
Virtual Micromagnetics Documentation
Release 1.1.0

Mark Vousden

September 16, 2016

Contents

1 Contents 3
1.1 Getting Started: As a User . 3
1.2 Virtual Micromagnetics Environments and Simulation Software . 5
1.3 Virtual Machines and Related Software . 6
1.4 Containers and Related Software . 7
1.5 Getting Started: As a Poweruser . 8
1.6 Developer Notes (valid for version 1.1.0) . 9
1.7 Troubleshooting . 14
1.8 Glossary . 14

i

ii

Virtual Micromagnetics Documentation, Release 1.1.0

Welcome to the Virtual Micromagnetics project, where we aim to enable accessible and
reproducible micromagnetics simulation, without compromise.

Provided by Mark Vousden, Hans Fangohr, and others at the University of Southampton. Funded by EPSRC’s DTC
grant EP/G03690X/1. The license for this software is available here.

The Virtual Micromagnetics project creates virtual environments that run micromagnetic (and in some cases, atomistic)
simulations of magnetic behaviour. These environments produce system virtual machines which emulate a configured
set of software on your computer. This means you as a user only need to manage the software to support the virtual
machine, as opposed to the complicated set of dependencies most simulation packages require. As a result, these
virtual environments are far simpler to maintain, meaning you have more time to solve the mysteries of the universe
instead of:

• wondering why the latest version of a package is incompatible with earlier simulations.

• wondering how to maintain multiple versions of a package to support old simulation software.

• persuading your high-performance computing system administrator to support your long list of software depen-
dencies.

• setting up user accounts and packages for new students to run simulations.

Contents 1

http://virtualmicromagnetics.org
https://github.com/computationalmodelling/virtualmicromagnetics/blob/development/LICENSE.md

Virtual Micromagnetics Documentation, Release 1.1.0

2 Contents

CHAPTER 1

Contents

1.1 Getting Started: As a User

1.1.1 Virtual Machines

To start a Virtual Micromagnetics environment, you will need the following software:

• VirtualBox >= 5.0 (https://www.virtualbox.org/wiki/downloads)

• Vagrant >= 1.7.4 (https://www.vagrantup.com/downloads)

After restarting your machine, command the following in an empty directory:

vagrant init virtualmicromagnetics/full
vagrant up --provider virtualbox

These commands will download the Full Virtual Micromagnetics environment from the Internet to your computer, and
load the environment automatically. When complete, you should be greeted with this window:

3

https://www.virtualbox.org/wiki/downloads
https://www.vagrantup.com/downloads

Virtual Micromagnetics Documentation, Release 1.1.0

This is output from a virtual machine running on your computer! Virtual machines produced in this way run Ubuntu
GNU/Linux (https://www.ubuntu.com) with the XFCE window manager. From here, you can follow instructions in the
welcome file on the desktop to run simulations with the installed packages. Never worry about software dependencies
again!

Next, see Virtual Micromagnetics Environments and Simulation Software for the environments that are available be-
sides the Full Virtual Micromagnetics environment, and the software on these environments, or you can read on to
learn about container virtualisation.

1.1.2 Containers

Containers are an alternative virtualization technology to virtual machines. To start Virtual Micromagnetics containers,
you will need:

• Docker >= 1.6.2 (https://docs.docker.com/engine/installation/)

Your user will need to be in the docker group on the machine you are running on 1. After restarting your machine,
command the following in an empty directory:

docker run -ti virtualmicromagnetics/lite:1.1.0 /bin/bash -l

This command will download the Full Virtual Micromagnetics container image from the Internet to your computer,
and start bash in your shell.

Now take a look at Virtual Micromagnetics Environments and Simulation Software for the environments that are
available besides the Full Virtual Micromagnetics environment.

1 Note that the docker group is root-equivalent, so you will likely need to own the machine to use Virtual Micromagnetics containers. To avoid
this, consider using a different provider that does not require root privileges, but beware, as Docker is the only container provider supported at
present.

4 Chapter 1. Contents

https://www.ubuntu.com
https://docs.docker.com/engine/installation/

Virtual Micromagnetics Documentation, Release 1.1.0

1.2 Virtual Micromagnetics Environments and Simulation Software

In Getting Started: As a User, we created a virtual machine based on the Full Virtual Micromagnetics environment.
Here, we detail the micromagnetic simulation packages and other software supported and used by Virtual Micromag-
netics, and we describe the list of available Virtual Micromagnetics environments.

1.2.1 Software

The following micromagnetic simulation packages are supported by Virtual Micromagnetics:

• OOMMF (http://math.nist.gov/oommf/)

• MagPar (http://www.magpar.net/)

• NMag (http://nmag.soton.ac.uk/nmag/)

• Fidimag (http://computationalmodelling.github.io/fidimag/)

Each environment that uses a simulation package also contains its examples, and a link to its documentation page
which can be opened in the virtual machine. The following infrastructure software is also used in all environments:

• Ubuntu (http://www.ubuntu.com/) 14.04

• XFCE4 (http://www.xfce.org/)

• Python (https://www.python.org/) 2.7, IPython (http://ipython.org/)

1.2.2 Environments

The Full environment contains all simulation packages supported by Virtual Micromagnetics, as well as dependencies
requested by our users, including:

• Cython(http://cython.org/)

• FEniCS (http://fenicsproject.org/)

• Gmsh (http://gmsh.info/)

• Netgen (https://sourceforge.net/projects/netgen-mesher/)

• ParaView (http://www.paraview.org/)

• Sundials (http://acts.nersc.gov/sundials/)

We recognise that many of our users will not require these tools. To that end, a “Lite” environment can be used
instead, which contains all of the simulation packages the Full environment does, without these optional packages. To
download and use the Lite Virtual Micromagnetics environment, command:

vagrant init virtualmicromagnetics/lite
vagrant up --provider virtualbox

Note that this is syntactically similar to the command used in Getting Started: As a User, and can be adapted for all
other Virtual Micromagnetics environments. Environments exist for specific simulation packages, such as “virtualmi-
cromagnetics/oommf”. The following table shows the list of environments available under Virtual Micromagnetics,
and the software they contain:

1.2. Virtual Micromagnetics Environments and Simulation Software 5

http://math.nist.gov/oommf/
http://www.magpar.net/
http://nmag.soton.ac.uk/nmag/
http://computationalmodelling.github.io/fidimag/
http://www.ubuntu.com/
http://www.xfce.org/
https://www.python.org/
http://ipython.org/
http://cython.org/
http://fenicsproject.org/
http://gmsh.info/
https://sourceforge.net/projects/netgen-mesher/
http://www.paraview.org/
http://acts.nersc.gov/sundials/

Virtual Micromagnetics Documentation, Release 1.1.0

Software vs. Environment Full Lite OOMMF Magpar NMag Fidimag

Micromagnetic

OOMMF
Magpar
NMag
Fidimag

Infrastructure

Ubuntu
XFCE
Python 2
IPython

Other

Cython
FEniCS
Gmsh
Netgen
ParaView
Sundials

See Getting Started: As a Poweruser if more fine-grained control over your software interests you. However, we
firstly recommend reading Virtual Machines and Related Software to understand more about virtual machines, virtual
environments, and the software used to create them in the Virtual Micromagnetics project.

1.3 Virtual Machines and Related Software

In Getting Started: As a User, we created a virtual machine based on the Full Virtual Micromagnetics environment
using a virtual machine provider and manager. Here, we detail some of the underlying mechanisms of virtual machine
creation, what providers, managers, and provisioners are, and how virtual machines and virtual environments are
related through these virtual machine software.

1.3.1 Virtual Machines

A virtual machine is a software that imitates a certain other software, usually an operating system or environment, on
a certain hardware. For our purposes however, it can be thought of as an operating system running in an operating
system. Virtual machines are useful because they allow software tasks to be undertaken in precisely defined environ-
ments with little repercussion on the host system they run on. These machines themselves can be described by single
files representing the equivalent of a hard disk of the machine, as well as a description of the hardware that the virtual
machine emulates. This makes them simple to distribute.

1.3.2 Software Related to Virtual Machines

Virtual machines must be supported by software in order to function. Only provider software is necessary to run
a virtual machine, but managers and provisioners are useful for creating virtual machines and virtual environments
respectively.

Providers

Virtual machine providers are virtualiser software that supports creating, running, destroying, and other interaction
with virtual machines on your computer. VirtualBox (https://www.virtualbox.org) is an example of a virtual machine
provider that is open source and freely available under the GNU GPL (https://www.gnu.org/copyleft/gpl.html), and is
the provider supported by this project. Other popular provider software includes VMWare, KVM, and Docker. While
many cloud computing organisations use virtual machines, they typically use existing provider software.

6 Chapter 1. Contents

https://www.virtualbox.org
https://www.gnu.org/copyleft/gpl.html

Virtual Micromagnetics Documentation, Release 1.1.0

Managers

While not essential for starting virtual machines, specialist software is useful for managing virtual environments. Va-
grant (https://www.vagrantup.com) is an example of a virtual machine manager. It provides a command-line interface
to the creation and provision of virtual machines from virtual environments. HashiCorp, the company behind Vagrant,
also provides a framework for sharing virtual environments. Most importantly for our purpose, Vagrant can be auto-
mated to generate virtual machines containing an environment without user intervention. This environment can then
be used to complete our objectives. To specify this environment however, provisioning software is required.

Provisioners

Provisioning is the action of running select commands on a machine, virtual or otherwise, to reach a desired end state.
By “state”, here we mean how storage is populated with packages, environment definitions, and more. The user of a
provisioner describes the desired state of the system, and the provisioner makes it so. In the absence of a provisioner,
shell commands can be executed to specify the state, but this becomes unwieldy for large projects because focus is
placed on the instructions needed to obtain the desired state, as opposed to the state itself. Provisioning software, such
as Ansible (https://www.ansible.com) alleviates this problem. Ansible uses Yet Another Markup Language (YAML)
to describe plays to run on a machine to enact the desired end state. Since the focus is on the end state of the system,
idempotency is essential.

1.3.3 Summary

Virtual machines imitate hardware and software, but must be hosted on a host machine. Virtual machines are provided
by provider software running on the host machine, and can be provisioned for use by a provisioner software. Manager
software links these two concepts, allows the virtual machine to be preserved and distributed as a virtual environment,
and simplifies the creation of virtual machines.

You can learn more about Containers and Related Software, or you can get started as a poweruser, which explains
how to create custom environments containing software you choose, as well as instructions for adding new software
or configuring your own virtual environment.

1.4 Containers and Related Software

In Getting Started: As a User, we created a container in addition to a virtual machine based on the Full Virtual
Micromagnetics environment. This page talks about containers and how the provider-manager-provisioner model
applies to container creation. We recommend reading Virtual Machines and Related Software, if you have not already.

1.4.1 Containers and Images

A container is a virtualisation mechanism similar to a virtual machine, in that it allows users to run software in a
controlled environment with a cap on available computing resources (like memory). Where a virtual machine contains
the entire software stack above and including the operating system, a container uses the operating system and kernel
of the host machine to produce its environment. Containers are created from images (container templates, analogous
to box files) to run a single process, and are usually destroyed once that process has been completed.

Images can be distributed to other users so that they can run Virtual Micromagnetics environments from a container.

1.4. Containers and Related Software 7

https://www.vagrantup.com
https://www.ansible.com

Virtual Micromagnetics Documentation, Release 1.1.0

1.4.2 Software Related to Containers

As with virtual machines, containers require supporting software to function. The provider-manager-provisioner
model outlined for virtual machines in Virtual Machines and Related Software also applies to containers as follows:

• Provisioner: Ansible is also used to provision containers. In Virtual Micromagnetics, scripts to provision con-
tainers and virtual machines with software are very similar, encouraging code reuse.

• Manager: Vagrant is used to manage containers in this project in a similar way to how virtual machines are
managed. An exception is that Vagrant can only be used to host box files, meaning another hosting method is
needed for images.

• Provider: Docker is used in Virtual Micromagnetics to create containers for simulation (as the user) and for
provisioning (as the poweruser). Docker also supports online hosting of images; this is used in Virtual Micro-
magnetics as a distribution method.

1.4.3 Summary

Containers are another virtualisation mechanism, like virtual machines. Containers virtualise fewer elements of the
software stack so they are smaller, but consequently impose more requirements on the host machine. Like virtual
machines, containers can be provisioned, managed, and distributed.

You are now ready to get started as a poweruser, which explains how to create custom environments containing
software you choose, as well as instructions for adding new software or configuring your own virtual environment.

1.5 Getting Started: As a Poweruser

In Virtual Micromagnetics Environments and Simulation Software, we learned about the different Virtual Micromag-
netics environments available to users, which bundle sets of configured software. Here we outline how you can create
virtual environments yourself, which you can distribute to others. We recommend reading Virtual Machines and
Related Software, if you have not already.

To create a new, custom virtual environment, you will need the following software in addition to the software list in
Getting Started: As a User:

• A GNU/Linux operating system (we use Ubuntu, https://www.ubuntu.com)

• 2.7 <= Python < 3.0 (https://www.python.org/)

• 1.9 <= Ansible < 2.0 (https://www.ansible.com/)

With this software:

1. Grab a copy of Virtual Micromagnetics. You can do this via Git by cloning our repository with git clone -b
release https://github.com/computationalmodelling/virtualmicromagnetics.git,
or by grabbing a release version at https://github.com/computationalmodelling/virtualmicromagnetics/releases

2. Install some sub-packages:

• Ansible role “blockinfile”; command ansible-galaxy install yaegashi.blockinfile
-proles/ from the Virtual Micromagnetics software directory

• Vagrant plugin “vagrant-vbguest”; command vagrant plugin install vagrant-vbguest

3. Make, with make from the Virtual Micromagnetics software directory, with an Internet connection.

8 Chapter 1. Contents

https://www.ubuntu.com
https://www.python.org/
https://www.ansible.com/
https://github.com/computationalmodelling/virtualmicromagnetics/releases

Virtual Micromagnetics Documentation, Release 1.1.0

After time of the order of hours, you should find a box file at ./artefacts/virtualmicromagnetics-full-*.box.
If not, see Troubleshooting for more help. If so, congratulations on building your first Virtual Micromagnetics en-
vironment! This file represents your virtual environment, which you can share with other users. You can use this
environment yourself by commanding the following in an empty directory:

vagrant init $PATH_TO_BOX_FILE
vagrant up --provider virtualbox

where $PATH_TO_BOX_FILE is the aforementioned artefact file. Now that you can create virtual environments, see
Developer Notes (valid for version 1.1.0) to learn how to customise the software you place on them.

1.6 Developer Notes (valid for version 1.1.0)

In Getting Started: As a Poweruser, we created a virtual environment from scratch that can be shared with other users.
Here, we show how you can completely specify your own environment. Knowledge of Ansible is needed, which can
be gleaned from their excellent documentation at http://docs.ansible.com/ansible/.

1.6.1 Build and Run

The Build and Run Processes for Virtual Machines

This graph shows the operations involved in the build and run processes for virtual machines.

The run process is simple: the user follows the instructions in Getting Started: As a User to create a virtual machine
for themselves. Lets break down the build process:

1.6. Developer Notes (valid for version 1.1.0) 9

http://docs.ansible.com/ansible/

Virtual Micromagnetics Documentation, Release 1.1.0

• Input Environment Box File -> Initial Virtual Machine: The input environment is a virtual environment con-
taining only the operating system and few convenience tools. In development, Vagrant and VirtualBox create a
virtual machine from this environment in the create_vm role (see Build and Run).

• Initial Virtual Machine -> Virtual Machine with Simulation Packages: Vagrant commands Ansible to provision
this machine using an Ansible playbook.

• Virtual Machine with Simulation Packages -> Output Environment Box File: Vagrant then packages the virtual
machine into a new virtual environment, which can be distributed to others. Tagged releases are uploaded by
administrators to atlas.hashicorp.com, where they become available to all Vagrant users.

The Build and Run Processes for Containers

In the same way, this graph shows the operations involved in the build and run processes for containers.

Again the process of creating and running a container as a user is as simple as following the instructions in Getting
Started: As a User. The build process is also similar; a container template (image) is downloaded, a container is created
and provisioned, and the container is packaged as an image for download by all Docker users. The key difference is
that Docker pushes the image to https://hub.docker.com/ as opposed to Vagrant.

Details

The build (make) process in step 3 in Getting Started: As a Poweruser allowed us to create a virtual environment.
The Makefile in the software repository can build multiple targets. Each target runs Ansible on the master.yml
playbook, which in turn runs the create_vm or create_container role in the roles directory. This creates a
virtual machine or container and provisions it with the playbook passed as a command-line argument in Makefile,

10 Chapter 1. Contents

https://hub.docker.com/

Virtual Micromagnetics Documentation, Release 1.1.0

which lives in the jobs directory. It will also do some post-provisioning tasks using the hookbook, again passed as a
command-line argument. The fundamental difference between the playbook and the hookbook is that the playbook is
run on the guest virtual machine by Vagrant, and the hookbook is run on the host machine. Different Makefile targets
may place different build artefacts in the artefacts directory.

Roles add or configure software, playbooks describe the roles that must be enacted to provision the machine, hook-
books describe what to do with that machine (like creating a box file), and jobs are Makefile targets that produce certain
machines. To add a new environment, one needs to add a job that follows the pattern of existing jobs.

Where Things Are

In order to add jobs, one should edit Makefile. In order to do that, one would need to know where things are, hence
the purpose of this section. The virtual micromagnetics repository is structured as follows:

• Makefile: This is the Makefile through which all jobs are conducted.

• ansible.cfg and inventory.txt: These files are used by Ansible when the master.yml playbook is run.
They contain configuration information.

• roles/: This directory contains roles (obviously). Each role is given a subdirectory, and should not overlap.
Each role directory contains tasks, and may also contain the subdirectories:

– vars/ (variable definitions),

– templates/ (files to duplicate to the guest virtual machine),

– meta/ (metadata, such as role dependencies),

– files/ (files used by tasks that aren’t covered by the usecases of templates)

• jobs/: This directory contains playbooks and directories that can be thought of as jobs in Makefile. They
are either provisioning playbooks, or post-provisioning hookbooks.

• machines/: This directory is created by Makefile, and houses the vagrant environment for each individual
virtual machine. The provision process is recorded to a log file in the machine’s directory (for example, the
provision log for the lite build job exists in machines/virtualmicromagnetics-lite/virtualmicromagnetics-lite.log)

• artefacts/: This directory is created by Makefile, and houses build artefacts.

1.6.2 Examples

Create New Machine with Existing Software

Lets create a custom machine called doc-example, that contains Fidimag but no X server. Firstly, we add a target to
Makefile (append the following to the Makefile):

This target builds a virtual hard disk file containing an OOMMF and Fidimag
installation.
doc-example-vm:

ansible-playbook master.yml -c local -i localhost, -v -k --extra-vars="type=vm vm_name=virtualmicromagnetics-doc-example playbook=provision_virtualmicromagnetics_doc-example.yml hookbook=hook_vm.yml extra_resources_dir=guest_resources/"

Now we need to describe what the state of the machine should be, by writing the playbook
jobs/provision_virtualmicromagnetics_doc-examples.yml:

This Ansible playbook is a provision playbook designed to be used with
vagrant. This playbook provisions a machine suitable for micromagnetic
simulation with Fidimag. It is executed by the virtual machine.

1.6. Developer Notes (valid for version 1.1.0) 11

Virtual Micromagnetics Documentation, Release 1.1.0

- hosts: all

vars:
vm_name: virtualmicromagnetics-doc-example

roles:
- fidimag
- fidimag_examples
- add_super_user
- { role: set_hostname, HOSTNAME: {{ vm_name }} }

Now we are ready to build the environment by commanding (again, from the repository root directory):

make doc-example

This creates another virtual environment in the artefacts directory.

Adding Software

In Build and Run, we introduce roles. Roles can add new software to a virtual environment. By way of example, we
can create a role to install Emacs (https://www.gnu.org/software/emacs/) from the Ubuntu software repository. We
firstly create a directory structure:

Create a role for Emacs.
mkdir --parents roles/emacs/tasks

Now we introduce some content using information from the Ansible documentation (http://docs.ansible.com/ansible/,
and http://docs.ansible.com/ansible/apt_module.html). Write the following to roles/emacs/tasks/main.yml:

This Ansible playbook installs Emacs.

- name: Install Emacs.
apt:
pkg=emacs
state=latest
update_cache=yes
cache_valid_time=86400

sudo: yes

This role, when run, will ensure that the latest version of Emacs and its dependencies are installed on the virtual
machine, and updates the apt cache. Roles can be parameterised and have dependencies, which can cause them to
become complicated. By way of example, installing Emacs on the new doc-example environment requires us to
append the line:

- emacs

To clarify, playbook jobs/provision_virtualmicromagnetics_doc-examples.yml now looks like:

This Ansible playbook is a provision playbook designed to be used with
vagrant. This playbook provisions a machine suitable for micromagnetic
simulation with fidimag. It is executed by the virtual machine.

- hosts: all

vars:
vm_name: virtualmicromagnetics-doc-example

12 Chapter 1. Contents

https://www.gnu.org/software/emacs/
http://docs.ansible.com/ansible/
http://docs.ansible.com/ansible/apt_module.html

Virtual Micromagnetics Documentation, Release 1.1.0

roles:
- fidimag
- fidimag_examples
- add_super_user
- { role: set_hostname, HOSTNAME: {{ vm_name }} }
- emacs

Can I have a Container Too?

You certainly can, with minimal changes too. Add this target to your Makefile:

This target builds a container image containing an OOMMF and Fidimag
installation.
doc-example-container:

ansible-playbook master.yml -c local -i localhost, -v -k --extra-vars="type=container container_name=doc-example playbook=provision_virtualmicromagnetics_doc-example.yml hookbook=hook_container.yml extra_resources_dir=guest_resources/"

The only differences between this target and the one added previously are:

• The value of “type” is now “container”, not “vm”.

• The value of “hookbook” is now “hook_container.yml”, not “hook_vm.yml”.

• “vm_name=virtualmicromagnetics-doc-example” is now “container_name=doc-example”.

Further Tinkering with the Virtual Machine

We have explored how a new virtual environment can be created, and how new software can be added. In this section,
we describe how the virtual machine itself can be configured using Vagrant’s parameters. Vagrantfiles are files used
by Vagrant written using Ruby syntax. These files specify parameters of the virtual machine created from a virtual
environment. When running the commands in Getting Started: As a User, we create a Vagrantfile in the working
directory that describes the virtual machine to Vagrant. Vagrantfiles can also be built into a virtual environment.
Built-in Vagrantfiles can be found in guest_resources/vagrantfiles.

For example, if you wish to specify that 2048MB of memory must be used in the virtual ma-
chine created in Create New Machine with Existing Software 1, we can add a builtin Vagrantfile at
guest_resources/vagrantfiles/Vagrantfile_virtualmicromagnetics-doc-example_builtin
with the following content:

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|

config.vm.provider :virtualbox do |vb|
vb.memory = 2048

end

This Vagrantfile will be detected by the hookbook and included automatically when the environment is packaged. For
more information on Vagrantfiles, see the Vagrant documentation (https://www.vagrantup.com/docs/vagrantfile/).

1.6.3 Summary and Final Words

To summarise, virtual environments are created from an empty Ubuntu virtual machine after being provisioned and
packaged. This build process allows the user to create a Virtual Micromagnetics virtual machine using Vagrant and

1 Note that this is not such a good idea if you want to distribute your environment to different users, since they may have a different amount of
available memory to you.

1.6. Developer Notes (valid for version 1.1.0) 13

https://www.vagrantup.com/docs/vagrantfile/

Virtual Micromagnetics Documentation, Release 1.1.0

VirtualBox. A similar approach is used to create images for Docker containers. We have also presented how a new
environment can be created, how the software of that environment can be controlled, and how the virtual machines
can be parameterised.

Thank you for using Virtual Micromagnetics! If you create roles for your favourite software, con-
sider sharing them with the community. You can create a pull request at our GitHub repos-
itory at https://github.com/computationalmodelling/virtualmicromagnetics, or contacting Mark at
mark[dot]vousden[at]soton[dot]ac[dot]uk.

1.7 Troubleshooting

Currently there is not troubleshooting information for Virtual Micromagnetics. If you have an issue, please
add it to our issue tracker at https://github.com/computationalmodelling/virtualmicromagnetics/issues, or email
mark[dot]vousden[at]soton[dot]ac[dot]uk. We will endeavour to resolve the issue and add it here if it is widespread.

1.8 Glossary

Box File A file used by Vagrant to create Vagrant environments. A box file represents a template from which virtual
machines can be created.

Container “Containers are a lightweight virtualization method for running multiple isolated Linux systems under a
common host operating system” 2

As with virtual machines, containers are a virtualisation medium. Unlike virtual machines however, they use
components of the host operating system. This reduces their size at the cost of reduced isolation from the host
machine.

Host, Host Machine A machine that uses virtualisation software to host virtual machines and/or containers. Host
machines allocate resources, including memory and disk space, to support the running of a virtual machine
or container. Note that a virtual machine can host other virtual machines, making it both a host and a virtual
machine.

Idempotent, Idempotency Idempotent provisioning runs only the commands required to achieve the desired state
of the system. Commands that do not change the state are not run. This can save considerable build time when
handling dependencies, because a dependency should not be downloaded and reinstalled if it is already in the
state it should be in.

Image A container image acts as a template from which containers can be created. Images are to containers and box
files are to virtual machines.

Manager, Vagrant Manager software provides an interface for managing virtual machines and containers. Vagrant
is an example of manager software, which provides a command-line interface to virtual machine and container
management which can be automated. See Managers.

Vagrant Environment The directory structure (including Vagrantfile) created by Vagrant when vagrant
init is commanded. A single virtual machine or container can be managed in a given environment.

Virtual Environment Virtual environments produce the same virtual machine or container on all virtualisation-
capable computers. Virtual environments are also box files, but are not Vagrant environments.

Provider, Docker, Virtualiser, VirtualBox Provider (or virtualiser) software supports the creation of, and interaction
with, virtual machines or containers from a host machine. VirtualBox and Docker are examples of free provider
software for virtual machines and containers respectively. See Providers.

2 Jacobsen, D.M., Canon, R.S. (2015). “Contain This, Unleashing Docker for HPC”. Proceedings of the Cray User Group.

14 Chapter 1. Contents

https://github.com/computationalmodelling/virtualmicromagnetics
https://github.com/computationalmodelling/virtualmicromagnetics/issues

Virtual Micromagnetics Documentation, Release 1.1.0

Provisioner, Provisioning, Ansible Provisioner software runs a set of commands on a machine, virtual or otherwise,
to ensure it is in a particular state. Ansible is an example of provisioner software that enables idempotent
provisioning. See Provisioners.

System Virtual Machine, Virtual Machine “An efficient, isolated duplicate of a real machine.” 1

Software that imitates certain other software on certain hardware. In this project, this includes a complete
operating system, and a combination of one or many simulation packages and dependencies. General system
virtual machines are described in brief at Virtual Machines and Related Software.

More strictly, a virtual machine is a specific instance of a virtual environment. When we build box file artefacts,
we are creating virtual environments, not virtual machines. Once Vagrant creates a Vagrant environment from a
box file and vagrant up is commanded, a corresponding virtual machine is created. Virtual machines created
on a host are managed by virtual machine providers, which typically list the machines they are maintaining.

Virtual Micromagnetics “Enabling accessible and reproducible micromagnetic simulation.”

The name of this project, which represents the collection of virtual environments and the software written to
create them.

References

Fig. 1.1: OOMMF running in Virtual Micromagnetics.

1 Smith, J., Nair, R. (2005). “The Architecture of Virtual Machines”. Computer (IEEE Computer Society) 38 (5): 32–38.
doi:10.1109/MC.2005.173

1.8. Glossary 15

Virtual Micromagnetics Documentation, Release 1.1.0

16 Chapter 1. Contents

Index

A
Ansible, 15

B
Box File, 14

C
Container, 14

D
Docker, 14

H
Host, 14
Host Machine, 14

I
Idempotency, 14
Idempotent, 14
Image, 14

M
Manager, 14

P
Provider, 14
Provisioner, 15
Provisioning, 15

S
System Virtual Machine, 15

V
Vagrant, 14
Vagrant Environment, 14
Virtual Environment, 14
Virtual Machine, 15
Virtual Micromagnetics, 15
VirtualBox, 14
Virtualiser, 14

17

	Contents
	Getting Started: As a User
	Virtual Micromagnetics Environments and Simulation Software
	Virtual Machines and Related Software
	Containers and Related Software
	Getting Started: As a Poweruser
	Developer Notes (valid for version 1.1.0)
	Troubleshooting
	Glossary

