Verilog-to-Routing Documentation
Release 8.0.0-rc1

VTR Developers

Sep 17, 2019

Usage

VTR 3
I.L. VIRCADFlow e e e e e 3
1.2 Get VTR . . o o e 5
1.3 Install VTR . . . o o e e 7
1.4 Runningthe VTR Flow e 7
1.5 Benchmarks e 9
1.6 Power Estimation e e e e e e 11
L7 Tasks . . . o o e e 23
1.8 run_vtr_flow L e e e e 26
1.9 run_vir_task L e e e e e e e e 29
110 parse_vtr_flow o o e e e e e e e e e e 31
LI parse_vtr_task o o o o e e e e e e e e e e e 32
[.12 Parse Configuration i e e e e e e e e 33
1.13 Pass Requirements o o o i i e e e e e e e e e e e 34
FPGA Architecture Description 37
2.1 Architecture Reference L e 37
2.2 Example Architecture Specification 0oL o 89
VPR 101
3.1 Command-line Options e e e 101
3.2 Graphics L e 125
33 Timing CONStraints o o v vt e e e e e e e e e e e e e e e 128
34 SDCCommands i it e e e e 129
3.5 FileFormats e e 138
3.6 Debugging Aids L e e e e e e e 154
Odin IT 157
4.1 INSTALL e e e e 157
42 USAGE e 158
43 DOCUMENTINGODINII e e e e e e 163
44 TESTINGODINIL. o e e e e e e e s s s 163
4.5 USINGMODELSIMTOTESTODINIIttt 164
4.6 CONTACT o e e e e e e e e e e 164
ABC 165

6

Tutorials

6.1 Design Flow Tutorials 0 o i e e e e e e e e e e
6.2 Architecture Modeling e e
6.3 Running the Titan Benchmarks L o o
6.4 Post-Implementation Timing Simulation L
Utilities

7.1 FPGA Assembly (FASM) Output Support o o v i vt e e et e e
Developer Guide

8.1 Building VTR L e
8.2 Contribution Guidelines e e e e e e e
8.3 Commit Procedures e
84 Code Formatting i e e e e e e e e e e e
8.5 Running Tests o e e e e e e e e e e e e e e
8.6 Debugging Failed Tests e
8.7 Evaluating Quality of Result (QoR) Changes
8.8 Adding Tests e e e e
8.9 Debugging Aids e e e e
8.10 External Subtrees L e e e e e
8.11 Finding Bugs with Coverity o e e e e e e e e
8.12 Release Procedures L e
8.13 New Developer Tutorial e e e e
8.14 VTR Support Resources o . . e e e e
8.15 VTRULicense o o e e e e
Contact

0.1 Mailing Lists e e e e
9.2 IssueTracker e e

10 Glossary

11 Publications & References

12 Indices and tables

Bibliography

Index

167
167
168
204
206

215
215

221
221
226
229
230
230
232
233
239
241
241
243
244
245
247
247

249
249
249

251

253

255

257

261

Verilog-to-Routing Documentation, Release 8.0.0-rc1

Form more information on the Verilog-to-Routing (VTR) project see VIR and VIR CAD Flow.
For documentation and tutorials on the FPGA architecture description langauge see: FPGA Architecture Description.

For more specific documentation about VPR see VPR.

Usage 1

Verilog-to-Routing Documentation, Release 8.0.0-rc1

2 Usage

CHAPTER 1

VTR

The Verilog-to-Routing (VTR) project [RLY+12][LAK+14] is a world-wide collaborative effort to provide a open-
source framework for conducting FPGA architecture and CAD research and development. The VTR design flow takes
as input a Verilog description of a digital circuit, and a description of the target FPGA architecture.

It then perfoms:
* Elaboration & Synthesis (Odin IT)
¢ Logic Optimization & Technology Mapping (ABC)
 Packing, Placement, Routing & Timing Analysis (VPR)
Generating FPGA speed and area results.

VTR also includes a set of benchmark designs known to work with the design flow.

1.1 VTR CAD Flow

In the standard VTR Flow (Fig. 1.1), Odin II converts a Verilog Hardware Destription Language (HDL) design into
a flattened netlist consisting of logic gates, flip-flops, and blackboxes representing heterogeneous blocks (e.g. adders,
multipliers, RAM slices) [JKGS10].

Next, the ABC synthesis package is used to perform technology-independent logic optimization, and technology-maps
the circuit into LUTs [SG][PHMBO7][CCMBO07]. The output of ABC is a .blif format netlist of LUTs, flip flops, and
blackboxes.

VPR then packs this netlist into more coarse-grained logic blocks, places and then routes the circuit
[BRM99][Bet98][BR96a][BRO6b][BRI7b][BRI7a][MBROI][MBROO][BROO]. Generating output files for each
stage. VPR will analyze the resulting implementation, producing various statistics such as the minimum number
of tracks per channel required to successfully route, the total wirelength, circuit speed, area and power. VPR can also
produce a post-implementation netlist for simulation and formal verification.

Verilog-to-Routing Documentation, Release 8.0.0-rc1

FPGA
- h
(RR Grap) (Architecture)

Device
: | N @ Description
1
! |)
! ' ot Desi
! : Odin II | Q;?;pus E Yosys E esign
! H ; CAD Tool
i I E l 1 |:| Stage
1 | | 1 —_——
[[1 —
1 ' low
: I 1| vQM to BLIF | | ABC <= __\) VIR Flow
i | I ! i lj) Titan Flow
1 I | Y———] | ‘===
i 4/H/ | — Standard
i | Il) :
' I 1 | -——-=> Optional
i | ABC \! i
1 | I_ 1
1 ——— e —— —
' I A N
- Ll
E I —- = Tech. Mapped 1 I
! I P Netlist /- 1
! |, et 1 !
H | ! I'/(E———) v
I | [
: I VPR o BEati iy Other :
1 I ! Pack) / t Pack i
H | T s oo
1 | i
: I l i : ,,,,,,, Yoo
1 It 1 | [
\ T VPR 1 I Other i
R e il 44> Place i I / Blacsnent -): Place |
! | !] A rommsd
! 4 l i | R 2
L I
! T VPR il Routi I I Other i
E -------------------- H‘> Route 1 / R -)1 Route 1
| I 1
H I . AN
' 1 ~
E !! VPR ” ri:A”””i””‘
! T . i
[N [4>] Analysis il il S
I ' Il S ——
‘/\\f—f{-::_g‘—_' v !
,,,,, v
Post-Impl. Area Timing Power T i
Netlist / Metrics / Metrics Metrics l/ Risiean i

Fig. 1.1: VTR CAD flow (and variants)

4 Chapter 1. VTR

Verilog-to-Routing Documentation, Release 8.0.0-rc1

1.1.1 CAD Flow Variations

Titan CAD Flow

The Titan CAD Flow [MWL+13][MWL+15] interfaces Intel’s Quartus tool with VPR. This allows designs requiring
industrial strength language coverage and IP to be brought into VPR.

Other CAD Flow Variants

Many other CAD flow variations are possible.

For instance, it is possible to use other logic synthesis tools like Yosys [Wol] to generate the design netlist. One could
also use logic optimizers and technology mappers other than ABC; just put the output netlist from your technology-
mapper into .blif format and pass it into VPR.

It is also possible to use tools other than VPR to perform the different stages of the implementation.

For example, if the logic block you are interested in is not supported by VPR, your CAD flow can bypass VPR’s packer
by outputting a netlist of logic blocks in .net format. VPR can place and route netlists of any type of logic block — you
simply have to create the netlist and describe the logic block in the FPGA architecture description file.

Similarly, if you want only to route a placement produced by another CAD tool you can create a .place file, and have
VPR route this pre-existing placement.

If you only need to analyze an implementation produced by another tool, you can create a .route file, and have VPR
analyze the implementation, to produce area/delay/power results.

Finally, if your routing architecture is not supported by VPR’s architecture generator, you can describe your routing
architecture in an rr_graph.xml file, which can be loaded directly into VPR.

1.1.2 Bitstream Generation
The technology mapped netlist and packing/placement/routing results produced by VPR contain the information
needed to generate a device programming bitstreams.

VTR focuses on the core physical design optimization tools and evaluation capabilities for new architectures and does
not directly support generating device programming bitstreams. Bitstream generators can either ingest the implemen-
tation files directly or make use of VTR utilities to emit FASM.

1.2 Get VTR

1.2.1 How to Cite

The following paper may be used as a general citation for VTR:

J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk, M. Nasr, S. Wang, T. Liu, N. Ahmed,
K. B. Kent, J. Anderson, J. Rose and V. Betz “VTR 7.0: Next Generation Architecture and CAD System for
FPGAs,” ACM TRETS, Vol. 7, No. 2, June 2014, pp. 6:1 - 6:30.

1.2.2 Download

The official VTR release is available from:

http://www.eecg.utoronto.ca/vtr/terms.html

1.2. Get VTR 5

http://www.eecg.utoronto.ca/vtr/terms.html

Verilog-to-Routing Documentation, Release 8.0.0-rc1

1.2.3 Release

The VTR 8.0 release provides the following:
¢ benchmark circuits,
» sample FPGA architecture description files,
e the full CAD flow, and
* scripts to run that flow.

The FPGA CAD flow takes as input, a user circuit (coded in Verilog) and a description of the FPGA architecture. The
CAD flow then maps the circuit to the FPGA architecture to produce, as output, a placed-and-routed FPGA. Here are
some highlights of the 8.0 full release:

* Timing-driven logic synthesis, packing, placement, and routing with multi-clock support.
* Power Analysis
* Benchmark digital circuits consisting of real applications that contain both memories and multipliers.
Seven of the 19 circuits contain more than 10,000 6-LUTs. The largest of which is just under 100,000 6-LUTs.
¢ Sample architecture files of a wide range of different FPGA architectures including:
1. Timing annotated architectures

2. Various fracturable LUTs (dual-output LUTs that can function as one large LUT or two smaller LUTs with
some shared inputs)

3. Various configurable embedded memories and multiplier hard blocks
4. One architecture containing embedded floating-point cores, and
5. One architecture with carry chains.

* A front-end Verilog elaborator that has support for hard blocks.

This tool can automatically recognize when a memory or multiplier instantiated in a user circuit is too large
for a target FPGA architecture. When this happens, the tool can automatically split that memory/multiplier
into multiple smaller components (with some glue logic to tie the components together). This makes it easier
to investigate different hard block architectures because one does not need to modify the Verilog if the circuit
instantiates a memory/multiplier that is too large.

* Packing/Clustering support for FPGA logic blocks with widely varying functionality.

This includes memories with configurable aspect ratios, multipliers blocks that can fracture into smaller multi-
pliers, soft logic clusters that contain fracturable LUTs, custom interconnect within a logic block, and more.

* Ready-to-run scripts that guide a user through the complexities of building the tools as well as using the tools to
map realistic circuits (written in Verilog) to FPGA architectures.

» Regression tests of experiments that we have conducted to help users error check and/or compare their work.

Along with experiments for more conventional FPGAs, we also include an experiment that explores FPGAs
with embedded floating-point cores investigated in [HYL+09] to illustrate the usage of the VTR framework to
explore unconventional FPGA architectures.

1.2.4 Development Trunk

The development trunk for the Verilog-to-Routing project is hosted at:

https://github.com/verilog-to-routing/vtr-verilog-to-routing

6 Chapter 1. VTR

https://github.com/verilog-to-routing/vtr-verilog-to-routing

Verilog-to-Routing Documentation, Release 8.0.0-rc1

Unlike the nicely packaged offical releases the code in a constant state of flux. You should expect that the tools are not
always stable and that more work is needed to get the flow to run.

1.3 Install VTR

1. Download the VTR release
2. Unpack the release in a directory of your choice (herafter referred to as $VTR_ROOT)
3. Navigate to $VTR_ROOT and run

make

which will build all the required tools.

Warning: $V7R_ROOT should be replaced with the path to the root of VTR source tree on your machine.

The complete VTR flow has been tested on 64-bit Linux systems. The flow should work in other platforms (32-bit
Linux, Windows with cygwin) but this is untested.

See also:
More information about building VTR can be found in the Developer Guide
Please let us know your experience with building VTR so that we can improve the experience for others.

The tools included official VTR releases have been tested for compatibility. If you download a different version of
those tools, then those versions may not be mutually compatible with the VTR release.

1.3.1 Verifying Installation

To verfiy that VTR has been installed correctly run:

’$VTR_ROOT/vtr_flow/scripts/run_vtr_task.pl basic_flow ‘

The expected output is:

’k6_N10_memSize16384_memData64_40nm_timing/ch_intrinsics...OK

1.4 Running the VTR Flow

VTR is a collection of tools that perform the full FPGA CAD flow from Verilog to routing.
The design flow consists of:

* Odin II (Logic Synthesis)

* ABC (Logic Optimization & Technology Mapping)

e VPR (Pack, Place & Route)
There is no single executable for the entire flow.

Instead, scripts are provided to allow the user to easily run the entire tool flow. The following provides instructions on
using these scripts to run VTR.

1.3. Install VTR 7

Verilog-to-Routing Documentation, Release 8.0.0-rc1

1.4.1 Running a Single Benchmark

The run_vtr_flow script is provided to execute the VTR flow for a single benchmark and architecture.

Note: In the following $VTR_ROOT means the root directory of the VTR source code tree.

SVTR_ROOT/vtr_flow/scripts/run_vtr_flow.pl <circuit_file> <architecture_file>

It requires two arguments:
e <circuit_file> A benchmark circuit, and
e <architecture_file> an FPGA architecture file

Circuits can be found under:

’$VTR_ROOT/vtr_flow/benchmarks/

Architecture files can be found under:

’$VTR_ROOT/vtr_flow/arch/

The script can also be used to run parts of the VTR flow.
See also:

run_vtr_flow for the detailed command line options of run_vtr_flow.pl.

1.4.2 Running Multiple Benchmarks & Architectures with Tasks

VTR also supports tasks, which manage the execution of the VTR flow for multiple benchmarks and architectures. By
default, tasks execute the run_vtr_flow for every circuit/architecture combination.

VTR provides a variety of standard tasks which can be found under:

’$VTR_ROOT/vtr_flow/tasks

Tasks can be executed using run_vtr_task:

’$VTR_ROOT/vtr_flow/scripts/run_vtr_task.pl <task_name>

See also:
run_vtr_task for the detailed command line options of run_vtr_task.pl.
See also:

Tasks for more information on creating, modifying and running tasks.

1.4.3 Extracting Information & Statistics

VTR can also extract useful information and statistics from executions of the flow such as area, speed tool execution
time etc.

For single benchmarks parse_vtr_flow extrastics statistics from a single execution of the flow.

For a Task, parse_vtr_task can be used to parse and assemble statistics for the entire task (i.e. multiple circuits and
architectures).

8 Chapter 1. VTR

Verilog-to-Routing Documentation, Release 8.0.0-rc1

For regression testing purposes these results can also be verified against a set of golden reference results. See

parse_vtr_task for details.

1.5 Benchmarks

There are several sets of benchmark designs which can be used with VTR.

1.5.1 VTR Benchmarks

The VTR benchmarks [RLY+12][LAK+14] are a set of medium-sized benchmarks included with VTR. They are fully
compatible with the full VTR flow. They are suitable for FPGA architecture research and medium-scale CAD research.

Table 1.1: The VIR 7.0 Benchmarks.

Benchmark Domain

bgm Finance
blob_merge Image Processing
boundtop Ray Tracing
ch_intrinsics Memory Init
diffeql Math

diffeq2 Math

LUSPEEng Math
LU32PEEng Math

mcml Medical Physics
mkDelayWorker32B | Packet Processing
mkPktMerge Packet Processing
mkSMAdapter4B Packet Processing
or1200 Soft Processor
raygentop Ray Tracing

sha Cryptography
stereovision0 Computer Vision
stereovisionl Computer Vision
stereovision2 Computer Vision
stereovision3 Computer Vision

The VTR benchmarks are provided as Verilog under:

SVTR_ROOT/vtr_flow/benchmarks/verilog

This provides full flexibility to modify and change how the designs are implemented (including the creation of new
netlist primitives).

The VTR benchmarks are also included as pre-synthesized BLIF files under:

SVTR_ROOT/vtr_flow/benchmarks/vtr_benchmarks_blif

1.5.2 Titan Benchmarks

The Titan benchmarks [MWL+13][MWL+15] are a set of large modern FPGA benchmarks. The pre-synthesized
versions of these benchmarks are compatible with recent versions of VPR.

1.5. Benchmarks 9

Verilog-to-Routing Documentation, Release 8.0.0-rc1

The Titan benchmarks are suitable for large-scale FPGA CAD research, and FPGA architecture research which does
not require synthesizing new netlist primitives.

Note: The Titan benchmarks are not included with the VTR release (due to their size). However they can be
downloaded and extracted by running make get_titan_benchmarks from the root of the VIR tree. They can
also be downloaded manually.

See also:

Running the Titan Benchmarks

1.5.3 MCNC20 Benchmarks

The MCNC benchmarks [Yan91] are a set of small and old (circa 1991) benchmarks. They consist primarily of logic
(i.e. LUTs) with few registers and no hard blocks.

Warning: The MCNC20 benchmarks are not recommended for modern FPGA CAD and architecture research.
Their small size and design style (e.g. few registers, no hard blocks) make them unrepresentative of modern FPGA
usage. This can lead to misleading CAD and/or architecture conclusions.

The MCNC20 benchmarks included with VTR are available as .b11if files under:

’$VTR_ROOT/vtr_flow/benchmarks/blif/

The versions used in the VPR 4.3 release, which were mapped to K -input look-up tables using FlowMap [CD94], are
available under:

’$VTR_ROOT/vtr_flow/benchmarks/blif/<#>

where K = <#>.

10 Chapter 1. VTR

http://www.eecg.utoronto.ca/~kmurray/titan/

Verilog-to-Routing Documentation, Release 8.0.0-rc1

Table 1.2: The MCNC20 benchmarks.

Benchmark | Approximate Number of Netlist Primitives
alu4 934
apex2 1116
apex4 916
bigkey 1561
clma 3754
des 1199
diffeq 1410
dsip 1559
elliptic 3535
ex1010 2669
ex5p 824
frisc 3291
misex3 842
pdc 2879
s298 732
s38417 4888
s38584.1 4726
seq 1041
spla 2278
tseng 1583

1.6 Power Estimation

VTR provides transistor-level dynamic and static power estimates for a given architecture and circuit.

Fig. 1.2 illustrates how power estimation is performed in the VTR flow. The actual power estimation is performed
within the VPR executable; however, additional files must be provided. In addition to the circuit and architecture files,
power estimation requires files detailing the signal activities and technology properties.

Running VTR with Power Estimation details how to run power estimation for VTR. Supporting Tools provides details
on the supporting tools that are used to generate the signal activities and technology properties files. Architecture Mod-
elling provides details about how the tool models architectures, including different modelling methods and options.
Other Architecture Options & Techniques provides more advanced configuration options.

1.6.1 Running VTR with Power Estimation

VTR Flow

The easiest way to run the VTR flow is to use the run_vtr_flow script.
In order to perform power estimation, you must add the following options:
* run_vtr. flow.pl —-power
e run_vtr_flow.pl —-cmos_tech<cmos_tech_properties_file>

The CMOS technology properties file is an XML file that contains relevant process-dependent information needed for
power estimation. XML files for 22nm, 45nm, and 130nm PTM models can be found here:

1.6. Power Estimation 11

Verilog-to-Routing Documentation, Release 8.0.0-rc1

Architecture Verilog SPICE CMOS
Description File HDL Technology File
¥ k1
| Technology
<Ll] Properties
Y Generation
One-time onl
BLIF [v
4

e ™
h 4 ACE 2.0
BLIF 2> (Activity
Estimation)
\
W \
Activities TEChmI?gF
(*.act) Properties
L : (*.xml)
VPR 6.0
with
Power Estimation
W

Packing (*.net)
Placement (*.place)
Routing (*.route)
Power (*.power)

Fig. 1.2: Power Estimation in the VTR Flow

12 Chapter 1. VTR

Verilog-to-Routing Documentation, Release 8.0.0-rc1

SVTR_ROOT/vtrflow/tech/*

See Technology Properties for information on how to generate an XML file for your own SPICE technology model.

VPR

Power estimation can also be run directly from VPR with the following (all required) options:
* vpr —-power: Enables power estimation.
* vpr ——activity file<activities.act>: The activity file, produce by ACE 2.0, or another tool.
* vpr ——tech_properties <tech_properties.xml>: The technology properties file.

Power estimation requires an activity file, which can be generated as described in ACE 2.0 Activity Estimation.

1.6.2 Supporting Tools

Technology Properties

Power estimation requires information detailing the properties of the CMOS technology. This information, which
includes transistor capacitances, leakage currents, etc. is included in an . xm1 file, and provided as a parameter to VPR.
This XML file is generated using a script which automatically runs HSPICE, performs multiple circuit simulations,
and extract the necessary values.

Some of these technology XML files are included with the release, and are located here:

SVTR_ROOT/vtr_flow/tech/=*

If the user wishes to use a different CMOS technology file, they must run the following script:

Note: HSPICE must be available on the users path

SVTR_ROOT/vtr_flow/scripts/generate_cmos_tech_data.pl <tech_file> <tech_size> <vdd>
—<temp>

where:
* <tech_file>: Is a SPICE technology file, containing a pmos and nmos models.
e <tech_size>: The technology size, in meters.
Example:
A 90nm technology would have the value 90e-9.
e <vdd>: Supply voltage in Volts.

e <temp>: Operating temperature, in Celcius.

ACE 2.0 Activity Estimation

Power estimation requires activity information for the entire netlist. This ativity information consists of two values:

1.6. Power Estimation 13

Verilog-to-Routing Documentation, Release 8.0.0-rc1

1. The Signal Probability, P, is the long-term probability that a signal is logic-high.
Example:
A clock signal with a 50% duty cycle will have P; (clk) = 0.5.

2. The Transition Density (or switching activity), Ag, is the average number of times the signal will switch during
each clock cycle.

Example:
A clock has Ag(clk) = 2.

The default tool used to perform activity estimation in VIR is ACE 2.0 [LWO06]. This tool was originally designed
to work with the (now obsolete) Berkeley SIS tool ACE 2.0 was modifed to use ABC, and is included in the VTR
package here:

’ SVTR_ROOT/ace2

The tool can be run using the following command-line arguments:

’$VTR_ROOT/ace2/ace -b <abc.blif> -c <clock_name> -o <activities.act> -n <new.blif>

where
e <abc.blif>: Is the input BLIF file produced by ABC.
e <clock_name>: Is the name of the clock in the input BLIF file
* <activities.act>: Is the activity file to be created.
* <new.blif>: The new BLIF file.

This will be functionally identical in function to the ABC blif; however, since ABC does not maintain
internal node names, a new BLIF must be produced with node names that match the activity file.

User’s may with to use their own activity estimation tool. The produced activity file must contain one line for each net
in the BLIF file, in the following format:

<net name> <signal probability> <transistion density>

1.6.3 Architecture Modelling

The following section describes the architectural assumptions made by the power model, and the related parameters
in the architecture file.

Complex Blocks

The VTR architecture description language supports a hierarchichal description of blocks. In the architecture file,
each block is described as a pb_t ype, which may includes one or more children of type pb_t ype, and interconnect
structures to connect them.

The power estimation algorithm traverses this hierarchy recursively, and performs power estimation for each
pb_type. The power model supports multiple power estimation methods, and the user specifies the desired method
in the architecture file:

<pb_type>
<power method="<estimation-method>"/>
</pb_type>

14 Chapter 1. VTR

Verilog-to-Routing Documentation, Release 8.0.0-rc1

The following is a list of valid estimation methods. Detailed descriptions of each type are provided in the following
sections. The methods are listed in order from most accurate to least accurate.

1. specify-size: Detailed transistor level modelleling.
The user supplies all buffer sizes and wire-lengths. Any not provided by the user are ignored.
2. auto-size: Detailed transistor level modelleling.

The user can supply buffer sizes and wire-lengths; however, they will be automatically inserted when not pro-
vided.

3. pin-toggle: Higher-level modelling.
The user specifies energy per toggle of the pins. Static power provided as an absolute.
4. C-internal: Higher-level modelling.
The user supplies the internal capacitance of the block. Static power provided as an absolute.
5. absolute: Highest-level modelling.
The user supplies both dynamic and static power as absolutes.
Other methods of estimation:
1. ignore: The power of the pb_type is ignored, including any children.
2. sum—of-children: Power of pb_type is solely the sum of all children pb_types.

Interconnect between the pb_t ype and its children is ignored.

Note: If no estimation method is provided, it is inherited from the parent pb_type.

Note: If the top-level pb_type has no estimation method, auto-size is assumed.

specify-size
This estimation method provides a detailed transistor level modelling of CLBs, and will provide the most accurate
power estimations. For each pb_type, power estimation accounts for the following components (see Fig. 1.3).

¢ Interconnect multiplexers

* Buffers and wire capacitances

¢ Child pb_types

Multiplexers: Interconnect multiplexers are modelled as 2-level pass-transistor multiplexers, comprised of minimum-
size NMOS transistors. Their size is determined automatically from the <interconnect /> structures in the archi-
tecture description file.

Buffers and Wires: Buffers and wire capacitances are not defined in the architecture file, and must be explicitly added
by the user. They are assigned on a per port basis using the following construct:

<pb_type>
<input name="my_input" num_pins="1">
<power ...options.../>
</input>
</pb_type>

1.6. Power Estimation 15

Verilog-to-Routing Documentation, Release 8.0.0-rc1

pb type: clb

pb type: ble

YVV

pb type: ble

Fig. 1.3: Sample Block

16 Chapter 1. VTR

Verilog-to-Routing Documentation, Release 8.0.0-rc1

The wire and buffer attributes can be set using the following options. If no options are set, it is assumed that the wire
capacitance is zero, and there are no buffers present. Keep in mind that the port construct allows for multiple pins per
port. These attributes will be applied to each pin in the port. If necessary, the user can seperate a port into multiple
ports with different wire/buffer properties.

* wire_capacitance=1.0e-15: The absolute capacitance of the wire, in Farads.
e wire_length=1.0e-7: The absolute length of the wire, in meters.

The local interconnect capacitance option must be specified, as described in Local Interconnect Ca-
pacitance.

* wire_length=auto: The wirelength is automatically sized. See Local Wire Auto-Sizing.
* buffer_size=2.0: The size of the buffer at this pin. See for more Buffer Sizing information.

* buffer_size=auto: The size of the buffer is automatically sized, assuming it drives the above wire capac-
itance and a single multiplexer. See Buffer Sizing for more information.

Primitives: For all child pb_types, the algorithm performs a recursive call. Eventually pb_types will be reached
that have no children. These are primitives, such as flip-flops, LUTs, or other hard-blocks. The power model includes
functions to perform transistor-level power estimation for flip-flops and LUTs. If the user wishes to use a design with
other primitive types (memories, multipliers, etc), they must provide an equivalent function. If the user makes such a
function, the power_calc_primitive function should be modified to call it. Alternatively, these blocks can be
configured to use higher-level power estimation methods.

auto-size

This estimation method also performs detailed transistor-level modelling. It is almost identical to the specify-size
method described above. The only difference is that the local wire capacitance and buffers are automatically inserted
for all pins, when necessary. This is equivalent to using the specify-size method withthe wire_length=auto
and buffer_size=auto options for every port.

Note: This is the default power estimation method.

Although not as accurate as user-provided buffer and wire sizes, it is capable of automatically capturing trends in
power dissipation as architectures are modified.

pin-toggle

This method allows users to specify the dynamic power of a block in terms of the energy per toggle (in Joules) of each
input, output or clock pin for the pb_t ype. The static power is provided as an absolute (in Watts). This is done using
the following construct:

<pb_type>

<power method="pin-toggle">
<port name="A" energy_per_toggle="1.0e-12"/>
<port name="B[3:2]" energy_per_toggle="1.0e-12"/>
<port name="C" energy_per_toggle="1.0e-12" scaled_by_static_porb="enl"/>
<port name="D" energy_per_toggle="1.0e-12" scaled_by_static_porb_n="en2"/>
<static_power power_per_instance="1.0e-6"/>

</power>

</pb_type>

1.6. Power Estimation 17

Verilog-to-Routing Documentation, Release 8.0.0-rc1

Keep in mind that the port construct allows for multiple pins per port. Unless an subset index is provided, the energy
per toggle will be applied to each pin in the port. The energy per toggle can be scaled by another signal using the
scaled_by_static_prob. For example, you could scale the energy of a memory block by the read enable
pin. If the read enable were high 80% of the time, then the energy would be scaled by the signal_probability, 0.8.
Alternatively scaled_by_static_prob_n can be used for active low signals, and the energy will be scaled by
(1 — signal_probability).

This method does not perform any transistor-level estimations; the entire power estimation is performed using the
above values. It is assumed that the power usage specified here includes power of all child pb_types. No further
recursive power estimation will be performed.

C-internal
This method allows the users to specify the dynamic power of a block in terms of the internal capacitance of the block.

The activity will be averaged across all of the input pins, and will be supplied with the internal capacitance to the
standard equation:

1
den = 50[0‘/2

Again, the static power is provided as an absolute (in Watts). This is done using the following construct:

<pb_type>
<power method="c-internal">
<dynamic_power C_internal="1.0e-16"/>
<static_power power_per_instance="1.0e-16"/>
</power>
</pb_type>

It is assumed that the power usage specified here includes power of all child pb_types. No further recursive power
estimation will be performed.

absolute

This method is the most basic power estimation method, and allows users to specify both the dynamic and static power
of a block as absolute values (in Watts). This is done using the following construct:

<pb_type>
<power method="absolute">
<dynamic_power power_per_instance="1.0e-16"/>
<static_power power_per_instance="1.0e-16"/>
</power>
</pb_type>

It is assumed that the power usage specified here includes power of all child pb_types. No further recursive power
estimation will be performed.

1.6.4 Global Routing

Global routing consists of switch boxes and input connection boxes.

Switch Boxes

Switch boxes are modelled as the following components (Fig. 1.4):

18 Chapter 1. VTR

Verilog-to-Routing Documentation, Release 8.0.0-rc1

1. Multiplexer
2. Buffer

3. Wire capacitance

To Connection
Box

Fig. 1.4: Switch Box
Multiplexer: The multiplexer is modelled as 2-level pass-transistor multiplexer, comprised of minimum-size NMOS
transistors. The number of inputs to the multiplexer is automatically determined.

Buffer: The buffer is a multistage CMOS buffer. The buffer size is determined based upon output capacitance provided
in the architecture file:

<switchlist>
<switch type="mux" ... C_out="1.0e-16"/>
</switchlist>

The user may override this method by providing the buffer size as shown below:

<switchlist>
<switch type="mux" ... power_buf_size="16"/>
</switchlist>

The size is the drive strength of the buffer, relative to a minimum-sized inverter.

Input Connection Boxes

Input connection boxes are modelled as the following components (Fig. 1.5):

* One buffer per routing track, sized to drive the load of all input multiplexers to which the buffer is connected
(For buffer sizing see Buffer Sizing).

* One multiplexer per block input pin, sized according to the number of routing tracks that connect to the pin.
Clock Network

The clock network modelled is a four quadrant spine and rib design, as illustrated in Fig. 1.6. At this time, the power
model only supports a single clock. The model assumes that the entire spine and rib clock network will contain buffers

1.6. Power Estimation 19

Verilog-to-Routing Documentation, Release 8.0.0-rc1

Routing Huilfais Pl il rs
Tracks

CLE

Fig. 1.5: Connection Box

separated in distance by the length of a grid tile. The buffer sizes and wire capacitances are specified in the architecture
file using the following construct:

<clocks>
<clock ... clock_options ... />
</clocks>

The following clock options are supported:
* C_wire=1le-16: The absolute capacitance, in fards, of the wire between each clock buffer.
* C_wire_per_m=1e-12: The wire capacitance, in fards per m.

The capacitance is calculated using an automatically determined wirelength, based on the area of a
tile in the FPGA.

e buffer_size=2.0: The size of each clock buffer.

This can be replaced with the auto keyword. See Buffer Sizing for more information on buffer
sizing.

1.6.5 Other Architecture Options & Techniques

Local Wire Auto-Sizing

Due to the significant user effort required to provide local buffer and wire sizes, we developed an algorithm to esti-
mate them automatically. This algorithm recursively calculates the area of all entities within a CLB, which consists
of the area of primitives and the area of local interconnect multiplexers. If an architecture uses new primitives in
CLBs, it should include a function that returns the transistor count. This function should be called from within
power_count_transistors_primitive().

In order to determine the wire length that connects a parent entity to its children, the following assumptions are made:

* Assumption 1: All components (CLB entities, multiplexers, crossbars) are assumed to be contained in a square-
shaped area.

* Assumption 2: All wires connecting a parent entity to its child pass through the interconnect square, which is
the sum area of all interconnect multiplexers belonging to the parent entity.

20 Chapter 1. VTR

Verilog-to-Routing Documentation, Release 8.0.0-rc1

CHCHH [H O O HO
THCH OH H O OHO
CHCH CH H [0 O HO [
THCHCH [H | 1 O HO
(HCH [H H | 1O OO0
CHCH CH [H | 1O O HOH
THCHCH H | 1O O HOH
THCH CH H | [0 O HO]
(HCHO [H | [0 OHO[O
(HCH OH | [0 OO0
THCH [H [H | [0 O HO]
CHCH CH H | 1O Inlinlm

Fig. 1.6: The clock network. Squares represent CLBs, and the wires represent the clock network.

1.6. Power Estimation 21

Verilog-to-Routing Documentation, Release 8.0.0-rc1

Fig. 1.7 provides an illustration of a parent entity connected to its child entities, containing one of each interconnect
type (direct, many-to-1, and complete). In this figure, the square on the left represents the area used by the transistors
of the interconnect multiplexers. It is assumed that all connections from parent to child will pass through this area.
Real wire lengths could me more or less than this estimate; some pins in the parent may be directly adjacent to child
entities, or they may have to traverse a distance greater than just the interconnect area. Unfortuantely, a more rigorous
estimation would require some information about the transistor layout.

Parent Entity

R A

-

I-inh:'rl;

N

A

% y Child Entities
"'PL:rnnhu-r

Area of all interconnect
multiplexers

Fig. 1.7: Local interconnect wirelength.

Table 1.3: Local interconnect wirelength and capacitance. Cj,, is the
input capacitance of a minimum-sized inverter.

Connection from Entity Pin to: | Estimated Wirelength | Transistor Capacitance
Direct (Input or Output) 0.5 Lintere 0

Many-to-1 (Input or Output) 0.5 Lintere CIinv

Complete m:n (Input) 0.5 Lintere + Lerossbar | M- CINY

Complete m:n (Output) 0.5 Lintere CIiNv

Table 1.3 details how local wire lengths are determined as a function of entity and interconnect areas. It is assumed
that each wire connecting a pin of a pb_type to an interconnect structure is of length 0.5 - L;,terc. In reality, this
length depends on the actual transistor layout, and may be much larger or much smaller than the estimated value. If
desired, the user can override the 0.5 constant in the architecture file:

<architecture>
<power>
<local_interconnect factor="0.5"/>
</power>
</architecture>

22 Chapter 1. VTR

Verilog-to-Routing Documentation, Release 8.0.0-rc1

Buffer Sizing

In the power estimator, a buffer size refers to the size of the final stage of multi-stage buffer (if small, only a single

stage is used). The specified size is the % of the NMOS transistor. The PMOS transistor will automatically be sized

larger. Generally, buffers are sized depending on the load capacitance, using the following equation:

% C’Load
2. fre Cinv

In this equation, C v is the input capacitance of a minimum-sized inverter, and fr,z is the logical effort factor. The
logical effort factor is the gain between stages of the multi-stage buffer, which by default is 4 (minimal delay). The
term (2 - fr) is used so that the ratio of the final stage to the driven capacitance is smaller. This produces a much
lower-area, lower-power buffer that is still close to the optimal delay, more representative of common design practises.
The logical effort factor can be modified in the architecture file:

Buffer Size =

<architecture>
<power>
<buffers logical_effor_factor="4"/>
</power>
</architecture>

Local Interconnect Capacitance

If using the auto-size or wire-length options (Architecture Modelling), the local interconnect capacitance
must be specified. This is specified in the units of Farads/meter.

<architecture>
<power>
<local_interconnect C _wire="2.5e-15"/>
</power>
</architecture>

1.7 Tasks

Tasks provide a framework for running the VTR flow on multiple benchmarks, architectures and with multiple CAD
tool parameters.

A task specifies a set of benchmark circuits, architectures and CAD tool parameters to be used. By default, tasks
execute the run_vtr_flow script for every circuit/architecture/CAD parameter combination.

1.7.1 Example Tasks

* basic_flow: Runs the VTR flow mapping a simple Verilog circuit to an FPGA architecture.
* timing: Runs the flagship VTR benchmarks on a comprehensive, realistic architecture file.
* timing_chain: Same as t iming but with carry chains.

* regression_mcnc: Runs VIR on the historical MCNC benchmarks on a legacy architecture file. (Note:
This is only useful for comparing to the past, it is not realistic in the modern world)

* regression_titan/titan_small: Runs a small subset of the Titan benchmarks targetting a simplified
Altera Stratix IV (commercial FPGA) architecture capture

* regression_fpu_hard_block_arch: Custom hard FPU logic block architecture

1.7. Tasks 23

Verilog-to-Routing Documentation, Release 8.0.0-rc1

1.7.2 Directory Layout

All of VTR’s included tasks are located here:

’$VTR_ROOT/vtr_flow/tasks

If users wishes to create their own task, they must do so in this location.

All tasks must contain a configuration file located here:

’ SVTR_ROOT/vtr_flow/tasks/<task_name>/config/config.txt

Fig. 1.8 illustrates the directory layout for a VIR task. Every time the task is run a new run<#> directory is created
to store the output files, where <#> is the smallest integer to make the run directory name unique.

The symbolic link 1atest will point to the most recent run<#> directory.

[conﬁgj [runOOlj [runOOZ] [run003j<—[latestj

[conﬁg.txt] [<arch1>] [<arch2>] []

[< circuitl >j [< circuit2 >j [—j

[<para,msl>] [<pa,ra,m52>] []

odin.out odin.out

abc.out abc.out
vpr.out vpr.out

Fig. 1.8: Task directory layout.

1.7.3 Creating a New Task

1. Create the folder SVTR_ROOT/vtr_ flow/tasks/<task_name>
2. Create the folder SVTR_ROOT/vtr_flow/tasks/<task_name>/config

3. Create and configure the file SVTR_ROOT/vtr_flow/tasks/<task_name>/config/config.txt

1.7.4 Task Configuration File

The task configuration file contains key/value pairs separated by the = character. Comment line are indicted using the
symbol.

24 Chapter 1. VTR

Verilog-to-Routing Documentation, Release 8.0.0-rc1

Example configuration file:

Path to directory of circuits to use
circuits_dir=benchmarks/verilog

Path to directory of architectures to use
archs_dir=arch/timing

Add circuits to list to sweep
circuit_list_add=ch_intrinsics.v
circuit_list_add=diffeql.v

Add architectures to list to sweep
arch_list_add=k6_N10_memSizel6384_memData64_stratix4_based_timing_sparse.xml

Parse info and how to parse
parse_file=vpr_standard.txt

Note: run_vtr_task will invoke the script (default :ref‘run_vtr_flow) for the cartesian product of circuits, architectures

and script parameters specified in the config file.

1.7.5 Required Fields

e circuit_dir: Directory path of the benchmark circuits.
Absolute path or relative to SVTR_ROOT/vtr_flow/.
 arch_dir: Directory path of the architecture XML files.
Absolute path or relative to SVTR_ROOT/vtr_flow/.
¢ circuit_list_add: Name of a benchmark circuit file.
Use multiple lines to add multiple circuits.
« arch_list_add: Name of an architecture XML file.
Use multiple lines to add multiple architectures.
* parse_file: Parse Configuration file used for parsing and extracting the statistics.

Absolute path or relative to SVTR_ROOT/vtr_flow/parse/parse_config.

1.7.6 Optional Fields

* script_path: Script to run for each architecture/circuit combination.

Absolute path or relative to SVTR_ROOT/vtr_flow/scripts/ or $VTR_ROOT/vtr_flow/
tasks/<task_name>/config/)

Default: run_vtr_flow

Users can set this option to use their own script instead of the default. The circuit path will be
provided as the first argument, and architecture path as the second argument to the user script.

* script_params_common: Common parameters to be passed to all script invocations.

1.7. Tasks

25

Verilog-to-Routing Documentation, Release 8.0.0-rc1

This can be used, for example, to run partial VTR flows.
Default: none

* script_params: Alias for script_params_common

¢ script_params_list_add: Adds a set of command-line arguments

Multiple script_params_list_add can be provided which are addded to the cartesian product of con-
figurations to be evaluated.

¢ pass_requirements_file: Pass Requirements file.

Absolute path or relative to $VTR_ROOT/vtr_flow/parse/pass_requirements/ or
SVTR_ROOT/vtr_flow/tasks/<task_name>/config/

Default: none

1.8 run_vtr_flow

This script runs the VIR flow for a single benchmark circuit and architecture file.

The script is located at:

SVTR_ROOT/vtr_flow/scripts/run_vtr_flow.pl

1.8.1 Basic Usage

At a minimum run_vtr_flow.pl requires two command-line arguments:

run_vtr_flow.pl <circuit_file> <architecture_file>

where:
e <circuit_file> is the circuit to be processed

* <architecture_file> is the target FPGA architecture

Note: The script will create a . /temp directory, unless otherwise specified with the —temp dir option. The
circuit file and architecture file will be copied to the temporary directory. All stages of the flow will be run within this
directory. Several intermediate files will be generated and deleted upon completion. Users should ensure that no
important files are kept in this directory as they may be deleted.

1.8.2 Output

The standard out of the script will produce a single line with the format:

<architecture>/<circuit_name>...<status>

If execution completed successfully the status will be ‘OK’. Otherwise, the status will indicate which stage of execution
failed.

The script will also produce an output files (*.out) for each stage, containing the standout output of the executable(s).

26 Chapter 1. VTR

Verilog-to-Routing Documentation, Release 8.0.0-rc1

1.8.3 Advanced Usage

Additional optional command arguments can also be passed to run_vtr_flow.pl:

run_vtr_flow.pl <circuit_file> <architecture_file> [<options>] [<vpr_options>]

where:

e <options> are additional arguments passed to run_vtr_flow.pl (described below),

e <vpr_options> are any arguments not recognized by run_vtr_flow.pl. These will be forwarded to

VPR.

For example:

run_vtr_flow.pl my_circuit.v my_arch.xml -track_memory_usage —--pack —-place

will run the VTR flow to map the circuit my_circuit.v onto the architecture my_arch.xml; the arguments
——pack and ——place will be passed to VPR (since they are unrecognized arguments to run_vtr_flow.pl).
They will cause VPR to perform only packing and placement.

1.8.4 Detailed Command-line Options

Note: Any options not recognized by this script is forwarded to VPR.

-starting_stage <stage>
Start the VTR flow at the specified stage.

Accepted values:
¢ odin
* abc
* scripts
* vpr
Default: odin

—ending_stage <stage>
End the VTR flow at the specified stage.

Accepted values:
¢ odin
* abc
* scripts
* vpr
Default: vpr

—power
Enables power estimation.

See Power Estimation

1.8. run_vir_flow

27

Verilog-to-Routing Documentation, Release 8.0.0-rc1

—cmos_tech <file>
CMOS technology XML file.

See Technology Properties

—delete_intermediate files
Delete intermediate files (i.e. .dot, .xml, . rc, etc)

—delete_result files
Delete result files (i.e. VPR’s .net, .place, . route outputs)

—track_memory_usage
Record peak memory usage and additional statistics for each stage.

Note: Requires /usr/bin/time -v command. Some operating systems do not report peak memory.

Default: off

-limit_memory_ usage
Kill benchmark if it is taking up too much memory to avoid slow disk swaps.

Note: Requires ulimit -Sv command.

Default: off

—timeout <float>
Maximum amount of time to spend on a single stage of a task in seconds.

Default: 14 days

-temp_dir <path>
Temporary directory used for execution and intermediate files. The script will automatically create this directory
if necessary.

Default: . /temp

-valgrind
Run the flow with valgrind while using the following valgrind options:

¢ —leak-check=full

» —errors-for-leak-kinds=none
* —error-exitcode=1

* —track-origins=yes

-min_hard mult_size <int>
Tells ODIN II the minimum multiplier size that should be implemented using hard multiplier (if available).
Smaller multipliers will be implemented using soft logic.
Default: 3

-min_hard adder size <int>
Tells ODIN II the minimum adder size that should be implemented using hard adders (if available). Smaller
adders will be implemented using soft logic.

Default: 1

28 Chapter 1. VTR

Verilog-to-Routing Documentation, Release 8.0.0-rc1

—adder_cin_global
Tells ODIN II to connect the first cin in an adder/subtractor chain to a global gnd/vdd net. Instead of creating a
dummy adder to generate the input signal of the first cin port of the chain.

1.9 run_vir_task

This script is used to execute one or more tasks (i.e. collections of benchmarks and architectures).
See also:

See Tasks for creation and configuration of tasks.

This script runs the VIR flow for a single benchmark circuit and architecture file.

The script is located at:

SVTR_ROOT/vtr_flow/scripts/run_vtr_task.pl

1.9.1 Basic Usage

Typical usage is:

run_vtr_task.pl <task_namel> <task_name2> ...

Note: At least one task must be specified, either directly as a parameter or via the —1 options.

1.9.2 Output
Each task will execute the script specified in the configuration file for every benchmark/circuit/option combination.
The standard output of the underlying script will be forwarded to the output of this script.

If golden results exist (see parse_vtr_task), they will be inspected for runtime and memory usage.

1.9.3 Detailed Command-line Options
-s <script_param>
Treat the remaining command line options as parameters to forward to the underlying script (e.g. run_vitr_flow).

-j <N>
Perform parallel execution using N threads.

Note: Only effective for ~system local

Warning: Large benchmarks will use very large amounts of memory (several to 10s of gigabytes). Because
of this, parallel execution often saturates the physical memory, requiring the use of swap memory, which
significantly slows execution. Be sure you have allocated a sufficiently large swap memory or errors may
result.

1.9. run_vir_task 29

Verilog-to-Routing Documentation, Release 8.0.0-rc1

-1 <task_list_file>

A file containing a list of tasks to execute.

Each task name should be on a separate line, e.g.:

<task_namel>
<task_name2>
<task_name3>

-system {local | scripts}

Controls how the actions (e.g. invocations of run_vtr_flow) are called.
Default: 1ocal

* local: Runs the flow invocations on the local machine (potentially in parallel with the —j option).

Example:

#From SVTR_ROOT/vtr_flow/tasks

$../scripts/run_vtr_task.pl regression_tests/vtr_reg_basic/basic_
—timing

regression_tests/vtr_reg _basic/basic_timing: k6_N10_mem32K_40nm.xml/ch_
< intrinsics.v/common OK (took 2.24 seconds)
regression_tests/vtr_reg_basic/basic_timing: k6_N10_mem32K_40nm.xml/
—diffeql.v/common OK (took 10.94 seconds)

e scripts: Prints out all the generated script files (instead of calling them to run all the flow invocations).

Example:

#From SVTR_ROOT/vtr_flow/tasks

$../scripts/run_vtr_task.pl regression_tests/vtr_reg basic/basic_
—~timing —-system scripts
/project/trees/vtr/vtr_flow/tasks/regression_tests/vtr_reg_basic/basic_
—timing/run001/k6_N10_mem32K_40nm.xml/ch_intrinsics.v/common/vtr_flow.
—sh
/project/trees/vtr/vtr_flow/tasks/regression_tests/vtr_reg_basic/basic_
—timing/run001/k6_N10_mem32K_40nm.xml/diffeql.v/common/vtr_flow.sh

Each generated script file (vt r_f1ow. sh) corresponds to a particular flow invocation generated
by the task, and is located within its own directory.

This list of scripts can be used to run flow invocations on different computing infrastructures (e.g.
a compute cluster).

Using the output of -system scripts to run a task

An example of using the output would be:

#From SVTR_ROOT/vtr_flow/tasks

$../scripts/run_vtr_task.pl regression_tests/vtr_reg _basic/basic_
—~timing —-system scripts | parallel -j4 'cd $(dirname {}) && {}'
regression_tests/vtr_reg_basic/basic_timing: k6_N10_mem32K_40nm.xml/ch_

< intrinsics.v/common OK (took 2.11 seconds)
regression_tests/vtr_reg _basic/basic_timing: k6_N10_mem32K_40nm.xml/
—diffeqgl.v/common OK (took 10.94 seconds)

30

Chapter 1. VTR

Verilog-to-Routing Documentation, Release 8.0.0-rc1

where {} is a special variable interpretted by the parallel command to represent the in-
put line (i.e. a script, see parallel’s documentation for details). This will run the scripts
generated by run_vtr_task.pl in parallel (up to 4 at-a-time due to —j4). Each script is invoked
in the script’s containing directory (cd $ (dirname {})), which mimics the behaviour of
—-system local -3j4.

Note: While this example shows how the flow invocations could be run locally, similar tech-
niques can be used to submit jobs to other compute infrastructures (e.g. a compute cluster)

Determining Resource Requirements

Often, when running in a cluster computing enviroment, it is useful to know what compute re-
sources are required for each flow invocation.

Each generated vt r_flow. sh scripts contains the expected run-time and memory use of each
flow invocation (derived from golden reference results). These can be inspected to determine
compute requirements:

$ grep VTR_RUNTIME_ESTIMATE_SECONDS /project/trees/vtr/vtr_flow/tasks/
—regression_tests/vtr_reg_basic/basic_timing/run001/k6_N10_mem32K__
—40nm.xml/ch_intrinsics.v/common/vtr_flow.sh
VTR_RUNTIME_ESTIMATE_SECONDS=2.96

$ grep VTR_MEMORY_ESTIMATE_BYTES /project/trees/vtr/vtr_flow/tasks/
—regression_tests/vtr_reg_basic/basic_timing/run001/k6_N10_mem32K_
—40nm.xml/ch_intrinsics.v/common/vtr_flow.sh
VTR_MEMORY_ESTIMATE_BYTES=63422464

Note: If the resource estimates are unkown they will be set to 0

1.10 parse_vir_flow

This script parses statistics generated by a single execution of the VTR flow.

Note: If the user is using the 7Tusks framework, parse_vtr_task should be used.

The script is located at:

SVTR_ROOT/vtr_flow/scripts/parse_vtr_flow.pl

1.10.1 Usage

Typical usage is:

parse_vtr_flow.pl <parse_path> <parse_config_file>

where:

* <parse_path> is the directory path that contains the files to be parsed (e.g. vpr.out, odin.out, etc).

1.10. parse_vtr_flow

31

Verilog-to-Routing Documentation, Release 8.0.0-rc1

* <parse_config_file> is the path to the Parse Configuration file.

1.10.2 Output

The script will produce no standard output. A single file named parse_results.txt will be produced in the
<parse_path> folder. The file is tab delimited and contains two lines. The first line is a list of field names that
were searched for, and the second line contains the associated values.

1.11 parse_vir_task

This script is used to parse the output of one or more 7asks. The values that will be parsed are specified using a Parse
Configuration file, which is specified in the task configuration.

The script will always parse the results of the latest execution of the task.

The script is located at:

SVTR_ROOT/vtr_flow/scripts/parse_vtr_task.pl

1.11.1 Usage

Typical usage is:

parse_vtr_task.pl <task_namel> <task_name2> ..

Note: At least one task must be specified, either directly as a parameter or through the —1 option.

1.11.2 Output

By default this script produces no standard output. A tab delimited file containing the parse results will be produced
for each task. The file will be located here:

’$VTR_ROOT/vtr_flow/tasks/<task_name>/run<#>/parse_results.txt

If the ~check_golden is used, the script will output one line for each task in the format:

<task_name>...<status>

where <status> will be [Pass], [Fail],or [Error].

1.11.3 Detailed Command-line Options
-1 <task_list_file>
A file containing a list of tasks to parse. Each task name should be on a separate line.

—create_golden
The results will be stored as golden results. If previous golden results exist they will be overwritten.

The golden results are located here:

32 Chapter 1. VTR

Verilog-to-Routing Documentation, Release 8.0.0-rc1

SVTR_ROOT/vtr_flow/tasks/<task_name>/config/golden_results.txt

—-check_golden
The results will be compared to the golden results using the Pass Requirements file specified in the task con-
figuration. A Pass or Fail will be output for each task (see below). In order to compare against the golden
results, they must already exist, and have the same architectures, circuits and parse fields, otherwise the script
will report Error.

If the golden results are missing, or need to be updated, use the ~create_golden option.

1.12 Parse Configuration
A parse configuration file defines a set of values that will be searched for within the specified files.

1.12.1 Format

The configuration file contains one line for each value to be searched for. Each line contains a semicolon delimited
tuple in the following format:

<field_name>;<file_to_search_within>;<regex>;<default_value>

e <field_name>: The name of the value to be searched for.
This name is used when generating the output files of parse_vtr_task and parse_vitr_flow.

e <file_to_search_within>: The name of the file that will be searched (vpr.out, odin.out, etc.)

e <regex>: A perl regular expression used to find the desired value.
The regex must contain a single grouping () which will contain the desired value to be recorded.

e <default_value>: The default value for the given <field_name> if the <regex> does not match.
If no <default_value> is specified the value -1 is used.

Or an include directive to import parsing patterns from a separate file:

%include "<filepath>"

e <filepath> is a file containing additional parse specifications which will be included in the current file.

Comments can be specified with #. Anything following a # is ignored.

1.12.2 Example File

The following is an example parse configuration file:

vpr_status;output.txt; vpr_status=(.x*)

vpr_seconds;output.txt; vpr_seconds= (\d+)

width;vpr.out;Best routing used a channel width factor of (\d+)
pack_time;vpr.out;Packing took (.x) seconds
place_time;vpr.out;Placement took (.=*) seconds
route_time;vpr.out;Routing took (.*) seconds
num_pre_packed_nets;vpr.out; Total Nets: (\d+)
num_pre_packed_blocks;vpr.out; Total Blocks: (\d+)

(continues on next page)

1.12. Parse Configuration 33

Verilog-to-Routing Documentation, Release 8.0.0-rc1

(continued from previous page)

num_post_packed_nets;vpr.out;Netlist num_nets:\s* (\d+)
num_clb; vpr.out;Netlist clb blocks:\s=* (\d+)
num_io;vpr.out;Netlist inputs pins:\s* (\d+)
num_outputs; vpr.out;Netlist output pins:\sx (\d+)
num_lutO;vpr.out; (\d+) LUTs of size 0
num_lutl;vpr.out; (\d+) LUTs of size

) 1
num_lut2;vpr.out; (\d+) LUTs of size 2
num_lut3;vpr.out; (\d+) LUTs of size 3
num_lutd;vpr.out; (\d+) LUTs of size 4
num_lut5;vpr.out; (\d+) LUTs of size 5

num_lut6;vpr.out; (\d+) LUTs of size 6
unabsorb_ff;vpr.out; (\d+) FFs in input netlist not absorbable
num_memories;vpr.out;Netlist memory blocks:\s=* (\d+)

num_mult; vpr.out;Netlist mult_36 blocks:\s* (\d+)
equiv;abc.out;Networks are (equivalent)

error;output.txt;error={(.x)
%$include "my_other_metrics.txt" #Include metrics from the file 'my_other_metrics.
—txt!

1.13 Pass Requirements

The parse_vtr_task scripts allow you to compare an executed task to a golden reference result. The comparison,
which is performed when using the parse_vtr task.pl —check_golden option, which reports either Pass
or Fail. The requirements that must be met to qualify as a Pass are specified in the pass requirements file.

1.13.1 Task Configuration

Tasks can be configured to use a specific pass requirements file using the pass_requirements_file keyword in the
Tasks configuration file.

1.13.2 File Location

All provided pass requirements files are located here:

SVTR_ROOT/vtr_flow/parse/pass_requirements

Users can also create their own pass requirement files.

1.13.3 File Format

Each line of the file indicates a single metric, data type and allowable values in the following format:

<metric>;<requirement>

¢ <metric>: The name of the metric.
* <requirement>: The metric’s pass requirement.
Valid requiremnt types are:

— Equal () : The metric value must exactly match the golden reference result.

34 Chapter 1. VTR

Verilog-to-Routing Documentation, Release 8.0.0-rc1

— Range (<min_ratio>, <max_ratio>): The metric value (normalized to the golden re-
sult) must be between <min_ratio> and <max_ratio>.

— Rangelbs (<min_ratio>, <max_ratio>, <abs_threshold>): The metric value
(normalized to the golden result) must be between <min_ratio> and <max_ratio>, or
the metric’s absolute value must be below <abs_threshold>.

Or an include directive to import metrics from a separate file:

%include "<filepath>"

 <filepath>: a relative path to another pass requirements file, whose metric pass requirements will be added to
the current file.

In order for a Pass to be reported, all requirements must be met. For this reason, all of the specified metrics must be
included in the parse results (see Parse Configuration).

Comments can be specified with #. Anything following a # is ignored.

1.13.4 Example File

vpr_status;Equal () #Pass if precisely equal

vpr_seconds; RangeAbs (0.80,1.40,2) #Pass if within -20%, or +40%, or absolute,
—value less than 2

num_pre_packed_nets;Range (0.90,1.10) #Pass if withing +/-10%

%include "routing_metrics.txt" #Import all pass requirements from the file

—'routing_metrics.txt'

1.13. Pass Requirements 35

Verilog-to-Routing Documentation, Release 8.0.0-rc1

36 Chapter 1. VTR

CHAPTER 2

FPGA Architecture Description

VTR uses an XML-based architecture description language to describe the targeted FPGA architecture. This flexible
description langauge allows the user to describe a large number of hypothetical and commercial-like FPGA architec-
tures.

See the Architecture Modeling for an introduction to the architecture description langauge. For a detailed reference on
the supported options see the Architecture Reference.

2.1 Architecture Reference

This section provides a detailed reference for the FPGA Architecture description used by VTR. The Architecture
description uses XML as its representation format.

As a convention, curly brackets { } represents an option with each option separated by |. For example, a={1 | 2
| open} means field a can take a value of 1, 2, or open.

2.1.1 Top Level Tags
The first tag in all architecture files is the <architecture> tag. This tag contains all other tags in the architecture
file. The architecture tag contains the following tags:

* <models>

s <layout>

¢ <device>

* <switchlist>

* <segmentlist>

* <directlist>

¢ <complexblocklist>

37

Verilog-to-Routing Documentation, Release 8.0.0-rc1

2.1.2 Recognized BLIF Models (<models>)

The <models> tag contains <model name="string"> tags. Each <model> tag describes the BLIF . subckt
model names that are accepted by the FPGA architecture. The name of the model must match the corresponding name
of the BLIF model.

Note: Standard blif structures (.names, .latch, .input, .output) are accepted by default, so these models
should not be described in the <models> tag.

Each model tag must contain 2 tags: <input_ports> and <output_ports>. Each of these contains <port>
tags:

<port name="string" is_clock="{0 | 1} clock="string" combinational_sink_ ports="stringl str:
Required Attributes
* name — The port name.
Optional Attributes
* is_clock — Indicates if the port is a clock. Default: 0

* clock - Indicates the port is sequential and controlled by the specified clock (which must
be another port on the model marked with is_clock=1). Default: port is treated as com-
binational (if unspecified)

* combinational_ sink_ ports — A space-separated list of output ports which are com-
binationally connected to the current input port. Default: No combinational connections (if
unspecified)

Defines the port for a model.

An example models section containing a combinational primitive adder and a sequential primitive
single_port_ram follows:

<models>
<model name="single_port_ram">
<input_ports>

<port name="we" clock="clk" />
<port name="addr" clock="clk" combinational_sink_ports="out"/>
<port name="data" clock="clk" combinational_sink_ports="out"/>
<port name="clk" is_clock="1"/>

</input_ports>

<output_ports>
<port name="out" clock="clk"/>

</output_ports>

</model>

<model name="adder">

<input_ports>
<port name="a" combinational_sink_ports="cout sumout"/>
<port name="b" combinational_sink_ports="cout sumout"/>
<port name="cin" combinational_sink_ports="cout sumout"/>

</input_ports>

<output_ports>
<port name="cout"/>
<port name="sumout"/>

</output_ports>

(continues on next page)

38 Chapter 2. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.0.0-rc1

(continued from previous page)

</model>
</models>

Note that for single_port_ram above, the ports we, addr, data, and out are sequential since they have a clock
specified. Additionally addr and data are shown to be combinationally connected to out; this corresponds to an
internal timing path between the addr and data input registers, and the out output registers.

For the adder the input ports a, b and cin are each combinationally connected to the output ports cout and
sumout (the adder is a purely combinational primitive).

See also:

For more examples of primitive timing modeling specifications see the Primitive Block Timing Modeling Tutorial

2.1.3 Global FPGA Information

<layout/>
Content inside this tag specifies device grid layout.

See also:
FPGA Grid Layout

<device>content</device>
Content inside this tag specifies device information.

See also:
FPGA Device Information

<switchlist>content</switchlist>
Content inside this tag contains a group of <switch> tags that specify the types of switches and their properties.

<segmentlist>content</segmentlist>
Content inside this tag contains a group of <segment> tags that specify the types of wire segments and their
properties.

<complexblocklist>content</complexblocklist>
Content inside this tag contains a group of <pb_type> tags that specify the types of functional blocks and
their properties.

2.1.4 FPGA Grid Layout

The valid tags within the <layout> tag are:
<auto_layout aspect_ratio="float">
Optional Attributes
* aspect_ratio - The device grid’s target aspect ratio (width/height)
Default: 1.0

Defines a scalable device grid layout which can be automatically scaled to a desired size.

Note: At most one <auto_layout> can be specified.

<fixed_layout name="string" width="int" height="int">

2.1. Architecture Reference 39

Verilog-to-Routing Documentation, Release 8.0.0-rc1

Required Attributes
* name — The unique name identifying this device grid layout.
* width - The device grid width
* height — The device grid height

Defines a device grid layout with fixed dimensions.

Note: Multiple <fixed_layout> tags can be specified.

Each <auto_layout> or <fixed_layout> tag should contain a set of grid location tags.

Grid Location Priorities

Each grid location specification has an associated numeric priority. Larger priority location specifications override
those with lower priority.

Note: If a grid block is partially overlapped by another block with higher priority the entire lower priority block is
removed from the grid.

Empty Grid Locations

Empty grid locations can be specified using the special block type EMPTY.

Note: All grid locations default to EMPTY unless otherwise specified.

Grid Location Expressions
Some grid location tags have attributes (e.g. startx) which take an expression as their argument. An expression can
be an integer constant, or simple mathematical formula evaluated when constructing the device grid.

Supported operators include: +, —, =, /, along with (and) to override the default evaluation order. Expressions may
contain numeric constants (e.g. 7) and the following special variables:

e W: The width of the device
 H: The height of the device
* w: The width of the current block type
* h: The height of the current block type

Warning: All expressions are evaluated as integers, so operations such as division may have their result truncated.

As an example consider the expression W/2 - w/2. For a device width of 10 and a block type of width 3, this would

beevaluatedas % | — %] =[] - |2]=5-1=4.

40 Chapter 2. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.0.0-rc1

Grid Location Tags

<fill type="string" priority="int"/>
Required Attributes
* type — The name of the top-level complex block type (i.e. <pb_type>) being specified.

e priority — The priority of this layout specification. Tags with higher priority override
those with lower priority.

Fills the device grid with the specified block type.

Example:

<!-- Fill the device with CLB blocks ——>
<fill type="CLB" priority="1"/>

T
[

=

> [[[[[

‘NN ENNNNEE

Fig. 2.1: <fill> CLB example

<perimeter type="string" priority="int"/>

2.1. Architecture Reference 41

Verilog-to-Routing Documentation, Release 8.0.0-rc1

Required Attributes
* type — The name of the top-level complex block type (i.e. <pb_type>) being specified.

* priority — The priority of this layout specification. Tags with higher priority override
those with lower priority.

Sets the perimeter of the device (i.e. edges) to the specified block type.

Note: The perimeter includes the corners

Example:

<!-- Create io blocks around the device perimeter ——>

<perimeter type="io" priority="10"/>

H-1

Fig. 2.2: <perimeter> io example

<corners type="string" priority="int"/>

42 Chapter 2. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.0.0-rc1

Required Attributes
* type — The name of the top-level complex block type (i.e. <pb_type>) being specified.

* priority — The priority of this layout specification. Tags with higher priority override
those with lower priority.

Sets the corners of the device to the specified block type.

Example:

<!-- Create PLL blocks at all corners —-——>
<corners type="PLL" priority="20"/>

-1 L]

o i L]

0 W-1

Fig. 2.3: <corners> PLL example

<single type="string" priority="int" x="expr" y="expr"/>
Required Attributes
* type — The name of the top-level complex block type (i.e. <pb_type>) being specified.

2.1. Architecture Reference 43

Verilog-to-Routing Documentation, Release 8.0.0-rc1

* priority — The priority of this layout specification. Tags with higher priority override
those with lower priority.

* x — The horizontal position of the block type instance.
» y — The vertical position of the block type instance.
Specifies a single instance of the block type at a single grid location.

Example:

<!-— Create a single instance of a PCIE block (width 3, height 5)
at location (1,1)-->
<single type="PCIE" x="1" y="1" priority="20"/>

H-1

Fig. 2.4: <single> PCIE example

<col type="string" priority="int" startx="expr" repeatx="expr" starty="expr" incry="expr"/:
Required Attributes
* type — The name of the top-level complex block type (i.e. <pb_type>) being specified.

44 Chapter 2. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.0.0-rc1

* priority — The priority of this layout specification. Tags with higher priority override
those with lower priority.

* startx — An expression specifying the horizontal starting position of the column.
Optional Attributes
* repeatx — An expression specifying the horizontal repeat factor of the column.
* starty — An expression specifying the vertical starting offset of the column.
Default: 0

* incry — An expression specifying the vertical increment between block instantiations
within the region.

Default: h
Creates a column of the specified block type at startx.

If repeatx is specified the column will be repeated wherever x = startx + k - repeatz, is satisfied for any
positive integer k.

A non-zero starty is typically used if a <perimeter> tag is specified to adjust the starting position of
blocks with height > 1.

Example:
<!-- Create a column of RAMs starting at column 2, and
repeating every 3 columns ——>

<col type="RAM" startx="2" repeatx="3" priority="3"/>

Example:

<! Create IO's around the device perimeter >
<perimeter type="io" priority=10"/>

<! Create a column of RAMs starting at column 2, and
repeating every 3 columns. Note that a vertical offset
of 1 is needed to avoid overlapping the IO0s——>

<col type="RAM" startx="2" repeatx="3" starty="1" priority="3"/>

<row type="string" priority="int" starty="expr" repeaty="expr" startx="expr"/>

Required Attributes
* type — The name of the top-level complex block type (i.e. <pb_type>) being specified.

* priority — The priority of this layout specification. Tags with higher priority override
those with lower priority.

* starty — An expression specifying the vertical starting position of the row.
Optional Attributes
* repeaty — An expression specifying the vertical repeat factor of the row.
* startx — An expression specifying the horizontal starting offset of the row.
Default: 0

* incry — An expression specifying the horizontal increment between block instantiations
within the region.

Default: w

2.1.

Architecture Reference 45

Verilog-to-Routing Documentation, Release 8.0.0-rc1

H-1

Fig. 2.5: <col> RAM example

46 Chapter 2. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.0.0-rc1

iz

> [[1 [

= [[[[

Fig. 2.6: <col> RAM and <perimeter> io example

2.1. Architecture Reference

47

Verilog-to-Routing Documentation, Release 8.0.0-rc1

Creates a row of the specified block type at starty.

If repeaty is specified the column will be repeated wherever y = starty + k - repeaty, is satisfied for any
positive integer k.

A non-zero startx is typically used if a <perimeter> tag is specified to adjust the starting position of
blocks with width > 1.

Example:

<!-- Create a row of DSPs (width 1, height 3) at
row 1 and repeating every 7th row —-->
<row type="DSP" starty="1" repeaty="7" priority="3"/>

Fig. 2.7: <row> DSP example

<region type="string" priority="int" startx="expr" endx="expr repeatx="expr" incrx="expr" :
Required Attributes
* type — The name of the top-level complex block type (i.e. <pb_type>) being specified.

48 Chapter 2. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.0.0-rc1

* priority — The priority of this layout specification. Tags with higher priority override
those with lower priority.

Optional Attributes

* startx — An expression specifying the horizontal starting position of the region (inclu-
sive).

Default: 0

* endx — An expression specifying the horizontal ending position of the region (inclusive).
Default: w - 1

* repeatx — An expression specifying the horizontal repeat factor of the column.

* incrx — An expression specifying the horizontal increment between block instantiations
within the region.

Default: w

* starty — An expression specifying the vertical starting position of the region (inclusive).
Default: 0

* endy — An expression specifying the vertical ending position of the region (inclusive).
Default: 5 - 1

* repeaty — An expression specifying the vertical repeat factor of the column.

* incry — An expression specifying the horizontal increment between block instantiations
within the region.

Default: h

Fills the rectangular region defined by (startx, starty) and (endx, endy) with the specified block type.

Note: endx and endy are included in the region

If repeatx is specified the region will be repeated wherever x = startx + ki * repeatz, is satisified for any
positive integer k.

If repeaty is specified the region will be repeated wherever y = starty + ks * repeaty, is satisified for any
positive integer k.

Example:

<!-- Fill RAMs withing the rectangular region bounded by (1,1) and (5,4) —-—->
<region type="RAM" startx="1" endx="5" starty="1" endy="4" priority="4"/>

Example:

<!-- Create RAMs every 2nd column withing the rectangular region bounded

by (1,1) and (5,4) ——>
<region type="RAM" startx="1" endx="5" starty="1" endy="4" incrx="2" priority="4"/
>

Example:

2.1. Architecture Reference 49

Verilog-to-Routing Documentation, Release 8.0.0-rc1

H-1

Fig. 2.8: <region> RAM example

50 Chapter 2. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.0.0-rc1

H-1

Fig. 2.9: <region> RAM increment example

2.1. Architecture Reference 51

Verilog-to-Routing Documentation, Release 8.0.0-rc1

<!-- Fill RAMs within a rectangular 2x4 region and repeat every 3 horizontal

and 5 vertical units ——>
<region type="RAM" startx="1" endx="2" starty="1" endy="4" repeatx="3" repeaty=">5
" priority="4"/>

Fig. 2.10: <region> RAM repeat example
Example:
<!-- Create a 3x3 mesh of NoC routers (width 2, height 2) whose relative positions

will scale with the device dimensions ——>

<region type="NoC" startx="W/4 - w/2" starty="W/4 - w/2" incrx="W/4" incry="W/4"_
—priority="3"/>

52 Chapter 2. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.0.0-rc1

Fig. 2.11: <region> NoC mesh example

2.1. Architecture Reference

53

Verilog-to-Routing Documentation, Release 8.0.0-rc1

Grid Layout Example

<layout>
<!-- Specifies an auto-scaling square FPGA floorplan —-->
<auto_layout aspect_ratio="1.0">
<!-- Create I/0s around the device perimeter —->
<perimeter type="io" priority=10"/>

<!-- Nothing in the corners —->
<corners type="EMPTY" priority="100"/>

<!-- Create a column of RAMs starting at column 2, and
repeating every 3 columns. Note that a vertical offset (starty)
of 1 is needed to avoid overlapping the IOs——>

<col type="RAM" startx="2" repeatx="3" starty="1" priority="3"/>

<!-- Create a single PCIE block along the bottom, overriding
I/0 and RAM slots ——>
<single type="PCIE" x="3" y="0" priority="20"/>

<!-- Create an additional row of I/Os just above the PCIE,
which will not override RAMs —->
<row type="io" starty="5" priority="2"/>

<!-- Fill remaining with CLBs —-->
<fill type="CLB" priority="1"/>
</auto_layout>
</layout>

2.1.5 FPGA Device Information

The tags within the <device> tag are:
<sizing R_minW _nmos="float" R_minW_pmos="float"/>
Required Attributes

* R_minW_nmos — The resistance of minimum-width nmos transistor. This data is used only
by the area model built into VPR.

* R_minW_pmos — The resistance of minimum-width pmos transistor. This data is used only
by the area model built into VPR.

Required Yes
Specifies parameters used by the area model built into VPR.

<connection_block input_switch_name="string"/>

Required Attributes

* switch_name — Specifies the name of the <switch> in the <switchlist> used to
connect routing tracks to block input pins (i.e. the input connection block switch).

Required Yes

<area grid_logic_tile_ area="float"/>

54 Chapter 2. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.0.0-rc1

H-1

Fig. 2.12: Example FPGA grid

Logic Block

L L Connection
/ Block

Routing Track A
T . Isolation Buffer

Fig. 2.13: Input Pin Diagram.

2.1.

Architecture Reference 55

Verilog-to-Routing Documentation, Release 8.0.0-rc1

Required Yes
Specifies the default area used by each 1x1 grid logic tile (in MWTAs), excluding routing.

Used for an area estimate of the amount of area taken by all the functional blocks.

Note: This value can be overriden for specific <pb_type>""s with the " area attribute.

<switch_block type="{wilton | subset | universal | custom}" fs="int"/>
Required Attributes
* type — The type of switch block to use.
e £s — The value of Fj
Required Yes

This parameter controls the pattern of switches used to connect the (inter-cluster) routing segments. Three fairly
simple patterns can be specified with a single keyword each, or more complex custom patterns can be specified.

Non-Custom Switch Blocks:

When using bidirectional segments, all the switch blocks have Fs = 3 [BFRV92]. That is, whenever horizontal
and vertical channels intersect, each wire segment can connect to three other wire segments. The exact topology
of which wire segment connects to which can be one of three choices. The subset switch box is the planar or
domain-based switch box used in the Xilinx 4000 FPGAs — a wire segment in track 0 can only connect to other
wire segments in track 0 and so on. The wilton switch box is described in [Wil97], while the universal switch
box is described in [CWW96]. To see the topology of a switch box, simply hit the “Toggle RR” button when
a completed routing is on screen in VPR. In general the wilton switch box is the best of these three topologies
and leads to the most routable FPGAs.

When using unidirectional segments, one can specify an Fj that is any multiple of 3. We use a modified wilton
switch block pattern regardless of the specified switch_block_type. For all segments that start/end at that switch
block, we follow the wilton switch block pattern. For segments that pass through the switch block that can also
turn there, we cannot use the wilton pattern because a unidirectional segment cannot be driven at an intermediate
point, so we assign connections to starting segments following a round robin scheme (to balance mux size).

Note: The round robin scheme is not tileable.

Custom Switch Blocks:

Specifying custom allows custom switch blocks to be described under the <switchblocklist> XML
node, the format for which is described in Custom Switch Blocks. If the switch block is specified as custom,
the £s field does not have to be specified, and will be ignored if present.

<chan_width_distr>content</chan _width distr>
Content inside this tag is only used when VPR is in global routing mode. The contents of this tag are described
in Global Routing Information.

<default_fc in_type="{frac|abs}" in_val="{int|float}" out_type="{frac|abs}" out_val="{int|:
This defines the default Fc specification, if it is not specified within a <fc> tag inside a top-level complex block.
The attributes have the same meaning as the <fc> tag attributes.

2.1.6 Switches

The tags within the <switchlist> tag specifies the switches used to connect wires and pins together.

56 Chapter 2. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.0.0-rc1

<switch type="{mux|tristate|pass_gate|short |buffer}" name="string" R="float" Cin="float" C
Describes a switch in the routing architecture.

Example:

<switch type="mux" name="my_awesome_mux" R="551" Cin=".77e-15" Cout="4e-15"
—Cinternal="5e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>

Required Attributes
* type — The type of switch:

— mux: An isolating, configurable multiplexer

tristate: Anisolating, configurable tristate-able buffer

— pass_gate: A non-isolating, configurable pass gate

short: A non-isolating, non-configurable electrical short (e.g. between two segments).

buffer: An isolating, non-configurable non-tristate-able buffer (e.g. in-line along a
segment).

Isolation

Isolating switches include a buffer which partition their input and output into separate DC-
connected sub-circuits. This helps reduce RC wire delays.

Non-isolating switch do net isolate their input and output, which can increase RC wire
delays.

Configurablity
Configurable switches can be turned on/off at configuration time.

Non-configurable switches can not be controlled at configuration time. These are typically
used to model non-optional connections such as electrical shorts and in-line buffers.

* name — A unique name identifying the switch

* R — Resistance of the switch.

* Cin — Input capacitance of the switch.

* Cout — Output capacitance of the switch.
Optional Attributes

* Cinternal - Since multiplexers and tristate buffers are modeled as a parallel stream of
pass transistors feeding into a buffer, we would expect an additional “internal capacitance”
to arise when the pass transistor is enabled and the signal must propogate to the buffer. See
diagram of one stream below:

Pass Transistor
\
77777 Buffer
I\
,,,,,,,,,,,,, ‘ \,,,,,,,,
|/
[=== |/ N
| \ \
Input C Internal C Output C

2.1. Architecture Reference 57

Verilog-to-Routing Documentation, Release 8.0.0-rc1

Note: Only specify a value for multiplexers and/or tristate switches.

* Tdel - Intrinsic delay through the switch. If this switch was driven by a zero resistance
source, and drove a zero capacitance load, its delay would be: Tye; + R - Coyy-

The ‘switch’ includes both the mux and buffer mux type switches.

Note: Required if no <Tdel> tags are specified

Note: A <switch>’s resistance (R) and output capacitance (Cout) have no effect on
delay when used for the input connection block, since VPR does not model the resis-
tance/capacitance of block internal wires.

* buf_size — Specifies the buffer size in minimum-width transistor area (:term MWTA)
units.

If set to aut o, sized automatically from the R value. This allows you to use timing models
without R’s and C’s and still be able to measure area.

Note: Required for all isolating switch types.

Default: auto

* mux_trans_size — Specifies the size (in minimum width transistors) of each transistor
in the two-level mux used by mux type switches.

Note: Valid only for mux type switches.

* power_buf_size — Used for power estimation. The size is the drive strength of the
buffer, relative to a minimum-sized inverter.

<Tdel num_inputs="int" delay="float"/>
Instead of specifying a single Tdel value, a list of Tdel values may be specified for different values of
switch fan-in. Delay is linearly extrapolated/interpolated for any unspecified fanins based on the two
closest fanins.

Required Attributes
e num_inputs — The number of switch inputs (fan-in)

* delay — The intrinsic switch delay when the switch topology has the specified number of
switch inputs

Example:

<switch type="mux" name="my_mux" R="522" Cin="3.le-15" Cout="3e-15" Cinternal=
—"5e-15" mux_trans_size="1.7" buf_size="23">

<Tdel num_inputs="12" delay="8.00e-11"/>

<Tdel num_inputs="15" delay="8.4e-11"/>

<Tdel num_inputs="20" delay="9.4e-11"/>
</switch>

58 Chapter 2. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.0.0-rc1

Global Routing Information

If global routing is to be performed, channels in different directions and in different parts of the FPGA can be set to
different relative widths. This is specified in the content within the <chan_width_distr> tag.

Note: If detailed routing is to be performed, all the channels in the FPGA must have the same width.

<x distr="{gaussian|uniform|pulse|delta}" peak="float" width=" float" xpeak=" float" dc=" :
Required Attributes
* distr — The channel width distribution function
» peak — The peak value of the distribution
Optional Attributes
* width — The width of the distribution. Required for pulse and gaussian.
* xpeak — Peak location horizontally. Required for pulse, gaussian and delta.
* dc — The DC level of the distribution. Required for pulse, gaussian and delta.
Sets the distribution of tracks for the x-directed channels — the channels that run horizontally.
Most values are from O to 1.

If uniform is specified, you simply specify one argument, peak. This value (by convention between 0 and 1)
sets the width of the x-directed core channels relative to the y-directed channels and the channels between the
pads and core. Fig. 2.14 should clarify the specification of uniform (dashed line) and pulse (solid line) channel
widths. The gaussian keyword takes the same four parameters as the pulse keyword, and they are all interpreted
in exactly the same manner except that in the gaussian case width is the standard deviation of the function.

A

1 nulse/

—— width ———

xoeak is pulse midpoint

Relative
Channel
Width

uniform 0.5

Fractional Distance across FPGA

Fig. 2.14: Channel Distribution

The delta function is used to specify a channel width distribution in which all the channels have the same width
except one. The syntax is chan_width_x delta peak xpeak dc. Peak is the extra width of the single wide channel.
Xpeak is between 0 and 1 and specifies the location within the FPGA of the extra-wide channel — it is the
fractional distance across the FPGA at which this extra-wide channel lies. Finally, dc specifies the width of all
the other channels. For example, the statement chan_width_x delta 3 0.5 1 specifies that the horizontal channel
in the middle of the FPGA is four times as wide as the other channels.

Examples:

<x distr="uniform" peak="1"/>
<x distr="gaussian" width="0.5" peak="0.8" xpeak="0.6" dc="0.2"/>

<y distr="{gaussian|uniform|pulse|delta}" peak=" float" width=" float" xpeak=" float" dc="
Sets the distribution of tracks for the y-directed channels.

See also:

<x distr>

2.1. Architecture Reference 59

Verilog-to-Routing Documentation, Release 8.0.0-rc1

2.1.7 Complex Blocks

See also:
For a step-by-step walkthrough on building a complex block see Architecture Modeling.

The content within the <complexblocklist> describes the complex blocks found within the FPGA. Each type of
complex block is specified with a top-level <pb_type> tag within the <complexblocklist> tag.

PB Type

<pb_type name="string" num_pb="int" blif model="string" capacity="int" width="int" height=!
Specifies a top-level complex block, or a complex block’s internal components (sub-blocks). Which attributes
are applicable depends on where the <pb_t ype> tag falls within the hierarchy:

* Top Level: A child of the <complexblocklist>
¢ Intermediate: A child of another <pb_type>
¢ Primitive/Leaf: Contains no <pb_type> children

For example:

<complexblocklist>
<pb_type name="CLB"/> <!-- Top level —->

;és_type name="ble"/> <!-- Intermediate ——>
;ﬁgftype name="1lut"/> <!-—- Primitive —->
< /pb;i':;rpe>
<pb_type name="ff"/> </-— Primitive —-->
< /pb;i':;rpe>

</ pb;f;x}pe>

</pb_type>

</complexblocklist>

General:
Required Attributes
* name — The name of this pb_type.
The name must be unique with respect to any parent, sibling, or child <pb_type>.
Top Level Only:
Optional Attributes
* capacity — The number of instances of this block type at each grid location
Default: 1

For example:

<pb_type name="I0" capacity="2"/>

</pb_type>

60 Chapter 2. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.0.0-rc1

specifies there are two instances of the block type IO at each of its grid locations.

* width — The width of the block type in grid tiles
Default: 1

* height — The height of the block type in grid tiles
Default: 1

* area —