
vPoller Documentation
Release 0.3.7-dev

Marin Atanasov Nikolov

February 03, 2015

Contents

1 Contributions 3

2 Bugs 5

3 Getting started 7

4 Contents 9
4.1 Installation of vPoller . 9
4.2 Configuration of vPoller . 11
4.3 vPoller Services . 12
4.4 vPoller Helpers . 15
4.5 Example usage of vPoller . 16
4.6 Using the API . 19
4.7 vPoller Integration With Zabbix . 21
4.8 Supported methods by vPoller . 36
4.9 Terminology . 37

i

ii

vPoller Documentation, Release 0.3.7-dev

vPoller is a distributed VMware vSphere API Proxy, designed for discovering and polling of vSphere objects.

It uses the VMware vSphere API in order to perform discovery and polling of vSphere objects.

vPoller uses the ZeroMQ messaging library for distributing tasks to workers and load balancing of client requests.

vPoller can be integrated with other systems, which require access to vSphere objects, but do not have native support
for it.

Possible scenarios where vPoller could be used is integration with monitoring systems as part of the discovery and
polling process in order to provide monitoring of your VMware vSphere environment.

vPoller has been tested with VMware vSphere 5.x and with very limited testing on vSphere 4.x

vPoller is Open Source and licensed under the BSD License.

Contents 1

https://www.vmware.com/support/developer/vc-sdk/
http://zeromq.org/
http://opensource.org/licenses/BSD-2-Clause

vPoller Documentation, Release 0.3.7-dev

2 Contents

CHAPTER 1

Contributions

vPoller is hosted on Github. Please contribute by reporting issues, suggesting features or by sending patches using
pull requests.

3

https://github.com/dnaeon/py-vpoller

vPoller Documentation, Release 0.3.7-dev

4 Chapter 1. Contributions

CHAPTER 2

Bugs

Probably. If you experience a bug issue, please report it to the vPoller issue tracker on Github

5

https://github.com/dnaeon/py-vpoller/issues

vPoller Documentation, Release 0.3.7-dev

6 Chapter 2. Bugs

CHAPTER 3

Getting started

A good place to start with vPoller is to go over the Terminology page in order to get familiar with the concepts and
terms used in vPoller.

Once ready with that go ahead to the Installation of vPoller and Configuration of vPoller documentations, which
provide all the details about how to install and configure vPoller.

Make sure to also check the Example usage of vPoller page and see how to run your first vPoller task requests.

7

vPoller Documentation, Release 0.3.7-dev

8 Chapter 3. Getting started

CHAPTER 4

Contents

4.1 Installation of vPoller

This document walks you through the installation of vPoller.

There are a number of ways to install vPoller on your system - you could either install vPoller from source from the
Github repo, use binary packages or install via pip.

As of now binary packages of vPoller are only available for Debian GNU/Linux systems.

4.1.1 Requirements

On the list below you can see the dependencies of vPoller:

• Python 2.7.x

• pyVmomi

• vconnector

• pyzmq

• docopt

The C client of vPoller also requires the following packages to be installed in order to build it:

• Python development files (on Debian systems this is usually provided by the python-dev package)

• ZeroMQ 4.x Library

4.1.2 Installation with pip

In order to install vPoller using pip, simply execute this command:

$ pip install vpoller

If you would like to install vPoller in a virtualenv, then follow these steps instead:

$ virtualenv vpoller-venv
$ source vpoller-venv/bin/activate
$ pip install vpoller

9

http://debian.org/
http://python.org/
https://github.com/vmware/pyvmomi
https://github.com/dnaeon/py-vconnector
https://github.com/zeromq/pyzmq
https://github.com/docopt/docopt
https://github.com/dnaeon/py-vpoller/tree/master/src/vpoller-cclient
https://github.com/zeromq/zeromq4-x

vPoller Documentation, Release 0.3.7-dev

4.1.3 Installation from packages

In order to install vPoller from packages on a Debian GNU/Linux system you can use the Debian packages from the
link below:

• Debian GNU/Linux packages for vPoller

Currently only Debian GNU/Linux packages are available.

4.1.4 Installation from source

The master branch of vPoller is where main development happens.

In order to install the latest version of vPoller follow these simple steps:

$ git clone https://github.com/dnaeon/py-vpoller.git
$ cd py-vpoller
$ sudo python setup.py install

If you would like to install vPoller in a virtualenv follow these steps instead:

$ virtualenv vpoller-venv
$ source vpoller-venv/bin/activate
$ git clone https://github.com/dnaeon/py-vpoller.git
$ cd py-vpoller
$ python setup.py install

This should take care of installing all dependencies for you as well.

In order to install one of the stable releases of vPoller please refer to the page of vPoller stable releases.

4.1.5 Installing the C client of vPoller

vPoller comes with two client applications - a Python and a C client.

In order to use the C client of vPoller you need to make sure that you have the ZeroMQ 4.x library installed as the C
client is linked against it.

Here is how to install the ZeroMQ 4.x library on your system from source:

$ git clone https://github.com/zeromq/zeromq4-x.git
$ cd zeromq4-x
$./autogen.sh
$./configure
$ make && sudo make install && make clean
$ sudo ldconfig

After that building the vPoller C client is as easy as this:

$ cd py-vpoller/src/vpoller-cclient
$ make

You should now have the vpoller-cclient executable in your current directory built and ready for use.

10 Chapter 4. Contents

http://debian.org/
http://jenkins.unix-heaven.org/job/py-vpoller/
https://github.com/dnaeon/py-vpoller/releases
https://github.com/zeromq/zeromq4-x
https://github.com/zeromq/zeromq4-x

vPoller Documentation, Release 0.3.7-dev

4.2 Configuration of vPoller

The default configuration file of vPoller resides in a single file and it’s default location is
/etc/vpoller/vpoller.conf.

Below is an example vpoller.conf file that you can use:

[proxy]
frontend = tcp://*:10123
backend = tcp://*:10124
mgmt = tcp://*:9999

[worker]
db = /var/lib/vconnector/vconnector.db
proxy = tcp://localhost:10124
mgmt = tcp://*:10000

The table below provides information about the config entries used along with a description for each of them.

Section Option Description
proxy frontend Endpoint to which clients connect and send tasks for processing
proxy backend Endpoint to which workers connect and get tasks for processing
proxy mgmt Management endpoint, used for management tasks of the vPoller Proxy
worker db Path to the vconnector.db SQLite database file
worker proxy Endpoint to which workers connect and get tasks for processing
worker mgmt Management endpoint, used for management tasks for the vPoller Worker

4.2.1 Configuring vSphere Agents for the Workers

The vSphere Agents are the ones that take care of establishing connections to the vSphere hosts and perform
discovery and polling of vSphere objects.

A vPoller Worker can have as many vSphere Agents as you want, which means that a single vPoller
Worker can be used to monitor multiple vSphere hosts (ESXi hosts, vCenter servers).

Connection details (username, password, host) about each vSphere Agent are stored in a SQLite database and are
managed by the vconnector-cli tool.

Note: The example commands below use the root account for configuring a vSphere Agent for a vCenter Server.

The root account in a vCenter Server by default has full administrative privileges.

If security is a concern you should use an account for your vSphere Agents that has a restricted set of privileges.

First let’s initialize the vConnector database file:

$ sudo vconnector-cli init

By default the vconnector.db database file resides in /var/lib/vconnector/vconnector.db, unless
you specify an alternate location from the command-line.

Now, let’s add one vSphere Agent, which can later be used by our vPoller Worker.

This is how to add a new vSphere Agent using vconnector-cli:

$ sudo vconnector-cli -H vc01.example.org -U root -P p4ssw0rd add

When you create a new vSphere Agent by default it will be disabled, so in order to use that agent in your vPoller
Worker you should enable it first.

4.2. Configuration of vPoller 11

http://www.sqlite.org/
https://github.com/dnaeon/py-vconnector

vPoller Documentation, Release 0.3.7-dev

This is how to enable a vSphere Agent:

$ sudo vconnector-cli -H vc01.example.org enable

At any time you can view the currently registered vSphere Agents by running the vconnector-cli get
command, e.g.:

$ sudo vconnector-cli get
+------------------+------------+------------+-----------+
| Hostname | Username | Password | Enabled |
+==================+============+============+===========+
| vc01.example.org | root | p4ssw0rd | 1 |
+------------------+------------+------------+-----------+

As the vconnector.db database contains connection details about your VMware vSphere hosts in order to avoid
any leak of sensitive data you would want to secure this file and make it readable only by the user, which runs the
vPoller Worker.

4.3 vPoller Services

vPoller consists of a number of components, each responsible for a specific task.

This page describes how to manage the vpoller-proxy and vpoller-worker services.

Please refer to the Terminology page for more information about the vPoller components and their purpose.

In a production environment you would want to have these services running as daemons and started at boot-time. At
the end of this documentation we will see how to use a process control system such as Supervisord for managing the
vpoller-proxy and vpoller-worker services.

4.3.1 Starting and stopping the vPoller Proxy

In order to start the vpoller-proxy service simply execute the command below:

$ vpoller-proxy start

After you start the vpoller-proxy service you should see something similar, which indicates that the
vpoller-proxy has started successfully and is ready to distribute tasks to the vPoller Workers.

$ vpoller-proxy start
[2014-09-05 13:26:04,807 - INFO/MainProcess] Starting Proxy Manager
[2014-09-05 13:26:04,808 - INFO/MainProcess] Creating Proxy Manager sockets
[2014-09-05 13:26:04,808 - INFO/MainProcess] Starting Proxy process
[2014-09-05 13:26:04,809 - INFO/MainProcess] Proxy Manager is ready and running
[2014-09-05 13:26:04,810 - INFO/VPollerProxy-1] Proxy process is starting
[2014-09-05 13:26:04,810 - INFO/VPollerProxy-1] Creating Proxy process sockets
[2014-09-05 13:26:04,810 - INFO/VPollerProxy-1] Proxy process is ready and running

In order to stop the vpoller-proxy service simply hit Ctrl+C, which would gracefully shutdown the service.

Another way to stop the vpoller-proxy service is to use the management interface and send a shutdown signal to
the service.

Here is how to shutdown a vpoller-proxy using the management interface:

$ vpoller-proxy --endpoint tcp://localhost:9999 stop

12 Chapter 4. Contents

http://supervisord.org/

vPoller Documentation, Release 0.3.7-dev

4.3.2 Starting and stopping the vPoller Worker

In order to start the vpoller-worker service simply execute the command below:

$ vpoller-worker start

After you start the vpoller-worker service you should see something similar, which indicates that the
vpoller-worker has started successfully and is ready to process task requests.

[2014-09-05 04:26:38,136 - INFO/MainProcess] Starting Worker Manager
[2014-09-05 04:26:38,138 - INFO/MainProcess] Starting Worker processes
[2014-09-05 04:26:38,138 - INFO/MainProcess] Concurrency: 1 (processes)
[2014-09-05 04:26:38,139 - INFO/MainProcess] Worker Manager is ready and running
[2014-09-05 04:26:38,141 - INFO/VPollerWorker-1] Worker process is starting
[2014-09-05 04:26:38,142 - INFO/VPollerWorker-1] Creating Worker sockets
[2014-09-05 04:26:38,144 - INFO/VPollerWorker-1] Worker process is ready and running

By default when you start the vpoller-worker service it will create worker processes equal to the number
of cores available on the target system.

In order to control the concurrency level and how many worker processes will be started use the --concurrency
option of vpoller-worker.

Here is an example command, which will start vpoller-worker with 4 worker processes.

$ vpoller-worker --concurrency 4 start
[2014-09-05 04:29:56,680 - INFO/MainProcess] Starting Worker Manager
[2014-09-05 04:29:56,682 - INFO/MainProcess] Starting Worker processes
[2014-09-05 04:29:56,682 - INFO/MainProcess] Concurrency: 4 (processes)
[2014-09-05 04:29:56,689 - INFO/VPollerWorker-1] Worker process is starting
[2014-09-05 04:29:56,694 - INFO/VPollerWorker-1] Creating Worker sockets
[2014-09-05 04:29:56,691 - INFO/VPollerWorker-2] Worker process is starting
[2014-09-05 04:29:56,698 - INFO/VPollerWorker-2] Creating Worker sockets
[2014-09-05 04:29:56,693 - INFO/VPollerWorker-3] Worker process is starting
[2014-09-05 04:29:56,700 - INFO/VPollerWorker-3] Creating Worker sockets
[2014-09-05 04:29:56,703 - INFO/VPollerWorker-3] Worker process is ready and running
[2014-09-05 04:29:56,698 - INFO/VPollerWorker-4] Worker process is starting
[2014-09-05 04:29:56,703 - INFO/MainProcess] Worker Manager is ready and running
[2014-09-05 04:29:56,704 - INFO/VPollerWorker-1] Worker process is ready and running
[2014-09-05 04:29:56,706 - INFO/VPollerWorker-4] Creating Worker sockets
[2014-09-05 04:29:56,705 - INFO/VPollerWorker-2] Worker process is ready and running
[2014-09-05 04:29:56,710 - INFO/VPollerWorker-4] Worker process is ready and running

In order to stop the vpoller-worker service simply hit Ctrl+C, which would gracefully shutdown the service.

Another way to stop the vpoller-worker service is to use the management interface and send a shutdown signal
to the service.

Here is how to shutdown a vpoller-worker using the management interface:

$ vpoller-worker --endpoint tcp://localhost:10000 stop

4.3.3 Using the vPoller Management Interfaces

When you start vpoller-proxy and vpoller-worker a management endpoint is available for sending man-
agement tasks to the services.

At any time you can request status information from your vPoller services by sending a request to the management
interface.

4.3. vPoller Services 13

vPoller Documentation, Release 0.3.7-dev

This is how you could get status information from your vpoller-proxy:

$ vpoller-proxy --endpoint tcp://localhost:9999 status

And this is how you could get status information from your vpoller-worker:

$ vpoller-worker --endpoint tcp://localhost:10000 status

4.3.4 Managing vPoller Services with Supervisord

When running vPoller in a production environment you would want to have the vpoller-proxy and
vpoller-worker services running as daemons and started at boot-time.

In this section we will see how to use Supervisord for managing the vPoller services.

First, make sure that you have Supervisord installed on your system.

After that create the following config file and place it into your Supervisord include directory.

[program:vpoller-proxy]
command=/usr/bin/vpoller-proxy start
redirect_stderr=true
stdout_logfile=/var/log/vpoller/vpoller-proxy.log
autostart=true
;user=myusername
stopsignal=INT

[program:vpoller-worker]
command=/usr/bin/vpoller-worker start
redirect_stderr=true
stdout_logfile=/var/log/vpoller/vpoller-worker.log
autostart=true
;user=myusername
stopsignal=INT

Now reload Supervisord by executing these commands:

$ sudo supervisorctl reread
$ sudo supervisorctl reload

In order to start the vpoller-proxy and vpoller-worker services you would use the supervisorctl tool.

This is how to start the vPoller services:

$ sudo supervisorctl start vpoller-proxy
$ sudo supervisorctl start vpoller-worker

And this is how to stop the vPoller services:

$ sudo supervisorctl stop vpoller-proxy
$ sudo supervisorctl stop vpoller-worker

For more information about what you can do with Supervisord, please refer to the official documentation of
Supervisord.

14 Chapter 4. Contents

http://supervisord.org/
http://supervisord.org/
http://supervisord.org/

vPoller Documentation, Release 0.3.7-dev

4.4 vPoller Helpers

The vPoller Helpers were implemented in order to provide an easy way for connecting your applications to
vPoller.

A result messages returned by the vpoller-worker is always in JSON format. This could be okay for most
applications, which require to process a result message, but in some cases you might want to receive the result in
different formats and feed the data into your application.

Using the vPoller Helpers you are able to convert the result message to a format that your application or system
understands.

The table below summarizes the currently existing and supported vPoller Helpers along with a short description:

vPoller Helper Description
vpoller.helpers.zabbix Helper which returns result in Zabbix-friendly format
vpoller.helpers.czabbix vPoller Zabbix helper for C clients
vpoller.helpers.csvhelper Helper which returns result in CSV format
vpoller.helpers.cclient Helper for vPoller C clients

The vPoller Helpers are simply Python modules and are loaded by the vPoller Workers upon startup.

4.4.1 Enabling helpers

In order to enable helpers in your vPoller Workers you need to specify in the vpoller.conf file the helper
modules, which you wish to be loaded and available to clients.

Here is a sample vpoller.conf file which includes the helpers configuration option for loading the zabbix
helper module in your vPoller Worker:

[proxy]
frontend = tcp://*:10123
backend = tcp://*:10124
mgmt = tcp://*:9999

[worker]
db = /var/lib/vconnector/vconnector.db
proxy = tcp://localhost:10124
mgmt = tcp://*:10000
helpers = vpoller.helpers.zabbix

Multiple vPoller helpers can be loaded as well by separating them using a comma.

Here’s an example vpoller.conf file which loads multiple helpers in your vPoller Worker:

[proxy]
frontend = tcp://*:10123
backend = tcp://*:10124
mgmt = tcp://*:9999

[worker]
db = /var/lib/vconnector/vconnector.db
proxy = tcp://localhost:10124
mgmt = tcp://*:10000
helpers = vpoller.helpers.zabbix,vpoller.helpers.czabbix

4.4. vPoller Helpers 15

vPoller Documentation, Release 0.3.7-dev

4.4.2 vPoller Zabbix Helper

One of the vPoller Helpers is the Zabbix vPoller Helper module, which can translate a result message to Zabbix
LLD format and return values ready to be used in Zabbix items as well.

Here is an example of using the Zabbix vPoller Helper, which will convert a result message to Zabbix-friendly
format:

$ vpoller-client --method datastore.discover --vsphere-host vc01.example.org \
--helper vpoller.helpers.zabbix

The *.discover methods of vPoller when used with the Zabbix helper, would return data ready in Zabbix LLD
format.

When using the *.get methods of vPoller with the Zabbix helper, the result would be a single property value, making
it suitable for use in Zabbix items.

This is how to retrieve a property of a Datastore object using the Zabbix helper:

$ vpoller-client --method vm.get --vsphere-host vc01.example.org \
--name vm01.example.org --properties runtime.powerState \
--helper vpoller.helpers.zabbix

4.4.3 vPoller CSV Helper

Another vPoller helper is the vPoller CSV helper which translates a result message in CSV format.

Here is an example how to get all your Virtual Machines and their runtime.powerState property in CSV format:

$ vpoller-client --method vm.discover --vsphere-host vc01.example.org \
--properties runtime.powerState \
--helper vpoller.helpers.csvhelper

And here is a sample result from the above command:

name,runtime.powerState
vpoller-vm-1,poweredOn
vpoller-vm-2,poweredOn
freebsd-vm-1,poweredOn
zabbix-vm-1.04-dev,poweredOn

Here is one post that you can read which makes use of the vPoller CSV Helper in order to export data from a
vSphere environment and plot some nice graphs from it.

• Exporting Data From a VMware vSphere Environment For Fun And Profit

4.5 Example usage of vPoller

This page provides some examples how vPoller can be used to perform various operations like discovery and polling
of VMware vSphere objects.

Please also refer to the Supported methods by vPoller documentation for the full list of supported vPoller methods you
could use.

The property names which we use in these examples can be found in the official VMware vSphere API documentation.

Each vSphere managed object has specific properties, which are documented in the official documentation.

16 Chapter 4. Contents

https://github.com/dnaeon/py-vpoller/tree/master/src/vpoller/helpers/zabbix.py
https://www.zabbix.com/documentation/2.2/manual/discovery/low_level_discovery
https://www.zabbix.com/documentation/2.2/manual/discovery/low_level_discovery
http://unix-heaven.org/node/116
https://www.vmware.com/support/developer/vc-sdk/

vPoller Documentation, Release 0.3.7-dev

The examples here serve for demonstration purpose only and do not provide all the properties you could use and get
from vSphere objects, so make sure to refer to the official vSphere documentation when looking for a specific property
name.

There are also a number of posts about how vPoller is being used for various purposes, which you could also read at
the following links:

• VMware vSphere CLI tips & tricks with vPoller

• VMware monitoring with Zabbix, Python & vPoller

• Exporting Data From a VMware vSphere Environment For Fun And Profit

4.5.1 Datacenter examples

Here is how to discover all Datacenter objects from your vSphere environment:

$ vpoller-client --method datacenter.discover --vsphere-host vc01.example.org

An example command that would get the summary.overallStatus property of a specific Datacenter:

$ vpoller-client --method datacenter.get --vsphere-host vc01.example.org \
--name datacenter01 --properties name,overallStatus

4.5.2 ClusterComputeResource examples

A ClusterComputeResource managed object is what you are used to refer to simply as cluster in vSphere.
The examples commands below show how to discover and get properties for your vSphere clusters.

An example command to discover all ClusterComputeResource managed objects from your vSphere environ-
ment:

$ vpoller-client --method cluster.discover --vsphere-host vc01.example.org

And here is how to get the overallStatus property for a specific ClusterComputeResource managed ob-
ject:

$ vpoller-client --method cluster.get --vsphere-host vc01.example.org \
--name cluster01 --properties name,overallStatus

4.5.3 HostSystem examples

HostSystem managed objects in vSphere are your ESXi hosts.

Here is an example how to discover all your ESXi hosts from your vSphere environment:

$ vpoller-client --method host.discover --vsphere-host vc01.example.org

And here is an example command to get the runtime.powerState property for a specific HostSystem object:

$ vpoller-client --method host.get --vsphere-host vc01.example.org \
--name esxi01.example.org --properties runtime.powerState

An example command to get all Virtual Machines registered on a specific ESXi host:

$ vpoller-client --method host.vm.get --vsphere-host vc01.example.org \
--name esxi01.example.org

4.5. Example usage of vPoller 17

http://unix-heaven.org/node/111
http://unix-heaven.org/node/114
http://unix-heaven.org/node/116

vPoller Documentation, Release 0.3.7-dev

4.5.4 VirtualMachine examples

An example command to discover all VirtualMachine managed objects from your vSphere environment:

$ vpoller-client --method vm.discover --vsphere-host vc01.example.org

Another example showing how to get the runtime.powerState property of a Virtual Machine:

$ vpoller-client --method vm.get --vsphere-host vc01.example.org \
--name vm01.example.org --properties runtime.powerState

This is how you could discover all disks in a Virtual Machine. Note, that this method requires that you have VMware
Tools installed and running on the target Virtual Machine:

$ vpoller-client --method vm.disk.discover --vsphere-host vc01.example.org \
--name vm01.example.org

If you want to get information about a disk in a Virtual Machine you could use the vm.disk.get vPoller method.
This is how to get the freeSpace property for a Virtual Machine disk:

$ vpoller-client --method vm.disk.get --vsphere-host vc01.example.org \
--name vm01.example.org --properties freeSpace --key /var

In order to find out the host on which a specific Virtual Machine is running on you could use the vm.host.get
vPoller method:

$ vpoller-client --method vm.host.get --vsphere-host vc01.example.org \
--name vm01.example.org

Using the vm.process.get vPoller method we can get a list of all processes running in a Virtual Machine. Note,
that we need to supply a username and password when using the vm.process.get method, which are used for
authentication in the guest system.

$ vpoller-client --method vm.process.get --vsphere-host vc01.example.org \
--name vm01.example.org --properties name,owner,pid,cmdLine \
--guest-username root --guest-password p4ssw0rd

Note: The above example command uses the root user for authentication in the guest system. It is recommended
that you use a user with restricted privileges when using the vm.process.get vPoller method if security is a
concern.

4.5.5 Datastore examples

Here is an example command which will discover all Datastore managed objects from your vSphere environment:

$ vpoller-client --method datastore.discover --vsphere-host vc01.example.org

This example command below would return the summary.capacity property for a specific Datastore object.

$ vpoller-client --method datastore.get --vsphere-host vc01.example.org \
-name ds:///vmfs/volumes/5190e2a7-d2b7c58e-b1e2-90b11c29079d/ \
--properties summary.capacity

This example command will give you all hosts, which are using a specific Datastore.

$ vpoller-client --method datastore.host.get --vsphere-host vc01.example.org \
--name ds:///vmfs/volumes/5190e2a7-d2b7c58e-b1e2-90b11c29079d/

18 Chapter 4. Contents

vPoller Documentation, Release 0.3.7-dev

4.5.6 Viewing established Sessions

vPoller can also be used for viewing the established sessions to your vSphere hosts.

Note: Viewing vSphere sessions by unauthorized parties may be considered as a security hole, as it may provide an
attacker with information such as Session IDs, which could be used for spoofing a user’s session.

If security is a concern make sure that your vSphere Agents are configured to use an account with restricted set
of privileges, which cannot view the established vSphere sessions.

Here is an example command that will return the established sessions for your vSphere host:

$ vpoller-client --method session.get --vsphere-host vc01.example.org

4.6 Using the API

In this document we will see some examples on how to use the vPoller API.

You can use these examples for connecting your project to vPoller and send task requests for processing.

4.6.1 Sending task requests for processing

Connecting your Python project to vPoller is easy.

If you only need to be able to talk to vPoller and send task requests then using the VPollerClient class is the way
to go.

The VPollerClient sends task requests to the vPoller Proxy, which distributes the task requests to the
vPoller Workers.

Here is how you can send task requests from your Python project to vPoller for processing.

>>> from vpoller.client import VPollerClient
>>> msg = {’method’: ’vm.discover’, ’hostname’: ’vc01.example.org’}
>>> client = VPollerClient(endpoint=’tcp://localhost:10123’)
>>> result = client.run(msg)
>>> print result

The above example code will send a task request for discovering all Virtual Machine managed objects from the
vc01.example.org vSphere host.

And here is what the above example code does:

1. Imports the VPollerClient class from the vpoller.client module

2. Creates a message that will be sent to the vPoller Proxy endpoint. The message contains information such
as the method to be processed, the vSphere hostname, and any additional details required for processing the
task request.

3. We instantiate a VPollerClient object and set the endpoint to which the client will connect and send the
task request for processing.

4. Using the run() method of a VPollerClient instance we send the task request over the wire and wait for
response.

The VPollerClient class comes with builtin mechanism for automatic retry if it doesn’t receive a response after
some period of time.

4.6. Using the API 19

vPoller Documentation, Release 0.3.7-dev

In order to control the retry and timeout settings of a VPollerClient object you can instantiate a client object
this way:

>>> client = VPollerClient(
... endpoint=’tcp://localhost:10123’,
... retries=1,
... timeout=1000
...)

Note, that the timeout argument used above is in milliseconds.

Here is another example which would get the runtime.powerState property for a specific Virtual Machine:

>>> import json
>>> from vpoller.client import VPollerClient
>>> msg = {
... ’method’: ’vm.get’,
... ’hostname’: ’vc01.example.org’,
... ’name’: ’vm01.example.org’,
... ’properties’: [’name’, ’runtime.powerState’]
... }
>>> client = VPollerClient(endpoint=’tcp://localhost:10123’)
>>> result = client.run(msg)
>>> print json.dumps(result, indent=4)
{

"msg": "Successfully retrieved object properties",
"result": [

{
"runtime.powerState": "poweredOn",
"name": "vm01.example.org"

}
],
"success": 0

}

As you can see we have successfully retrieved the runtime.powerState property for our Virtual Machine, which
shows that our Virtual Machine is powered on.

For a full list of supported vPoller methods which you can use, please refer to the Supported methods by vPoller
documentation.

You are also advised to check the vpoller.agent module, which is pretty well documented and provides information
about each vPoller method and the expected message request in order to begin processing the task.

4.6.2 Executing vPoller tasks locally

Using the VPollerClient class as we’ve seen in the previous section of this document sends task requests to the
vPoller Proxy, which distributes the tasks to any connected vPoller Worker.

This was a remote operation, where a client simply sends a task request and waits for a response.

You could also use vPoller in order to execute tasks locally, which means that no task is send over the wire and all the
hard work is done on the local system.

Here is an example of interfacing with the vSphere Agents, which provides us with an interface to execute vPoller
tasks locally.

The example below is equivalent to the examples in the previous section, except for one thing - it will be executed
locally on the system running this code, and it will not be processed by a remote worker.

20 Chapter 4. Contents

https://github.com/dnaeon/py-vpoller/blob/master/src/vpoller/agent.py

vPoller Documentation, Release 0.3.7-dev

>>> from vpoller.agent import VSphereAgent
>>> agent = VSphereAgent(
... user=’root’,
... pwd=’p4ssw0rd’,
... host=’vc01.example.org’
...)
>>> agent.connect()
>>> result = agent.vm_discover(msg={})
>>> print result

4.6.3 Interfacing with vPoller from other languages

Connecting to vPoller from other languages is easy as well.

vPoller uses the ZeroMQ messaging library as the communication layer, so in theory every language that comes with
ZeroMQ bindings should be able to interface with vPoller.

You can find below a simple example of using Ruby for sending a task request to vPoller:

#!/usr/bin/env ruby

require ’json’
require ’rubygems’
require ’ffi-rzmq’

Message we send to vPoller
msg = {:method => "vm.discover", :hostname => "vc01.example.org"}

Create the ZeroMQ context and socket
context = ZMQ::Context.new(1)
socket = context.socket(ZMQ::REQ)

puts "Connecting to vPoller ..."
socket.connect("tcp://localhost:10123")

puts "Sending task request to vPoller ..."
socket.send_string(msg.to_json)

result = ’’
socket.recv_string(result)

puts "Received reply from vPoller: #{result}"

You might also want to check the vpoller.client module for example code that you can use in order to implement a
VPollerClient class in your language of choice.

4.7 vPoller Integration With Zabbix

One of the nice things about vPoller is that it can be easily integrated with other systems.

In this documentation we will see how we can integrate vPoller with Zabbix in order to start monitoring our VMware
vSphere environment.

Note: This document is about VMware monitoring with vPoller and Zabbix, and NOT about VMware monitoring
with stock Zabbix.

4.7. vPoller Integration With Zabbix 21

http://zeromq.org/
https://www.ruby-lang.org/en/
https://github.com/dnaeon/py-vpoller/blob/master/src/vpoller/client.py
http://www.zabbix.com/

vPoller Documentation, Release 0.3.7-dev

If you are looking for VMware monitoring with stock Zabbix, please refer to the official Zabbix documentation.

4.7.1 Why use vPoller with Zabbix and not just use stock Zabbix for VMware moni-
toring?

There are many things that can be put here describing the reasons and motivation why you might prefer having vPoller
with Zabbix integration instead of stock Zabbix, but eventually this would end up being one long (and probably boring)
story to write and tell.

You can read this post here, which outlines some very good reasons why you might want to have vPoller with Zabbix
instead of stock Zabbix when it comes to VMware vSphere monitoring.

4.7.2 Prerequisites

This documentation assumes that you already have Zabbix installed and configured.

Next thing you need to make sure is that you have vPoller installed, configured and already running.

If you haven’t installed and configured vPoller yet, please refer to the Installation of vPoller and Configuration of
vPoller documentations first.

4.7.3 Enabling the vPoller Helpers for Zabbix

In order to be able to integrate vPoller with Zabbix we need to enable some of the vPoller helpers first.

Make sure that these vPoller helpers are enabled in your vPoller Workers:

• vpoller.helpers.zabbix

• vpoller.helpers.czabbix

For more information about how to enable the helpers in your vPoller Workers, please refer to the vPoller
Helpers documentation.

4.7.4 Importing the vPoller templates in Zabbix

You can grab the latest vPoller templates for Zabbix from the Github repo of vPoller.

In the vPoller templates for Zabbix directory you will find two directories:

• vpoller-templates-externalchecks - contains legacy templates to be used only with Zabbix external scripts

• vpoller-templates-native - contains the templates with native vPoller support for Zabbix. It is recommended that
you always use the native vPoller support for Zabbix.

Once you import the templates you should see the newly imported vPoller templates.

22 Chapter 4. Contents

https://www.zabbix.com/documentation/2.2/manual/vm_monitoring
http://unix-heaven.org/node/114
https://github.com/dnaeon/py-vpoller/tree/master/src/zabbix/templates
https://github.com/dnaeon/py-vpoller/tree/master/src/zabbix/templates

vPoller Documentation, Release 0.3.7-dev

4.7.5 Native vPoller support for Zabbix

Native vPoller support for Zabbix makes it possible for Zabbix to talk natively to vPoller via a Zabbix loadable module

Native vPoller support for Zabbix is available only for Zabbix release versions 2.2.x or above, as loadable modules in
Zabbix were introduced since the 2.2.x release of Zabbix.

Now, let’s see how to build, install and configure the vPoller loadable module for Zabbix.

First, make sure that you have the ZeroMQ 4.x library installed as the vPoller loadable module for Zabbix is linked
against it.

Here is how to install the ZeroMQ 4.x library on your system from source:

$ git clone https://github.com/zeromq/zeromq4-x.git
$ cd zeromq4-x
$./autogen.sh
$./configure
$ make && sudo make install && make clean
$ sudo ldconfig

Next thing you need to do is get the Zabbix source package for your Zabbix release from the Zabbix Download page.
We need the source package of Zabbix in order to build the vPoller loadable module.

Get the source package for your Zabbix release. For instance if you are running Zabbix version 2.2.5 you should
download the source package for version 2.2.5 of Zabbix.

In the example commands below we are using the source package for Zabbix version 2.2.5.

$ tar zxvf zabbix-2.2.5.tar.gz
$ cd zabbix-2.2.5
$./configure

The next step we need to do is to grab the vPoller loadable module for Zabbix from the Github repo of vPoller and
place the module in the zabbix-2.2.5/src/modules directory where you have unpacked the Zabbix source
package.

$ cp -a py-vpoller/src/zabbix/vpoller-module zabbix-2.2.5/src/modules

Building the vPoller module for Zabbix is now easy.

$ cd zabbix-2.2.5/src/modules/vpoller-module
$ make

Running the make(1) command will create the shared library vpoller.so, which can now be loaded by your
Zabbix Server, Proxy and Agents.

Let’s now load the vpoller.so module in the Zabbix Server during startup. In order to load the module you need
to edit your zabbix_server.conf file and update the LoadModulePath and LoadModule configuration
options. Below is an example snippet from the zabbix_server.conf file, which loads the vpoller.somodule.

####### LOADABLE MODULES #######

Option: LoadModulePath
Full path to location of server modules.
Default depends on compilation options.
#
Mandatory: no
Default:
LoadModulePath=/usr/local/lib/zabbix

4.7. vPoller Integration With Zabbix 23

https://www.zabbix.com/documentation/2.2/manual/config/items/loadablemodules
https://github.com/zeromq/zeromq4-x
https://github.com/zeromq/zeromq4-x
http://www.zabbix.com/download.php
https://github.com/dnaeon/py-vpoller/tree/master/src/zabbix/vpoller-module
https://github.com/dnaeon/py-vpoller

vPoller Documentation, Release 0.3.7-dev

Option: LoadModule
Module to load at server startup. Modules are used to extend functionality of the server.
Format: LoadModule=<module.so>
The modules must be located in directory specified by LoadModulePath.
It is allowed to include multiple LoadModule parameters.
#
Mandatory: no
Default:
LoadModule=vpoller.so

Make sure that you copy the vpoller.so module, which you’ve built to your LoadModulePath directory.

$ sudo cp zabbix-2.2.5/src/modules/vpoller-module/vpoller.so /usr/local/lib/zabbix

Once ready with the configuration changes make sure to restart any service for which you’ve just updated the config
file.

You can verify that the vpoller.so module has been successfully loaded by inspecting your Zabbix logs. In the
log snippet below you can see that our Zabbix Server has successfully loaded the vpoller.so module.

13352:20140910:080628.011 Starting Zabbix Server. Zabbix 2.2.5 (revision 47411).
13352:20140910:080628.012 ****** Enabled features ******
13352:20140910:080628.012 SNMP monitoring: YES
13352:20140910:080628.012 IPMI monitoring: YES
13352:20140910:080628.012 WEB monitoring: YES
13352:20140910:080628.012 VMware monitoring: YES
13352:20140910:080628.012 Jabber notifications: YES
13352:20140910:080628.012 Ez Texting notifications: YES
13352:20140910:080628.012 ODBC: YES
13352:20140910:080628.012 SSH2 support: YES
13352:20140910:080628.012 IPv6 support: YES
13352:20140910:080628.012 ******************************
13352:20140910:080628.012 using configuration file: /etc/zabbix/zabbix_server.conf
13352:20140910:080628.013 Loading vPoller module configuration file /etc/zabbix/vpoller_module.conf
13352:20140910:080628.015 loaded modules: vpoller.so

The vPoller loadable module for Zabbix can use an optional configuration file which allows you to manage some of
the vPoller settings, such as the task timeout, retries and endpoint of the vPoller Proxy to which task requests are
being sent.

The configuration of the vpoller.so module resides in the /etc/zabbix/vpoller_module.conf file and
you can find a sample configuration file in the vPoller loadable module for Zabbix directory from the Github repo.

4.7.6 The Zabbix vPoller Key

Once loaded the vPoller module for Zabbix exposes a single key of type Simple check that can be used by your
Zabbix items and is called vpoller[*].

The vpoller[*] Zabbix key has the following form:

vpoller[method, hostname, name, properties, <key>, <username>, <password>]

And the parameters that vpoller[*] key expects are these.

24 Chapter 4. Contents

https://github.com/dnaeon/py-vpoller/tree/master/src/zabbix/vpoller-module

vPoller Documentation, Release 0.3.7-dev

Parameter Description Required
method vPoller method to be processed True
hostname VMware vSphere server hostname True
name Name of the vSphere object (e.g. VM name, ESXi name) True
properties vSphere object properties to be collected by vPoller True
<key> Additional information to be passed to vPoller False
<username> Username to use when logging into the guest system False
<password> Password to use when logging into the guest system False

Note that some of the above parameters are mandatory and some are optional depending on what vPoller method you
are requesting to be processed.

If your Zabbix Agents are also loading the vpoller.so module you can use the zabbix_get(8) tool from the
command-line in order to send task requests to vPoller.

Here is one example that uses zabbix_get(8) in order check the power state of VM using the vpoller[*] key.

$ zabbix_get -s 127.0.0.1 -p 10050 -k "vpoller[vm.get, vc01.example.org, ns01.example.org, runtime.powerState]"
"poweredOn"

4.7.7 Setting up vPoller externalscripts for Zabbix

Note: This section of the documentation provides instructions how to install the vPoller externalscripts in
Zabbix.

It is recommended that you always use the native vPoller support for Zabbix when integrating vPoller
with Zabbix, and use externalscripts only if you cannot have the native vPoller support for Zabbix, e.g. you
are running an older Zabbix release which doesn’t support loadable modules or the loadable module is not available
for your platform.

Get the vpoller-zabbix and cvpoller-zabbix wrapper scripts from the links below and place them in your
Zabbix externalscripts directory:

• https://github.com/dnaeon/py-vpoller/blob/master/src/zabbix/externalscripts/vpoller-zabbix

• https://github.com/dnaeon/py-vpoller/blob/master/src/zabbix/externalscripts/cvpoller-zabbix

You can also find user-contributed vpoller-zabbix and cvpoller-zabbix wrapper scripts, which come with
more features and safety checks at the links below:

• https://github.com/dnaeon/py-vpoller/blob/master/contrib/zabbix/externalscripts/vpoller-zabbix

• https://github.com/dnaeon/py-vpoller/blob/master/contrib/zabbix/externalscripts/cvpoller-zabbix

Using any of these wrapper scripts should be fine.

Place the vpoller-zabbix and cvpoller-zabbix wrapper scripts into your Zabbix externalscripts
directory and make sure they are executable as well:

$ sudo chmod 0755 $externalscripts/vpoller-zabbix $externalscripts/cvpoller-zabbix

4.7.8 Monitoring your VMware environment with vPoller and Zabbix

Time to start monitoring our VMware vSphere environment with vPoller and Zabbix. Let’s go ahead and add a
VMware vCenter server and get some data out of it.

4.7. vPoller Integration With Zabbix 25

https://github.com/dnaeon/py-vpoller/blob/master/src/zabbix/externalscripts/vpoller-zabbix
https://github.com/dnaeon/py-vpoller/blob/master/src/zabbix/externalscripts/cvpoller-zabbix
https://github.com/dnaeon/py-vpoller/blob/master/contrib/zabbix/externalscripts/vpoller-zabbix
https://github.com/dnaeon/py-vpoller/blob/master/contrib/zabbix/externalscripts/cvpoller-zabbix

vPoller Documentation, Release 0.3.7-dev

Login to your Zabbix frontend and navigate to Configuration -> Hosts, then at the top-right corner click on
the Create host button. Fill in the hostname of the vCenter we are going to monitor and add it to a group, e.g.
vCenters in my case.

Next, click on the Templates and link the Template VMware vSphere - vPoller template if you are us-
ing vPoller with external checks support or use the Template VMware vSphere - vPoller Native tem-
plate for native vPoller support in Zabbix.

The last thing we need to do is add a Zabbix macro to our vSphere host. Navigate to the Macros tab and add the
{$VSPHERE.HOST} macro which value should be the hostname of the vSphere host you are adding to Zabbix.

Once done, click the Save button and you are ready.

Soon enough Zabbix will start sending requests to vPoller which would discover your vSphere objects (ESXi hosts,
Virtual Machines, Datastores, etc) and start monitoring them.

4.7.9 Importing vSphere objects as regular Zabbix hosts

In the previous section of this documentation we have seen how we can use Zabbix with vPoller working together in
order to perform monitoring of our VMware vSphere environment.

26 Chapter 4. Contents

vPoller Documentation, Release 0.3.7-dev

The way we did it is by using vPoller in order to discover VMware vSphere objects and then use the Zabbix Low-level
discovery protocol in order to create hosts based on the discovered data.

While Zabbix Low-level discovery is a powerful feature of Zabbix which you could use in order to automate
the process of discovering and adding hosts to your Zabbix server, it still has some limitations and disadvantages.

One disadvantage of using Zabbix LLD is that once a host is being created by a Zabbix Discovery Rule that host
becomes immutable - you cannot manually change or update anything on the host, unless these changes come from
the discovery rule or the host profile applied to the host.

You can imagine that this might be a bit of frustrating when you want to group your hosts in a better way for example,
which obviously you cannot do since this host is now immutable.

Linking additional templates to a discovered host is also not possible, which is another big issue. Now that you’ve
discovered your VMware Virtual Machines you probably wanted to link some additional templates to them, but you
will soon discover that this is not possible either.

You cannot even add more interfaces to your hosts if needed... Like mentioned earlier - your host is immutable, so that
means no changes at all after your hosts have been discovered with a Zabbix LLD rule.

So, what can we do about it?

Well, we can solve this issue! And vPoller is going to help us do that! :)

We are going to use the zabbix-vsphere-import tool, which can discover and import vSphere objects as regular Zabbix
hosts - that means that all vSphere objects (ESXi hosts, Virtual Machines, Datastores, etc.) which were imported by
the zabbix-vsphere-import tool would be regular Zabbix hosts, which you could update - adding the host to groups
you want, linking arbitrary templates to it, etc.

First, let’s create the config file which zabbix-vsphere-import will be using. Below is an example config file used by
zabbix-vsphere-import tool:

vsphere:

hostname: vc01.example.org

vpoller:
endpoint: tcp://localhost:10123
retries: 3
timeout: 3000

zabbix:
hostname: http://zabbix.example.org/zabbix
username: Admin
password: zabbix

vsphere_object_host:
proxy: zbx-proxy.example.org
templates:
- Template VMware vSphere Hypervisor - vPoller Native

macros:
VSPHERE.HOST: vc01.example.org

groups:
- Hypervisors

vsphere_object_vm:
templates:
- Template VMware vSphere Virtual Machine - vPoller Native

macros:
VSPHERE.HOST: vc01.example.org

groups:

4.7. vPoller Integration With Zabbix 27

https://www.zabbix.com/documentation/2.2/manual/discovery/low_level_discovery
https://www.zabbix.com/documentation/2.2/manual/discovery/low_level_discovery
https://github.com/dnaeon/py-vpoller/tree/master/src/zabbix/vsphere-import
https://github.com/dnaeon/py-vpoller/tree/master/src/zabbix/vsphere-import
https://github.com/dnaeon/py-vpoller/tree/master/src/zabbix/vsphere-import

vPoller Documentation, Release 0.3.7-dev

- Virtual Machines

vsphere_object_datastore:
templates:
- Template VMware vSphere Datastore - vPoller Native

macros:
VSPHERE.HOST: vc01.example.org

groups:
- Datastores

In the example config file above we have defined various config entries - Zabbix server, Zabbix Proxy which will be
used, vPoller settings and also templates to be linked for the various vSphere objects.

As you can see the format of the configuration file allows for flexible setup of your discovered vSphere objects.

Time to import our vSphere objects as regular Zabbix hosts. To do that simply execute the command below:

$ zabbix-vsphere-import -f zabbix-vsphere-import.yaml

Here is an example output of running the zabbix-vsphere-import tool:

$ zabbix-vsphere-import -f zabbix-vsphere-import.yaml
[2014-09-06 10:33:28,420] - INFO - Connecting to Zabbix server at http://zabbix.example.org/zabbix
[2014-09-06 10:33:28,537] - INFO - [vSphere ClusterComputeResource] Importing objects to Zabbix
[2014-09-06 10:33:28,814] - INFO - [vSphere ClusterComputeResource] Number of objects to be imported: 1
[2014-09-06 10:33:28,814] - INFO - [vSphere ClusterComputeResource] Creating Zabbix host group ’cluster01’
[2014-09-06 10:33:28,904] - INFO - [vSphere ClusterComputeResource] Import of objects completed
[2014-09-06 10:33:28,904] - INFO - [vSphere HostSystem] Importing objects to Zabbix
[2014-09-06 10:33:29,122] - INFO - [vSphere HostSystem] Number of objects to be imported: 2
[2014-09-06 10:33:29,289] - INFO - [vSphere HostSystem] Creating Zabbix host ’esxi01.example.org’
[2014-09-06 10:33:30,204] - INFO - [vSphere HostSystem] Creating Zabbix host ’esxi02.example.org’
[2014-09-06 10:33:30,658] - INFO - [vSphere HostSystem] Import of objects completed
[2014-09-06 10:33:30,658] - INFO - [vSphere VirtualMachine] Importing objects to Zabbix
[2014-09-06 10:33:30,775] - INFO - [vSphere VirtualMachine] Number of objects to be imported: 9
[2014-09-06 10:33:30,935] - WARNING - Unable to find Zabbix host group ’Virtual Machines’
[2014-09-06 10:33:30,936] - INFO - Creating Zabbix host group ’Virtual Machines’
[2014-09-06 10:33:33,965] - INFO - [vSphere VirtualMachine] Creating Zabbix host ’ubuntu-14.04-dev’
[2014-09-06 10:33:34,956] - INFO - [vSphere VirtualMachine] Creating Zabbix host ’centos-6.5-amd64’
[2014-09-06 10:33:35,945] - INFO - [vSphere VirtualMachine] Creating Zabbix host ’sof-vc0-mnik’
[2014-09-06 10:33:36,441] - INFO - [vSphere VirtualMachine] Creating Zabbix host ’test-vm-01’
[2014-09-06 10:33:36,934] - INFO - [vSphere VirtualMachine] Creating Zabbix host ’sof-dev-d7-mnik’
[2014-09-06 10:33:37,432] - INFO - [vSphere VirtualMachine] Creating Zabbix host ’ubuntu-12.04-desktop’
[2014-09-06 10:33:43,430] - INFO - [vSphere VirtualMachine] Creating Zabbix host ’zabbix-vm-2’
[2014-09-06 10:33:43,929] - INFO - [vSphere VirtualMachine] Creating Zabbix host ’zabbix-vm-1’
[2014-09-06 10:33:44,432] - INFO - [vSphere VirtualMachine] Creating Zabbix host ’VMware vCenter Server Appliance’
[2014-09-06 10:33:44,937] - INFO - [vSphere VirtualMachine] Import of objects completed
[2014-09-06 10:33:44,937] - INFO - [vSphere Datastore] Importing objects to Zabbix
[2014-09-06 10:33:45,046] - INFO - [vSphere Datastore] Number of objects to be imported: 1
[2014-09-06 10:33:45,339] - INFO - [vSphere Datastore] Creating host ’ds:///vmfs/volumes/5190e2a7-d2b7c58e-b1e2-90b11c29079d/’
[2014-09-06 10:33:45,607] - INFO - [vSphere Datastore] Import of objects completed

Generally you would want to run the import perhaps once an hour (e.g. from cron(8)), so that your Zabbix server
is in sync with your vSphere environment.

If you are importing your vSphere objects in Zabbix using the zabbix-vsphere-import tool make sure to disable
any Zabbix LLD discovery rules in order to avoid any conflicts between them.

28 Chapter 4. Contents

https://github.com/dnaeon/py-vpoller/tree/master/src/zabbix/vsphere-import

vPoller Documentation, Release 0.3.7-dev

4.7.10 Agent-less process monitoring in Virtual Machines

Another cool feature of vPoller is the ability to perform process monitoring inside VMware Virtual Machines without
the need of having Zabbix Agents (or any other software) installed and running on your systems.

This can be quite handy in situations where you don’t have the Zabbix Agents installed or you are not even allowed to
install any software on your Virtual Machines.

A good example is a service provider where customers request that specific process availability be monitored in Virtual
Machines, but don’t want to have any third-party software installed on the customers’ systems.

In case you are wondering how we perform the agent-less process monitoring of VMware Virtual Machines using
vPoller, you may want to check the vSphere API documentation for GuestProcessManager().

Let’s see now how we can use vPoller with Zabbix integration in order to provide agent-less process monitoring for
our Virtual Machines.

First we will create a Zabbix item that will monitor the total number of processes in a Virtual Machine and then we
will see how we can monitor the availability for certain processes.

The Zabbix key that we will use for agent-less process monitoring is of type Simple check and has the following
format:

vpoller["vm.process.get", "{$VSPHERE.HOST}", "{HOST.HOST}", "cmdLine", "", username, password]

In the above Zabbix key the username and password parameters should be a valid username and password that
can login to the guest system.

On the screenshot below we are creating a new Zabbix item that will monitor the total number of processes in our
Virtual Machine.

4.7. vPoller Integration With Zabbix 29

http://pubs.vmware.com/vsphere-55/index.jsp#com.vmware.wssdk.apiref.doc/vim.vm.guest.ProcessManager.html

vPoller Documentation, Release 0.3.7-dev

The key that we’ve used for monitoring the total number of processes in our guest system is this:

vpoller["vm.process.get", "{$VSPHERE.HOST}", "{HOST.HOST}", "cmdLine", "", root, p4ssw0rd]

We can also create a trigger for our item which will go into certain state whenever the total number of processes
exceeds a certain value.

30 Chapter 4. Contents

vPoller Documentation, Release 0.3.7-dev

Now, let’s add a second item which this time will be monitoring the number of Apache processes in our Virtual
Machine.

4.7. vPoller Integration With Zabbix 31

vPoller Documentation, Release 0.3.7-dev

On the screenshot above we have used the following Zabbix key in order to monitor the number of Apache processes
in our Virtual Machine.

vpoller["vm.process.get", "{$VSPHERE.HOST}", "{HOST.HOST}", "cmdLine", "/usr/sbin/apache2", root, p4ssw0rd]

Should we want to be notified in case our process is not running we can create a trigger for our item and set the severity
level of the issue.

32 Chapter 4. Contents

vPoller Documentation, Release 0.3.7-dev

Note: It is recommended that you use a system account with restricted set of privileges when you perform agent-less
process monitoring with vPoller and Zabbix.

You may also want to consider creating a global Zabbix macro for the system account username and password and
use it in your Zabbix keys, without having the need to include the username and password in every single process-
monitoring item that you want to have.

Global macros in Zabbix can be created by navigating to Administration -> General -> Macros in your
Zabbix Dashboard.

As a final example on agent-less process monitoring with vPoller and Zabbix we will see how to query the number of
process from the command-line using the zabbix_get(8) tool.

Here’s how to query the total number of processes in a Virtual Machine from the command-line:

$ zabbix_get -s 127.0.0.1 \
-p 10050 \
-k ’vpoller[vm.process.get, vc01.example.org, vm01.example.org, cmdLine, "", root, p4ssw0rd]’

And this is how to query the number of certain processes in a Virtual Machine using zabbix_get(8):

$ zabbix_get -s 127.0.0.1 \
-p 10050 \
-k ’vpoller[vm.process.get, vc01.example.org, vm01.example.org, cmdLine, "/usr/sbin/apache2", root, p4ssw0rd]’

4.7.11 Example screenshots

Let’s see some example screenshots of Zabbix monitoring a VMware vSphere environment using vPoller.

Checking the latest data of our vCenter server in Zabbix:

4.7. vPoller Integration With Zabbix 33

vPoller Documentation, Release 0.3.7-dev

Let’s see the latest data for some of our ESXi hosts:

Another screenshot showing information about our ESXi host:

And another screenshot showing hardware related information about our ESXi host:

34 Chapter 4. Contents

vPoller Documentation, Release 0.3.7-dev

Let’s check the latest data for one of our Virtual Machines:

A screenshot showing information about the file systems in Virtual Machine:

Another screenshot showing general information about a Virtual Machine:

4.7. vPoller Integration With Zabbix 35

vPoller Documentation, Release 0.3.7-dev

And one more screenshot showing information about the memory and VMware Tools for our Virtual Machine:

4.8 Supported methods by vPoller

The table below lists the supported methods by vPoller along with description for each of them.

vPoller Method Description
about Get about information for a vSphere host
event.latest Get the latest registered event from a vSphere host
session.get Get the established vSphere sessions
perf.counter.info Get info about all supported performance counters by the vSphere host
net.discover Discover all vim.Network managed objects
net.get Get properties of a vim.Network managed object
net.host.get Get all HostSystems using a specific vim.Network

Continued on next page

36 Chapter 4. Contents

vPoller Documentation, Release 0.3.7-dev

Table 4.1 – continued from previous page
vPoller Method Description
net.vm.get Get all VirtualMachines using a specific vim.Network
datacenter.discover Discover all vim.Datacenter managed objects
datacenter.get Get properties of a vim.Datacenter managed object
datacenter.alarm.get Get all alarms for a vim.Datacenter managed object
datacenter.perf.counter.info Get info about performance counters available for vim.Datacenter object
cluster.discover Discover all vim.ClusterComputeResource managed objects
cluster.get Get properties of a vim.ClusterComputeResource managed object
cluster.alarm.get Get all alarms for a vim.ClusterComputeResource managed object
cluster.perf.counter.info Get info about performance counters available for a cluster
resource.pool.discover Discover all vim.ResourcePool managed objects
resource.pool.get Get properties of a vim.ResourcePool managed object
host.discover Discover all vim.HostSystem managed objects
host.get Get properties of a vim.HostSystem managed object
host.alarm.get Get all alarms for a vim.HostSystem managed object
host.cluster.get Get the cluster a vim.HostSystem managed object
host.vm.get Get all Virtual Machines registered on a vim.HostSystem
host.net.get Get all Networks available for a specific vim.HostSystem
host.datastore.get Get all datastores available to a vim.HostSystem
host.perf.counter.info Get info about performance counters available for a HostSystem object
vm.alarm.get Get all alarms for a vim.VirtualMachine managed object
vm.discover Discover all vim.VirtualMachine managed objects
vm.disk.discover Discover all guest disks on a vim.VirtualMachine object
vm.guest.net.get Discover all network adapters on a vim.VirtualMachine object
vm.net.get Get all Networks used by a specific vim.VirtualMachine
vm.get Get properties of a vim.VirtualMachine object
vm.datastore.get Get all datastore used by a vim.VirtualMachine object
vm.disk.get Get information about a guest disk for a vim.VirtualMachine object
vm.host.get Get the HostSystem in which a specified vim.VirtualMachine is running on
vm.process.get Get the running processes in a vim.VirtualMachine
vm.cpu.usage.percent Get the CPU usage in percentage of a Virtual Machine
vm.perf.counter.info Get info about performance counters available for a VirtualMachine object
datastore.alarm.get Get all alarms for a vim.Datastore managed object
datastore.discover Discover all vim.Datastore objects
datastore.get Get properties of a vim.Datastore object
datastore.host.get Get all HostSystem objects using a specific datastore
datastore.vm.get Get all VirtualMachine objects using a specific datastore
datastore.perf.counter.info Get info about performance counters available for a Datastore object

4.9 Terminology

vPoller Proxy ZeroMQ proxy which distributes tasks and load balances client requests. The application running
the vPoller Proxy is vpoller-proxy.

vPoller Worker Worker application which processes tasks, such as discovery and polling of vSphere object prop-
erties. The vPoller Worker receives new tasks for processing from the backend endpoint of a vPoller
Proxy. The application running the vPoller Worker is vpoller-worker.

vPoller Client Client application used for sending task requests and receiving of results. The vPoller
Client sends task requests to the frontend endpoint of a vPoller Proxy. The application running the
vPoller Client is vpoller-client and vpoller-cclient, which is the client application written
in C.

4.9. Terminology 37

vPoller Documentation, Release 0.3.7-dev

vSphere Agent The vSphere Agents are the ones that take care of establishing connections to the vSphere
hosts and perform discovery and polling of vSphere objects. The vSphere Agents are running on the
vPoller Workers and a single vPoller Worker can have as many vSphere Agents as you’d like.
vSphere Agents are configured and managed by the vconnector-cli tool.

On the image below you can see how each vPoller component relates to the others.

Here is what happens when you send a client task request:

1. A vPoller Client sends a task request to the frontend endpoint of a vPoller Proxy.

2. Task request is received on the vPoller Proxy and is dispatched to any connected vPoller Workers
on the backend endpoint.

3. The task request is received on the vPoller Worker and given to a vSphere Agent which is taking care
of the requested vSphere host for processing the request through the VMware vSphere API.

4. The vSphere Agent returns any result from the operation to the vPoller Worker which in turn sends
the result through the vPoller Proxy back to the client which requested the task.

38 Chapter 4. Contents

	Contributions
	Bugs
	Getting started
	Contents
	Installation of vPoller
	Configuration of vPoller
	vPoller Services
	vPoller Helpers
	Example usage of vPoller
	Using the API
	vPoller Integration With Zabbix
	Supported methods by vPoller
	Terminology

