

Welcome to Voxa’s documentation!

Summary

Voxa is an Alexa skill framework that provides a way to organize a skill into a state machine. Even the most complex voice user interface (VUI) can be represented through the state machine and it provides the flexibility needed to both be rigid when needed in specific states and flexible to jump around when allowing that also makes sense.

Why Voxa vs other frameworks

Voxa provides a more robust framework for building Alexa skills. It provides a design pattern that wasn’t found in other frameworks. Critical to Voxa was providing a pluggable interface and supporting all of the latest ASK features.

Features

	MVC Pattern

	State or Intent handling (State Machine)

	Easy integration with several Analytics providers

	Easy to modify response file (the view)

	Compatibility with all SSML features

	Works with companion app cards

	Supports i18n in the responses

	Clean code structure with a unit testing framework

	Easy error handling

	Account linking support

	Several Plugins

Installation

Voxa is distributed via npm

$ npm install voxa --save

Initial Configuration

Instantiating a Voxa Application requires a configuration specifying your Views and Variables.

const voxa = require('voxa');
const views = require('./views'):
const variables = require('./variables');

const app = new voxa.VoxaApp({ variables, views });

Platforms

Once you have instantiated a platform is time to create a plaform application. There are platform handlers for Alexa, Dialogflow and Botframework (Cortana);

const alexaSkill = new voxa.AlexaPlatform(app);
const dialogflowAction = new voxa.DialogflowPlatform(app);

// botframework requires some extra configuration like the Azure Table Storage to use and the Luis.ai endpoint
const storageName = config.cortana.storageName;
const tableName = config.cortana.tableName;
const storageKey = config.cortana.storageKey; // Obtain from Azure Portal
const azureTableClient = new azure.AzureTableClient(tableName, storageName, storageKey);
const tableStorage = new azure.AzureBotStorage({ gzipData: false }, azureTableClient);
const botframeworkSkill = new voxa.BotFrameworkPlatform(app, {
 storage: tableStorage,
 recognizerURI: config.cortana.recognizerURI,
 applicationId: config.cortana.applicationId,
 applicationPassword: config.cortana.applicationPassword,
 defaultLocale: 'en',
});

Using the development server

The framework provides a simple builtin server that’s configured to serve all POST requests to your skill, this works great when developing, specially when paired with ngrok [https://ngrok.com]

// this will start an http server listening on port 3000
alexaSkill.startServer(3000);

Responding to an intent event

app.onIntent('HelpIntent', (voxaEvent) => {
 return { tell: 'HelpIntent.HelpAboutSkill' };
});

app.onIntent('ExitIntent', (voxaEvent) => {
 return { tell: 'ExitIntent.Farewell' };
});

Responding to lambda requests

Once you have your skill configured creating a lambda handler is as simple using the alexaSkill.lambda method

exports.handler = alexaSkill.lambda();

Links

	Search Page

Contents:

	New Alexa developer
	Getting Started with the Alexa Skills

	Amazon Developer Service Account

	Registering an Alexa skill

	Voxa architecture pattern MVC

	Voxa Application
	Error handlers

	Playback Controller handlers

	Alexa Skill Event handlers

	Alexa List Event handlers

	Voxa Platforms
	Alexa

	Dialogflow

	Botframework

	Models

	Views and Variables
	Views

	I18N

	Variables

	Controllers
	The onIntent helper

	Transition
	to

	directives

	flow

	say

	sayp

	text

	textp

	reprompt

	reply

	The voxaEvent Object

	The AlexaEvent Object

	The BotFrameworkEvent Object

	The DialogflowEvent Object

	Alexa Directives
	HomeCard

	AccountLinkingCard

	RenderTemplate

	Alexa Presentation Language (APL) Templates

	Alexa Presentation Language (APL) Commands

	PlayAudio

	Dialog Flow Directives
	List

	Carousel

	Suggestions

	BasicCard

	AccountLinkingCard

	MediaResponse

	User Information

	Date and Time

	Confirmation

	Android Link

	Place and Location

	TransactionDecision

	TransactionRequirements

	Routine Suggestions

	Push notifications

	Multi-surface conversations

	Output Contexts

	Botframework Directives
	Sign In Card

	Hero Card

	Suggested Actions

	Audio Card

	Text

	Text P

	Attachments and Attachment Layouts

	Alexa APIs
	Customer Contact Information Reference

	Device Address Information Reference

	Device Settings Reference

	In-Skill Purchases Reference

	Alexa Shopping and To-Do Lists Reference

	Alexa Reminders API Reference

	Skill Messaging API Reference

	Proactive Events API Reference

	LoginWithAmazon

	Google Sign-In

	The reply Object

	Request Flow

	Gadget Controller Interface Reference

	Game Engine Interface Reference

	Plugins
	Using a plugin

	State Flow plugin

	Replace Intent plugin

	CloudWatch plugin

	Autoload plugin

	Debugging

New Alexa developer

If the skills development for alexa is a new thing for you, we have some suggestion to get you deep into this world.

Getting Started with the Alexa Skills

Alexa provides a set of built-in capabilities, referred to as skills. For example, Alexa’s abilities include playing music from multiple providers, answering questions, providing weather forecasts, and querying Wikipedia.

The Alexa Skills Kit lets you teach Alexa new skills. Customers can access these new abilities by asking Alexa questions or making requests. You can build skills that provide users with many different types of abilities. For example, a skill might do any one of the following:

	Look up answers to specific questions (“Alexa, ask tide pooler for the high tide today in Seattle.”)

	Challenge the user with puzzles or games (“Alexa, play Jeopardy.”)

	Control lights and other devices in the home (“Alexa, turn on the living room lights.”)

	Provide audio or text content for a customer’s flash briefing (“Alexa, give me my flash briefing”)

You can see the different types of skills here [https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/understanding-the-different-types-of-skills] to got more deep reference.

How users interact with Alexa?

With Interaction Model.

End users interact with all of Alexa’s abilities in the same way – by waking the device with the wake word (or a button for a device such as the Amazon Tap) and asking a question or making a request.

For example, users interact with the built-in Weather service like this:

User: Alexa, what’s the weather?
Alexa: Right now in Seattle, there are cloudy skies…

In the context of Alexa, an interaction model is somewhat analogous to a graphical user interface in a traditional app. Instead of clicking buttons and selecting options from dialog boxes, users make their requests and respond to questions by voice.

Here you can see how the interaction model works [https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/understanding-how-users-interact-with-skills]

Amazon Developer Service Account

Amazon Web Services provides a suite of solutions that enable developers and their organizations to leverage Amazon.com’s robust technology infrastructure and content via simple API calls.

The first thing you need to do is create your own Amazon Developer Account [https://developer.amazon.com].

Registering an Alexa skill

Registering a new skill or ability on the Amazon Developer Portal creates a configuration containing the information that the Alexa service needs to do the following:

	Route requests to the AWS Lambda function or web service that implements the skill, or for development purpose you can run it locally using ngrok [https://ngrok.com].

	Display information about the skill in the Amazon Alexa App. The app shows all published skills, as well as all of your own skills currently under development.

You must register a skill before you can test it with the Service Simulator in the developer portal or an Alexa-enabled device.

Follow these instructions [https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/registering-and-managing-alexa-skills-in-the-developer-portal#registering-an-alexa-skill] to register and managing your Alexa skill.

Voxa architecture pattern MVC

[image: _images/mvc-description.png]

Voxa Application

	
class VoxaApp(config)

	
	Arguments

	
	config – Configuration for your skill, it should include Views and Variables and optionally a model and a list of appIds.

If appIds is present then the framework will check every alexa event and enforce the application id to match one of the specified application ids.

const app = new VoxaApp.pp({ Model, variables, views, appIds });

	
VoxaApp.execute(event, context)

	The main entry point for the Skill execution

	Arguments

	
	event – The event sent by the platform.

	context – The context of the lambda function

	Returns

	Promise: A response resolving to a javascript object to be sent as a result to Alexa.

app.execute(event, context)
 .then(result => callback(null, result))
 .catch(callback);

	
VoxaApp.onState(stateName, handler)

	Maps a handler to a state

	Arguments

	
	stateName (string) – The name of the state

	handler (function/object) – The controller to handle the state

	Returns

	An object or a promise that resolves to an object that specifies a transition to another state and/or a view to render

app.onState('entry', {
 LaunchIntent: 'launch',
 'AMAZON.HelpIntent': 'help',
});

app.onState('launch', (voxaEvent) => {
 return { tell: 'LaunchIntent.OpenResponse', to: 'die' };
});

	
VoxaApp.onIntent(intentName, handler)

	A shortcut for definining state controllers that map directly to an intent

	Arguments

	
	intentName (string) – The name of the intent

	handler (function/object) – The controller to handle the state

	Returns

	An object or a promise that resolves to an object that specifies a transition to another state and/or a view to render

app.onIntent('HelpIntent', (voxaEvent) => {
 return { tell: 'HelpIntent.HelpAboutSkill' };
});

	
VoxaApp.onIntentRequest(callback[, atLast])

	This is executed for all IntentRequest events, default behavior is to execute the State Machine machinery, you generally don’t need to override this.

	Arguments

	
	callback (function) –

	last (bool) –

	Returns

	Promise

	
VoxaApp.onLaunchRequest(callback[, atLast])

	Adds a callback to be executed when processing a LaunchRequest, the default behavior is to fake the alexa event as an IntentRequest with a LaunchIntent and just defer to the onIntentRequest handlers. You generally don’t need to override this.

	
VoxaApp.onBeforeStateChanged(callback[, atLast])

	This is executed before entering every state, it can be used to track state changes or make changes to the alexa event object

	
VoxaApp.onBeforeReplySent(callback[, atLast])

	Adds a callback to be executed just before sending the reply, internally this is used to add the serialized model and next state to the session.

It can be used to alter the reply, or for example to track the final response sent to a user in analytics.

app.onBeforeReplySent((voxaEvent, reply) => {
 const rendered = reply.write();
 analytics.track(voxaEvent, rendered)
});

	
VoxaApp.onAfterStateChanged(callback[, atLast])

	Adds callbacks to be executed on the result of a state transition, this are called after every transition and internally it’s used to render the transition reply using the views and variables

The callbacks get voxaEvent, reply and transition params, it should return the transition object

app.onAfterStateChanged((voxaEvent, reply, transition) => {
 if (transition.reply === 'LaunchIntent.PlayTodayLesson') {
 transition.reply = _.sample(['LaunchIntent.PlayTodayLesson1', 'LaunchIntent.PlayTodayLesson2']);
 }

 return transition;
});

	
VoxaApp.onUnhandledState(callback[, atLast])

	Adds a callback to be executed when a state transition fails to generate a result, this usually happens when redirecting to a missing state or an entry call for a non configured intent, the handlers get a alexa event parameter and should return a transition the same as a state controller would.

	
VoxaApp.onSessionStarted(callback[, atLast])

	Adds a callback to the onSessinStarted event, this executes for all events where voxaEvent.session.new === true

This can be useful to track analytics

app.onSessionStarted((voxaEvent, reply) => {
 analytics.trackSessionStarted(voxaEvent);
});

	
VoxaApp.onRequestStarted(callback[, atLast])

	Adds a callback to be executed whenever there’s a LaunchRequest, IntentRequest or a SessionEndedRequest,
this can be used to initialize your analytics or get your account linking user data. Internally it’s used to initialize the model based on the event session

app.onRequestStarted((voxaEvent, reply) => {
 let data = ... // deserialized from the platform's session
 voxaEvent.model = this.config.Model.deserialize(data, voxaEvent);
});

	
VoxaApp.onSessionEnded(callback[, atLast])

	Adds a callback to the onSessionEnded event, this is called for every SessionEndedRequest or when the skill returns a transition to a state where isTerminal === true, normally this is a transition to the die state. You would normally use this to track analytics

	
VoxaApp.onSystem.ExceptionEncountered(callback[, atLast])

	This handles System.ExceptionEncountered [https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/custom-audioplayer-interface-reference#system-exceptionencountered] event that are sent to your skill when a response to an AudioPlayer event causes an error

return Promise.reduce(errorHandlers, (result, errorHandler) => {
 if (result) {
 return result;
 }
 return Promise.resolve(errorHandler(voxaEvent, error));
}, null);

Error handlers

You can register many error handlers to be used for the different kind of errors the application could generate. They all follow the same logic where if the first error type is not handled then the default is to be deferred to the more general error handler that ultimately just returns a default error reply.

They’re executed sequentially and will stop when the first handler returns a reply.

	
VoxaApp.onStateMachineError(callback[, atLast])

	This handler will catch all errors generated when trying to make transitions in the stateMachine, this could include errors in the state machine controllers, , the handlers get (voxaEvent, reply, error) parameters

app.onStateMachineError((voxaEvent, reply, error) => {
 // it gets the current reply, which could be incomplete due to an error.
 return new Reply(voxaEvent, { tell: 'An error in the controllers code' })
 .write();
});

	
VoxaApp.onError(callback[, atLast])

	This is the more general handler and will catch all unhandled errors in the framework, it gets (voxaEvent, error) parameters as arguments

app.onError((voxaEvent, error) => {
 return new Reply(voxaEvent, { tell: 'An unrecoverable error occurred.' })
 .write();
});

Playback Controller handlers

Handle events from the AudioPlayer interface [https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/custom-audioplayer-interface-reference#requests]

	
audioPlayerCallback(voxaEvent, reply)

	All audio player middleware callbacks get a alexa event and a reply object

	Arguments

	
	voxaEvent (AlexaEvent) – The alexa event sent by Alexa

	reply (object) – A reply to be sent as a response

	Returns object write

	Your alexa event handler should return an appropriate response according to the event type, this generally means appending to the reply object

In the following example the alexa event handler returns a REPLACE_ENQUEUED directive to a PlaybackNearlyFinished() event.

app['onAudioPlayer.PlaybackNearlyFinished']((voxaEvent, reply) => {
 const directives = {
 type: 'AudioPlayer.Play',
 playBehavior: 'REPLACE_ENQUEUED',
 token: "",
 url: 'https://www.dl-sounds.com/wp-content/uploads/edd/2016/09/Classical-Bed3-preview.mp3',
 offsetInMilliseconds: 0,
 };

 return reply.append({ directives });
});

	
VoxaApp.onAudioPlayer.PlaybackStarted(callback[, atLast])

	

	
VoxaApp.onAudioPlayer.PlaybackFinished(callback[, atLast])

	

	
VoxaApp.onAudioPlayer.PlaybackStopped(callback[, atLast])

	

	
VoxaApp.onAudioPlayer.PlaybackFailed(callback[, atLast])

	

	
VoxaApp.onAudioPlayer.PlaybackNearlyFinished(callback[, atLast])

	

	
VoxaApp.onPlaybackController.NextCommandIssued(callback[, atLast])

	

	
VoxaApp.onPlaybackController.PauseCommandIssued(callback[, atLast])

	

	
VoxaApp.onPlaybackController.PlayCommandIssued(callback[, atLast])

	

	
VoxaApp.onPlaybackController.PreviousCommandIssued(callback[, atLast])

	

Alexa Skill Event handlers

Handle request for the Alexa Skill Events [https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/skill-events-in-alexa-skills#skill-events-in-json-format]

	
alexaSkillEventCallback(alexaEvent)

	All the alexa skill event callbacks get a alexa event and a reply object

	Arguments

	
	alexaEvent (AlexaEvent) – The alexa event sent by Alexa

	reply (object) – A reply to be sent as the response

	Returns object reply

	Alexa only needs an acknowledgement that you received and processed the event so it doesn’t need to resend the event. Just returning the reply object is enough

This is an example on how your skill can process a SkillEnabled() event.

app['onAlexaSkillEvent.SkillEnabled']((alexaEvent, reply) => {
 const userId = alexaEvent.user.userId;
 console.log(`skill was enabled for user: ${userId}`);
 return reply;
});

	
VoxaApp.onAlexaSkillEvent.SkillAccountLinked(callback[, atLast])

	

	
VoxaApp.onAlexaSkillEvent.SkillEnabled(callback[, atLast])

	

	
VoxaApp.onAlexaSkillEvent.SkillDisabled(callback[, atLast])

	

	
VoxaApp.onAlexaSkillEvent.SkillPermissionAccepted(callback[, atLast])

	

	
VoxaApp.onAlexaSkillEvent.SkillPermissionChanged(callback[, atLast])

	

Alexa List Event handlers

Handle request for the Alexa List Events [https://developer.amazon.com/public/solutions/alexa/alexa-skills-kit/docs/list-events-in-alexa-skills#list-events-json]

	
alexaListEventCallback(alexaEvent)

	All the alexa list event callbacks get a alexa event and a reply object

	Arguments

	
	alexaEvent (AlexaEvent) – The alexa event sent by Alexa

	reply (object) – A reply to be sent as the response

	Returns object reply

	Alexa only needs an acknowledgement that you received and processed the event so it doesn’t need to resend the event. Just returning the reply object is enough

This is an example on how your skill can process a ItemsCreated() event.

app['onAlexaHouseholdListEvent.ItemsCreated']((alexaEvent, reply) => {
 const listId = alexaEvent.request.body.listId;
 const userId = alexaEvent.user.userId;
 console.log(`Items created for list: ${listId}` for user ${userId});
 return reply;
});

	
VoxaApp.onAlexaHouseholdListEvent.ItemsCreated(callback[, atLast])

	

	
VoxaApp.onAlexaHouseholdListEvent.ItemsUpdated(callback[, atLast])

	

	
VoxaApp.onAlexaHouseholdListEvent.ItemsDeleted(callback[, atLast])

	

Voxa Platforms

Voxa Platforms wrap your VoxaApp and allows you to define handlers for the different supported voice platforms.

	
class VoxaPlatform(voxaApp, config)

	
	Arguments

	
	voxaApp (VoxaApp) – The app

	config – The config

	
VoxaPlatform.lambda()

	
	Returns

	A lambda handler that will call the app.execute method

exports.handler = alexaSkill.lambda();

	
VoxaPlatform.lambdaHTTP()

	
	Returns

	A lambda handler to use as an AWS API Gateway ProxyEvent handler that will call the app.execute method

exports.handler = dialogflowAction.lambdaHTTP();

	
VoxaPlatform.azureFunction()

	
	Returns

	An azure function handler

module.exports = cortanaSkill.azureFunction();

Alexa

The Alexa Platform allows you to use Voxa with Alexa

const { AlexaPlatform } = require('voxa');
const { voxaApp } = require('./app');

const alexaSkill = new AlexaPlatform(voxaApp);
exports.handler = alexaSkill.lambda();

Dialogflow

The Dialogflow Platform allows you to use Voxa with Dialogflow

const { DialogflowPlatform } = require('voxa');
const { voxaApp } = require('./app');

const dialogflowAction = new DialogflowPlatform(voxaApp);
exports.handler = dialogflowAction.lambdaHTTP();

Botframework

The BotFramework Platform allows you to use Voxa with Microsoft Botframework

const { BotFrameworkPlatform } = require('voxa');
const { AzureBotStorage, AzureTableClient } = require('botbuilder-azure');
const { voxaApp } = require('./app');
const config = require('./config');

const tableName = config.tableName;
const storageKey = config.storageKey; // Obtain from Azure Portal
const storageName = config.storageName;
const azureTableClient = new AzureTableClient(tableName, storageName, storageKey);
const tableStorage = new AzureBotStorage({ gzipData: false }, azureTableClient);

const botframeworkSkill = new BotFrameworkPlatform(voxaApp, {
 storage: tableStorage,
 recognizerURI: process.env.LuisRecognizerURI,
 applicationId: process.env.MicrosoftAppId,
 applicationPassword: process.env.MicrosoftAppPassword,
 defaultLocale: 'en',
});

module.exports = botframeworkSkill.azureFunction();

Models

Models are the data structure that holds the current state of your application, the framework doesn’t make many assumptions on it and only requires have a deserialize method that should initialize it based on
an object of attributes and a serialize method that should return a JSON.stringify able structure to then store in the session attributes.

/*
 * Copyright (c) 2018 Rain Agency <contact@rain.agency>
 * Author: Rain Agency <contact@rain.agency>
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy of
 * this software and associated documentation files (the "Software"), to deal in
 * the Software without restriction, including without limitation the rights to
 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
 * the Software, and to permit persons to whom the Software is furnished to do so,
 * subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

import * as _ from "lodash";
import { IBag, IVoxaEvent } from "./VoxaEvent";

export class Model {
 [key: string]: any;

 public static deserialize(
 data: IBag,
 voxaEvent: IVoxaEvent,
): Promise<Model> | Model {
 return new this(data);
 }

 public state?: string;

 constructor(data: any = {}) {
 _.assign(this, data);
 }

 public async serialize(): Promise<any> {
 return this;
 }
}

export interface IModel {
 new (data?: any): Model;
 deserialize(data: IBag, event: IVoxaEvent): Model | Promise<Model>;
 serialize(): Promise<any>;
}

Views and Variables

Views

Views are the Voxa way of handling replies to the user, they’re templates of responses using a simple javascript DSL. They can contain ssml and include cards.

There are 5 responses in the following snippet: LaunchIntent.OpenResponse, ExitIntent.Farewell, HelpIntent.HelpAboutSkill, Count.Say and Count.Tell

Also, there’s a special type of view which can contain arrays of options, when Voxa finds one of those like the LaunchIntent.OpenResponse it will select a random sample and use it as the response.

I18N

Internationalization support is done using the i18next [http://i18next.com/] library, the same the Amazon Alexa Node SDK uses.

The framework takes care of selecting the correct locale on every voxa event by looking at the voxaEvent.request.locale property.

const views = {
 en: {
 translaction: {
 LaunchIntent: {
 OpenResponse: [
 'Hello! <break time="3s"/> Good {time}. Is there anything i can do to help you today?',
 'Hi there! <break time="3s"/> Good {time}. How may i be of service?',
 'Good {time}, Welcome!. How can i help you?',
]
 },
 ExitIntent: {
 Farewell: 'Ok. For more info visit {site} site.',
 },
 HelpIntent: {
 HelpAboutSkill: 'For more help visit example dot com'
 },
 Count: {
 Say: '{count}',
 Tell: '{count}',
 },
 }
 }
};

Variables

Variables are the rendering engine way of adding logic into your views. They’re dessigned to be very simple since most of your logic should be in your model or controllers.

A variable signature is:

	
variable(model, voxaEvent)

	
	Arguments

	
	voxaEvent – The current voxa event.

	Returns

	The value to be rendered or a promise resolving to a value to be rendered in the view.

const variables = {
 site: function site(voxaEvent) {
 return Promise.resolve('example.com');
 },

 count: function count(voxaEvent) {
 return voxaEvent.model.count;
 },

 locale: function locale(voxaEvent) {
 return voxaEvent.locale;
 }
};

Controllers

Controllers in your application control the logic of your skill, they respond to alexa voxaEvents, external resources, manipulate the input and give proper responses using your Model, Views and Variables.

States come in one of two ways, they can be an object with a transition:

app.onState('HelpIntent', {
 tell: "Help"
});

Or they can be a function that gets a voxaEvent object:

app.onState('launch', (voxaEvent) => {
 return { tell: 'LaunchIntent.OpenResponse' };
});

Your state should respond with a transition. The transition is a plain object that can take directives, to and flow keys.

onState also takes a third parameter which can be used to limit which intents a controller can respond, for example

app.onState('shouldSendEmail?', {
 sayp: "All right! An email has been sent to your inbox",
 flowp: "terminate"
}, "YesIntent");

app.onState('shouldSendEmail?', {
 sayp: "No problem, is there anything else i can help you with?",
 flowp: "yield"
}, "NoIntent");

The onIntent helper

For the simple pattern of having a controller respond to an specific intent the framework provides the onIntent helper

app.onIntent('LaunchIntent', (voxaEvent) => {
 return { tell: 'LaunchIntent.OpenResponse' };
});

If you receive a Display.ElementSelected type request, you could use the same approach for intents and state. Voxa receives this type of request and turns it into DisplayElementSelected Intent

app.onIntent('DisplayElementSelected', (voxaEvent) => {
 return { tell: 'DisplayElementSelected.OpenResponse' };
});

Keep in mind that controllers created with onIntent won’t accept transitions from other states with a different intent

Transition

A transition is the result of controller execution, it’s a simple object with keys that control the flow of execution in your skill.

to

The to key should be the name of a state in your state machine, when present it indicates to the framework that it should move to a new state. If absent it’s assumed that the framework should move to the die state.

return { to: 'stateName' };

directives

Directives is an array of directive objects that implement the IDirective interface, they can make modifications to the reply object directly

const { PlayAudio } = require('voxa').alexa;

return {
 directives: [new PlayAudio(url, token)],
};

flow

The flow key can take one of three values:

	continue:

	This is the default value if the flow key is not present, it merely continues the state machine execution with an internal transition, it keeps building the response until a controller returns a yield or a terminate flow.

	yield:

	This stops the state machine and returns the current response to the user without terminating the session.

	terminate:

	This stops the state machine and returns the current response to the user, it closes the session.

say

Renders a view and adds it as SSML to the response

sayp

Adds the passed value as SSML to the response

text

Renders a view and adds it as plain text to the response

textp

Adds the passed value as plain text to the response

reprompt

Used to render a view and add the result to the response as a reprompt

reply

return { reply: 'LaunchIntent.OpenResponse' };

const reply = new Reply(voxaEvent, { tell: 'Hi there!' });
return { reply };

The voxaEvent Object

	
class VoxaEvent(event, context)

	The voxaEvent object contains all the information from the Voxa event, it’s an object kept for the entire lifecycle of the state machine transitions and as such is a perfect place for middleware to put information that should be available on every request.

	
VoxaEvent.rawEvent

	A plain javascript copy of the request object as received from the platform

	
VoxaEvent.executionContext

	On AWS Lambda this object contains the context

	
VoxaEvent.t

	The current translation function from i18next, initialized to the language of the current request

	
VoxaEvent.renderer

	The renderer object used in the current request

	
VoxaEvent.platform

	The currently running Voxa Platform

	
VoxaEvent.model

	The default middleware instantiates a Model and makes it available through voxaEvent.model

	
VoxaEvent.intent.params

	In Alexa the voxaEvent object makes intent.slots available through intent.params after aplying a simple transformation so

{ "slots": [{ "name": "Dish", "value": "Fried Chicken" }] }

becomes:

{ "Dish": "Fried Chicken" }

in other platforms it does it’s best to make the intent params for each platform also available on intent.params

	
VoxaEvent.user

	An object that contains the userId and accessToken if available

{
 "userId": "The platform specific userId",
 "id": "same as userId",
 "accessToken": "available if user has done account linking"
}

	
VoxaEvent.model

	An instance of the Voxa App Model.

	
VoxaEvent.log

	An instance of lambda-log [https://www.npmjs.com/package/lambda-log]

	
VoxaEvent.supportedInterfaces()

	Array of supported interfaces

	Returns Array

	A string array of the platform’s supported interfaces

	
VoxaEvent.getUserInformation()

	Object with user personal information from the platform being used.

{
 // Google specific fields
 "sub": 1234567890, // The unique ID of the user's Google Account
 "iss": "https://accounts.google.com", // The token's issuer
 "aud": "123-abc.apps.googleusercontent.com", // Client ID assigned to your Actions project
 "iat": 233366400, // Unix timestamp of the token's creation time
 "exp": 233370000, // Unix timestamp of the token's expiration time
 "emailVerified": true,
 "givenName": "John",
 "familyName": "Doe",
 "locale": "en_US",

 // Alexa specific fields
 "zipCode": "98101",
 "userId": "amzn1.account.K2LI23KL2LK2",

 // Platforms common fields
 "email": "johndoe@gmail.com",
 "name": "John Doe"
}

	Returns object

	A object with user’s information

	
VoxaEvent.getUserInformationWithGoogle()

	Object with user personal information from Google. Go here for more information.

{
 "sub": 1234567890, // The unique ID of the user's Google Account
 "iss": "https://accounts.google.com", // The token's issuer
 "aud": "123-abc.apps.googleusercontent.com", // Client ID assigned to your Actions project
 "iat": 233366400, // Unix timestamp of the token's creation time
 "exp": 233370000, // Unix timestamp of the token's expiration time
 "givenName": "John",
 "familyName": "Doe",
 "locale": "en_US",
 "email": "johndoe@gmail.com",
 "name": "John Doe"
}

	Returns object

	A object with user’s information

	
VoxaEvent.getUserInformationWithLWA()

	Object with user personal information from Amazon. Go here for more information.

{
 "email": "johndoe@gmail.com",
 "name": "John Doe",
 "zipCode": "98101",
 "userId": "amzn1.account.K2LI23KL2LK2"
}

	Returns object

	A object with user’s information

IVoxaEvent is an interface that inherits its attributes and function to the specific platforms, for more information about each platform’s own methods visit:

	AlexaEvent

	BotFrameworkEvent

	DialogflowEvent

The AlexaEvent Object

	
class AlexaEvent(event, lambdaContext)

	The alexaEvent object contains all the information from the Voxa event, it’s an object kept for the entire lifecycle of the state machine transitions and as such is a perfect place for middleware to put information that should be available on every request.

	
AlexaEvent.AlexaEvent.token

	A convenience getter to obtain the request’s token, specially when using the Display.ElementSelected

	
AlexaEvent.AlexaEvent.alexa.customerContact

	When a customer enables your Alexa skill, your skill can request the customer’s permission to the their contact information, see Customer Contact Information Reference.

	
AlexaEvent.AlexaEvent.alexa.deviceAddress

	When a customer enables your Alexa skill, your skill can obtain the customer’s permission to use address data associated with the customer’s Alexa device, see Device Address Information Reference.

	
AlexaEvent.AlexaEvent.alexa.deviceSettings

	Alexa customers can set their timezone, distance measuring unit, and temperature measurement unit in the Alexa app, see Device Settings Reference.

	
AlexaEvent.AlexaEvent.alexa.isp

	The in-skill purchasing [https://developer.amazon.com/docs/in-skill-purchase/isp-overview.html] feature enables you to sell premium content such as game features and interactive stories for use in skills with a custom interaction model, see In-Skill Purchases Reference.

	
AlexaEvent.AlexaEvent.alexa.lists

	Alexa customers have access to two default lists: Alexa to-do and Alexa shopping. In addition, Alexa customer can create and manage custom lists [https://developer.amazon.com/docs/custom-skills/access-the-alexa-shopping-and-to-do-lists.html] in a skill that supports that, see Alexa Shopping and To-Do Lists Reference.

The BotFrameworkEvent Object

The DialogflowEvent Object

	
class DialogflowEvent(event, lambdaContext)

	The dialogflowEvent object contains all the information from the Voxa event, it’s an object kept for the entire lifecycle of the state machine transitions and as such is a perfect place for middleware to put information that should be available on every request.

	
DialogflowEvent.DialogflowEvent.google.conv

	The conversation instance that contains the raw input sent by Dialogflow

Alexa Directives

HomeCard

Alexa Documentation [https://developer.amazon.com/docs/custom-skills/include-a-card-in-your-skills-response.html]

Interactions between a user and an Alexa device can include home cards displayed in the Amazon Alexa App, the companion app available for Fire OS, Android, iOS, and desktop web browsers. These are graphical cards that describe or enhance the voice interaction. A custom skill can include these cards in its responses.

In Voxa you can send cards using a view or returning a Card like structure directly from your controller

const views = {
 "de-DE": {
 translation: {
 Card: {
 image: {
 largeImageUrl: "https://example.com/large.jpg",
 smallImageUrl: "https://example.com/small.jpg",
 },
 title: "Title",
 type: "Standard",
 },
 },
 };

 app.onState('someState', () => {
 return {
 alexaCard: 'Card',
 };
 });

 app.onState('someState', () => {
 return {
 alexaCard: {
 image: {
 largeImageUrl: "https://example.com/large.jpg",
 smallImageUrl: "https://example.com/small.jpg",
 },
 title: "Title",
 type: "Standard",
 },
 };
 });

AccountLinkingCard

Alexa Documentation [https://developer.amazon.com/docs/custom-skills/include-a-card-in-your-skills-response.html#define-a-card-for-use-with-account-linking]

An account linking card is sent with the alexaAccountLinkingCard key in your controller, it requires no parameters.

app.onState('someState', () => {
 return {
 alexaAccountLinkingCard: null,
 };
});

RenderTemplate

Alexa Documentation [https://developer.amazon.com/docs/custom-skills/display-interface-reference.html]

Voxa provides a DisplayTemplate builder that can be used with the alexaRenderTemplate controller key to create Display templates for the echo show and echo spot.

const voxa = require('voxa');
const { DisplayTemplate } = voxa.alexa;

app.onState('someState', () => {
 const template = new DisplayTemplate("BodyTemplate1")
 .setToken("token")
 .setTitle("This is the title")
 .setTextContent("This is the text content", "secondaryText", "tertiaryText")
 .setBackgroundImage("http://example.com/image.jpg", "Image Description")
 .setBackButton("HIDDEN");

 return {
 alexaRenderTemplate: template,
 };
});

Alexa Presentation Language (APL) Templates

Alexa Documentation [https://developer.amazon.com/docs/alexa-presentation-language/apl-overview.html]

An APL Template is sent with the alexaAPLTemplate key in your controller. You can pass the directive object directly or a view name with the directive object.

One important thing to know is that is you sent a Render Template and a APL Template in the same response but the APL Template will be the one being rendered if the device supports it; if not, the Render Template will be one being rendered.

// variables.js

 exports.MyAPLTemplate = (voxaEvent) => {
 // Do something with the voxaEvent, or not...

 return {
 datasources: {},
 document: {},
 token: "SkillTemplateToken",
 type: "Alexa.Presentation.APL.RenderDocument",
 };
 });

// views.js

 const views = {
 "en-US": {
 translation: {
 MyAPLTemplate: "{MyAPLTemplate}"
 },
 };
 };

// state.js

 app.onState('someState', () => {
 return {
 alexaAPLTemplate: "MyAPLTemplate",
 };
 });

 // Or you can do it directly...

 app.onState('someState', () => {
 return {
 alexaAPLTemplate: {
 datasources: {},
 document: {},
 token: "SkillTemplateToken",
 type: "Alexa.Presentation.APL.RenderDocument",
 },
 };
 });

Alexa Presentation Language (APL) Commands

Alexa Documentation [https://developer.amazon.com/docs/alexa-presentation-language/apl-commands.html]

An APL Command is sent with the alexaAPLCommand key in your controller. Just like the APL Template, you can pass the directive object directly or a view name with the directive object.

// variables.js

 exports.MyAPLCommand = (voxaEvent) => {
 // Do something with the voxaEvent, or not...

 return {
 token: "SkillTemplateToken",
 type: "Alexa.Presentation.APL.ExecuteCommands";
 commands: [{
 type: "SpeakItem", // Karaoke type command
 componentId: "someAPLComponent";
 }],
 };
 });

// views.js

 const views = {
 "en-US": {
 translation: {
 MyAPLCommand: "{MyAPLCommand}"
 },
 };
 };

// state.js

 app.onState('someState', () => {
 return {
 alexaAPLCommand: "MyAPLCommand",
 };
 });

 // Or you can do it directly...

 app.onState('someState', () => {
 return {
 alexaAPLCommand: {
 token: "SkillTemplateToken",
 type: "Alexa.Presentation.APL.ExecuteCommands";
 commands: [{
 type: "SpeakItem", // Karaoke type command
 componentId: "someAPLComponent";
 }],
 },
 };
 });

PlayAudio

Alexa Documentation [https://developer.amazon.com/docs/custom-skills/audioplayer-interface-reference.html]

const voxa = require('voxa');
const { PlayAudio } = voxa.alexa;

app.onState('someState', () => {
 const playAudio = new PlayAudio(
 'http://example.com/example.mp3',
 '{}',
 0,
 'REPLACE_ALL'
);

 return {
 directives: [playAudio],
 };
});

Dialog Flow Directives

Dialog Flow directives expose google actions functionality that’s platform specific. In general they take the same parameters you would pass to the Actions on Google Node JS SDK.

List

Actions on Google Documentation [https://developers.google.com/actions/assistant/responses#list]

The single-select list presents the user with a vertical list of multiple items and allows the user to select a single one. Selecting an item from the list generates a user query (chat bubble) containing the title of the list item.

app.onState('someState', () => {
 return {
 dialogflowList: {
 title: 'List Title',
 items: {
 // Add the first item to the list
 [SELECTION_KEY_ONE]: {
 synonyms: [
 'synonym of title 1',
 'synonym of title 2',
 'synonym of title 3',
],
 title: 'Title of First List Item',
 description: 'This is a description of a list item.',
 image: new Image({
 url: IMG_URL_AOG,
 alt: 'Image alternate text',
 }),
 },
 // Add the second item to the list
 [SELECTION_KEY_GOOGLE_HOME]: {
 synonyms: [
 'Google Home Assistant',
 'Assistant on the Google Home',
],
 title: 'Google Home',
 description: 'Google Home is a voice-activated speaker powered by ' +
 'the Google Assistant.',
 image: new Image({
 url: IMG_URL_GOOGLE_HOME,
 alt: 'Google Home',
 }),
 },
 // Add the third item to the list
 [SELECTION_KEY_GOOGLE_PIXEL]: {
 synonyms: [
 'Google Pixel XL',
 'Pixel',
 'Pixel XL',
],
 title: 'Google Pixel',
 description: 'Pixel. Phone by Google.',
 image: new Image({
 url: IMG_URL_GOOGLE_PIXEL,
 alt: 'Google Pixel',
 }),
 },
 },
 }
 }
});

Carousel

Actions on Google Documentation [https://developers.google.com/actions/assistant/responses#carousel]

The carousel scrolls horizontally and allows for selecting one item. Compared to the list selector, it has large tiles-allowing for richer content. The tiles that make up a carousel are similar to the basic card with image. Selecting an item from the carousel will simply generate a chat bubble as the response just like with list selector.

app.onState('someState', () => {
 return {
 dialogflowCarousel: {
 items: {
 // Add the first item to the carousel
 [SELECTION_KEY_ONE]: {
 synonyms: [
 'synonym of title 1',
 'synonym of title 2',
 'synonym of title 3',
],
 title: 'Title of First Carousel Item',
 description: 'This is a description of a carousel item.',
 image: new Image({
 url: IMG_URL_AOG,
 alt: 'Image alternate text',
 }),
 },
 // Add the second item to the carousel
 [SELECTION_KEY_GOOGLE_HOME]: {
 synonyms: [
 'Google Home Assistant',
 'Assistant on the Google Home',
],
 title: 'Google Home',
 description: 'Google Home is a voice-activated speaker powered by ' +
 'the Google Assistant.',
 image: new Image({
 url: IMG_URL_GOOGLE_HOME,
 alt: 'Google Home',
 }),
 },
 // Add third item to the carousel
 [SELECTION_KEY_GOOGLE_PIXEL]: {
 synonyms: [
 'Google Pixel XL',
 'Pixel',
 'Pixel XL',
],
 title: 'Google Pixel',
 description: 'Pixel. Phone by Google.',
 image: new Image({
 url: IMG_URL_GOOGLE_PIXEL,
 alt: 'Google Pixel',
 }),
 },
 },
 }
 }
});

Suggestions

Actions on Google Documentation [https://developers.google.com/actions/assistant/responses#suggestion_chip]

Use suggestion chips to hint at responses to continue or pivot the conversation. If during the conversation there is a primary call for action, consider listing that as the first suggestion chip.

Whenever possible, you should incorporate one key suggestion as part of the chat bubble, but do so only if the response or chat conversation feels natural.

app.onState('someState', () => {
 return {
 dialogflowSuggestions: ['Exit', 'Continue']
 }
});

app.onState('someState', () => {
 return {
 dialogflowLinkOutSuggestion: {
 name: "Suggestion Link",
 url: 'https://assistant.google.com/',
 }
 }
});

BasicCard

Actions on Google Documentation [https://developers.google.com/actions/assistant/responses#basic_card]

A basic card displays information that can include the following:

	Image

	Title

	Sub-title

	Text body

	Link button

	Border

Use basic cards mainly for display purposes. They are designed to be concise, to present key (or summary) information to users, and to allow users to learn more if you choose (using a weblink).

In most situations, you should add suggestion chips below the cards to continue or pivot the conversation.

Avoid repeating the information presented in the card in the chat bubble at all costs.

app.onState('someState', () => {
 return {
 dialogflowBasicCard: {
 text: `This is a basic card. Text in a basic card can include "quotes" and
 most other unicode characters including emoji. Basic cards also support
 some markdown formatting like *emphasis* or _italics_, **strong** or
 __bold__, and ***bold itallic*** or ___strong emphasis___ `,
 subtitle: 'This is a subtitle',
 title: 'Title: this is a title',
 buttons: new Button({
 title: 'This is a button',
 url: 'https://assistant.google.com/',
 }),
 image: new Image({
 url: 'https://example.com/image.png',
 alt: 'Image alternate text',
 }),
 }
 }
});

AccountLinkingCard

Actions on Google Documentation [https://developers.google.com/actions/identity/account-linking]

Account linking is a great way to lets users connect their Google accounts to existing accounts on your service. This allows you to build richer experiences for your users that take advantage of the data they already have in their account on your service. Whether it’s food preferences, existing payment accounts, music preferences, your users should be able to have better experiences in the Google Assistant by linking their accounts.

app.onState('someState', () => {
 return {
 dialogflowAccountLinkingCard: "To track your exercise"
 }
});

MediaResponse

Actions on Google Documentation [https://developers.google.com/actions/assistant/responses#media_responses]

Media responses let your app play audio content with a playback duration longer than the 120-second limit of SSML. The primary component of a media response is the single-track card. The card allows the user to perform these operations:

	Replay the last 10 seconds.

	Skip forward for 30 seconds.

	View the total length of the media content.

	View a progress indicator for audio playback.

	View the elapsed playback time.

const { MediaObject } = require('actions-on-google');

app.onState('someState', () => {

 const mediaObject = new MediaObject({
 name,
 url,
 });

 return {
 dialogflowMediaResponse: mediaObject
 };
});

User Information

Actions on Google Documentation [https://developers.google.com/actions/assistant/helpers#user_information]

User information
You can obtain the following user information with this helper:

	Display name

	Given name

	Family name

	Coarse device location (zip code and city)

	Precise device location (coordinates and street address)

app.onState('someState', () => {
 return {
 dialogflowPermission: {
 context: 'To read your mind',
 permissions: 'NAME',
 }
 };
});

Date and Time

Actions on Google Documentation <https://developers.google.com/actions/assistant/helpers#date_and_time>

You can obtain a date and time from users by requesting fulfillment of the actions.intent.DATETIME intent.

app.onState('someState', () => {
 return {
 dialogflowDateTime: {
 prompts: {
 initial: 'When do you want to come in?',
 date: 'Which date works best for you?',
 time: 'What time of day works best for you?',
 }
 }
 };
});

Confirmation

Actions on Google Documentation <https://developers.google.com/actions/assistant/helpers#confirmation>

You can ask a generic confirmation from the user (yes/no question) and get the resulting answer. The grammar for “yes” and “no” naturally expands to things like “Yea” or “Nope”, making it usable in many situations.

app.onState('someState', () => {
 return {
 dialogflowConfirmation: 'Can you confirm?',
 };
});

Android Link

Actions on Google Documentation [https://developers.google.com/actions/assistant/helpers#android_link]

You can ask the user to continue an interaction via your Android app. This helper allows you to prompt the user as part of the conversation. You’ll first need to associate your Android app with your Actions Console project via the Brand Verification page.

app.onState('someState', () => {
 const options = {
 destination: 'Google',
 url: 'example://gizmos',
 package: 'com.example.gizmos',
 reason: 'handle this for you',
 };

 return {
 dialogflowDeepLink: options
 };
});

Place and Location

Actions on Google Documentation [https://developers.google.com/actions/assistant/helpers#place_and_location]

You can obtain a location from users by requesting fulfillment of the actions.intent.PLACE intent. This helper is used to prompt the user for addresses and other locations, including any home/work/contact locations that they’ve saved with Google.

Saved locations will only return the address, not the associated mapping (e.g. “123 Main St” as opposed to “HOME = 123 Main St”).

app.onState('someState', () => {
 return {
 dialogflowPlace: {
 context: 'To find a place to pick you up',
 prompt: 'Where would you like to be picked up?',
 }
 };
});

TransactionDecision

TransactionRequirements

Routine Suggestions

Actions on Google Documentation [https://developers.google.com/actions/assistant/updates/routines]

To consistently re-engage with users, you need to become a part of their daily habits. Google Assistant users can already use Routines to execute multiple Actions with a single command, perfect for those times when users wake up in the morning, head out of the house, get ready for bed or many of the other tasks we perform throughout the day. Now, with Routine Suggestions, after someone engages with your Action, you can prompt them to add your Action to their Routines with just a couple of taps.

app.onState('someState', () => {
 return {
 dialogflowRegisterUpdate: {
 intent: 'Show Image',
 frequency: 'ROUTINES'
 }
 };
});

Push notifications

Actions on Google Documentation [https://developers.google.com/actions/assistant/updates/notifications]

Your app can send push notifications to users whenever relevant, such as sending a reminder when the due date for a task is near.

app.onState('someState', () => {
 return {
 dialogflowUpdatePermission: {
 intent: 'tell_latest_tip'
 }
 };
});

Multi-surface conversations

Actions on Google Documentation [https://developers.google.com/actions/assistant/surface-capabilities#multi-surface_conversations]

At any point during your app’s flow, you can check if the user has any other surfaces with a specific capability. If another surface with the requested capability is available, you can then transfer the current conversation over to that new surface.

app.onIntent('someState', async (voxaEvent) => {
 const screen = 'actions.capability.SCREEN_OUTPUT';
 if (!_.includes(voxaEvent.supportedInterfaces, screen)) {
 const screenAvailable = voxaEvent.conv.available.surfaces.capabilities.has(screen);

 const context = 'Sure, I have some sample images for you.';
 const notification = 'Sample Images';
 const capabilities = ['actions.capability.SCREEN_OUTPUT'];

 if (screenAvailable) {
 return {
 sayp: 'Hello',
 to: 'entry',
 flow: 'yield',
 dialogflowNewSurface: {
 context, notification, capabilities,
 },
 };
 }

 return {
 sayp: 'Does not have a screen',
 flow: 'terminate',
 };
 }

 return {
 sayp: 'Already has a screen',
 flow: 'terminate',
 };
});

Output Contexts

Actions on Google Documentation [https://actions-on-google.github.io/actions-on-google-nodejs/classes/dialogflow.contextvalues.html#set]

If you need to add output contexts to the dialog flow webhook you can use the dialogflowContext directive

app.onIntent("LaunchIntent", {
 dialogflowContext: {
 lifespan: 5,
 name: "DONE_YES_NO_CONTEXT",
 },
 sayp: "Hello!",
 to: "entry",
 flow: "yield",
});

Botframework Directives

Sign In Card

A sign in card is used to account link your user. On Cortana the parameters are ignored and the system will use the parameters configured in the cortana channel

app.onIntent("LaunchIntent", {
 botframeworkSigninCard: {
 buttonTitle: "Sign In",
 cardText: "Sign In Card",
 url: "https://example.com",
 },
 to: "die",
});

Hero Card

import { HeroCard } from "botbuilder";

const card = new HeroCard()
 .title("Card Title")
 .subtitle("Card Subtitle")
 .text("Some Text");

app.onIntent("LaunchIntent", {
 botframeworkHeroCard: card,
 to: "die",
});

Suggested Actions

import { SuggestedActions } from "botbuilder";
const suggestedActions = new SuggestedActions().addAction({
 title: "Green",
 type: "imBack",
 value: "productId=1&color=green",
});

app.onIntent("LaunchIntent", {
 botframeworkSuggestedActions: suggestedActions,
 to: "die",
});

Audio Card

import { AudioCard } from "botbuilder";

const audioCard = new AudioCard().title("Sample audio card");
audioCard.media([
 {
 profile: "audio.mp3",
 url: "http://example.com/audio.mp3",
 },
]);

app.onIntent("LaunchIntent", {
 botframeworkAudioCard: audioCard,
 to: "die",
});

Text

The Text directive renders a view and adds it to the response in plain text, this response is then shown to the user in devices with a screen

app.onIntent("LaunchIntent", {
 say: "SomeView",
 text: "SomeView",
 to: "die",
});

Text P

app.onIntent("LaunchIntent", {
 sayp: "Some Text",
 textp: "Some Text",
 to: "die",
});

Attachments and Attachment Layouts

const cards = _.map([1, 2, 3], (index: number) => {
 return new HeroCard().title(`Event ${index}`).toAttachment();
});

app.onIntent("LaunchIntent", {
 botframeworkAttachmentLayout: AttachmentLayout.carousel,
 botframeworkAttachments: cards,
 to: "die",
});

Alexa APIs

Amazon has integrated several APIs so users can leverage the Alexa’s configurations, device’s and user’s information.

Customer Contact Information Reference

When a customer enables your Alexa skill, your skill can request the customer’s permission to the their contact information, which includes name, email address and phone number, if the customer has consented. You can then use this data to support personalized intents to enhance the customer experience without account linking. For example, your skill may use customer contact information to make a reservation at a nearby restaurant and send a confirmation to the customer.

	
class CustomerContact(alexaEvent)

	
	Arguments

	
	alexaEvent (VoxaEvent.rawEvent) – Alexa Event object.

	
CustomerContact.getEmail()

	Gets user’s email

	Returns string

	A string with user’s email address

	
CustomerContact.getGivenName()

	Gets user’s given name

	Returns string

	A string with user’s given name

	
CustomerContact.getName()

	Gets user’s full name

	Returns string

	A string with user’s full name

	
CustomerContact.getPhoneNumber()

	Gets user’s phone number

	Returns object

	A JSON object with user’s phone number and country code

	
CustomerContact.getFullUserInformation()

	Gets name or given name, phone number, and email address

	Returns object

	A JSON object with user’s info with the following structure

{
 "countryCode": "string",
 "email": "string",
 "givenName": "string",
 "name": "string",
 "phoneNumber": "string"
}

With Voxa, you can ask for the user’s full name like this:

app.onIntent('FullAddressIntent', async (voxaEvent) => {
 const name = await voxaEvent.alexa.customerContact.getName();

 voxaEvent.model.name = name;
 return { ask: 'CustomerContact.Name' };
});

Voxa also has a method to request all parameters at once:

app.onIntent('FullAddressIntent', async (voxaEvent) => {
 const info = await voxaEvent.alexa.customerContact.getFullUserInformation();
 const { countryCode, email, name, phoneNumber } = info;

 voxaEvent.model.countryCode = countryCode;
 voxaEvent.model.email = email;
 voxaEvent.model.name = name;
 voxaEvent.model.phoneNumber = phoneNumber;

 return { ask: 'CustomerContact.FullInfo' };
});

To send a card requesting user the permission to access their information, you can simply add the card object to the view in your views.js file with the following format:

ContactPermission: {
 tell: 'Before accessing your information, you need to give me permission. Go to your Alexa app, I just sent a link.',
 card: {
 type: 'AskForPermissionsConsent',
 permissions: [
 'alexa::profile:name:read',
 'alexa::profile:email:read',
 'alexa::profile:mobile_number:read'
],
 },
},

Device Address Information Reference

When a customer enables your Alexa skill, your skill can obtain the customer’s permission to use address data associated with the customer’s Alexa device. You can then use this address data to provide key functionality for the skill, or to enhance the customer experience. For example, your skill could provide a list of nearby store locations or provide restaurant recommendations using this address information. This document describes how to enable this capability and query the Device Address API for address data.

Note that the address entered in the Alexa device may not represent the current physical address of the device. This API uses the address that the customer has entered manually in the Alexa app, and does not have any capability of testing for GPS or other location-based data.

	
class DeviceAddress(alexaEvent)

	
	Arguments

	
	alexaEvent (VoxaEvent.rawEvent) – Alexa Event object.

	
DeviceAddress.getAddress()

	Gets full address info

	Returns object

	A JSON object with the full address info

	
DeviceAddress.getCountryRegionPostalCode()

	Gets country/region and postal code

	Returns object

	A JSON object with country/region info

With Voxa, you can ask for the full device’s address like this:

app.onIntent('FullAddressIntent', async (voxaEvent) => {
 const info = await voxaEvent.alexa.deviceAddress.getAddress();

 voxaEvent.model.deviceInfo = `${info.addressLine1}, ${info.city}, ${info.countryCode}`;
 return { ask: 'DeviceAddress.FullAddress' };
});

You can decide to only get the country/region and postal code. You can do it this way:

app.onIntent('PostalCodeIntent', async (voxaEvent) => {
 const info = await voxaEvent.alexa.deviceAddress.getCountryRegionPostalCode();

 voxaEvent.model.deviceInfo = `${info.postalCode}, ${info.countryCode}`;
 return { ask: 'DeviceAddress.PostalCode' };
});

To send a card requesting user the permission to access the device address info, you can simply add the card object to the view in your views.js file with the following format:

FullAddressPermision: {
 tell: 'Before accessing your full address, you need to give me permission. Go to your Alexa app, I just sent a link.',
 card: {
 type: 'AskForPermissionsConsent',
 permissions: [
 'read::alexa:device:all:address',
],
 },
},

PostalCodePermission: {
 tell: 'Before accessing your postal code, you need to give me permission. Go to your Alexa app, I just sent a link.',
 card: {
 type: 'AskForPermissionsConsent',
 permissions: [
 'read::alexa:device:all:address:country_and_postal_code',
],
 },
},

Device Settings Reference

Alexa customers can set their timezone, distance measuring unit, and temperature measurement unit in the Alexa app. The Alexa Settings APIs allow developers to retrieve customer preferences for these settings in a unified view.

	
class DeviceSettings(voxaEvent)

	
	Arguments

	
	alexaEvent (VoxaEvent.rawEvent) – Alexa Event object.

	
DeviceSettings.getDistanceUnits()

	Gets distance units

	Returns string

	A string with the distance units

	
DeviceSettings.getTemperatureUnits()

	Gets temperature units

	Returns string

	A string with the temperature units

	
DeviceSettings.getTimezone()

	Gets timezone

	Returns string

	A string with the timezone value

	
DeviceSettings.getSettings()

	Gets all settings details

	Returns object

	A JSON object with device’s info with the following structure

{
 "distanceUnits": "string",
 "temperatureUnits": "string",
 "timezone": "string"
}

With Voxa, you can ask for the full device’s address like this:

app.onIntent('FullSettingsIntent', async (voxaEvent) => {
 const info = await voxaEvent.alexa.deviceSettings.getSettings();

 voxaEvent.model.settingsInfo = `${info.distanceUnits}, ${info.temperatureUnits}, ${info.timezone}`;
 return { ask: 'DeviceSettings.FullSettings' };
});

You don’t need to request to the user the permission to access the device settings info.

In-Skill Purchases Reference

The in-skill purchasing [https://developer.amazon.com/docs/in-skill-purchase/isp-overview.html] feature enables you to sell premium content such as game features and interactive stories for use in skills with a custom interaction model.

Buying these products in a skill is seamless to a user. They may ask to shop products, buy products by name, or agree to purchase suggestions you make while they interact with a skill. Customers pay for products using the payment options associated with their Amazon account.

For more information about setting up ISP with the ASK CLI follow this link [https://developer.amazon.com/docs/in-skill-purchase/use-the-cli-to-manage-in-skill-products.html]. And to understand what’s the process behind the ISP requests and responses to the Alexa Service click here [https://developer.amazon.com/docs/in-skill-purchase/add-isps-to-a-skill.html].

With Voxa, you can implement all ISP features like buying, refunding and upselling an item:

app.onIntent('BuyIntent', async (voxaEvent) => {
 const { productName } = voxaEvent.intent.params;
 const token = 'startState';
 const buyDirective = await voxaEvent.alexa.isp.buyByReferenceName(productName, token);

 return { alexaConnectionsSendRequest: buyDirective };
});

app.onIntent('RefundIntent', async (voxaEvent) => {
 const { productName } = voxaEvent.intent.params;
 const token = 'startState';
 const buyDirective = await voxaEvent.alexa.isp.cancelByReferenceName(productName, token);

 return { alexaConnectionsSendRequest: buyDirective };
});

You can also check if the ISP feature is allowed in a locale or the account is correctly setup in the markets ISP works just by checking with the isAllowed() function.

app.onIntent('UpsellIntent', async (voxaEvent) => {
 if (!voxaEvent.alexa.isp.isAllowed()) {
 return { ask: 'ISP.Invalid', to: 'entry' };
 }

 const { productName } = voxaEvent.intent.params;
 const token = 'startState';
 const buyDirective = await voxaEvent.alexa.isp.upsellByReferenceName(productName, upsellMessage, token);

 return { alexaConnectionsSendRequest: buyDirective };
});

To get the full list of products and know which ones have been purchased, you can do it like this:

app.onIntent('ProductsIntent', async (voxaEvent) => {
 const list = await voxaEvent.alexa.isp.getProductList();

 voxaEvent.model.productArray = list.inSkillProducts.map(x => x.referenceName);

 return { ask: 'Products.List', to: 'entry' };
});

When users accept or refuse to buy/cancel an item, Alexa sends a Connections.Response directive. A very simple example on how the Connections.Response JSON request from Alexa looks like is:

{
 "type": "Connections.Response",
 "requestId": "string",
 "timestamp": "string",
 "name": "Upsell",
 "status": {
 "code": "string",
 "message": "string"
 },
 "payload": {
 "purchaseResult": "ACCEPTED",
 "productId": "string",
 "message": "optional additional message"
 },
 "token": "string"
}

Alexa Shopping and To-Do Lists Reference

Alexa customers have access to two default lists: Alexa to-do and Alexa shopping. In addition, Alexa customer can create and manage custom lists [https://developer.amazon.com/docs/custom-skills/access-the-alexa-shopping-and-to-do-lists.html] in a skill that supports that.

Customers can review and modify their Alexa lists using voice through a device with Alexa or via the Alexa app. For example, a customer can tell Alexa to add items to the Alexa Shopping List at home, and then while at the store, view the items via the Alexa app, and check them off.

	
class Lists(alexaEvent)

	
	Arguments

	
	alexaEvent (VoxaEvent.rawEvent) – Alexa Raw Event object.

	
Lists.getDefaultShoppingList()

	Gets info for the Alexa default Shopping list

	Returns Object

	A JSON object with the Shopping list info

	
Lists.getDefaultToDoList()

	Gets info for the Alexa default To-Do list

	Returns Object

	A JSON object with the To-Do list info

	
Lists.getListMetadata()

	Gets list metadata for all user’s lists including the default list

	Returns Array

	An object array

	
Lists.getListById(listId, status = 'active')

	Gets specific list by id and status

	Arguments

	
	listId – List ID.

	status – list status, defaults to active (only value accepted for now)

	Returns Object

	A JSON object with the specific list info.

	
Lists.getOrCreateList(name)

	Looks for a list by name and returns it, if it is not found, it creates a new list with that name and returns it.

	Arguments

	
	name – List name.

	Returns Object

	A JSON object with the specific list info.

	
Lists.createList(name, state = 'active')

	Creates a new list with the name and state.

	Arguments

	
	name – List name.

	active – list status, defaults to active (only value accepted for now)

	Returns Object

	A JSON object with the specific list info.

	
Lists.updateList(listId, name, state = 'active', version)

	Updates list with the name, state, and version.

	Arguments

	
	listId – List ID.

	state – list status, defaults to active (only value accepted for now)

	version – List version.

	Returns Object

	A JSON object with the specific list info.

	
Lists.deleteList(listId)

	Deletes a list by ID.

	Arguments

	
	listId – List ID.

	Returns

	undefined. HTTP response with 200 or error if any.

	
Lists.getListItem(listId, itemId)

	Creates a new list with the name and state.

	Arguments

	
	listId – List ID.

	itemId – Item ID.

	Returns Object

	A JSON object with the specific list info.

	
Lists.createItem(listId, value, status = 'active')

	Creates a new list with the name and state.

	Arguments

	
	listId – List ID.

	value – Item name.

	status – item status, defaults to active. Other values accepted: ‘completed’

	Returns Object

	A JSON object with the specific item info.

	
Lists.updateItem(listId, itemId, value, status, version)

	Creates a new list with the name and state.

	Arguments

	
	listId – List ID.

	itemId – Item ID.

	value – Item name.

	status – Item status. Values accepted: ‘active | completed’

	Returns Object

	A JSON object with the specific item info.

	
Lists.deleteItem(listId, itemId)

	Creates a new list with the name and state.

	Arguments

	
	listId – List ID.

	itemId – Item ID.

	Returns

	undefined. HTTP response with 200 or error if any.

With Voxa, you can implement all lists features. In this code snippet you will see how to check if a list exists, if not, it creates one. If it does exist, it will check if an item is already in the list and updates the list with a new version, if no, it adds it:

app.onIntent('AddItemToListIntent', async (voxaEvent) => {
 const { productName } = voxaEvent.intent.params;
 const listsMetadata = await voxaEvent.alexa.lists.getListMetadata();
 const listName = 'MY_CUSTOM_LIST';

 const listMeta = _.find(listsMetadata.lists, { name: listName });
 let itemInfo;
 let listInfo;

 if (listMeta) {
 listInfo = await voxaEvent.alexa.lists.getListById(listMeta.listId);
 itemInfo = _.find(listInfo.items, { value: productName });

 await voxaEvent.alexa.lists.updateList(listMeta.name, 'active', 2);
 } else {
 listInfo = await voxaEvent.alexa.lists.createList(listName);
 }

 if (itemInfo) {
 return { ask: 'List.ProductAlreadyInList' };
 }

 await voxaEvent.alexa.lists.createItem(listInfo.listId, productName);

 return { ask: 'List.ProductCreated' };
});

There’s also a faster way to consult and/or create a list. Follow this example:

app.onIntent('AddItemToListIntent', async (voxaEvent) => {
 const { productName } = voxaEvent.intent.params;
 const listName = 'MY_CUSTOM_LIST';

 const listInfo = await voxaEvent.alexa.lists.getOrCreateList(listName);
 const itemInfo = _.find(listInfo.items, { value: productName });

 if (itemInfo) {
 return { ask: 'List.ProductAlreadyInList' };
 }

 await voxaEvent.alexa.lists.createItem(listInfo.listId, productName);

 return { ask: 'List.ProductCreated' };
});

Let’s review another example. Let’s say we have an activity in the default To-Do list and we want to mark it as completed. For that, we need to pull down the items from the default To-Do list, find our item and modify it:

app.onIntent('CompleteActivityIntent', async (voxaEvent) => {
 const { activity } = voxaEvent.intent.params;

 const listInfo = await voxaEvent.alexa.lists.getDefaultToDoList();
 const itemInfo = _.find(listInfo.items, { value: activity });

 await voxaEvent.alexa.lists.updateItem(
 listInfo.listId,
 itemInfo.id,
 activity,
 'completed',
 2);

 return { ask: 'List.ActivityCompleted' };
});

Let’s check another example. Let’s say users want to remove an item in their default shopping list that they had already marked as completed. We’re going to first fetch the default shopping list’s info, then look for the product to remove, we’re going to first check if the product is marked as completed to then delete it:

app.onIntent('RemoveProductIntent', async (voxaEvent) => {
 const { productId } = voxaEvent.model;

 const listInfo = await voxaEvent.alexa.lists.getDefaultShoppingList();
 const itemInfo = await voxaEvent.alexa.lists.getListItem(listInfo.listId, productId);

 if (itemInfo.status === 'active') {
 return { ask: 'List.ConfirmProductDeletion', to: 'wantToDeleteActiveProduct?' };
 }

 await voxaEvent.alexa.lists.deleteItem(listInfo.listId, productId);

 return { ask: 'List.ProductRemoved' };
});

Finally, if you want to remove the list you had created:

app.onIntent('DeleteListIntent', async (voxaEvent) => {
 const listName = 'MY_CUSTOM_LIST';

 const listInfo = await voxaEvent.alexa.lists.getOrCreateList(listName);
 await voxaEvent.alexa.lists.deleteList(listInfo.listId);

 return { ask: 'List.ListRemoved' };
});

To send a card requesting user the permission to read/write Alexa lists, you can simply add the card object to the view in your views.js file with the following format:

NeedShoppingListPermission: {
 tell: 'Before adding an item to your list, you need to give me permission. Go to your Alexa app, I just sent a link.',
 card: {
 type: 'AskForPermissionsConsent',
 permissions: [
 'read::alexa:household:list',
 'write::alexa:household:list',
],
 },
},

Alexa Reminders API Reference

Use the Alexa Reminders API to create and manage reminders from your skill. This reference describes the available operations for the Alexa Reminders API.

Note that you need to modify your skill manifest by adding the reminder permission:

	
class Reminders(alexaEvent)

	
	Arguments

	
	alexaEvent (VoxaEvent.rawEvent) – Alexa Event object.

	
Reminders.getReminder()

	Gets a reminder

	Arguments

	
	alertToken – Reminder’s ID.

	Returns object

	A JSON object with the reminder’s details

	
Reminders.getAllReminders()

	Gets all reminders

	Returns object

	A JSON object with an array of the reminder’s details

	
Reminders.createReminder(reminder)

	Creates a reminder

	Arguments

	
	reminder – Reminder Builder Object.

	Returns object

	A JSON object with the details of reminder’s creation

	
Reminders.updateReminder(alertToken, reminder)

	Updates a reminder

	Arguments

	
	alertToken – Reminder’s ID.

	reminder – Reminder Builder Object.

	Returns object

	A JSON object with the details of reminder’s update

	
Reminders.deleteReminder(alertToken)

	Deletes a reminder

	Arguments

	
	alertToken – Reminder’s ID.

	Returns object

	A JSON object with the details of reminder’s deletion

	
class ReminderBuilder()

	
	
ReminderBuilder.setCreatedTime(createdTime)

	Sets created time

	Arguments

	
	createdTime – Reminder’s creation time.

	Returns object

	A ReminderBuilder object

	
ReminderBuilder.setRequestTime(requestTime)

	Sets request time

	Arguments

	
	requestTime – Reminder’s request time.

	Returns object

	A ReminderBuilder object

	
ReminderBuilder.setTriggerAbsolute(scheduledTime)

	Sets the reminder trigger as absolute

	Arguments

	
	scheduledTime – Reminder’s scheduled time.

	Returns object

	A ReminderBuilder object

	
ReminderBuilder.setTriggerRelative(offsetInSeconds)

	Sets the reminder trigger as relative

	Arguments

	
	offsetInSeconds – Reminder’s offset in seconds.

	Returns object

	A ReminderBuilder object

	
ReminderBuilder.setTimeZoneId(timeZoneId)

	Sets time zone Id

	Arguments

	
	timeZoneId – Reminder’s time zone.

	Returns object

	A ReminderBuilder object

	
ReminderBuilder.setRecurrenceFreqDaily()

	Sets reminder’s recurrence frequence to “DAILY”

	Returns object

	A ReminderBuilder object

	
ReminderBuilder.setRecurrenceFreqWeekly()

	Sets reminder’s recurrence frequence to “WEEKLY”

	Returns object

	A ReminderBuilder object

	
ReminderBuilder.setRecurrenceByDay(recurrenceByDay)

	Sets frequency by day

	Arguments

	
	recurrenceByDay – Array of frequency by day.

	Returns object

	A ReminderBuilder object

	
ReminderBuilder.setRecurrenceInterval(interval)

	Sets reminder’s interval

	Arguments

	
	interval – Reminder’s interval

	Returns object

	A ReminderBuilder object

	
ReminderBuilder.addContent(locale, text)

	Sets reminder’s content

	Arguments

	
	locale – Reminder’s locale

	text – Reminder’s text

	Returns object

	A ReminderBuilder object

	
ReminderBuilder.enablePushNotification()

	Sets reminder’s push notification status to “ENABLED”

	Returns object

	A ReminderBuilder object

	
ReminderBuilder.disablePushNotification()

	Sets reminder’s push notification status to “DISABLED”

	Returns object

	A ReminderBuilder object

With Voxa, you can create, update, delete and get reminders like this:

const { ReminderBuilder } = require("voxa");

app.onIntent('CreateReminderIntent', async (voxaEvent) => {
 const reminder = new ReminderBuilder()
 .setCreatedTime("2018-12-11T14:05:38.811")
 .setTriggerAbsolute("2018-12-12T12:00:00.000")
 .setTimeZoneId("America/Denver")
 .setRecurrenceFreqDaily()
 .addContent("en-US", "CREATION REMINDER TEST")
 .enablePushNotification();

 const reminderResponse = await voxaEvent.alexa.reminders.createReminder(reminder);

 voxaEvent.model.reminder = reminderResponse;
 return { tell: "Reminder.Created" };
});

app.onIntent('UpdateReminderIntent', async (voxaEvent) => {
 const alertToken = '1234-5678-9012-3456';
 const reminder = new ReminderBuilder()
 .setRequestTime("2018-12-11T14:05:38.811")
 .setTriggerAbsolute("2018-12-12T12:00:00.000")
 .setTimeZoneId("America/Denver")
 .setRecurrenceFreqDaily()
 .addContent("en-US", "CREATION REMINDER TEST")
 .enablePushNotification();

 const reminderResponse = await voxaEvent.alexa.reminders.updateReminder(alertToken, reminder);

 voxaEvent.model.reminder = reminderResponse;
 return { tell: "Reminder.Updated" };
});

app.onIntent('UpdateReminderIntent', async (voxaEvent) => {
 const alertToken = '1234-5678-9012-3456';
 const reminderResponse = await voxaEvent.alexa.reminders.deleteReminder(alertToken);

 return { tell: "Reminder.Deleted" };
});

app.onIntent('GetReminderIntent', async (voxaEvent) => {
 const alertToken = '1234-5678-9012-3456';
 const reminderResponse = await voxaEvent.alexa.reminders.getReminder(alertToken);

 voxaEvent.model.reminder = reminderResponse.alerts[0];
 return { tell: "Reminder.Get" };
});

app.onIntent('GetAllRemindersIntent', async (voxaEvent) => {
 const reminderResponse = await voxaEvent.alexa.reminders.getAllReminders();

 voxaEvent.model.reminders = reminderResponse.alerts;
 return { tell: "Reminder.Get" };
});

Skill Messaging API Reference

The Skill Messaging API is used to send message requests to skills. These methods are meant to work for out-of-session operations, so you will not likely use it in the skill code. However, you might have a separate file inside your Voxa project to work with some automated triggers like CloudWatch Events or SQS functions. In that case, your file has access to the voxa package, thus, you can take advantage of these methods.

	
class Messaging(clientId, clientSecret)

	
	Arguments

	
	clientId – Client ID to call Messaging API.

	clientSecret – Client Secret to call Messaging API.

	
Messaging.sendMessage()

	Sends message to a skill

	Arguments

	
	request – Message request params with the following structure:

{
 endpoint: string, // User's endpoint.
 userId: string, // User's userId.
 data: any, // Object with key-value pairs to send to the skill.
 expiresAfterSeconds: number, // Expiration time in milliseconds, defaults to 3600 milliseconds.
}

:returns: undefined

In the following example, you’ll see a simple code of a lambda function which calls your database to fetch users to whom you’ll send a reminder with the Reminder API, the message is sent via Messaging API:

'use strict';

const Promise = require('bluebird');
const { Messaging } = require('voxa');

const Storage = require('./Storage');

const CLIENT_ID = 'CLIENT_ID';
const CLIENT_SECRET = 'CLIENT_SECRET';

exports.handler = async (event, context, callback) => {
 const usersOptedIn = await Storage.getUsers();
 const messaging = new Messaging(CLIENT_ID, CLIENT_SECRET);

 await Promise.map(usersOptedIn, (user) => {
 const data = {
 timezone: user.timezone,
 title: user.reminderTitle,
 when: user.reminderTime,
 };

 const request = {
 endpoint: user.endpoint,
 userId: user.userId,
 data,
 };

 return messaging.sendMessage(request)
 .catch((err) => {
 console.log('ERROR SENDING MESSAGE', err);

 return null;
 });
 });

 callback(undefined, "OK");
};

This will dispatch a ‘Messaging.MessageReceived’ request to every user and you can handle the code in Voxa like this:

const { ReminderBuilder } = require("voxa");

app["onMessaging.MessageReceived"](async (voxaEvent, reply) => {
 const reminderData = voxaEvent.rawEvent.request.message;

 const reminder = new ReminderBuilder()
 .setCreatedTime("2018-12-11T14:05:38.811")
 .setTriggerAbsolute(reminderData.when)
 .setTimeZoneId(reminderData.timezone)
 .setRecurrenceFreqDaily()
 .addContent("en-US", reminderData.title)
 .enablePushNotification();

 await voxaEvent.alexa.reminders.createReminder(reminder);

 return reply;
});

The main advantage of sending a message with the Messaging API is that it generates a new access token valid for 1 hour. This is important for out-of-session operations where you don’t have access to a valid access token. The event sent to your skill now has a new access token valid for 1 hour. So now, you can use it to call any Alexa API that requires an access token in the authorization headers. The request object of the event looks like this:

"request": {
 "type": "Messaging.MessageReceived",
 "requestId": "amzn1.echo-api.request.VOID",
 "timestamp": "2018-12-17T22:06:28Z",
 "message": {
 "name": "John"
 }
}

Proactive Events API Reference

The ProactiveEvents API enables Alexa Skill Developers to send events to Alexa, which represent factual data that may interest a customer. Upon receiving an event, Alexa proactively delivers the information to customers subscribed to receive these events. This API currently supports one proactive channel, Alexa Notifications. As more proactive channels are added in the future, developers will be able to take advantage of them without requiring integration with a new API.

	
class ProactiveEvents(clientId, clientSecret)

	
	Arguments

	
	clientId – Client ID to call Messaging API.

	clientSecret – Client Secret to call Messaging API.

	
ProactiveEvents.createEvent()

	Creates proactive event

	Arguments

	
	endpoint – User’s default endpoint

	body – Event’s body

	isDevelopment – Flag to define if the event is sent to development stage. If false, then it goes to live skill

	Returns

	undefined

This API is meant to work as an out-of-session task, so you’d need to use the Messaging API if you want to send a notification triggered by your server. The following examples show how you can use the different schemas to send proactive events (formerly Notifications):

	WeatherAlertEventsBuilder

const { ProactiveEvents, WeatherAlertEventsBuilder } = require("voxa");

const CLIENT_ID = 'CLIENT_ID';
const CLIENT_SECRET = 'CLIENT_SECRET';

app["onMessaging.MessageReceived"](async (voxaEvent, reply) => {
 const eventData = voxaEvent.rawEvent.request.message;

 const event: WeatherAlertEventsBuilder = new WeatherAlertEventsBuilder();
 event
 .setHurricane()
 .addContent("en-US", "source", eventData.localizedValue)
 .setReferenceId(eventData.referenceId)
 .setTimestamp(eventData.timestamp)
 .setExpiryTime(eventData.expiryTime)
 .setUnicast(eventData.userId);

 const proactiveEvents = new ProactiveEvents(CLIENT_ID, CLIENT_SECRET);
 await proactiveEvents.createEvent(endpoint, event, true);

 return reply;
});

	SportsEventBuilder

const { ProactiveEvents, SportsEventBuilder } = require("voxa");

const CLIENT_ID = 'CLIENT_ID';
const CLIENT_SECRET = 'CLIENT_SECRET';

app["onMessaging.MessageReceived"](async (voxaEvent, reply) => {
 const eventData = voxaEvent.rawEvent.request.message;

 const event: SportsEventBuilder = new SportsEventBuilder();
 event
 .setAwayTeamStatistic("Boston Red Sox", 5)
 .setHomeTeamStatistic("New York Yankees", 2)
 .setUpdate("Boston Red Sox", 5)
 .addContent("en-US", "eventLeagueName", eventData.localizedValue)
 .setReferenceId(eventData.referenceId)
 .setTimestamp(eventData.timestamp)
 .setExpiryTime(eventData.expiryTime)
 .setUnicast(eventData.userId);

 const proactiveEvents = new ProactiveEvents(CLIENT_ID, CLIENT_SECRET);
 await proactiveEvents.createEvent(endpoint, event, true);

 return reply;
});

	MessageAlertEventBuilder

const {
 MESSAGE_ALERT_FRESHNESS,
 MESSAGE_ALERT_STATUS,
 MESSAGE_ALERT_URGENCY,
 MessageAlertEventBuilder,
 ProactiveEvents,
} = require("voxa");

const CLIENT_ID = 'CLIENT_ID';
const CLIENT_SECRET = 'CLIENT_SECRET';

app["onMessaging.MessageReceived"](async (voxaEvent, reply) => {
 const eventData = voxaEvent.rawEvent.request.message;

 const event: MessageAlertEventBuilder = new MessageAlertEventBuilder();
 event
 .setMessageGroup(eventData.creatorName, eventData.count, MESSAGE_ALERT_URGENCY.URGENT)
 .setState(MESSAGE_ALERT_STATUS.UNREAD, MESSAGE_ALERT_FRESHNESS.NEW)
 .setReferenceId(eventData.referenceId)
 .setTimestamp(eventData.timestamp)
 .setExpiryTime(eventData.expiryTime)
 .setUnicast(eventData.userId);

 const proactiveEvents = new ProactiveEvents(CLIENT_ID, CLIENT_SECRET);
 await proactiveEvents.createEvent(endpoint, event, true);

 return reply;
});

	OrderStatusEventBuilder

const {
 ORDER_STATUS,
 OrderStatusEventBuilder,
 ProactiveEvents,
} = require("voxa");

const CLIENT_ID = 'CLIENT_ID';
const CLIENT_SECRET = 'CLIENT_SECRET';

app["onMessaging.MessageReceived"](async (voxaEvent, reply) => {
 const eventData = voxaEvent.rawEvent.request.message;

 const event: OrderStatusEventBuilder = new OrderStatusEventBuilder();
 event
 .setStatus(ORDER_STATUS.ORDER_DELIVERED, eventData.expectedArrival, eventData.enterTimestamp)
 .addContent("en-US", "sellerName", eventData.localizedValue)
 .setReferenceId(eventData.referenceId)
 .setTimestamp(eventData.timestamp)
 .setExpiryTime(eventData.expiryTime)
 .setUnicast(eventData.userId);

 const proactiveEvents = new ProactiveEvents(CLIENT_ID, CLIENT_SECRET);
 await proactiveEvents.createEvent(endpoint, event, true);

 return reply;
});

	OccasionEventBuilder

const {
 OCCASION_CONFIRMATION_STATUS,
 OCCASION_TYPE,
 OccasionEventBuilder,
 ProactiveEvents,
} = require("voxa");

const CLIENT_ID = 'CLIENT_ID';
const CLIENT_SECRET = 'CLIENT_SECRET';

app["onMessaging.MessageReceived"](async (voxaEvent, reply) => {
 const eventData = voxaEvent.rawEvent.request.message;

 const event: OccasionEventBuilder = new OccasionEventBuilder();
 event
 .setOccasion(eventData.bookingType, OCCASION_TYPE.APPOINTMENT)
 .setStatus(OCCASION_CONFIRMATION_STATUS.CONFIRMED)
 .addContent("en-US", "brokerName", eventData.brokerName)
 .addContent("en-US", "providerName", eventData.providerName)
 .addContent("en-US", "subject", eventData.subject)
 .setReferenceId(eventData.referenceId)
 .setTimestamp(eventData.timestamp)
 .setExpiryTime(eventData.expiryTime)
 .setUnicast(eventData.userId);

 const proactiveEvents = new ProactiveEvents(CLIENT_ID, CLIENT_SECRET);
 await proactiveEvents.createEvent(endpoint, event, true);

 return reply;
});

	TrashCollectionAlertEventBuilder

const {
 GARBAGE_COLLECTION_DAY,
 GARBAGE_TYPE,
 TrashCollectionAlertEventBuilder,
 ProactiveEvents,
} = require("voxa");

const CLIENT_ID = 'CLIENT_ID';
const CLIENT_SECRET = 'CLIENT_SECRET';

app["onMessaging.MessageReceived"](async (voxaEvent, reply) => {
 const eventData = voxaEvent.rawEvent.request.message;

 const event: TrashCollectionAlertEventBuilder = new TrashCollectionAlertEventBuilder();
 event
 .setAlert(GARBAGE_COLLECTION_DAY.MONDAY,
 GARBAGE_TYPE.BOTTLES,
 GARBAGE_TYPE.BULKY,
 GARBAGE_TYPE.CANS,
 GARBAGE_TYPE.CLOTHING)
 .setReferenceId(eventData.referenceId)
 .setTimestamp(eventData.timestamp)
 .setExpiryTime(eventData.expiryTime)
 .setUnicast(eventData.userId);

 const proactiveEvents = new ProactiveEvents(CLIENT_ID, CLIENT_SECRET);
 await proactiveEvents.createEvent(endpoint, event, true);

 return reply;
});

	MediaContentEventBuilder

const {
 MEDIA_CONTENT_METHOD,
 MEDIA_CONTENT_TYPE,
 MediaContentEventBuilder,
 ProactiveEvents,
} = require("voxa");

const CLIENT_ID = 'CLIENT_ID';
const CLIENT_SECRET = 'CLIENT_SECRET';

app["onMessaging.MessageReceived"](async (voxaEvent, reply) => {
 const eventData = voxaEvent.rawEvent.request.message;

 const event: MediaContentEventBuilder = new MediaContentEventBuilder();
 event
 .setAvailability(MEDIA_CONTENT_METHOD.AIR)
 .setContentType(MEDIA_CONTENT_TYPE.ALBUM)
 .addContent("en-US", "providerName", eventData.providerName)
 .addContent("en-US", "contentName", eventData.contentName)
 .setReferenceId(eventData.referenceId)
 .setTimestamp(eventData.timestamp)
 .setExpiryTime(eventData.expiryTime)
 .setUnicast(eventData.userId);

 const proactiveEvents = new ProactiveEvents(CLIENT_ID, CLIENT_SECRET);
 await proactiveEvents.createEvent(endpoint, event, true);

 return reply;
});

	SocialGameInviteEventBuilder

const {
 SOCIAL_GAME_INVITE_TYPE,
 SOCIAL_GAME_RELATIONSHIP_TO_INVITEE,
 SocialGameInviteEventBuilder,
 ProactiveEvents,
} = require("voxa");

const CLIENT_ID = 'CLIENT_ID';
const CLIENT_SECRET = 'CLIENT_SECRET';

app["onMessaging.MessageReceived"](async (voxaEvent, reply) => {
 const eventData = voxaEvent.rawEvent.request.message;

 const event: SocialGameInviteEventBuilder = new SocialGameInviteEventBuilder();
 event
 .setGame(SOCIAL_GAME_OFFER.GAME)
 .setInvite(eventData.name, SOCIAL_GAME_INVITE_TYPE.CHALLENGE, SOCIAL_GAME_RELATIONSHIP_TO_INVITEE.CONTACT)
 .addContent("en-US", "gameName", eventData.localizedValue)
 .setReferenceId(eventData.referenceId)
 .setTimestamp(eventData.timestamp)
 .setExpiryTime(eventData.expiryTime)
 .setUnicast(eventData.userId);

 const proactiveEvents = new ProactiveEvents(CLIENT_ID, CLIENT_SECRET);
 await proactiveEvents.createEvent(endpoint, event, true);

 return reply;
});

LoginWithAmazon

With LoginWithAmazon, you can request a customer profile that contains the data that Login with Amazon applications can access regarding a particular customer. This includes: a unique ID for the user; the user’s name, the user’s email address, and their postal code. This data is divided into three scopes: profile, profile:user_id and postal_code.

LoginWithAmazon works a seamless solution to get user’s information using account linking via web browser. To see more information about it, follow this link [https://developer.amazon.com/docs/login-with-amazon/customer-profile.html]. To implement LoginWithAmazon in your Alexa skill, follow this step-by-step tutorial [https://developer.amazon.com/blogs/post/Tx3CX1ETRZZ2NPC/Alexa-Account-Linking-5-Steps-to-Seamlessly-Link-Your-Alexa-Skill-with-Login-wit]. You can also do account linking via voice. Go here to check it out!

With Voxa, you can ask for the user’s full name like this:

app.onIntent('ProfileIntent', async (alexaEvent: AlexaEvent) => {
 const userInfo = await alexaEvent.getUserInformation();

 alexaEvent.model.email = userInfo.email;
 alexaEvent.model.name = userInfo.name;
 alexaEvent.model.zipCode = userInfo.zipCode;

 return { ask: 'CustomerContact.FullInfo' };
});

In this case, Voxa will detect you’re running an Alexa Skill, so, it will call the getUserInformationWithLWA() method. But you can also call it directly. Even if you create voice experiences in other platforms like Google or Cortana, you can take advantage of the methods for authenticating with other platforms.

Google Sign-In

Google Sign-In for the Assistant provides the simplest and easiest user experience to users and developers both for account linking and account creation. Your Action can request access to your user’s Google profile during a conversation, including the user’s name, email address, and profile picture.

The profile information can be used to create a personalized user experience in your Action. If you have apps on other platforms and they use Google Sign-In, you can also find and link to an existing user’s account, create a new account, and establish a direct channel of communication to the user.

To perform account linking with Google Sign-In, you ask the user to give consent to access their Google profile. You then use the information in their profile, for example their email address, to identify the user in your system. Check out this link [https://developers.google.com/actions/identity/google-sign-in] for more information.

With Voxa, you can ask for the user’s full name like this:

app.onIntent('ProfileIntent', async (dialogflowEvent: DialogflowEvent) => {
 const userInfo = await dialogflowEvent.getUserInformation();

 dialogflowEvent.model.email = userInfo.email;
 dialogflowEvent.model.familyName = userInfo.familyName;
 dialogflowEvent.model.givenName = userInfo.givenName;
 dialogflowEvent.model.name = userInfo.name;
 dialogflowEvent.model.locale = userInfo.locale;

 return { ask: 'CustomerContact.FullInfo' };
});

In this case, Voxa will detect you’re running a Google Action, so, it will call the getUserInformationWithGoogle() method. Since this is a Google-only API, you can’t use this method on other platforms for the moment.

The reply Object

	
class IVoxaReply()

	The reply object is used by the framework to render voxa responses, it takes all of your statements, cards and directives and generates a proper json response for each platform.

	
IVoxaReply.IVoxaReply.clear()

	Resets the response object

	
IVoxaReply.IVoxaReply.terminate()

	Sends a flag to indicate the session will be closed.

	
IVoxaReply.IVoxaReply.addStatement(statement, isPlain)

	Adds statements to the Reply

	Arguments

	
	statement – The string to be spoken by the voice assistant

	isPlain – Indicates if the statement is plain text, if null, it means is SSML

	
IVoxaReply.IVoxaReply.addReprompt(statement, isPlain)

	Adds the reprompt text to the Reply

	Arguments

	
	statement – The string to be spoken by the voice assistant as a reprompt

	isPlain – Indicates if the statement is plain text, if null, it means is SSML

	
IVoxaReply.IVoxaReply.hasDirective()

	Verifies if the reply has directives

	Returns

	A boolean flag indicating if the reply object has any kind of directives

	
IVoxaReply.IVoxaReply.saveSession(event)

	Converts the model object into session attributes

	Arguments

	
	event – A Voxa event with session attributes

For the speceific classes used in every platform you can check:

	AlexaReply

Request Flow

[image: _images/request-flow.png]

Gadget Controller Interface Reference

The Gadget Controller interface [https://developer.amazon.com/docs/gadget-skills/gadgetcontroller-interface-reference.html] enables your skill to control Echo Buttons. This interface works with compatible Amazon Echo devices only. With the Gadget Controller interface, you can send animations to illuminate the buttons with different colors in a specific order.

With Voxa, you can implement this interface like this:

const voxa = require('voxa');
const { GadgetController, TRIGGER_EVENT_ENUM } = voxa.alexa;

app.onIntent('GameEngine.InputHandlerEvent', (voxaEvent) => {
 // REMEMBER TO SAVE THE VALUE originatingRequestId in your model
 voxaEvent.model.originatingRequestId = voxaEvent.request.originatingRequestId;

 const gameEvents = voxaEvent.request.events[0] || [];
 const inputEvents = _(gameEvents.inputEvents)
 .groupBy('gadgetId')
 .map(value => value[0])
 .value();

 const directives = [];
 let customId = 0;

 _.forEach(inputEvents, (gadgetEvent) => {
 customId += 1;
 const id = `g${customId}`;

 if (!_.includes(voxaEvent.model.buttons, id)) {
 const buttonIndex = _.size(voxaEvent.model.buttons);
 const targetGadgets = [gadgetEvent.gadgetId];

 _.set(voxaEvent.model, `buttonIds.${id}`, gadgetEvent.gadgetId);

 voxaEvent.model.buttons = [];
 voxaEvent.model.buttons.push(id);

 const triggerEventTimeMs = 0;
 const gadgetController = new GadgetController();
 const animationBuilder = GadgetController.getAnimationsBuilder();
 const sequenceBuilder = GadgetController.getSequenceBuilder();

 sequenceBuilder
 .duration(1000)
 .blend(false)
 .color(COLORS[buttonIndex].dark);

 animationBuilder
 .repeat(100)
 .targetLights(['1'])
 .sequence([sequenceBuilder]);

 directives.push(gadgetController
 .setAnimations(animationBuilder)
 .setTriggerEvent(TRIGGER_EVENT_ENUM.NONE)
 .setLight(targetGadgets, triggerEventTimeMs));

 const otherAnimationBuilder = GadgetController.getAnimationsBuilder();
 const otherSequenceBuilder = GadgetController.getSequenceBuilder();

 otherSequenceBuilder
 .duration(500)
 .blend(false)
 .color(COLORS[buttonIndex].hex);

 otherAnimationBuilder
 .repeat(1)
 .targetLights(['1'])
 .sequence([otherSequenceBuilder.build()]);

 directives.push(gadgetController
 .setAnimations(otherAnimationBuilder.build())
 .setTriggerEvent(TRIGGER_EVENT_ENUM.BUTTON_DOWN)
 .setLight(targetGadgets, triggerEventTimeMs));
 }
 });

 return {
 alexaGadgetControllerLightDirective: directives,
 tell: 'Buttons.Next',
 to: 'entry',
 };
});

If there’s an error when you send this directive, Alexa will return a System ExceptionEncountered [https://developer.amazon.com/docs/gadget-skills/gadgetcontroller-interface-reference.html#system-exceptionencountered] request.

A very simple example on how the GadgetController.SetLight JSON response looks like is:

{
 "version": "1.0",
 "sessionAttributes": {},
 "shouldEndSession": true,
 "response": {
 "outputSpeech": "outputSpeech",
 "reprompt": "reprompt",
 "directives": [
 {
 "type": "GadgetController.SetLight",
 "version": 1,
 "targetGadgets": ["gadgetId1", "gadgetId2"],
 "parameters": {
 "triggerEvent": "none",
 "triggerEventTimeMs": 0,
 "animations": [
 {
 "repeat": 1,
 "targetLights": ["1"],
 "sequence": [
 {
 "durationMs": 10000,
 "blend": false,
 "color": "0000FF"
 }
]
 }
]
 }
 }
]
 }
}

Game Engine Interface Reference

The Game Engine interface [https://developer.amazon.com/docs/gadget-skills/gameengine-interface-reference.html] enables your skill to receive input from Echo Buttons. This interface works with compatible Amazon Echo devices only.

Your skill uses the Game Engine Interface by sending directives that start and stop the Input Handler, which is the component within Alexa that sends your skill Echo Button events when conditions that you define are met (for example, the user pressed a certain sequence of buttons).

With Voxa, you can implement this interface like this:

const voxa = require('voxa');
const { ANCHOR_ENUM, EVENT_REPORT_ENUM, GameEngine } = voxa.alexa;

app.onIntent('LaunchIntent', (voxaEvent) => {
 const alexaGameEngineStartInputHandler = rollCall(voxaEvent);

 return {
 alexaGameEngineStartInputHandler,
 tell: 'Buttons.Discover',
 };
});

function rollCall(voxaEvent) {
 const gameEngineTimeout = 15000;
 const eventBuilder = GameEngine.getEventsBuilder('sample_event');
 const timeoutEventBuilder = GameEngine.getEventsBuilder('timeout');
 const recognizerBuilder = GameEngine.getPatternRecognizerBuilder('sample_event');

 eventBuilder
 .fails(['fails'])
 .meets(['sample_event'])
 .maximumInvocations(1)
 .reports(EVENT_REPORT_ENUM.MATCHES)
 .shouldEndInputHandler(true)
 .triggerTimeMilliseconds(1000);

 timeoutEventBuilder
 .meets(['timed out'])
 .reports(EVENT_REPORT_ENUM.HISTORY)
 .shouldEndInputHandler(true);

 recognizerBuilder
 .actions('actions')
 .fuzzy(true)
 .gadgetIds(['gadgetIds'])
 .anchor(ANCHOR_ENUM.ANYWHERE)
 .pattern(rollCallPattern);

 return gameEngine
 .setEvents(eventBuilder, timeoutEventBuilder.build())
 .setRecognizers(recognizerBuilder.build())
 .startInputHandler(gameEngineTimeout, proxies);
}

The recognizers [https://developer.amazon.com/docs/gadget-skills/gameengine-interface-reference.html#recognizers] object contains one or more objects that represent different types of recognizers: the patternRecognizer, deviationRecognizer, or progressRecognizer. In addition to these recognizers, there is a predefined timed out recognizer. All of these recognizers are described next.

The events [https://developer.amazon.com/docs/gadget-skills/gameengine-interface-reference.html#events] object is where you define the conditions that must be met for your skill to be notified of Echo Button input. You must define at least one event.

If there’s an error when you send these directives, Alexa will return a System ExceptionEncountered [https://developer.amazon.com/docs/gadget-skills/gameengine-interface-reference.html#system-exceptionencountered] request.

A very simple example on how the GameEngine.InputHandlerEvent JSON request from Alexa looks like is:

{
 "version": "1.0",
 "session": {
 "application": {},
 "user": {},
 "request": {
 "type": "GameEngine.InputHandlerEvent",
 "requestId": "amzn1.echo-api.request.406fbc75-8bf8-4077-a73d-519f53d172a4",
 "timestamp": "2017-08-18T01:29:40.027Z",
 "locale": "en-US",
 "originatingRequestId": "amzn1.echo-api.request.406fbc75-8bf8-4077-a73d-519f53d172d6",
 "events": [
 {
 "name": "myEventName",
 "inputEvents": [
 {
 "gadgetId": "someGadgetId1",
 "timestamp": "2017-08-18T01:32:40.027Z",
 "action": "down",
 "color": "FF0000"
 }
]
 }
]
 }
 }
}

The field `originatingRequestId`_ provides the requestId of the request to which you responded with a StartInputHandler directive. You need to save this value in your session attributes to send the StopInputHandler [https://developer.amazon.com/docs/gadget-skills/gameengine-interface-reference.html#stop] directive. You can send this directive with Voxa as follows:

const voxa = require('voxa');

app.onIntent('ExitIntent', (voxaEvent) => {
 const { originatingRequestId } = voxaEvent.model;

 return {
 alexaGameEngineStopInputHandler: originatingRequestId,
 tell: 'Buttons.Bye',
 };
});

This will stop Echo Button events to be sent to your skill.

Plugins

Plugins allow you to modify how the StateMachineSkill handles an alexa event. When a plugin is registered it will use the different hooks in your skill to add functionality. If you have several skills with similar behavior then your answer is to create a plugin.

Using a plugin

After instantiating a StateMachineSkill you can register plugins on it. Built in plugins can be accessed through Voxa.plugins

'use strict';
const { VoxaApp, plugins } = require('voxa');
const Model = require('./model');
const views = require('./views'):
const variables = require('./variables');

const app = new VoxaApp({ Model, variables, views });

plugins.replaceIntent(app);

State Flow plugin

Stores the state transitions for every alexa event in an array.

	
stateFlow(app)

	State Flow attaches callbacks to onRequestStarted(), onBeforeStateChanged() and onBeforeReplySent() to track state transitions in a voxaEvent.flow array

	Arguments

	
	app (VoxaApp) – The app object

Usage

const alexa = require('alexa-statemachine');
alexa.plugins.stateFlow.register(app)

app.onBeforeReplySent((voxaEvent) => {
 console.log(voxaEvent.flow.join(' > ')); // entry > firstState > secondState > die
});

Replace Intent plugin

It allows you to rename an intent name based on a regular expression. By default it will match /(.*)OnlyIntent$/ and replace it with $1Intent.

	
replaceIntent(app[, config])

	Replace Intent plugin uses onIntentRequest() to modify the incoming request intent name

	Arguments

	
	app (VoxaApp) – The stateMachineSkill

	config – An object with the regex to look for and the replace value.

Usage

const app = new Voxa({ Model, variables, views });

Voxa.plugins.replaceIntent(app, { regex: /(.*)OnlyIntent$/, replace: '$1Intent' });
Voxa.plugins.replaceIntent(app, { regex: /^VeryLong(.*)/, replace: 'Long$1' });

Why OnlyIntents?

A good practice is to isolate an utterance into another intent if it contains a single slot. By creating the OnlyIntent, Alexa will prioritize this intent if the user says only a value from that slot.

Let’s explain with the following scenario. You need the user to provide a zipcode.
You would have an intent called ZipCodeIntent. But you still have to manage if the user only says a zipcode without any other words. So that’s when we create an OnlyIntent. Let’s call it ZipCodeOnlyIntent.

Our utterance file will be like this:

ZipCodeIntent here is my {ZipCodeSlot}
ZipCodeIntent my zip is {ZipCodeSlot}
...

ZipCodeOnlyIntent {ZipCodeSlot}

But now we have two states which are basically the same. Replace Intent plugin will rename all incoming requests intents from ZipCodeOnlyIntent to ZipCodeIntent.

CloudWatch plugin

It logs a CloudWatch metric when the skill catches an error or success execution.

Params

	
cloudwatch(app, cloudwatch[, eventMetric])

	CloudWatch plugin uses VoxaApp.onError() and VoxaApp.onBeforeReplySent() to log metrics

	Arguments

	
	app (VoxaApp) – The stateMachineSkill

	cloudwatch – A new AWS.CloudWatch [http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#constructor-property/] object.

	putMetricDataParams – Params for putMetricData [http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CloudWatch.html#putMetricData-property]

Usage

const AWS = require('aws-sdk');
const app = new Voxa({ Model, variables, views });

const cloudWatch = new AWS.CloudWatch({});
const eventMetric = {
 MetricName: 'Caught Error', // Name of your metric
 Namespace: 'SkillName' // Name of your skill
};

Voxa.plugins.cloudwatch(app, cloudWatch, eventMetric);

Autoload plugin

It accepts an adapter to autoload info into the model object coming in every alexa request.

Params

	
autoLoad(app[, config])

	Autoload plugin uses app.onSessionStarted to load data the first time the user opens a skill

	Arguments

	
	app (VoxaApp) – The stateMachineSkill.

	config – An object with an adapter key with a get Promise method in which you can handle your database access to fetch information from any resource.

Usage

const app = new VoxaApp({ Model, variables, views });

plugins.autoLoad(app, { adapter });

Debugging

Voxa uses the debug [http://npmjs.com/package/debug] module internally to log a number of different internal events, if you want have a look at those events you have to declare the following environment variable

DEBUG=voxa

This is an example of the log output

voxa Received new event: {"version":"1.0","session":{"new":true,"sessionId":"SessionId.09162f2a-cf8f-414f-92e6-1e3616ecaa05","application":{"applicationId":"amzn1.ask.skill.1fe77997-14db-409b-926c-0d8c161e5376"},"attributes":{},"user":{"userId":"amzn1.ask.account.","accessToken":""}},"request":{"type":"LaunchRequest","requestId":"EdwRequestId.0f7b488d-c198-4374-9fb5-6c2034a5c883","timestamp":"2017-01-25T23:01:15Z","locale":"en-US"}} +0ms
voxa Initialized model like {} +8ms
voxa Starting the state machine from entry state +2s
voxa Running simpleTransition for entry +1ms
voxa Running onAfterStateChangeCallbacks +0ms
voxa entry transition resulted in {"to":"launch"} +0ms
voxa Running launch enter function +1ms
voxa Running onAfterStateChangeCallbacks +0ms
voxa launch transition resulted in {"reply":"Intent.Launch","to":"entry","message":{"tell":"Welcome mail@example.com!"},"session":{"data":{},"reply":null}} +7ms

You can also get more per platform debugging information with

DEBUG=voxa:alexa

DEBUG=voxa:botframework

DEBUG=voxa:dialogflow

Index

 A
 | C
 | D
 | I
 | L
 | M
 | P
 | R
 | S
 | V

A

 	
 	AlexaEvent() (class)

 	AlexaEvent.AlexaEvent.alexa.customerContact (AlexaEvent.AlexaEvent.alexa attribute)

 	AlexaEvent.AlexaEvent.alexa.deviceAddress (AlexaEvent.AlexaEvent.alexa attribute)

 	AlexaEvent.AlexaEvent.alexa.deviceSettings (AlexaEvent.AlexaEvent.alexa attribute)

 	AlexaEvent.AlexaEvent.alexa.isp (AlexaEvent.AlexaEvent.alexa attribute)

 	
 	AlexaEvent.AlexaEvent.alexa.lists (AlexaEvent.AlexaEvent.alexa attribute)

 	AlexaEvent.AlexaEvent.token (AlexaEvent.AlexaEvent attribute)

 	AlexaReply() (class)

 	AlexaReply.Reply.fulfillIntent() (AlexaReply.Reply method)

 	AlexaReply.Reply.fulfillSlot() (AlexaReply.Reply method)

 	autoLoad() (built-in function)

C

 	
 	cloudwatch() (built-in function)

 	
 	CustomerContact() (class)

D

 	
 	DeviceAddress() (class)

 	DeviceSettings() (class)

 	
 	DialogflowEvent() (class)

 	DialogflowEvent.DialogflowEvent.google.conv (DialogflowEvent.DialogflowEvent.google attribute)

I

 	
 	IVoxaReply() (class)

 	IVoxaReply.IVoxaReply.addReprompt() (IVoxaReply.IVoxaReply method)

 	IVoxaReply.IVoxaReply.addStatement() (IVoxaReply.IVoxaReply method)

 	
 	IVoxaReply.IVoxaReply.clear() (IVoxaReply.IVoxaReply method)

 	IVoxaReply.IVoxaReply.hasDirective() (IVoxaReply.IVoxaReply method)

 	IVoxaReply.IVoxaReply.saveSession() (IVoxaReply.IVoxaReply method)

 	IVoxaReply.IVoxaReply.terminate() (IVoxaReply.IVoxaReply method)

L

 	
 	Lists() (class)

M

 	
 	Messaging() (class)

P

 	
 	ProactiveEvents() (class)

R

 	
 	ReminderBuilder() (class)

 	
 	Reminders() (class)

 	replaceIntent() (built-in function)

S

 	
 	stateFlow() (built-in function)

V

 	
 	variable() (built-in function)

 	VoxaApp() (class)

 	VoxaEvent() (class)

 	VoxaEvent.executionContext (VoxaEvent attribute)

 	VoxaEvent.getUserInformation() (VoxaEvent method)

 	VoxaEvent.getUserInformationWithGoogle() (VoxaEvent method)

 	VoxaEvent.getUserInformationWithLWA() (VoxaEvent method)

 	VoxaEvent.intent.params (VoxaEvent.intent attribute)

 	
 	VoxaEvent.log (VoxaEvent attribute)

 	VoxaEvent.model (VoxaEvent attribute), [1]

 	VoxaEvent.platform (VoxaEvent attribute)

 	VoxaEvent.rawEvent (VoxaEvent attribute)

 	VoxaEvent.renderer (VoxaEvent attribute)

 	VoxaEvent.supportedInterfaces() (VoxaEvent method)

 	VoxaEvent.t (VoxaEvent attribute)

 	VoxaEvent.user (VoxaEvent attribute)

 	VoxaPlatform() (class)

The AlexaReply Object

	
class AlexaReply()

	AlexaReply object is used by the framework to render Alexa responses, it takes all of your statements, cards and directives and generates a proper json response for Alexa

	
AlexaReply.Reply.fulfillIntent(canFulfill)

	Fulfills the request in the response object

	Arguments

	
	canFulfill – A string with possible values: YES | NO | MAYBE to fulfill request

	
AlexaReply.Reply.fulfillSlot(slotName, canUnderstand, canFulfill)

	Fulfills the slot with fulfill and understand values

	Arguments

	
	slotName – A string with the slot to fulfill

	canUnderstand – A string with possible values: YES | NO | MAYBE that indicates slot understanding

	canFulfill – A string with possible values: YES | NO that indicates slot fulfillment

CanFulfillIntentRequest

Name-free interaction enables customers to interact with Alexa without invoking a specific skill by name, which helps facilitate greater interaction with Alexa because customers do not always know which skill is appropriate.

When Alexa receives a request from a customer without a skill name, such as “Alexa, play relaxing sounds with crickets,” Alexa looks for skills that might fulfill the request. Alexa determines the best choice among eligible skills and hands the request to the skill.

To make your skill more discoverable for name-free interaction, you can implement the the CanFulfillIntentRequest [https://developer.amazon.com/docs/custom-skills/quick-start-canfulfill-intent-request.html] interface in your skill.

In Voxa, you can take advantage of this feature by following this example:

app.onCanFulfillIntentRequest((alexaEvent, reply) => {
 if (alexaEvent.intent.name === 'InfluencerIntent') {
 reply.fulfillIntent('YES');

 _.each(alexaEvent.intent.params, (value, slotName) => {
 reply.fulfillSlot(slotName, 'YES', 'YES');
 });
 }

 return reply;
});

Voxa offers the function `onCanFulfillIntentRequest`_ so you can implement it in your code to validate wether you’re going to fulfill the request or not.

Additionally, if you have several intents that you want to automatically fulfill, regardless of the slot values in the request, you can simply add an array of intents to the property: `defaultFulfillIntents`_ of the Voxa config file:

const defaulFulfillIntents = [
 'NameIntent',
 'PhoneIntent',
];

const voxaApp = new VoxaApp({ views, variables });
const alexaSkill = new AlexaPlatform(voxaApp, { defaultFulfillIntents });

If Alexa sends an intent that you didn’t register with this function, then you should implement the `onCanFulfillIntentRequest`_ method to handle it. Important: If you implement this method in your skill, you should always return the `reply`_ object.

If a skill has implemented canFulfillIntent according to the interface specification, the skill should be aware that the skill is not yet being asked to take action on behalf of the customer, and should not modify any state outside its scope, or have any observable interaction with its own calling functions or the outside world besides returning a value. Thus, the skill should not, at this point, perform any actions such as playing sound, turning lights on or off, providing feedback to the customer, committing a transaction, or making a state change.

Testing using ASK-CLI

There are 2 options to test this feature manually. The first one is using the Manual JSON section of the Test tab in the developer portal. And the other one, is to use the ASK CLI [https://developer.amazon.com/docs/custom-skills/implement-canfulfillintentrequest-for-name-free-interaction.html#test-the-skill-using-ask-cli] from Amazon.

You can just trigger this command in the console, and you’ll get the result in your terminal:

$ ask api invoke-skill --skill-id amzn1.ask.skill.[unique-value-here] --file /path/to/input/json --endpoint-region [endpoint-region-here]

Dialogflow Platform Integrations

Dialogflow offers a variety of integrations so you share your base code across several platforms like Google Assistant, Facebook Messenger and more. For more information about these platforms, visit their Integration docs [https://dialogflow.com/docs/integrations].

More integrations comming soon to Voxa

Facebook Messenger

The DialogflowPlatform for voxa has available some of the core functionalities to send to your chatbot in responses. For now, you can integrate:

	Account Linking buttons

You need to include in your controller the following field: facebookAccountLink, which takes a URL to go into the account linking flow. For more information about the account linking flow, check how to add a Log In Button [https://developers.facebook.com/docs/messenger-platform/send-messages/buttons#login], and Account Linking [https://developers.facebook.com/docs/messenger-platform/identity/account-linking].

app.onState('someState', () => {
 return {
 facebookAccountLink: "https://www.messenger.com"
 }
});

	Postbacks buttons (Suggestion chips)

You need to include in your controller the following field: facebookSuggestionChips, which could be a simple string that the Voxa renderer will get from your views file with an array of strings, or directly an array of strings. For more information about this, check how to add Postback Buttons [https://developers.facebook.com/docs/messenger-platform/send-messages/buttons#postback].

app.onState('someState', () => {
 return {
 facebookSuggestionChips: ["YES", "NO"],
 textp: "Select YES or NO",
 to: "entry",
 }
});

For more information check the Dialogflow documentation for Facebook Messenger [https://dialogflow.com/docs/integrations/facebook]

Telegram

The DialogflowPlatform for voxa can be easily integrated with telegram, just make sure to use
text responses in your controllers and everything should work as usual.

For more information check the Dialogflow documentation for telegram [https://dialogflow.com/docs/integrations/telegram]

 nav.xhtml

 Table of Contents

 		
 Welcome to Voxa’s documentation!

 		
 New Alexa developer

 		
 Getting Started with the Alexa Skills

 		
 How users interact with Alexa?

 		
 Amazon Developer Service Account

 		
 Registering an Alexa skill

 		
 Voxa architecture pattern MVC

 		
 Voxa Application

 		
 Error handlers

 		
 Playback Controller handlers

 		
 Alexa Skill Event handlers

 		
 Alexa List Event handlers

 		
 Voxa Platforms

 		
 Alexa

 		
 Dialogflow

 		
 Botframework

 		
 Models

 		
 Views and Variables

 		
 Views

 		
 I18N

 		
 Variables

 		
 Controllers

 		
 The onIntent helper

 		
 Transition

 		
 to

 		
 directives

 		
 flow

 		
 say

 		
 sayp

 		
 text

 		
 textp

 		
 reprompt

 		
 reply

 		
 The voxaEvent Object

 		
 The AlexaEvent Object

 		
 The BotFrameworkEvent Object

 		
 The DialogflowEvent Object

 		
 Alexa Directives

 		
 HomeCard

 		
 AccountLinkingCard

 		
 RenderTemplate

 		
 Alexa Presentation Language (APL) Templates

 		
 Alexa Presentation Language (APL) Commands

 		
 PlayAudio

 		
 Dialog Flow Directives

 		
 List

 		
 Carousel

 		
 Suggestions

 		
 BasicCard

 		
 AccountLinkingCard

 		
 MediaResponse

 		
 User Information

 		
 Date and Time

 		
 Confirmation

 		
 Android Link

 		
 Place and Location

 		
 TransactionDecision

 		
 TransactionRequirements

 		
 Routine Suggestions

 		
 Push notifications

 		
 Multi-surface conversations

 		
 Output Contexts

 		
 Botframework Directives

 		
 Sign In Card

 		
 Hero Card

 		
 Suggested Actions

 		
 Audio Card

 		
 Text

 		
 Text P

 		
 Attachments and Attachment Layouts

 		
 Alexa APIs

 		
 Customer Contact Information Reference

 		
 Device Address Information Reference

 		
 Device Settings Reference

 		
 In-Skill Purchases Reference

 		
 Alexa Shopping and To-Do Lists Reference

 		
 Alexa Reminders API Reference

 		
 Skill Messaging API Reference

 		
 Proactive Events API Reference

 		
 LoginWithAmazon

 		
 Google Sign-In

 		
 The reply Object

 		
 Request Flow

 		
 Gadget Controller Interface Reference

 		
 Game Engine Interface Reference

 		
 Plugins

 		
 Using a plugin

 		
 State Flow plugin

 		
 Usage

 		
 Replace Intent plugin

 		
 Usage

 		
 Why OnlyIntents?

 		
 CloudWatch plugin

 		
 Params

 		
 Usage

 		
 Autoload plugin

 		
 Params

 		
 Usage

 		
 Debugging

_static/ajax-loader.gif

_images/mvc-description.png
(Amazon Alexa ’

Model View

Controller

Variables

_images/request-flow.png
No BadResponseErro Error? pr::xsr:: ’

isSessionEnd

Yes

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

