

vsuite

vsuite is a project management suite for Linux OSes aimed at writers who want
tools that help–rather than hinder–them in their writing. At its core, it is
a wrapper around various technologies that makes it easy to do your writing in
markdown [https://rmarkdown.rstudio.com/lesson-8.html] files that can easily
be turned into finished final documents. Writing in markdown allows the writer,
once she is up-to-speed on its usage, to separate the conceptually-distinct
tasks of writing and typesetting in a manner largely inspired by this [http://ricardo.ecn.wfu.edu/~cottrell/wp.html] essay [https://web.archive.org/web/*/http://ricardo.ecn.wfu.edu/~cottrell/wp.html].
Take a look at the following workflow diagram, this demo [https://asciinema.org/a/162560], and the quick start guide
to see if you might benefit from using this software.

[image: Workflow Diagram]
Note: vsuite is considered to be in early alpha, and as such should
not be considered reliable yet. With that said, since it is a wrapper
and never puts itself in charge of deleting or overwriting any user
data, the risk of using it should be very minimal. Furthermore, it
should go without saying that you should always backup any data that
matters.

Contents:

	Why vsuite (and why not a word processor)?
	The case for content versus presentation

	Focusing on content

	Using vsuite to simplify writing in markdown

	Installation
	Required software

	vsuite

	Quick Start
	Initialize a project with vs init

	Create a new markdown document with vs new

	Render your document with vs make

	Code Documentation
	User module

	Project module

	Asset module

Why vsuite (and why not a word processor)?

The case for content versus presentation

If you’re asking this question, you probably use a WYSIWYG [https://en.wikipedia.org/wiki/WYSIWYG] editor like Microsoft Word or
LibreOffice Writer for most of your writing needs. While there are certainly
use-cases where such programs are good tools for the job, there are also plenty
of use-cases where they aren’t. This essay [http://ricardo.ecn.wfu.edu/~cottrell/wp.html] provides a great analysis of
the failings of word processors, and this core point is largely the driving
force behind the creation of vsuite:

Preparing printable text using a word processor effectively forces you to
conflate two tasks that are conceptually distinct and that, to ensure that
people’s time is used most effectively and that the final communication is
most effective, ought also to be kept practically distinct. The two tasks
are

	The composition of the text itself…

	The typesetting of the document…the way in which structural elements
will be visually represented…

The author of a text should, at least in the first instance, concentrate
entirely on the first of these sets of tasks. That is the author’s
business…

I am suggesting, therefore, that should be two distinct “moments” in the
production of a printed text using a computer. First one types one’s text
and gets its logical structure right, indicating this structure in the
text via simple annotations…Then one “hands over” one’s text to
a typesetting program…

—Allin Cottrell - Word Processors: Stupid and Inefficient

The message is that authors of text should focus on content instead of the
text’s presentation. Focusing in this way allows one to focus on one thing at
a time and more effectively use one’s own mental resources. Essentially, allow
yourself as an author to not become distracted by presentation at the expense
of content, which includes the text itself along with its logical structure.

Word processors are not designed around the paradigm of separating content from
presentation. If you find yourself able to achieve separation of the two in
a word processor by tweaking your existing workflow, more power to you. It
seems likely, however, that you will still spend lots of time wrestling with
your word processor to get it to do what you want (although you’re probably
used to such fights at this point).

Focusing on content

If we writers were to focus on the text and its raw words themselves, our
writing would less clearly expose its own logical structure and then the
job of the author would be only partially completed. However, we can
indicate logical structure with only the slightest bit of effort using
a “markup language” which is used to mark up raw text with symbols that
denote logical elements (e.g. section headings). Markdown [https://rmarkdown.rstudio.com/lesson-8.html] is an especially simple
markup language that should serve many writers well.

We now need to know how we will concretely:

	Author markdown text

This will be done with a text editor of your choice.

	Turn that markdown text into a presentable piece (e.g. a nice-looking PDF)

This will be done with Pandoc, a tool that translates various text
formats into each other.

However, using a text editor to create markdown documents (including their
headers) from scratch and running Pandoc manually to create final
documents has two problems: the new tools might be overwhelming to those
just leaving the world of word processors, and there is a lot of
repetition in creating new documents that can be eliminated.

Using vsuite to simplify writing in markdown

vsuite aims to generally ease the process of moving from nothing to
a finished document, exposing the functionality of the underlying tools
through a unified interface. It simplifies the initial creation of
markdown files and finished documents, and also provides a structure for
keeping track of bibliographical information.

Installation

For the time being, vsuite is only distributed through its git repositories,
and so should be installed with pip after installing a few software
dependencies.

Required software

	pandoc (for rendering markdown to other formats)

	pandoc-citeproc (for citations in markdown)

	git (for optional versioning)

	make (for simplifying rendering of markdown)

	pip3 (for installing vsuite)

Ubuntu 16.04

sudo apt install pandoc pandoc-citeproc git make python3-pip

Fedora 27

sudo dnf install pandoc pandoc-citeproc git make python3-pip

vsuite

Install vsuite as a Python package using pip3 pointed at its git repository:

pip3 install --user git+<URL of this repo>
For example, using the GitHub repo
pip3 install --user git+https://github.com/jessebl/vsuite

The program will place files in ~/.local/share/vsuite and store its
config in ~/.config/vsuite. The requisite files should be placed
when the program is run, but this has not yet been tested to any
rigorous degree. Pip also creates a vsuite executable named vs at
~/.local/bin/vs, but if that location is not not a part of your
PATH, you will need to manually add
it [http://linuxg.net/how-to-set-a-new-path-in-bash-ksh-and-zsh/].

Quick Start

You might want to check out this
demo [https://asciinema.org/a/0P06UgeiTM6EL4R8jbYdz7D7j] for an example of the
steps in this quick start.

Initialize a project with vs init

vsuite uses the concept of a project directory, in which you have
various vsuite docs (which are simple pandoc markdown files) accompanied
by a hidden .vsuite directory that holds accompanying files like
CSL files [https://en.wikipedia.org/wiki/Citation_Style_Language]
and document templates. To get started using it, you need to initialize
a directory as a vsuite directory:

vs init

This effectively creates an empty bibliography file, initializes a git
repository, and creates the .vsuite directory which includes a
project config file.

Create a new markdown document with vs new

Finally, you can get started with actually creating markdown files using
vsuite:

vs new <document title>

This will create a file <document title>.md, after dropping or
modifying spaces or some special characters (since GNU make really
struggles with these things…). This file is generated from a template by
vsuite and includes a YAML header that specifies fields for pandoc. This
file is the one that you are meant to edit and do your work in. Tuning
your text editor for use with markdown will be greatly helpful in this,
since the whole point of this writing paradigm is to leave you, the
writer, with more time doing actual writing. (For example, see this vim
configuration
file [https://github.com/jessebl/installscripts/blob/master/configs/vim-writer/.writer.vimrc].)

Render your document with vs make

When you’re ready to turn your markdown source into files for use by
others:

vs make <project name>.<file extension of desired format>

E.g generate a PDF of your document file "best_document.md"

vs make best_document.pdf

This uses GNU make along with a makefile in .vsuite to freshly
generate the specified file unless it has been updated more recently
than the source markdown file. Hence, you can always make sure that you
have up-to-date documentation with vs make. The currently available
formats are:

	pdf

	odt

	docx

Code Documentation

Contents:

	User module

	Project module

	Asset module

User module

	
class vsuite.user.User

	Represent a single user’s vsuite installation

Track and manage vsuite’s data files, user config, and more

	
get_fullname()

	Get user’s full name from /etc/passwd

	Returns

	user’s full name

	Return type

	str

	
get_user_config()

	Get user’s user vsuite config

Get existing config if it exists
Get and save newly-generated config if it doesn’t

	Returns

	user’s user configuration

	Return type

	configparser.ConfigParser

	
init_project_skel()

	Create user data from vsuite skeleton

	
init_user_config()

	Initialize user config

Create new config, refusing to overwrite existing one

	Returns

	user’s user configuration

	Return type

	configparser.ConfigParser

	
read_user_config()

	Get existing user config

	
user_init()

	Ensure existence of user config and user data

Project module

	
class vsuite.project.Project(path=False)

	Represent a project directory

The present working directory is considered to be the vsuite project root,
unless one of its parent directories is a project, in which case that
directory is considered to be.

Initializing sets attributes about where various directories and project
resources would be, if they exist.

	
create_doc(title, template_opt=None)

	Create new document with title name from template

	Parameters

	
	title (str) – Title of document, used as basis for filename

	template_opt (str) – Document template to override default template
set in project config

	Returns

	Document filename

	Return type

	str

	Raises

	(FileExistsError) – If file with same name already exists

	
get_project_dir(cursor_dir='/home/docs/checkouts/readthedocs.org/user_builds/vsuite/checkouts/latest/docs/source', path=False)

	Absolute path to consider as project directory

Use present working directory if no parent directory is a project
directory.

	Parameters

	cursor_dir (str) – directory to check for project

	Returns

	absolute path

	Return type

	str

	
get_relpaths()

	Get paths of project resources relative to pwd

Note

Mostly legacy method, preserved only using all assets’ relative
paths in self.create_doc()

	Returns

	relative paths of project paths (e.g. the project’s csl_dir)

	Return type

	dict

	
get_template(config, template_opt)

	Get template object to use for new document

	Parameters

	config (ConfigParser) – config of project

	Returns

	template to use

	Return type

	jinja2.environment.Template

	
git_init()

	Initialize git repository in project_path

	
init()

	Initialize project directory

Reinitialize vsuite for the user, and initialize the present working
directory as a project directory. This includes creating the .vsuite
directory, creating and empty bibliography file, and initializing a git
repo.

	
init_inherit()

	Initialize project directory

Reinitialize vsuite for the user, and initialize the present working
directory as a project directory, inheriting assets and config from
the parents project

	
make(output)

	Use make and pandoc to generate outputs

Use makefile from .vsuite directory, which leverages pandoc to generate
requested outputs

	Parameters

	output (str) – name of argument to pass to make

Asset module

In the process of transitioning to the concept of an “asset” for use within
the project module.

	
class vsuite.asset.Asset(name, relpath, file_expression, project_path, data_dir='.vsuite')

	Represent a category of vsuite assets

	Parameters

	
	name (str) – name of the asset (e.g. “bibliographies”)

	relpath (str) – path to assset directory relative to project_path

	file_expression (str) – expression to match asset files,
parsed by glob.glob

	project_path (str) – path to project or other reference directory

	data_dir (str) – directory within project_path to hold data files
(.vsuite, leave unless you know what you’re doing)

	
abspath()

	Get absolute path to asset

	Parameters

	project_path (str) – absolute path to project

	Returns

	absolute path to asset

	Return type

	str

	
abspaths()

	Paths of available assets

Get absolute paths of asset files in first level of asset directory

	Returns

	file paths

	Return type

	tuple

	
copy_to(dest_asset)

	Copy asset files from self to another asset

	Parameters

	dest_asset (vsuite.asset.Asset) – asset to receive files

	
files()

	Available asset files

Get asset filenames in first level of asset directory

	Returns

	asset filenames

	Return type

	tuple

	
print_files()

	Print asset files, newline delimitedfile names

	
relpath_pwd()

	Get path to asset relative to current directory

	Parameters

	project_dir (str) – absolute path to project directory

	Returns

	relative path to asset

	Return type

	str

 Python Module Index

 v

 		 	

 		
 v	

 	[image: -]
 	
 vsuite	

 	
 	
 vsuite.asset	

 	
 	
 vsuite.project	

 	
 	
 vsuite.user	

Index

 A
 | C
 | F
 | G
 | I
 | M
 | P
 | R
 | U
 | V

A

 	
 	abspath() (vsuite.asset.Asset method)

 	
 	abspaths() (vsuite.asset.Asset method)

 	Asset (class in vsuite.asset)

C

 	
 	copy_to() (vsuite.asset.Asset method)

 	
 	create_doc() (vsuite.project.Project method)

F

 	
 	files() (vsuite.asset.Asset method)

G

 	
 	get_fullname() (vsuite.user.User method)

 	get_project_dir() (vsuite.project.Project method)

 	get_relpaths() (vsuite.project.Project method)

 	
 	get_template() (vsuite.project.Project method)

 	get_user_config() (vsuite.user.User method)

 	git_init() (vsuite.project.Project method)

I

 	
 	init() (vsuite.project.Project method)

 	init_inherit() (vsuite.project.Project method)

 	
 	init_project_skel() (vsuite.user.User method)

 	init_user_config() (vsuite.user.User method)

M

 	
 	make() (vsuite.project.Project method)

P

 	
 	print_files() (vsuite.asset.Asset method)

 	
 	Project (class in vsuite.project)

R

 	
 	read_user_config() (vsuite.user.User method)

 	
 	relpath_pwd() (vsuite.asset.Asset method)

U

 	
 	User (class in vsuite.user)

 	
 	user_init() (vsuite.user.User method)

V

 	
 	vsuite.asset (module)

 	
 	vsuite.project (module)

 	vsuite.user (module)

 _static/comment-bright.png

_images/workflow_diagram.png
vsuite intended
workflow

using vsulte, create
new documentin
markdown

] textedior of choice,

sdit document with

v

inecessary,aller) using veulte, render
typesetting using _markdown document|

concerning yourself header In markdown | - Into desired final

only with content

e format (e.g. PDF)

Inital creation

ACTUAL WRITING.

Typesetting and final production

'AND REVISION

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 vsuite

 		
 Why vsuite (and why not a word processor)?

 		
 The case for content versus presentation

 		
 Focusing on content

 		
 Using vsuite to simplify writing in markdown

 		
 Installation

 		
 Required software

 		
 Ubuntu 16.04

 		
 Fedora 27

 		
 vsuite

 		
 Quick Start

 		
 Initialize a project with vs init

 		
 Create a new markdown document with vs new

 		
 Render your document with vs make

 		
 Code Documentation

 		
 User module

 		
 Project module

 		
 Asset module

_static/up-pressed.png

_static/up.png

_static/plus.png

