextFunderIndex,
defaults to 0. The beneficiary will be the final receiver of the funds
once the crowdfunding period is over—as determined by the deadline and
timelimit variables. The goal variable is the target total contribution
of all participants. refundIndex is a variable for bookkeeping purposes in
order to avoid gas limit issues in the scenario of a refund.

Our constructor function takes 3 arguments: the beneficiary's address, the goal
in wei value, and the difference in time from start to finish of the
crowdfunding. We initialize the arguments as contract variables with their
corresponding names. Additionally, a self.deadline is initialized to set
a definitive end time for the crowdfunding period.

Now lets take a look at how a person can participate in the crowdfund.

Once again, we see the @payable decorator on a method, which allows a
person to send some ether along with a call to the method. In this case,
the participate() method accesses the sender's address with msg.sender
and the corresponding amount sent with msg.value. This information is stored
into a struct and then saved into the funders mapping with
self.nextFunderIndex as the key. As more participants are added to the
mapping, self.nextFunderIndex increments appropriately to properly index
each participant.

The finalize() method is used to complete the crowdfunding process. However,
to complete the crowdfunding, the method first checks to see if the crowdfunding
period is over and that the balance has reached/passed its set goal. If those
two conditions pass, the contract calls the selfdestruct() function and
sends the collected funds to the beneficiary.


주석

Notice that we have access to the total amount sent to the contract by
calling self.balance, a variable we never explicitly set. Similar to msg
and block, self.balance is a built-in variable that's available in all
Vyper contracts.



We can finalize the campaign if all goes well, but what happens if the
crowdfunding campaign isn't successful? We're going to need a way to refund
all the participants.

In the refund() method, we first check that the crowdfunding period is
indeed over and that the total collected balance is less than the goal with
the  assert statement . If those two conditions pass, we then loop through
every participant and call send() to send each participant their respective
contribution. For the sake of gas limits, we group the number of contributors
in batches of 30 and refund them one at a time. Unfortunately, if there's a
large number of participants, multiple calls to refund() may be
necessary.




Voting

In this contract, we will implement a system for participants to vote on a list
of proposals. The chairperson of the contract will be able to give each
participant the right to vote, and each participant may choose to vote, or
delegate their vote to another voter. Finally, a winning proposal will be
determined upon calling the winningProposals() method, which iterates through
all the proposals and returns the one with the greatest number of votes.

As we can see, this is the contract of moderate length which we will dissect
section by section. Let’s begin!

The variable voters is initialized as a mapping where the key is
the voter’s public address and the value is a struct describing the
voter’s properties: weight, voted, delegate, and vote, along
with their respective data types.

Similarly, the proposals variable is initialized as a public mapping
with int128 as the key’s datatype and a struct to represent each proposal
with the properties name and vote_count. Like our last example, we can
access any value by key’ing into the mapping with a number just as one would
with an index in an array.

Then, voterCount and chairperson are initialized as public with
their respective datatypes.

Let’s move onto the constructor.


주석

msg.sender and msg.value can only be accessed from public
functions. If you require these values within a private function they must be
passed as parameters.



In the constructor, we hard-coded the contract to accept an
array argument of exactly two proposal names of type bytes32 for the contracts
initialization. Because upon initialization, the __init__() method is called
by the contract creator, we have access to the contract creator’s address with
msg.sender and store it in the contract variable self.chairperson. We
also initialize the contract variable self.voter_count to zero to initially
represent the number of votes allowed. This value will be incremented as each
participant in the contract is given the right to vote by the method
giveRightToVote(), which we will explore next. We loop through the two
proposals from the argument and insert them into proposals mapping with
their respective index in the original array as its key.

Now that the initial setup is done, lets take a look at the functionality.


주석

Throughout this contract, we use a pattern where @public functions return data from @private functions that have the same name prepended with an underscore. This is because Vyper does not allow calls between public functions within the same contract. The private function handles the logic and allows internal access, while the public function acts as a getter to allow external viewing.



We need a way to control who has the ability to vote. The method
giveRightToVote() is a method callable by only the chairperson by taking
a voter address and granting it the right to vote by incrementing the voter's
weight property. We sequentially check for 3 conditions using assert.
The assert not function will check for falsy boolean values -
in this case, we want to know that the voter has not already voted. To represent
voting power, we will set their weight to 1 and we will keep track of the
total number of voters by incrementing voterCount.

In the method delegate, firstly, we check to see that msg.sender has not
already voted and secondly, that the target delegate and the msg.sender are
not the same. Voters shouldn’t be able to delegate votes to themselves. We,
then, loop through all the voters to determine whether the person delegate to
had further delegated their vote to someone else in order to follow the
chain of delegation. We then mark the msg.sender as having voted if they
delegated their vote. We increment the proposal’s voterCount directly if
the delegate had already voted or increase the  delegate’s vote weight
if the delegate has not yet voted.

Now, let’s take a look at the logic inside the vote() method, which is
surprisingly simple. The method takes the key of the proposal in the proposals
mapping as an argument, check that the method caller had not already voted,
sets the voter’s vote property to the proposal key, and increments the
proposals voteCount by the voter’s weight.

With all the basic functionality complete, what’s left is simply returning
the winning proposal. To do this, we have two methods: winningProposal(),
which returns the key of the proposal, and winnerName(), returning the
name of the proposal. Notice the @constant decorator on these two methods.
We do this because the two methods only read the blockchain state and do not
modify it. Remember, reading the blockchain state is free; modifying the state
costs gas. By having the @constant decorator, we let the EVM know that this
is a read-only function and we benefit by saving gas fees.

The _winningProposal() method returns the key of proposal in the proposals
mapping. We will keep track of greatest number of votes and the winning
proposal with the variables winningVoteCount and winningProposal,
respectively by looping through all the proposals.

winningProposal() is a public function allowing external access to _winningProposal().

And finally, the winnerName() method returns the name of the proposal by
key’ing into the proposals mapping with the return result of the
winningProposal() method.

And there you have it - a voting contract. Currently, many transactions
are needed to assign the rights to vote to all participants. As an exercise,
can we try to optimize this?

Now that we're familiar with basic contracts. Let's step up the difficulty.




Company Stock

This contract is just a tad bit more thorough than the ones we've previously
encountered. In this example, we are going to look at a comprehensive contract
that manages the holdings of all shares of a company. The contract allows for
a person to buy, sell and transfer shares of a company as well as allowing for
the company to pay a person in ether. The company, upon initialization of the
contract, holds all shares of the company at first but can sell them all.

Let's get started.


주석

Throughout this contract, we use a pattern where @public functions return data from @private functions that have the same name prepended with an underscore. This is because Vyper does not allow calls between public functions within the same contract. The private function handles the logic and allows internal access, while the public function acts as a getter to allow external viewing.



The contract contains a number of methods that modify the contract state as
well as a few 'getter' methods to read it. We first declare several events
that the contract logs. We then declare our global variables, followed by
function definitions.

We initiate the company variable to be of type address that's public.
The totalShares variable is of type currency_value, which in this case
represents the total available shares of the company. The price variable
represents the wei value of a share and holdings is a mapping that maps an
address to the number of shares the address owns.

In the constructor, we set up the contract to check for valid inputs during
the initialization of the contract via the two assert statements. If the
inputs are valid, the contract variables are set accordingly and the
company's address is initialized to hold all shares of the company in the
holdings mapping.

We will be seeing a few @constant decorators in this contract—which is
used to decorate methods that simply read the contract state or return a simple
calculation on the contract state without modifying it. Remember, reading the
blockchain is free, writing on it is not. Since Vyper is a statically typed
language, we see an arrow following the definition of the _stockAvailable()
method, which simply represents the data type which the function is expected
to return. In the method, we simply key into self.holdings with the
company's address and check it's holdings.  Because _stockAvailable() is a
private method, we also include the public stockAvailable() method to allow
external access.

Now, lets take a look at a method that lets a person buy stock from the
company's holding.

The buyStock() method is a @payable method which takes an amount of
ether sent and calculates the buyOrder (the stock value equivalence at
the time of call). The number of shares is deducted from the company's holdings
and transferred to the sender's in the holdings mapping.

Now that people can buy shares, how do we check someone's holdings?

The _getHolding() is another @constant method that takes an address
and returns its corresponding stock holdings by keying into self.holdings.
Again, a public function getHolding() is included to allow external access.

To check the ether balance of the company, we can simply call the getter method
cash().

To sell a stock, we have the sellStock() method which takes a number of
stocks a person wishes to sell, and sends the equivalent value in ether to the
seller's address. We first assert that the number of stocks the person
wishes to sell is a value greater than 0. We also assert to see that
the user can only sell as much as the user owns and that the company has enough
ether to complete the sale. If all conditions are met, the holdings are deducted
from the seller and given to the company. The ethers are then sent to the seller.

A stockholder can also transfer their stock to another stockholder with the
transferStock() method. The method takes a receiver address and the number
of shares to send. It first asserts that the amount being sent is greater
than 0 and asserts whether the sender has enough stocks to send. If
both conditions are satisfied, the transfer is made.

The company is also allowed to pay out an amount in ether to an address by
calling the payBill() method. This method should only be callable by the
company and thus first checks whether the method caller's address matches that
of the company. Another important condition to check is that the company has
enough funds to pay the amount. If both conditions satisfy, the contract
sends its ether to an address.

We can also check how much the company has raised by multiplying the number of
shares the company has sold and the price of each share. Internally, we get
this value by calling the _debt() method. Externally it is accessed via debt().

Finally, in this worth() method, we can check the worth of a company by
subtracting its debt from its ether balance.

This contract has been the most thorough example so far in terms of its
functionality and features. Yet despite the thoroughness of such a contract, the
logic remained simple. Hopefully, by now, the Vyper language has convinced you
of its capabilities and readability in writing smart contracts.







          

      

      

    

  

    
      
          
            
  
Structure of a Contract

Contracts in Vyper are contained within files, with each file being one smart-contract.  Files in Vyper are similar to classes in object-oriented languages.
Each file can contain declarations of State Variables and Functions.


Versions

Vyper supports version pragma which is used to reject being compiled with future compiler versions that might introduce incompatible changes.

# @version 0.1.0b13





The version pragma checks that the compiler version is not a major version.




State Variables

State variables are values which are permanently stored in contract storage.

storedData: int128





See the Types section for valid state variable types.




Functions

Functions are the executable units of code within a contract.

@public
@payable
def bid(): // Function
    // ...





Function calls can happen internally or externally and have different levels of visibility (see
Non-reentrant Functions) towards other contracts. Functions must be explicitely declared as public or private.


Public Functions

Public functions (decorated with @public) are a part of the contract interface and may be called via transactions or from other contracts. They cannot be called internally.

Public functions in Vyper are equivalent to external functions in Solidity.




Private Functions

Private functions (decorated with @private) are only accessible from other functions within the same contract. They are called via the self variable:

@private
def _times_two(amount: uint256) -> uint256:
    return amount * 2

@public
def calculate(amount: uint256) -> uint256:
    return self._times_two(amount)





Private functions do not have access to msg.sender or msg.value. If you require these values within a private function they must be passed as parameters.




Non-reentrant Functions

The @nonreentrant(<key>) decorator places a lock on the current function, and all functions with the same <key> value. An attempt by an external contract to call back into any of these functions will cause a REVERT call.




Decorators

The following decorators are available:







	Decorator

	Description





	@public

	Can only be called externally.



	@private

	Can only be called within current contract.



	@constant

	Does not alter contract state.



	@payable

	The contract is open to receive Ether.



	@nonreentrant(<unique_key>)

	Function can only be called once,
both externally and internally. Used to
prevent reentrancy attacks.






The visibility decorators @public or @private are mandatory on function declarations, whilst the other decorators(@constant, @payable, @nonreentrant) are optional.




Default function

A contract can also have a default function, which is executed on a call to the contract if no other functions match the given function identifier (or if none was supplied at all, such as through someone sending it Eth). It is the same construct as fallback functions in Solidity [https://solidity.readthedocs.io/en/latest/contracts.html?highlight=fallback#fallback-function].

This function is always named __default__ and must be annotated with @public. It cannot have arguments and cannot return anything.

If the function is annotated as @payable, this function is executed whenever the contract is sent Ether (without data). This is why the default function cannot accept arguments and return values - it is a design decision of Ethereum to make no differentiation between sending ether to a contract or a user address.

Example:

Payment: event({amount: int128, from: indexed(address)})

@public
@payable
def __default__():
    log.Payment(msg.value, msg.sender)






Considerations

Just as in Solidity, Vyper generates a default function if one isn't found, in the form of a REVERT call. Note that this still generates an exception [https://github.com/ethereum/wiki/wiki/Subtleties] and thus will not succeed in receiving funds.

Ethereum specifies that the operations will be rolled back if the contract runs out of gas in execution. send calls to the contract come with a free stipend of 2300 gas, which does not leave much room to perform other operations except basic logging. However, if the sender includes a higher gas amount through a call instead of send, then more complex functionality can be run.

It is considered a best practice to ensure your payable default function is compatible with this stipend. The following operations will consume more than 2300 gas:


	Writing to storage


	Creating a contract


	Calling an external function which consumes a large amount of gas


	Sending Ether




Lastly, although the default function receives no arguments, it can still access the msg global, including:


	the address of who is interacting with the contract (msg.sender)


	the amount of ETH sent (msg.value)


	the gas provided (msg.gas).











Events

Events may be logged in specially indexed data structures that allow clients, including light clients, to efficiently search for them.

Payment: event({amount: int128, arg2: indexed(address)})

total_paid: int128

@public
@payable
def pay():
    self.total_paid += msg.value
    log.Payment(msg.value, msg.sender)





Events must be declared before global declarations and function definitions.




NatSpec Metadata

Vyper supports structured documentation for state variables and functions and events.

carrotsEaten: int128
"""
@author Bob Clampett
@notice Number of carrots eaten
@dev Chewing does not count, carrots must pass the throat to be "eaten"
"""





@public
@payable
def doesEat(food: string):
    """
    @author Bob Clampett
    @notice Determine if Bugs will accept `food` to eat
    @dev Compares the entire string and does not rely on a hash
    @param food The name of a food to evaluate (in English)
    @return true if Bugs will eat it, false otherwise
    """

    // ...





Ate: event({food: string})
"""
@author Bob Clampett
@notice Bugs did eat `food`
@dev Chewing does not count, carrots must pass the throat to be "eaten"
@param food The name of a food that was eaten (in English)
"""





Additional information about Ethereum Natural Specification (NatSpec) can be found here [https://github.com/ethereum/wiki/wiki/Ethereum-Natural-Specification-Format].




Contract Interfaces

An interface is a set of function definitions used to enable communication between smart contracts. A contract interface defines all of that contract's publicly available functions. By importing the interface, your contract now knows how to call these functions in other contracts.


Defining Interfaces and Making External Calls

Interfaces can be added to contracts either through inline definition, or by importing them from a seperate file.

The contract keyword is used to define an inline external interface:

contract FooBar:
    def calculate() -> uint256: constant
    def test1(): modifying





The defined interface can then be use to make external calls, given a contract address:

@public
def test(some_address: address):
    FooBar(some_address).calculate()





The interface name can also be used as a type annotation for storage variables. You then assign an address value to the variable to access that interface. Note that assignment of an address requires the value to be cast using the contract type e.g. FooBar(<address_var>):

foobar_contract: FooBar

@public
def __init__(foobar_address: address):
    self.foobar_contract = FooBar(foobar_address)

@public
def test():
    self.foobar_contract.calculate()





Specifying modifying annotation indicates that the call made to the external contract will be able to alter storage, whereas the constant call will use a STATICCALL ensuring no storage can be altered during execution.

contract FooBar:
    def calculate() -> uint256: constant
    def test1(): modifying

@public
def test(some_address: address):
    FooBar(some_address).calculate()  # cannot change storage
    FooBar(some_address).test1()  # storage can be altered








Importing Interfaces

Interfaces are imported with import or from ... import statements.

Imported interfaces are written using standard Vyper syntax, with the body of each function replaced by a pass statement:

@public
def test1():
    pass

@public
def calculate() -> uint256:
    pass





You can also import a fully implemented contract and Vyper will automatically convert it to an interface.


Imports via import

With absolute import statements, you must include an alias as a name for the imported package. In the following example, failing to include as Foo will raise a compile error:

import contract.foo as Foo








Imports via from ... import

Using from you can perform both absolute and relative imports. With from import statements you cannot use an alias - the name of the interface will always be that of the file:

from contract import foo





Relative imports are possible by prepending dots to the contract name. A single leading dot indicates a relative import starting with the current package. Two leading dots indicate a relative import from the parent of the current package:

from . import foo
from ..interfaces import baz








Searching For Interface Files

When looking for a file to import Vyper will first search relative to the same folder as the contract being compiled. For absolute imports, it also searches relative to the root path for the project. Vyper checks for the file name with a .vy suffix first, then .json.

When using the command line compiler, the root path defaults to to the current working directory. You can change it with the -p flag:

$ vyper my_project/contracts/my_contract.vy -p my_project





In the above example, the my_project folder is set as the root path. A contract cannot perform a relative import that goes beyond the top-level folder.






Built-in Interfaces

Vyper includes common built-in interfaces such as ERC20 [https://eips.ethereum.org/EIPS/eip-20] and ERC721 [https://eips.ethereum.org/EIPS/eip-721]. These are imported from vyper.interfaces:

from vyper.interfaces import ERC20

implements: ERC20





You can see all the available built-in interfaces in the Vyper GitHub [https://github.com/vyperlang/vyper/tree/master/vyper/interfaces] repo.




Implementing an Interface

You can define an interface for your contract with the implements statement:

import an_interface as FooBarInterface

implements: FooBarInterface





This imports the defined interface from the vyper file at an_interface.vy (or an_interface.json if using ABI json interface type) and ensures your current contract implements all the necessary public functions. If any interface functions are not included in the contract, it will fail to compile. This is especially useful when developing contracts around well-defined standards such as ERC20.




Extracting Interfaces

Vyper has a built-in format option to allow you to make your own vyper interfaces easily.

$ vyper -f interface examples/voting/ballot.vy

# Functions

@constant
@public
def delegated(addr: address) -> bool:
    pass

# ...





If you want to do an external call to another contract, vyper provides an external contract extract utility as well.

$ vyper -f external_interface examples/voting/ballot.vy

# External Contracts
contract Ballot:
    def delegated(addr: address) -> bool: constant
    def directlyVoted(addr: address) -> bool: constant
    def giveRightToVote(voter: address): modifying
    def forwardWeight(delegate_with_weight_to_forward: address): modifying
    # ...





The output can then easily be copy-pasted to be consumed.









          

      

      

    

  

    
      
          
            
  
Built in Functions

Vyper provides a collection of built in functions available in the global namespace of all
contracts.


	
floor(value: decimal) → int128

	Rounds a decimal down to the nearest integer.


	value: Decimal value to round down









	
ceil(value: decimal) → int128

	Rounds a decimal up to the nearest integer.


	value: Decimal value to round up









	
convert(value, type_) → Any

	Converts a variable or literal from one type to another.


	value: Value to convert


	type_: The destination type to convert to (bool, decimal, int128, uint256 or bytes32)




Returns a value of the type specified by type_.

For more details on available type conversions, see Type Conversions.






	
clear(var: Any) → None

	Clears a variable's contents to the default value of its type.


	var: Variable to clear









	
as_wei_value(value: int, unit: str) → wei_value

	Takes an amount of ether currency specified by a number and a unit and returns the integer quantity of wei equivalent to that amount.


	value: Value for the ether unit


	unit: Ether unit name (e.g. "wei", "ether", "gwei", etc.)









	
as_unitless_number(value) → int

	Converts a int128, uint256, or decimal value with units into one without units (used for assignment and math).






	
slice(b: bytes, start: int128, length: int128) → bytes

	Copies a list of bytes and returns a specified slice.


	b: bytes or bytes32 to be sliced


	start: start position of the slice


	length: length of the slice









	
len(b: bytes) → int128

	Returns the length of a given bytes list.






	
concat(a, b, *args) → bytes

	Takes 2 or more bytes arrays of type bytes32 or bytes and combines them into a single bytes list.






	
keccak256(value) → bytes32

	Returns a keccak256 hash of the given value.


	value: Value to hash. Can be str_literal, bytes, or bytes32.









	
sha256(value) → bytes32

	Returns a sha256 (SHA2 256bit output) hash of the given value.


	value: Value to hash. Can be str_literal, bytes, or bytes32.









	
sqrt(d: decimal) → decimal

	Returns the square root of the provided decimal number, using the Babylonian square root algorithm.






	
method_id(method, type_) → Union[bytes32, bytes[4]]

	Takes a function declaration and returns its method_id (used in data field to call it).


	method: Method declaration as str_literal


	type_: Type of output (bytes32 or bytes[4])




Returns a value of the type specified by type_.






	
ecrecover(hash: bytes32, v: uint256, r: uint256, s: uint256) → address

	Takes a signed hash and vrs and returns the public key of the signer.






	
ecadd(a: uint256[2], b: uint256[2]) → uint256[2]

	Takes two points on the Alt-BN128 curve and adds them together.






	
ecmul(point: uint256[2], scalar: uint256) → uint256[2]

	Takes a point on the Alt-BN128 curve (p) and a scalar value (s), and returns the result of adding the point to itself s times, i.e. p * s.


	point: Point to be multiplied


	scalar: Scalar value









	
extract32(b: bytes, start: int128, type_=bytes32) → Union[bytes32, int128, address]

	Extracts a value from a bytes list.


	b: bytes list to extract from


	start: Start point to extract from


	type_: Type of output (bytes32, int128, or address). Defaults to bytes32.




Returns a value of the type specified by type_.






	
RLPList(b: bytes, types_list: List) → LLLnode

	Takes encoded RLP data and an unencoded list of types.


	b: Encoded data


	types_list: List of types




Example usage:

vote_msg: bytes <= 1024 = ...

values = RLPList(vote_msg, [int128, int128, bytes32, bytes, bytes])

var1: int128 = values[0]
var2: int128 = values[1]
var3: bytes32 = values[2]
var4: bytes <= 1024 = values[3]
var5: bytes <= 1024 = values[4]





RLP decoder needs to be deployed if one wishes to use it outside of the Vyper test suite. Eventually, the decoder will be available on mainnet at a fixed address. But for now, here's how to create RLP decoder on other chains:

1. send 6270960000000000 wei to 0xd2c560282c9C02465C2dAcdEF3E859E730848761

2. Publish this tx to create the contract

0xf90237808506fc23ac00830330888080b902246102128061000e60003961022056600060007f010000000000000000000000000000000000000000000000000000000000000060003504600060c082121515585760f882121561004d5760bf820336141558576001905061006e565b600181013560f783036020035260005160f6830301361415585760f6820390505b5b368112156101c2577f010000000000000000000000000000000000000000000000000000000000000081350483602086026040015260018501945060808112156100d55760018461044001526001828561046001376001820191506021840193506101bc565b60b881121561014357608081038461044001526080810360018301856104600137608181141561012e5760807f010000000000000000000000000000000000000000000000000000000000000060018401350412151558575b607f81038201915060608103840193506101bb565b60c08112156101b857600182013560b782036020035260005160388112157f010000000000000000000000000000000000000000000000000000000000000060018501350402155857808561044001528060b6838501038661046001378060b6830301830192506020810185019450506101ba565bfe5b5b5b5061006f565b601f841315155857602060208502016020810391505b6000821215156101fc578082604001510182826104400301526020820391506101d8565b808401610420528381018161044003f350505050505b6000f31b2d4f





3. This is the contract address: 0xCb969cAAad21A78a24083164ffa81604317Ab603








Low Level Built in Functions

Vyper contains a set of built in functions which execute opcodes such as SEND or SELFDESTRUCT.


	
send(to: address, value: uint256(wei)) → None

	Sends ether from the contract to the specified Ethereum address.


	to: The destination address to send ether to


	value: The wei value to send to the address





주석

The amount to send is always specified in wei.








	
raw_call(to: address, data: bytes, outsize: int, gas: uint256, value: uint256(wei) = 0, is_delegate_call: bool = False) → bytes[outsize]

	Calls to the specified Ethereum address.


	to: Destination address to call to


	data: Data to send to the destination address


	outsize: Maximum length of the bytes array returned from the call


	gas: Amount of gas to atttach to the call


	value: The wei value to send to the address (Optional, default 0)


	is_delegate_call: If True, the call will be sent as DELEGATECALL (Optional, default False)




Returns the data returned by the call as a bytes list, with outsize as the max length.






	
selfdestruct(to: address) → None

	Triggers the SELFDESTRUCT opcode (0xFF), causing the contract to be destroyed.


	to: Address to forward the contract's ether balance to





경고

This method will delete the contract from the Ethereum blockchain. All non-ether assets associated with this contract will be "burned" and the contract will be inaccessible.








	
raise(reason: str) → None

	Raises an exception.


	reason: The exception reason (must be <= 32 bytes)




This method triggers the REVERT opcode (0xFD) with the provided reason given as the error message. The code will stop operation, the contract's state will be reverted to the state before the transaction took place and the remaining gas will be returned to the transaction's sender.


주석

To give it a more Python-like syntax, the raise function can be called without parenthesis, the syntax would be raise "An exception". Even though both options will compile, it's recommended to use the Pythonic version without parentheses.








	
assert(cond: bool, reason: str = None) → None

	Asserts the specified condition.


	cond: The boolean condition to assert


	reason: The exception reason (must be <= 32 bytes)




This method's behavior is equivalent to:

if not cond:
    raise reason





The only difference in behavior is that assert can be called without a reason string, while raise requires one.

If the reason string is set to UNREACHABLE, an INVALID opcode (0xFE) will be used instead of REVERT. In this case, calls that revert will not receive a gas refund.

You cannot directly assert the result of a non-constant function call. The proper pattern for doing so is to assign the result to a memory variable, and then call assert on that variable. Alternatively, use the assert_modifiable method.


주석

To give it a more Python-like syntax, the assert function can be called without parenthesis, the syntax would be assert your_bool_condition. Even though both options will compile, it's recommended to use the Pythonic version without parenthesis.








	
assert_modifiable(cond: bool) → None

	Asserts a specified condition, without checking for constancy on a callable condition.


	cond: The boolean condition to assert




Use assert_modifiable in place of assert when you wish to directly assert the result of a potentially state-changing call.

For example, a common use case is verifying the results of an ERC20 token transfer:

@public
def transferTokens(token: address, to: address, amount: uint256) -> bool:
    assert_modifiable(ERC20(token).transfer(to, amount))
    return True










	
raw_log(topics: bytes32[4], data: bytes) → None

	Provides low level access to the LOG opcodes, emitting a log without having to specify an ABI type.


	topics: List of bytes32 log topics


	data: Unindexed event data to include in the log, bytes or bytes32




This method provides low-level access to the LOG opcodes (0xA0..``0xA4``). The length of topics determines which opcode will be used. topics is a list of bytes32 topics that will be indexed. The remaining unindexed parameters can be placed in the data parameter.






	
create_forwarder_to(target: address, value: uint256(wei) = 0) → address

	Duplicates a contract's code and deploys it as a new instance, by means of a DELEGATECALL.


	target: Address of the contract to duplicate


	value: The wei value to send to the new contract address (Optional, default 0)




Returns the address of the duplicated contract.






	
blockhash(block_num: uint256) → bytes32

	Returns the hash of the block at the specified height.


주석

The EVM only provides access to the most 256 blocks. This function will return 0 if the block number is greater than or equal to the current block number or more than 256 blocks behind the current block.











          

      

      

    

  

    
      
          
            
  
Types

Vyper is a statically typed language, which means that the type of each
variable (state and local) needs to be specified or at least known at
compile-time. Vyper provides several elementary types which can be combined
to form complex types.

In addition, types can interact with each other in expressions containing
operators.


Value Types

The following types are also called value types because variables of these
types will always be passed by value, i.e. they are always copied when they
are used as function arguments or in assignments.


Boolean

Keyword: bool

A boolean is a type to store a logical/truth value.


Values

The only possible values are the constants True and False.




Operators







	Operator

	Description





	x not y

	Logical negation



	x and y

	Logical conjunction



	x or y

	Logical disjunction



	x == y

	Equality



	x != y

	Inequality






The operators or and and do not apply short-circuiting rules, i.e. both
x and y will always be evaluated.






Signed Integer (128 bit)

Keyword: int128

A signed integer (128 bit) is a type to store positive and negative integers.


Values

Signed integer values between -2127 and (2127 - 1), inclusive.




Operators


Comparisons

Comparisons return a boolean value.







	Operator

	Description





	x < y

	Less than



	x <= y

	Less than or equal to



	x == y

	Equals



	x != y

	Does not equal



	x >= y

	Greater than or equal to



	x > y

	Greater than






x and y must be of the type int128.




Arithmetic Operators







	Operator

	Description





	x + y

	Addition



	x - y

	Subtraction



	-x

	Unary minus/Negation



	x * y

	Multiplication



	x / y

	Division



	x**y

	Exponentiation



	x % y

	Modulo



	min(x, y)

	Minimum



	max(x, y)

	Maximum






x and y must be of the type int128.








Unsigned Integer (256 bit)

Keyword: uint256

An unsigned integer (256 bit) is a type to store non-negative integers.


Values

Integer values between 0 and (2256-1).


주석

Integer literals are interpreted as int128 by default. In cases where uint256 is more appropriate, such as assignment, the literal might be interpreted as uint256. Example: _variable: uint256 = _literal. In order to explicitly cast a literal to a uint256 use convert(_literal, uint256).






Operators


Comparisons

Comparisons return a boolean value.







	Operator

	Description





	x < y

	Less than



	x <= y

	Less than or equal to



	x == y

	Equals



	x != y

	Does not equal



	x >= y

	Greater than or equal to



	x > y

	Greater than






x and y must be of the type uint256.




Arithmetic Operators







	Operator

	Description





	x + y

	Addition



	x - y

	Subtraction



	uint256_addmod(x, y, z)

	Addition modulo z



	x * y

	Multiplication



	uint256_mulmod(x, y, z)

	Multiplication modulo z



	x / y

	Division



	x**y

	Exponentiation



	x % y

	Modulo



	min(x, y)

	Minimum



	max(x, y)

	Maximum






x, y and z must be of the type uint256.




Bitwise Operators







	Operator

	Description





	bitwise_and(x, y)

	AND



	bitwise_not(x, y)

	NOT



	bitwise_or(x, y)

	OR



	bitwise_xor(x, y)

	XOR



	shift(x, _shift)

	Bitwise Shift






x and y must be of the type uint256. _shift must be of the type int128.


주석

Positive _shift equals a left shift; negative _shift equals a right shift.
Values shifted above/below the most/least significant bit get discarded.










Decimals

Keyword: decimal

A decimal is a type to store a decimal fixed point value.


Values

A value with a precision of 10 decimal places between -2127 and (2127 - 1).




Operators


Comparisons

Comparisons return a boolean value.







	Operator

	Description





	x < y

	Less than



	x <= y

	Less or equal



	x == y

	Equals



	x != y

	Does not equal



	x >= y

	Greater or equal



	x > y

	Greater than






x and y must be of the type decimal.




Arithmetic Operators







	Operator

	Description





	x + y

	Addition



	x - y

	Subtraction



	-x

	Unary minus/Negation



	x * y

	Multiplication



	x / y

	Division



	x % y

	Modulo



	min(x, y)

	Minimum



	max(x, y)

	Maximum



	floor(x)

	Largest integer <= x. Returns int128.



	ceil(x)

	Smallest integer >= x. Returns int128.






x and y must be of the type decimal.








Address

Keyword: address

The address type holds an Ethereum address.


Values

An address type can hold an Ethereum address which equates to 20 bytes or 160 bits. It returns in hexadecimal notation with a leading 0x.


Members







	Member

	Description





	balance

	Query the balance of an address. Returns wei_value.



	codesize

	Query the code size of an address. Returns int128.



	is_contract

	Query whether it is a contract address. Returns bool.






Syntax as follows: _address.<member>, where _address is of the type address and <member> is one of the above keywords.








Unit Types

Vyper allows the definition of types with discrete units e.g. meters, seconds, wei, ... . These types may only be based on either uint256, int128 or decimal.
Vyper has 3 unit types built in, which are the following:


Time









	Keyword

	Unit

	Base type

	Description





	timestamp

	1 sec

	uint256

	This represents a point in time.



	timedelta

	1 sec

	uint256

	This is a number of seconds.







주석

Two timedelta can be added together, as can a timedelta and a timestamp, but not two timestamps.






Wei









	Keyword

	Unit

	Base type

	Description





	wei_value

	1 wei

	uint256

	This is an amount of Ether [http://ethdocs.org/en/latest/ether.html#denominations] in wei.











Custom Unit Types

Vyper allows you to add additional not-provided unit label to either uint256, int128 or decimal.

Custom units example:

# specify units used in the contract.
units: {
    cm: "centimeter",
    km: "kilometer"
}





Having defined the units they can be defined on variables as follows.

Custom units usage:

a: int128(cm)
b: uint256(km)








32-bit-wide Byte Array

Keyword: bytes32
This is a 32-bit-wide byte array that is otherwise similar to byte arrays.

Example:

# Declaration
hash: bytes32
# Assignment
self.hash = _hash






Operators







	Keyword

	Description





	keccak256(x)

	Return the keccak256 hash as bytes32.



	concat(x, ...)

	Concatenate multiple inputs.



	slice(x, start=_start, len=_len)

	Return a slice of _len starting at _start.






Where x is a byte array and _start as well as _len are integer values.






Fixed-size Byte Arrays

Keyword: bytes

A byte array with a fixed size.
The syntax being bytes[maxLen], where maxLen is an integer which denotes the maximum number of bytes.
On the ABI level the Fixed-size bytes array is annotated as bytes.

Example:

example_bytes: bytes[100] = b"\x01\x02\x03"








Fixed-size Strings

Keyword: string
Fixed-size strings can hold strings with equal or fewer characters than the maximum length of the string.
On the ABI level the Fixed-size bytes array is annotated as string.

Example:

example_str: string[100] = "Test String"






Operators







	Keyword

	Description





	len(x)

	Return the length as an integer.



	keccak256(x)

	Return the keccak256 hash as bytes32.



	concat(x, ...)

	Concatenate multiple inputs.



	slice(x, start=_start, len=_len)

	Return a slice of _len starting at _start.






Where x is a byte array or string while _start and _len are integers.
The len, keccak256, concat, slice operators can be used with string and bytes types.








Reference Types

Reference types do not fit into 32 bytes. Because of this, copying their value is not as feasible as
with value types. Therefore only the location, i.e. the reference, of the data is passed.


Fixed-size Lists

Fixed-size lists hold a finite number of elements which belong to a specified type.


Syntax

Lists can be declared with _name: _ValueType[_Integer]. Multidimensional lists are also possible.

Example:

#Defining a list
exampleList: int128[3]
#Setting values
exampleList = [10, 11, 12]
exampleList[2] = 42
#Returning a value
return exampleList[0]










Structs

Structs are custom defined types that can group several variables.


Syntax

Structs can be accessed via struct.argname.
Example:

#Defining a struct
struct MyStruct:
    value1: int128
    value2: decimal
exampleStruct: MyStruct
#Constructing a struct
exampleStruct = MyStruct({value1: 1, value2: 2})
#Accessing a value
exampleStruct.value1 = 1










Mappings

Mappings in Vyper can be seen as hash tables [https://en.wikipedia.org/wiki/Hash_table] which are virtually initialized such that
every possible key exists and is mapped to a value whose byte-representation is
all zeros: a type's default value. The similarity ends here, though: The key data is not actually stored
in a mapping, only its keccak256 hash used to look up the value. Because of this, mappings
do not have a length or a concept of a key or value being "set".

It is possible to mark mappings public and have Vyper create a getter.
The _KeyType will become a required parameter for the getter and it will
return _ValueType.


주석

Mappings are only allowed as state variables.




Syntax

Mapping types are declared as map(_KeyType, _ValueType).
Here _KeyType can be any base or bytes type. Mappings, contract or structs are not support as key types.
_ValueType can actually be any type, including mappings.

Example:

#Defining a mapping
exampleMapping: map(int128, decimal)
#Accessing a value
exampleMapping[0] = 10.1






주석

Mappings can only be accessed, not iterated over.










Initial Values

In Vyper, there is no null option like most programming languages have. Thus, every variable type has a default value. In order to check if a variable is empty, you will need to compare it to its type's default value.
If you would like to reset a variable to its type's default value, use the built-in clear() function.


주석

Memory variables must be assigned a value at the time they are declared. 내장된 상수들 may be used to initialize memory variables with their default values.



Here you can find a list of all types and default values:


Default Variable Values





	Type

	Default Value





	bool

	False



	int128

	0



	uint256

	0



	decimal

	0.0



	address

	0x0000000000000000000000000000000000000000



	bytes32

	'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'







주석

In bytes the array starts with the bytes all set to '\x00'




주석

In reference types all the type's members are set to their initial values.






Type Conversions

All type conversions in Vyper must be made explicitly using the built-in convert(a, b) function. Currently, the following type conversions are supported:


Basic Type Conversions







	Destination Type (b)

	Input Type (a.type)

	Allowed Inputs Values (a)

	Additional Notes





	bool

	bool

	—

	Do not allow converting to/from the same type



	bool

	decimal

	MINNUM...MAXNUM

	Has the effective conversion logic of: return (a != 0.0)



	bool

	int128

	MINNUM...MAXNUM

	Has the effective conversion logic of: return (a != 0)



	bool

	uint256

	0...MAX_UINT256

	Has the effective conversion logic of: return (a != 0)



	bool

	bytes32

	(0x00 * 32)...(0xFF * 32)

	Has the effective conversion logic of: return (a != 0x00)



	bool

	bytes

	(0x00 * 1)...(0xFF * 32)

	Has the effective conversion logic of: return (a != 0x00)



	
	
	
	


	decimal

	bool

	True / False

	Result will be 0.0 or 1.0



	decimal

	decimal

	—

	Do not allow converting to/from the same type



	decimal

	int128

	MINNUM...MAXNUM

	


	decimal

	uint256

	0...MAXDECIMAL

	


	decimal

	bytes32

	(0x00 * 32)...(0xFF * 32)

	


	decimal

	bytes

	(0x00 * 1)...(0xFF * 32)

	


	
	
	
	


	int128

	bool

	True / False

	Result will be 0 or 1



	int128

	decimal

	MINNUM...MAXNUM

	Only allow input within int128 supported range, truncates the decimal value



	int128

	int128

	—

	Do not allow converting to/from the same type



	int128

	uint256

	0...MAXNUM

	


	int128

	bytes32

	(0x00 * 32)...(0xFF * 32)

	


	int128

	bytes

	(0x00 * 1)...(0xFF * 32)

	


	
	
	
	


	uint256

	bool

	True / False

	Result will be 0 or 1



	uint256

	decimal

	0...MAXDECIMAL

	Truncates the decimal value



	uint256

	int128

	0...MAXNUM

	


	uint256

	uint256

	—

	Do not allow converting to/from the same type



	uint256

	bytes32

	(0x00 * 32)...(0xFF * 32)

	


	uint256

	bytes

	(0x00 * 1)...(0xFF * 32)

	


	
	
	
	


	bytes32

	bool

	True / False

	Result will be either (0x00 * 32) or (0x00 * 31 + 0x01)



	bytes32

	decimal

	MINDECIMAL...MAXDECIMAL

	Has the effective behavior of multiplying the decimal value by the decimal divisor 10000000000 and then converting that signed integer value to a bytes32 byte array



	bytes32

	int128

	MINNUM...MAXNUM

	


	bytes32

	uint256

	0...MAX_UINT256

	


	bytes32

	bytes32

	—

	Do not allow converting to/from the same type



	bytes32

	bytes

	(0x00 * 1)...(0xFF * 32)

	Left-pad input bytes to size of 32












          

      

      

    

  

    
      
          
            
  
상수와 환경변수들


내장된 상수들

Vpyer는 편의를 위한 내장된 상수들이 있습니다.








	Name

	Type

	Value





	ZERO_ADDRESS

	address

	0x0000000000000000000000000000000000000000



	EMPTY_BYTES32

	bytes32

	0x0000000000000000000000000000000000000000000000000000000000000000



	MAX_INT128

	int128

	2**127 - 1



	MIN_INT128

	int128

	-2**127



	MAX_DECIMAL

	decimal

	(2**127 - 1)



	MIN_DECIMAL

	decimal

	(-2**127)



	MAX_UINT256

	uint256

	2**256 - 1



	ZERO_WEI

	uint256(wei)

	0









커스텀한 상수

커스텀한 상수들은 Vyper에서 전역 수준으로 정의될 수 있습니다. constant 키워드를 이용하여 정의할 수 있습니다.

예시:

TOTAL_SUPPLY: constant(uint256) = 10000000
total_supply: public(uint256)

@public
def __init__():
    self.total_supply = TOTAL_SUPPLY





어려운 예시:

units: {
    share: "Share unit"
}

MAX_SHARES: constant(uint256(share)) = 1000
SHARE_PRICE: constant(uint256(wei/share)) = 5

@public
def market_cap() -> uint256(wei):
    return MAX_SHARES * SHARE_PRICE








환경 변수

환경 변수는 네임스페이스 속에 언제나 존재하며, 블록체인이나 현재 트랜젝션에 대한 정보를 제공할 때 사용되어집니다.


주석

msg.sender 와 msg.value 는 퍼블릭 함수만 접근 가능합니다. 프라이빗 함수에서 사용을 하려면 파라미터로 전송하셔야만 합니다.










	Name

	Type

	Value





	block.coinbase

	address

	현 블록 채굴자의 주소



	block.difficulty

	uint256

	현 블록의 난이도



	block.number

	uint256

	현 블록의 번호



	block.prevhash

	bytes32

	blockhash(block.number - 1) 와 동일



	block.timestamp

	uint256

	현 블록의 epoch timestamp



	msg.gas

	uint256

	남은 가스



	msg.sender

	address

	메세지 전송자 (현 호출)



	msg.value

	uint256(wei)

	메세지로 전송된 Wei의 량



	tx.origin

	address

	트랜잭션의 전송자 (체인 내 전체)












          

      

      

    

  

    
      
          
            
  
Event Logging

Like Solidity and other EVM languages, Vyper can log events to be caught and displayed by user interfaces.


Example of Logging

This example is taken from the sample ERC20 contract [https://github.com/vyperlang/vyper/blob/master/examples/tokens/ERC20.vy] and shows the basic flow of event logging.

# Events of the token.
Transfer: event({_from: indexed(address), _to: indexed(address), _value: uint256})
Approval: event({_owner: indexed(address), _spender: indexed(address), _value: uint256})

# Transfer some tokens from message sender to another address
def transfer(_to : address, _value : uint256) -> bool:

   ... Logic here to do the real work ...

   # All done, log the event for listeners
   log.Transfer(msg.sender, _to, _amount)





Let's look at what this is doing. First, we declare two event types to log. The two events are similar in that they contain
two indexed address fields. Indexed fields do not make up part of the event data itself, but can be searched by clients that
want to catch the event. Also, each event contains one single data field, in each case called _value. Events can contain several arguments with any names desired.

Next, in the transfer function, after we do whatever work is necessary, we log the event. We pass three arguments, corresponding with the three arguments of the Transfer event declaration.

Clients listening to the events will declare and handle the events they are interested in using a library such as web3.js [https://solidity.readthedocs.io/en/latest/contracts.html#events]:

var abi = /* abi as generated by the compiler */;
var MyToken = web3.eth.contract(abi);
var myToken = MyToken.at("0x1234...ab67" /* address */);

// watch for changes in the callback
var event = myToken.Transfer(function(error, result) {
    if (!error) {
        var args = result.args;
        console.log('value transferred = ', args._amount);
    }
});





In this example, the listening client declares the event to listen for. Any time the contract sends this log event, the callback will be invoked.




Declaring Events

Let's look at an event declaration in more detail.

Transfer: event({_from: indexed(address), _to: indexed(address), _value: uint256})





Event declarations look like state variable declarations but use the special keyword event. event takes its arguments that consists of all the arguments to be passed as part of the event. Typical events will contain two kinds of arguments:


	Indexed arguments, which can be searched for by listeners. Each indexed argument is identified by the indexed keyword.  Here, each indexed argument is an address. You can have any number of indexed arguments, but indexed arguments are not passed directly to listeners, although some of this information (such as the sender) may be available in the listener's results object.


	Value arguments, which are passed through to listeners. You can have any number of value arguments and they can have arbitrary names, but each is limited by the EVM to be no more than 32 bytes.




Note that while the argument definition syntax looks like a Python dictionary, it's actually an order-sensitive definition. (Python dictionaries maintain order starting with 3.7 [https://mail.python.org/pipermail/python-dev/2017-December/151283.html].) Thus, the first element (_from) will be matched up with the first argument passed in the log.Transfer call.




Logging Events

Once an event is declared, you can log (send) events. You can send events as many times as you want to. Please note that events sent do not take state storage and thus do not cost gas: this makes events a good way to save some information. However, the drawback is that events are not available to contracts, only to clients.

Logging events is done using the magic keyword log:

log.Transfer(msg.sender, _to, _amount)





The order and types of arguments sent needs to match up with the order of declarations in the dictionary.




Listening for Events

In the example listener above, the result arg actually passes a large amount of information [https://github.com/ethereum/wiki/wiki/JavaScript-API#contract-events]. Here we're most interested in result.args. This is an object with properties that match the properties declared in the event. Note that this object does not contain the indexed properties, which can only be searched in the original myToken.Transfer that created the callback.







          

      

      

    

  

    
      
          
            
  
Compiling a Contract


Command-Line Tools

Vyper includes the following command-line scripts for compiling contracts:


	vyper: Compiles vyper contract files into LLL or bytecode


	vyper-json: Provides a JSON interface to the compiler





주석

The --help flag gives verbose explanations of how to use each of these scripts.




vyper

vyper provides command-line access to the compiler. It can generate various outputs including simple binaries, ASTs, interfaces and source mappings.

To compile a contract:

$ vyper yourFileName.vy





Include the -f flag to specify which output formats to return. Use vyper --help for a full list of output options.

$ vyper -f abi,bytecode,bytecode_runtime,ir,asm,source_map,method_identifiers yourFileName.vy





The -p flag allows you to set a root path that is used when searching for interface files to import.  If none is given, it will default to the current working directory. See Searching For Interface Files for more information.

$ vyper -p yourProject yourProject/yourFileName.vy








vyper-json

vyper-json provides a JSON interface for the compiler. It expects a JSON formatted input and returns the compilation result in a JSON formatted output.

Where possible, the JSON formats used by this script follow those of Solidity [https://solidity.readthedocs.io/en/latest/using-the-compiler.html#compiler-input-and-output-json-description].

To compile from JSON supplied via stdin:

$ vyper-json





To compile from a JSON file:

$ vyper-json yourProject.json





By default, the output is sent to stdout. To redirect to a file, use the -o flag:

$ vyper-json -o compiled.json






Input JSON Description

The following example describes the expected input format of vyper-json. Comments are of course not permitted and used here only for explanatory purposes.

{
    // Required: Source code language. Must be set to "Vyper".
    "language": "Vyper",
    // Required
    // Source codes given here will be compiled.
    "sources": {
        "contracts/foo.vy": {
            // Optional: keccak256 hash of the source file
            "keccak256": "0x234...",
            // Required: literal contents of the source file
            "content": "@public\ndef foo() -> bool:\n    return True"
        }
    },
    // Optional
    // Interfaces given here are made available for import by the sources
    // that are compiled. If the suffix is ".vy", the compiler will expect
    // a contract-as-interface using proper Vyper syntax. If the suffix is
    // "abi" the compiler will expect an ABI object.
    "interfaces": {
        "contracts/bar.vy": {
            "content": ""
        },
        "contracts/baz.json": {
            "abi": []
        }
    },
    // Optional
    "settings": {
        "evmVersion": "byzantium"  // EVM version to compile for. Can be byzantium, constantinople or petersburg.
    },
    // The following is used to select desired outputs based on file names.
    // File names are given as keys, a star as a file name matches all files.
    // Outputs can also follow the Solidity format where second level keys
    // denoting contract names - all 2nd level outputs are applied to the file.
    //
    // To select all possible compiler outputs: "outputSelection: { '*': ["*"] }"
    // Note that this might slow down the compilation process needlessly.
    //
    // The available output types are as follows:
    //
    //    abi - The contract ABI
    //    ast - Abstract syntax tree
    //    interface - Derived interface of the contract, in proper Vyper syntax
    //    ir - LLL intermediate representation of the code
    //    evm.bytecode.object - Bytecode object
    //    evm.bytecode.opcodes - Opcodes list
    //    evm.deployedBytecode.object - Deployed bytecode object
    //    evm.deployedBytecode.opcodes - Deployed opcodes list
    //    evm.deployedBytecode.sourceMap - Deployed source mapping (useful for debugging)
    //    evm.methodIdentifiers - The list of function hashes
    //
    // Using `evm`, `evm.bytecode`, etc. will select every target part of that output.
    // Additionally, `*` can be used as a wildcard to request everything.
    //
    "outputSelection": {
        "*": ["evm.bytecode", "abi"],  // Enable the abi and bytecode outputs for every single contract
        "contracts/foo.vy": ["ast"]  // Enable the ast output for contracts/foo.vy
    }
}








Output JSON Description

The following example describes the output format of vyper-json. Comments are of course not permitted and used here only for explanatory purposes.

{
    // The compiler version used to generate the JSON
    "compiler": "vyper-0.1.0b12",
    // Optional: not present if no errors/warnings were encountered
    "errors": [
        {
        // Optional: Location within the source file.
        "sourceLocation": {
            "file": "source_file.vy",
            "lineno": 5,
            "col_offset": 11
        },
        // Mandatory: Exception type, such as "JSONError", "KeyError", "StructureException", etc.
        "type": "TypeMismatchException",
        // Mandatory: Component where the error originated, such as "json", "compiler", "vyper", etc.
        "component": "compiler",
        // Mandatory ("error" or "warning")
        "severity": "error",
        // Mandatory
        "message": "Unsupported type conversion: int128 to bool"
        // Optional: the message formatted with source location
        "formattedMessage": "line 5:11 Unsupported type conversion: int128 to bool"
        }
    ],
    // This contains the file-level outputs. Can be limited/filtered by the outputSelection settings.
    "sources": {
        "source_file.vy": {
            // Identifier of the source (used in source maps)
            "id": 0,
            // The AST object
            "ast": {},
        }
    },
    // This contains the contract-level outputs. Can be limited/filtered by the outputSelection settings.
    "contracts": {
        "source_file.vy": {
            // The contract name will always be the file name without a suffix
            "source_file": {
                // The Ethereum Contract ABI.
                // See https://github.com/ethereum/wiki/wiki/Ethereum-Contract-ABI
                "abi": [],
                // Intermediate representation (string)
                "ir": "",
                // EVM-related outputs
                "evm": {
                    "bytecode": {
                        // The bytecode as a hex string.
                        "object": "00fe",
                        // Opcodes list (string)
                        "opcodes": ""
                    },
                    "deployedBytecode": {
                        // The deployed bytecode as a hex string.
                        "object": "00fe",
                        // Deployed opcodes list (string)
                        "opcodes": "",
                        // The deployed source mapping as a string.
                        "sourceMap": ""
                    },
                    // The list of function hashes
                    "methodIdentifiers": {
                        "delegate(address)": "5c19a95c"
                    }
                }
            }
        }
    }
}








Importing Interfaces

vyper-json searches for imported interfaces in the following sequence:


	Interfaces defined in the interfaces field of the input JSON


	Derived interfaces generated from contracts in the sources field of the input JSON


	(Optional) The local filesystem, if a root path was explicitely declared via the -p flag.




See Searching For Interface Files for more information on Vyper's import system.




Errors

Each error includes a component field, indicating the stage at which it occurred:


	json: Errors that occur while parsing the input JSON. Usually a result of invalid JSON or a required value that is missing.


	parser: Errors that occur while parsing the contracts. Usually a result of invalid Vyper syntax.


	compiler: Errors that occur while compiling the contracts.


	vyper: Unexpected errors that occur within Vyper. If you receive an error of this type, please open an issue.




You can also use the --traceback flag to receive a standard Python traceback when an error is encountered.








Online Compilers


Vyper Online Compiler

Vyper Online Compiler [https://vyper.online/] is an online compiler which lets you experiment with the language without having to install Vyper. It allows you to compile to bytecode as well as LLL.


주석

While the vyper version of the online compiler is updated on a regular basis it might be a bit behind the latest version found in the master branch of the repository.






Remix IDE

Remix IDE [https://remix.ethereum.org] is a compiler and Javascript VM for developing and testing contracts in Vyper as well as Solidity.


주석

While the vyper version of the Remix IDE compiler is updated on a regular basis it might be a bit behind the latest version found in the master branch of the repository. Make sure the byte code matches the output from your local compiler.











          

      

      

    

  

    
      
          
            
  
컨트랙트 배포

메인넷이나 테스트넷에 컨트랙트를 배포할 준비가 되었다면, 다음과 같은 선택지들이 존재합니다.


	vyper 컴파일러를 통해 생성된 바이트 코드를 갖고 geth나 mist를 통해 수동으로 배포하기




vyper yourFileName.vy
# returns bytecode






	바이트 코드와 ABI를 갖고 마이이더월렛 [https://www.myetherwallet.com/] 의 컨트랙트 메뉴를 통해서 웹 브라우저를 통해 배포하기




vyper -f abi yourFileName.vy
# returns ABI






	Use the remote compiler provided by the Remix IDE [https://remix.ethereum.org] to compile and deploy your contract on your net of choice. Remix also provides a JavaScript VM to test deploy your contract.


	Remix IDE [https://remix.ethereum.org] 에서 제공되는 리모트 컴파일러를 이용하여 컴파일하고 선택한 네트워크로 컨트랙트를 배포하기. Remix는 자바스크립트 VM을 제공하여 당신의 컨트랙트를 배포 전 테스트를 해 볼 수 있습니다.





주석

Remix IDE의 Vyper 버전은 이 레포지토리의 마스터 브랜치의 최신 버전보다 약간 옛날 버전을 사용할 수 있습니다. 당신의 로컬 컴파일러에서 나온 결과와 바이트 코드가 같은지 확실히 하십시오.







          

      

      

    

  

    
      
          
            
  
Testing a Contract

This documentation recommends the use of the pytest [https://docs.pytest.org/en/latest/contents.html] framework with
the ethereum-tester [https://github.com/ethereum/eth-tester] package.
Prior to testing, the vyper specific contract conversion and the blockchain related fixtures need to be set up.
These fixtures will be used in every test file and should therefore be defined in
conftest.py [https://docs.pytest.org/en/latest/fixture.html#conftest-py-sharing-fixture-functions].


주석

Since the testing is done in the pytest framework, you can make use of
pytest.ini, tox.ini and setup.cfg [https://docs.pytest.org/en/latest/customize.html] and you can use most IDEs'
pytest plugins.




Vyper Contract and Basic Fixtures

This is the base requirement to load a vyper contract and start testing. The last two fixtures are optional and will be
discussed later. The rest of this chapter assumes, that you have this code set up in your conftest.py file.
Alternatively, you can import the fixtures to conftest.py or use
pytest plugins [https://docs.pytest.org/en/latest/plugins.html].




Load Contract and Basic Tests

Assume the following simple contract storage.vy. It has a single integer variable and a function to set that value.

We create a test file test_storage.py where we write our tests in pytest style.

First we create a fixture for the contract which will compile our contract and set up a Web3 contract object.
We then use this fixture for our test functions to interact with the contract.


주석

To run the tests, call pytest or python -m pytest from your project directory.






Events and Failed Transactions

To test events and failed transactions we expand our simple storage contract to include an event and two conditions for a failed transaction: advanced_storage.vy

Next, we take a look at the two fixtures that will allow us to read the event logs and to check for failed transactions.

The fixture to assert failed transactions defaults to check for a TransactionFailed exception, but can be used to check for different exceptions too, as shown below.
Also note that the chain gets reverted to the state before the failed transaction.

This fixture will return a tuple with all the logs for a certain event and transaction. The length of the tuple equals the number of events (of the specified type) logged and should be checked first.

Finally, we create a new file test_advanced_storage.py where we use the new fixtures to test failed transactions and events.







          

      

      

    

  

    
      
          
            
  
자주 묻는 질문들


일반적인 질문


Vyper는 무엇인가요?

Vpyer는 스마트 컨트랙트 개발용 언어입니다. Vpyer는 감사 가능하고, 안전하고, 인간 친화적인 것을 목표로 하고 있습니다. 읽기 쉬운 것은 쓰기 쉬운 것보다 더 중요시 됩니다.




Vyper 또는 Solidity?

대다수의 유즈케이스에서, 개인 취향 차이입니다. 안전하고, 감사 가능하고, 인간 친화적인 것을 지원하기 위해서는 Solidity에서 포함되는 다수의 프로그램밍 구성개념들이 Vyper에서는 지원되지 않는다는 것을 의미합니다.




Vyper에서 지원되지 않는 것은 무엇인가요?

다음긔 구성개념들이 포함되어있지 않습니다. 코드를 이해하기 어렵게 하거나, 오독 할 수 있기 때문입니다.


	수식어 (Modifiers)


	클래스 상속


	인라인 어셈블리


	함수 오버로딩


	연산자 오버로딩


	이진 고정 소수점




Recursive calling and infinite-length loops are not included because they cannot set an upper bound on gas limits.
An upper bound is required to prevent gas limit attacks and ensure the security of smart contracts built in Vyper.
가스 제한의 상한치를 예측 할 수 없기에, 재귀 호출이나 무한한 길이의 루프 또한 포한되지 않습니다. 상한치는 가스 제한 공격(Gas limit attacks)를 막기 위해서 필요하며, Vyper로 만들어진 스마트 컨트랙트의 안정성을 확보합니다.




그러면 루프는 어떻게 작동되나요?

파이썬의 루프처럼 작동되나 한 가지는 분명하게 다릅니다. Vyper는 변수 길이 만큼의 순회를 허가하지 않습니다. 변수를 이용한 순회는 무한한 길이의 루프를 만들어내어 공격이 가능하게 합니다.




구조체는 어떻게 작동하나요?

구조체는 변수를 묶고 struct.argname 형태로 접근 가능합니다. 파이썬 클래스와 비슷합니다.


# define the struct
struct MyStruct:


arg1: int128
arg2: decimal




struct: MyStruct

#access arg1 in struct
struct.arg1 = 1












          

      

      

    

  

    
      
          
            
  
기여하기

도움은 언제나 환영입니다.

시작하기 위해, installing Vyper [https://vyper.readthedocs.io/en/latest/installing-vyper.html] 를 진행함으로써 Vyper의 컴포넌트와 빌드 과정에 익숙해지실 수 있습니다.
또한 Vyper로 스마트컨트랙트를 작성하는데 정통해질 수도 있을 것입니다.


기여의 종류

부분적으로 우리는 다음과 같은 부분에서 도움이 필요합니다.


	문서 개선


	StackExchange [https://ethereum.stackexchange.com] 와 Vyper Gitter [https://gitter.im/vyperlang/community] 에서 질문 대응


	개선 사항 제안


	Vyper's GitHub issues [https://github.com/vyperlang/vyper/issues] 에 대해서 대응하고 개선하기







어떻게 개선을 제안할 수 있는가?

개선 사항을 제안하기 위해서 Vyer 개선사항 제안서(짧게 VIP라고 합니다)를 만들어주세요. 다음의 VIP 템플릿 [https://github.com/vyperlang/vyper/blob/master/.github/ISSUE_TEMPLATE/vip.md] 을 사용하세요.




이슈를 어떻게 보고하는가?

이슈를 보고 하기 위해서는, `GitHub 이슈 트래커 <https://github.com/vyperlang/vyper/issues>`_를 사용하세요. 이슈를 리포팅 할 때에는 다음의 세부사항이 필요합니다.


	어떤 버전의 Vyper를 사용하는지


	소스 코드가 어떤지 (응용 가능하다면)


	어떤 플랫폼에서 실행했는지


	OS의 이름과 버전


	이슈를 재현하기 위한 자세한 방법


	이슈의 결과값이 어떤지


	원래 나와야하는 결과 값은 어떠해야하는지




소스 코드의 양을 줄여 이슈의 크기를 최대한 줄이는 것은 언제나 도움이 되고, 때때로 잘못 이해하는 것을 막기도 합니다.




버그 픽스

이슈 페이지 [https://github.com/vyperlang/vyper/issues] 에서 버그를 찾거나 보고 하십시오. "bug"라고 태그 되어있으면 개선을 원하는 누구나 작업할 수 있습니다.




스타일 가이드

Vpyer의 코드 베이스는 Snake Charmer's Style Guide [https://github.com/ethereum/snake-charmers-tactical-manual/blob/master/style-guide.md] 를 따릅니다.
일부는 f-strings [https://github.com/vyperlang/vyper/issues/1567] (명료성을 위해) 사용하고, 코드 베이스의 구조적 디자인 [https://vyper.readthedocs.io/en/latest/architecture.html] 을 고수함으로써,
코드 베이스를 유지보수하는 데 쓰이는 스타일 가이드에 부합하지 않을 수 있습니다.




풀 리퀘스트를 위한 워크플로우

컨트리뷰션을 하기 위해서는 master 브랜치를 포크하시고 그곳에서 작업하십시오. 당신의 커밋 메세지들은 왜 그 수정을 했는지와 추가적으로 무엇을 했는지에 대해서 자세히 설명해야합니다. (작은 수정 사항이 아니라면요)

포크를 한 이후에 (머지 컨플릭트를 해결 하기 위해서라던지의 이유로) 만약 master 에서 어떠한 변경 사항을 풀 할 필요가 있다면,
git merge 를 사용하지 마시고 git rebase 를 당신의 브랜치에 사용하십시오.

기능 적용

만약 새로운 기능을 작성하고 있다면, 적절한 Boost 테스트 케이스를 작성하고 이를 test/ 디렉토리 안에 넣는 것을 확실히 하서야합니다.

만약 거대한 변경점을 만든다면, Gitter 채널에서 먼저 상담을 받아보시길 바랍니다.

저희는 CI 테스팅을 하지만, 지원되는 Python 버전에서 테스트를 통과하도록 하시고 로컬에서 빌드가 되는 상태에서 풀 리퀘스트를 보내시기를 바랍니다.

도움에 감사합니다!







          

      

      

    

  

    
      
          
            
  
Release Notes


v0.1.0-beta.14

Date released: 13-11-2019

Some of the bug and stability fixes:


	Mucho Documentation and Example cleanup!


	Python 3.8 support (#1678 [https://github.com/vyperlang/vyper/pull/1678])


	Disallow scientific notation in literals, which previously parsed incorrectly (#1681 [https://github.com/vyperlang/vyper/pull/1681])


	Add implicit rewrite rule for bytes[32] -> bytes32 (#1718 [https://github.com/vyperlang/vyper/pull/1718])


	Support bytes32 in raw_log (#1719 [https://github.com/vyperlang/vyper/pull/1719])


	Fixed EOF parsing bug (#1720 [https://github.com/vyperlang/vyper/pull/1720])


	Cleaned up arithmetic expressions (#1661 [https://github.com/vyperlang/vyper/pull/1661])


	Fixed off-by-one in check for homogeneous list element types (#1673 [https://github.com/vyperlang/vyper/pull/1673])


	Fixed stack valency issues in if and for statements (#1665 [https://github.com/vyperlang/vyper/pull/1665])


	Prevent overflow when using sqrt on certain datatypes (#1679 [https://github.com/vyperlang/vyper/pull/1679])


	Prevent shadowing of internal variables (#1601 [https://github.com/vyperlang/vyper/pull/1601])


	Reject unary substraction on unsigned types  (#1638 [https://github.com/vyperlang/vyper/pull/1638])


	Disallow orelse syntax in for loops (#1633 [https://github.com/vyperlang/vyper/pull/1633])


	Increased clarity and efficiency of zero-padding (#1605 [https://github.com/vyperlang/vyper/pull/1605])







v0.1.0-beta.13

Date released: 27-09-2019

The following VIPs were implemented for Beta 13:


	Add vyper-json compilation mode (VIP #1520 [https://github.com/vyperlang/vyper/issues/1520])


	Environment variables and constants can now be used as default parameters (VIP #1525 [https://github.com/vyperlang/vyper/issues/1525])


	Require unitialized memory be set on creation (VIP #1493 [https://github.com/vyperlang/vyper/issues/1493])




Some of the bug and stability fixes:


	Type check for default params and arrays (#1596 [https://github.com/vyperlang/vyper/pull/1596])


	Fixed bug when using assertions inside for loops (#1619 [https://github.com/vyperlang/vyper/pull/1619])


	Fixed zero padding error for ABI encoder (#1611 [https://github.com/vyperlang/vyper/pull/1611])


	Check calldatasize before calldataload for function selector (#1606 [https://github.com/vyperlang/vyper/pull/1606])







v0.1.0-beta.12

Date released: 27-08-2019

The following VIPs were implemented for Beta 12:


	Support for relative imports (VIP #1367 [https://github.com/vyperlang/vyper/issues/1367])


	Restricted use of environment variables in private functions (VIP #1199 [https://github.com/vyperlang/vyper/issues/1199])




Some of the bug and stability fixes:


	@nonreentrant/@constant logical inconsistency (#1544 [https://github.com/vyperlang/vyper/issues/1544])


	Struct passthrough issue (#1551 [https://github.com/vyperlang/vyper/issues/1551])


	Private underflow issue (#1470 [https://github.com/vyperlang/vyper/pull/1470])


	Constancy check issue (#1480 [https://github.com/vyperlang/vyper/pull/1480])


	Prevent use of conflicting method IDs (#1530 [https://github.com/vyperlang/vyper/pull/1530])


	Missing arg check for private functions (#1579 [https://github.com/vyperlang/vyper/pull/1579])


	Zero padding issue (#1563 [https://github.com/vyperlang/vyper/issues/1563])


	vyper.cli rearchitecture of scripts (#1574 [https://github.com/vyperlang/vyper/issues/1574])


	AST end offsets and Solidity-compatible compressed sourcemap (#1580 [https://github.com/vyperlang/vyper/pull/1580])




Special thanks to (@iamdefinitelyahuman [https://github.com/iamdefinitelyahuman]) for lots of updates this release!




v0.1.0-beta.11

Date released: 23-07-2019

Beta 11 brings some performance and stability fixes.


	Using calldata instead of memory parameters. (#1499 [https://github.com/vyperlang/vyper/pull/1499])


	Reducing of contract size, for large parameter functions. (#1486 [https://github.com/vyperlang/vyper/pull/1486])


	Improvements for Windows users (#1486 [https://github.com/vyperlang/vyper/pull/1486])  (#1488 [https://github.com/vyperlang/vyper/pull/1488])


	Array copy optimisation (#1487 [https://github.com/vyperlang/vyper/pull/1487])


	Fixing @nonreentrant decorator for return statements (#1532 [https://github.com/vyperlang/vyper/pull/1532])


	sha3 builtin function removed  (#1328 [https://github.com/vyperlang/vyper/issues/1328])


	Disallow conflicting method IDs (#1530 [https://github.com/vyperlang/vyper/pull/1530])


	Additional convert() supported types (#1524 [https://github.com/vyperlang/vyper/pull/1524]) (#1500 [https://github.com/vyperlang/vyper/pull/1500])


	Equality operator for strings and bytes (#1507 [https://github.com/vyperlang/vyper/pull/1507])


	Change in compile_codes interface function (#1504 [https://github.com/vyperlang/vyper/pull/1504])




Thanks to all the contributors!




v0.1.0-beta.10

Date released: 24-05-2019


	Lots of linting and refactoring!


	Bugfix with regards to using arrays as parameters to private functions (#1418 [https://github.com/vyperlang/vyper/issues/1418]). Please check your contracts, and upgrade to latest version, if you do use this.


	Slight shrinking in init produced bytecode. (#1399 [https://github.com/vyperlang/vyper/issues/1399])


	Additional constancy protection in the for .. range expression. (#1397 [https://github.com/vyperlang/vyper/issues/1397])


	Improved bug report (#1394 [https://github.com/vyperlang/vyper/issues/1394])


	Fix returning of External Contract from functions (#1376 [https://github.com/vyperlang/vyper/issues/1376])


	Interface unit fix (#1303 [https://github.com/vyperlang/vyper/issues/1303])


	Not Equal (!=) optimisation (#1303 [https://github.com/vyperlang/vyper/issues/1303]) 1386


	New assert <condition>, UNREACHABLE statement. (#711 [https://github.com/vyperlang/vyper/issues/711])




Special thanks to (Charles Cooper [https://github.com/charles-cooper]), for some excellent contributions this release.




v0.1.0-beta.9

Date released: 12-03-2019


	Add support for list constants (#1211 [https://github.com/vyperlang/vyper/issues/1211])


	Add sha256 function (#1327 [https://github.com/vyperlang/vyper/issues/1327])


	Renamed create_with_code_of to create_forwarder_to (#1177 [https://github.com/vyperlang/vyper/issues/1177])


	@nonreentrant Decorator  (#1204 [https://github.com/vyperlang/vyper/issues/1204])


	Add opcodes and opcodes_runtime flags to compiler (#1255 [https://github.com/vyperlang/vyper/pull/1255])


	Improved External contract call interfaces (#885 [https://github.com/vyperlang/vyper/issues/885])







Prior to v0.1.0-beta.9

Prior to this release, we managed our change log in a different fashion.
Here is the old changelog:


	2019.04.05: Add stricter checking of unbalanced return statements. (#590 [https://github.com/vyperlang/vyper/issues/590])


	2019.03.04: create_with_code_of has been renamed to create_forwarder_to. (#1177 [https://github.com/vyperlang/vyper/issues/1177])


	2019.02.14: Assigning a persistent contract address can only be done using the bar_contact = ERC20(<address>) syntax.


	2019.02.12: ERC20 interface has to be imported using from vyper.interfaces import ERC20 to use.


	2019.01.30: Byte array literals need to be annoted using b"", strings are represented as "".


	2018.12.12: Disallow use of None, disallow use of del, implemented clear() built-in function.


	2018.11.19: Change mapping syntax to use map(). (VIP564 [https://github.com/vyperlang/vyper/issues/564])


	2018.10.02: Change the convert style to use types instead of string. (VIP1026 [https://github.com/vyperlang/vyper/issues/1026])


	2018.09.24: Add support for custom constants.


	2018.08.09: Add support for default parameters.


	2018.06.08: Tagged first beta.


	2018.05.23: Changed wei_value to be uint256.


	2018.04.03: Changed bytes declaration from bytes <= n to bytes[n].


	2018.03.27: Renaming signed256 to int256.


	2018.03.22: Add modifiable and static keywords for external contract calls.


	2018.03.20: Renaming __log__ to event.


	2018.02.22: Renaming num to int128, and num256 to uint256.


	2018.02.13: Ban functions with payable and constant decorators.


	2018.02.12: Division by num returns decimal type.


	2018.02.09: Standardize type conversions.


	2018.02.01: Functions cannot have the same name as globals.


	2018.01.27: Change getter from get_var to var.


	2018.01.11: Change version from 0.0.2 to 0.0.3


	2018.01.04: Types need to be specified on assignment (VIP545 [https://github.com/vyperlang/vyper/issues/545]).


	2017.01.02 Change as_wei_value to use quotes for units.


	2017.12.25: Change name from Viper to Vyper.


	2017.12.22: Add continue for loops


	2017.11.29: @internal renamed to @private.


	2017.11.15: Functions require either @internal or @public decorators.


	2017.07.25: The def foo() -> num(const): ... syntax no longer works; you now need to do def foo() -> num: ... with a @constant decorator on the previous line.


	2017.07.25: Functions without a @payable decorator now fail when called with nonzero wei.


	2017.07.25: A function can only call functions that are declared above it (that is, A can call B only if B appears earlier in the code than A does). This was introduced










          

      

      

    

  

    
      
          
            

색인



 A
 | B
 | C
 | D
 | E
 | F
 | I
 | K
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 


A


  	
      	arrays


      	as_unitless_number() 내장 함수)


      	as_wei_value() 내장 함수)


      	assert() 내장 함수)


  

  	
      	assert_modifiable() 내장 함수)


      	
    auction

      
        	blind


        	open


      


  





B


  	
      	ballot


      	blind auction


      	blockhash() 내장 함수)


  

  	
      	bool


      	built-in;


      	bytes


      	bytes32


  





C


  	
      	ceil() 내장 함수)


      	clear() 내장 함수)


      	company stock


      	concat() 내장 함수)


  

  	
      	contract


      	conversion


      	convert() 내장 함수)


      	create_forwarder_to() 내장 함수)


      	crowdfund


  





D


  	
      	
    deploying

      
        	deploying;


      


  





E


  	
      	ecadd() 내장 함수)


      	ecmul() 내장 함수)


  

  	
      	ecrecover() 내장 함수)


      	extract32() 내장 함수)


  





F


  	
      	false


  

  	
      	floor() 내장 함수)


      	function, [1]


  





I


  	
      	initial


      	int


  

  	
      	int128


      	integer


  





K


  	
      	keccak256() 내장 함수)


  





L


  	
      	len() 내장 함수)


  





M


  	
      	mapping


  

  	
      	metadata;


      	method_id() 내장 함수)


  





O


  	
      	open auction


  





P


  	
      	purchases


  





R


  	
      	raise() 내장 함수)


      	raw_call() 내장 함수)


  

  	
      	raw_log() 내장 함수)


      	reference


      	RLPList() 내장 함수)


  





S


  	
      	selfdestruct() 내장 함수)


      	send() 내장 함수)


      	sha256() 내장 함수)


      	slice() 내장 함수)


      	sqrt() 내장 함수)


  

  	
      	state variable


      	
    stock

      
        	company


      


      	string


      	structs


  





T


  	
      	
    testing

      
        	testing;


      


  

  	
      	true


      	type, [1]


  





U


  	
      	uint256


  

  	
      	unit


  





V


  	
      	value


  

  	
      	voting


  







          

      

      

    

  _static/ajax-loader.gif





_static/comment-bright.png





_static/comment-close.png





_static/comment.png





nav.xhtml

    
      Table of Contents


      
        		
          Vyper
        


        		
          Vyper 설치하기
          
            		
              선행 요구 조건
              
                		
                  Python 3.6 설치하기
                


                		
                  가상환경 구축하기
                


              


            


            		
              설치
            


            		
              PIP
            


            		
              Docker
              
                		
                  Dockerhub
                


                		
                  Dockerfile
                


              


            


            		
              Snap
            


          


        


        		
          Vyper by Example
          
            		
              Simple Open Auction
            


            		
              Blind Auction
            


            		
              Safe Remote Purchases
            


            		
              Crowdfund
            


            		
              Voting
            


            		
              Company Stock
            


          


        


        		
          Structure of a Contract
          
            		
              Versions
            


            		
              State Variables
            


            		
              Functions
              
                		
                  Public Functions
                


                		
                  Private Functions
                


                		
                  Non-reentrant Functions
                


                		
                  Decorators
                


                		
                  Default function
                


              


            


            		
              Events
            


            		
              NatSpec Metadata
            


            		
              Contract Interfaces
              
                		
                  Defining Interfaces and Making External Calls
                


                		
                  Importing Interfaces
                


                		
                  Built-in Interfaces
                


                		
                  Implementing an Interface
                


                		
                  Extracting Interfaces
                


              


            


          


        


        		
          Built in Functions
        


        		
          Low Level Built in Functions
        


        		
          Types
          
            		
              Value Types
              
                		
                  Boolean
                


                		
                  Signed Integer (128 bit)
                


                		
                  Unsigned Integer (256 bit)
                


                		
                  Decimals
                


                		
                  Address
                


                		
                  Unit Types
                


                		
                  Custom Unit Types
                


                		
                  32-bit-wide Byte Array
                


                		
                  Fixed-size Byte Arrays
                


                		
                  Fixed-size Strings
                


              


            


            		
              Reference Types
              
                		
                  Fixed-size Lists
                


                		
                  Structs
                


                		
                  Mappings
                


              


            


            		
              Initial Values
            


            		
              Type Conversions
            


          


        


        		
          상수와 환경변수들
          
            		
              내장된 상수들
            


            		
              커스텀한 상수
            


            		
              환경 변수
            


          


        


        		
          Event Logging
          
            		
              Example of Logging
            


            		
              Declaring Events
            


            		
              Logging Events
            


            		
              Listening for Events
            


          


        


        		
          Compiling a Contract
          
            		
              Command-Line Tools
              
                		
                  vyper
                


                		
                  vyper-json
                


              


            


            		
              Online Compilers
              
                		
                  Vyper Online Compiler
                


                		
                  Remix IDE
                


              


            


          


        


        		
          컨트랙트 배포
        


        		
          Testing a Contract
          
            		
              Vyper Contract and Basic Fixtures
            


            		
              Load Contract and Basic Tests
            


            		
              Events and Failed Transactions
            


          


        


        		
          자주 묻는 질문들
          
            		
              일반적인 질문
              
                		
                  Vyper는 무엇인가요?
                


                		
                  Vyper 또는 Solidity?
                


                		
                  Vyper에서 지원되지 않는 것은 무엇인가요?
                


                		
                  그러면 루프는 어떻게 작동되나요?
                


                		
                  구조체는 어떻게 작동하나요?
                


              


            


          


        


        		
          기여하기
          
            		
              기여의 종류
            


            		
              어떻게 개선을 제안할 수 있는가?
            


            		
              이슈를 어떻게 보고하는가?
            


            		
              버그 픽스
            


            		
              스타일 가이드
            


            		
              풀 리퀘스트를 위한 워크플로우
            


          


        


        		
          Release Notes
          
            		
              v0.1.0-beta.14
            


            		
              v0.1.0-beta.13
            


            		
              v0.1.0-beta.12
            


            		
              v0.1.0-beta.11
            


            		
              v0.1.0-beta.10
            


            		
              v0.1.0-beta.9
            


            		
              Prior to v0.1.0-beta.9
            


          


        


      


    
  

_static/file.png





_static/down-pressed.png





_static/down.png





_static/up-pressed.png





_static/minus.png





_static/plus.png





_static/up.png





