

VMA209 shield expansion

[image: _images/vma209.svg]
 [https://github.com/jfjlaros/vma209/graphs/commit-activity][image: _images/6115ffd2554cc14545a1def33673b696b2bae1b1.svg]
 [https://vma209.readthedocs.io/en/latest][image: _images/vma2091.svg]
 [https://github.com/jfjlaros/vma209/releases][image: _images/vma2092.svg]
 [https://github.com/jfjlaros/vma209/releases][image: _images/vma2093.svg]
 [https://github.com/jfjlaros/vma209][image: _images/vma2094.svg]
 [https://github.com/jfjlaros/vma209][image: _images/vma2095.svg]
 [https://github.com/jfjlaros/vma209][image: _images/vma2096.svg]
 [https://raw.githubusercontent.com/jfjlaros/vma209/master/LICENSE.md]

This library provides interfaces for the display and all other peripherals
present on the Velleman VMA209 [https://www.vellemanusa.com/products/view/?id=529565] “Multi-function shield expansion board for
Arduino”. By providing this library, we aim to augment the documentation and
examples provided by the manufacturer.

Please see ReadTheDocs [https://vma209.readthedocs.io/en/latest/index.html] for the latest documentation.

Contents:

	Introduction

	Installation
	Prerequisites

	Download

	Installation

	Usage
	Simple input and output devices

	Display

	Review
	Documentation

	Display

	LEDs

	Buzzer

	Potmeter

	Buttons

	Conclusions

	Contributors

Introduction

The Velleman VMA209 [https://www.vellemanusa.com/products/view/?id=529565] “Multi-function shield expansion board for Arduino” is an
expansion board with the following features:

	4 digit 7 segment LED display module.

	4 surface mount LEDs in a parallel configuration.

	10kΩ adjustable precision potentiometer.

	3 independent push buttons.

	Piezo buzzer.

	DS18B20 and LM35 interface.

	Infrared receiver interface.

	Serial interface header.

In this project, we aim to augment the documentation and examples provided by
the manufacturer.

Installation

In this section we cover retrieval of the latest release or development version
of the code and subsequent installation for an Arduino device.

Prerequisites

This project depends on the arduino-peripherals [https://arduino-peripherals.readthedocs.io] library:

	peripherals [https://arduino-peripherals.readthedocs.io/en/latest/installation.html] installation instructions.

The demo needs both the device library as well as the host library of
simpleRPC [https://simplerpc.readthedocs.io]:

	simpleRPC device [https://simplerpc.readthedocs.io/en/latest/install_device.html] installation instructions.

	simpleRPC host [https://simplerpc.readthedocs.io/en/latest/install_host.html] installation instructions.

Download

Latest release

Navigate to the latest release [https://github.com/jfjlaros/vma209/releases/latest] and either download the .zip or the
.tar.gz file.

Unpack the downloaded archive.

From source

The source is hosted on GitHub [https://github.com/jfjlaros/vma209.git], to install the latest development version, use
the following commands.

git clone https://github.com/jfjlaros/vma209.git
cd vma209
git submodule init
git submodule update

Installation

Arduino IDE

In the Arduino IDE, a library can be added to the list of standard libraries by
clicking through the following menu options.

	Sketch

	Import Library

	Add Library

To add the library, navigate to the downloaded folder and select the subfolder
named display.

	Click OK.

Now the library can be added to any new project by clicking through the
following menu options.

	Sketch

	Import Library

	display

Ino

Ino [http://inotool.org] is an easy way of working with Arduino hardware from the command line.
Adding libraries is also easy, simply place the library in the lib
subdirectory.

cd lib
git clone https://github.com/jfjlaros/vma209.git

Usage

Simple input and output devices

For more information about the simple peripherals, please see the
arduino-peripherals [https://arduino-peripherals.readthedocs.io] documentation.

Display

The display constructor takes three parameters, which on this board should have
the following values.

Constructor parameters.

	parameter

	value

	clockPin

	7

	dataPin

	8

	latchPin

	4

The display class has the following functions.

Functions.

	function

	description

	clear

	Clear the display.

	delay

	Set the refresh delay time.

	displayInt

	Display an integer value.

	refresh

	Display refresh.

Example

We typically initialise the display as follows.

#include <display.h>

Display display(7, 8, 4);

To refresh the display, add the following line to the loop() body.

void loop(void) {
 display.refresh();
}

The display can be set to a specific brightness and can be used to show signed
integers.

display.delay(20); // Dim the display.
display.displayInt(-123); // Show the string "-123".

Demo

A demo [https://github.com/jfjlaros/vma209/tree/master/example/host] is provided to show the full functionality of the display and other
peripherals. This demo is written in Python 3.

First make sure all dependencies are installed.

pip install -r requirements.txt

Run the demo as follows.

python demo.py

Review

In this document, we review the Velleman VMA209 [https://www.vellemanusa.com/products/view/?id=529565] “Multi-function shield
expansion board for Arduino”. We cover both the hardware, the provided software
and the available documentation.

Documentation

The manual [https://www.velleman.eu/downloads/29/vma209_a4v01.pdf] does not provide much information about the board, its components
or how to use it. It mainly consists of code examples that are also present in
the examples [https://www.velleman.eu/downloads/29/vma209_examples.zip] archive. The examples are instructive, but do not cover all the
functionality of the board. Basic things like driving the LED display are
covered, but more advanced topics like dimming are not touched upon. The
schema [https://www.velleman.eu/downloads/29/infosheets/vma209_scheme.pdf] is probably the most useful document, as it lists all components and
their wiring.

It would have been nice if a library was provided by the manufacturer. Instead,
we put all our findings together for others to use.

Display

The 4-digit 7-segment display is controlled by two MC74HC595AD shift registers,
one controlling the digit selection and one controlling the segment selection.
Using shift registers instead of a dedicated LED driver IC like the MAX7221
puts the burden of refreshing and dimming the display on the microcontroller.

When the board powers up, some random data is displayed at full brightness
because the shift registers are not in a well defined state after startup. This
effect stops once the software refresh procedure starts.

Refreshing

As mentioned above, display refreshing must be done by the microcontroller. We
tried to do this at first with the hardware timer library MsTimer2 [https://github.com/PaulStoffregen/MsTimer2]. This does
work quite well from a performance point of view, but since timer 2 interferes
with LED D4, we chose not to use this method.

Eventually, we decided to implement a software timer which needs be polled
continuously from the loop() body. This timer returns immediately if a
refresh is not needed, so other functions can still be performed in the mean
time.

During each refresh cycle, each digit is turned on and off as fast as possible.

Dimming

The shift registers have an output enable pin. It would have been nice if
these pins were wired to a PWM capable pin of the Arduino as this would enable
us to set the brightness of the display independently from the refresh rate.
Unfortunately these pins are wired to ground.

We therefore dim the display by lowering the refresh rate. After the refresh
cycle, the next refresh time is stored and all subsequent refresh calls will
return immediately until the refresh time is reached.

This approach has several drawbacks:

	At maximum brightness, all CPU time is spent on refreshing. So an other
function that is executed in the mean time will likely influence the
brightness of the display.

	If the brightness is set too low, the display will start flickering.

LEDs

Apart from the fact that the wiring is a bit awkward, the LEDs are working just
fine. To enable an LED, the output pin should be LOW, to disable an LED, it
should be high. This is opposite to what one might expect.

We used the invert parameter for LEDs in our library to make this a bit
easier for the end user.

At startup, one of the LEDs (number 13) is lit at full brightness, this is
because the Arduino itself has an LED attached to pin 13 which is off during
the initialisation cycle. Because of the inverted behaviour of the LEDs on the
shield, this LED is on by default.

Buzzer

The buzzer is driven by a PNP transistor, presumably to use the maximum
capacity of the buzzer (it is rather loud). Using a PNP transistor means that a
high voltage must be applied to turn off the buzzer, however, the standard
tone() and noTone() functions assume that a buzzer can be turned off by
applying a low voltage. Using these functions will therefore result in a loud
noise when the buzzer should be silent. An NPN transistor would have been
better in this case.

We work around this issue by using the invert parameter, like we did for
the LEDs.

Advanced features

There are quite some ingenious ways of doing volume control and even generating
polyphonic sounds using buzzers. This however requires wiring the buzzer to
either two pins, as is the case for ToneAC [http://playground.arduino.cc/Code/ToneAC] or to use a dedicated pin, as is
the case for the Arduino volume control library [https://hackaday.io/project/11957-10-bit-component-less-volume-control-for-arduino].

Unfortunately, none of these features are available in this setting.

Potmeter

Works fine, no comments.

Buttons

Work fine, but like most of the other components are wired a bit awkward. They
read LOW if the button is pressed, HIGH otherwise. This is also mitigated by
the use of the invert parameter.

Jumper J2 controls the pull up resistors for the buttons. If this jumper is
removed, the pullUp parameter can be used to use the internal pull up
resistors of the Arduino instead.

Conclusions

After quite some tinkering, this shield is quite usable for a wide range of
projects. We hope that the library that resulted from our endeavours will spare
other purchasers of this board some time.

Some obvious candidates for improving the hardware:

	Wiring the shift register OE pins to a PWM pin.

	Connecting the buzzer to pin 5 or 6 for volume control.

Contributors

	Jeroen F.J. Laros <jlaros@fixedpoint.nl> (Original author, maintainer)

Find out who contributed:

git shortlog -s -e

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 VMA209 shield expansion

 		
 Introduction

 		
 Installation

 		
 Prerequisites

 		
 Download

 		
 Latest release

 		
 From source

 		
 Installation

 		
 Arduino IDE

 		
 Ino

 		
 Usage

 		
 Simple input and output devices

 		
 Display

 		
 Example

 		
 Demo

 		
 Review

 		
 Documentation

 		
 Display

 		
 Refreshing

 		
 Dimming

 		
 LEDs

 		
 Buzzer

 		
 Advanced features

 		
 Potmeter

 		
 Buttons

 		
 Conclusions

 		
 Contributors

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

