

Cross Platform Video Capture Library

Video Capture is a cross platform library to capture video frames from
capture devices. This library uses modern SDKs/APIs for Mac, Linux and
Windows. This library is tested and developed on Win 8.1, Mac 10.9
and Arch Linux (latest Linux).

Contents:

	Getting Started
	Building the library

	Compiling programs that use Video Capture

	Programmers Guide
	Concepts used in Video Capture

	Getting information about a device

	Opening a device

	Captureing frames

	Closing a device

Getting Started

To compile Video Capture you need to do:

	Make sure that you installed all dependencies

	Clone the Video Capture repository from github

	Compile using the build script

Building the library

Video Capture primary location is Github. To get the code clone the project:

git clone git@github.com:roxlu/video_capture.git

Dependencies

Video Capture main development systems are Mac OS 10.9, Windows 8.1 and
Arch Linux. On Linux we use the Video4Linux API, on Mac we use AVFoundation
which are both part of the OS. On Windows you need to download the latest
Windows SDK which provides the MediaFoundation libraries. We use CMake [http://www.cmake.org] to
compile the library and examples. The Video Capture library contains an OpenGL
example. For this OpenGL example we depend on libglfw [http://www.glfw.org] 3.

Compiling Video Capture on Mac and Linux

For Mac and Linux systems we use the same compile script. To compile
follow these steps.

cd build
./release.sh

Compiling Video Capture on Windows

On windows we use CMake too with a build script. Development uses
Microsoft Visual Studio 2012 Express. To compile on Windows follow these
steps.

cd build
build.bat 64 release

Compiling programs that use Video Capture

To compile a program that uses Video Capture make sure to link with the
created libvideocapture.a on Mac and Linux and the libvideocapture.lib
file on Windows. The library is installed in the install directory that
we create when you use the above describe build steps.

Also make sure to add a header search path to the headers that we also
install into the install directory.

Libraries to link with on Linux

	udev

Libraries to link with on Mac

	CoreFoundation Framework

	AVFoundation framework

	Cocoa

	CoreVideo

	CoreMedia

Libraries to link with on Windows

	Mfplat.lib

	Mf.lib

	Mfuuid.lib

	Mfreadwrite.lib

	Shlwapi.lib

Programmers Guide

In this guide we will create a very simple program that lists the
available capture devices, then lists the capabilities of a device. Once
we found a capability that we want to use we open the device and start
captureing. Then in a loop we will flush the buffers of the capture device
and let it call our callback function. Before we start we explain a couple
of concepts that we use in Video Capture.

Concepts used in Video Capture

In Video Capture we use a couple of concepts which are shared among most
SDKs/APIs we found on OSX, Linux and Windows.

	Device

	We use the term Device to represent something like a webcam.
This Device can capture video in a specific pixel format.

	Pixel format

	A pixel format describes how the bytes of a video frame are stored.
Common pixel formats for Video Capture are YUYV422, UYVV422 and YUV420P.
Some OSes can convert between pixel formats (Mac). See [libyuvs](https://code.google.com/p/libyuv/wiki/Formats)
documentation for some more info on format mappings..

	Output formats

	Some SDKs have optimized solutions to decode a video stream you
get from a capture device. For example on Mac you can use the OS to
convert a raw YUV stream into a RGB24 stream. Some OSes even have
support to decode H264, so the output formats are also related to codecs
and not only pixel formats.

	Capability

	A capability describes a couple of things related to what a device
can give you. These are things like the dimensions of the video frames
you receive, the framerate and the pixel format. Video Capture supports
querying the available capabilities of a device on Windows, Mac and Linux.

	Settings

	Video Capture uses a settings object when you want to open a device. The
Settings object stores information like, what device you want to use,
what capability and what pixel format you want to use. A settings object
is passed into the open() method of the cature class.

	Frame

	A frame is a helper type we created which gives you information about
a pixel format. If necessary you can use a Frame object to get information
about strides, widths, heights, offsets etc.. for planar or non-planar
pixel formats. See the opengl example where we use a Frame to get offets
into the YUV420P data on windows.

Getting information about a device

Before we open a capture device we have to inspect the capabilities
of the capture device. Do detect if we found your capture device you can
use the listDevices() function of the Capture class.

Note that all types of the Video Capture library are using the ca namespace.
The example below creates a Capture instance which is the interface to your
capture device.

using namespace ca;

Capture capture(fc,NULL);
if(capture.listDevices() < 0) {
 printf("Error: cannot list devices.\n");
 ::exit(EXIT_FAILURE);
}

if(capture.listCapabilities(0) < 0) {
 printf("Error: cannot list capabilities for devices 0.\n");
 ::exit(EXIT_FAILURE);
}

listDevices() will log all the found capture devices to stdout. Each
device has a unique number that you will need to use when opening a device.
When a function fails it will return a negative error code, so make sure
to check if the result is < 0 as shown above.

The listCapabilities() function will list all the capabilities of the
capture device. A capability describes the width, height, framerate and
pixel format. From this list, pick the capability number that you want to use.
The Video Capture library also provides a findCapability() function
that you can use to find a specific capability for a device. This function will
return the index number of the found capability or a negative value if not
found.

Some SDKs can convert a pixel format from the capture device into another,
maybe more easy to use one. For example Mac gives you a way to convert from a
YUV pixel format to RGB format. Although this is very handy, it’s not recommended
because converting will mostly be done on the CPU (maybe with SIMD) which means
you loose some processing power for other parts of your application. Use the
listOutputFormats() to inspect what output formats are supported.

Opening a device

Once you’ve found what device, capability and output format you want to
use you need to create a Settings object that describes how you want to
use the device. Below we show how to create a Settings object and how to
set what capability, device and format we want to use.

using namespace ca;

Settings settings;
settings.device = 0; // Use number 0 from the device list (see listDevices())
settings.capability = 15; // Use number 15 from the capability list (see listCapabilities())
settings.format = -1 // We're not using any output format conversion (see listOutputFormats())

Once we have this Settings object we pass it into the open() function
of the Capture instance. This will open the device and set the capability.
Make sure to check the return values from open(), when it’s negative an error
occured.

using namespace ca;
Capture capture(fc, NULL);

Settings settings;
settings.device = 0;
settings.capability = 15;
settings.format = -1

if(capture.open(settings) < 0)) {
 printf("Error: cannot open the capture device.\n");
 :exit(EXIT_FAILURE);
}

Captureing frames

After opening the capture device we can start receiving frames. Video Capture
uses a callback function that is called whenever a new frame arrives. Two things
are important about this callback function:

	This function may be called from another thread

	This function must return before a new frame arrives

The callback function is passed to the constructor of the Capture class.
The interface of this callback function is:

void on_frame(void* bytes, int nbytes, void* user)

	bytes is a pointer to the frame data from the capture device. This maybe be a pointer
to planar video data when e.g. using YUV420P. See the opengl example where we use YUV420P
(on Windows).

	nbytes the number of bytes in the frame.

	user a pointer to user data. This is the second parameter to the Capture constructor.

To capture frames you use:

if(capture.start() < 0) {
 printf("Error: cannot start captureing.\n");
 ::exit(EXIT_FAILURE);
}

while(must_capture) {
 capture.update();
}

if(capture.stop() < 0) {
 printf("Error: cannot stop the capture process.\n");
}

Make sure to call update() at at least the same rate of the used frame rate. Some
capture SDKs don’t use async callbacks for which we need to process any pending frames.

Closing a device

Once you’re done make sure to correctly cleanup and shutdown the capture device.
Closing a device will make sure that all allocated memory gets freed and the device
is correctly shutdown. Note: when you don’t close a device on Linux, it will continue
to be in opened state and can’t be used anymore, before you correctly close it.

if(capture.close() < 0) {
 printf("Error: cannot close the capture device.\n");
}

Index

 nav.xhtml

 Table of Contents

 		Cross Platform Video Capture Library

 		Getting Started

 		Building the library

 		Dependencies

 		Compiling Video Capture on Mac and Linux

 		Compiling Video Capture on Windows

 		Compiling programs that use Video Capture

 		Libraries to link with on Linux

 		Libraries to link with on Mac

 		Libraries to link with on Windows

 		Programmers Guide

 		Concepts used in Video Capture

 		Getting information about a device

 		Opening a device

 		Captureing frames

 		Closing a device

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

