

VEE: Versioned Execution Environment

This project aims to encapsulate various package Packages in order to allow for
consistent, versioned assembly of an execution environment across a fleet of
OS X and Linux hosts.

Eventually, VEE may provide continuous deployment.

The initial goal is to include packages from:

	Homebrew [http://brew.sh/] (and linuxbrew [https://github.com/Homebrew/linuxbrew]);

	the Python Package Index [https://pypi.python.org/pypi];

	ad-hoc Python packages;

	ad-hoc general packages.

Contents

	Installation and Workflows
	Basic Installation

	User Workflow

	Developer Workflow

	Manual Workflow

	Core Concepts
	Names

	Home

	Environment

	Packages

	Requirement

	Requirement Specification

	requirements.txt

	Environment Repository

	Execution Environment

	Pipelines
	Install Pipeline

	Develop Pipeline

	Names and Paths

	Automatic Building

	Automatic Installation

	Caveats

	Command-Line Interface

	Python API

Indices and tables

	Index

	Module Index

	Search Page

Installation and Workflows

Basic Installation

Install VEE from GitHub; it will prompt you for install location.
python <(curl -fsSL https://raw.githubusercontent.com/vfxetc/vee/master/install_vee.py)

Either add VEE to your environment, or to your .bashrc; the installer
above defaults to:
export VEE=/usr/local/vee
export PATH=$VEE/src/bin:$PATH

If working in a group, set permissions:
sudo chown $(whoami) $groupname $VEE
sudo chmod -R g=rwXs,o=rwX $VEE

User Workflow

Before your first use of vee, it must be initialized. This command
will error if already run, with no ill effects.
vee init

Add the environment repository (replace with your git remote and name),
and build it.
vee repo clone git@github.com:vfxetc/vee-repo vfxetc
vee upgrade

Run some installed commands.
vee exec COMMAND
or:
eval "$(vee exec --export)"
COMMAND
or:
vee exec --export >> ~/.bashrc
COMMAND

Whenever there are changes to the environment repo, you must "update"
to fetch the changes, and "upgrade" to build the environment.
vee update
vee upgrade

Developer Workflow

Specify where you want your dev packages to be, if not in $VEE/dev.
export VEE_DEV=~/dev

Install a package for development. This must be a package that is
referred to by the default repository.
vee develop install PACKAGE

cd ~/dev/PACKAGE

Develop here; use `dev` to run in the dev environment.
dev MY_COMMAND

Commit your changes to the package.
git commit -am 'What you did to PACKAGE.'

Commit your changes to the VEE repo.
vee add PACKAGE
vee commit --patch -m 'Did something to PACKAGE.'

Test locally.
vee upgrade
MY_COMMAND

Push out the package, and repo.
git push
vee push

Manual Workflow

Install some individual packages into the default environment.
These will be lost upon the next "upgrade".
vee link homebrew+sqlite
vee link homebrew+ffmpeg --configuration='--with-faac'
vee link git+https://github.com/shotgunsoftware/python-api.git --name shotgun_api3
vee link --force https://github.com/vfxetc/sgmock/archive/master.zip --install-name sgmock/0.1
vee link git+git@github.com:vfxetc/sgsession

Link a few packages into an "example" environment.
vee link -e example examples/basic.txt

Execute within the "example" environment.
vee exec -e example python -c 'import sgmock; print sgmock'

Core Concepts

Names

Package names are currently assumed to existing within a single
namespace, regardless of what type of package they represent. This means that
there are potentially severe collisions between a similarly named package in
Homebrew and on the PyPI, for instance.

The --name argument is provided to allow for manual disambiguation.

In the future, we may add a concept of namespaces, such that Python projects
exist within a “python” namespace, Ruby gems within “ruby”, and Homebrew/others
within “binaries”.

Home

VEE’s home is where it installs and links environments. It is structured like:

builds/ # Where packages are built; largely temporary.
dev/ # Where you work as a developer.
environments/ # The final linked environments you execute in.
installs/ # The installed (post-build) packages.
opt/ # Sym-links to last-installed version of every package.
packages/ # The packages themselves (e.g. tarballs, git repos, etc.).
repos/ # The requirement repositories which drive your environments.
src/ # VEE itself.

Environment

An environment is a single “prefix”, linked from installed packages. Contains
standard top-level directories such as bin, etc, lib, include,
share, var, etc..

These are symlinked together using the least number of links possible; a directory
tree that only exists within a single package will be composed of a single
symlink at the root of that tree.

Since their link structure is then unknown, it is highly advised to not write
into an environment.

Packages

Outside of VEE, packages are bundles provided by a remote source which contains
source code, or prepared build artifacts. E.g. a tarball, zipfile, or git repository.

Within VEE, the Package class is more abstract, representing both
abstract requirements and a concrete instance of them. It provides all state
required for the various pipelines.

Requirement

A requirement is specification of a package that we would like to have installed
in an environment. These are still represented via the Package class.

Requirement Specification

Requirements are specified via a series of command-line-like arguments.
The first is a URL, which may be HTTP, common git formats, or VEE-specific, e.g.:

	http://cython.org/release/Cython-0.22.tar.gz

	git+git@github.com:vfxetc/sitetools

	pypi:pyyaml

The requirements are further refined by the following arguments:

These may be passed to individual commands, e.g.:

vee link pypi:pyyaml --revision=3.11

or via a requirements.txt file, which contains a list of requirements.

requirements.txt

The requirements file may also include:

	Headers, which are lines formatted like Header: Value, e.g.:

Name: example
Version: 0.43.23
Vee-Revision: 0.1-dev+4254bc1

	Comments beginning with #;

	Basic control flow, starting with %, e.g.:

For the Shotgun cache:
% if os.environ.get('VEEINCLUDE_SGCACHE'):
 git+git@github.com:vfxetc/sgapi --revision=6da9d1c5
 git+git@github.com:vfxetc/sgcache --revision=cd673656
 git+git@github.com:vfxetc/sgevents --revision=a58e61c5
% endif

Environment Repository

An environment repository is a git repository which contains (at a minimum)
a requirements.txt file.

They are managed by the cli_vee_repo command.

Execution Environment

	
VEE_EXEC_ENV

	A comma-delimited list of environment names that were linked into the
current environment. If you actually use an environment repository, this
will likely contain "NAME/BRANCH" of that repo. Each entry here will
have a corresponding entry in VEE_EXEC_PATH as well.

	
VEE_EXEC_REPO

	A comma-delimited list of environment repository names that were linked
into the current environment.

	
VEE_EXEC_PATH

	A colon-delimited list of paths that are scanned to assemble the current
environment.

	
VEE_EXEC_PREFIX

	The first path scanned to assemble the current environment. This is
mainly for convenience.

Pipelines

The package processing pipelines consist of a series of steps, the handlers of
which are determined as the pipeline is processed. This enables us to defer
the build type of a package (e.g. a Python distribution) until after it has
been downloaded and extracted.

There are to main pipelines currently in VEE: the Install Pipeline and
Develop Pipeline.

All pipelines must start with an “init” step, which must be indempodent, and
may normalize user-specified data on the package (e.g. normalize the URL).

Install Pipeline

The install pipeline is the primary pipeline of VEE, and is reponsible for
installing the packages that are used in the default runtime. It’s steps are:

“init”

Normalizes user-specified data. This step MUST be indempodent, as it may run
more than once in common usage. It may also set the package name/path.

“fetch”

The package is retrieved and placed at Package.package_path.
This step should be idempotent (and so is assumed to cache its results and
may freely be called multiple times).

“extract”

The package’s contents (“source”) are placed into Package.build_path
(which is usually a temporary directory).

“inspect”

An opportunity to check meta-data and determine self-described dependencies.
This step may also set build and install names/paths.

“build”

The source is built into a build “artifact”.

“install”

The build artifact is installed into Package.install_path.

“post_install”

Permission/ownership modification of the install.

“relocate”

Shared libraries are relocated to link against existant libraries (in case
they are not already relocatable, and their dependencies are not in the same
location in all environments).

“optlink”

The Package.install_path is linked into $VEE/opt, for user
convenience.

The built-in pipeline looks like:

[image: digraph install_pipeline { "git.init" -> "git.fetch"; "git.fetch" -> "file.extract"; "generic.init" -> "file.fetch"; "file.fetch" -> "file.extract"; "file.fetch" -> "archive.extract"; "http.init" -> "http.fetch"; "http.fetch" -> "archive.extract"; "file.extract" -> "generic.inspect" "file.extract" -> "python.inspect" "archive.extract" -> "generic.inspect" "archive.extract" -> "python.inspect" "python.inspect" -> "python.build" -> "python.install" "generic.inspect" -> "generic.build" -> "generic.install" "generic.inspect" -> "self.build" -> "generic.install" "generic.build" -> "self.install" "self.build" -> "self.install" "generic.inspect" -> "make.build" -> "generic.install" "make.build" -> "make.install" "python.install" -> "generic.relocate" "generic.install" -> "generic.relocate" "self.install" -> "generic.relocate" "make.install" -> "generic.relocate" "homebrew.init" -> "homebrew.fetch" -> "homebrew.extract" -> "homebrew.inspect" -> "homebrew.build" -> "homebrew.install" -> "generic.relocate" "generic.inspect" [style=dashed] "generic.build" [style=dashed] "homebrew.extract" [style=dashed] "homebrew.install" [style=dashed] "generic.relocate" -> "generic.optlink" }]

Develop Pipeline

“init”

Same as above.

“develop”

Prepare the package for running in the development environment. Prepare any
generated scripts, perhaps perform a build, and identify any environment
variables to set in order to include this package in the runtime environment.

Names and Paths

There are a series of *_name attribute of a Package. They are
set from Requirement attributes, or self-determined on request via
Package._assert_names(build=True, ...).

There are a series of *_path properties on a Package. They usually
incorporate the corresponding name, but don’t have it. They are set from
Package._assert_paths(build=True, ...).

Warning

It is very important that an API consumer only every assert the existence of
names or paths that they are about to use. This allows for the determination
of some of the names (especially install_name and install_path) to be
deferred as long as possible so that they may use information revealed during
the earlier of the build pipeline.

The *_name attributes exist only for the construction of paths; API consumers
should only ever use the *_path properties:

	
Package.package_path

	The location of the package (e.g. archive or git work tree) on disk. This
must always be correct and never change. Therefore it can only derive from
the requirement’s specification.

	
Package.build_path

	A (usually temporary) directory for building. This must not change once the package
has been extracted.

	
Package.install_path

	The final location of a built artifact. May be None if it cannot be
determined. This must not change once installed.

	
Package.build_subdir

	Where within the build_path to install from. Good for selecting a sub directory
that the package build itself into.

	
Package.install_prefix

	Where within the install_path to install into. Good for installing packages
into the correct place within the standard tree.

Automatic Building

Most packages are inspected to determine which style of build to use. Unless
otherwise stated, they will also use an automatic install process as well. The
base styles (in order of inspection) are:

. vee-build.sh

If a vee-build.sh file exists, it will be sourced and is expected to build
the package. A few environment variables are passed to assist it:

	VEE

	VEE_BUILD_PATH

	VEE_INSTALL_NAME

	VEE_INSTALL_PATH

The script may export a few environment variables to modify the install
process:

	VEE_build_subdir

	VEE_install_prefix

python setup.py build

If a setup.py file exists, the package is assumed to be a standard
distutils-style Python package. The build process is to call:

python setup.py build

and the install process will be (essentially) to call:

python setup.py install --skip-build --single-version-externally-managed

EGG-INFO or *.dist-info

If an EGG-INFO or *.dist-info directory exists, the package is
assumed to be a prepared Python package (an Egg or Wheel, respectively), and no
further build steps are taken. The install process will be modified to install
the package contents into lib/python2.7/site-packages.

./configure

If a configure file exists, it will be executed and passed the install path:

./configure --prefix={package.install_path}

This continues onto the next step…

make

If a Makefile file exists (which may have been constructed by running
./configure), make will be called.

Automatic Installation

Unless overridden (either by the package type, or the discovered build type
(e.g. Python packages have their own install process)), the contents of
the build path are copied to the install path, like:

shutils.copytree(
 os.path.join(pkg.build_path, pkg.build_subdir)),
 os.path.join(pkg.install_path, pkg.install_prefix))
)

An optional --hard-link flag indicates that the build and install should
be hard-linked, instead of copied. This results in massive time and space
savings, but requires the packages to be well behaved.

Caveats

make install

Since we cannot trust that the standard make; make install pattern will
actually install into a prefix provided to
./configure, we do not run make install.

An optional --make-install flag signals that it is safe to do so.

python setup.py install

Instead of running python setup.py install, we break it into
python setup.py build and python setup.py install --skip-build.

Some packages may not like this much.

Command-Line Interface

Python API

Warning

Very incomplete.

	
class vee.home.Home(root=None, repo=None)

	The starting point of everything VEE.

	Parameters

	
	root (str [https://docs.python.org/3/library/stdtypes.html#str]) – The root directory of the home; defaults to $VEE.

	repo (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the default repository; defaults to $VEE_REPO.

 Python Module Index

 v

 		 	

 		
 v	

 	[image: -]
 	
 vee	

 	
 	
 vee.home	

Index

 B
 | E
 | H
 | I
 | P
 | V

B

 	
 	build_path (Package attribute)

 	
 	build_subdir (Package attribute)

E

 	
 	
 environment variable

 	VEE_EXEC_ENV

 	VEE_EXEC_PATH, [1]

 	VEE_EXEC_PREFIX

 	VEE_EXEC_REPO

H

 	
 	Home (class in vee.home)

I

 	
 	install_path (Package attribute)

 	
 	install_prefix (Package attribute)

P

 	
 	package_path (Package attribute)

V

 	
 	vee.home (module)

 	
 	VEE_EXEC_PATH

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/graphviz-138f22f7d3e9f5b90249a4bc4386c8c2a7475251.png
homebrew. fetch

w.extract

generic.optlink

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 VEE: Versioned Execution Environment

 		
 Installation and Workflows

 		
 Basic Installation

 		
 User Workflow

 		
 Developer Workflow

 		
 Manual Workflow

 		
 Core Concepts

 		
 Names

 		
 Home

 		
 Environment

 		
 Packages

 		
 Requirement

 		
 Requirement Specification

 		
 requirements.txt

 		
 Environment Repository

 		
 Execution Environment

 		
 Pipelines

 		
 Install Pipeline

 		
 “init”

 		
 “fetch”

 		
 “extract”

 		
 “inspect”

 		
 “build”

 		
 “install”

 		
 “post_install”

 		
 “relocate”

 		
 “optlink”

 		
 Develop Pipeline

 		
 “init”

 		
 “develop”

 		
 Names and Paths

 		
 Automatic Building

 		
 . vee-build.sh

 		
 python setup.py build

 		
 EGG-INFO or *.dist-info

 		
 ./configure

 		
 make

 		
 Automatic Installation

 		
 Caveats

 		
 make install

 		
 python setup.py install

 		
 Command-Line Interface

 		
 Python API

_static/up-pressed.png

_static/up.png

