Voxa Documentation
Release 3.0.0

Rain Agency

Mar 25, 2021

Contents:

10

Summary

Why Voxa vs other frameworks
Features

Installation

Initial Configuration

Platforms

Using the development server
Responding to an intent event
Responding to lambda requests

Links

10.1 New Alexadeveloper.
10.2 Voxa architecture pattern MVC
10.3 Voxa Application
104 VoxaPlatforms
10.5 Models e
10.6 Viewsand Variables
10.7 Controllers
10.8 Transition e e
10.9 The voxaEvent Object.
10.10 The AlexaEvent Object
10.11 The BotFrameworkEvent Object

10.12 The GoogleAssistantEvent Object

10.13 The FacebookEvent Object
10.14 Alexa Directiveso
10.15 Google Assistant Directives oo oo
10.16 Botframework Directives
10.17 Dialogflow Platform Integrations
10.18 Alexa APIs

11

13

15

17

................... 59

10.20 Testing using ASK-CLI e e e e e e e e e e e e 94

10.21 LoginWithAmazon o o e e e e e e e e e e e e e e e 95
10.22 Google Sign-In L e e e e e e 95
10.23 The reply ObJECt o o o o it e e e e e e e e e e e 96
10.24 Request Flow o o o e 98
10.25 Gadget Controller Interface Reference oo 99
10.26 Game Engine Interface Reference e 101
1027 PIugins o o o o e e e e e e e e e 103
10.28 Debugging e e e e e e e e e e e 106
Index 109

CHAPTER 1

Summary

Voxa is an Alexa skill framework that provides a way to organize a skill into a state machine. Even the most complex
voice user interface (VUI) can be represented through the state machine and it provides the flexibility needed to both
be rigid when needed in specific states and flexible to jump around when allowing that also makes sense.

Voxa Documentation, Release 3.0.0

2 Chapter 1. Summary

CHAPTER 2

Why Voxa vs other frameworks

Voxa provides a more robust framework for building Alexa skills. It provides a design pattern that wasn’t found in
other frameworks. Critical to Voxa was providing a pluggable interface and supporting all of the latest ASK features.

Voxa Documentation, Release 3.0.0

4 Chapter 2. Why Voxa vs other frameworks

CHAPTER 3

Features

MVC Pattern

State or Intent handling (State Machine)

Easy integration with several Analytics providers
Easy to modify response file (the view)
Compatibility with all SSML features

Works with companion app cards

Supports i18n in the responses

Clean code structure with a unit testing framework
Easy error handling

Account linking support

Several Plugins

Voxa Documentation, Release 3.0.0

6 Chapter 3. Features

CHAPTER 4

Installation

Voxa is distributed via npm

$ npm install voxa —--save

Voxa Documentation, Release 3.0.0

8 Chapter 4. Installation

CHAPTER B

Initial Configuration

Instantiating a Voxa Application requires a configuration specifying your Views and Variables.

const voxa require ('voxa');
const views = require('./views'):

const variables = require('./variables');

const app = new voxa.VoxalApp ({ variables, views });

Voxa Documentation, Release 3.0.0

10 Chapter 5. Initial Configuration

CHAPTER O

Platforms

Once you have instantiated a platform is time to create a plaform application. There are platform handlers for Alexa,
Dialogflow (Google Assistant and Facebook Messenger) and Botframework (Cortana);

const alexaSkill = new voxa.AlexaPlatform(app);
const googleAction = new voxa.GoogleAssistantPlatform(app);
const facebookBot = new voxa.FacebookPlatform(app);

// botframework requires some extra configuration like the Azure Table Storage to use,
—and the Luis.ai endpoint
const storageName = config.cortana.storageName;
const tableName = config.cortana.tableName;
const storageKey = config.cortana.storageKey; // Obtain from Azure Portal
const azureTableClient = new azure.AzureTableClient (tableName, storageName,
—storageKey) ;
const tableStorage = new azure.AzureBotStorage ({ gzipData: false }, azureTableClient);
const botframeworkSkill = new voxa.BotFrameworkPlatform(app, {

storage: tableStorage,

recognizerURI: config.cortana.recognizerURI,

applicationId: config.cortana.applicationId,

applicationPassword: config.cortana.applicationPassword,

defaultLocale: 'en',
)i

11

Voxa Documentation, Release 3.0.0

12 Chapter 6. Platforms

CHAPTER /

Using the development server

The framework provides a simple builtin server that’s configured to serve all POST requests to your skill, this works
great when developing, specially when paired with ngrok

// this will start an http server listening on port 3000
alexaSkill.startServer (3000);

13

https://ngrok.com

Voxa Documentation, Release 3.0.0

14 Chapter 7. Using the development server

CHAPTER 8

Responding to an intent event

app.onlIntent ('HelpIntent', (voxaEvent) => {

return { tell: 'HelpIntent.HelpAboutSkill' };
1)

app.onlIntent ('ExitIntent', (voxaEvent) => {
return { tell: 'ExitIntent.Farewell' };
)i

15

Voxa Documentation, Release 3.0.0

16 Chapter 8. Responding to an intent event

CHAPTER 9

Responding to lambda requests

Once you have your skill configured creating a lambda handler is as simple using the alexaSkil1.lambda method

exports.handler = alexaSkill.lambda();

17

Voxa Documentation, Release 3.0.0

18 Chapter 9. Responding to lambda requests

cHAaPTER 10

Links

e search

10.1 New Alexa developer

If the skills development for alexa is a new thing for you, we have some suggestion to get you deep into this world.

10.1.1 Getting Started with the Alexa Skills

Alexa provides a set of built-in capabilities, referred to as skills. For example, Alexa’s abilities include playing music
from multiple providers, answering questions, providing weather forecasts, and querying Wikipedia.

The Alexa Skills Kit lets you teach Alexa new skills. Customers can access these new abilities by asking Alexa
questions or making requests. You can build skills that provide users with many different types of abilities. For
example, a skill might do any one of the following:

* Look up answers to specific questions (“Alexa, ask tide pooler for the high tide today in Seattle.”)
* Challenge the user with puzzles or games (“Alexa, play Jeopardy.”)

 Control lights and other devices in the home (“Alexa, turn on the living room lights.”)

* Provide audio or text content for a customer’s flash briefing (“Alexa, give me my flash briefing”)

You can see the different types of skills here to got more deep reference.

How users interact with Alexa?

With Interaction Model.

End users interact with all of Alexa’s abilities in the same way — by waking the device with the wake word (or a button
for a device such as the Amazon Tap) and asking a question or making a request.

For example, users interact with the built-in Weather service like this:

19

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/understanding-the-different-types-of-skills

Voxa Documentation, Release 3.0.0

User: Alexa, what’s the weather? Alexa: Right now in Seattle, there are cloudy skies. ..

In the context of Alexa, an interaction model is somewhat analogous to a graphical user interface in a traditional app.
Instead of clicking buttons and selecting options from dialog boxes, users make their requests and respond to questions
by voice.

Here you can see how the interaction model works

10.1.2 Amazon Developer Service Account
Amazon Web Services provides a suite of solutions that enable developers and their organizations to leverage Ama-
zon.com’s robust technology infrastructure and content via simple API calls.

The first thing you need to do is create your own Amazon Developer Account.

10.1.3 Registering an Alexa skill
Registering a new skill or ability on the Amazon Developer Portal creates a configuration containing the information
that the Alexa service needs to do the following:

* Route requests to the AWS Lambda function or web service that implements the skill, or for development
purpose you can run it locally using ngrok.

* Display information about the skill in the Amazon Alexa App. The app shows all published skills, as well as all
of your own skills currently under development.

You must register a skill before you can test it with the Service Simulator in the developer portal or an Alexa-enabled
device.

Follow these instructions to register and managing your Alexa skill.

20 Chapter 10. Links

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/understanding-how-users-interact-with-skills
https://developer.amazon.com
https://ngrok.com
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/registering-and-managing-alexa-skills-in-the-developer-portal#registering-an-alexa-skill

Voxa Documentation, Release 3.0.0

10.2 Voxa architecture pattern MVC

Variables are the
rendering engine way of
adding logic into your
views. They're
dessigned to be very
simple since most of
your logic should be in
your model or
controllers.

Amazon Alexa

Variables

Model
Models are the data structure

that holds the current state of
your application, the framework
doesn’t make many
assumptions on it and only
requires have a fromEvent method
that should initialize it based on
the alexaEvent session
attributes and a serialize method
that should return JSON.stringify
able structure to then store in
the session attributes

Views are the Voxa way
of handling replies to
the user, they're
templates of responses
that can have a context
as defined by your
variables and Model

Controller

Controllers in your
application control the
logic of your skill, they

respond to alexa
alexaEvents, external
resources, manipulate
the input and give
proper responses using
your Model, Views and
Variables.

10.3 Voxa Application

class VoxaApp (config)
Arguments

* config - Configuration for your skill, it should include Views and Variables and optionally
a model and a list of applds.

If applds is present then the framework will check every alexa event and enforce the application id to match one
of the specified application ids.

const app = new VoxaApp.pp ({ Model, variables, views, applds });

VoxaApp .execute (event, context)
The main entry point for the Skill execution

Arguments
* event — The event sent by the platform.
* context — The context of the lambda function

Returns Promise: A response resolving to a javascript object to be sent as a result to Alexa.

10.2. Voxa architecture pattern MVC 21

Voxa Documentation, Release 3.0.0

app.execute (event, context)
.then (result => callback (null, result))
.catch (callback);

VoxalApp .onState (stateName, handler)
Maps a handler to a state

Arguments
* stateName (string)— The name of the state
* handler (function/object) — The controller to handle the state
e intent (string/array)— The intents that this state will handle

Returns An object or a promise that resolves to an object that specifies a transition to another state
and/or a view to render

app.onState ('entry', |
LaunchIntent: 'launch',
'AMAZON.HelpIntent': 'help',
}) i
app.onState('launch', (voxaEvent) => {
return { tell: 'LaunchIntent.OpenResponse', to: 'die' };
}) i

Also you can use a shorthand version to define a controller. This is very useful when having a controller that
only returns a transition

voxaApp.onState ('launch',
{
flow: 'yield'
reply: 'LaunchIntent.OpenResponse',
to: 'nextState'
}
)

You can also set the intent that the controller will handle. If set, any other triggered intent will not enter into the
controller.

voxaApp.onState ("agreed?", {
to: "PurchaseAccepted"
}, "YesIntent");

voxaApp.onState ("agreed?", {
to: "TransactionCancelled"
}, ["NoIntent", "CancellIntent"]);

voxaApp.onState ("agreed?", {
to: "agreed?",
reply: "Help.ArticleExplanation",
flow: "yield"

}, "HelpIntent");

voxaApp.onState ("agreed?", {
to: "agreed?",
reply: "UnknownInput",

(continues on next page)

22

Chapter 10. Links

Voxa Documentation, Release 3.0.0

(continued from previous page)

flow: "yield"
)i

The order on how you declare your controllers matter in Voxa

You can set multiple controllers for a single state, so how do you know which code will be executed? The first
one that Voxa finds. Take this example:

voxaApp.onState ('ProcessUserRequest', (voxaEvent) => {
// Some code
return { tell: 'ThankYouResponse', to: 'die' };

b

voxaApp.onState ('ProcessUserRequest', (voxaEvent) => {

// Some other code
return { tell: 'GoodbyeResponse', to: 'die' };

)i

If the state machine goes to the ProcessUserRequest, the code running will always be the first one, so the user
will always hear the ThankYouResponse.

The only scenario where this is overwritten is when you have more than one handler for the same state, and
one of them has one or more intents defined. If the user triggers the intent that’s inside the list of one-controller
intents, Voxa will give it priority. For example, take this code:

voxaApp.onState ("agreed?", {
to: "PurchaseAccepted"
}, "YesIntent");

voxaApp.onState ("agreed?", {
to: "agreed?",
reply: "UnknownInput",
flow: "yield"
1)

voxaApp.onState ("agreed?", {
to: "TransactionCancelled"
}, ["NoIntent", "CancellIntent"]);

If the user triggers the Nolntent, and the state machine goes to the agreed? state, the user will listen to the
TransactionCancelled response, it doesn’t matter if the controller is placed above or below a controller without
defined intents, the priority will go to the controller with the defined intent.

VoxaApp .onIntent (intentName, handler)
A shortcut for definining state controllers that map directly to an intent

Arguments
e intentName (string) - The name of the intent
* handler (function/object)— The controller to handle the state

Returns An object or a promise that resolves to an object that specifies a transition to another state
and/or a view to render

app.onlIntent ('HelpIntent', (voxaEvent) => {
return { tell: 'HelpIntent.HelpAboutSkill' };

)i

10.3. Voxa Application 23

Voxa Documentation, Release 3.0.0

VoxaApp .onIntentRequest (callback[, atLast])
This is executed for all IntentRequest events, default behavior is to execute the State Machine machinery,
you generally don’t need to override this.

Arguments
* callback (function)—
e last (bool) -

Returns Promise

VoxalApp .onLaunchRequest (callback[, atLast])
Adds a callback to be executed when processing a LaunchRequest, the default behavior is to fake the alexa
event as an IntentRequest with a LaunchIntent and just defer to the onIntentRequest handlers.
You generally don’t need to override this.

VoxaApp .onBeforeStateChanged (callback[, atLast])

This is executed before entering every state, it can be used to track state changes or make changes to the alexa
event object

VoxaApp .onBeforeReplySent (callback[, atLast])
Adds a callback to be executed just before sending the reply, internally this is used to add the serialized model
and next state to the session.

It can be used to alter the reply, or for example to track the final response sent to a user in analytics.

app.onBeforeReplySent ((voxaEvent, reply) => {
const rendered = reply.write();
analytics.track (voxaEvent, rendered)

)i

VoxaApp .onAfterStateChanged (callback[, atLast])
Adds callbacks to be executed on the result of a state transition, this are called after every transition and internally
it’s used to render the transition reply using the views and variables

The callbacks get voxaEvent, reply and t ransition params, it should return the transition object

app.onAfterStateChanged((voxaEvent, reply, transition) => {
if (transition.reply === 'LaunchIntent.PlayTodayLesson') {
transition.reply = _.sample(['LaunchIntent.PlayTodayLessonl', 'LaunchIntent.
—PlayTodayLesson2']);

}

return transition;

)i

VoxaApp .onUnhandledState (callback[, atLast])
Adds a callback to be executed when a state transition fails to generate a result, this usually happens when
redirecting to a missing state or an entry call for a non configured intent, the handlers get a alexa event parameter
and should return a fransition the same as a state controller would.

VoxaApp.onSessionStarted (callback[, atLast])

Adds a callback to the onSessinStarted event, this executes for all events where voxaEvent.
session.new === true

This can be useful to track analytics

app.onSessionStarted((voxaEvent, reply) => {
analytics.trackSessionStarted (voxaEvent) ;
1)

24 Chapter 10. Links

Voxa Documentation, Release 3.0.0

VoxaApp .onRequestStarted (callback[, atLast])
Adds a callback to be executed whenever there’s a LaunchRequest, IntentRequest or a
SessionEndedRequest, this can be used to initialize your analytics or get your account linking user data.
Internally it’s used to initialize the model based on the event session

app.onRequestStarted ((voxaEvent, reply) => {
let data = ... // deserialized from the platform's session
voxaEvent . .model = this.config.Model.deserialize (data, voxaEvent);

)i

VoxaApp .onSessionEnded (callback[, atLast])
Adds a callback to the onSessionEnded event, this is called for every SessionEndedRequest or when
the skill returns a transition to a state where isTerminal === true, normally this is a transition to the
die state. You would normally use this to track analytics

VoxaApp.onSystem.ExceptionEncountered (callback[, atLast])
This handles System.ExceptionEncountered event that are sent to your skill when a response to an
AudioPlayer event causes an error

return Promise.reduce (errorHandlers, (result, errorHandler) => {
if (result) {
return result;

}

return Promise.resolve (errorHandler (voxaEvent, error));
}, null);

10.3.1 Error handlers

You can register many error handlers to be used for the different kind of errors the application could generate. They all
follow the same logic where if the first error type is not handled then the default is to be deferred to the more general
error handler that ultimately just returns a default error reply.

They’re executed sequentially and will stop when the first handler returns a reply.

VoxaApp.onError (callback[, atLast])
This is the more general handler and will catch all unhandled errors in the framework, it gets (voxaEvent,

error) parameters as arguments

app.onError ((voxaEvent, error) => {
return new Reply (voxaEvent, { tell: 'An unrecoverable error occurred.' })
.write();

)i

10.3.2 Playback Controller handlers

Handle events from the AudioPlayer interface

audioPlayerCallback (voxaEvent, reply)
All audio player middleware callbacks get a alexa event and a reply object

Arguments

* voxaEvent (AlexaEvent) — The alexa event sent by Alexa

* reply (object) — A reply to be sent as a response

10.3. Voxa Application 25

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/custom-audioplayer-interface-reference#system-exceptionencountered
https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/custom-audioplayer-interface-reference#requests

Voxa Documentation, Release 3.0.0

Returns object write Your alexa event handler should return an appropriate response according to
the event type, this generally means appending to the reply object

In the following example the alexa event handler returns a REPLACE_ENQUEUED directive to a
PlaybackNearlyFinished () event.

app['onAudioPlayer.PlaybackNearlyFinished'] ((voxaEvent, reply) => ({
const playAudio = new PlayAudio ({
behavior: "REPLACE_ALL",
offsetInMilliseconds: O,
token: "",
url: 'https://www.dl-sounds.com/wp-content/uploads/edd/2016/09/Classical-Bed3—
—preview.mp3'

1)
playAudio.writeToReply (reply);

return reply;
1)

VoxalApp.onAudioPlayer.PlaybackStarted (callback[, atLast])

VoxaApp.onAudioPlayer.PlaybackFinished (callback[, atLast])

VoxaApp.onAudioPlayer.PlaybackStopped (callback[, atLast])

VoxaApp.onAudioPlayer.PlaybackFailed (callback[, atLast])

VoxalApp.onAudioPlayer.PlaybackNearlyFinished (callback[, atLast])

VoxaApp.onPlaybackController.NextCommandIssued (callback[, atLast])

VoxaApp.onPlaybackController.PauseCommandIssued (callback[, atLast])

VoxaApp.onPlaybackController.PlayCommandIssued (callback[, atLast])

VoxalApp.onPlaybackController.PreviousCommandIssued (callback[, atLast])

10.3.3 Alexa Skill Event handlers

Handle request for the Alexa Skill Events

alexaSkillEventCallback (alexaEvent)

All the alexa skill event callbacks get a alexa event and a reply object
Arguments
* alexaEvent (AlexaEvent) — The alexa event sent by Alexa
* reply (object) — A reply to be sent as the response

Returns object reply Alexa only needs an acknowledgement that you received and processed the
event so it doesn’t need to resend the event. Just returning the reply object is enough

This is an example on how your skill can process a SkillEnabled () event.

appl'onAlexaSkillEvent.SkillEnabled'] ((alexaEvent, reply) => {
const userId = alexaEvent.user.userId;
console.log(skill was enabled for user: userId}) ;

return reply;
1)

26

Chapter 10. Links

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/skill-events-in-alexa-skills#skill-events-in-json-format

Voxa Documentation, Release 3.0.0

VoxalApp.onAlexaSkillEvent.SkillAccountLinked (callback[, atLast])

VoxaApp.onAlexaSkillEvent .SkillEnabled (callback[, atLast])

VoxaApp.onAlexaSkillEvent.SkillDisabled (callback[, atLast])

VoxalApp.onAlexaSkillEvent.SkillPermissionAccepted (callback[, atLast])

VoxaApp.onAlexaSkillEvent.SkillPermissionChanged (callback[, atLast])

10.3.4 Alexa List Event handlers

Handle request for the Alexa List Events

alexalistEventCallback (alexaEvent)

All the alexa list event callbacks get a alexa event and a reply object
Arguments
* alexaEvent (AlexaEvent)— The alexa event sent by Alexa
* reply (object) — A reply to be sent as the response

Returns object reply Alexa only needs an acknowledgement that you received and processed the
event so it doesn’t need to resend the event. Just returning the reply object is enough

This is an example on how your skill can process a ItemsCreated () event.

appl'onAlexaHouseholdListEvent.ItemsCreated'] ((alexaEvent, reply) => {
const listId = alexaEvent.request.body.listId;
const userId = alexaEvent.user.userId;
console.log(Items created for list: listId} for user ${userId});

return reply;
1)

VoxaApp.onAlexaHouseholdListEvent .ItemsCreated (callback[, atLast])

VoxaApp.onAlexaHouseholdListEvent .ItemsUpdated (callback[, atLast])

VoxaApp.onAlexaHouseholdListEvent .ItemsDeleted (callback[, atLast])

10.4 Voxa Platforms

Voxa Platforms wrap your VoxaApp and allows you to define handlers for the different supported voice platforms.

class VoxaPlatform (voxaApp, config)

Arguments
* voxaApp (VoxaApp)— The app
* config - The config
VoxaPlatform.startServer ([port])

Returns A promise that resolves to a running http.Server on the specified port number,
if no port number is specified it will try to get a port number from the PORT environment
variable or default to port 3000

This method can then be used in combination with a proxy server like ngrok or Bespoken tools proxy to
enable local development of your voice application

10.4.

Voxa Platforms 27

https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/list-events-in-alexa-skills#list-events-json
https://ngrok.com/
http://docs.bespoken.io/en/latest/commands/proxy/

Voxa Documentation, Release 3.0.0

VoxaPlatform.lambda ()

Returns A lambda handler that will call the app . execut e method

exports.handler = alexaSkill.lambda();

VoxaPlatform.lambdaHTTP ()

Returns A lambda handler to use as an AWS API Gateway ProxyEvent handler that will call the
app . execute method

’exports.handler = dialogflowAction.lambdaHTTP () ;

VoxaPlatform.azureFunction ()

Returns An azure function handler

’module.exports = cortanaSkill.azureFunction();

10.4.1 Alexa

The Alexa Platform allows you to use Voxa with Alexa

const { AlexaPlatform } = require('voxa');
const { voxaApp } = require('./app');

const alexaSkill = new AlexaPlatform(voxaApp);
exports.handler = alexaSkill.lambda();

10.4.2 Dialogflow

The GoogleAssistant and Facebook Platforms allow you to use Voxa with these 2 type of bots

const { GoogleAssistantPlatform, FacebookPlatform } = require('voxa');
const { voxaApp } = require('./app');

const googleAction = new GoogleAssistantPlatform(voxaApp);
exports.handler = googleAction.lambdaHTTP () ;

const facebookBot = new FacebookPlatform(voxaApp) ;
exports.handler = facebookBot.lambdaHTTP () ;

10.4.3 Botframework

The BotFramework Platform allows you to use Voxa with Microsoft Botframework

const { BotFrameworkPlatform } = require('voxa');

const { AzureBotStorage, AzureTableClient } = require('botbuilder-azure');
const { voxaBApp } = require('./app');

const config = require('./config');

const tableName = config.tableName;
const storageKey = config.storageKey; // Obtain from Azure Portal
const storageName = config.storageName;

(continues on next page)

28 Chapter 10. Links

Voxa Documentation, Release 3.0.0

(continued from previous page)

const azureTableClient = new AzureTableClient (tableName, storageName, storageKey);
const tableStorage = new AzureBotStorage ({ gzipData: false }, azureTableClient);

const botframeworkSkill = new BotFrameworkPlatform(voxaApp, {

})

storage: tableStorage,

recognizerURI: process.env.LuisRecognizerURI,
applicationId: process.env.MicrosoftAppId,
applicationPassword: process.env.MicrosoftAppPassword,
defaultLocale: 'en',

’

module.exports = botframeworkSkill.azureFunction();

10.5 Models

Models are the data structure that holds the current state of your application, the framework doesn’t make many
assumptions on it and only requires have a deserialize method that should initialize it based on an object of
attributes and a serialize method that should return a JSON.stringify able structure to then store in the
session attributes.

/%

EE T T

*

*

*

*
/

Copyright (c) 2018 Rain Agency <contact@rain.agency>
Author: Rain Agency <contact@rain.agency>

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

import * as _ from "lodash";
import { IBag, IVoxaEvent } from "./VoxaEvent";

export class Model {

[key: string]: any;

public static deserialize(
data: IBag,
voxakEvent: IVoxaEvent,

) : Promise<Model> | Model {
return new this(data);

(continues on next page)

10.5. Models 29

Voxa Documentation, Release 3.0.0

(continued from previous page)

public state?: string;

constructor (data: any = {}) {
_.assign(this, data);

public async serialize(): Promise<any> {
return this;

export interface IModel {
new (data?: any): Model;
deserialize(data: IBag, event: IVoxaEvent): Model | Promise<Model>;
serialize(): Promise<any>;

10.6 Views and Variables

10.6.1 Views

Views are the Voxa way of handling replies to the user, they’re templates of responses using a simple javascript DSL.
They can contain ssml and include cards.

There are 5 responses in the following snippet: LaunchIntent .OpenResponse, ExitIntent.Farewell,
HelpIntent.HelpAboutSkill, Count.Say and Count.Tell

Also, there’s a special type of view which can contain arrays of options, when Voxa finds one of those like the
LaunchIntent .OpenResponse it will select a random sample and use it as the response.

10.6.2 118N

Internationalization support is done using the i18next library, the same the Amazon Alexa Node SDK uses.

The framework takes care of selecting the correct locale on every voxa event by looking at the voxaEvent.
request.locale property.

const views = {
en: {
translaction: {
LaunchIntent: {
OpenResponse: [
'Hello! <break time="3s"/> Good {time}. Is there anything i can do to help,
—you today?',
'"Hi there! <break time="3s"/> Good {time}. How may i1 be of service?',
'Good {time}, Welcome!. How can i help you?',
1
}I
ExitIntent: {
Farewell: 'Ok. For more info visit {site} site.',
}I
HelpIntent: {

(continues on next page)

30 Chapter 10. Links

http://i18next.com/

Voxa Documentation, Release 3.0.0

(continued from previous page)

HelpAboutSkill: 'For more help visit example dot com'
}y
Count: {

Say: '{count}',

Tell: '{count}',
}I

}i

10.6.3 Variables

Variables are the rendering engine way of adding logic into your views. They’re dessigned to be very simple since
most of your logic should be in your model or controllers.

A variable signature is:
variable (model, voxaEvent)
Arguments
* voxaEvent — The current voxa event.

Returns The value to be rendered or a promise resolving to a value to be rendered in the view.

const variables = {
site: function site (voxaEvent) {
return Promise.resolve ('example.com');

s

count: function count (voxaEvent) {
return voxaEvent.model.count;

b

locale: function locale (voxaEvent) {
return voxaEvent.locale;

}i

10.7 Controllers

Controllers in your application control the logic of your skill, they respond to alexa voxaEvents, external resources,
manipulate the input and give proper responses using your Model, Views and Variables.

States come in one of two ways, they can be an object with a transition:

app.onState ('HelpIntent', {
tell: "Help"

)i

Or they can be a function that gets a voxaEvent object:

app.onState ('launch', (voxaEvent) => {
return { tell: 'LaunchIntent.OpenResponse' };

1)

10.7. Controllers 31

Voxa Documentation, Release 3.0.0

Your state should respond with a fransition. The transition is a plain object that can take directives, to and flow
keys.

onState also takes a third parameter which can be used to limit which intents a controller can respond, for example

app.onState ('shouldSendEmail?', {
sayp: "All right! An email has been sent to your inbox",
flowp: "terminate"

}, "YesIntent");

app.onState ('shouldSendEmail?', {
sayp: "No problem, is there anything else i can help you with?",
flowp: "yield"

}, "NoIntent");

10.7.1 The onIntent helper

For the simple pattern of having a controller respond to an specific intent the framework provides the onIntent
helper

app.onIntent ('LaunchIntent', (voxaEvent) => {
return { tell: 'LaunchIntent.OpenResponse' };
1)

If you receive a Display.ElementSelected type request, you could use the same approach for intents and state. Voxa
receives this type of request and turns it into DisplayElementSelected Intent

app.onIntent ('DisplayElementSelected', (voxaEvent) => ({
return { tell: 'DisplayElementSelected.OpenResponse' };
1)

Keep in mind that controllers created with onIntent won’t accept transitions from other states with a different intent

10.8 Transition

A transition is the result of controller execution, it’s a simple object with keys that control the flow of execution in
your skill.

10.8.1 to

The to key should be the name of a state in your state machine, when present it indicates to the framework that it
should move to a new state. If absent it’s assumed that the framework should move to the die state.

return { to: 'stateName' };

10.8.2 directives

Directives is an array of directive objects that implement the IDirect ive interface, they can make modifications to
the reply object directly

32 Chapter 10. Links

Voxa Documentation, Release 3.0.0

const { PlayAudio } = require('voxa').alexa;
return
directives: [new PlayAudio (url, token)],

}i

10.8.3 flow

The £1ow key can take one of three values:

continue: This is the default value if the flow key is not present, it merely continues the state machine execution
with an internal transition, it keeps building the response until a controller returns a yield or a terminate
flow.

yield: This stops the state machine and returns the current response to the user without terminating the session.

terminate: This stops the state machine and returns the current response to the user, it closes the session.

10.8.4 say

Renders a view and adds it as SSML to the response

10.8.5 sayp

Adds the passed value as SSML to the response

10.8.6 text

Renders a view and adds it as plain text to the response

10.8.7 textp

Adds the passed value as plain text to the response

10.8.8 reprompt

Used to render a view and add the result to the response as a reprompt

10.8.9 reply

return { reply: 'LaunchIntent.OpenResponse' };

const reply = new Reply(voxaEvent, { tell: 'Hi there!' });
return { reply };

10.8. Transition 33

Voxa Documentation, Release 3.0.0

10.9 The voxaEvent Object

class VoxaEvent (event, context)

The voxaEvent object contains all the information from the Voxa event, it’s an object kept for the entire
lifecycle of the state machine transitions and as such is a perfect place for middleware to put information that
should be available on every request.

VoxaEvent . rawEvent
A plain javascript copy of the request object as received from the platform

VoxaEvent .executionContext
On AWS Lambda this object contains the context

VoxaEvent.t
The current translation function from i18next, initialized to the language of the current request

VoxaEvent .renderer
The renderer object used in the current request

VoxaEvent .platform
The currently running Voxa Platform

VoxaEvent .model
The default middleware instantiates a Mode 1 and makes it available through voxaEvent .model

VoxaEvent.intent .params
In Alexa the voxaEvent object makes intent . slots available through intent . params after aplying
a simple transformation so

’{ "slots": [{ "name": "Dish", "value": "Fried Chicken" }] }
becomes:
’{ "Dish": "Fried Chicken" }

in other platforms it does it’s best to make the intent params for each platform also available on intent.
params

VoxaEvent .user
An object that contains the userld and accessToken if available

{

"userId": "The platform specific userId",
"id": "same as userId",
"accessToken": "available if user has done account linking"

VoxaEvent .model
An instance of the Voxa App Model.

VoxaEvent.log
An instance of lambda-log

VoxaEvent . supportedInterfaces ()
Array of supported interfaces

Returns Array A string array of the platform’s supported interfaces

VoxaEvent .getUserInformation ()
Object with user personal information from the platform being used.

34

Chapter 10. Links

https://www.npmjs.com/package/lambda-log

Voxa Documentation, Release 3.0.0

// Google specific fields

// Alexa specific fields
"zipCode": "98101",
"userId": "amznl.account.K2LI23KL2LK2",

// Platforms common fields
"email": "johndoe@gmail.com",
"name": "John Doe"

"sub": 1234567890, // The unique ID of the user's Google Account

"iss": "https://accounts.google.com", // The token's issuer

"aud": "123-abc.apps.googleusercontent.com", // Client ID assigned to your,
—Actions project

"iat": 233366400, // Unix timestamp of the token's creation time

"exp": 233370000, // Unix timestamp of the token's expiration time

"emailVerified": true,

"givenName": "John",

"familyName": "Doe",

"locale": "en_US",

Returns object A object with user’s information

VoxaEvent .getUserInformationWithGoogle ()
Object with user personal information from Google. Go /ere for more information.

{

"sub": 1234567890, // The unique ID of the user's Google Account

"iss": "https://accounts.google.com", // The token's issuer

"aud": "123-abc.apps.googleusercontent.com", // Client ID assigned to your,
—Actions project

"iat": 233366400, // Unix timestamp of the token's creation time

"exp": 233370000, // Unix timestamp of the token's expiration time

"givenName": "John",

"familyName": "Doe",

"locale": "en_Us",

"email": "johndoe@gmail.com",

"name": "John Doe"

Returns object A object with user’s information

VoxaEvent .getUserInformationWithLWA ()
Object with user personal information from Amazon. Go &ere for more information.

{

"email": "Jjohndoel@gmail.com",

"name": "John Doe",

"zipCode": "98101",

"userId": "amznl.account.K2LI23KL2LK2"

Returns object A object with user’s information

10.9. The voxaEvent Object

35

Voxa Documentation, Release 3.0.0

IVoxaEvent is an interface that inherits its attributes and function to the specific platforms, for more information
about each platform’s own methods visit:

* AlexaEvent

* BotFrameworkEvent
* Dialogflow Event

* GoogleAssistantEvent

e FacebookEvent

10.10 The AlexaEvent Object

class AlexaEvent (event, lambdaContext)
The alexaEvent object contains all the information from the Voxa event, it’s an object kept for the entire
lifecycle of the state machine transitions and as such is a perfect place for middleware to put information that
should be available on every request.

AlexaEvent .AlexaEvent .token
A convenience getter to obtain the request’s token, specially when using the Display.
ElementSelected

AlexaEvent.AlexaEvent.alexa.customerContact
When a customer enables your Alexa skill, your skill can request the customer’s permission to the their
contact information, see Customer Contact Information Reference.

AlexaEvent.AlexaEvent.alexa.deviceAddress
When a customer enables your Alexa skill, your skill can obtain the customer’s permission to use address
data associated with the customer’s Alexa device, see Device Address Information Reference.

AlexaEvent.AlexaEvent.alexa.deviceSettings
Alexa customers can set their timezone, distance measuring unit, and temperature measurement unit in the
Alexa app, see Device Settings Reference.

AlexaEvent.AlexaEvent.alexa.isp
The in-skill purchasing feature enables you to sell premium content such as game features and interactive
stories for use in skills with a custom interaction model, see In-Skill Purchases Reference.

AlexaEvent.AlexaEvent.alexa.lists
Alexa customers have access to two default lists: Alexa to-do and Alexa shopping. In addition, Alexa
customer can create and manage custom lists in a skill that supports that, see Alexa Shopping and To-Do
Lists Reference.

10.11 The BotFrameworkEvent Object

10.12 The GoogleAssistantEvent Object

class GoogleAssistantEvent (event, lambdaContext)
The googleAssistantEvent object contains all the information from the Voxa event, it’s an object kept
for the entire lifecycle of the state machine transitions and as such is a perfect place for middleware to put
information that should be available on every request.

GoogleAssistantEvent.GoogleAssistantEvent.google.conv
The conversation instance that contains the raw input sent by Dialogflow

36 Chapter 10. Links

https://developer.amazon.com/docs/in-skill-purchase/isp-overview.html
https://developer.amazon.com/docs/custom-skills/access-the-alexa-shopping-and-to-do-lists.html

Voxa Documentation, Release 3.0.0

10.13 The FacebookEvent Object

class FacebookEvent (event, lambdaContext)
The facebookEvent object contains all the information from the Voxa event for the Facebook Messenger
platform, just like Google Assistant events. Additionally you can access the facebook property to send Actions
to the Chatbot conversation:

const { FacebookEvent, FacebookPlatform, VoxaApp } = require('voxa');

const config = {
pageAccessToken: 'EAAaKuJF183EBAAPXV......... ',
}i
const app = new VoxaApp ({ views, variables });
const facebookBot = new FacebookPlatform(app, config);

app.onIntent ("LaunchIntent", async (voxaEvent: FacebookEvent) => {
await voxaEvent.facebook.sendTypingOffAction();
await voxaEvent.facebook.sendMarkSeenAction();
await voxaEvent.facebook.sendTypingOnAction () ;

const info = await voxaEvent.getUserInformation (FACEBOOK_USER_FIELDS.ALL);

voxaEvent .model.info = info;
return {
flow: "terminate",
text: "Facebook.User.FulllInfo",
to: "die",
}i
}) i

const reply = await facebookBot.execute (event);

The facebookEvent object also gives you the necessary helpers to implement the Handover Protocol, very useful
when you want to pass the conversation control from your bot to a person who manages your Facebook Page. The
most common example is when user sends to your bot the following text: I want to talk to a representative. This means
your bot is not understanding what user is saying, or the bot can’t find what the user is looking for. So, it’s necessary
a person to talk directly to the user. You can pass the control to your Page Inbox like this:

const { FacebookEvent, FacebookPlatform, VoxaApp } = require('voxa');

const config = {
pageAccessToken: 'EAAaKUJF183EBAAPXV. ',
bi
const app = new VoxalApp ({ views, variables });
const facebookBot = new FacebookPlatform(app, config);

app.onlIntent ("PassControlIntent", async (voxaEvent: FacebookEvent) => ({
await voxaEvent.facebook.passThreadControlToPageInbox () ;

return {
flow: "terminate",
text: "Facebook.RepresentativeWillGetInTouch.text",
to: "die",

}i

1)

Also, if the app you are working on is not the Primary Receiver, you can request control of the conversation like this:

10.13. The FacebookEvent Object 37

https://developers.facebook.com/docs/messenger-platform/send-messages/sender-actions

Voxa Documentation, Release 3.0.0

const { FacebookEvent, FacebookPlatform, VoxaApp } = require('voxa');
const config = {
pageAccessToken: 'EAAaKUJF183EBAAPXV......... ',

}i
const app = new VoxaApp ({ views, variables });
const facebookBot = new FacebookPlatform(app, config);

app.onlIntent ("CustomIntent", async (voxaEvent: FacebookEvent) => {
await voxaEvent.facebook.requestThreadControl () ;

return {
flow: "terminate",
text: "Facebook.ControlRequested.text",
to: "die",

}i

}) i

Finally, if you detect the secondary receiver is not responding to the user, you can make your bot (Primary Receiver)
take the control of the conversation like this:

const { FacebookEvent, FacebookPlatform, VoxaApp } = require('voxa');

const config = {
pageAccessToken: 'EAAaKUJF183EBAADPXV......... ',
bi
const app = new VoxaApp ({ views, variables });
const facebookBot = new FacebookPlatform(app, config);

app.onlIntent ("CustomIntent", async (voxaEvent: FacebookEvent) => {
await voxaEvent.facebook.takeThreadControl () ;

return
flow: "terminate",
text: "Facebook.ControlTaken.text",
to: "die",

bi
P

10.14 Alexa Directives

10.14.1 HomeCard

Alexa Documentation

Interactions between a user and an Alexa device can include home cards displayed in the Amazon Alexa App, the
companion app available for Fire OS, Android, i0S, and desktop web browsers. These are graphical cards that describe
or enhance the voice interaction. A custom skill can include these cards in its responses.

In Voxa you can send cards using a view or returning a Card like structure directly from your controller

const views = {
"de-DE": {
translation: {
Card: {

(continues on next page)

38 Chapter 10. Links

https://developer.amazon.com/docs/custom-skills/include-a-card-in-your-skills-response.html

Voxa Documentation, Release 3.0.0

(continued from previous page)

image: {
largeImageUrl: "https://example.com/large.jpg",
smallImageUrl: "https://example.com/small.jpg",

}I

title: "Title",

type: "Standard",

}I
}I
}i

app.onState ('someState', () => {
return {
alexaCard: 'Card',

i

i

app.onState ('someState', () => {
return {
alexaCard: {
image: {

largeImageUrl: "https://example.com/large.jpg",
smallImageUrl: "https://example.com/small.jpg",
}’
title: "Title",
type: "Standard",
}’
i

10.14.2 AccountLinkingCard

Alexa Documentation

An account linking card is sent with the alexaAccountLinkingCard key in your controller, it requires no parameters.

app.onState ('someState', () => {
return {
alexaAccountLinkingCard: null,

}i

1)

10.14.3 RenderTemplate

Alexa Documentation

Voxa provides a DisplayTemplate builder that can be used with the alexaRenderTemplate controller key to create
Display templates for the echo show and echo spot.

const voxa = require('voxa');
const { DisplayTemplate } = voxa;

app.onState ('someState', () => {

(continues on next page)

10.14. Alexa Directives 39

https://developer.amazon.com/docs/custom-skills/include-a-card-in-your-skills-response.html#define-a-card-for-use-with-account-linking
https://developer.amazon.com/docs/custom-skills/display-interface-reference.html

Voxa Documentation, Release 3.0.0

(continued from previous page)

const template = new DisplayTemplate ("BodyTemplatel™)
.setToken ("token™)
.setTitle("This is the title")
.setTextContent ("This is the text content", "secondaryText", "tertiaryText")
.setBackgroundImage ("http://example.com/image. jpg", "Image Description")
.setBackButton ("HIDDEN") ;

return {

alexaRenderTemplate: template,
}i
1)

10.14.4 Alexa Presentation Language (APL) Templates

Alexa Documentation

An APL Template is sent with the alexaAPLTemplate key in your controller. You can pass the directive object directly
or a view name with the directive object.

One important thing to know is that is you sent a Render Template and a APL Template in the same response but the
APL Template will be the one being rendered if the device supports it; if not, the Render Template will be one being
rendered.

// variables. js

exports.MyAPLTemplate = (voxaEvent) => {
// Do something with the voxaEvent, or not...

return {

datasources: {},

document: {},

token: "SkillTemplateToken",

type: "Alexa.Presentation.APL.RenderDocument",
}i
1)

// views.js

const views = {
"en-US": {
translation: {
MyAPLTemplate: "{MyAPLTemplate}"
}I
}i
bi

// state.js

app.onState ('someState', () => {
return {
alexaAPLTemplate: "MyAPLTemplate",
}i
)i

// Or you can do it directly...

(continues on next page)

40 Chapter 10. Links

https://developer.amazon.com/docs/alexa-presentation-language/apl-overview.html

Voxa Documentation, Release 3.0.0

(continued from previous page)

app.onState ('someState', () => {
return {
alexaAPLTemplate: {
datasources: {},
document: {},
token: "SkillTemplateToken",
type: "Alexa.Presentation.APL.RenderDocument",
}I
}i
}) i

10.14.5 Alexa Presentation Language (APL) Commands

Alexa Documentation

An APL Command is sent with the alexaAPLCommand key in your controller. Just like the APL Template, you can
pass the directive object directly or a view name with the directive object.

// variables. js

exports.MyAPLCommand = (voxaEvent) => {
// Do something with the voxaEvent, or not...

return {
token: "SkillTemplateToken",
type: "Alexa.Presentation.APL.ExecuteCommands";
commands: [{
type: "SpeakItem", // Karaoke type command
componentId: "someAPLComponent'";
Pl
}i
1) i

// views.js

const views = {
"en-US": {
translation: {
MyAPLCommand: "{MyAPLCommand}"
}I
}i
bi

// state. js

app.onState ('someState', () => {
return {
alexaAPLCommand: "MyAPLCommand",
bi
b

// Or you can do it directly...

app.onState ('someState', () => {

(continues on next page)

10.14. Alexa Directives 41

https://developer.amazon.com/docs/alexa-presentation-language/apl-commands.html

Voxa Documentation, Release 3.0.0

(continued from previous page)

return {
alexaAPLCommand: {
token: "SkillTemplateToken",
type: "Alexa.Presentation.APL.ExecuteCommands";
commands: [{
type: "SpeakItem", // Karaoke type command
componentId: "someAPLComponent";
1y
}l
bi
})i

Alexa Presentation Language - T (APLT) Templates

Alexa Documentation

Alexa Presentation Language is supported on devices with character displays. Use the APLT document format to send
text to these devices. The APLT document format is smaller and simpler than the APL document format supported by
devices with screens.

One important thing to know is that if you sent a Render Template and a APLT Template in the same response but the
APLT Template will be the one being rendered if the device supports it; if not, the Render Template will be one being
rendered.

// variables. js

exports.MyAPLTTemplate = (voxaEvent) => {
// Do something with the voxaEvent, or not...

return {

datasources: {},

document: {},

targetProfile: "FOUR_CHARACTER_CLOCK",

token: SkillTemplateToken,

type: "Alexa.Presentation.APLT.RenderDocument"
}i
1)

// views.js

const views = {
"en-US": {
translation: {
MyAPLTTemplate: "{MyAPLTTemplate}"
}I
bi
}i

// state.js
app.onState ('someState', () => {

return {
alexaAPLTTemplate: "MyAPLTTemplate",

(continues on next page)

42 Chapter 10. Links

https://developer.amazon.com/en-US/docs/alexa/alexa-presentation-language/apl-reference-character-displays.html

Voxa Documentation, Release 3.0.0

(continued from previous page)

bi
)

// Or you can do it directly...

app.onState ('someState', () => {
return {
alexaAPLTTemplate: {
datasources: {},
document: {},
targetProfile: "FOUR_CHARACTER_CLOCK",
token: "SkillTemplateToken",
type: "Alexa.Presentation.APLT.RenderDocument",

10.14.6 Alexa Presentation Language - T (APLT) Commands

Alexa Documentation

An APLT Command is sent with the alexaAPLTCommand key in your controller. Just like the APLT Template, you
can pass the directive object directly or a view name with the directive object.

/[variables.js

exports. MyAPLTCommand = (voxaEvent) => { // Do something with the voxaEvent, or
not. ..

return { token: “SkillTemplateToken”, type: “Alexa.Presentation. APLT.ExecuteCommands”;
commands: [{

type: “SetValue”, description:
“Changes the text property value on the ‘myTextld’ component.”,

componentld: “myTextld”, property: “text”, value: “New text value!”, delay:
3000

}]

s
/] views.js
const views = {
“en-US”: {
translation: { MyAPLTCommand: “{MyAPLTCommand}”
),

1
/] state.js
app.onState(‘someState’, () => {

10.14. Alexa Directives 43

https://developer.amazon.com/en-US/docs/alexa/alexa-presentation-language/aplt-interface.html#executecommands-directive

Voxa Documentation, Release 3.0.0

return { alexaAPLTCommand: “MyAPLTCommand”,
1

Ds

/I Or you can do it directly. . .

app.onState(‘someState’, () => {
return {

alexaAPLTCommand: { token: “SkillTemplateToken”, type:
“Alexa.Presentation. APLT.ExecuteCommands”; commands: [{

type: “SetValue”, description:
“Changes the text property value on the ‘myTextld’ component.”,

componentld: “myTextld”, property: “text”, value: “New text value!”, delay:
3000

1

D;

10.14.7 PlayAudio

Alexa Documentation

function register (app) {
app.onState ('someState', () => {
const url = 'http://example.com/example.mp3"';
const token = '{}';
const offsetInMilliseconds = 0;
const behavior = 'REPLACE_ALL';
const playAudio = new PlayAudio(url, token, offsetInMilliseconds, behavior);

return {

directives: [playAudio],
}i
)i

Add metadata for your audio

The PlayAudio directive has a fifth parameter to set metadata for an audio, just pass it when creating a PlayAudio
instance following the correct structure required by Amazon (refer to the Alexa documentation link above).

function register (app) {

app.onState ('someState', () => {
const url = 'http://example.com/example.mp3';
const token = '{}';
const offsetInMilliseconds = 0;
const behavior = 'REPLACE_ALL';
const metadata = {

title: 'title of the track to display',

(continues on next page)

44 Chapter 10. Links

https://developer.amazon.com/docs/custom-skills/audioplayer-interface-reference.html#play

Voxa Documentation, Release 3.0.0

(continued from previous page)

subtitle: 'subtitle of the track to display’',
art: {
sources: [

{
url: 'https://cdn.example.com/url-of-the-album-art-image.png'

]
}y
backgroundImage: {
sources: [

{
url: 'https://cdn.example.com/url-of-the-background-image.png'

}
}i
const playAudio = new PlayAudio (url, token, offsetInMilliseconds, behavior,
—metadata) ;

return {

directives: [playAudio],
}i
)i

10.14.8 StopAudio

Alexa Documentation

function register (app) {
app.onState ("PauseIntent”, {
alexaStopAudio: true,
reply: "SomeViewWithAPauseText",
to: "die"

b

10.14.9 Resume an Audio

Resuming an audio works using the PlayAudio directive, the only thing that need to change is the offsetInMilliseconds
to, of course, start the audio where it stopped. The offsetInMilliseconds comes from the context attribute in the raw
event coming from Alexa.

You can also use the foken to pass important information since the AudioPlayer context is outside of the skill session,
therefore you can’t access the session variables. In this example, the information of the audio is returned with the
alexaPlayAudio key from Voxa.

function register (app) {
app.onState ("playSomeAudio", () => {
const url = 'http://example.com/example.mp3"';
const token = JSON.stringify ({ url });
const offsetInMilliseconds = 0;
const behavior = 'REPLACE_ALL';

(continues on next page)

10.14. Alexa Directives 45

https://developer.amazon.com/docs/custom-skills/audioplayer-interface-reference.html#stop

Voxa Documentation, Release 3.0.0

(continued from previous page)

const metadata = {
art: {
sources: [
{
url: "http://example.com/image.png",
}I
JI
}y
backgroundImage: {
sources: [
{
url: "http://example.com/image.png",
}I
JV
}I
subtitle: "Subtitle",
title: "Title",
}i

return {
alexaPlayAudio: {
behavior,
metadata,
offsetInMilliseconds,
token
url,
}I
}i
}) i

app.onIntent ("ResumeIntent", (voxaEvent: IVoxaEvent) => {
if (voxaEvent.rawEvent.context) {
const token = JSON.parse (voxaEvent.rawEvent.context.AudioPlayer.token);
const offsetInMilliseconds = voxaEvent.rawEvent.context.AudioPlayer.
—~offsetInMilliseconds;
const url = token.url;

const playAudio = new PlayAudio (url, token, offsetInMilliseconds);

return {
reply: "SomeViewSayingResumingAudio",
to: "die",

directives: [playAudio]

}i

return { flow: "terminate", reply: "SomeGoodbyeMessage" };
1)

10.14.10 ElicitSlot Directive

Alexa Documentation

When there is an active dialog you can use the alexaElicitDialog to tell alexa to prompt the user for a specific
slot in the next turn. A prompt passed in as a say, reply or another statement is required and will replace the

46 Chapter 10. Links

https://developer.amazon.com/docs/custom-skills/dialog-interface-reference.html#elicitslot

Voxa Documentation, Release 3.0.0

prompt that is provided to the interaction model for the dialog. The £1ow and to keys should not be used or should
always be flow: "yield" andto: "{current_intent}" since dialogs loop the same intent until all of
the parameters are filled.

The only required parameter is the slot ToElicit, but you can also pass in the values for slots to update the current
values. If a slot isn’t declared in the interaction model it will be ignored or cause an error.

// simplest example
app.onlIntent ('someDialogIntent', () => {
// check if the dialog is complete and do some cool stuff here //

// 1f we need to ask the user for something //
return {

alexaElicitDialog: {

slotToElicit: "favoriteColor",

}I

sayp: ["What is your favorite color?"],
}i
1)
// updating slots example
app.onIntent ('someDialogIntent', () => {

// check if the dialog is complete and do some cool stuff here //

// if we need to ask the user for something //

return
alexaElicitDialog: {
slotToElicit: "favoriteColor",
slots: {

bestLetter: {
value: "W",
confirmationStatus: "CONEFIRMED",
}I
}I
s
sayp: ["What is your favorite color?"],
}i
}) i

// This is still OK

app.onlIntent ('someDialogIntent', () => {
return {
alexaElicitDialog: {
slotToElicit: "favoriteColor",
}I
sayp: ["What is your favorite color?"],
to: "someDialogIntent",

bi
)i

// This will break
app.onlIntent ('someDialogIntent', () => {

return {
alexaElicitDialog: {
slotToElicit: "favoriteColor",
}I
sayp: ["What is your favorite color?"],

to: "someOtherThing",

(continues on next page)

10.14. Alexa Directives 47

Voxa Documentation, Release 3.0.0

(continued from previous page)

}i

10.14.11 Dynamic Entities

Alexa Documentation

Dynamic entities are sent with the alexaDynamicEntities key in your controller. You need to pass a view name with
the types array.

// variables. js

exports.dynamicNames = (voxaEvent) => {
return |
{
name: "LIST_OF_AVAILABLE_NAMES",
values: [
{
id: "nathan",
name: {
synonyms: ["nate"],
value: "nathan"

// views.js

const views = {
"en-US": {
translation: {
MyAvailableNames: "{dynamicNames}"

}l
}i
bi

// state.js

app.onState ('someState', () => {

return {

alexaDynamicEntities: "MyAvailableNames",
}i
1)

// Or you can pass the types directly...

app.onState ('someState', () => {
return
alexaDynamicEntities: [
{
name: "LIST OF_AVAILABLE_NAMES",
values: [

(continues on next page)

48 Chapter 10. Links

https://developer.amazon.com/docs/custom-skills/use-dynamic-entities-for-customized-interactions.html

Voxa Documentation, Release 3.0.0

(continued from previous page)

id: "nathan",

name: {
synonyms: ["nate"],
value: "nathan"

1,
}i
)i

// Or you can pass the whole directive directly...

app.onState ('someState', () => {
return {
alexaDynamicEntities: {
type: "Dialog.UpdateDynamicEntities",
updateBehavior: "REPLACE",
types: [
{
name: "LIST OF_AVAILABLE_NAMES",
values: [
{
id: "nathan",
name: {
synonyms: ["nate"],
value: "nathan"

10.15 Google Assistant Directives

Dialog Flow directives expose google actions functionality that’s platform specific. In general they take the same
parameters you would pass to the Actions on Google Node JS SDK.

10.15.1 List

Actions on Google Documentation

The single-select list presents the user with a vertical list of multiple items and allows the user to select a single one.
Selecting an item from the list generates a user query (chat bubble) containing the title of the list item.

app.onState ('someState', () => {
return {
dialogflowList: {

(continues on next page)

10.15. Google Assistant Directives 49

https://developers.google.com/actions/assistant/responses#list

Voxa Documentation, Release 3.0.0

(continued from previous page)

title: 'List Title',
items: {
// Add the first item to the list
[SELECTION_KEY_ONE] : {
synonyms: [
'synonym of title 1°',
'synonym of title 2',
'synonym of title 3',
] 14
title: 'Title of First List Item',
description: 'This is a description of a list item.',
image: new Image ({
url: IMG_URL_AOQOG,
alt: 'Image alternate text',
1)y

b
// Add the second item to the list

[SELECTION_KEY GOOGLE_HOME]: {
synonyms: [
'Google Home Assistant',
'Assistant on the Google Home',
J 4
title: 'Google Home',
description: 'Google Home is a voice-activated speaker powered by ' +
'the Google Assistant.',
image: new Image ({
url: IMG_URL_GOOGLE_HOME,
alt: 'Google Home',
1)y

b
// Add the third item to the 1ist

[SELECTION_KEY_GOOGLE_PIXEL]: {
synonyms: [
'Google Pixel XL',
'Pixel’',
'Pixel XL',
]V
title: 'Google Pixel',
description: 'Pixel. Phone by Google.',
image: new Image ({
url: IMG_URL_GOOGLE_PIXEL,
alt: 'Google Pixel',
1)y
by
}I

10.15.2 Carousel

Actions on Google Documentation

The carousel scrolls horizontally and allows for selecting one item. Compared to the list selector, it has large tiles-
allowing for richer content. The tiles that make up a carousel are similar to the basic card with image. Selecting an
item from the carousel will simply generate a chat bubble as the response just like with list selector.

50 Chapter 10. Links

https://developers.google.com/actions/assistant/responses#carousel

Voxa Documentation, Release 3.0.0

app.onState ('someState', () => {
return {
dialogflowCarousel: {
items: {
// Add the first item to the carousel
[SELECTION_KEY_ONE]: {
synonyms: [
'synonym of title 1°',
'synonym of title 2',
'synonym of title 3',
] 4
title: 'Title of First Carousel Item',
description: 'This is a description of a carousel item.',
image: new Image ({
url: IMG_URL_AOQG,
alt: 'Image alternate text',
1)y

br
// Add the second item to the carousel

[SELECTION_KEY_GOOGLE_HOME] : {
synonyms: [
'Google Home Assistant',
'Assistant on the Google Home',
] r
title: 'Google Home',
description: 'Google Home is a voice-activated speaker powered by ' +
'the Google Assistant.’',
image: new Image ({
url: IMG_URL_GOOGLE_HOME,
alt: 'Google Home',
P

b
// Add third item to the carousel

[SELECTION_KEY_GOOGLE_PIXEL]: {
synonyms: [
'Google Pixel XL',
'Pixel’,
'Pixel XL',
] 14
title: 'Google Pixel',
description: 'Pixel. Phone by Google.',
image: new Image ({
url: IMG_URL_GOOGLE_PIXEL,
alt: 'Google Pixel',

10.15.3 Browse Carousel

Actions on Google Documentation

A browsing carousel is a rich response that allows users to scroll vertically and select a tile in a collection. Browsing
carousels are designed specifically for web content by opening the selected tile in a web browser.

10.15. Google Assistant Directives 51

https://developers.google.com/actions/assistant/responses#browsing_carousel

Voxa Documentation, Release 3.0.0

app.onState ('someState', () => {
return {
dialogflowBrowseCarousel: {
items: [
{
title: 'Title of the item',
description: 'This is a description of an item.',
footer: 'Footer of the item'
openUrlAction: {
url: 'https://example.com/page',
urlTypeHint: 'DEFAULT' // Optional
}
}I
{
title: 'Title of the item',
description: 'This is a description of an item.',
footer: 'Footer of the item'
openUrlAction: {
url: 'https://example.com/page',
urlTypeHint: 'DEFAULT' // Optional

10.15.4 Suggestions

Actions on Google Documentation

Use suggestion chips to hint at responses to continue or pivot the conversation. If during the conversation there is a
primary call for action, consider listing that as the first suggestion chip.

Whenever possible, you should incorporate one key suggestion as part of the chat bubble, but do so only if the response
or chat conversation feels natural.

app.onState ('someState', () => {
return {
dialogflowSuggestions: ['Exit', 'Continue']
}
}) i
app.onState ('someState', () => {
return {
dialogflowLinkOutSuggestion: {
name: "Suggestion Link",

url: 'https://assistant.google.com/',

10.15.5 BasicCard

Actions on Google Documentation

52 Chapter 10. Links

https://developers.google.com/actions/assistant/responses#suggestion_chip
https://developers.google.com/actions/assistant/responses#basic_card

Voxa Documentation, Release 3.0.0

A basic card displays information that can include the following:
* Image
* Title
* Sub-title
e Text body
* Link button
* Border

Use basic cards mainly for display purposes. They are designed to be concise, to present key (or summary) information
to users, and to allow users to learn more if you choose (using a weblink).

In most situations, you should add suggestion chips below the cards to continue or pivot the conversation.

Avoid repeating the information presented in the card in the chat bubble at all costs.

app.onState ('someState', () => {

return {
dialogflowBasicCard: {
text: "This is a basic card. Text in a basic card can include "quotes" and
most other unicode characters including emoji. Basic cards also support
some markdown formatting like xemphasisx or _italics_, **strongx* or
__bold__, and xxxbold itallicxxx or ___strong emphasis___ °,

subtitle: 'This is a subtitle',
title: 'Title: this is a title',
buttons: new Button ({
title: 'This is a button',
url: 'https://assistant.google.com/',
1)y
image: new Image ({
url: 'https://example.com/image.png',
alt: 'Image alternate text',
1)y

10.15.6 AccountLinkingCard

Actions on Google Documentation

Account linking is a great way to lets users connect their Google accounts to existing accounts on your service. This
allows you to build richer experiences for your users that take advantage of the data they already have in their account
on your service. Whether it’s food preferences, existing payment accounts, music preferences, your users should be
able to have better experiences in the Google Assistant by linking their accounts.

app.onState ('someState', () => {
return {
dialogflowAccountLinkingCard: "To track your exercise"
}
1)

10.15. Google Assistant Directives 53

https://developers.google.com/actions/identity/account-linking

Voxa Documentation, Release 3.0.0

10.15.7 MediaResponse

Actions on Google Documentation

Media responses let your app play audio content with a playback duration longer than the 120-second limit of SSML.
The primary component of a media response is the single-track card. The card allows the user to perform these

operations:
* Replay the last 10 seconds.
* Skip forward for 30 seconds.
* View the total length of the media content.
* View a progress indicator for audio playback.

* View the elapsed playback time.

const { MediaObject } = require('actions-on-google');
app.onState ('someState', () => {

const mediaObject = new MediaObject ({
name,
url,

)i

return {

dialogflowMediaResponse: mediaObject
}i
}) i

10.15.8 User Information

Actions on Google Documentation
User information You can obtain the following user information with this helper:
* Display name
* Given name
¢ Family name
» Coarse device location (zip code and city)

¢ Precise device location (coordinates and street address)

app.onState ('someState', () => {
return {
dialogflowPermission: {
context: 'To read your mind',
permissions: 'NAME',
}
}i
}) i
54 Chapter 10. Links

https://developers.google.com/actions/assistant/responses#media_responses
https://developers.google.com/actions/assistant/helpers#user_information

Voxa Documentation, Release 3.0.0

10.15.9 Date and Time

Actions on Google Documentation <https://developers.google.com/actions/assistant/helpers#date_and_time>

You can obtain a date and time from users by requesting fulfillment of the actions.intent. DATETIME intent.

app.onState ('someState', () => {
return {
dialogflowDateTime: {
prompts: {
initial: 'When do you want to come in?',
date: 'Which date works best for you?',
time: 'What time of day works best for you?',

10.15.10 Confirmation

Actions on Google Documentation <https://developers.google.com/actions/assistant/helpers#confirmation>

You can ask a generic confirmation from the user (yes/no question) and get the resulting answer. The grammar for
“yes” and “no” naturally expands to things like “Yea” or “Nope”, making it usable in many situations.

app.onState ('someState', () => {
return {
dialogflowConfirmation: 'Can you confirm?',

}i
)i

10.15.11 Android Link

Actions on Google Documentation

You can ask the user to continue an interaction via your Android app. This helper allows you to prompt the user as
part of the conversation. You’ll first need to associate your Android app with your Actions Console project via the
Brand Verification page.

app.onState ('someState', () => {
const options = {
destination: 'Google',
url: 'example://gizmos',
package: 'com.example.gizmos',
reason: 'handle this for you',

}i

return {

dialogflowDeepLink: options
}i
1)

10.15.12 Place and Location

Actions on Google Documentation

10.15. Google Assistant Directives 55

https://developers.google.com/actions/assistant/helpers#android_link
https://developers.google.com/actions/assistant/helpers#place_and_location

Voxa Documentation, Release 3.0.0

You can obtain a location from users by requesting fulfillment of the actions.intent. PLACE intent. This helper is used
to prompt the user for addresses and other locations, including any home/work/contact locations that they’ve saved
with Google.

Saved locations will only return the address, not the associated mapping (e.g. “123 Main St” as opposed to “HOME =
123 Main St”).

app.onState ('someState', () => {
return {
dialogflowPlace: {
context: 'To find a place to pick you up',

prompt: 'Where would you like to be picked up?',
}
i
1)

10.15.13 Digital Goods

Actions on Google Documentation

You can add dialog to your Action that sells your in-app products in the Google Play store, using the digital purchases
APL

You can use the google.digitalGoods object to get the subscriptions and InAppEntitlements filtered by the skulds you
pass to the function. Voxa handles all operations in background to get access to your digital goods in the Play Store.
To do that, you need to pass to the GoogleAssistantPlatform object, the packageName of your Android application
along with the keyFile with the credentials you created in your Google Cloud project.

10.15.14 TransactionDecision
10.15.15 TransactionRequirements

10.15.16 Routine Suggestions

Actions on Google Documentation

To consistently re-engage with users, you need to become a part of their daily habits. Google Assistant users can
already use Routines to execute multiple Actions with a single command, perfect for those times when users wake up
in the morning, head out of the house, get ready for bed or many of the other tasks we perform throughout the day.
Now, with Routine Suggestions, after someone engages with your Action, you can prompt them to add your Action to
their Routines with just a couple of taps.

app.onState ('someState', () => {
return {
dialogflowRegisterUpdate: {
intent: 'Show Image',
frequency: 'ROUTINES'
}
}i
1)

10.15.17 Push notifications

Actions on Google Documentation

56 Chapter 10. Links

https://developers.google.com/actions/transactions/digital/dev-guide-digital
https://developers.google.com/actions/assistant/updates/routines
https://developers.google.com/actions/assistant/updates/notifications

Voxa Documentation, Release 3.0.0

Your app can send push notifications to users whenever relevant, such as sending a reminder when the due date for a
task is near.

app.onState ('someState', () => {
return {
dialogflowUpdatePermission: {
intent: 'tell latest_tip'

10.15.18 Multi-surface conversations

Actions on Google Documentation

At any point during your app’s flow, you can check if the user has any other surfaces with a specific capability. If
another surface with the requested capability is available, you can then transfer the current conversation over to that
new surface.

app.onlntent ('someState', async (voxaEvent) => {
const screen = 'actions.capability.SCREEN_OUTPUT';
if (!_.includes (voxaEvent.supportedInterfaces, screen)) {
const screenAvailable = voxaEvent.conv.available.surfaces.capabilities.
—has (screen) ;

const context = 'Sure, I have some sample images for you.';
const notification = 'Sample Images';
const capabilities = ['actions.capability.SCREEN_OUTPUT'];

if (screenAvailable) {
return ({
sayp: 'Hello',
to: 'entry',
flow: 'yield',
dialogflowNewSurface: {
context, notification, capabilities,
}!

return {
sayp: 'Does not have a screen',
flow: 'terminate',

}i

return {
sayp: 'Already has a screen',
flow: 'terminate',

bi
)i

10.15.19 Output Contexts

Actions on Google Documentation

10.15. Google Assistant Directives 57

https://developers.google.com/actions/assistant/surface-capabilities#multi-surface_conversations
https://actions-on-google.github.io/actions-on-google-nodejs/classes/dialogflow.contextvalues.html#set

Voxa Documentation, Release 3.0.0

If you need to add output contexts to the dialog flow webhook you can use the dialogflowContext directive

app.onlIntent ("LaunchIntent™, {
dialogflowContext: {
lifespan: 5,
name: "DONE_YES_NO_CONTEXT",
}I
sayp: "Hello!",
to: "entry",
flow: "yield",
)i

10.15.20 Session Entities

Google Documentation

A session represents a conversation between a Dialogflow agent and an end-user. You can create special entities, called
session entities during a session. Session entities can extend or replace custom entity types and only exist during the
session that they were created for. All session data, including session entities, is stored by Dialogflow for 20 minutes.

For example, if your agent has a @fruit entity type that includes “pear” and “grape”, that entity type could be updated
to include “apple” or “orange”, depending on the information your agent collects from the end-user. The updated
entity type would have the “apple” or “orange” entity entry for the rest of the session.

Create an entity in your dialogflow agent and make sure that define synonyms option is checked. Add some values
and synonyms if needed according agent instructions. Notice that the name of the entity is the value to be used by the
directive (i.e., list-of-fruits).

// variables. js

export function mySessionEntity (voxaEvent: VoxaEvent) {
// Do something with the voxaEvent, or not...

const sessionEntityType = [
{
"entities": [
{

"synonyms": ["apple", "green apple", "crabapple"],

"value": "APPLE_KEY"
}V
{
"synonyms": ["orange"],
"value": "ORANGE_KEY"
}
JI
"entityOverrideMode": "ENTITY_ OVERRIDE_MODE_OVERRIDE",
"name": "list-of-fruits"

}
1;

return sessionEntityType;

// views.js

const views = {
"en-US": {

(continues on next page)

58 Chapter 10. Links

https://cloud.google.com/dialogflow/docs/entities-session

Voxa Documentation, Release 3.0.0

(continued from previous page)

translation: {
mySessionEntity: "{mySessionEntity}"
}I
}i
}i

// stat