

Welcome to Vyper-Bot’s documentation!

Installation

To install using pip, simply run

pip3 install vyper-bot

in a terminal. If you already have it installed but want to check for a new version, run

pip3 install vyper-bot --upgrade

Note

If you get an error saying that pip3 is not recognized as an internal or external command, try running py -m -3 pip install vyper-bot.
This can occur if python isn’t installed correctly or if it isn’t added to the $PATH on windows.

Getting Started

When first starting to get your bot up and running, you must start by getting a bot key from the BotFather.
This key can be retrieved by sending /newbot in a message to BotFather [https://t.me/BotFather]. After answering a few questions,
you will be rewarded with a key that will look very similar to 123456:ABC-DEF1234ghIkl-zyx57W2v1u123ew11.

The most simple program that you can make is one that only has an object representing the API.
I prefer to name this object bot as this makes it easier to reference later when making calls.

from vyper import vyper

bot = vyper.API()

This API object is fully functional, but won’t do anything for a few reasons.
First of all, we aren’t asking it to do anything, but also, the bot key isn’t put into the API yet.
All you have to do to make the key part of the bot is to take this line

bot = vyper.API()

and turn it into

bot = vyper.API().configure('botkey')

where botkey is your key that you got from BotFather.

Important

Make sure you change the botkey or your code WILL NOT WORK!

Now, you can run any of the methods from the Telegram API [https://core.telegram.org/bots/api#available-methods] using the following code as an example.

Sends a message to the chat id or chat username.
bot.sendMessage(chat_id, 'Test message')

This will send the message Test Message to the chat that you specify.

Getting Updates

One of the biggest requirements of a telegram bot is the ability to get the messages that are sent to a group
so that it can send a message back in response to commands.
I’ve made the process of getting updates extremely simple, just modifying one of the existing lines.
All that needs to be done is to create a method that will be run from a message being sent.

from vyper import vyper
import time

def on_message(msg):
 msg = msg['message']
 bot.sendMessage(msg['chat']['id'], 'I have recieved your message')

bot = vyper.API().configure('123456:ABC-DEF1234ghIkl-zyx57W2v1u123ew11', functions={'message': on_message})

while True:
 bot.getUpdates()
 time.sleep(.05)

Note

	You can use any of the following as a key in the functions dictionary:

	message
edited_message
channel_post
edited_channel_post
inline_query
chosen_inline_result
callback_query
shipping_query
pre_checkout_query

Api Documentation

	
class API

	Vyper Methods

	
configure(token, functions={}, debug=False)

	Configures the bot with the token and functions to run on updates.

	Parameters

	
	token (str) – The token of the bot retrieved from the BotFather

	functions (dict) – A dictionary that has the message types and functions

	debug (boolean) – An experimental value that doesn’t have a use yet, but will in later versions

	Raises

	ValueError – if token is blank or not a string

	
request(endpoint, parameters=None, file=None)

	Requests the endpoint from the telegram API. Shouldn’t need to be called as the other functions run this more effectively.

	Parameters

	
	endpoint (str) – The endpoint to be requested

	parameters (dict) – The parameters attached to the request

	file (file) – A file that is sent with the request

	Returns

	Value retrieved from API, usually updates or a success dictionary

	Return type

	dict

Valid parameter keys for parameters:
message
edited_message
channel_post
edited_channel_post
inline_query
chosen_inline_result
callback_query
shipping_query
pre_checkout_query

Telegram Commands

	
getMe(self)

	Retrieves the user object for the bot.

	Returns

	The bot

	Return type

	User Object

	
getUpdates(self)

	Gets the updates that are pending an update. Will store the current update value in the file lastupdate.vyper.

	Returns

	Doesn’t return a value, but instead runs the corresponding function

	
sendMessage(chat_id, text, parse_mode=None, disable_web_page_preview=False, disable_notification=False, reply_to_message_id=None, reply_markup=None)

	Sends a message to the chat specified.

	Parameters

	
	chat_id (int) – Chat id of the target chat

	text (str) – Text to send in the message

	parse_mode (str) – Markdown or HTML, depending on which formatting style is preferred

	disable_web_page_preview (boolean) – Whether to show a preview of the webpage on the message

	disable_notification (boolean) – Whether to disable the notification for the message

	reply_to_message_id (int) – The message id to make the message reply to

	reply_markup (dict) – The custom markup applied to the message, such as inline keyboards

	
forwardMessage(chat_id, from_chat_id, message_id, disable_notification=False)

	Forwards a message from one chat to another.

	Parameters

	
	chat_id (int) – Chat id of the target chat

	from_chat_id (int) – Chat id of the original chat

	message_id (int) – Message id of the message from the original chat

	disable_notification (boolean) – Whether to disable the notification for the message

	
sendPhoto(chat_id, photo, caption='', disable_notification=False, reply_to_message_id=None, reply_markup=None)

	Sends a photo to the chat specified.

	Parameters

	
	chat_id (int) – Chat id of the target chat

	photo (file) – Photo to send

	caption (str) – The text displayed with the photo

	disable_notification (boolean) – Whether to disable the notification for the message

	reply_to_message_id (int) – The message id to make the message reply to

	reply_markup (dict) – The custom markup applied to the message, such as inline keyboards

	
sendAudio(chat_id, audio, caption='', duration=None, performer='', title='', disable_notification=False, reply_to_message_id=None, reply_markup=None)

	Sends an audio track to the chat specified.

	Parameters

	
	chat_id (int) – Chat id of the target chat

	audio (file) – Audio track to send

	caption (str) – The text displayed with the audio

	duration (int) – The duration of the track

	performer (str) – Performer of the track

	title (str) – Title of the track

	disable_notification (boolean) – Whether to disable the notification for the message

	reply_to_message_id (int) – The message id to make the message reply to

	reply_markup (dict) – The custom markup applied to the message, such as inline keyboards

	
sendDocument(chat_id, document, caption='', disable_notification=False, reply_to_message_id=None, reply_markup=None)

	Sends a document to the chat specified.

	Parameters

	
	chat_id (int) – Chat id of the target chat

	document (file) – Audio track to send

	caption (str) – The text displayed with the audio

	disable_notification (boolean) – Whether to disable the notification for the message

	reply_to_message_id (int) – The message id to make the message reply to

	reply_markup (dict) – The custom markup applied to the message, such as inline keyboards

	
sendVideo(self, chat_id, video, duration=None, width=None, height=None, caption='', disable_notification=False, reply_to_message_id=None, reply_markup=None)

	Sends a video to the chat specified.

	Parameters

	
	chat_id (int) – Chat id of the target chat

	audio (file) – Audio track to send

	duration (int) – The duration of the video

	width (int) – Width of the video

	height (int) – Height of the video

	caption (str) – The text displayed with the video

	disable_notification (boolean) – Whether to disable the notification for the message

	reply_to_message_id (int) – The message id to make the message reply to

	reply_markup (dict) – The custom markup applied to the message, such as inline keyboards

	
sendVoice(self, chat_id, voice, caption=None, duration=None, disable_notification=False, reply_to_message_id=None, reply_markup=None)

	Sends a voice message to the chat specified.

	Parameters

	
	chat_id (int) – Chat id of the target chat

	voice (file) – Audio to send (.ogg)

	caption (str) – The text displayed with the audio

	duration (int) – The duration of the message

	disable_notification (boolean) – Whether to disable the notification for the message

	reply_to_message_id (int) – The message id to make the message reply to

	reply_markup (dict) – The custom markup applied to the message, such as inline keyboards

	
sendVideoNote(self, chat_id, video_note, length=None, duration=None, disable_notification=False, reply_to_message_id=None, reply_markup=None)

	Sends a video note to the chat specified.

	Parameters

	
	chat_id (int) – Chat id of the target chat

	video_note (file) – Video to send

	duration (int) – The duration of the track

	length (int) – Video width and height

	disable_notification (boolean) – Whether to disable the notification for the message

	reply_to_message_id (int) – The message id to make the message reply to

	reply_markup (dict) – The custom markup applied to the message, such as inline keyboards

	
sendLocation(chat_id, latitude, longitude, disable_notification=False, reply_to_message_id=None, reply_markup=None)

	Sends a location to the chat specified.

	Parameters

	
	chat_id (int) – Chat id of the target chat

	latitude (float) – Latitude of the location

	longitude (float) – Longitude of the location

	disable_notification (boolean) – Whether to disable the notification for the message

	reply_to_message_id (int) – The message id to make the message reply to

	reply_markup (dict) – The custom markup applied to the message, such as inline keyboards

	
sendVenue(chat_id, latitude, longitude, title, address, foursquare_id='', disable_notification=False, reply_to_message_id=None, reply_markup=None)

	Sends a venue to the chat specified.

	Parameters

	
	chat_id (int) – Chat id of the target chat

	latitude (float) – Latitude of the venue

	longitude (float) – Longitude of the venue

	title (str) – Name of the venue

	address (str) – Address of the venue

	foursquare_id (str) – Foursquare id of the venue

	disable_notification (boolean) – Whether to disable the notification for the message

	reply_to_message_id (int) – The message id to make the message reply to

	reply_markup (dict) – The custom markup applied to the message, such as inline keyboards

	
sendContact(chat_id, phone_number, first_name, last_name='', disable_notification=False, reply_to_message_id=None, reply_markup=None)

	Sends a contact to the chat specified.

	Parameters

	
	chat_id (int) – Chat id of the target chat

	phone_number (str) – Latitude of the contact

	first_name (str) – Longitude of the contact

	last_name (str) – Name of the contact

	disable_notification (boolean) – Whether to disable the notification for the message

	reply_to_message_id (int) – The message id to make the message reply to

	reply_markup (dict) – The custom markup applied to the message, such as inline keyboards

	
sendChatAction(chat_id, action)

	Sends the bot’s current status to the chat.

	Parameters

	
	chat_id (int) – Chat id of the target chat

	action (ChatAction) – Type of action to broadcast

	
getUserProfilePhotos(user_id, offset=None, limit=None)

	Returns an array of profile photos from the target user

	Parameters

	
	user_id (int) – The user id of the target user

	offset (int) – The first photo to be returned

	limit (int) – The maximum number of photos to be retrieved

	
getFile(file_id)

	Gets simple file information to be downloaded from https://api.telegram.org/file/bot<token>/<file_path>.

	Parameters

	file_id (str) – File identifier

Administrative Commands

	
kickChatMember(chat_id, user_id, until_date=0)

	Kicks a chat member until the date specified or until unbanned.

	Parameters

	
	chat_id (int) – The id of the target chat

	user_id (int) – The id of the target user

	until_date (int) – The date in unix time that the user will be unbanned

	
unbanChatMember(chat_id, user_id)

	Unbans a chat member from a chat.

	Parameters

	
	chat_id (int) – The id of the target chat

	user_id (int) – The id of the target user

	
restrictChatMember(chat_id, user_id, until_date=0, can_send_messages=True, can_send_media_messages=True, can_send_other_messages=True, can_add_web_page_previews=True)

	Restricts a chat member’s permissions in a chat.

	Parameters

	
	chat_id (int) – The id of the target chat

	user_id (int) – The id of the target user

	until_date (int) – The date in unix time that the user will be unbanned

	can_send_messages (boolean) – Whether a user can send messages

	can_send_media_messages (boolean) – Whether a user can send media messages

	can_send_other_messages (boolean) – Whether a user can send other messages

	can_add_web_page_previews (boolean) – Whether a user can create web page previews

	
promoteChatMember(chat_id, user_id, can_change_info=False, can_post_messages=False, can_edit_messages=False, can_delete_messages=False, can_invite_users=False, can_restrict_members=False, can_pin_messages=False, can_promote_members=False)

	Promotes a chat member

	Parameters

	
	chat_id (int) – The id of the target chat

	user_id (int) – The id of the target user

	can_change_info (boolean) – Whether a user can change group info

	can_post_messages (boolean) – Whether a user can make channel posts

	can_edit_messages (boolean) – Whether a user can edit other messages in a channel

	can_delete_messages (boolean) – Whether a user can delete other users’ messages

	can_invite_users (boolean) – Whether a user can invite members to the group

	can_restrict_members (boolean) – Whether a user can restrict members in the group

	can_pin_messages (boolean) – Whether a user can pin messages

	can_promote_members (boolean) – Whether a user can promote users

	
leaveChat(chat_id)

	Makes the bot leave the target chat

	Parameters

	chat_id (int) – The id of the target chat

	
getChat(chat_id)

	Returns information on the target chat

	Parameters

	chat_id (int) – The id of the target chat

	
getChatAdministrators(chat_id)

	Returns list of administrators in the target chat

	Parameters

	chat_id (int) – The id of the target chat

	
getChatMembersCount(chat_id)

	Returns number of members in the target chat

	Parameters

	chat_id (int) – The id of the target chat

	
getChatMember(chat_id, user_id)

	Returns information on the target chat member

	Parameters

	
	chat_id (int) – The id of the target chat

	user_id (int) – The id of the target user

	
answerCallbackQuery(callback_query_id, text='', show_alert=False, url='', cache_time=None)

	Sends an answer to a callback query from an inline keyboard.

	Parameters

	
	callback_query_id (str) – Callback query id

	text (str) – Text for the notification

	show_alert (boolean) – Shows an alert instead of a notification

	url (str) – Url of game or to open bot with parameter

	cache_time (str) – Time to cache the query on the client

	
editMessageText(text, chat_id=None, message_id=None, inline_message_id=None, parse_mode=None, disable_web_page_preview=False, reply_markup=None)

	Edits a message from a chat.

	Parameters

	
	text (str) – New text for the message

	chat_id (int) – Chat id of the target chat

	message_id (int) – Message id in the target chat

	inline_message_id (str) – Inline message id in the target chat

	parse_mode (str) – Markdown or HTML, depending on which formatting style is preferred

	disable_notification (boolean) – Whether to disable the notification for the message

	reply_markup (dict) – The custom markup applied to the message, such as inline keyboards

	
editMessageCaption(chat_id=None, message_id=None, inline_message_id=None, caption=None, reply_markup=None)

	Edits a caption from a chat.

	Parameters

	
	chat_id (int) – Chat id of the target chat

	message_id (int) – Message id in the target chat

	inline_message_id (str) – Inline message id in the target chat

	parse_mode (str) – Markdown or HTML, depending on which formatting style is preferred

	reply_markup (dict) – The custom markup applied to the message, such as inline keyboards

	
editMessageReplyMarkup(chat_id=None, message_id=None, inline_message_id=None, reply_markup=None)

	Edits the reply markup on a message.

	Parameters

	
	chat_id (int) – Chat id of the target chat

	message_id (int) – Message id in the target chat

	inline_message_id (str) – Inline message id in the target chat

	reply_markup (dict) – The custom markup applied to the message, such as inline keyboards

	
deleteMessage(chat_id, message_id)

	Deletes a message from a chat.

	Parameters

	
	chat_id (int) – Chat id of the target chat

	message_id (int) – Message id in the target chat

	
answerInlineQuery(inline_query_id, results, cache_time=None, is_personal=False, next_offset='', switch_pm_text='', switch_pm_parameter='')

	Answers an inline query

	Parameters

	
	inline_query_id (str) – The id of the inline query

	results – The results to send to the user

	cache_time (integer) – The time to cache the results on the server

	is_personal (boolean) – Should results be cached server side only for that user

	next_offset (str) – Offset a client should send in the next query to recieve more results

	switch_pm_text (str) – Clients display button with specified text that switches to private chat

	switch_pm_parameter (str) – The parameter for the /start message sent when the button is pressed

	
sendInvoice(chat_id, title, description, payload, provider_token, start_parameter, currency, prices, photo_url='', photo_size=None, photo_height=None, photo_width=None, need_name=False, need_phone_number=False, need_email=False, need_shipping_address=False, is_flexible=False, disable_notification=False, reply_to_message_id=None, reply_markup=None)

	Sends an invoice to the user.

	Parameters

	
	chat_id (int) – Private chat id

	title (str) – Product name

	description (str) – Product description

	payload (str) – Invoice payload

	provider_token (str) – Payment token from BotFather

	start_parameter (str) – Deep linking parameter when used as a /start parameter

	currency (str) – Three letter currency code [https://core.telegram.org/bots/payments#supported-currencies]

	prices (list) – Array of prices

	photo_url (str) – Product photo

	photo_size (int) – Photo size

	photo_width (int) – Photo width

	photo_height (int) – Photo height

	need_name (boolean) – Needs full name to complete order

	need_phone_number (boolean) – Needs phone number to complete order

	need_email (boolean) – Needs email to complete order

	need_shipping_address (boolean) – Needs shipping address to complete order

	is_flexible (boolean) – Final price depends on shipping method

	disable_notification (boolean) – Disable the notification

	reply_to_message_id (int) – Message id to reply to

	reply_markup (dict) – The inline keyboard applied to the message

	
answerShippingQuery(shipping_query_id, ok, shipping_options=None, error_message='')

	If is_flexible and need_shipping_address are in the invoice, sends an update.

	Parameters

	
	shipping_query_id (str) – The shipping query id

	ok (boolean) – Is the address ok

	shipping_options (list) – Sends the shipping options

	error_message (str) – The error message to send to the user as a reason for the shipping to fail.

	
answerPreCheckoutQuery(pre_checkout_query_id, ok, error_message='')

	After shipping and payment details are confirmed, send a confirmation.

	Parameters

	
	pre_checkout_query_id (str) – The precheckout query id

	ok (boolean) – Is the order ok

	error_message (str) – The error message to send to the user as a reason for the order to fail.

	
sendGame(chat_id, game_short_name, disable_notification=False, reply_to_message_id=None, reply_markup=None)

	Sends a game to users in a chat.

	Parameters

	
	chat_id (int) – The id of the target chat

	game_short_name (str) – The id of the target chat

	disable_notification (boolean) – Disable the notification

	reply_to_message_id (int) – Message id to reply to

	reply_markup (dict) – The inline keyboard applied to the message

	
exportChatInviteLink(chat_id)

	Exports an invite link

	Parameters

	chat_id (int) – The id of the target chat

	
setChatPhoto(chat_id, photo)

	Sets the chat photo

	Parameters

	
	chat_id (int) – The id of the target chat

	photo (file) – The photo to set as the chat photo

	
deleteChatPhoto(chat_id)

	Deletes a chat photo

	Parameters

	chat_id (int) – The id of the target chat

	
setChatTitle(chat_id, title)

	Sets the chat title

	Parameters

	
	chat_id (int) – The id of the target chat

	title (str) – The text to set as the chat title

	
setChatDescription(chat_id, description)

	Sets the chat description

	Parameters

	
	chat_id (int) – The id of the target chat

	description (str) – The text to set as the chat description

	
pinChatMessage(chat_id, message_id, disable_notification=False)

	Sets the chat description

	Parameters

	
	chat_id (int) – The id of the target chat

	message_id (int) – The id of the target message

	disable_notification (boolean) – Disable the notification

	
unpinChatMessage(chat_id)

	Unpins the message in the target chat

	Parameters

	chat_id (int) – The id of the target chat

	
getStickerSet(name)

	Returns the sticker set with the name specified

	Parameters

	name (str) – The name of the sticker set

	
sendSticker(chat_id, sticker, disable_notification=False, reply_to_message_id=None, reply_markup=None)

	

	
uploadStickerFile(self)

	Uploads a new sticker

	Parameters

	
	user_id (int) – The user id of the sticker owner

	png_sticker (file) – The png file with at least one side of 512px

	
createNewStickerSet(user_id, name, title, png_sticker, emojis, contains_masks=False, mask_position=None)

	Uploads a new sticker

	Parameters

	
	user_id (int) – The user id of the sticker owner

	name (str) – The short name of the sticker set

	title (str) – The title of the sticker set

	png_sticker (file) – The png file with at least one side of 512px

	emojis (str) – Emoji to correspond to a sticker

	contains_masks (boolean) – Set of mask stickers should be created

	mask_position (dict) – Position of the mask

	
addStickerToSet(user_id, name, png_sticker, emojis, mask_position=None)

	Adds sticker to set

	Parameters

	
	user_id (int) – The user id of the sticker owner

	name (str) – The short name of the sticker set

	png_sticker (file) – The png file with at least one side of 512px

	emojis (str) – Emoji to correspond to a sticker

	mask_position (dict) – Position of the mask

	
setStickerPositionInSet(sticker, position)

	Moves sticker to position in the set

	Parameters

	
	sticker (str) – File id of sticker

	position (int) – New sticker position, zero-based

	
deleteStickerFromSet(sticker)

	Deletes sticker from set.

	Parameters

	sticker (str) – File id of sticker

	
class ChatAction(Enum)

	
	
TYPING

	

	
PHOTO

	

	
UVIDEO

	

	
RVIDEO

	

	
UAUDIO

	

	
RAUDIO

	

	
DOCUMENT

	

	
LOCATION

	

	
UVIDNOTE

	

	
RVIDNOTE

	

Basebot

As of version 3.3, vyper-bot comes with template bots to make getting started easier. The most basic one being basebot.
It provides a very simple framework for your bot.

Simple Setup

from vyper import basebot

class MyBot(basebot.Basebot):
 def message(self, msg):
 msg = msg['message']
 if msg['text'] == '/ping':
 self.sendMessage(msg['chat']['id'], 'PONG')

bot = MyBot('123456:ABC-DEF1234ghIkl-zyx57W2v1u123ew11', start_loop=True)

This is perfectly valid code, which will run the message function when a message is sent, and will reply with PONG if the message is /ping.
Using this style of bot makes the setup slightly less tedious than it would be by using only the base API, as it does all the background work for you.

	
class basebot.Basebot(token, debug=False, start_loop=False, loop_time=0.05)

	Inherits vyper.API, allowing you to use any of the API methods from within the bot.

	Members

	start_message

	
start_loop(loop_time)

	This method will provide an easier way to create the update loop.

	Parameters

	loop_time (float) – The time in between cycles of the loop

	
set_functions(functions)

	Sets the functions that will run when an update is received. Defaults to the functions that are setup already, which are designed to be overwritten.

	Parameters

	functions (dict) – The dictionary of functions that will be run

	
message(msg)

	Called when a message is received. Overwrite this in your child bot.

	
edited_message(msg)

	Called when a message is edited. Overwrite this in your child bot.

	
channel_post(msg)

	Called when a message is posted to a channel. Overwrite this in your child bot.

	
edited_channel_post(msg)

	Called when a message is edited in a channel. Overwrite this in your child bot.

	
inline_query(msg)

	Called when an inline query is received. Overwrite this in your child bot.

	
chosen_inline_result(msg)

	Called when an inline query result is is chosen. Overwrite this in your child bot.

	
callback_query(msg)

	Called when a callback is received. Overwrite this in your child bot.

	
shipping_query(msg)

	Called when a shipping query is received. Overwrite this in your child bot.

	
pre_checkout_query(msg)

	Called when a pre-checkout query is received. Overwrite this in your child bot.

Plugin Bots

If you want to make a bot using a plugin system, PluginBot is the way to go. Rather than having to develop a system to decide which command to use, you can just create a class that extends Plugin and it will be automatically detected. If you run a bot using the PluginBot base, it will automatically create a folder called plugins, which will detect any file and plugin within that folder. What this means is that you won’t have to import any files and it will find them for you. I’ve found that this saves a lot of grief trying to figure out why a command won’t be detected properly, as it should be detected no matter what.

from vyper import pluginbot

class TutorialBot(pluginbot.PluginBot):
 def message(self, msg):
 msg = msg['message']
 self.test_plugins(msg)

if __name__ == '__main__':
 bot = VyperBot('123456:ABC-DEF1234ghIkl-zyx57W2v1u123ew11', start_loop=True, list_plugins=True)

from vyper import pluginbot

class Help(pluginbot.Plugin):
 def message(self, msg):
 if msg['text'] == '/help':
 self.bot.sendMessage(msg['chat']['id'], 'This is the help command')

	
class pluginbot.PluginBot(token, debug=False, start_loop=False, loop_time=.05, ping=True, list_plugins=False)

	Inherits pluginbot.BaseBot, allowing you to use any of the API methods from within the bot.

	Members

	start_message

	
start_loop(loop_time)

	This method will provide an easier way to create the update loop.

	Parameters

	loop_time (float) – The time in between cycles of the loop

	
set_functions(functions)

	Sets the functions that will run when an update is received. Defaults to the functions that are setup already, which are designed to be overwritten.

	Parameters

	functions (dict) – The dictionary of functions that will be run

	
test_plugins(msg)

	Tests all the plugins and runs the message() method in them to scan them. This is bound to be changed in a future update to automatically test for a plugin based on a custom variable, but it doesn’t do that yet.

	Parameters

	msg – The message object that will be passed to the other end of the function. Can be a dictionary or a types.Message object, depending on personal preference. Note that the types.Message object must be created by calling msg = types.build(msg) and will return a dot operator seperated object.

	
_get_plugins()

	Gets a list of all the plugins that are found in the bot. You shouldn’t need to run this, but it gets run when testing the plugins automatically. Returns as a generator, so the plugins can be easily iterated over.

	Returns

	The plugins

	Return type

	Generator

	
message(msg)

	Called when a message is received. Overwrite this in your child bot.

	
edited_message(msg)

	Called when a message is edited. Overwrite this in your child bot.

	
channel_post(msg)

	Called when a message is posted to a channel. Overwrite this in your child bot.

	
edited_channel_post(msg)

	Called when a message is edited in a channel. Overwrite this in your child bot.

	
inline_query(msg)

	Called when an inline query is received. Overwrite this in your child bot.

	
chosen_inline_result(msg)

	Called when an inline query result is is chosen. Overwrite this in your child bot.

	
callback_query(msg)

	Called when a callback is received. Overwrite this in your child bot.

	
shipping_query(msg)

	Called when a shipping query is received. Overwrite this in your child bot.

	
pre_checkout_query(msg)

	Called when a pre-checkout query is received. Overwrite this in your child bot.

Payments

The Telegram Payment System

When first trying to figure out the payment system built into Telegram, it can be extremely daunting. My first time trying to learn how it worked wasn’t extremely difficult, but still took some getting used to, as well as some custom functions to make life easier. After you figure it out for the first time though, it just clicks on how it works.

[image: _images/tgpay.png]
Above is the general idea of what has to happen to make a payment go through properly. It’s really only 2 steps on the bot side of things if the product doesn’t need delivery, so it can be super simple. Adding shipping information only requires one extra step, which is just confirming that the location can actually be shipped to (kind of important).

Vyper Payments

Note

If you don’t have a payment provider code yet, make sure to head over to BotFather and get one, or none of this will work.

The payments in vyper work in the same order as in the Telegram system (seeing as it’s what it runs on), but I’ve added a few extra functions to make things easier to keep track of. When using the default system, you need to define a “payload” for the order, which took me a while to realize is just a string that can be tied to the order that’s being processed. This makes it easier to keep track of the payment, but can be confusing to come up with. If you use the payments.Item class, you don’t have to worry about quite a bit of the information in the payment.

To make an item, all you need to do is create the item file, then pass the result of the invoice method into the sendInvoice() method. I’ll be using an example for a pluginbot design.

Important

If you don’t split the result of invoice() into the invoice and payload, everything will break. Also, make sure to deconstruct the invoice into all the parameters using an asterisk. self.bot.sendInvoice(*invoice) This is because it’s returned as a tuple of all the values needed for the invoice, so if you don’t break it down, it will break horribly.

stripe = 'STRIPE TEST CODE RETRIEVED FROM BOTFATHER'
item = payments.Item('Test Item', 'Test Description', stripe, prices=[payments.LabeledPrice('Item', 500)])

class Pay(pluginbot.Plugin):
 def message(self, msg):
 if msg['text'] == '/pay':
 invoice, payload = item.invoice(msg)
 self.bot.sendInvoice(*invoice)

As you can see, the payments.Item format makes it so only 4 arguments are needed to send the item, as the rest can be generated easily. Normally, it would take 8 different arguments to send an invoice to the user, but I automatically fill the currency, start_parameter, payload, and chat_id for you. The start_parameter will just be the name of the item, with spaces stripped off of it, and the currency will be defaulted to USD, but can be changed in the constructor. For the payload, I generate a string using the user’s id and the start parameter, as well as appending the unix timestamp to the end, creating a payload that looks similar to 123456789TestProduct1416667432. This makes it both easy to identify, as well as unique for every user, so you won’t have to worry about duplicates. The only way a duplicate could be created is if a user tried to send multiple orders in the exact same second, which is extremely unlikely.

Version History

Version 5.0.2 (November 6, 2018)

	Starting work on API again

	Bug fixes

Version 4.1 (September 12, 2017)

	Added logging decorator to be added to the main class

	Added a few missing types

	Bug Fixes

Version 4.0 (September 9, 2017)

	Created version log

	Added payment API

	Added BaseBot and PluginBot, for easy startup

	Added types system, preparing for future, as well as allowing for message dictionaries to be converted into objects

	Added keyboard generator using excel, still buggy, would not recommend using unless testing.

Previous Versions

	Added support for every function available through the Telegram Bot API

	Created documentation to make getting started easier

	Updated to version 3.3 of the Bot API

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | P
 | R
 | S
 | T
 | U

_

 	
 	_get_plugins() (pluginbot.PluginBot method)

A

 	
 	addStickerToSet() (API method)

 	answerCallbackQuery() (API method)

 	answerInlineQuery() (API method)

 	
 	answerPreCheckoutQuery() (API method)

 	answerShippingQuery() (API method)

 	API (built-in class)

B

 	
 	basebot.Basebot (built-in class)

C

 	
 	callback_query() (basebot.Basebot method)

 	(pluginbot.PluginBot method)

 	channel_post() (basebot.Basebot method)

 	(pluginbot.PluginBot method)

 	
 	ChatAction (built-in class)

 	chosen_inline_result() (basebot.Basebot method)

 	(pluginbot.PluginBot method)

 	configure() (API method)

 	createNewStickerSet() (API method)

D

 	
 	deleteChatPhoto() (API method)

 	deleteMessage() (API method)

 	
 	deleteStickerFromSet() (API method)

 	DOCUMENT (ChatAction attribute)

E

 	
 	edited_channel_post() (basebot.Basebot method)

 	(pluginbot.PluginBot method)

 	edited_message() (basebot.Basebot method)

 	(pluginbot.PluginBot method)

 	
 	editMessageCaption() (API method)

 	editMessageReplyMarkup() (API method)

 	editMessageText() (API method)

 	exportChatInviteLink() (API method)

F

 	
 	forwardMessage() (API method)

G

 	
 	getChat() (API method)

 	getChatAdministrators() (API method)

 	getChatMember() (API method)

 	getChatMembersCount() (API method)

 	
 	getFile() (API method)

 	getMe() (API method)

 	getStickerSet() (API method)

 	getUpdates() (API method)

 	getUserProfilePhotos() (API method)

I

 	
 	inline_query() (basebot.Basebot method)

 	(pluginbot.PluginBot method)

K

 	
 	kickChatMember() (API method)

L

 	
 	leaveChat() (API method)

 	
 	LOCATION (ChatAction attribute)

M

 	
 	message() (basebot.Basebot method)

 	(pluginbot.PluginBot method)

P

 	
 	PHOTO (ChatAction attribute)

 	pinChatMessage() (API method)

 	pluginbot.PluginBot (built-in class)

 	
 	pre_checkout_query() (basebot.Basebot method)

 	(pluginbot.PluginBot method)

 	promoteChatMember() (API method)

R

 	
 	RAUDIO (ChatAction attribute)

 	request() (API method)

 	
 	restrictChatMember() (API method)

 	RVIDEO (ChatAction attribute)

 	RVIDNOTE (ChatAction attribute)

S

 	
 	sendAudio() (API method)

 	sendChatAction() (API method)

 	sendContact() (API method)

 	sendDocument() (API method)

 	sendGame() (API method)

 	sendInvoice() (API method)

 	sendLocation() (API method)

 	sendMessage() (API method)

 	sendPhoto() (API method)

 	sendSticker() (API method)

 	sendVenue() (API method)

 	sendVideo() (API method)

 	
 	sendVideoNote() (API method)

 	sendVoice() (API method)

 	set_functions() (basebot.Basebot method)

 	(pluginbot.PluginBot method)

 	setChatDescription() (API method)

 	setChatPhoto() (API method)

 	setChatTitle() (API method)

 	setStickerPositionInSet() (API method)

 	shipping_query() (basebot.Basebot method)

 	(pluginbot.PluginBot method)

 	start_loop() (basebot.Basebot method)

 	(pluginbot.PluginBot method)

T

 	
 	test_plugins() (pluginbot.PluginBot method)

 	
 	TYPING (ChatAction attribute)

U

 	
 	UAUDIO (ChatAction attribute)

 	unbanChatMember() (API method)

 	unpinChatMessage() (API method)

 	
 	uploadStickerFile() (API method)

 	UVIDEO (ChatAction attribute)

 	UVIDNOTE (ChatAction attribute)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Vyper-Bot’s documentation!

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/tgpay.png
Qo Client

SeNA NV NSl —> FiWN\ ouL P i_]m(ﬁL

;V\OO
SL\:PP\."\ 7‘ é—e/
‘L‘W J ’3% Fiii O\J’L’-\“'(/""\)

HENE &N
oce-checkouw v /

e rmele SYV TS
o€ Aer 15 Frne

send e clept — Don(!

_static/ajax-loader.gif

